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Abstract—In this paper we aim to answer the question, “How
can modeling and simulation of physiological systems be used
to evaluate life-critical implantable medical devices?”” Clinical
trials for medical devices are becoming increasingly inefficient as
they take several years to conduct, at very high cost and suffer
from high rates of failure. For example, the Rhythm ID Goes
Head-to-head Trial (RIGHT) sought to evaluate the performance
of two arrhythmia discriminator algorithms for implantable
cardioverter defibrillators, Vitality 2 vs. Medtronic, in terms of
time-to-first inappropriate therapy, but concluded with results
contrary to the initial hypothesis - after 5 years, 2,000+ patients
and at considerable ethical and monetary cost. In this paper,
we describe the design and performance of a computer-aided
clinical trial (CACT) for Implantable Cardiac Devices where
previous trial information, real patient data and closed-loop
device models are effectively used to evaluate the trial with high
confidence. We formulate the CACT in the context of RIGHT
using a Bayesian statistical framework. We define a hierarchical
model of the virtual cohort generated from a physiological model
which captures the uncertainty in the parameters and allows
for the systematic incorporation of information available at the
design of the trial. With this formulation, the CACT estimates the
inappropriate therapy rate of Vitality 2 compared to Medtronic
as 33.22% vs 15.62% (p<0.001), which is comparable to the
original trial. Finally, we relate the outcomes of the computer-
aided clinical trial to the primary endpoint of RIGHT.

I. INTRODUCTION

Medical device clinical trials (CTs) are time consuming and
costly endeavors, where a late-phase trial can take over 4-6
years and cost a device manufacturer over $10-20 million [1].
Despite these costs, rigorously planned clinical trials obtain
undesirable results for reasons such as assuming the incorrect
effect direction or having inadequate power [2]. Such events
motivate the need for alternative methods to test and evaluate
medical cyber-physical systems.

Due to the increased complexity of medical devices, and the
practical and ethical limitations in the design of medical device
trials, CTs are becoming increasingly insufficient in evaluating
the risk of new technologies. This leads to the question we
aim to answer in this work, “Can simulated data be used to
evaluate medical devices?”

The implantable cardioverter defibrillator (ICD) is an exam-
ple of a medical device which diagnoses ventricular tachycar-
dia (VT) and delivers therapy in the form of electrical shocks
to terminate ventricular tachycardia and prevent sudden car-
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diac death. While ICDs have been show to reduce the mortality
rate by up to 31% [3], they suffer from inappropriate therapy -
delivery of unnecessary electric shocks due to misclassifying
supraventricular tachycardias (SVTs) for VTs. Inappropriate
therapy increases patient morbidity and stress, reduces their
quality of life, and is linked to increased morbidity [4].

To demonstrate the computer-aided clinical trial (CACT)
approach, we use the example of The Rhythm ID Goes Head-
to-head Trial (RIGHT) - a 2187-patient CT, from 2005-2010.
RIGHT sought to compare the VI/SVT arrhythmia discrim-
ination algorithms used by two ICD models from Vitality II
(V2) and Medtronic (MDT) with regards to the time-to-first
inappropriate therapy. At the conclusion of the CT, the effect
direction and size for the performance was opposite of what
was hypothesized, with V2 ICDs having a 34% increase in the
risk of inappropriate therapy compared to MDT ICDs.

Related Work. Regulatory institutions, such as the U.S. Food
and Drug Administration (FDA) have previously recognized
that computer-aided modeling and simulation have can possi-
bly complement traditional CTs and act as various indications
about the performance of a new treatment or device, such as
the ICD [5][6]. Another example is the T1 Diabetes Melli-
tus Metabolic Simulator (T1DMS) of UVA/PADOVA([7]. The
objective of the TIDMS model is to test the efficacy of new
glucose control algorithms by simulating them on the virtual
cohort which has a fixed virtual cohort with 300 patients. The
TIDMS models glucose kinetics in hypoglycemia, and has
been accepted by the FDA as a substitute for animal trials.

Extensive work has been presented regarding the incorpora-
tion of prior information into the design of a prospective trial
in the form of historical trials [8][9] or by using stochastic
engineering models as priors in a Bayesian clinical trial setting
[10].

In this paper we describe a high-confidence CACT for ICDs.
Fig. 1 depicts the overall structure of a CACT for medical
devices. After defining the endpoint with respect to a CT,
called the target CT, a synthetic virtual cohort of physiological
signals input to the ICD, called electrograms (EGMs), are
generated through simulation of instances of a heart model.
The structure and parameters of this physiological model are
derived from real patient data from the Ann Arbor Electrogram



Libraries and existing information about physiology. The syn-
thetic EGMs are applied to a device model/algorithm and the
outcomes evaluated.

Despite the utility of the CACT, the conclusions drawn from
the results were limited due to uncertainty in the generated
EGM. The performance of the device depends heavily on
the overall characteristics of various prognostic factors in the
synthetic cohort, such as the distribution of the occurrence
of various arrhythmia types and the ventricular cycle length
(VCL), the peak-to-peak interval of the ventricular EGM.

Contributions. Addressing the shortcomings of the prior
work[11], we demonstrate how using the prior information
as that was available at the time of RIGHT vastly improve
the CACT outcomes to estimates of the inappropriate therapy
rate. Specifically, we make the following contributions:

1) We capture the uncertainty in the parameters of the
physiological model with a Bayesian hierarchical model.
We incorporate prior information regarding the ranges
VCL (e.g SVT 426 £ 57[ms]) available before RIGHT.

2) From the formulation, we obtain estimates of the inap-
propriate therapy rate of V2 compared to MDT devices
(33.22% vs 15.62%), comparable to the original trial.

3) Finally, from the estimate of inappropriate therapy, we
obtain an approximation of the time-to-inapproapriate
therapy resulting in survival curves comparable to RIGHT
(CACT vs. RIGHT hazard ratio: 1.30 vs. 1.63)

In Sec. II, we describe the formulation of the CACT within
a Bayesian statistical framework in the context of RIGHT. In
Sec. III, we describe the hierarchical model for the virtual
cohort and method of evaluation. We report the results and
limitations of our methods in Sec. IV. Finally, we conclude
with possible recommendations/ideas for future work.

II. PROBLEM FORMULATION

In this section, we formulate the general problem considered
in this work. The primary endpoint of RIGHT was the time
to first inappropriate therapy. The time-to-first inappropriate
therapy is difficult to measure in simulation due to the long-
term variability in the occurrence of arrhythmia at both the
individual and the population level. Thus, we define the
endpoint as the inappropriate therapy rate, 6, as the endpoint
for the CACT, which is measured with individual EGMs.

A fundamental aspect of a medical device CACT stems from
the fact that medical devices react to sensed physiological
signals, where most (if not all) physiological models are
governed by physiological parameters. Thus, uncertainty in
underlying physiological parameters manifests as uncertainty
in physiological signals, which should be considered within
the CACT framework.

We model the uncertainty in a CACT using a Bayesian
hierarchical model relating the signals generated in a virtual
cohort, X, to the physiological parameters or settings of the
physiological model, 1, denoted as

Xj ~px(zj|n). (1)

for j = 1...N,, where N, is the size of the cohort.

We denote the uncertainty in the parameter 1 using a prior
distribution, parameterized by condition-specific available in-
formation, ~;, where ¢ denotes the heart condition, such that

n~ py(n | 7e)- (2)

In RIGHT, the physiological signals are the EGMs and the
condition-specific available information is the VCL for each
type of heart condition, ¢ €{normal sinus rhythm (NSR), SVT,
VT}. In this work, we aim to utilize the prior information to
aid in the formulation of the CACT such that uncertainties in
the outcome can be made explicit and relate the conclusions
back to the target CT. Towards this goal, we make the
following assumptions:

1) We assume that the physiological model in [11] is proba-
bilistic and captures the variability in EGMs cycle length
for each heart condition.

2) A group of settings will produce a type of EGMs for a
heart condition and the distribution of these groups of
settings are independent conditioned on the type. The
distribution of the settings is parameterized according to
the VCL of the rhythm.

3) For the device model, we assume that the performance
of the device with regards to inappropriate therapy rate,
0, will be fixed and the same for all devices of the same
model, d € {V2,MDT}.

ITII. CACT WITH BAYESIAN HIERARCHICAL MODELS

In this section, we describe the hierarchical model which
explicitly states the uncertainty in the physiological signal and
incorporate condition-specific available information through
this prior. With this model, evaluate the outcomes of the
medical device and estimate the inappropriate therapy rate.

Virtual Cohort Generation with Prior Distribution for Model
Parameters The uncertainty in the EGM stems from the
uncertainty in 7 can modeled using a prior distribution which is
parameterized by the VCL for a rhythm, ;. We define a prior
distribution on ~; which is conditioned on the information in
the literature the VCL for various types of conditions, D.

Y ~ Dy, (72 | D) 3)

In this context, D is a value of the parameters which determine
the frequency of a particular type of heart condition and the
mean and standard deviation of the ranges of VCL for a
condition. For example, the ranges of the VCL for VT in a
clinical trial conducted prior to RIGHT was 257.3+41.2[ms].
We define the complete prior distribution for EGM as:

Xj ~px(x; [ n)py(n| D) 4)

where, for notation, we have defined 7 to include ~; and the
prior as p,(n | D). To account for the uncertainty in the
parameters we integrate:

px (x| D)= /px (x| m)py(n | D)dn &)
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Figure 1: Overall structure of a CACT for ICDs. Contributions of this work are highlighted in red. In a CACT, real patient data and prior
information is used to generate a synthetic cohort of EGM. The performance of the device model is evaluated based on the outcome of

applying the cohort.
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Figure 2: Main results: (a) Distribution of VCL for generated virtual cohort (b) Comparison of Inappropriate Therapy Rates (top) Comparison
of CACT inappropriate therapy rate estimate with and without prior information. Uniform distribution of arrhythmia type assumed (bottom)
Comparison of CACT estimate of inappropriate therapy rate to results from RIGHT. (c) Estimated RIGHT Survival Curves

Device Model - ICD Discrimination Algorithms

The output of the device model on the jth EGM in the
cohort is modeled as independent Bernoulli random variable
Y; with parameters 64 (d € {VT, MDT?}), and X,. Y; takes
the following values:

T, output is inappropriate therapy

v ®)

Y, =
/ output is not inappropriate therapy

Estimate of Inappropriate Therapy Rate

From the responses of the device model, we can define the
likelihood function for a device as:

L(0a | yo) (7N

where x,, 9, is a shorthand notation for the N, EGMs and
device outputs. Similar to (5), the variability in the generated
cohort can be integrated out:

¥ py (y5 | 64, 2)px, (2 | D)

L(04 | y) = / Y% py (4 | 020 (x5 | D)y (8)

There is no a closed-form solution for this expression, however
we use Monte-Carlo methods to estimate 6 [12].

IV. RESULTS AND DISCUSSION

Effect of Incorporating Prior Data on VCL Distribution

Fig. 2(a) depicts the VCL of SVT and VT in both the real
patient training data set and within the generated virtual co-
hort. Information available in [13] was incorporated according
to the (5). The mean and standard deviation for one instance
of the generated virtual cohort was 485.9 & 118[ms] for SVT
and 258.0£43[ms] for VT. This is in comparison to the mean
and 625.55 4 281.27[ms| for SVT and 322.10 &+ 137.11[ms]
for VT within the real patient training data set. This confirms
that the virtual cohort was generated reflected information that
would have been available at the design of RIGHT.

Estimates of Inappropriate Therapy Rate We generated a
virtual cohort with prior information incorporated, with 11,400
total EGMs (19 different conditions, 600 heart model instances
simulated for 50 seconds) and obtained the corresponding
responses. The generation procedure was repeated for a total of




100 iterations to obtain an overall estimate of the inappropriate
therapy rate. By only assuming a uniform distribution on the
occurrence of arrhythmia within a cohort, analogous to what
would be assumed at the design stage of RIGHT, we obtained
results that the V2 discrimination algorithm had a higher
rate of inappropriate therapy than the MDT discrimination
algorithm (33.22% vs 15.62% with p-value <0.001). Without
utilizing the prior information, as in [11], the results are
statistically significant, but the difference in effect size is
not as pronounced (9.99% vs 3.88% with p-value <0.001).
This would lead to greater uncertainty from the results. This
comparison in shown in Fig. 2 (b,top).

In order to further validate the CACT outcomes, the dis-
tribution heart conditions from the results of RIGHT [1] was
utilized to estimate the inappropriate therapy rate, retrospec-
tively. With this additional information, effect sizes of 45.6%
vs 23.11% for V2 vs. MDT. Thus, further reducing the gap
between the results of the CACT and the results of RIGHT
which were 62.2% vs 45.9% (Fig. 2 (b,bottom)).

Mapping CACT Results to RIGHT Assuming that the dis-
tribution of heart conditions remain constant, the time-to-first
inappropriate therapy, the original endpoint of RIGHT, can be
estimated using a geometric distribution, whose parameter is
the inappropriate therapy rate, 6. We utilize the study in [14],
to obtain information about the distribution of heart conditions
and the rate of occurrence within a population, for example,
for SVT: From the cohort of 1514 enrolled patients, 428 had
2596 non-ventricular SVT episodes, assuming a constant rate
of occurrence, the average SVT per patient is:

SVT per patient = 2596/428 = 6.0654

Interval of SVT events = 3 years x 365/SVT per patient = 180.5 [days]

Sampling from the geometric distribution with parameter set
to 6 for each device, we plot these according to time using
the values above and obtain the survival curves in Fig. 2 (c).
The shape of the estimated curve is comparable to the actual
survival curve of RIGHT. The estimated curve without the
information incorporated exhibits very apparent differences in
the shape.

After fitting a Cox proportional hazard curve to the esti-
mates, we obtained a hazard ratio of 1.29677 (P<0.001) This
was in comparison to a hazard ratio of 1.63 (P<0.001) obtained
in RIGHT. The difference in the hazard ratio obtained with the
prior information incorporated is significantly less compared to
the discrepancy in hazard ratio without the prior information,
which was 2.196 (P<0.001).

Limitations

One reason for discrepancy in the final effect sizes, is that
the VCL for the various arrhythmia was not reported in [1].
If the VCL had been matched, as well as the distribution of
arrhythmia, the estimate of the inappropriate therapy rate may
have been more accurate.

Moreover, strong assumptions of the model, such as in-
dependence between model settings conditioned on the heart

condition type, will not necessarily hold true in reality.

V. CONCLUSION AND FUTURE WORK

In this work we formulated the CACT for ICDs within
the context of a retrospective CT (RIGHT) and defined a
hierarchical model which allows for incorporation of prior
information available at the design of RIGHT. We obtained
estimates of the inappropriate therapy rate comparable to
RIGHT. Additionally, we approximate the the original end-
point of RIGHT, the time-to-inappropriate therapy, using the
estimated inappropriate therapy rate.

Future work includes the usage of more sophisticated proba-
bilistic models which account for other sources of uncertainty,
as well as generalization to other types of medical devices.
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