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Abstract

Traditional stereo systems often falter over changes
in lighting between their two views. Unfortunately,
such changes often occur when using stereo with a
wide baseline or between images from different spec-
tra. In this paper, we propose a new dense stereo cor-
respondence similarity metric, mutual information,
which has the potential to overcome such adverse con-
ditions. We explore the strengths and weaknesses of
this metric, both quantitatively and qualitatively, un-
der a variety of conditions. Throughout the explo-
ration, we compare mutual information to a more
traditional cross-correlation stereo system. We show
that mutual information performs under conditions
in which traditional dense stereo fails.

1 Introduction

Traditional stereo systems work reasonably well un-
der ideal conditions. However, many stereo corre-
spondence similarity metrics cannot tolerate even mi-
nor changes in lighting. Such variation is not rare; a
large-baseline stereo often has unworkable discrepan-
cies in lighting. At the extreme, stereo vision be-
tween two cameras with different spectral response,
such as an infrared (IR) and visible camera, presents
an insurmountable task for many current similarity
metrics. As such multi-spectral systems grow in pop-
ularity, we will want to augment their abilities with
stereo.

In this paper, we introduce a new stereo similar-
ity metric, mutual information (MI). Mathematically,
this metric relies on the entropy of the images’ un-
derlying probability densities. This reliance on the

probability densities of the two images enables the
metric to transcend many constraints that bind other
systems. For example, mutual information handles
matching sample A with the negative of sample B
as easily as simply matching A and B. Also, MI can
often handle non-functional relationships between A
and B, as occurs when the same object is viewed un-
der two different spectra. In later sections, we will
show that mutual information can better cope with
such a lighting change than a correlation-based sys-
tem.

The origination of mutual information is largely
credited to the 1948 work by Shannon [12]. Since
then, there have been many uses of mutual informa-
tion, including basic statistics, communication the-
ory, and complexity analysis [5]. The first use of mu-
tual information to measure pixel correspondence was
in 1995, when Viola and separately, Collignon et al.,
employed mutual information to register multi-modal
medical images, such as CAT and MR images [4, 13].
In subsequent comparisons, mutual information has
performed on a level with manually assisted meth-
ods in registering multi-modal images [15]. In 1998,
Chrastek and Jan give a preliminary exploration of
mutual information as a stereo matching metric, with
disappointing results. However, they only test their
algorithm on one difficult stereo pair without any rec-
tification procedures [3].

The correspondence problem is as old as stereo
itself. The specific portion of the problem that
this paper addresses, dense similarity measures us-
ing windows, has also been researched extensively
[7]. Rather than correlation, Cox et al. use a max-
imum likelihood estimator on individual pixels, and
Belhumeur uses a Bayesian framework in his match-
ing [1, 6]. Like many who use energy functionals,



both assume that the underlying data or features in
the two images would be identical without noise, and
occlusion. In a slight relaxation of that assumption,
Zabih and Woodfill and later, Bhat and Nayar, suc-
cessfully use ordinal measures to replace correlation,
yet they assume that the intensity in the two images
falls in the same order within a window [16, 2]. Other
approaches pre-process the images and use a different
matching primitive in an effort to increase robustness
[9, 14, 8]. If one views MI stereo as using a probabil-
ity density primitive and a MI similarity metric, then
MTI uses a different primitive and a different similar-
ity metric to previous projects. We categorize MI as
having a pixel-based primitive, rather than a prepro-
cessed primitive, because the joint entropy term re-
quires direct pixel comparison; thus, MI falls in with
other pixel-based dense similarity metrics.

In light of previous work, our main contributions in
this paper are (i) applying information theory, in the
form of mutual information, to the problem of stereo,
(ii) exploring the strengths and weaknesses of MI as a
stereo similarity metric, and (iii) quantitatively and
qualitatively comparing traditional normalized corre-
lation with the new MI metric. Section 2 of this paper
describes mutual information, correlation, and our
implementation of these metrics in a stereo system.
Section 3 shows results for MI, and compares them
with modified normalized cross-correlation (MNCC),
and Section 4 offers an analysis of the results.

2 Mutual Information Stereo

Mutual information depends upon the entropy and
joint entropy of two random variables. In the case
of stereo, the random variables are the image pixels
we take from each image in a stereo pair. If we as-
sume the pixel values X are discrete random variables
(RVs) with discrete density P, then we can define the
entropy H:

Definition 1 (Entropy)
H(X) £ —Ex[log(P(X))]

An intuitive description of entropy is that it mea-
sures the randomness of a RV. A low entropy means
that the average probability over the support set for
a given RV is low. For example, a constant region in

an image has a lower entropy than a highly textured
region. The joint entropy is defined similarly for two
random variables X and Y, replacing the univariate
P with the joint probability function P(X,Y"). Joint
entropy can be used to measure alignment, or simi-
larity, because it describes the ’crispness’ of a joint
probability function. Two identical samples will have
a lower joint entropy when aligned than when these
same samples are misaligned. However, two constant
regions will have a low joint entropy as well. To avoid
such a spurious match, we want to maximize the en-
tropy in the individual samples that we are compar-
ing. For this reason, we use mutual information.

Using the definition of entropy, we define mutual
information:

Definition 2 (Mutual Information)

MI(X,Y) £ Exy [log (%)]

2 H(X)+H(Y) - H(X,Y)

Mutual information is bounded, so that 0 < MI(X,Y")
< min(MI(X, X),MI(Y,Y)). The minimum value oc-
curs when X and Y are completely independent, and
the maximum value occurs when X and Y are iden-
tical or there is a 1 — 1 mapping T between the two,
since MI(X,T(X)) = MI(X,X). These last points
deserve special attention: they help to justify the per-
formance of mutual information as a similarity met-
ric. Mutual information measures similarity, but it is
also invariant to 1 — 1 transformations of the data.
This invariance enables MI to measure similarity in
more situations than many traditional similarity met-
rics. It also explains MI’s limitations: when a trans-
formation is not 1 —1, as in adding extreme Gaussian
noise, MI has difficulty measuring similarity. In these
cases, a large sample size often alleviates the problem.

In order to calculate MI for two image samples,
one needs to estimate the probability functions in the
underlying images. Perhaps the easiest and fastest
method uses a simple histogram [11]. The most dif-
ficult aspect in using this method is the decision of
how many bins to use. We find that a 20-bin his-
togram performs well in our experiments. An al-
ternate method uses kernel density estimation, or
Parzen windowing [10]. We have implemented this
method as well, using Gaussian kernels. This method



offers a smooth density estimate, but requires many
more sample points because it split the original sam-
ple into a density estimate sample and an entropy
estimate sample. Combined with the additional time
for calculation, we find kernel estimation’s additional
needs prohibitive.

We install this metric in a classical scanline-search
stereo algorithm which obtains a dense disparity map
from the left image to the right image, comparing a
single left window to all right image windows within
a given search range. For each shift at each window,
we calculate the mutual information using histograms
and maximize the MI over the possible matches. We
obtain subpixel accuracy in our curve maximization
by fitting a three point quadratic curve. However, we
do not embellish the algorithm using any smoothness
enforcement, occlusion avoidance, foreshortening ac-
comodation, or scanline consistency methods. We
measure confidence as the curvature of the similarity
(MI or MNCC) curve around the maximal similarity
score, Spraz:

Conf = 2Smas — SLeft — SRight

where Sres: and Sgrign: are the correlation scores to
the left and right of Spra.

As with other correlation algorithms, MI works
better with a larger sample size, or window size.
Unfortunately, in a stereo system, larger window
sizes take time to calculate as well as blurring sharp
boundaries that normally occur in the real world. We
present some sensitivity results in the next section for
both MI and MNCC around the customary 9 and 11
pixel square windows, as well as an even larger 15
pixel window.

The MI algorithm is relatively computationally ex-
pensive because density estimation costs more la-
bor than a simple correlation calculation. A rough
estimation reveals that a simple entropy calcula-
tion takes histWidth+windowSize? operations, and
a joint entropy calculation takes histWidth? + 2
windowSize? operations. Since we perform these
calculations for each window at each shift, we have
imgHeightximgWidthxnumShi fts+(2(histWidth+
windowSize?)+ (histWidth? 4+ 2xwindowSize?)) op-
erations. Our runs typically take about 10 minutes
on a Sun Ultra-4 workstation. However, memoization
in calculating the individual entropies would save sig-
nificant time.

In our comparisons, we use modified normalized
cross-correlation (MNCC) as the traditional corre-
lation metric. We choose this over the more typ-
ical sum-of-squared-differences or sum-of-absolute-
differences because it is more robust, and provides
a higher hurdle of comparison.

Definition 3 (MNCC)

2 Cov(X,Y)

MNCC(X,Y) = Var(X) + Var(Y)

This metric resists blowup near constant areas by
adding the two denominator variances rather than
multiplying them. Like regular NCC, it measures
the linear relation between the two image samples,
normalizing for any overall intensity changes. How-
ever, the metric is unable to measure similarity in
complex relationships, such as those found between
non-linearly transformed images.

3 Results

We first show the qualitative results of the MI algo-
rithm on the famous Pentagon stereo pair and com-
pare the results with those of MNCC (see Figure 1).
In this example and the next, our search rangeis + 17
pixels, and our window size is 15. Although both al-
gorithms perform well, the MI results appear slightly
rougher. Some of the near-constant patches of the
image create problems for MI, mostly because of the
histogram’s discretization process. Small portions of
each window cross a histogram bucket limit in one
image but not the other, fooling MI into believing
the two samples have different densities.

Our second general test involves random dot stere-
ograms, which were formed by taking a 300x300 im-
age of random dots with intensity distributed uni-
formly over [0,255]. We then displaced a 100x100
square within the right image by 16 pixels rightwards
and filled the resulting gap with additional random
dots to make the left image. Subsequently, Gaussian
noise of variance 5 was added. At this low level of
noise, both algorithms perform similarly, with very
little error.



Figure 1: MI and MNCC Results For the Pen-
tagon Stereogram. The top row shows the dis-
parity maps for the MI (left) and MNCC (right)
algorithms. The bottom row displays the stereo
pair. Although the results appear roughly the
same, the MI results are more patchy than the
MNCC results around the less textured portions
of the image. Both results are hampered by the
+ 17 pixel search range.

Figure 2: Random Dot Stereogram Results. The
layout mirrors that of Figure 1, with the disparity
maps (MI left) on top of the stereo pair. Both
results are almost perfect, with error stemming
from window effects.
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Figure 3: Flipped Random Dot Stereogram Re-
sults. The layout is the same as that of Figure 2.
In the right image, we negated values in alternate
bands of 25 pixels. As we can see, MNCC cannot
tolerate this transformation, while MI can.

3.1 The MI Advantage

MI has the advantage of being able to detect simi-
larity between samples with a complex relationship.
As a simple demonstration, we negate the right ran-
dom dot image in bands of 25 pixels before shifting
the central square (see Figure 3). The results clearly
demonstrate that MI tolerates this relationship, while
MNCC cannot. If we had known beforehand what the
relationship was, we could have prepared the data,
and MNCC would perform almost perfectly. How-
ever, when actually imaging the same object under
two different imaging modalities, we do not know the
relationship between the two views. For instance, un-
der IR and visible stereo, a black object could be hot
or cold, appearing white or black in the far-IR image.

To demonstrate MI stereo in real world situations,
yet to still have a solid ground truth, we test the
algorithm on pairs of images from a single viewpoint.
Since the view remains the same, the stereo disparity
is exactly zero. In other words, we take two images
from the same perspective, but change one parameter
- the lighting. These images have the same CCD noise



and lighting variation of an equivalent stereo pair,
but they have no occlusion. Since we are only testing
stereo matching metrics, this setup is appropriate. A
similar setup has been used previously by [2]. To
simulate stereo matching, our search range for these
images is £ 10 pixels.

In calculating our statistics, we count a hit as any
match falling within one pixel of the truth, which we
know to be zero. Often, we separate the hit scores by
high/low confidence or entropy values. A low label
indicates that we have taken the hits corresponding to
the top 96% of possible confidence or entropy values,
while a high label indicates the top 60% of values.
The actual participation rates vary and are displayed
where significant.

Using this setup, we first view blue paper shapes
on a red paper background alternately through a red
and blue filter (see Figure 4). In this case, MNCC
fails in the high entropy areas of the picture because
of the distinct negation near the shapes’ edges. Note
that low entropy includes roughly 80% of possible
points, while high entropy includes only 30%. In the
center of the shapes, MNCC performs well because
the lighting variation is directionally similar in the
two images. Interestingly, MNCC does not improve
using a larger window because the larger windows in-
clude the inverted edges. We believe that one could
see a similar effect in visible/far-IR stereo. Unfortu-
nately, high-quality far-IR cameras are not available
to us at this time.

To view the potential for near-IR/visible stereo,
we view a truck in two ways: under both visible
and near-IR and then with the visible light filtered
out (see Figure 5). In this case, the distinction be-
tween the two test images is not as severe as in the
last example. Nevertheless, the two images have
an overall intensity difference, and certain parts ap-
pear differently as a result of the different spectra
involved. Overall, the two perform similarly, with
errors caused mostly by constant regions. At large
window sizes, MI gets more hits than MNCC, while
at high confidence, MI clearly outperforms MNCC.
In near-constant regions, the histogram buckets have
helped MI, smoothing out the small variations and
indicating low confidence. In the same areas, MNCC
not only sees many false matches, but unfortunately,
also has high confidence in them. For this reason, MI
has a more reliable confidence measure than that of

Hit Percentages for Red/Blue Shapes
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Figure 4: Blue Paper Shapes on a Red Paper
Background. The left image comes from a cam-
era with a red filter, while the right image comes
from a camera with a blue filter. Near the blue
shapes’ edges, the relationship of blue to red in-
verts between the images, confusing MNCC, but
not MI. Also, note that MI profits more from a
larger window than MNCC does.
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Figure 5: Truck Viewed Under Only Near-
IR (left) and Visible/Near-IR (right). At high
confidence levels, MI is superior to MNCC be-
cause MNCC’s confidence metric reports artifi-
cially high confidence in near-constant regions.
Moreover, MI capitalizes on a larger window size
more than MNCC.

MNCC. Note that low confidence includes near 80%
of possible matches, while high confidence includes
about 13%.

3.2 Differences Between MI/MNCC

We analyze the sensitivity of MI and MNCC to ad-
ditive Gaussian noise using random dot stereograms
at various noise levels (see Figure 6). Unfortunately,
MI is less robust to this type of noise than MNCC
due to our density estimation technique. Noisy sam-
ples often fall outside the histogram bin in which the
data should be, forming a different density estimate
and making it hard for MI to match. This is pre-
cisely where larger sample sizes and more continuous
density estimates, such as Parzen windowing, would
help. In contrast, MNCC uses the data without any
additional discretization, making it more robust to
noise. However, at a window size of 15 pixels, MI
survives extreme noise, probably more severe than in
most imaging situations. MI handles the noise levels
of the imagery in this paper because the noise is nei-
ther Gaussian nor as severe as the noise in this test.

Our last test involves simply changing the lighting
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Figure 6: MI and MNCC Performance Under
Additive Gaussian Noise. This test was based on
random dot stereograms with various levels of ad-
ditive Gaussian Noise. MI is less able to handle
noise than MNCC because the density estimate is
delicate to its fixed histogram bucket limits. How-
ever, at a window size of 15 pixels, MI’s noise tol-
erance appears acceptable for most applications.
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Figure 7: Diffuse Lighting vs Directional Light-
ing. MI outperforms MNCC at high confidence
matches and when using large windows.

source (see Figure 7). The image shows various paper
objects and leaves attached to a flat surface. The dif-
fuse, overhead lighting in one image contrasts sharply
with the strong, directional light in the other. A large
baseline stereo might undergo a similar lighting vari-
ation. Although MI does not consistently outperform
MNCC, at high confidence levels it is extremely accu-
rate, far above MNCC. Here, low confidence includes
50%, and high confidence includes 10% of all possible
matches. As with the truck example, MI’s confidence
metric has proved more useful than MNCC'’s because
it better indicates low confidence in near-constant re-
gions.

4 Discussion

Based on the results, we can see the usefulness of
MI as a stereo similarity metric. Conceptually, mu-
tual information can measure similarity or alignment
in more circumstances than MNCC. When applied
to stereo, the MI measure can handle different light-
ing conditions between the two views, or at the ex-
treme, multi-spectral stereo. MNCC, like other cur-
rent stereo similarity metrics, will not behave well
under such adversity. Real world situations, such as

a large baseline stereo or a robot with multispectral
cameras, demand this kind of robustness. Even as a
part of a trinocular, visible/visible/IR stereo system,
inter-spectral stereo could add a verification layer
that previously didn’t exist.

In addition, MI produces more accurate confidence
scores than the MNCC algorithm. This knowledge is
extremely important in any real-world application;
it gives the stereo system a method to decide which
matches to trust. Having a few trustworthy points
is often better than having many more matches, but
many of which are wrong.

Despite these advantages, MI does have limitations
as a measure. In its current implementation, it is
more susceptible to noise than MNCC, largely be-
cause the histogram buckets’ inflexibility cannot tol-
erate large noise levels. However, a large window size
seems sufficient to tolerate ordinary camera noise. In
addition, like other metrics, we can not yet predict
which relationships MI can measure, and which kinds
it cannot. We have seen that MI can handle images
within a larger class than MNCC, but we would like
to understand more.

For the future, methods of making MI more ro-
bust to noise are needed. Although a faster Parzen
windowing scheme may help, we believe that true in-
novation will be required for MI to overcome this hur-
dle using the small sample sizes that fine resolution
stereo requires. We would also like to test the MI
on extremely high quality far-IR /visible systems that
were simply not available to us. However, the tests
in the paper sufficiently show that MI has the abil-
ity to measure stereo similarity under what is now
considered extreme circumstances.
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