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We consider a cosmological scenario in which a scale-invariant spectrum of curvature perturbations is

generated by a rapidly evolving equation of state on a slowly expanding background. This scenario

generalizes the ‘‘adiabatic ekpyrotic’’ mechanism proposed recently by Khoury and Steinhardt [Phys.

Rev. Lett. 104, 091301 (2010)]. Whereas the original proposal assumed a slowly contracting background,

the present work shows that the mechanism works equally well on an expanding background. This greatly

expands the realm of broader cosmological scenarios in which this mechanism can be embedded. We

present a phase space analysis and show that both the expanding and contracting versions of the scenario

are dynamical attractors, with the expanding branch having a broader basin of attraction. In both cases, a

finite range of scale-invariant modes can be generated within the regime of validity of perturbation theory.

DOI: 10.1103/PhysRevD.84.023508 PACS numbers: 98.80.Cq

I. INTRODUCTION

There is mounting observational evidence that the large-
scale structure originated from a nearly scale-invariant and
nearly Gaussian spectrum of primordial density perturba-
tions. While these statistical properties are consistent with
the simplest inflationary models [1], a critical question for
early universe cosmology is whether inflation is unique in
making these predictions. This has motivated the quest for
alternative scenarios, from the pre-big bang scenario [2], to
string gas cosmology [3–7], to ekpyrotic theory [8–39].
(See [38,39] for reviews of ekpyrotic cosmology.)

A zeroth-order benchmark for a successful theory of the
early universe is to explain the observed homogeneity,
isotropy, and flatness of our universe. There are only two
known cosmological phases that make the universe in-
creasingly homogeneous, isotropic, and flat. The first is,
of course, inflation, characterized by accelerated expansion
after the big bang. This requires a scalar field (or fluid) with
negative equation of state w<�1=3. A second possibility
is ekpyrosis, a phase of slow contraction before the big
bang [18,24,40]. This corresponds to a scalar field with
stiff equation of state w � 1. The smoothing power of
ekpyrotic contraction was recently confirmed using nu-
merical relativity simulations [41].

Another benchmark is to generate a nearly scale-
invariant and Gaussian primordial spectrum. But even
this is not sufficient. Inflation not only generates perturba-
tions with the desired properties, but it does so within a
cosmological background that is a dynamical attractor.
Indeed, on superhorizon scales, the curvature perturbation
on uniform-density slices [42–44], � � �a=a, measures
differences in the expansion history of distant Hubble
patches [44]. Since � ! const at long wavelengths in
(single-field) inflation, the background is an attractor [45].

Achieving both scale invariance and dynamical attrac-
tion in alternative scenarios has proven challenging. The

mode function equation for � in a contracting, matter-
dominated universe takes an identical form as in inflation
[46–48]; but, � grows outside the horizon in this case,
indicating an instability. This is not surprising, since an
anisotropic stress component, for instance, will blueshift
faster than dust. Similarly, contracting mechanisms that
rely on a time-dependent sound speed are inevitably un-
stable [49]. The contracting phase in the original ekpyrotic

scenario [8], with Vð�Þ ¼ �V0e
�c�=MPl , is an attractor

[18,24], as mentioned above, and correspondingly the
growing mode for � is a constant in the long-wavelength
limit. However, the resulting spectrum for � is strongly
blue [12,13,18,24], rather than scale-invariant. A scale-
invariant spectrum can be obtained through entropy
perturbations [15,16,25,26,29], as in the new ekpyrotic
scenario [26–28], but this requires two scalar fields. Even
in this case, the entropy direction is generically tachyoni-
cally unstable [30,50].
The recently proposed adiabatic ekpyrotic mechanism

[35–37,51], based on a single scalar field with canonical
kinetic term, offers a counterexample. The mechanism can
be realized with fairly simple potentials, such as the ‘‘lifted
exponential’’

Vð�Þ ¼ V0ð1� e�c�=MPlÞ; (1)

with V0 > 0 and c � 1. This potential takes the form of a
plateau that has been lifted to positive energy at large
positive � with a steep waterfall around � ¼ 0. See
Fig. 1. The key difference, compared to earlier renditions
of ekpyrotic cosmology, is that the potential assumes posi-
tive values for part of the evolution.
Scale-invariant adiabatic perturbations are generated

during a transient phase in which the equation-of-state
parameter,

� � � _H

H2
¼ 3

2
ð1þ wÞ; (2)
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grows rapidly from � � 1, where the constant term domi-
nates, to � � c2=2 � 1, where the negative exponential
term dominates. During this transition, the scale factor is
nearly constant, while the equation-of-state parameter
varies rapidly as �� 1=�2, where � is conformal time.
This is referred to as the transition phase. The quantity

z � að�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�Þp

, which determines the evolution of � ,
therefore, scales as z� ð��Þ�1—exactly as in inflation,
where � � const and að�Þ � 1=ð��Þ. The two-point func-
tion is, therefore, identical to inflation. (Another counter-
example proposed recently relies on a rapidly varying,
superluminal sound speed csð�Þ [52–54]. See [49,55–57]
for earlier related work.)

More generally, it has recently been shown that, in fact,
there are only three single-field cosmologies with unit
sound speed capable of generating a scale-invariant spec-
trum for � on an attractor background [58,59]: i) inflation,
with að�Þ � 1=j�j and � � const; ii) the adiabatic ekpyr-
otic mechanism [35,37] mentioned above, with �� 1=�2

on a slowly contracting background; and iii) a novel ver-
sion of the adiabatic ekpyrotic mechanism, in which the
background first slowly expands, then slowly contracts.
The analysis has been generalized to the case of a
time-dependent sound speed [59,60]. See [51,61,62] for
related work.

Although all three cosmologies yield identical two-point
functions, the degeneracy is broken by the three-point
function. In contrast with the extremely Gaussian spectrum
of the simplest inflationary models, the rapid variation of �
in the adiabatic ekpyrotic mechanisms leads to strongly
scale-dependent non-Gaussianities, which peak on small
scales [37]. For the lifted exponential potential (1), this
results in a breakdown of perturbation theory on small
scales, both classically and quantum mechanically [37].
As shown in [37], however, these pathologies, and related
issues raised in [36], can be avoided by considering more
general forms of the potential, such as

Vð�Þ ¼ V0ð1� e�cð�Þ�=MPlÞ; (3)

where the exponent decreases from c to a much smaller
value b � c after an acceptable range of scale-invariant
modes has been generated. The resulting spectrum is per-
turbative on all scales, but, because of the modified evolu-
tion, is now scale-invariant over a finite range of modes,
spanning a factor of 105 in k space, or a dozen e-folds.
While limited, this range is sufficient to account for ob-
servations of the cosmic microwave background and the
large-scale structure.
Earlier analyses of the adiabatic ekpyrotic mechanism

have focused on the case where the universe is contracting
throughout. In this paper, we instead explore the phenome-
nology and implications of the expanding case, consisting
of an ‘‘expanding transition phase,’’ followed by a con-
tracting ekpyrotic scaling phase. In doing so, we are mo-
tivated by the issue of embedding this mechanism in
broader cosmological scenarios. Specifically, one attrac-
tive feature of the expanding branch is that we expect its
basin of attraction to be much broader than in the original
contracting version. Indeed, while the contracting transi-
tion phase in the original adiabatic ekpyrotic mechanism is
a dynamical attractor, the evolution prior to the transition
phase is generally not. At sufficiently early times, the field
lies on a flat plateau of its potential, and, because the
universe is contracting, any additional amount of kinetic
energy is blueshifted and threatens to dominate the energy
density. In the initially expanding version studied here, any
additional kinetic energy will instead redshift away, and
we, therefore, expect the solution to be stable for all times.
After reviewing the contracting version of the adiabatic

ekpyrotic mechanism in Sec. II, we show in Sec. III that
this mechanism works equally well on a slowly expanding
background and generates a scale-invariant spectrum of
curvature perturbations. Since scale invariance relies on a
rapidly varying equation-of-state parameter while the scale
factor is nearly constant, the density perturbation spectrum
is, to a good approximation, insensitive to whether the
background is expanding or contracting during mode pro-
duction. We check this explicitly in Sec. IV by numerically
integrating the mode function equation in both the expand-
ing and contracting cases. The resulting spectra are indis-
tinguishable (see Fig. 2 for a preview). Section V revisits
the analytic calculation of the background evolution, al-
lowing for more general initial conditions. We quantify the
extent to which the scale-invariant phase shortens as a
function of initial scalar field kinetic energy. In Sec. VI,
we study the issue of stability globally by performing a
phase space analysis, including a wide range of initial
conditions, both for the expanding and the contracting
branch. This confirms that the transition phase is an attrac-
tor in both cases, as indicated at the perturbative level by �
having a constant growing mode as k ! 0. More broadly,
this analysis also shows that the basin of attraction is
broader in the expanding case, as anticipated in the pre-
vious paragraph. In Sec. VII, we study the connection to an

FIG. 1 (color online). Depiction of the ‘‘lifted exponential’’
potential, Vð�Þ ¼ V0ð1� e�c�=MPl Þ. At large field values, the
potential is nearly constant, and there is a steep waterfall around
� ¼ 0.
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inflationary precursor to the transition phase, which fol-
lows in the expanding case from trusting (1) at sufficiently
large field values. We briefly summarize our main results
and discuss prospects for future directions in Sec. VIII.

The expanding adiabatic ekpyrotic mechanism studied
here suffers from the same strong coupling issues as the
original contracting version. In particular, the calculation
of the three-point amplitude in [37] neglected the time
dependence of the scale factor, and hence should apply
to the expanding case, as well. (One technical difference in
our case is that � momentarily blows up at the end of the
transition phase, because H ¼ 0 at that time. As the
numerical analysis of Sec. IV clearly shows, however,
the two-point function is insensitive to this momentary
divergence. We expect that the same is true for the three-
point function.) In particular, just like in the contracting
branch, strong coupling can be avoided by considering
more general forms of the potential, such as (3). We will
not repeat the discussion of non-Gaussianities in this paper,
and we refer the interested reader to [37] for more details.

II. REVIEW OF THE ADIABATIC
EKPYROTIC SOLUTION

It is instructive to review the mechanism presented
by [35,37] in which scale-invariant curvature pertur-
bations are generated by a fast-rolling scalar field during
a slowly contracting phase. Consider a canonical scalar
field coupled to gravity

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

PlR

2
� 1

2
g��@��@��� Vð�Þ

�
; (4)

where M�2
Pl ¼ 8�G. For concreteness, we focus on

the ‘‘lifted exponential’’ potential (1). This form of the
potential is simplest for analytical calculations but is
not meant to represent a realistic scenario. Indeed, to
avoid strong coupling issues [36], realistic models must

consider a more general potential of the form Vð�Þ ¼
V0ð1� e�cð�Þ�=MPlÞ, where cð�Þ decreases to a smaller
value after a suitable range of scale-invariant modes has
been generated. See [37] for details. Since the production
of these scale-invariant modes occurs as the field traverses
a small range �� � MPl, there is a reasonable amount of
freedom in specifying the global form of the potential.

The evolution of the scalar field on a cosmological
background is governed by the equation of motion

€�þ 3H _�þ V;� ¼ 0: (5)

During the phase of interest, the background evolves ex-
tremely slowly, so we may ignore Hubble friction.
As shown in [35], this approximation can be rigorously
justified a posteriori by explicitly computing the first-order
correction and verifying that it is indeed small. Intuitively,
the field falls down a steep waterfall; hence, the transition

occurs within a Hubble time. This ‘‘fast-roll’’ approxima-
tion leads to the simplified equation

€� � �V;� ¼ � c

MPl

V0e
�c�; (6)

which is solved by

�ðtÞ � 2MPl

c
log

� ffiffiffiffiffiffiffiffiffiffiffi
V0

2M2
Pl

s
cjtj

�
; (7)

where�1< t < 0. In writing down this solution, we have
assumed that the field initially has negligible kinetic en-
ergy at early times; hence, the total energy is V0. In Sec. V,
we will consider departures from this choice and the im-
pact on the spectrum of perturbations.
To solve for the evolution of the background, we sub-

stitute (7) into _H ¼ � _�2=2M2
Pl to obtain

HðtÞ ¼ 2

c2t
�H0: (8)

At sufficiently early times, the Hubble parameter is ap-
proximately constant, HðtÞ ’ H0, where the integration
constant H0 is fixed by the Friedmann equation,

3M2
PlH

2
0 ’ 1

2
_�2 þ Vð�Þ � V0: (9)

The authors of [35] focused on the contracting branch,

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0

3M2
Pl

s
: (10)

Indeed, since H0 > 0 and t is negative, HðtÞ is manifestly
negative, corresponding to a contracting universe. (Note
that the present sign convention differs from [35], where
HðtÞ ¼ 2=c2tþH0 and H0 is a negative quantity.)
The phase of interest is the regime where the H0 term

dominates the Hubble parameter,HðtÞ �H0, in which case
� ¼ � _H=H2 � 1=t2. Additionally, the assumption that
the background remains nearly static implies aðtÞ � 1.

The quantity z � að�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�Þp

, which determines the evo-
lution of � , therefore, satisfies

z � a
ffiffiffiffiffiffi
2�

p � 1

�
; (11)

exactly as in inflation, where � � const and að�Þ �
1=ð��Þ. Moreover, as in inflation, the growing mode for
� goes to a constant, indicating that the background is a
dynamical attractor [45]. The two cosmologies yield iden-
tical power spectra and, therefore, can be considered
‘‘dual’’ to one another at the level of the two-point
function.
The transition phase ends when HðtÞ ’ const is no lon-

ger a good approximation. Subsequently, the Hubble pa-
rameter tends to an ekpyrotic scaling
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HekðtÞ � 2

c2t
; (12)

while the scale factor slowly decreases as

aekðtÞ � ð�tÞ2=c2 : (13)

This ekpyrotic scaling phase is a necessary component of
the story. Because the Hubble horizon is nearly static
during the transition phase, the scale-invariant modes cre-
ated in this phase remain inside the Hubble radius. A
subsequent phase is, therefore, necessary to push these
modes outside the Hubble horizon. The scaling ekpyrotic
phase fills this role—since the universe is slowly con-
tracting, modes are gently pushed outside the Hubble
horizon without disturbing their spectrum. (Eventually,
the ekpyrotic phase must itself terminate before the big
crunch. We envision that it is followed by a bounce to an
expanding, radiation-dominated phase. At the level of a
four-dimensional effective theory, a stable nonsingular
bounce can be achieved either through a phase of ghost
condensation [63], as in the new ekpyrotic scenario, or
through a phase of Galileon domination [64]. See [65,66]
for recent supersymmetric extensions of these theories.)

III. ADIABATIC MECHANISM
IN AN EXPANDING PHASE

The key element of the adiabatic ekpyrotic mechanism
is the rapid evolution of the equation-of-state parameter �;
this growth is responsible for the generation of a spectrum
of adiabatic modes. Interestingly, the scale factor remains
nearly constant in the process, and hence plays no essential
role. As a result, we expect that the adiabatic ekpyrotic
mechanism can be generalized to a case where the scale
factor is slowly increasing. In this section, we show that
this is indeed possible.

Although this may seem like an academic exercise, there
are important implications in extending the original setup,
especially for embedding this mechanism in broader cos-
mological scenarios. As reviewed above, in the contracting
adiabatic mechanism, the transition phase is a dynamical
attractor [37]. However, the cosmological evolution prior
to the onset of the transition phase is not necessarily an
attractor solution. In fact, we know that, at the earliest
times when the field lies on the potential plateau, the
background cosmology must be unstable—any additional
kinetic energy in the field will blueshift and can lead to
kinetic domination. In an initially expanding universe,
the kinetic energy will instead redshift. In this way, we
expect an expanding transition phase solution to be stable
for all time.

A. The expanding transition solution

The construction of the solution is quite similar to the
contracting case. As before, we may ignore the background

evolution to first order, so the scalar field equation of
motion reduces to (6), with a solution given again by

�ðtÞ � 2MPl

c
log

� ffiffiffiffiffiffiffiffiffiffiffi
V0

2M2
Pl

s
cjtj

�
; (14)

where�1< t < 0. Since the cosmological background is
to first order irrelevant for the scalar field evolution, it is
natural that the approximate solution (7) applies irrespec-
tive of whether the universe is contracting or expanding.
In the same way as before, we can integrate the _H equation
to obtain

HðtÞ ¼ 2

c2t
þH0: (15)

The Friedmann equation (9) constrains the magnitude of
the integration constant H0 as before,

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0

3M2
Pl

s
: (16)

Note that this time we have chosen the positive-definite
quantity H0 to appear as þH0 in (15). Hence, at suffi-
ciently early times, HðtÞ � H0 is approximately constant
and positive, corresponding to an expanding de Sitter
universe. The expanding transition solution will be similar
to the contracting case—as long as HðtÞ � H0, we will
have z� 1=�2, and scale-invariant perturbations will be
generated. However, since Hubble is positive during this
time, perturbations are generated on a slowly expanding
background.
The transition phase is once again followed by an ekpyr-

otic scaling phase, with HekðtÞ � 2=c2t. During this phase,
the Hubble radius shrinks slowly, and the scale-invariant
modes are gently pushed outside the horizon. There is,
however, a key difference: in the expanding case, HðtÞ
changes sign as the universe evolves from the (expanding)
transition phase to the (contracting) ekpyrotic scaling
phase.
By definition, the transition phase proceeds as long as

the Hubble parameter is nearly constant, and the Hubble
friction term can be neglected in the scalar field evolution.
These conditions are only satisfied for a finite time. First
note that the constant term dominates in the expression for
HðtÞ until

tend-tran ¼ tbeg-ek ¼ � 2

c2H0

; (17)

which corresponds to the time when H vanishes, and the
universe transitions from expansion to contraction. As the
subscripts indicate, this marks the end of the transition
phase and the onset of the ekpyrotic scaling phase.
Likewise, the transition phase is also finite in the past.
The solution (14) for �ðtÞ neglected gravity, which is a
poor approximation for sufficiently large positive � where
the potential is flat and Hubble damping is important. More
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precisely, it is straightforward to show that the approxima-

tion H _� � cV0e
�c�=MPl=MPl used in (6) is consistent as

long as t > tbeg-tran, where

tbeg-tran ¼ � 1

H0

: (18)

Summarizing, the transition phase solution is valid for

� 1

H0

¼ tbeg-tran < t < tend-tran ¼ � 2

c2H0

: (19)

Interestingly, the length of the transition phase lasts less
than a Hubble time and thus represents a small amount of
the total cosmological evolution.

We can calculate the equation-of-state parameter � using
our expression for H in (15):

� ¼ � _H

H2
¼ c2=2

ð1þH0c
2t=2Þ2 ¼

c2=2

ð1� t=tend-tranÞ2
: (20)

At early times, jtj � jtend-tranj, this expression reduces to
�� 1=t2, characteristic of the transition phase. Hence, we
expect that this will lead to the generation of scale-
invariant modes. At late times, jtj � jtend-tranj, we have
� � c2=2, characteristic of the ekpyrotic scaling phase.

Note that the equation-of-state parameter diverges at
t ¼ tend-tran—the Hubble parameter vanishes at that time,
while _H remains finite. At first sight, this may seem
worrisome, since the momentary divergence of � could
potentially disrupt the scale invariance of the perturbations.
This turns out to be an unfounded fear. We will show in
Sec. IV by numerically integrating the perturbation equa-
tion that the spectrum for � is unaffected by the momentary
blowup in the equation of state. Intuitively, this is because
the time scale over which the equation of state diverges is
very short, i.e., much less than a Hubble time.

For completeness, we can integrate (15) to obtain an
expression for the scale factor

aðtÞ ’ ð�tÞ2=c2eH0t ’ 1þ 2

c2
logð�tÞ þH0tþ . . . ; (21)

where the Taylor expansion is a good approximation dur-
ing the transition phase. The scale factor is, therefore,
nearly constant during the transition phase, as in the
contracting example, and remains finite throughout the
evolution.

It is worth emphasizing that, while the background is
expanding during the transition phase, this is decidedly not
an inflationary scenario. During the expanding transition
phase, the equation of state evolves rapidly in time
[�ðtÞ � 1=t2], while the scale factor is nearly constant
[aðtÞ � 1], in stark contrast to slow-roll inflation.

B. Curvature perturbations in the expanding phase

We are now in a position to check that a slowly expand-
ing transition phase leads to a scale-invariant spectrum of

density perturbations. We begin with an analytic calcula-
tion before verifying the results numerically in Sec. IV.
For this purpose, we work in comoving gauge, where the
spatial slices are constant density (�� ¼ 0) hypersurfaces,
and the spatial metric is given by hij ¼ a2ðtÞe2��ij. In this

gauge, the variable � represents the curvature perturbation
on spatial slices. Its action at quadratic order is given by

S2 ¼ M2
Pl

2

Z
d3xd�z2½� 02 � ð ~r�Þ2�; (22)

where z ¼ a
ffiffiffiffiffiffi
2�

p
as before, and primes denote derivatives

with respect to conformal time �. The resulting equation of
motion for the Fourier modes �k is

� 00k þ 2
z0

z
�k þ k2�k ¼ 0: (23)

It is convenient to instead work in terms of the canonically
normalized variable v � z � � :

v00
k þ

�
k2 � z00

z

�
vk ¼ 0: (24)

If z00=z� 2=�2, as in inflation, then this equation is well-
known to yield a scale-invariant spectrum for � at long
wavelengths. Furthermore, in this case, the growing mode
of � goes to a constant as k ! 0. In this limit, � may be
interpreted as a homogeneous perturbation to the scale
factor and may be locally absorbed by a spatial diffeo-
morphism [45]. The background is, therefore, a dynamical
attractor.
In our case, it follows from (20) and (21) that

zðtÞ ¼ ð�tÞ2=c2eH0t
c

1� t=tend-tran
: (25)

Thus, z inherits the singular behavior of � at t ¼ tend-tran,
although, as mentioned earlier, this will not pose a prob-
lem. One way to see this is to note that t ¼ tend-tran is a
regular singular point of (23).
During the transition phase, the scale factor is nearly

constant; hence, conformal time and cosmological time are
approximately the same: t � �. Deep in the transition
phase, jtj � jtend-tranj, (25), therefore, implies

z00

z
� 2

ðt� tend-tranÞ2
� 2

�2
: (26)

Assuming the usual adiabatic vacuum, the solution is

vk ¼ e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
; (27)

which gives a scale-invariant power spectrum for the cur-
vature perturbation, � ¼ v=z, in the long-wavelength limit
(kj�j � 1):

P� � 1

2�2
k3j�kj2 ¼ c2V0

48�2
: (28)
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Moreover, in this limit, � approaches a constant, indicating
that the expanding transition phase is also an attractor.

Since modes freeze out when kj�j � kjtj � 1, the range
of scale-invariant modes is set by the duration of the
transition phase. From (17) and (18), we deduce that

kmax

kmin

� tbeg-tran

tend-tran
¼ c2

2
: (29)

Equations (28) and (29) agree exactly with the contracting
case [35,37]. Of course, this is not surprising, since, away
from the singular point t ¼ tend-tran, z does not know the
difference between expanding and contracting solutions.
We now check such claims through numerical integration.

IV. NUMERICALVERIFICATION
OF SCALE INVARIANCE

In this section, we check the analytical results derived
above by numerically integrating the evolution of � . In the
process, we will reassure ourselves that the momentary
singularity in � does not spoil the scale invariance of the
modes created during the transition phase.

Our starting point is the evolution equation (23) for the
mode functions �k. This equation is better behaved than
that for vk, since, as mentioned earlier, the singularity at
t ¼ tend-tran is a regular singular point in this case. As initial
conditions, we impose the adiabatic vacuum choice

�kð�iÞ ¼ 1

zð�iÞ
ffiffiffiffiffi
2k

p eik�i ; (30)

with �i chosen so that kj�ij � 1 for all modes of interest.
To proceed, we need to substitute an expression for zð�Þ

into (23). We will do this in two ways. First, following a
quasianalytic approach, in Sec. IVA, we use the analytic

form given by (25). This expression is, of course, not exact,
since various approximations went into deriving it. Second,
in Sec. IVB, we will redo the calculation more precisely
using an exact form for zð�Þ, which will be obtained by
numerically integrating the background equations of
motion.

A. Integration with analytic zð�Þ
Let us start with the quasianalytic approach, using the

approximate form for zð�Þ given by (25). As it stands, (25)
gives z as a function of cosmological time t, whereas we
need it in terms of conformal time �. Note that the factors

of c=ð1� t=tend-tranÞ and ð�tÞ2=c2 are important in the
transition phase and the ensuing contracting ekpyrotic
phase, respectively. During both of these phases, cosmo-
logical time and conformal time are nearly the same, so a
good approximation is to replace t with � in these factors.
The factor of eH0t, however, is important at early times and
makes the scale factor differ from unity—conformal time
and proper time are, therefore, much different in this case.
Approximating aðtÞ ’ eH0t at early times, we can integrate
d� ¼ dt=aðtÞ to obtain

eH0t ¼ H�1
0

H�1
0 � �

¼ 1

1�H0�
: (31)

Thus, we obtain the following analytic expression for zð�Þ:

zð�Þ ¼ cð��Þ2=c2
ð1�H0�Þð1� �=tend-tranÞ : (32)

Using this analytic expression for zð�Þ, we are now in a
position to integrate the equation of motion for � . In fact,
we will do the integration for both the expanding and the

10 4 0.001 0.01 0.1 1 10
k

0.001

0.002

0.005

0.010

0.020

0.050

k3 2
k

10 4 0.001 0.01 0.1 1 10
k

0.001

0.002

0.005

0.010

0.020

0.050

k3 2
k

FIG. 2 (color online). Numerical computation of the power spectrum k3=2�k vs k in both the expanding and contracting transition
phase scenarios using an analytic expression for zð�Þ. This confirms that the spectrum is insensitive to whether the transition phase is
contracting or expanding.
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contracting case, where the contracting case corresponds to
lettingH0 ! �H0 in (32). In both cases, we take c ¼ 200,
H0 ¼ 5	 10�4, and integrate (23) over the range of modes
0:02H0 < k< 2	 104H0 and over the time interval
�0:5H�1

0 < �<�5	 10�10H�1
0 . These parameters are

chosen so that the shortest-wavelength modes will have
just left the Hubble horizon by the end of the evolution,
while the background solution will be firmly within the
scaling ekpyrotic phase.

The resulting power spectra are shown in Fig. 2. We find
that there is a range of scale-invariant modes spanning
roughly 4 decades in k space, which is in order-of-
magnitude agreement with our analytical result (29).
Note that the range of scale-invariant modes is slightly
shorter than that found in the numerical analysis of [35],
which is due to our including the extra factor 1=ð1�H0�Þ
in zð�Þ. We see that the power spectrum for � is indistin-
guishable in each case, which confirms that the adiabatic
ekpyrotic generation mechanism works equally well on an
expanding background. In particular, this confirms that the
divergence in � at t ¼ tend-tran, corresponding to the tran-
sition from expansion to contraction, has no effect on the
perturbation spectrum.

B. Numerical solution of the full
background equations

The above analysis relied on certain approximations in
deriving (32). We neglected Hubble friction in the evolu-
tion for �, but this must eventually break down at early
times when the background is approximately expanding
de Sitter space. To check that such corrections to (32) do
not spoil scale invariance, in this section, we numerically
solve for the background evolution to obtain an exact result
for zð�Þ.

This can be done using the Hamilton-Jacobi formalism.
Using the chain rule, the _H equation implies

H;� ¼ �
_�

2M2
Pl

; (33)

hence, the Friedmann equation can be rewritten as

3M2
PlH

2 ¼ 1
2
_�2 þ Vð�Þ ¼ 2M2

PlH
2
;� þ Vð�Þ: (34)

In this way, � is thought of as the clock tracking the
background evolution. We first numerically solve this
equation to find Hð�Þ and, in turn, obtain �ðtÞ by integrat-
ing (33). At the end of the day, this gives us the Hubble
parameter as a function of time Hð�ðtÞÞ, from which we
can extract aðtÞ. In practice, we perform the integration
over a sufficiently broad range of field values and corre-
spondingly large time interval. Specifically, we have
solved (34) over the field range 0:07MPl 
 � 
 �MPl,
setting Hð0:07MPlÞ ¼ H0. Meanwhile, in integrating (33)
to obtain �ðtÞ, we fix the integration constant correspond-
ing to a shift in time by demanding that � matches the
analytic solution (14).

Substituting everything into z ¼ a
ffiffiffiffiffiffi
2�

p
, we can numeri-

cally integrate (23) to obtain the power spectrum. The
result is shown in Fig. 3(a). For comparison, Fig. 3(b)
shows the quasianalytic result. Computational constraints
forced us to use slightly different integration parameters
from those used in Sec. IVA. Figure 3 was obtained using
c ¼ 200 and H0 ¼ 10�3, with integration ranging over
�0:5H�1

0 < �<�10�8H�1
0 and 0:01H0 < k< 104H0.

We see that the plots show very good agreement.

V. STARTING FROM REST

The analysis of Sec. III assumed a scalar field starting

from rest ( _� ¼ 0) in the asymptotic past. In this section,
we explore a broader range of initial conditions,
corresponding to nonzero initial kinetic energy for the
scalar field, and the impact on the range of scale-invariant
modes. Specifically, our goal is to derive an expression for
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FIG. 3 (color online). Comparison of the power spectra for the exact numerical calculation and the integration using our analytic
expression for zð�Þ. The curves are in excellent agreement.
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the length of time spent in the transition phase (and thus the
range of scale-invariant k modes generated) as a function
of the initial energy.

We start with the equation of motion for the scalar field,
assuming as before that the Hubble damping term is neg-
ligible,

€�þ V;� � 0: (35)

This equation admits a first integral of motion,

1
2
_�2 þ Vð�Þ ¼ E; (36)

where E is, of course, the total energy of the field. In
Sec. III, as well as in earlier work [35,37], E was taken
to be equal to V0 at the onset of the transition phase, while
remaining agnostic about the prior evolution. Here, we
want to consider the more general case E< V0. In other
words, E corresponds to the value of the potential from
which the scalar field starts at rest.

Equation (36) implies

_� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� Vð�ÞÞ

q
; (37)

where we have chosen the negative branch of the square
root, corresponding to the field rolling downhill.
Substituting our potential (1), this can be integrated ex-
plicitly:

�t ¼
Z ec�=2MPld�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½V0 þ ðE� V0Þec�=MPl�
q

¼ 2MPl

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV0 � EÞp arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � E

V0

s
ec�=2MPl

�
; (38)

where the last step assumes ec�=2 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ðV0 � EÞp

. This
can be inverted to obtain a solution for �ðtÞ, valid as long

as � 
 ð2=cÞ log ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ðV0 � EÞp

:

�ðtÞ ¼ 2MPl

c
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

V0 � E

s
sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � E

2M2
Pl

s
cjtj

��
: (39)

This expression generalizes (14) to span a range of initial
field energy or, equivalently, initial position on the poten-
tial where the field is released from rest. As a check, this
reduces to (14) in the limit E ! V0. Moreover, at late
times, when jtj becomes sufficiently small, (39) also ap-
proaches (14), confirming that this is an attractor.

It is straightforward to calculate _H:

_H ¼ � 1

2M2
Pl

_�2 ¼ �V0 � E

M2
Pl

cot2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0 � E

2M2
Pl

s
cjtj

�
: (40)

Similarly, substituting the above solution for �ðtÞ in the

Friedmann equation, 3H2M2
Pl ¼ 1

2
_�2 þ Vð�Þ ¼ E, with

Vð�Þ ¼ V0ð1� e�c�Þ, we obtain H2 ¼ E=3M2
Pl. The

equation-of-state parameter is, therefore, given by

� ¼ � _H

H2
¼ 3ðV0 � EÞ

E
cot2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � E

2M2
Pl

s
cjtj

�
: (41)

This generalizes (20) to a broader range of initial condi-
tions and matches (20) in the limit E ! V0, as well as at
late times jtj ! 0.
Clearly the range of scale-invariant modes will depend

on the initial conditions, and we can already expect a more
restricted range as we move away from the case E ¼ V0

studied earlier. The relevant quantity to assess the shape of
the power spectrum is the time-dependent mass term, z00=z,
appearing in the mode function equation (24). Since aðtÞ is
nearly constant during the phase of interest, we have

z00

z
� 1ffiffiffi

�
p d2

ffiffiffi
�

p
dt2

¼ c2ðV0 � EÞ
M2

Pl

csc2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0 � E

2M2
Pl

s
cjtj

�
: (42)

Modes will be scale-invariant, provided they freeze
out when z00=z � 2=t2. Recalling the Taylor expansion
csc2x ’ x�2 þ 1=3, this will be the case whenever

cð�tÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV0 � EÞ=2p � 1. This condition is approximately
satisfied for t < ~tbeg-tran, where

~t beg-tran � � 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

V0 � E

s
: (43)

In other words, ~tbeg-tran marks the onset of scale-invariant

mode production. Although this expression naively di-
verges for E ¼ V0, we, of course, can only make ~tbeg-tran
as large as tbeg-tran ¼ �1=H0—at earlier times, the fast-roll

approximation assumed here breaks down. More carefully,
we have

~t beg-tran � max

�
� 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

V0 � E

s
;�

ffiffiffiffiffiffiffiffiffiffiffi
3M2

Pl

V0

s �
: (44)

The scale-invariant phase has finite duration. Much like the
transition phase studied earlier, it comes to an end when the

approximation H ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=3M2

Pl

q
breaks down. Integrating

(40) in the limit cð�tÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV0 � EÞ=2p � 1 gives

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
E

3M2
Pl

s
þ 2

c2t
þ . . . ; (45)

where the ellipses include terms that become increasingly
small as t ! 0. It follows that the scale-invariant or tran-
sition phase concludes at

~t end-tran � � 2

c2

ffiffiffiffiffiffiffiffiffiffiffi
3M2

Pl

E

s
: (46)

Combining (43) and (46), the range of scale-invariant
modes is thus given by
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kmax

kmin

� ~tbeg-tran
~tend-tran

<
c2

2

ffiffiffiffiffiffi
E

V0

s
: (47)

Here, we have assumed the earliest possible onset of the
transition phase. Comparing to our previous answer (29),
kmax=kmin ¼ c2=2, we see that solutions with E< V0 lead
to a narrower range of scale-invariant modes, as expected.
Note that (47) agrees with (29) in the limit E ! V0, as it
should.

VI. PHASE SPACE ANALYSIS

In Sec. III B, as well as in earlier work [35,37], the
adiabatic ekpyrotic evolution has been argued to be a
dynamical attractor because the growing mode for � goes
to a constant in the long-wavelength limit [45]. This argu-
ment, while true, only applies at the perturbative level, i.e.,
for sufficiently small deviations from the background so-
lution. In this section, we study the issue of stability more
broadly by performing a phase space analysis for a wide
range of initial conditions. This will allow us to determine
the breadth of the basin of attractor both in the expanding
and in the contracting branches of the transition phase.

For this purpose, we consider curves in the ð�; _�Þ phase
plane parametrized by N � loga. The Friedmann con-
straint and the scalar field equation of motion imply the
autonomous system

d�

dN
¼

_�

H
;

d _�

dN
¼ �3 _�� V;�

H
; (48)

where the Hubble parameter is understood as a function of

� and _�:

H ¼ � 1

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2

6
þ Vð�Þ

3

s
: (49)

The choice of sign for the square root corresponds to the
choice of expanding or contracting branch. Cosmological
solutions are given by the integral curves of the vector field

(d�=dN, d _�=dN).

A. Definition of attractor

Let us be precise about what we mean by attractor

behavior. As curves approach each other in the ð�; _�Þ
plane, their respective values of �ðNÞ and _�ðNÞ get closer
and closer together, up to a constant relative shift in N. We
have the gauge freedom to fix the initial values of N such
that the solutions coincide. In this sense, an attractor
solution is identified by neighboring curves flowing to-
wards it. We will see that this is the case for the transition
phase and the subsequent ekpyrotic scaling phase.

It is worth pointing out that this focusing of trajectories

occurs in the ð�; _�Þ plane, but not in the physical phase
space. Minisuperspace models are Hamiltonian systems,
and consequently Liouville’s theorem forbids reduction of

phase space volume. The resolution of this apparent dis-

crepancy is, of course, that p� ¼ a3 _�, rather than _�, is the

momentum conjugate to � in the canonical formalism.
This can be seen more generally by considering a

2n-dimensional phase space. Minisuperspace is a con-
strained Hamiltonian system, with the Friedmann equation
defining a 2n� 1-dimensional constraint hypersurface
on which the Hamiltonian vanishes. This hypersurface
is foliated by the gauge orbits corresponding to the
Hamiltonian flow. The 2n� 2-dimensional hypersurface
which is transverse to this Hamiltonian flow is the space
of classical trajectories; this is the symplectic reduction
or Marsden-Weinstein quotient M ¼ H�1ð0Þ=R, where
H�1ð0Þ is the locus where the Hamiltonian vanishes
[67,68]. There is a well-defined pullback of the symplectic
form in the total space to this reduced phase space.
Darboux’s theorem tells us that there are local coordinates
ðpi; q

iÞ such that the symplectic two-form is

! ¼ Xn
i¼1

dpi ^ dqi: (50)

For a model with action (4) in the Arnowitt-Deser-Misner
formalism for general relativity, we can choose coordinates
to write this symplectic form as

! ¼ dH ^ dtþ Xn�1

i¼1

dpi ^ dqi: (51)

In this language, the Friedmann equation is the constraint
that the Hamiltonian vanishes H ¼ 0. The total phase
space carries a natural invariant measure constructed
from !. We may pull back this symplectic form to the
reduced phase spaceM and construct a natural measure�.
This is the Gibbons-Hawking-Stewart measure [67].
Note that, on the reduced phase space, this measure is

conserved. Moreover, in the particular case of a spatially
flat (k ¼ 0) universe, we can write the equations of motion
in such a way that they are independent of a, as we did in
the single-field autonomous system (48). Focusing on this
single-field case for concreteness, we may then choose

to parametrize the reduced phase space by � and _� [69].
Choosing to treat these as Euclidean coordinates introdu-
ces the measure

� ¼ d _� ^ d�; (52)

but this, of course, need not be conserved by the evolution.
As mentioned earlier, this nonconservation can be traced to

the fact that _� is not the momentum canonically conjugate
to�. Using (52) is, nevertheless, a sensible thing to do—as
mentioned above, we are interested in trajectories with the

same values of � and _�.

B. Numerical results

Figure 4 shows the vector field (d�=dN, d _�=dN) given
by (48) for the expanding and contracting cases, respec-
tively, along with some numerically integrated curves. The
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black curve in each case corresponds to the analytic solu-
tion, with the transition phase occurring between the dotted
lines. The chosen parameters are c ¼ 100 and V0 ¼ 10�4.
Figure 5 zooms in on the transition phase.

As is clear from Fig. 5, the transition solution is an
attractor, both in the expanding and contracting cases.
This confirms our earlier perturbative claims based on
the long-wavelength behavior of � . The expanding solution
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FIG. 4 (color online). Phase portrait for the expanding (a) and contracting (b) cases, for c ¼ 100 and V0 ¼ 10�4. The analytic
solution is denoted by the black curve, with the transition phase taking place between the dotted lines. Colored dashed lines are
particular numerical solutions to the system (48). Note that the arrows point in the direction of increasing time. This figure confirms
that the analytic solution is an attractor for a variety of initial conditions in both cases. However, at large positive� where Vð�Þ � V0,
the expanding solution is also an attractor, while the contracting solution is a repellor, due to the asymmetry between expanding vs
contracting de Sitter space.
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FIG. 5 (color online). Detailed view of Fig. 4, zooming in on the transition phase. Both contracting and expanding transition
solutions are attractors, but the expanding case has a slightly larger basin of attraction.
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has a slightly larger basin of attraction, as expected. In

particular, note that, in the contracting case, curves with _�
sufficiently greater than zero are forced away from the
transition solution, while, in the expanding case, such
curves are driven toward the slow-roll solution and then
follow the transition solution.

More globally, Fig. 4 shows that, in the contracting case,
curves are repelled from the slow-roll solution at large �.
This is due to the susceptibility of contracting de Sitter to
kinetic domination. In the expanding case, however, we see
the opposite behavior—trajectories with significant initial
kinetic energy are driven toward the slow-roll de Sitter
solution before undergoing the transition phase evolution.
To summarize, both the expanding and contracting transi-
tion solutions are attractors for some range of initial con-
ditions, but the expanding solution has a larger basin of
attraction.

VII. FUSION OF SLOW-ROLL
AND TRANSITION SOLUTIONS

One of our motivations for considering an initially
expanding cosmology was the instability of the con-
tracting solution at sufficiently early times. The adiabatic
ekpyrotic mechanism requires that the transition phase
starts out with a sufficiently small equation-of-state pa-
rameter, � � 1, which implies that prior evolution will
generically be unstable to kinetic domination in the con-
tracting case.

As shown in Sec. VI, this is true, in particular, for the
simplest potential (1)—the pre-transition phase evolution
corresponds to a contracting de Sitter universe, which is
clearly unstable. The expanding branch, on the other hand,
is better behaved, as it extrapolates backwards in time to an
expanding de Sitter space. Thus, in choosing an initially
expanding universe, we have greatly expanded the basis of
attraction. (It is worth emphasizing that, even in the ini-
tially expanding case, the universe is driven towards a
contracting ekpyrotic scaling phase.)

As mentioned in the Introduction, our fiducial potential
(1) serves as the simplest illustration of our mechanism.
More generally, this form need only hold approximately
during the transition phase, corresponding to a small range
in field space, �� � MPl, and there is ample freedom in
choosing the global form of the potential. That said, if we
take the potential (1) at face value, then, at sufficiently
early times, the evolution in the expanding case should
correspond to an inflating space-time. In this section, we
take this possibility seriously and study the transition
between the initial de Sitter phase to the transition phase.
We will see that �ðtÞ evolves smoothly between the two
regimes.

To see this, let us split the evolution into two regimes:
(I) The ‘‘transition’’ regime, �<�T, where Hubble

friction is negligible and the scalar field equation
of motion reduces to (6):

€�þ V;� ¼ 0: (53)

(II) The ‘‘slow-roll’’ regime, �>�T, where the equa-
tion of motion is approximately given by

3H _�þ V;� ¼ 0; (54)

with H ’ H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=3M

2
Pl

q
.

The field value delineating these two regions, �T, can be
estimated as the value of � at the onset of the transition
phase. Combining (14), (16), and (18), we obtain

�T ¼ �ðtbeg-tranÞ ¼ 2MPl

c
log

� ffiffiffi
3

2

s
c

�
’ 2MPl

c
logc; (55)

where, in the last step, we have used c � 1.
We are now in a position to argue that the approximate

solutions in regions I and II match each other smoothly at
� ¼ �T. Since the potential is certainly continuous, this
amounts to showing that the kinetic energy also matches
continuously. The kinetic energy of the transition solution
is easy to write down, as we have done it several times
already, and is just the first integral of (53):

1
2
_�2
tran � V0e

�c�=MPl : (56)

Likewise, the kinetic energy in the slow-roll regime fol-
lows from (54):

1

2
_�2
slow-roll �

V2
;�M

2
Pl

6V0

� V0c
2e�2c�=MPl : (57)

It immediately follows that (56) and (57) are equal at
� ¼ �T, as we wanted to show. This result tells us that
trajectories starting in the slow-roll region, �>�T, are
quickly driven to the attractor slow-roll solution and reach
�T with precisely the correct kinetic energy, as assumed by
the transition solution. (In the notation of Sec. V, solutions
that emerge from the slow regime generically reach the
transition phase with E ’ V0.)
Note that the spectrum of fluctuations also matches

smoothly between the two regimes. The power spectrum
of modes generated during the inflationary epoch is
given by

Pinf
� ¼ 1

ð2�Þ2
H4

_�2
slow-roll

’ c2V0

12�2
; (58)

which agrees up to an order unity factor with (28).

VIII. CONCLUSIONS

The adiabatic ekpyrotic mechanism is the unique, non-
inflationary single-field mechanism with unit sound speed
that generates a scale-invariant spectrum for � on an at-
tractor background. While originally proposed assuming a
contracting universe, in this paper, we have shown that the
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mechanism works equally well on an initially expanding
background. The evolution consists of an ‘‘expanding
transition phase,’’ followed by a contracting ekpyrotic
scaling phase.

We have shown, both through analytical arguments and
exact numerical integration, that the power spectrum for �
is indistinguishable from the contracting version of the
mechanism. This confirms that the perturbation spectrum
is, to a good approximation, insensitive to whether the
background is expanding or contracting during mode pro-
duction—scale invariance relies on a rapidly varying
equation-of-state parameter, while the scale factor is nearly
constant.

By performing a phase space analysis for both the ex-
panding and contracting branches, we have verified that the
transition phase and subsequent ekpyrotic scaling phase
are attractors. The basin of attraction is broader in the
expanding case, since intuitively any additional kinetic
energy present at early times gets redshifted, instead of
blueshifted, in this case.

For the simplest potentials considered here, the evolu-
tion is an expanding de Sitter space-time asymptotically in
the past. Taking this precursor inflating phase seriously, we
have shown that the transition from inflation to the adia-
batic ekpyrotic phase is smooth, with the scale-invariant
spectra generated in each phase matching at the transition,
up to order unity coefficient.

As mentioned in the Introduction, the degeneracy with
inflation is broken at the three-point level. Unlike the
nearly Gaussian spectrum of inflation, the rapidly varying
equation of state �� 1=�2 characteristic of the adiabatic
ekpyrotic phase leads to large non-Gaussianities on small
scales. For the simplest lifted exponential potential (1), this

results in a breakdown of perturbation theory, both at the
classical and quantum mechanical levels. As shown in
detail in [37], in the contracting case, however, this pertur-
bative breakdown can be avoided for more general poten-
tials of the form (3), but this comes at a cost—the range of
scale-invariant perturbations is now limited, spanning a
factor of 105 in k space. These considerations should carry
over to the expanding case. We leave a careful exploration
of this issue to future work.
The expanding version of adiabatic ekpyrosis presented

here greatly expands the realm of larger cosmological
scenarios in which this mechanism can be embedded.
Because the basin of attraction is broader compared to its
contracting counterpart, the expanding mechanism is
less sensitive to the details of the prior evolution. More
importantly, for model building, the universe is expanding
during mode production and is contracting later on,
which naturally suggests embedding our mechanism in a
cyclic scenario [14]. It is conceivable that tying our mecha-
nism to the present phase of cosmic acceleration may also
explain why the 105 scale-invariant modes fall in the ob-
servable window. We are currently investigating this
possibility.
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