
Segmentation Given Partial
Grouping Constraints

Stella X. Yu, Member, IEEE Computer Society, and Jianbo Shi, Member, IEEE Computer Society

Abstract—We consider data clustering problems where partial grouping is known a priori. We formulate such biased grouping

problems as a constrained optimization problem, where structural properties of the data define the goodness of a grouping and partial

grouping cues define the feasibility of a grouping. We enforce grouping smoothness and fairness on labeled data points so that sparse

partial grouping information can be effectively propagated to the unlabeled data. Considering the normalized cuts criterion in particular,

our formulation leads to a constrained eigenvalue problem. By generalizing the Rayleigh-Ritz theorem to projected matrices, we find

the global optimum in the relaxed continuous domain by eigendecomposition, from which a near-global optimum to the discrete

labeling problem can be obtained effectively. We apply our method to real image segmentation problems, where partial grouping priors

can often be derived based on a crude spatial attentional map that binds places with common salient features or focuses on expected

object locations. We demonstrate not only that it is possible to integrate both image structures and priors in a single grouping process,

but also that objects can be segregated from the background without specific object knowledge.

Index Terms—Grouping, image segmentation, graph partitioning, bias, spatial attention, semisupervised clustering, partially labeled

classification.
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1 INTRODUCTION

A good image segmentation respects not only the
structural properties of the image [1] but also the

needs of later visual processing such as object recognition
[2]. In this paper, we will develop a method that integrates
both data-driven and task-driven knowledge for making a
global decision on segmentation.

The approach where task-driven knowledge is used to
constrain the segmentation at the very beginning contrasts
with the sequential processing theory popularized by Marr
[3]. According to his theory, visual processing starts with
what can be computed directly from an image and ends with
the information required to support goals such as navigation
or object recognition. Intermediate representations are
derived to turn the available information at one level to the
required information at the succeeding level. Accordingly,
most current image segmentationalgorithms adopt abottom-
up approach. They start with an oversegmentation based on
low-level cues such as feature similarity and boundary
continuity and then build up larger perceptual units (e.g.,
surface, foreground, and background) by adding high-level
knowledge such as statistical properties of regions into the
grouping process [4].

Although a sequential system can relieve computational
burden from later stages of perceptual processing, such a
feed-forward system is vulnerable to mistakes made at each
step: the low-level processing alone often produces an

unreliable representation, e.g., missing object boundaries of
weak contrast caused by lighting and background clutter,
which may not be remediable by the later high-level
processing.

Wedemonstrate that it ispossible to integratebothbottom-
up and top-down information in a single grouping process.

We consider the type of task-driven knowledge presented
as partial grouping information. For example, in Fig. 1, based
on intensity distribution and viewers’ expectation, for the
image with the tiger, a set of bright pixels are likely to be
foreground and a set of dark pixels are likely to be back-
ground; for the image with the fashion-model, pixels near
image boundaries are probably background. Such informa-
tion provides bias to a natural grouping process that is based
solely on data themselves.

Our work is concerned with the following issue: What is
a simple and principled approach for incorporating these
often sparse partial grouping cues directly into low-level
image segmentation?

A straightforward approach that we adopt in this work is
to formulate the problem as a constrained optimization
problem, where the goodness of a segmentation is based on
low-level data coherence and the feasibility of a segmenta-
tion is based on partial grouping constraints. For the
normalized cuts criterion under the spectral graph-theoretic
framework [5], we show that this straightforward formula-
tion leads to a constrained eigenvalue problem. By general-
izing the standard Rayleigh-Ritz theorem, we can compute
a near-global optimum efficiently.

We then show through a simple point set example that
segmentation performance breaks down especially when
partial grouping cues are sparse. This observation leads to a
new formulation with smoothed constraints. In the spectral
graph framework, the smoothing operator is readily derived
from the existing pairwise relationships between grouping
elements. We present numerous image segmentation exam-
ples to demonstrate the efficacy of the new formulation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 2, FEBRUARY 2004 173

. S.X. Yu is with the Department of Computer Science, University of
California at Berkeley, 549 Soda Hall, Berkeley, CA 94720-1776.
E-mail: stellayu@cs.berkeley.edu.

. J. Shi is with the Department of Computer and Information Science,
University of Pennsylvania, GRASP Laboratory, Levine Hall, 3330
Walnut Street, Philadelphia, PA 19104-6389. E-mail: jshi@cis.upenn.edu.

Manuscript received 28Apr. 2002; revised 18Mar. 2003; accepted 16 June 2003.
Recommended for acceptance by M.A.T. Figueiredo, E.R. Hancock, M. Pelillo,
and J. Zerubia.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 118730.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



Finally, we summarize the paper after a discussion on its
connections to related data clustering methods.

2 BASIC FORMULATION

Given an image of N pixels, the goal of segmentation is to
assign one of K prescribed labels to each pixel. Let VV ¼ ½N �
denote the set of allpixels,where ½n�denotes the set of integers
between 1 andn: ½n� ¼ f1; 2; . . . ; ng. To segment an image is to
decompose VV into K disjoint sets, i.e., VV ¼ [K

l¼1VVl and
VVk \VVl ¼ ;, k 6¼ l. We denote this K-way partitioning by
�K
VV ¼ fVV1; . . . ;VVKg.
Let "ð�K

VV; fÞ be an objective function that measures the
goodness of grouping for some image data f , e.g., fðiÞ is the
intensity value at pixel i, i 2 VV. In Markov random field
(MRF) approaches for image segmentation [6], the objective
function is the posterior probability of the segmentation �K

VV
given the observation f :

"MRF ð�K
VV; fÞ ¼ Prð�K

VVjfÞ / Prðf j�K
VVÞ � Prð�K

VVÞ: ð1Þ

The first term Prðfj�K
VVÞ describes data fidelity, which

measures how well a generative model explains the
observed image data and the second term Prð�K

VVÞ describes
model complexity, which favors the segmentation to have
some regularity such as piecewise constancy. In discrimi-
native approaches for segmentation [5], the objective
function is some clustering measure which increases with
within-group feature similarity and decreases with be-
tween-group feature similarity.

Consider partial grouping information represented by
n pixel sets: UUt, t 2 ½n�, each containing pixels known to
belong together. The labels on thesepixels arenot known, and

they are not required to be different across the n groups. For a
unique representation ofUUts, we assume there is no common
pixel between any two sets: UUs \UUt ¼ ;, s 6¼ t. In other
words, if there is a common pixel, then the two sets should be
merged into one.

The most straightforward way to incorporate the partial
grouping information is to encode it as constraints. With a
little abuse of notation, we use �K

VVði; lÞ to denote a
Boolean function that returns 1 if i 2 VVl. Among the
segmentations partially determined by UUts, we seek one
that optimizes the goodness of grouping measured by ":

maximize "ð�K
VV; fÞ ð2Þ

subject to �K
VVði; lÞ ¼ �K

VVðj; lÞ; i; j 2 UUt; l 2 ½K�; t 2 ½n�: ð3Þ

Since partial grouping cues are encoded as hard
constraints, they have to be reliable enough to be enforced.
Fig. 1 illustrates two basic scenarios where we can derive
such cues. The first type is feature-driven, where pixels
conforming to a particular generative model are biased
together. For example, we probably perceive a white object
against a dark background before we realize that it is a tiger
in a river. In this case, UU1 contains pixels of the brightest
intensities and UU2 the darkest. The second type is solely
location-driven, it reflects our expectation as to where an
object is going to appear. For example, pictures taken in a
fashion show often have fashion models at the center. To
segment out the fashion models, we consider pixels at
image boundaries as the background group UU1. Such
seemingly insignificant information provides long-range
binding cues that are often lacking in low-level grouping.

For some particular forms of ", such as the above
mentioned probability criteria using generative models and
the minimum cuts criteria in discriminative approaches [7],
[8], [9], the constraints in (3) can be trivially incorporated in
an algorithm that optimizes the objective. For the former,
Markov Chain Monte Carlo (MCMC) is a general solution
technique and the constraints can be realized by generating
legitimate samples [10]. For the latter, assuming that UU1 and
UU2 take distinct labels, we can solve (3) using maximum-
flow algorithms, in which two special nodes called source
and sink are introduced, with infinite weights between the
source and UU1, and between the sink and UU2 [7]. For others
such as the normalized cuts criterion [5], it is not clear
whether the solution can be obtained using the same
technique that was used for the unconstrained problem. We
will explore this criterion further.

3 CONSTRAINED NORMALIZED CUTS CRITERION

A weighted graph is specified by GG ¼ ðVV; IE;WÞ, where VV
is the set of all nodes, IE is the set of edges connecting
nodes, and W is an affinity matrix, with weights character-
izing the likelihood that two nodes belong to the same
group. We assume that W is nonnegative and symmetric.

In graph-theoretic methods for image segmentation, an
image is first transcribed into a weighted graph, where each
node represents a pixel andweights on edges connecting two
nodes describe the pairwise feature similarity between the
pixels. Segmentation then becomes a node partitioning
problem. A good segmentation desires a partitioning that
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Fig. 1. Segmentation given partial grouping constraints. We desire an
algorithm that outputs an object segmentation through integrating partial
grouping cues with the data coherence itself. In the middle column, white
pixels are unlabeled, whereas marked or gray pixels are a priori known
to be in the same group. These cues are derived from feature-driven or
location-driven attentional maps. That is, the regions of interest here are
defined based on pixel intensities or prior expectation of object locations.



has tight connectionswithin partitions and loose connections
across partitions. These two goals can both be achieved in the
normalized cuts criterion [5], a brief self-contained account of
which is given below.

3.1 Representation

Given weight matrix W , the multiclass normalized cuts
criterion tries tomaximize the average of allK linkratios [11]:

"NCð�K
VVÞ ¼ 1

K

XK
l¼1

linkratioðVVl;VVÞ ð4Þ

linkratioðVVl;VVÞ ¼
P

i2VVl ;j2VVl
W ði; jÞP

i2VVl ;j2VVWði; jÞ : ð5Þ

linkratioðVVl;VVlÞ is the fraction of the total weights within a
group to the total weights all the member nodes have. Its
complement linkratioðVVl;VV nVVlÞ is the fraction of the
weights between nodes in one group and the rest nodes
in the graph. Since these two quantities sum up to one,
maximizing the within-group linkratio is equivalent to
minimizing the between-group linkratio. Therefore, this
criterion favors both tight connections within partitions and
loose connections between partitions.

Weuse anN �K partitionmatrixX to represent�K
VV,where

X ¼ ½X1; . . . ; XK � andXði; lÞ ¼ 1 if i 2 VVl and 0 otherwise.Xl

is a binary indicator for partition VVl. Since a node is only
assigned to one partition, there is an exclusion constraint on
X:X 1K ¼ 1N , where 1d denotes the d� 1 vector of all 1s.

For t 2 ½n�, partial grouping node setUUt produces jUUtj � 1

independent constraints, where j � j denotes the size of a set.
Each constraint canbe representedbyanN � 1vectorUkwith
only two nonzero elements: UkðiÞ ¼ 1, UkðjÞ ¼ �1, i; j 2 UUt

for instance. Let U ¼ ½U1; . . . ; U�nn�, where �nn ¼
Pn

t¼1ðjUUtj � 1Þ.
Then, the partial grouping constraints in (3) become:
UTX ¼ 0. We assume that U obtained as such has full rank.

Finally, we introduce the degree matrix D, defined to be
the total connections each node has:D ¼ DiagðW1NÞ, where
Diag denotes a diagonal matrix formed from its vector
argument. We assume the degree of each node is nonzero, so
thatD is invertible.

With these symbols and notation, we write the con-
strained grouping problem in (3) for the normalized cuts
criterion as program PNCX:

maximize "NCðXÞ ¼ 1

K

XK
l¼1

XT
l WXl

XT
l DXl

ð6Þ

subject to X 2 f0; 1gN�K; X 1K ¼ 1N ð7Þ
UTX ¼ 0: ð8Þ

3.2 Computational Solution

We introduce a scaled partition matrix Z to make (6) more
manageable:

Z ¼ XðXTDXÞ�
1
2: ð9Þ

Then, "NCðXÞ ¼ 1
K trðZTWZÞ, where tr denotes the trace of a

matrix. Given the definition in (9), Z naturally satisfies
ZTDZ ¼ I, where I is an identity matrix. The grouping
constraint in (8) is equivalent to:

UTZ ¼ UTXðXTDXÞ�
1
2 ¼ 0: ð10Þ

Ignoring (7) for the time being, we relax PNCX into
program PNCZ:

maximize "NCðZÞ ¼
1

K
trðZTWZÞ ð11Þ

subject to ZTDZ ¼ I ð12Þ
UTZ ¼ 0: ð13Þ

PNCZ is a constrained eigenvalue problem [12] in the
continuous domain and it can be solved by linear algebra.

In principle, we can solve PNCZ by applying the standard

Rayleigh-Ritz theorem to its unconstrained version. That is,

we first find a basis in the feasible solution space defined by

UTZ ¼ 0. Let U? denote an orthonormal basis in this space.

Any solution that satisfies the partial grouping constraints

can be represented by an ðN � �nnÞ �K coefficient matrix Y

using this basis:

Z ¼ U?Y ; UTU? ¼ 0: ð14Þ

We thus reduce PNCZ to a program in Y :

maximize "NCðY Þ ¼ 1

K
trðY TWyY Þ ð15Þ

subject to Y TDyY ¼ I; ð16Þ

where Wy ¼ ðU?ÞTWU? and Dy ¼ ðU?ÞTDU? are the

equivalent weight and degree matrices for Y . This is a

standard Rayleigh quotient optimization problem. If ðV y; SyÞ
is the eigendecomposition of thematrix pair ðWy;DyÞ, where

Sy ¼ DiagðsyÞ with nonincreasingly ordered eigenvalues in

sy, then the global optimum is given by the eigenvectors

corresponding to the firstK largest eigenvalues and

"NCð½V y
1 ; . . . ; V

y
K �Þ ¼

1

K

XK
l¼1

syl ¼ max
Y TDyY¼I

"NCðY Þ: ð17Þ

From (14), we recover the global optimum in the original

Z-space as Z� ¼ U?½V y
1 ; . . . ; V

y
K �.

The introduction of Y gets rid of the constraint in (13)
and turns program PNCZ into an unconstrained eigenvalue
problem. However, it requires finding an orthonormal basis
for the feasible space first. Given that �nn � N , this process
has a space and time complexity of OðN2Þ and OðN3Þ,
respectively, which is prohibitively expensive for a large N .
We have to find another way out.

There is such an alternative through the use of matrix
projectors. Q is called a projector if it is idempotent, i.e.,
Q2 ¼ Q. If Q is a projector onto the space of feasible
solutions of PNCZ, then QZ is the projection of Z on the
feasible space. The key property ofQZ is that QZ ¼ Z if and
only if Z is feasible. Therefore, we can guarantee the
feasibility of a solution by projecting it to the feasible set in
the original space without resorting to any reparameteriza-
tion in a reduced space.

We introduce a few symbols to simplify notation.

Let � be a vector of K distinct integers from ½N�. For

any eigenvector matrix V and its corresponding

eigenvalue matrix S ¼ DiagðsÞ, let V� ¼ ½V�1 ; . . . ; V�K �
and S� ¼ Diagð½s�1 ; . . . ; s�K �Þ.
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Theorem 1 (Generalized Rayleigh-Ritz Theorem). Let

ðV ; SÞ be the following eigendecomposition of matrix QPQ:

QPQV ¼ V S ð18Þ
V TDV ¼ I; ð19Þ

where P is the row-normalized weight matrix and Q is a

projector onto the feasible solution space:

P ¼ D�1W ð20Þ
Q ¼ I �D�1UðUTD�1UÞ�1UT : ð21Þ

For any local optimum candidate Z� to program PNCZ, there

exists an index vector � and an orthonormal matrixR such that:

Z� ¼ V�R; RTR ¼ I ð22Þ

"NCðZ�Þ ¼ 1

K
trðS�Þ: ð23Þ

Assuming that the eigenvectors are ordered according to their

eigenvalues, where s1 � . . . � sN , any global optimum of

PNCZ can thus be specified by the first K largest eigenvectors

and any orthonormal matrix:

Z� ¼ V½K�; RTR ¼ I ð24Þ

"NCðZ�Þ ¼ 1

K
trðS½K�Þ ¼ max

ZT DZ¼I
UT Z¼ 0

"NCðZÞ: ð25Þ

Proof. We define a Lagrangian for PNCZ:

LðZ;�;�Þ ¼ 1

2
trðZTWZÞ � 1

2
trð�T ðZTDZ � IÞÞ ��TUTZ;

where � is a K �K symmetric matrix and � is an �nn�K

matrix. An optimal solution ðZ�;��;��Þ must satisfy:

LZðZ;�;�Þ ¼ WZ �DZ�� U� ¼ 0; ð26Þ
L�ðZ;�;�Þ ¼ ZTDZ � I ¼ 0; ð27Þ
L�ðZ;�;�Þ ¼ UTZ ¼ 0: ð28Þ

Multiplying (26) with UTD�1 leads to:

�� ¼ ðUTD�1UÞ�1UTD�1WZ�; ð29Þ

where D and UTD�1U are invertible since both D and U

assume full rank. Eliminating � in (26) by (29), we obtain

QPZ� ¼ Z���: ð30Þ

From (28), we also have QZ� ¼ Z�. Substituting it into

the above equation, we obtain QPQZ� ¼ Z���. There-

fore, there are three necessary conditions for the

optimality: �� is symmetric and

QPQZ� ¼ Z���; Z�TDZ� ¼ I: ð31Þ

Next, we show that there exists an eigendecomposi-
tion ðV ; SÞ of QPQ that not only meets these conditions
but can also generate all such solutions through
orthonormal matrices.

Noting that QPQZ� ¼ Z��� is equivalent to:

D
1
2QD�1

2 �D1
2PD�1

2 �D1
2QD�1

2 �D1
2Z� ¼ D

1
2Z���; ð32Þ

we rewrite (31) using a transformed variable �ZZ:

�QQ �PP �QQ �ZZ ¼ �ZZ��; �ZZT �ZZ ¼ I; ð33Þ
�ZZ ¼ D

1
2Z� ð34Þ

�PP ¼ D
1
2PD�1

2 ¼ D�1
2WD�1

2 ð35Þ
�QQ ¼ D

1
2QD�1

2 ¼ I �D�1
2UðUTD�1UÞ�1UTD�1

2: ð36Þ

Since both �PP and �QQ are symmetric, �QQ �PP �QQ is symmetric,
which means that all its eigenvectors are real and
orthogonal. Therefore, if ð �VV ; SÞ is an orthonormal eigen-
decomposition of �QQ �PP �QQ, then any K distinct eigenvectors
and their eigenvalues, i.e., ð �VV�; S�Þ, form a solution to (33).

If ð �ZZ;��Þ is a solution that satisfies (33) with
�ZZ orthonormal and �� symmetric, since �VV is a complete
basis in the N-dimensional space, there exists an index
vector � and an orthonormal matrix R such that

�ZZ ¼ �VV�R; RTR ¼ I ð37Þ
�� ¼ RTS�R: ð38Þ

Multiplying (26) with Z�T and using trðABÞ ¼ trðBAÞ,
we derive:

K "NCðZ�Þ ¼ trðZ�TWZ�Þ ¼ trð��Þ ¼ trðS�Þ: ð39Þ

Therefore, fð �VV�; S�Þ : �g produce all possible local optimal
values. The global optimal value is thus given by the
average of the firstK largest eigenvalues. Transforming �ZZ
back to the Z space based on (34), we have V ¼ D�1

2 �VV and
ðV ; SÞ as an eigendecomposition of QPQ. This completes
the proof. tu
When there is no constraint,Q ¼ I, thenQPQ ¼ P can be

considered as a transition probability matrix of random
walks, and the normalized cuts criterion is equivalent to a
maximum conductance problemwhere subsets of states only
occasionally visit each other [13]. When there are constraints,
Q 6¼ I,QPQ usually has negative entries and it no longer has
a transition probability interpretation. In other words, the
solution to constrained grouping can no longer be cast as the
equilibrium of a natural diffusion process.

To summarize, theoptimal solution toPNCZ is not unique.
It is a subspace spanned by the firstK largest eigenvectors of
QPQ by orthonormal matrices:

Z� 2 fV½K�R : QPQV½K� ¼ V½K�S½K�; R
TR ¼ Ig: ð40Þ

Unless all K eigenvalues are the same, V½K�R are no longer
the eigenvectors of QPQ. Yet, all these solutions have the
optimal objective value.

After we compute ðV½K�; S½K�Þ from QPQ, the same
procedure for the unconstrained normalized cuts can be
applied to find a near global-optimal discrete solution to
PNCX. The only difference is that now the eigenvectors are
from QPQ rather than P . In the discretization procedure,
we honor the constraints that were ignored when we
relaxed the program PNCX into the program PNCZ. That is,
we find a discrete solution that satisfies the binary and
exclusion constraints in (7), yet is closest to the continuous
optima given in (40). This is another optimization problem
which can be solved efficiently, since the objective function
is bilinear in the discrete solution X and the orthonormal
transform R. The details can be found in [11].
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3.3 Algorithm

To summarize, given data f defined over VV, and n partial
grouping node sets fUUt : t 2 ½n�g, we use the following
constrained normalized cuts algorithm to find an optimal
K-way grouping.

1. Compute the affinity matrix W from the data f , e.g.:

Wði; jÞ ¼ e
� fðiÞ�fðjÞffiffi

2
p

�

� �2

; i; j 2 VV:

2. Derive the constraint matrix U from fUUt : t 2 ½n�g:

k ¼ 0

For t ¼ 1 : n,

For s ¼ 1 : jUUtj � 1,

k ¼ kþ 1

UðUUtðsÞ; kÞ ¼ 1

UðUUtðsþ 1Þ; kÞ ¼ 1

3. Compute the degree matrix D ¼ DiagðW1NÞ.
4. Compute �PP , �UU , and H as:

�PP ¼ D�1
2WD�1

2

�UU ¼ D�1
2U

H ¼ ð �UUT �UUÞ�1.

5. Compute the first K eigenvectors of �QQ �PP �QQ by
solving:

ðI � �UUH �UUT Þ �PP ðI � �UUH �UUT Þ �VV½K� ¼ �VV½K�S½K�
�VV T
½K�

�VV½K� ¼ I.

6. Compute the first K eigenvectors of QPQ by

V½K� ¼ D�1
2 �VV½K�.

7. Obtain a discrete segmentationX� closest to V½K� [11].

In Step 5, we avoid directly computing �QQ �PP �QQ since it
can become a dense matrix even when U and P are
sparse. Specifically, we modify the innermost iteration in
an eigensolver. For that, we only need to precompute
�UU ¼ D�1

2U , which is as sparse as U , andH ¼ ð �UUT �UUÞ�1, which
is an �nn� �nn matrix. �UU and H are the only two other matrices
apart from those already used for unconstrained cuts.
During each iteration of x :¼ �QQ �PP �QQx, we compute:

z :¼ �QQx ¼ x� �UUH �UUTx ð41Þ
y :¼ �PPz ð42Þ
x :¼ �QQy ¼ y� �UUH �UUTy: ð43Þ

If �PP has an average of k nonzeros per row, then (42) has
OðNkÞ multiplications. Equations (41) and (43) each
requires Oð2N �nnþ �nn2Þ multiplications, which are the only
extra computation needed for constrained cuts. Given that
�nn � N but comparable to k, the increase in time complexity
is linear. However, since the solution space is reduced;
fewer iterations are needed to converge to the leading
eigenvectors. Therefore, the net increase in the computa-
tional space and time is negligible if the number of
constraints �nn is small. We can further reduce the complexity
by sampling the constraints.

We can also avoid the matrix inversion in computing H.

To see this, let ðA;�; BÞ be the singular value decomposi-

tion (SVD) of �UU . Since

�UU ¼ AN�N�N��nnB
T
�nn��nn; ATA ¼ I; BTB ¼ I; ð44Þ

we have

H ¼ ð �UUT �UUÞ�1 ¼ ðB�T�BT Þ�1 ¼ Bð�T�Þ�1BT : ð45Þ

Therefore, we can eliminate H altogether since we only

need �UUH �UUT and it becomes:

�UUH �UUT ¼ A�ð�T�Þ�1�TAT ¼ A½�nn�A
T
½�nn�: ð46Þ

That is, instead of keeping both �UU and H, we only need to

compute the �nn right eigenvectors of �UU and replace �UUH �UUT with

A½�nn�A
T
½�nn� in Step 5.

Whether to use A½�nn� or both �UU and H depends on the
conditions of the constraint matrix. When the number of
constraints is small, H is small and �UU is very sparse,
whereas A½�nn� is a full N � �nn matrix. With the additional cost
of computing A from �UU , using A½�nn� might not be a good
choice. However, when the number of constraints is large,
the matrix inversion involved in computing H could be
costly and unstable. Later when we smooth the constraints,
the columns of �UU can become dense and correlated. In these
cases, we can use the SVD of �UU to find a small set of
significant constraints, i.e., the first few columns of A,
making the computation stable and manageable.

4 PROPAGATING CONSTRAINTS

The basic formulation works reasonably well if there are
enough partial grouping cues. This is not very useful since in
reality only a few such cues are given. Sparse cues expose an
inherent flaw in the formulation;however, it canbe remedied.

4.1 Point Set Example

In Fig. 2, points are naturally organized into four clusters
based on proximity. Since the vertical gap is larger than the
horizontal gap, an ideal 2-class clustering is obtained by a
horizontal cut that divides the four clusters into top and
bottom groups. Now, if a few points at the horizontal
boundary are grouped together a priori, the horizontal cut
violates the partial grouping constraints and the vertical cut
becomes optimal. However, when the number of grouping
cues is reduced, the formulation in (3) fails to produce the
desired vertical cut that divides the four clusters into left
and right groups. In particular, the labeled points tend to
stand out, while having little impact on the grouping of the
rest of the points.

4.2 Why Simple Constraints Are Insufficient

When we preassign points from top and bottom clusters
together, we do not just want a group to lose its labeled
points to the other group (Fig. 2c), but rather we desire a
grouping process that explores their neighboring connec-
tions and discovers the left-right division instead.

The formulation in (3), however, does not entail the
desire of propagating grouping information on the con-
strained data points to their neighbors. Often, a slightly
perturbed version of the optimal unbiased segmentation
becomes the legitimate optimum (Fig. 3). This observation is
made from a general optimization point of view and, thus,
holds for all choices of ". The basic formulation in (3),
although straightforward, is flawed.
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There are two reasons for such a solution to be
undesirable. First, the solution is not smooth. One of the
biased data points takes a label that is very different from its
nearby points. This is not acceptable especially to those
neighbors with which it has high affinity. In other words,
we need to explicitly encode data-driven smoothness into our
discriminative formulation.

The second reason is that such a biased grouping lacks
fairness with regard to labeled points. Intuitively, if two
labeled points, i and j, have similar connections to their
neighbors, we desire a fair segmentation so that if i gets
grouped with i’s friends, j also gets grouped with j’s
friends. In Fig. 3, the two points in a labeled pair have
similar affinity patterns to their nearby points, yet their
local segmentations are dissimilar in any solution resulting
from the perturbation of the unbiased optimal grouping.

These two conditions, smoothness and fairness of the
local segmentations on biased data points, provide a
remedy to our basic formulation. Rather than strictly
enforcing exactly the same labels on biased data points,
we desire an average of their labels to be the same. The
average is taken based on the coherence among data points.
The more similar a data point is to the biased ones, the
heavier the weight is on the label that it takes. Formally, let
g1 � g2 be the compound function of g1 and g2. Let Sf denote
a smoothing function contingent on the data f . We modify
the formulation in (3) to be:

maximize "ð�K
VV; fÞ;

subject to Sf � �k
VVði; lÞ ¼ Sf � �k

VVðj; lÞ;
i; j 2 UUt; l 2 KK; t 2 ½n�:

ð47Þ

Such smoothed constraints on the biased data points can
condition a grouping to the extent that many trivial near-
optimal unbiased grouping solutions are ruled out from the
feasible space.

Our new formulation is not equivalent to the introduc-
tion of smoothness priors in a generative approach. There,
prior knowledge such as piecewise constancy is usually
imposed on the solution independently of the goodness of
fit [6], whereas ours is closely coupled with the coherence of
the data. Our essential message, in this regard, is that an
effective propagation of priors requires an intimate inter-
action with the data themselves.

4.3 Smooth Constraints for Normalized Cuts

A natural choice of Sf for the normalized cuts criterion is
the normalized weight matrix P :

Sf � �k
VVði; lÞ ¼

X
j

PijXðj; lÞ; i 2 VV; l 2 ½K�: ð48Þ

This value measures the average density of VVl from node i’s
point of view, with nodes of high affinity to it weightedmore
in the density. This discourages i to take a label different from
those of its close neighbors. We may not know in advance
what this density is for the optimal partitioning, but the
fairness condition requires it to be the same for the labeled
pair ði; jÞ: Sf � �K

VVði; lÞ ¼ Sf � �k
VVðj; lÞ. The partial grouping

constraints in (8) then become:

UTPX ¼ ðPTUÞTX ¼ 0: ð49Þ

Since the only change here is that the constraint matrix U
becomes PTU , the same solution technique applies. That is,
the eigensolution to the program PNCZ is given by the
eigenvectors ofQPQ, whereQ is a projector onto the solution
space specified by ðPTUÞTX ¼ 0 instead of UTX ¼ 0.

In Fig. 4, we show new results with the smoothed
constraints. In addition to the basic results in Fig. 2, we also
consider two other alternatives that directly utilize partial
grouping cues. The simplest case of encoding the labeled
pair ði; jÞ is to modify their weights so that

Wij ¼ Wji :¼ 1; ð50Þ

where an originally vanishingly small value increases to the
maximum affinity. The influence of this change depends on
the number of connections the biased nodes have. For
example, if node i connects to 10 other nodes, this one more
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Fig. 2. Three grouping scenarios illustrating the problem of the basic
formulation. Row 1: 12� 14 dots with a minimum interpoint distance of 1.
Pairs of linked points are known to belong together. The weights are
computed using a Gaussian function of distance with a standard
deviation of 3. Row 2: the continuous optimum V2 for normalized cuts.
For sparse grouping cues, we no longer have the desired vertical cut as
the optimal solution.

Fig. 3. Undesired grouping from sparse constraints. Left: In the 2-class
grouping based on proximity, the horizontal division is optimal while the
vertical division is suboptimal. Right: When we add constraints that the
points linked together have to belong to the same group, the vertical
division becomes the desired partitioning. However, the slightly modified
horizontal division is a partitioning that satisfies the constraints, while
producing the maximum objective value ".



connection would matter little after being normalized by
the total connections. Unlike minimum cuts, where a
change in one link can change the global optimum
completely, normalized cuts are insensitive to perturbation
in the weights. Another approach is to let i and j share each
other’s neighboring connections since i and j are indis-
tinguishable in a desired grouping:

Wik ¼ Wki ¼ Wjk ¼ Wkj :¼ maxðWik;WjkÞ; k 2 VV: ð51Þ

Short-circuiting labeled nodes as well as their neighbors
produces a similar result as the simple biased grouping in
Fig. 2. Their common problem is that only the labeled nodes
expand their neighborhoods significantly, which make
them distinct from the rest unlabeled data. If we extend
(51) to modify the weights among the neighbors of labeled
points, we can overcome the discontinuity of the segmenta-
tion. That’s what (49) does, and in a principled way.

The inherent flaw in our basic formulation is also evident
in the undesirable results from even dense grouping cues.
Though it is unclear for this point set what the best
4-class clustering is with either dense or sparse partial
grouping cues, as shown in Fig. 5, the labeled data points
never stand out with smoothed constraints. In general, we
don’t know how many classes there are and whether the
partial grouping cues are sufficient. Therefore, partial group-
ing constraints should always be smoothed with the
coherence exhibited in the data in order to produce a
meaningful segmentation.

5 EXPERIMENTS

We calculate pixel affinity using a Gaussian function on the
maximum magnitude of intensity edges separating two
pixels. Wði; jÞ is low if i, j are on the opposite sides of a
strong edge [14]. Using this simple feature, we will
demonstrate how simple extra-image knowledge can
improve low-level segmentation and how smoothed partial
grouping constraints make a difference.

In Fig. 6, we derive partial groupings based on bright-
ness values, e.g., the foreground is more likely to be lighter
and the background is darker. We choose two thresholds to
find the pixels at the two intensity extremes and then use
morphological operations to further remove pixels appear-
ing in the other set due to noise. As we have already seen in
Fig. 2, with simple constraints, biased pixels stand out in
segmentation, while with smoothed constraints, they bring
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Fig. 4. Propagating partial grouping constraints. Row 1: QPQ values for
one labeled point (4) in Fig. 2c and one unlabeled point (	). They are
superimposed, with darker gray for larger values. a: Direct modification
according to (50) only adds the other labeled point as its neighbor.
b: Direct modification according to (51) doubles the neighborhood size
for the labeled point. c: Smoothed constraints allow the labeled point to
have extensive correlations with all the nodes yet still maintaining fine
differentiation toward its own neighbors and those of its labeled peer.
The QPQ values on the unlabeled point change little. Row 2: The
continuous optimum V2 for normalized cuts in the three cases. The
corresponding discrete 2-class segmentations are omitted as they are
obvious from these eigensolutions.

Fig. 5. The importance of smoothing partial grouping constraints. Each
row shows three leading eigenvectors. Row 1 are those for the dense
grouping case in Fig. 2b, with simple constraints U. Row 2 are those for
the sparse grouping case in Fig. 2c, with smoothed constraints PTU.
The first uniform eigenvectors (1N ) are omitted.

Fig. 6. Segmentation with partial grouping from brightness. Column 1:
edge magnitudes and biased nodes (29 pixels marked as , 8 pixels
marked4) having extreme intensities. Columns 2, 3, and 4: The second
eigenvector and foreground images obtained with no constraints, simple
constraints U and smoothed constraints PTU, respectively.



their neighbors along and change the segmentation com-

pletely. This image has rich texture against a relatively

simple background. Compared to segmentation using

morphological operations on such images, our method

can fill the holes caused by thresholding without losing thin

structures or distorting region boundaries.
Partial grouping cues can also be derived from motion

cues in a video sequence. In Fig. 7, for every image, we

compute its difference with two preceding images in a

video sequence, threshold and then apply morphological

operations to the difference image to create a mask for the

foreground. Our constrained segmentation can effectively

shrink it to the head in motion.

Partial grouping cues can come not only from low-level
cues, but also from high-level expectation. For fashion
pictures featuring a fashion model at the center, we choose
the background to be: 4-pixelwide at left and right sides, and
7-pixel high at top and bottom sides. Figs. 8 and 9 show the
results with and without such background knowledge.
Notice that all eigenvectors of QPQ satisfy the constraints
and pixels at the four image sides always have similar values
in the eigensolutions. Through these constraints, the large
uniform background is never broken up in a segmentation,
which focuses on the more interesting foreground-back-
ground separation or a division within the foreground itself.

Using the same spatial mask and the same set of
parameters for computing pixel affinity, we apply our
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Fig. 7. Segmentation with partial grouping from motion. A sequence of
120� 160 images taken every 40 frames from a head tracking system.
Row 1: images with peripheries masked out (contrast reduced) according
to the difference with neighboring images. The peripheries are
pregrouped together. Row 2: the second eigenvectors of constrained
normalized cuts. Row 3: foreground images from discrete segmentation.

Fig. 8. Segmentation with partial grouping from spatial attention. Image
size: 180� 90. Rows 1 and 2: leading eigenvectors of unconstrained and
constrained normalized cuts, respectively. Uniform V1s are omitted.
Numbers are eigenvalues. It takes 27.2 and 19.7 seconds, respectively,
to compute these eigenvectors in MATLAB on a PC with 1 GHz CPU
and 1 GB memory.

Fig. 9. Multiclass segmentation derived from the eigenvectors shown in
Fig. 8. Row 1: unconstrained cuts. Row 2: constrained cuts. The
contrast is reduced for biased pixels at the image boundaries.

Fig. 10. Segmentation without (Row 1) and with (Row 2) partial grouping

at image boundaries, where contrast is reduced. Pictures are from New

York Spring 2002 fashion shows.



constrained normalized cuts to other fashion pictures
(http://www.fashionshowroom.com) and Berkeley image
data sets [15]. See sample results in Figs. 10 and 11. The
number of classes K is chosen manually. When there is an
object in the center of the image, such spatial priors always
help the segmentation process to pick out the object. If the
prior is wrong, for example, when the background spatial
mask touches the object of interest, e.g., the tip of shoes in the
rightmost fashion picture, the final segmentation also
removes the feet from the foreground. The extent of this
detrimental effect depends on the connections of the con-
strained nodes, since partial grouping information is propa-
gated to neighboring nodes that they have large affinitywith.
Our formulation can neither spot nor correct mistakes in
priors.

Technically, (49) can be replaced by an up-to sth order

smoothness condition (or a subset of it):Sf ¼ ½P 0; P 1; . . . ; P s�.
However, higher-order smoothness constraints propagate

the partial grouping further at the cost of more computation.

In our experiments, we also observe no significant improve-

ment over Sf ¼ P in the eigensolutions.

6 DISCUSSION OF RELATED WORK

Our work can be regarded as a small step toward bridging

generative approaches and discriminative approaches for

grouping. Generative models, including MRF [6] and

variational formulations [16], [17], can be naturally cast in

a Bayesian framework, where data fidelity and model

specificity are treated at equal footing. However, they are

sensitive to model mismatches and are usually solved by

MCMC methods, which often find local optima with slow

convergence.
Discriminative methods, for example graph approaches

on image segmentation [5], [18], [19], [20], [21], [22], [23],

achieve a global decision based on local pairwise relation-

ships. These algorithms often have efficient computational

solutions. These local pairwise comparisons can encode

general grouping rules such as proximity and feature

similarity. Promising segmentation results on a wide range

of complex natural images were reported in [14]. Such

pairwise comparisons, however, often have difficulty in

deriving reliable long-range grouping information.
Attempts have been made to find MRF solutions by

graph partitioning algorithms [7], [8], [24], [25], [26]. In
particular, sufficient and necessary conditions on the
properties of energy functions that can be solved by
minimum cuts have been proven in [27], [28]. The work
here shows that prior knowledge can be used to guide
grouping for discriminative criteria such as normalized cuts
[5] and that their global optima in the continuous domain
can be solved algebraically with little extra cost.

Our work is also closely linked to the transduction
problem, the goal of which is to complete the labeling of a
partially labeleddata set [29], [30], [31], [32]. If the labeleddata
set is rich enough to characterize both the structures of the
data and the classification task, then using the induced
classifier on the labeled set and interpolating it to the
unlabeled set shall suffice, which is a supervised learning
problem that has many efficient algorithms. However,
usually the labeled set is small, so the problem becomes
how to integrate the two types of information from both sets
to reach a better solution. In [29], the classification problem is
formulated in the support vector machine (SVM) framework
and labeled data are treated similarly to the rest except that
their labels have been instantiated. In [30], information about
the labeled data is encoded in the prior distribution of the
labeling and the goal is to find a projection of the best SVM
discriminator onto the prior space. Through model aver-
aging, partial labeling constraints are softly enforced. In [31],
class-dependentdatagenerationmodels are assumedand the
labeled data can be used to estimate the parameters involved
in the models. This might be the most effective way to
propagate priors. However, these generative models are
often too simple to be realistic. In [32], the class-dependent
probability models are hidden in the pairwise affinity matrix
of all the data points. Again, the labeled set is used to estimate
the class-dependent label generation process.

Though our work was initially motivated by the gap
between discriminative and generative approaches, we are
aware of other works that put similar constraints into
clustering algorithms such as K-means [33], [34]. Two types
of constraints, must-link and cannot-link, are considered.
Earlier versions of our work [35], [36] also considered
cannot-link constraints, that is, two nodes cannot assume
the same label. Such constraints are not transitive, which
makes them difficult to propagate. In [35], repulsion weights
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Fig. 11. Segmentation without (Rows 1 and 3) and with (Rows 2 and 4)

partial grouping at image boundaries, where contrast is reduced.



are used to help enforcing such cues. It also involves
approximation in the constraint formulation. For clarity, we
choose not to include cannot-link constraints here. Our work
is distinct from all these methods in two aspects. Rather than
instantiating the labels or the constraints on labeled data
points, we use them to regulate the form of a segmentation.
We gave an intuitive computational account for the need of
constraint propagation and provided a principled way to
implement it. Secondly, we can solve near-global optima of
our formulation, whereas most other works can only
guarantee local optimality.

Our experimental results on image segmentation demon-

strate that simple grouping bias can approach figure-

ground segregation without knowing what the object is.

Our spatial priors effectively take advantage of the

asymmetry between figure and ground [37]. In other words,

since the outcome of a grouping depends on global

configurations, figure-ground segregation can be obtained

not only by enhancing the saliency of object structures, but

also by suppressing background structures, the latter of

which is often easier than the former. Our next step is to

explore the integration of more complicated priors in order

to segment out only objects known a priori.

7 SUMMARY

We developed a method that integrates both bottom-up and
top-down information in a single grouping process. The
former is based on low-level cues presented in the image,
whereas the latter is based on partial grouping cues known
a priori; the former defines the goodness of a segmentation,
whereas the latter defines the feasibility of a segmentation.
The two are unified in a constrained optimization problem.
We showed that it is essential to propagate sparse partial
grouping cues based on the coherence exhibited in the data.
In particular, we developed an efficient solution for such
constrained normalized cuts and applied the method
successfully to segmenting a wide range of real images.
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