
Query Languages for Bags

MS-CIS-93-36
LOGIC & COMPUTATION 59

Leonid Libkin
Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1993

Query Languages for Bags

Leonid Libkin* Limsoon Wongt

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19 104-6389
email: {Ilibkin, 1imsoonD @saul.cis.upenn.edu

Abstract

In this paper we study theoretical foundations for programming with bags. We fully determine
the strength of many polynomial bag operators relative to an ambient query language. Then pick-
ing the strongest combination of these operators we obtain the yardstick nested bag query language
Nf?,C(monus, unique). The relationship between nested relational algebra and various fragments of
NaC(rnonus, unique) is investigated. The precise amount of extra power that N E (m o n u s , unique) pos-
sesses over the nested relational algebra is determined. An ordering for dealing with partial information
in bags is proposed and a technique for lifting a linear order at base types to linear order at all types
is presented. This linear order is used to prove the conservative extension property for several bag
languages. Using this property, we prove some inexpressibility results for NaC(monus, unique). In par-
ticular, it can not test for a property that is simultaneously infinite and co-infinite (for example, parity).
Then non-polynomial primitives such as powerbag, structural recursion and bounded loop are studied.
Structural recursion on bags is shown to be strictly more powerful than the powerbag primitive and it is
equivalent to the bounded loop operator. Finally, we show that the numerical functions expressible in
NEC(monus, unique) augmented by structural recursion are precisely the primitive recursive functions.

1 Introduction

Sets and bags are closely related data structures. While sets have been studied intensively by the theoretical
database community, bags have not received the same amount of attention. However, real implementations
frequently use bags as the underlying data model. For example, the "select distinct" construct and the "select
average of column" construct of SQL can be better explained if bags instead of sets are used. In this report,
query languages for bags are examined with two objectives in mind. The first objective is to suggest a
good candidate for a bag query language yardstick. Towards this end, the relative expressive power of
various query languages for bags is investigated; the expressive power of these bag languages relative to
the nested relational query language of Breazu-Tannen, Buneman, and Wong [5] is studied; and an inquiry
into certain fundamental questions on the expressive power of bags is made. The second objective is to use

'Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.
+Supported in part by NSF Grant IRI-90-04137 and ARO Grant DAAL03-89-C-0031-PRIME.

insights gained from bags to enhance nested relational query languages. To achieve this goal, various ways
of augmenting the language of [5] to gain the expressive power of the yardstick bag language are considered.

In an earlier paper [5], Breazu-Tannen, Buneman, and Wong studied the use of monad [24] and structural
recursion [3] for querying sets. We use this language as our ambient set language. In this report, the same
syntax is given a semantics based on bags in section 2. We use this language as our ambient bag language.
This highlights the uniform manipulation of sets and bags using monad as noted by Wadler [36] and structural
recursion as noted by Breazu-Tannen and Subrahmanyam [4]. Incidentally, the equivalence between nested
relational algebra and nested relational calculus in [5] carries over here effortlessly as an equivalence between
nested bag algebra and nested bag calculus.

The ambient bag language is inadequate in expressive power as it stands. In section 3, additional primitives
are proposed and their relative strength with respect to the ambient language is fully investigated. The
primitive unique which eliminates duplicates from a bag is shown to be independent of the other primitives.
A similar result was obtained by Van den Bussche and Paredaens in the setting of pure object oriented
databases [ll] . The primitive monus which subtracts one bag from another is proved to be the strongest
amongst the remaining primitives. This result was independently obtained by Albert [2]. However, his
investigation on relative strength is not as complete as this report.

The relationship of bag and set queries is studied in Section 4. It is shown that the class of set functions
computed by the ambient bag language endowed with equality on base types, test for emptiness, and unique,
is precisely the class of functions computed by the nested relational language of [5]. Furthermore, if equality
at all types is available, then the former strictly includes the latter. The importance of unique is also
demonstrated in this section by showing that there is a function expressible by [5] that is inexpressible by the
yardstick bag language if unique is removed. Grumbach and Milo also examined the relationship between
sets and bags [12]. However, they considered languages which have powerset and powerbag operators as
primitives. These operators are impractical because they have exponential data complexity and they are too
coarse grain. Also, Grumbach and Milo considered set functions on relations whose height of set nesting is
at most 2. No such limit is imposed in this report. Moreover, the languages considered in the main parts of
this report all have polynomial complexity.

The relationship between sets and bags can be examined from a different perspective. In the remainder of
section 4, we investigate augmenting the set language of [5] to endow it with precisely the expressive power
of our yardstick bag language. This is achieved by adding natural numbers, multiplication, subtraction, and a
summation construct to the nested relational language. This also illustrates the natural relationship between
bags and numbers. This relationship is further exploited in section 5 when rational division is added to the set
language as well. The resulting nested relational language has the ability to express queries such as "select
average from column" and "select count from column." In a couple of early work on this topic, Klausner
and Goodman proposed a notion of hiding as an explanation of the semantics of aggregate operators [18]
and Klug defined a collection of aggregate operators such as average,, average2, ..., one for each column
of a flat relation [19]. Ozsoyoglu, Ozsoyoglu, and Matos extended Klug's approach to nested relations [27].
The augmented nested relational language is a natural and elegant generalization of these three proposals.

Orderings on bags are necessary to deal with such problems as partial information or effective storage
strategies. We study several ways to order bags in section 5. First, the approach of Libkin and Wong [22]
is extended to bags and the resulting order is shown to be tractable. Second, we present a way to lift linear
orders at base types to linear orders at arbitrary types. It is easily implemented in a simple extension of the
ambient language. This linear order is at the heart of proving conservative extension properties for various
languages studied in this paper.

Queries expressible in the augmented language are proved, in section 6, to be independent of the height of
set nesting of intermediate results. This is a significant generalization of the conservative extension result of
Wong [38] and Paredaens and Van Gucht [29]. In particular, it implies that nested relational queries whose
input and output are flat relations can be expressed in a language like SQL, even if aggregate operators such
as average and count are used. The conservativeness of transitive closure, bounded fixpoints, and powerset
operators is obtained as a remarkable corollary.

This result is then used in section 7 to prove several fundamental properties of bag languages. In particular,
the inexpressibility of properties (such as parity test) on natural numbers that are simultaneously infinite and
co-infinite. Another consequence is that subbag test is inexpressible using just unique and equality tests.

Breazu-Tannen, Buneman, and Wong proved that the power of structural recursion on sets can be obtained by
adding a powerset operator to their language [5]. However, this result is contingent upon the restriction that
every type has a finite domain. In section 8, the powerbag primitive of Grumbach and Milo [12] is contrasted
with structural recursion on bags. In particular, the latter is shown to be strictly more expressive than the
former. As mentioned earlier, although a powerbag primitive increases expressive power considerably, it is
difficult to express algorithms that are efficient. While structural recursion does not have this deficiency, it
requires the satisfaction of certain preconditions that cannot be automatically verified [4]. In section 8, a
bounded loop construct which does not require the verification of any precondition is introduced. It is shown
to be equivalent in expressive power to structural recursion over sets, bags, as well as lists. This confirms
the intuition that structural recursion is just a special case of bounded loop. ~urthermore, in contrast to the
powerbag primitive which gives us all elementary functions [12], structural recursion gives us all primitive
recursive functions.

2 The ambient query language

We first present the nested relational language of Breazu-Tannen, Buneman, and Wong [5]. Then we describe
the ambient bag language obtained from it.

2.1 The nested relational language

The nested relational language proposed by Breazu-Tannen, Buneman, Wong [5] is denoted by NRC here.
It has three equally expressive components that can be freely combined: the nested relational algebra NRA,
the nested relational calculus NZ, and relative set abstraction =A.

ppes. The types of NRC are complex object types s and function types s + t where s and t are complex
object types. Complex object types are given by

s ::= unit I b 1 s x s I {s)

where unit is a special base type containing exactly the distinguished value denoted by 0, b ranges over
an unspecified collection of base types, s x t are tuples whose first component is of type s and second
component is of type t , and {s) are finite sets whose elements are of type s.

Expressions (sometimes called morphisms) of A6'LA, JI&C and %A are constructed using the rules in figure
2.1 The type superscripts are omitted in subsequent sections as they can be inferred (see [17,26] for example).
The semantics of these constructs has been fully explained in [5]. We briefly repeat their semantics here.

EXPRESSIONS OF NRA

Category with Products

h : r + s g : s + t
K c : unit -+ b i d S : s + s g o h : r i t

g : r - + s h : r + t
! S : s + unit T : ' ~ : s x t -+ s T ; ' ~ : s x t -+ t (g , h) : r - t s x t

Set Monad
f : s + t

5-qS : S -+ { s) s : { { s) + { s) s m p (f) : { s) -+ { t)

: unit + { s) U S : { s } x { s) -+ { s) s p I t t : s x { t) - { s x t)

EXPRESSIONS OF JI&C

Lambda Calculus and Products

e : s x t e l : s e 2 : t
() : unit r l e : s r 2 e : t (e 1 , e z) : s x t

Set Monad

e : s el : { s) e2 : { s) el : { t } e2 : { s)

U S : { s) {e l : {s) el u ez : { s) U { ~ I I xS E e21 : { t)

EXPRESSIONS OF W d

All expressions of JVW without U{e l I x E e2) and

Relative set abstraction construct

e : s e l : { s l) ... en : { s n)
{e 1 xi1 E e l , ..., xkn ,"E e n) : { s)

Figure 1: Syntax of NRC

4

a ICc is the constant function that produces the constant c .

a id is the identity function.

a g o h is the composition of functions g and h ; that is, (g 0 h) (d) = g(h(d)) .

a The bang ! produces () on all inputs. ~1 and n2 are the two projections on pairs.

a (g , h) is pair formation; that is, (9, h) (d) = (g (d) , h (d))

a I<{) produces the empty set.

a U is set union.

a s-l;l forms singleton sets; for example, s-l;l 3 evaluates to (3) .

a s-p flattens a set of sets; for example, s-p {{1 ,2 ,3) , {1 ,3 ,5 ,7) , (2,411 evaluates to {1,2 ,3 ,5 ,7 ,4) .

a smap(f) applies f to every item in the input set; for example smap(Xx. l+x){ l , 2 , 3) yields {2,3 ,4) .

a S - ~ ~ (X , y) pairs x with every item in the set y; for example, s p z (l , { 1 , 2)) returns { (1 , 1) , (1 , 2)) .

a U{e l I x E e 2) is equivalent to s-p 0 smap(Ax.el) .

{ e 1 X I E e l , ..., xn E en} is equivalent to U{. . . U { { e) I xn E e n) . . . I xl E e l) .

The whole of NRLC is used in many places of this report. However, in many of our proofs only one of JVRA,
m, or Wd is used. This is fine because these three sublanguages are equivalent in terms of denotations
and in terms of equational theories [5 , 381.

Proposition 2.1 NRA, JII%C, and IZSd are equivalent in terms of semantics. In fact, the translations between
them preserve and reject their respective equational theories.

In [5], booleans are represented by {()) (truth) and {) (falsity), the two values of type {unit). It was shown
that after adding for each complex object type s , an equality test primitive eqs : s x s + {unit) , NRC
expresses all nested relational operations of the well-known algebra of Thomas and Fischer [33]. In fact,
this result can be strengthened because the converse is also true if a few constant relations are added to the
algebra of Thomas and Fischer (which is known to be equivalent to the language to Colby [9] and to the
language of Schek and Scholl [31]). Also, real booleans can be added to A&X as a base type together with
equality tests =': s x s + boo1 and the conditional construct to yield a language that has the same strength
as AfTX(eq) (we list the additional primitives explicitly in brackets to distinguish the various versions of
NRC). Consequently, we have

Proposition 2.2 N%X(eq) 21 A&X(=, boo1,cond) 21 Thomas&Fischer 21 Schek&SchoEl E CoEby.

For the sake of clarity, pattern matching is used in many places later on in this report. It can be removed in
a straightforward manner. For example, AX.{(a, {b 1 (c , b) E X , c = a)) I (a , z) E X) is just a syntactic
sugar for XX.{(nl x , {nz y 1 y E X,w E (TI y eq T I 2))) I x E X) .

2.2 The nested bag language

We now define an ambient bag query language NBL consisting of three corresponding components: the
bag algebra JVUA, the bag calculus mC, and the relative bag abstraction RUA. Following Wadler [36]
and Watt and Trinder [37], the bag languages are obtained by replacing the set monad constructs in the
nested relational languages by the corresponding bag monad constructs. This yields a uniform method for
manipulating collection types such as sets and bags. We list only the parts that are changed.

Types. NBL has the same types as but uses bags instead of sets. That is,

s ::= b (unit 1 s x s I {sD

where (lsD are finite bags containing elements of type s. A bag is different from a set in that it is sensitive
to the number of times an element occurs in it while a set is not.

Expressions. The expressions of NBL are given in figure 2.2.

The semantics of these constructs is similar to the semantics of N%X except duplicates are not eliminated.
b-77 forms singleton bags; for example, 6-77 3 evaluates to the singleton bag 43D. b-p flattens a bag of bags;
for example b+ (l(l1,2,3D,(11,3,5,7D,(I2,4~D evaluates to { 1 , 2 , 3 , 1 , 3 , 5 , 7 , 2 , 4 1 . b m a p (f) applies f to
every item in the input bag; for example, b m p (X x . 1 + x) (I 1 , 2 , 1 , 6 D evaluates to ()2 ,3 ,2 ,7D. K(I D forms
empty bags of the appropriate types. kl is additive union of bags; for example, @((11,2,3D, { 2 , 2 , 4 D) returns
{ 1 , 2 , 3 , 2 , 2 , 4 0 . b-p2 pairs the first component of the input with every item in the second component of the
input; for example, b-p2(3, (l 1 , 2 , 3 , l D) returns (1 (3 ,1) , (3 ,2) , (3 , 3) , (3 , l) k . The meaning of (tl(1el 1 xs E
e2D is to flatmap the function Xx.el over the bag e2. That is, (tl (]e l I x E e2D is equivalent to (b+ o

bmap(Xx .e l)) (e2) . The semantics of (le I xl E e l , . . . , x, E e,D is just ItJ (1 . . . (SJ {(leD I xn E enD . . . I X I E
e l l . It is a most convenient and easy to understand construct. For example, { (x , y) I x E e l , y E e2D is
just the "cartesian product" of bags el and e2.

Similar to NIX, the three components of nTx3L are equally expressive. In fact, the proof is identical to that
used for NRL [5].

Proposition 2.3 J@M, JWC, and RUA are equivalent in terms of denotations. Moreover, the translations
between them preserve and reflect their equational theories.

Therefore, we normally work with component that is most convenient.

3 Relative strength of bag operators

As mentioned earlier, the presence of equality tests elevates A6T.L from a language that merely has structural
manipulation capability to a full fledge nested relational language. The question of what primitives to add
to JI&C to make it a useful nested bag language should now be considered.

Unlike languages for sets where we have well established yardstick, very little is known for bags. Due to
this lack of adequate guideline, a large number of primitives are considered. These primitives are either
"invented" by us or are reported by other researchers, especially Albert [2] and Grumbach and Milo [12].
In contrast to Grumbach and Milo [12] who included a powerbag operator as a primitive, all operators

EXPRESSIONS OF J V ~

Operations of category with products as in JV?RA

Bag Monad

Ii'(IDs : unit - (IsD us : (IsD x QsD + (IsD b&,lt : s x (ItD + (Is x tD

EXPRESSIONS OF NBC

A-calculus with products as in J%%C

Bag Monad

EXPRESSIONS of R U

All operations of M 3 C without l+J (]el 1 xS E e2D and

Relative bag abstraction construct

Figure 2: Expressions of ,%?3C

considered by us have polynomial time complexity. We give a complete report of their expressive strength
relative to the ambient bag language.

Let us first fix some meta notations. A bag is just an unordered collection of items. count(d, .B) is defined
to be the number of times the object d occurs in the bag B . The bag operations to be considered are listed
below.

monus : (IsD x (IsD + 4 s D. monus(B1, B2) evaluates to a B such that for every d : s , count(d, B) =
count(d, B1) - count(d, B 2) if count(d, B1) > count(d, B 2) ; and count(d, B) = 0 otherwise.

m u : {sD x (Is5 + {sD. max(B1, B2) evaluates to a B such that for every d : s, count(d, B) =
max(count(d, B1) , count(d, B 2)) .

min : { S x { S D + Q s D . min (B 1 , B2) evaluates to a B such that for every d : s , count(d, B) =
min(count(d, B1) , count(d, B2)) .

eq : s x s + {unitb. eq(dl, d z) = 4 0 5 if dl = d 2 ; it evaluates to (I D otherwise. That is, we are
simulating booleans a bag of type {unit 5. True is represented by the singleton bag {OD and False is
represented by the empty bag (I 0.
member : s x {sD + {unit D. member(d, B) = 4 () D if count (d , B) > 0; it evaluates to (I D otherwise.

subbag : (IsD x {sD -) (IunitD. subbag(B1,B2) = { ()D if for every d : s , count(d,B1) 5
count(d, B2) ; it evaluates to (I D otherwise.

unique : Qs D + (I S D. unique(B) eliminates duplicates from B. That is, for every d : s, count (d , B) >
0 if and only if count(d, unique(B)) = 1.

As emphasized in the introduction, each of these operators have polynomial time complexity with respect to
size of input. Hence

Proposition 3.1 Everyfunction definable in ~ C (m o n u s , ma . , min, eq, member, unique) has polynomial time
and space complexity with respect to the size of input.

In the remainder of this section, the expressive power of these primitives is compared. The result of com-
parisons is a complete characterization of their relative expressive power: monus can express all primitives
other than unique which is independent from the rest of the primitives; min is equivalent to subbag and
can express both max and eq; member and eq are interdefinable and both are independent from ma. As a
consequence of these results, ,@3L(monus, unique) can be considered as the most powerful candidate as a
standard bag query language. These results are summarized by the following

Theorem 3.2
monus

min = subbag unique

nuuc eq member

Let us first prove the easy expressibility results. After that, the harder inexpressibility results are presented.

Proposition 3.3 1. mar can be expressed in Nt?L(monus)

2, rnin can be expressed in NBL(monus)

3. eq can be expressed in A@?L(monus)

4. subbag can be expressed in NB'(monus)

5. subbag can be expressed in NBL(eq, max)

6. member can be expressed in A@.L(eq)

7. eq can be expressed in ~wL(member)

8. eq can be expressed in A@.L(min)

9. subbag can be expressed in A@?L(min)

10. rnin can be expressed in Nt?L(subbag)

I I . mar can be expressed in M L (m i n)

Proof. To reduce clutter, we use the primitives in infix form.

1 . B1 max B2 := B2 kJ (B 1 monus B 2)

2. B1 rnin B2 := Blmonus(Blmonus B 2)

3. dl eq d2 := {()D monus (R12 kl Rzl) where Rij is U(I(l()D I x E (IdiD monus (IdjbD.

4. B1 subbag B2 := B1 eq (B1 rnin B2)

5. B1 subbag B2 := B2 eq (B 1 mar B 2)

6. d member B := ((I() I x E B 7 y E (x eq d)b eq (l n) eq (I D

7. dl eq d2 := dl member (Id20

8. dl eq d2 := (I() I x E (JdlD rnin (ld2DD

9. B1 subbag B2 := B1 eq (B 1 rnin B 2)

10. B1 rnin B2 := E k! FI2 kJ F21 where E is B1 intersection B2, and Fij is (lx I x E B; difference B j 7 z E
4 y 1 y E B,, w E y eq xD subbag (ly (y E B j , w E y eq x D D . It remains to define intersection and
difference. First observe that dl eq d 2 := (I() I x E (IdlD subbag (Jd2D, y E 4 d 2 D subbag (ldlDD.
Now B1 intersection B2 := 4x1 x E B1, w E (ly 1 y E B 1 7 z E y eq xD eq (ly I y E B 2 , z E y eq x D D .
Finally, B1 diflerence B2 := a x I x E B l , w E (x member (8 1 intersection Bn))eq (J D D . Incidentally,
it is also easy to show that eq, intersection, difference, and member are inter-expressible.

11. B1 max Bz := E kJF12k!F21 where E is B1 intersection B2 and Fij is (lx I x E B j difference B;, w E

(ly / Y E Bi, z E Y eq X D subbag (ly 1 y E B j 7 z E y eq xbB.

In contrast to NRC, where all nonmonotonic primitives are interdefinable [5] , the corresponding bag primi-
tives differ considerably in expressive power. These inexpressibility results require arguments that are more
cunning. We prove them in separate propositions below.

Proposition 3.4 eq cannot be expressed in mL(un ique , m a) .

Proof. Define the relation Gt on complex objects of type t by induction as follows: dl Lb d2; (d l , d2) C s x t
(d',, d',) if dl 5, d: and d2 5t d',; B1 L B2 if for every dl such that count(d1, B1) # 0, there is some (14
d2 such that count(d2, B 2) # 0 and dl C , d2. It is not difficult to check that every function definable in
m (u n i q u e , m a) is monotone with respect to E. However, eq is not monotone with respect to E.

Proposition 3.5 unique cannot be expressed in ~ L (m o n u s) .

Proof. The technique of Wong [38] can be readily adapted to show that the rewriting system below is
strongly normalizing.

(Xx.e)(el) --i e[e l / x] ~ i (e 1 , e2) - ei (le I A i , x E (I D , A20 - (I D

(le 1 A 1 , x E (letD,A2D - () e [e l / x] 1 Al,A2[e1/x]D

(le I A 1 , x E el kj ez ,A20 --+ A1 M A2 where A; is (le I A l , x E e;,A20.

(le 1 A1,x E {el I AtD,A2D - (le[el/xl I Al, A', A2[e11xlD

(e l monus e2) --+ e where e l , e2 have no free variable and e is the result of evaluating el monus e2.

It is not difficult to show that the rewriting system obtained by adjoining the rule below to the above system
is weakly normalizing:

(le) A l , x E el monus e 2 , A 2 5 - (ln2 y I y E A1 monus A2D where A; is (I (x , e) I A l , x E e ; , A 2 k
and at least one of Aj is not null.

Now we argue that no normal form under these rewrite rules implement unique. Suppose XR.e is a normal
form that expresses unique. Let o be a bag of k apples (where apples is a new unspecified base type). Let
select(p) : (lsD + UsD, where p : s + bool is a predicate, be a selection function. That is, select(p)(R)
evaluates to a B such that for every d, if p(d) then count(d, B) = count(d, R) else count(d, B) = 0. Then
the proposition follows from the claim below.

Claim. Let A be a subexpression of e of the form {el I AD such that the only free variable in A is R and
On.. .n x I x E AD is a bag of apples. Let p be any predicate. Then select(p)((XR.A)(o)) evaluates to a
bag of m e k items for some m.

Proof of claim. We proceed by induction on A. Since e is in normal form, A can have two possible forms.
A can have the form (let I x E R, Arb . This case is immediate. Alternatively, A can have the form
(let I y E B monus CD. In this case, B and C must be constructed from M and monus of expressions
D; in the same form as A. Since selection is injective, it can be pushed inside monus as a new predicate
q := p o (Xy.ef) . By hypothesis, select(q)((XR.D;)(o)) evaluates to mi . k items. Clearly no matter how the
select(q)((XR.D;)(o)) are added or subtracted, the result is a multiple of k items.

Proposition 3.6 monus cannot be expressed in AB.L(subbag).

Proof. Let e be an expression of NBC(subbag) in normal form (induced by the rewriting system of the
previous proposition) having no constants of base type b and no function abstraction. Let its free variables
be x1 : t l , ..., x, : t,. Let 0 assigns object B(x;) of type ti to x;. Let bl, ..., b, be all the bags of type
(JbD appearing in 8(x1) , ..., #(x,). Let al , ..., a, be all the objects of type b in B(xl) , ..., 8(x,). Associate
to each a; a set u;a; = {qO,. . . . q,) where qo = 1 if an occurrence of a; in some 8 (x j) is not inside some
of bl, ..., b,; qo = 0 otherwise; ql<j<rn = the number of times a; appears in bj. Let eB evaluates to an
object o. By structural induction on e, the number of occurrences of a; in o can be expressed by a formula
of the form: po . qo + . . . + pm . qm where Kai = {qo, . . . , qm) and po, ..., p, are natural numbers. However,
monus clearly does not have this property.

Proposition 3.7 DeJine MIN : 4 (I s D D -) (J S D as the function with the following semantics: MIN (R) = B
such that for every d, count(b, B) = min{count(d, X) I X E R) . Then

I . MIN cannot be expressed in NBL(monus)

2. MIN cannot be expressed in mL(unique , member)

3. MIN can be expressed in mL(unique , member, mar)

4. subbag cannot be expressed by NBL(member).

5. mar cannot be expressed by A?3L(unique, member).

Proof. The last two items are immediate consequences of the first three items.

1. Since unique cannot be expressed in JVXL(monus), it suffices to show that it is expressible in
m L (M I N , e q) . Clearly, unique(B) := M I N (I (I T D & (1s I x E B , y E (x eq r) eq (I D D I T E BD.

2. From section 4, it is not difficult to see that A@3L(unique, member) ci N ~ (N , C, ., +, eq) and
mL(unique , subbag) E NRC(N, C, .,+, eq, 5) where we add the natural numbers, some limited
arithmetics, and a summation primitive to NRC. Clearly, ,Vw(Q, C , -, +, f, bool, cond, =) >
N ~ (N , C , .,+, eq). It is proved in section 7 that 5: N x N -+ boo1 is not expressible in the former
nested relational language. Hence it cannot be expressed in the latter. Consequently, hrlL(unique, member)
cannot express subbag. But m L (M I N) easily expresses subbag. So MIN cannot be expressible in
A@3L(unique, member).

3. First note that subbag can be expressed in NBL(member, man). Clearly, MIN is expressible in
mL(unique , subbag) as MIN(R) := (b-pounique)(B) where B is (Jw I (y , w) E A, no t { () 1 (x , v) E
A , x = y,w # v ,u subbag wbD and A is (1(y,(1x I x E u , x = yD) 1 u E R , y E u , v E Rb.

This finishes the proof of theorem 3.2. The independence of unique was also proved by Van den Bussche and
Paredaens [ll] and the fact that monus is the strongest amongst the remaining primitives was also showed
by Albert [2]. However, their comparison was incomplete. For example, the incomparability of mar and eq
was not reported. In contrast, the results presented in this section can be put together in theorem 3.2 which
completely and strictly summarizes the relative strength of these primitives.

4 Relationship between bags and sets

The relationship between sets and bags can be investigated from two perspectives. First, we compare several
of our nested bag languages with the nested relational language M X (e q) . This can be regarded as an attempt
to understand the "set theoretic" expressive power of these bag languages. Second, we consider augmenting
N7LC(eq) by new primitives with the aim of simulating n/L3.(monus, unique), the most powerful of bag
languages considered so far. In this way, we hope to understand the precise character of the new expressive
power that bags bring us.

4.1 Set-theoretic expressive power of bag languages

In order to compare bags and sets, two technical devices are required for conversions between bags and sets.
We use the following constructs for this purpose:

f : s i t f : s + t

b s m a p (f) : {sD - { t) s b m a p (f) : { s) + QtD

The semantics is as follows. bsmap(f) (R) applies f to every item in the bag R and then puts the results
into a set. For example, bsmap(Xx.1 + x){l, 2,3,1,4D returns the set {2,3,4,5}. sbmap(f) (R) applies f
to every item in the set R and then puts the results into a bag. For example, sbmap(Xx.4){1,2,3) returns
a the bag (14,4,4D. In particular, note that sbmap(f) = bmap(f) o unique o s b m p (i d) .

Let s be a complex object type not involving bags. Then tobag(s) is a complex object type obtained by
converting every set brackets in s to bag brackets. Every object o of type s is converted to an object tobag,(o)
of type tobag(s) . Conversely, let s be a complex object type not involving sets. Then frombag(s) is a
complex object type obtained by converting every bag brackets in s to set brackets. Every object o of type s
is converted to an object frombag,(o) of type frombag(s). The conversion operations are given inductively
below.

todag unit : = id frombagUnit := id
todagSxt := (tobag, o n l , tobag, o n2) frombag,,, := (frombag, 0 n~,from-bagt ~ 2)

tobag(,) := sbmap(tobag,) frombag : = bsmap Cfrombag,) 4.D

Define SCT(r) to be the class of functions f : s + t where s and t are complex object types not involving
bags and r is a list of primitives such that there is f' : tobag(s) + tobag(t) definable in M.(I') and the
diagram below commutes.

The class S&T(r) is precisely the class of "set theoretic" functions expressible in Nf?L(r). We compare
S&T(I') with b%X(eq) for various bag primitives below.

Theorem 4.1 Let eqb be equality test restricted to base types. Let empty : {unitb {unitb be a primitive
such that it returns the bag 000 when applied to the empty bag and returns the empty bag otherwise. Then
StT(unique, eqb, empty) = nTRC(eq).

Proof. It is easy to check [38] that NRC(eq) = N z (e q b , not) where not : {uni t) + {uni t) returns
{()I if applied to the empty set and returns {) otherwise. Hence we prove StT(unique, eqb, empty) =
n/RC(eqb, not) instead. To show NRC(eqb, not) =(unique, eqb, empty), we prove that for any f : s + t
in N ' (e q b , not), there is f' : tobag(s) + tobag(t) in A&A(eqb, empty, unique) such that

First note that the right square in the above diagram obviously commutes. Therefore, we need only to prove
that the left square commutes. This is straightforward by defining f' as follows:

id' : = id A'{)' := li'{D xi := T I K; := ~2

Kc' := Kc !I := ! not' := empty s-pi := b_p2
s+' := unique o b+ (s m p 9)' := unique o bmap g' (g o h)' := g' o h' (9 , h)' := (g', h')
s-7' := b-77

The reverse inclusion =(unique, eqb, empty) C NRC(eqb, not) follows by showing that for any f : s -+ t
in NRA(unique, eqb, empty) there is an f" : frombag(s) -. frombag(t) in N m (e q b , not) such that

f"
frombag(s) frombag (t)

frombag , 1 rombag I
This is straightforward by defining f" as follows:

id" := id K U D " := K {) 7ry := nl 7r&' := 7r2

~ ~ ' 1 .- .- K c !" a- ! . - emptyu := not b-p i := s-pz
b-pl' := S+ (b m p g)" := smap g" (g o h)" := g" o hl' (g , h)" := (g", h")
b-rl'l : = S-77

Proposition 4.2 N m (e q) 5 SL'T(unique. eq)

Proof. Since i\TRC(eq) is a conservative extension of the flat relational algebra [38], it cannot test whether
two given sets have the same cardinality. However, this function is defined in S&T(unique, eq) as frombag o
eq o (bmap ! o T I , bmap ! o T ~) o tobag.

Proposition 4.3 NRC(eq) and S&T(monus) are incomparable.

Proof. It is immediate that NRC(eq) 5 Str(monus) because the function which tests if two sets have
equal cardinality is in the latter but not the former. The proof of ST(monus) 2 A&X(eq) is similar to the
proof of the inexpressibility of unique in A@3L(monus). We present the important difference below. First a
parametricity result is required.

Claim. Let b be a new uninterpreted base type. Let cl, ..., ck be the constants of this type. Let e be an
expression of NBC(monus) in which these constants do not appear. Let p be a bijection on {I , . . . , k) . Let
6 be an assignment of complex objects to free variables. Then (e6)p = e(By) , where (e6)y means replacing
every c; in e9 by c,(;) and 6 y is the assignment such that (6 p) (x) = (x 6) y for each x.

Proof of claim. By structural induction on e.

Now we argue that s-p is not in S&.T(monus). Suppose to the contrary that it is in SIT(monus). Then
there is a normal form XR.e (induced by the rewriting system given in the previous section) such that
tobag o s-p = (XR.e) o tobag. Let o : (I(Ibl)D where b is a new base type and o = (lac, clD, ..., (Ic, ckDD
where c, c l , ..., ck are all distinct constants of type b.

Claim. Suppose A is a subexpression of e of the form (le' I AD such that the only free variable in A
is R and (I T . . .T x I x E AD is a bag of type (IbD. Let y be any bijection on { e l , . . ., ck) . Then
count(d, A [o / R]) = count(dy, A[o/ R]) for any d.

Proof of claim. Immediate by parametricity.

The theorem is immediate from the claim below by setting d to c because k + 1 # m . k for any m.

Claim. Let A be a subexpression of e of the form (Iet I AD such that the only free variable in A is R and
(In . . .n x I x E AD is a bag of type (I b b . Let 91, ..., 9, be bijections on { e l , . . . , c k) such that dpl , ...,
d y , are all distinct and { d y l , . . . , dv,} = { d y I y is a bijection on { e l , . . . , c k) and d y is a member of
A[o /R]) . Then count(dy;, A [o / R]) = c . k for some constant c.

Proof of claim. Since A is in normal form, there are two possibilities. First, A is of the form ()et (y E
B monus CD. Then B and C are in the same form as A.

count(dp;, AtolRI)
= m - count(d, A[o/ R]) by previous claim.
= m.count (d ,B[o/R] monus C [o / R])
= m count(d, B [o / R]) A m . count(d, C [o / R])
= Cllilm count(dp;, B [o / R]) I CISiSm count(dq;, C [o / R]) by previous claim.
= c ~ - k - c ~ . k by hypothesis.
= c - k for some number c.

Second, A is of the form (let 1 x E R , AD. Without loss of generality, suppose A is (let 1 x E R , y E
x , AID. Let pi be the bijection that maps c; to cj. By parametricity, ((let I AtD[o/R, c , l y])p i =
(le' I A1D[o/ R , c j / y]. The case follows.

The above results say.that ,VBL(unique, eqb, empty) is conservative over .u%X(eq) in the sense that it has
precisely the same set theoretic expressive power. On the other hand, N?3L(unique, eq) is a true extension
over the set language., However, the presence of unique is in a technical sense essential for a bag language
to be an extension of a set language.

4.2 A set language equivalent to NBL(monus, unique)

It was shown in the previous section that ,4@3L(monus, unique) is the most powerful amongst the bag
languages considered so far. From the foregoing discussion, this bag language is a true extension of n/RC(eq).
In this subsection, the relationship between sets and bags is studied from a different perspective. In particular,
the precise amount of extra power NBL(monus, unique) possesses over N%X(eq) is determined. In fact,
in order to give the nested relational language the expressive power of A&LC(monus, unique), it has to be
endowed with natural numbers N together with multiplication, subtraction, and summation as defined below.

Multiplication . : N x N - N. The semantics of - is multiplication of natural numbers.

Subtraction 2: N x N - N (sometimes called modQied subtraction). The semantics is as follows:

n - m i f n - m > O n ~ m =
i f n - m < O

Summation C g : {s) - N where g : s --+ N . The semantics is as follows. C g {o l , . . . , on) =
g(ol) + . . . + g(on). Equivalently, the construct C{e2 (xS E e l) : N where e2 : N and el : { s) is also
used and is interpreted as (C(Xx .e2)) (e l) .

The rest of the section is devoted to proving

Theorem 4.4 h%L(monus, unique) E NRC(N, C, a , 2, cond, bool. =).

The proof is given in two propositions below. First, we need a slightly different kind of conversion between
sets and bags. Two additional devices are used: tonat : {unitb + N takes a bag containing n items to
n and fromnat : N + (junitb does the opposite thing. Let s be a complex object type not involving sets.
Then tose t (s) is the type obtained by changing all bag components (jtb to { tose t (t) x N). An object
o : s is converted to an object toset,(o) of type toset(s). An object o : toset(s) is converted to an object
fromsets(o) of type s. The two conversion functions are defined inductively below.

tosetunit := id

a tosetsxt := (toser, o n l , tosett 0 n2)

toset := XB.bsmp(Xb.(tosets b, tonat{ () I c E B,b eq cb)) B
UsD

r fromset 0 - b-p o bmap(bmap TI 0 b q z 0 (fromset, 0 n~, f romnat 0 ~ 2)) (I4 .-

Using the above conversion, it can be shown that

Proposition 4.5 NBL(unique, monus) c NRC(N, C, . ,A, cond, bool, =).

Proof. Since addition is definable by summation, to prove the proposition, it suffices to show that for each
f : s + t in unique, monus), there is a f' : tose t (s) + tose t (t) in NRC(=, bool, cond, N, +, .,.-, C)
such that the diagram below commutes.

The right square in the above diagram clearly commutes. Hence we need only to prove that the left square
commutes. This is easy by defining f' as follows:

!I := ! • X ; := X 1 • T; := 7r2 • KC' := KC K{D' := K {)

r id' : = id r (g , h)' := (g', h') (g o h)' := g'o h' b-q' := s-7 o (i d , I i l o !)

a bp' , := X(x ,Y) . { ((x , z) , n) I (z , n) E Y) a unique1 := smap (X I , K1 0 !)

r monus' := X (X , Y) . { (x , m 2 n) I (x , m) E X , (y , n) E Y , x = y 7 (m A n) # 0)

a M' := U o (C,U o (D , E)) where C := X(A,B) .{(a,n) I (a , n) E A , { () I (b , m) E B,b = a) = {)),
D := X(A, B) .{(a , n + m) I (a , n) E A, (b ,m) E B , a = b) , and E := X(A, B) . { (a ,n + m) ((a , n) E
B, (b, m) E A, a = b) .

b4' := XA.{(s, C { n - C{if s = x then m else 0 I (x , m) E a) I (a , n) E A)) (s E { x I (X , a) E

A7 (x7 b) E X I)

r (bmap g)' := XA.{(z,C{if a = x then n else 0 I (a , n , z) E B)) 1 X E { X I (x , Y , ~) E B)
whereB := {(g' b, n, b) ((b, n) E A).

For the inclusion in the other direction, conversions similar to that in proposition 4.5 are used. Let s be -a
complex object type not involving sets. Then tobag(s.) is the type obtained by changing all set brackets
to bag brackets and changing N to 4unitD. Let o be an object of type s. Then it is converted to an
object tobag,(o) of type tobag(s) . Let o be an object of type tobag(s) , then it is converted to an object
fromdag,(o) of type s. The conversion functions are defined below.

tobag, := fromnat frombag, := tonat
tobag unit := id frombagUnit := id
tobagSxt := (tobag, o T I , tobag, 0 x2) frombag,,, := Cfrombag, 0 T I ,frombagt ~ 2)

tobag(,) := sbmap(tobag,) frornbag (,) : = b s m p Cfrombag ,)

Then we have

Proposition 4.6 NRC(N, C. a , A, cond, bool, =) C NBC(unique, monus).

Proof. First note that NRC(=, bool, cond, N , . ,A, C) E .lfR.C(eq, N, .,A, C). Hence it suffices for us to
prove that for every f : s -+ t in m (e q b , n o t , N , .,--,C), there is a f" : robag(s) + tobag(t) in
rnL(rnonus, unique) such that the diagram below commutes.

As the right square clearly commutes, we are left to demonstrate that the left square commutes. This can be
accomplished by defining f" as follows, where NATn is the bag of exactly n units:

Ii-{}'I := li-q 7r; := 7rl 7T; := 7r2

id'' .- .- id (9 , h)" := (g", h") (g o h)" := g" o h"
s -~ l l := b-77 sp'2/ := b-p2 - -11.- .- menus
.'I := X(X, Y).(J() I x E X, y E Y D (C g)" := b-p o bmap(gl') (smap g)" := unique o bmap(g")
s+" := unique o b-p eq" := eq. nott1 := XR.{()Dmonus R

In summary, we have the following exact characterization of the relative strength between the "yardstick"
bag language and the relational language of Breazu-Tannen, Buneman, and Wong: NRC(N, C , -,A, eq) 21
NBL(unique, monus) and NRC(eq) = ST(unique, eqb, empty). Klug [I91 and Ozsoyoglu, Ozsoyoglu,
and Matos [27] had to introduce aggregate functions by repeating them for every column position of a
relation. That is, aggregate, is for column one, aggregatez is for column two, etc. The C primitive
can be used to implement aggregate functions and should be seen as a generalization of their approach.
Klausner and Goodman used a notion of hiding to explain the nature of aggregate functions in relational
query languages [18]. In addition to projections, they introduced hiding operators that "hides" columns of
a relation. Aggregate functions are then applied to the column that is left exposed. Hiding is different
from projection. Let R := {(1,2) , (1 ,3)) . Then projecting out column two on R gives (1) while hiding
column two on R gives ((1 , [2]) , (1 , [3])} , where [.] signifies hidden values. The use of hiding to retain
duplicates (since sets have no duplicate by definition) is a little clumsy. It is better to use bags. Since
C g = tonat o b-p o sbmupCfromnut o g), computation on bags is perhaps a better explanation of the
nature of aggregate functions.

5 Orderings on bags

The purpose of this section is twofold. First, in the spirit of [7], where databases were considered as subsets
of certain partially ordered sets in order to provide rigorous mathematical treatment of partial information,

we would like to have an ordering on bags whose intuitive meaning is "being more partial". We define
such on ordering using techniques proposed in [22] and give its characterization. Even though the ordering
appears somewhat awkward, we demonstrate an effective algorithm to test whether two bags are comparable.

Secondly, we show that if a linear order is given for all base types, it can be extended to a linear order on the
domain of an arbitrary type in a way that can easily be expressed in N.L(unique, monus). This linear order
is used in section 6 to prove that various extensions of N R C (e q) have the conservative extension property.

As in [15, 7, 211, we assume that partiality can be expressed by means of a partial order on database objects.
That is, a < b expresses the fact that a is more partial than b or b is more informative than a. It was
mentioned in [7] that many models of partial information can be captured by this very general scheme. This
approach is also suitable'for databases without partial information. In such a case, values of base types are
totally unordered.

It is usually assumed that orders on the base types are given. For example, if base type is NI whose values
are natural numbers or null (I), the usual ordering is I < n for any n E N and any two distinct natural
numbers are not comparable, see Gunter [14]. The ordering is then extended to pairs in the usual way. That
is, (x , y) 5 (x ' , y') iff x x' and y iz y'. However, if one wants to extend the ordering to subsets of an
ordered set, many possibilities arise. In [22] we tried to define an ordering by saying that a set X is less
informative than a set Y if there is a sequence of simple updates, each leading to a more informative set.
Dealing with sets, we defined the primitive updates as follows: X H (X - { a)) U X' where a < b for any
b E X'. Notice that if a $ X , this is equivalent to augmenting X by XI.

Mathematical aspects of partial information represented by bags were studied by Vickers [35]. He represented
bags over a poset as sets of pairs (a , n) where a is an element of the poset and n is the number of occurrences.
Pairs were ordered in the usual way: (a , n) 5 (b, m) iff a < b and n < m. While this ordering has many
nice properties, it is counterintuitive from the practical point of view. Having a bag rather than a set means
that each element of a bag represents an object and if there are many occurrences of some element, then
at the moment certain objects are indistinguishable. For example, initially we might have a bag of three
null values, representing our knowledge about three objects. Suppose this bag {I, I, I D is later updated to
{ a , b, cb. We want to say that the latter is more informative than the former. But that is not true in Vickers'
ordering because it requires that the three nulls be replaced by three identical objects; that is, (la, a , a t ,
i]b, b, bb, or i]c, c, cb. Each of them is more informative than (I I, I , 10 but (la, b, CD is unfortunately not!

To remedy this, we follow the idea of Libkin and Wong [22] and say that a bag B2 is more informative than
a bag B1 if B2 can be obtained from B1 by a sequence of updates of the following form: (1) an element a is
removed from B1 and is replaced by an element b such that b is more informative than a, or (2) an element
b is added to the bag B1. Formally, let (D , 5) be a partially ordered set. Let P ~ (D) be the set of all finite
bags whose elements are in D. Then, for B1, B2 E P ~ (D) , B1 5-* B2 iff B2 = (Blmonus(laD) U (lbt
where a 5 b or B2 = B1 k! (lbb. The transitive-reflexive closure of -* is denoted by 5. That is, we say that
B1 is less informative than B2 if BI I! B2.

As proved in [22], the ordering on sets obtained as the transitive-reflexive closure of H coincides with the
well-known lower powerdomain ordering defined as

A similar construction can be used to characterize I!. Let N" denote the totally unordered poset whose
elements are natural numbers (the superscript is used to distinguish it from N which in this paper denotes
natural numbers with the usual ordering). For a finite bag B and an injective map 4 : B + N", which is

sometimes called labeling, by 4 (B) we denote the set { (b , d (b)) / b E B) . In other words, 4 assigns a
unique label to each element of a bag. If B E P ~ (D) , the ordering on pairs (b , n) where b E B and n E N"
is the usual pair ordering; that is, (b, n) < (b', n') iff b 5 b' and n = n'.

Proposition 5.1 The binary relation 9 on bags is a partial order. Given two bags B1, B2, B1 a B2 ~f f there
exist labelings 4 and II, on B1 and B2 respectively such that $ (B l) sb II,(B2).

Proof. We write B1 <b B2 if there exist 4 and II, such that $(B1) sb G(B2). First demonstrate that <b is a
partial order. It is obviously reflexive.

To prove transitivity, let B1 <b B2 and B2 <b B3. That is, a (&) sb P(B2) and d(B2) sb $(B3). Let Y
be a bijection on N such that y o p = 4. Define 6 as y o a. Then for every b E B1 there is b' E B2 such
that b < b' and a(b) = P(b'). Therefore, 6 (b) = 4(b') and there exists b" E B3 such that $(b") = #(b') and
b" > b'. This shows 6(Bl) < $(B3) and hence B1 sb B3.

To show that <b is anti-symmetric, let B1 <b B2 and B2 +b B1. As was shown above, there exist a , 4 and
$ such that a (B l) sb 4 (B 2) <b $(Bl) . In particular, if we define g : a(B1) + G(B1) by g(b , n) = (b', n)
where II,(bl) = n, it is easy to see that g is one-to-one and monotone and, since B1 is finite, it is the identity
map. If b" E B2 and 4(bf ') = n, then b < b" 5 b' = b, so b = b" where a(b) = $(b') = n. Therefore, every
element of B1 is in B2 and vice versa, i.e. B1 = B2. This shows that <b is a partial order.

Since B1 - B2 implies B1 <b B2, we conclude i E 4b. Conversely, if B1 <b B2, i.e. 4(B1) sb $(B2) ,
then, according to [22], $(B2) can be obtained from 4(B1) by a sequence of H updates which, if we drop
indices, are translated into - updates on bags. Therefore, B1 i B2, which proves a = 6b.

The lower powerdomain ordering sb of sets can be effectively verified. Indeed, if two sets are given, there
is an O(n2) time complexity algorithm to check if they are comparable. The description of given above
seems to be somewhat awkward algorithmically. However, it is not much harder to test for.

Proposition 5.2 There exists an ~ (n ~ / ~) time complexity algorithm that, given two bags B1 and B2 in
P&(D), returns true if Bl 9 B2 and false otherwise.

Proof. Given B1 and B2, consider two labelings q5 and II, on B1 and B2. Assume without loss of generality
that the codomains of 4 and II, are disjoint. Define a bipartite graph G = (V, E) by V := # (B l) U +(B2)
and E := { ((b , n), (b', n)) I (b , n) E $(B1) , (b', n') E $(B2) , b 5 b'). It can be easily concluded from
proposition 5.1 that B1 9 B2 iff there is a matching in G that contains all 4(B1) . In other words, B1 5 B2
iff the cardinality of the maximal matching in G is that of B1. The proposition now follows from the facts
that all maximal matching in G have the same cardinality (as bases of a matroid) and that the Hopcroft-Karp
algorithm iinds a maximal matching in 0(n5 l2) where n = I V I (see [28]).

There is a big difference between orders on sets and bags. While X <b Y does not say anything about
cardinality of X and Y, B1 5 B2 implies that the cardinality of B1 is less than or equal to the cardinality
of Bz. This reflects our point of view that having a bag rather than a set stored in a database means that
each element of a bag represents an object and having two or more occurrences of the same elements means
that at the moment some objects are indistinguishable. Therefore, the cardinality can not be reduced in the
process of obtaining more information. In particular, in the set case the lower powerdomain ordering can
be obtained as the transitive-reflexive closure of the following binary re1ation:A (A - A') U { a) where

a > a' for all a' E A' and A A U { a) . However, applying the same idea to bags amounts to the loss of
information about the number of occurrences of each element in a bag. In particular, similar transformations
when applied to bags give us the ordering 5 which was used in the proof of proposition 3.4.

In the remainder of this section we propose another technique for extending a partial order to bags. However,
our motivation this time is different. We are no longer interested in having an order whose intuitive meaning
is being more informative, but rather an order which could be easily implemented and used for various
purposes, especially designing effective physical data organization for sets and bags. For such purposes,
it is important to have a total (linear) order. In particular, sorting algorithms and duplicate detection and
elimination algorithms rely on linear orders. However, it can be easily seen that I! is not a linear order even
if the underlying order < is: suppose a 5 b; then { a , an $ {bD and {bD (la , aD.

To design a linear order on bags, it is easier to work with the set representation via theorem 4.4. The
following lemma is the key step:

Lemma 5.3 Let (D , 5) be a partially ordered set. Dejine an order zb on thejinite subsets of D as follows:

x zb Y lfSeither X sb Y and Y gb X, or X sb Y and Y sb X and X - Y sb Y - X.

Then zb is a partial order. Moreover, if 5 is a linear order, then so is zb.

Proof. We proceed by cases on X and Y . The cases where X or Y is empty are trivial. So let both X and
Y be nonempty. Let us write X zb Y to mean X sb Y and Y sb X . Now observe that if X zb Y implies
X fl Y # 0. Indeed, if X fl Y = 0, x < y for x E X and y E Y means x 5 y and then X zb Y implies the
existence of an infinitely increasing chain xl 5 yl 5 x2 5 yz . . . which contradicts the assumption that
X and Y are finite. This also implies asymmetry of zb: if X zb Y and Y zb X , then X - Y zb Y - X ,
i.e. X - Y = Y - X = 0 and therefore X = Y. To prove transitivity, assume X zb Y and Y zb Z. Then
X sb Z. If Z gb Y or Y gb X , then easily Z gb X and X zb Z. Assume Z sb Y and Y sb X . Then
X zb Z, X - Y sb Y - X and Y - Z <b Z - Y . We must prove X - Z <b Z - X . Let a: E X -2. Two
cases arise.

Case x $i Y. Then x E X - Y and there exists yl E Y - X such that x < yl. If yl E Z, we are done;
otherwise yl E Y - Z and there exists zl E Z - Y such that zl 2 yl. If zl $! X, we are done. If zl E X,
then zl E X - Y and we continue the process. If at some step an element of Z - X is found that is greater
than x, we are done. Otherwise, we arrive at an infinite chain x < yl < zl < yz 5 22 5 . . ., and since
every two neighbours in this chain come from disjoint sets, it is an infinitely increasing chain of element of
X U Y U 2, which contradicts the assumption that all sets are finite.

Case x E Y. Then x E Y - Z and we find zl E Z - Y such that zl > x. If zl $ X, then zl E Z - X and
we are done. If zl E X , then zl E X - Y. Now the method of case 1 applies which finishes the proof of
case 2. Thus, zb is a partial order.

Now assume that 5 is a linear order. Then X gb Y implies Y sb X (because there is x E X such that
x $ y for all y, i.e. x 2 y). The linearity of zb follows immediately.

This linear order on sets is equivalent to one of the three orderings which Kupert, Saake, and Wegner used
in their study of duplicate elimination algorithms for nonflat relational databases [20]. However, they did
not prove the linearity of their orderings. Also their formulation, which makes explicit use of cardinality
and minimum value, is somewhat less elegant than the formulation given above. This linear order is very
pleasant - it can be expressed in our very limited nested relational language!

Theorem 5.4 Suppose a linear order 2~ is given for every base type b. Then a linear order st can be
computed by N R C (N , C , ., 2, +, bool, cond, =) for each type t.

Proof. First the linear order It is defined by induction on t as follows. For base types, <b is as given.
For pairs, the lexicographic order is used. It is easy to see that it is linear if the components are linearly
ordered. Finally for sets, the order zb in lemma 5.3 is used. One particular implementation in NRC(=
, N , -,-, +, C , cond) is given in the appendix.

We end this section with an interesting corollary on one of the most important uses of linear ordering. Let
sort : { s) + { s x N) be a sorting function. That is, sort(R) = { (o l , l) , . . . , (ok , k) } where R = (01,. . . , ok)
and ol < . . . < oh. Then

Corollary 5.5 sort is definable in N R C (N , C , - ,A, +, bool, cond, =).

Proof. sort (R) := { (r , C{i f c 5 r then 1 else 0 I c E R)) I r E R) .

6 Conservative extension property for set languages with aggregate functions

Let us first explain the idea of conservative extension. The set height h t (s) of a type s is defined as the
depth of the nesting of set- or bag- brackets in s. The set height ht (e) of an expression e is defined as the
maximum of the set heights of all the types that appear in the unique typing derivation of e. A language C
has the conservative extension property if any function f : s + t definable in L can be expressed in L using
an expression whose set height is at most max(k , h t (s) , h t (t)) , where k is a constant fixed for L. In other
words, the class of functions computable by a language possessing this property is independent of the height
of intermediate data structures. Note that if L has the conservative extension property and k is the fixed
constant, then L (p) also has that property but the fixed constant becomes max(k, ht (p)) for any additional
primitive p.

As seen earlier, bags give rise to natural numbers. In this section, two conservative extension results are
presented. First, the language A&T(Q, C , ., +, +, cond, eq) obtained by adding rational arithmetics to NRC
is shown to have the conservative extension property with 0 as the fixed constant. Second, m (N , C, ., +,-
, cond, eq), and hence hTLL(monus, unique), has it too. These results allow us to reduce questions about
bags to questions about arithmetics in subsequent sections.

Queries such as "select count from column," "select maximum from column," and "select minimum from
column" are expressible in A & X (N , C , -, +,A, eq). However, in order to deal with queries such as "select
average from column" and "select variance from column" a division primitive is needed. A natural exten-
sion is to augment the nested relational language with rational division: m (Q , C , ., +, .-, +, eq). This
language has the conservative extension property. For convenience, we prove it on the equivalent language
m (Q , C , ., +,A, +, cond, eqb) where the booleans are interpreted by 1 (true) and 0 (false), equality tests
on base types only are provided, and the conditional construct is available.

Theorem 6.1 Let e : s be an expression of m (Q , C , ., +,A, +, cond, eqb). Then there is an equivalent
expression el : s such that h t (e l) < max({ht(s)} U {h t (t) I t is the type of a free variable in e l) .

Proof (sketch). The proof is adapted from Wong [38]. The idea is to design a rewrite system which
eliminates the construction of intermediate data structures and then show that any normal form induced by

the rewrite system can serve as the required e'. The key rules are given below; the full proof is relegated to
the addendum.

E{e I x E {))- 0

C{e 1 x E {e l }) -u e [e l / x]

C{e I x E el U e2) - C { e 1 x E e l } + C{i f y $Z el then e [y / x] else 0 1 y E e 2 }

C{e (x E i f el then e2 else e3) - if el then C { e / x E e 2) else C{e I x E e3)

The last rule above deserves special attention. Consider the incorrect equation: C{e I x E U{el I y E
e 2 }) = E{C{e I x E e l) I y E e2} . Suppose ez evaluates to a set of two distinct objects {ol , 02) . Suppose
e l [o l / y] and el [02/y] both evaluates to {03). Suppose e[03/x] evaluates to 1. Then the left hand side of
the "equation" returns 1 but the right hand side yields 2. The division operation in the last rewrite rule is
used to handle duplicates properly.

In the next section, the inexpressibility of division, enumeration of natural numbers from 0 to n for a given n ,
etc. in n/lL(monus, unique) is established as a consequence of the above theorem. Observe that + is critical
for achieving conservative extension in the nested relational language endowed with rationals. Therefore,
it is possible that NBL(monus, unique) may not possess the conservative extension property. Fortunately,
this is not the case because n/lL(monus, unique) has sufficient horsepower to compute a linear order at all
types. In the next theorem, the linear order defined in theorem 5.4 is exploited to show that functions in
m(=, N, .,I, +, C, cond), and hence A@L(monus, unique), do not depend on intermediate data structures.

Theorem 6.2 Let e : s be an expression of m (N , C , a , +,A, cond, =). Then there is an equivalent expres-
sion el : s such that h t (e l) 5 m a x ({ h t (s)) U { h t (t) I t is the type of a free variable in e)) .

Proof. It suffices to replace the rewrite rule involving + by the rule: C{e I x E U{e l I y E e z) -
E { C { (i f (C { (i f x E e l [w / x] A w # Y A W 5 ythen 1elseO) w E e 2 }) = O t h e n e e l s e O) (x E e l } I y E e2} .
The idea behind this rule is that if several items y; in e2 produce el with some common x j , then the linear
ordering is used to pick the X j generated by the smallest yj. The details can be found in the appendix.

Let us prove an easy but interesting corollary of theorem 6.2. Consider the following additional primitives:

57 : 1s) f : + (4
TCS : { s x s } + { s x s} b ! (f g)" { s } powersets : { s } -+ { { s))

where T C (R) is the transitive closure of R; bfir(f , g) is the bounded fixpoint of f with respect to g, that is,
the fixpoint of the equation f (R) = g n (R U f (R)) ; and powerset(R) is the powerset of R. It should be
remarked here that TC and b f i do not take the language out of polynomial time.

Corollary 6.3 m (N , C , -, +,A, cond, bo01,=, TC), N ' E (N , C , ., +,A, cond, bool, =, b f i) , and
m (N , C , a , +, -, cond, bool, =, powerset) have the conservative extension property. The jirst two have
it with f i e d constant 1 and the last one has it with fired constant 2.

Proof. We pnwide the proof for the first one, the other two are straight forward adaptation of the same
technique. First observe that iVW(hl, C, ., $,A, cond, bool, =, T C ~) , where we restrict computation of
transitive closune to binary relations of natural numbers, has the conservative extension property with constant
1. This follows from theorem 6.2. Therefore, it suffices for us to show that TCS is expressible in it for
any s. This can be achieved by exploiting the sort function given in corollary 5.5 by defining T C (R) :=

d e c o d e (~ ~ ~ (e n c o d e (R , sort(dom(R)))),sort(dom(R))), where

r d o m (R) := {x ((x, y) E R) U { Y I (x, Y) E R)

r encode(R, C) := { (a , b) I (r , s) E R, (r , a) E C, (s, b) E C)

r decode(R, C) := { (r , s) ((a , 6) E R, (r , a) E C, (s , b) E C)

Conservative extension property was first studied by Paredaens and Van Gucht [29] and later by Van den
Bussche [lo]. They proved that NRC(eq) has it when input and output are restricted to flat relations. It
was then extended by Wong [38] to any input and output. More recently, Suciu [32] managed to prove the
remarkable theorem that NRC(eq, b f i) , note the absence of natural numbers, has the conservative extension
property when input and output are restricted to flat relations. The results presented in this section show that,
with very little extra, conservative extension property holds at any inputloutput in the presence of aggregate
functions, transitive closure, and bounded fixpoint. This is a very significant improvement of these previous
results.

Grumbach and Milo [12] obtained a noncollapsing hierarchy theorem. Let gen : N + { N) be a primitive
which takes the number n to the set (0 , . . . , n}. Their theorem is equivalent to saying that for any k and
i, there is an expression e in N ~ (N , C , a , +,I, cond, bool, =, gen, powerset) where ht(e) is at most k and
the number of powerset operators along any path in e is at most i + 2 such that there is no equivalent e' of
height at most k and the number of powerset operators along any path in e' is at most i. This is a result on
a different dimension of conservativity. It is a complement, rather than a contradiction, of the last part of
the corollary above.

By the conservative extension property, the class of functions on flat relations computed by
NRC(Q, C , ., +,A, +, bool, cond, =) is precisely that computed by flat relational algebra endowed with the
same primitives. This has a practical significance because it implies that NRC(Q, C , -, +,A, +, bool, cond, =)
can be used as a convenient interface to databases that speak SQL. A theoretically more interesting conse-
quence is that every function of type 4unit D + (IunitD in N?3L(monus, unique) corresponds to very simple
arithmetics. This will be exploited in the next section where arithmetic properties of the bag query languages
are studied.

7 Relationship between bags and numbers

As seen earlier, natural numbers are present in our yardstick query language as objects of type UunitD. That
made it possible to translate M?,L(monus, unique) into set language augmented by either rational or natural
numbers and some arithmetic. In this section we use the conservative extension results from the previous
section to describe a (very limited) arithmetics of bag languages. We show that no property of natural
numbers that is simultaneously infinite and co-infinite can be tested in either language. This is particularly
surprising for the language augmented by rational numbers and division, since it implies inexpressibility of

parity test even when division by two is expressible. Next we show that if is removed from the list of
primitives of the language augmented by rationals, then there is no expression that defines the usual ordering
on rationals. Finally, we give a complete characterization of arithmetic functions in ,'V??L(munus, unique).

Theorem 7.1 Let U be a property of natural numbers that is both injinite and co-injinite. That is, U C Pd
and both U and N - U are injinite. Then membership test for U can not be expressed in NRC(Q. T:, ., +, +,I
, bool, cond, =).

Proof. Suppose there is an expression e : Q -+ Q that tests for membership in U. That is, if n E U, then
e (n) = 1 and if n E N - U, then e (n) = 0 (we are not interested in what e returns on elements of Q - N).
We may assume without loss of generality that e is defined everywhere. That is, division by zero can not
occur in the course of evaluation of e .

First we establish a useful property of expressions of type Q + Q that are defined everywhere. We say that
an expression e of type Q -+ Q is a plus-expression if there is a number n depending on e such that for
any x 2 n : e (x) > 0 and it is a zero-expression if there is a number n depending on e such that for any
x > n : e (x) = 0. Now our goal is to prove that any expression e of type Q + Q that is defined everywhere
is either plus- or zero-expression. In fact, we prove a stronger result that shows in addition that for any
plus-expression there are two polynomial functions with rational coefficients p(x) and q (x) such that for any
x 2 n : e (x) = p (x) l q (x) and P (x) , q (x) > 0.

Let e be of type Q + Q. Since ~ % . C (Q , C, ., +, +,A, booE,cond, =) has the conservative extension property,
e can be considered to be a height zero expression. That is, it is obtained from its only free variable and
constants by operations +, i . and +. Observe that there is a simple way to code conditionals. Every
condition can be reduced to e' = e". For the equality test e' = el', observe that (1 I (e' 2 e")) - (1 .- (e" I e l))
returns 1 if e' = e" and 0 otherwise. Therefore, we may assume that in any if-then-else statement the
condition can be either 1 or 0. But then if c then fl else f 2 is equivalent to c . f l + (1 .- c) . f2 . This shows
that conditionals can be removed from any expression of type Q + Q.

Now we prove our main claim by induction on the structure of e . The base case is immediate since every
constant is either plus- or zero-expression. Let e = el + e2. If both el and e2 are zero-expressions, then
so is e . If both el and e2 are plus-expressions given by p l (x) / q l (x) and p 2 (x) / q 2 (x) for x greater than nl
and n2 respectively, then e is a plus-expression given by (p l (x) . q 2 (x) + p2(x) . q l (x)) / (q l (x) . q 2 (x)) for
x 2 max(n1, n2). If one of the subexpressions is a plus-expression and the other one is a zero-expression,
then e is a plus-expression whose polynomial representation coincides with the representation of the plus-
subexpression for x 2 m a i n l , n 2) . The argument for e = el . e;! and e = el + e2 is similar. Let
e = el e2. The only case that is not immediate is when both el and e2 are plus-expressions. Consider
f (x) = p l (x) q2(x) - p2(x) - q l (x) . If f is the constant function 0, then e is a zero-expression. Otherwise,
let x j be the maximal root of the polynomial f . There are two cases. If for every y > x i : f (y) > 0,
then for every x > m a x { n l , n 2 , x f) + 1, p l (x) / q l (x) - p 2 (x) / q 2 (x) > 0 and therefore e (x) is a plus-
expression given by (p l (x) . q2(x) - pz(x) . q l (x)) / (q l (x) - qz (x)) . If for any y > x f : f (y) < 0, then
for every x > m a x { n l , n2, x f) + 1, p l (x) / q l (x) - p 2 (x) / q 2 (x) < 0 and therefore e (x) = 0, i.e. e is a
zero-expression. That finishes the proof of our claim.

Now observe that if e is a test for the U-membership, it is neither plus- nor zero-expression. Thus, it can
not be expressed in NRC(Q, C, ., +, +, -, 6001, cond, =).

It is well known that the traditional relational languages cannot express parity test [8]. By the result of
[38], it cannot be expressed in A&X(eq) . It follows from the theorem we just proved that it remains

inexpressible even in the greatly enhanced N ~ (Q , C, -, f , t, A, bool,cond, =) and hence not expressible in
NBL(monus, unique). This is another consequence of conservative extension.

Corollary 7.2 Parity test is not expressible in NRC(Q, C , ., +, i,;, bool,cond, =).

The above corollary says that it is impossible to test whether a natural number is even or odd. However,
it is possible to test whether a set has an even or odd number of elements by exploiting the linear order:
odd(R) := U{i f C{if x < y then 1 else 0 I y E R) = C{if x > y then 1 else 0 1 y E R } then {()I else {} 1
x E R } = (0). As a consequence, m L (m o n u s , unique) can not test whether a bag contains an even or
odd number of elements, but it can test whether a bag contains an even or odd number of distinct elements.
Using the same technique we can split a set into k equal parts, even though division by k is undefinable.

As another application of the conservative extension, we show that in the absence of -, the usual order on
rational numbers is no longer expressible.

Proposition 7.3 Let 5 be the usual order on Q. Then it can not be expressed in N W (Q , C, a , + , +, bool,
cond, =).

Proof. It is enough to show that the following function from Q to Q can not be expressed: g (x) = 0
if x < 1 and g (x) = 1 if x > 1. It follows from conservative extension that it suffices to show that
g can not be defined using +,-, f, =, if-then-else and constants. We proceed by proving the following
claim: For any expression g : Q + Q defined by using +, ., i, =, if-then-else, constants and minus, there
exist two polynomials p (x) and q (x) with rational coefficients such that g (x) coincides with p (x) / q (x)
almost everywhere, i.e. g (x) # p (x) / q (x) for only finitely many x E Q. We show it by induction on
the structure of an expression g. The base case is immediate. The induction step easily goes through the
arithmetic operations. Let g := i f c then gl else g2. The condition c is e' = e". By induction hypothesis,
el = ppl/ql, e" = pl'/q", gl = pl/ql and g2 = p2/q2 almost everywhere. Notice that c is either true almost
everywhere or false almost everywhere. Indeed, consider r := p' . q" - p" . q'. If r is the constant function
0, then c may be false only in some of the points in which el and e" do not coincide with their polynomial
representations. If r is not the constant function 0, then r has finitely many roots and therefore c is true only
in finitely many points. It shows that g coincides with either pl/ql or p2/q2 almost everywhere.

Now, if f is expressible in the language, it must also coincide with a ratio of two polynomials p and q almost
everywhere. Since p has infinitely many roots, it must be identical to zero, which contradicts our assumption
that p (x) / q (x) = 1 for almost all x > 1. This contradiction shows that 5 is not expressible.

We now turn to the nested relational language NRC(N, C , . ,+ ,A, bool, cond, =) which is equivalent to
A@L(monus, unique). A unary function f : N --+ N is said to be almost polynomial if there exists a
polynomial function g : N + N (that is, a function built from its argument and constants by using addition,
subtraction and multiplication) and a number n such that for any x 2 n it holds: f (x) = g (x) (that is, f is
g in all but finitely many points). The class of almost polynomial functions is denoted by PX.

Proposition 7.4 P= is the class of unary arithmeticfunctions expressible in An?..(monus, unique).

Proof. The class of unary arithmetic functions (that is, functions of type (lunitB i {unitb) coincides
with the class of functions of type N + N in NnC(Q, C, .,+,+,A, bool,cond, =) which, according to the

conservative extension result, are built from the variables and constants by using addition, multiplication and
modified subtraction (A). We prove that each of these functions is in PX by induction on the structure of
the function. The cases for constants and variables are immediate. The addition and multiplication cases are
similar to the proof of theorem 7.1. Let f = f l A f 2 where f ; coincides with a polynomial g; for x 2 n;,
i=1,2. Let x f be the maximal root of gl - g2 and n = max{nl, n2, x f) + 1. Then there are two cases. If
q ~ (x) - g2(x) 5 0 for each x > n , then f (x) = 0 for x 2 n and 0 is the polynomial representing f for
x > n. Or, if g l (x) - g 2 (x) > 0 for x > n , then gl - g2 is the polynomial representing f .

Conversely, any almost polynomial function can easily be expressed in m (~ , C , ., +, A, bool, cond, =).
Proposition is proved.

Corollary 7.5 None of the following functions is expressible in NDL(monus, unique):

a parity test;

division by a constant;

a bounded summation;

a bounded product;

f : N -+ {ND such that f (n) = (10,1, .. . , nD.

Proof. That parity test is not expressible follows either from theorem 7.1 or the previous proposition.
Suppose div2(n) = n / 2 (integer division) is definable. Then n is even iff n = 2 . div2(n), which shows
inexpressibility of diu2. If a bounded summation is definable, then f (n) = Cr="=, 2 i = n then 1 else 0 is a
parity test. Similarly, if bounded product is definable, then f (n) = nZ, if 2 - i = n then 2 else 1 gives us a
parity test. Finally, since all operations in JV'RL(N, C , ., +, I, bool, cond, =) are polynomial, the size of the
output of any function f : N -+ t is bounded by a constant (since the size of the input is 1) which proves
inexpressibility of the generator of smaller numbers.

Therefore, the arithmetic of our ambient query language is very limited. In the next section where non-
polynomial primitives are studied, we show that two extended languages give rise to all elementary and
primitive recursive functions respectively.

8 Power operators, bounded loop and structural recursion

Abiteboul and Beeri [I] suggested powerset as a new primitive for N ? X (e q) to increase its expressive power.
For instance, both parity test and transitive closure become expressible in m (e q , powerset). On the other
hand, Breazu-Tannen, Buneman, and Naqvi [3] introduced structural recursion as an alternative means for
increasing the horsepower of query languages.

In [5] , it was shown that endowing m (e q) with a structural recursion primitive, which we denote by s s r i ,
or with the powerset operator yields languages that are equi-expressive. However, this is contingent upon
the highly contrived restriction that the domain of each type is finite. Since every type has finite domain,
this result has an important consequence. Suppose the domain of type { s) has cardinality n. Then every
use of powerset on an input of type { s) can be safely replaced by a function that computes all subsets of a
set having at most n elements. Such a function is easily definable in N%X(eq). Therefore,

Proposition 8.1 NrRC(eq) % JVRC (eq , ssr i) 2 NRC(eq, powerset), if all types have jinite domains.

Hence the extra power of s s r i and powerset has effect only when there are types whose domains are
infinite. Types such as natural numbers proved to be important in the earlier part of this report. Therefore,
the relationship of structural recursion and power operators should be re-examined.

The syntax for the structural recursion construct on sets is

i : s x t - + t e : t
s s r i (i , e) : { s) -+ t

The semantics is s s r i (i , e) { o l , . . . , o n) = i (o l , i (o z , i (. . . , i (on, e) . . .))), provided i satisfies certain precon-
ditions [4]. In particular, it is commutative: i (a , i (b , X)) = i (b, i (a , X)) and idempotent: i (a , i (a , X)) =
i (a , X) . s s r i is undefined otherwise. Breazu-Tannen, Buneman, and Naqvi [3] proved that efficient algo-
rithms for computing functions such as transitive closure can be expressed using structural recursion. While
structural recursion gives rise to efficient algorithms, its well-definedness precondition cannot be automati-
cally checked by a compiler [4]. Therefore this approach is not completely satisfactory.

The powerset operator is always well defined. Unfortunately, algorithms expressed using powerset are often
unintuitive and inefficient. For example, to the best of our knowledge, the problem of expressing a polynomial
time transitive closure algorithm in NRC(eq,powerset) is still open. We do not advocate the elimination of
every expensive operations from query languages. However, we believe that expressive power should not
be achieved using expensive primitives. That is, if a function can be expressed using a polynomial time
algorithm in some languages, then one should not be forced to define it using an exponential time algorithm.
For this reason, powerset is not a good candidate for increasing expressive power.

This section has three main objectives. First, we endow m C (m o n u s , unique) with the bag analogs of the
powerset and structural recursion operators and we show that the former is strictly less expressive than
the latter. Second, we suggest an efficient bounded loop primitive which captures the power of structural
recursion but does not require any preconditions. Finally, we characterize functions on natural numbers that
can be expressed in languages endowed with powerbag and structural recursion as elementary and primitive
recursive functions respectively.

8.1 Powerset, powerbag and structural recursion

Grumbach and Milo [12], following Abiteboul and Beeri [I], introduced the powerbag operator into their
nested bag language. The semantics of powerbag is the function that produces a bag of all subbags of
the input bag. For example, powerbagqll, 1,20 = { (I D , (IlD, (J I B , (120, (l1 ,10 , fl1,21, (I1,2D, (I l , l , 2DD.
They also defined the powerset operator on bags as unique o powerbag. For example, powerset(l1, 1 ,20 is
(I (1 D ,(I 1D7Q2 D , 0 1 , l 0 , (I 1 , 2 D, 0 1,1,2D D . We do not consider powerset on bags further because

Proposition 8.2 ~ C (m o n u s , unique, powerbag) = A@?C(monus, unique, powerset).

Proof. We have to show how to express powerbag given powerset. Suppose a bag B is given. Then another
bag B' can be constructed such that for any a E B, B' contains a pair (a , (la , . . . , aD) where the cardinality
of the second component is count(a, B) . B' can be constructed in A@C(monus, unique,powerset) because
selection is definable. Let B" = unique(B1). Now observe that replacing the second component of every

pair by its powerset and then map(b-p2) followed by flattening gives us a bag where each element a E B is
given a unique label. Apply powerset to this bag followed by elimination of labels produces powerbag(B).

Structural recursion on bags is defined using the construct

It is required that i satisfy the commutativity precondition: i (a , i(b, X)) = i (b , i (a , X)) , which can not be
automatically verified [4]. It semantics is similar to the semantics of ssri . We want to show that powerbag
is strictly weaker than bsr i .

Let hyper be the hyper-exponentiation function. That is, hyper(0, n) = n and hyper(m+ 1, n) = 2 hyper(m,n)
In other words, hyper(m, n) is a stack of m 2's with n at the top. Define sizeo, the size of object o, as
follows: it is 1 for objects of base types, sum of the sizes of the components for pairs and sum of the sizes
of the elements for bag type. Then

Proposition 8.3 Let f : s -+ t be an expression of Nt+t(monus, unique, powerset). Then there exists a
constant c f such that for every object o : s, size f (0) 5 hyper(cf, size 0).

Proof (sketch). The proof is by induction on e. For any polynomial operator p in h?3L(monus, unique), it is
. - safe to define c, to be 1. For operators that are not polynomial, define cpowerset .- 1, ~ (f , ~) := max(c f, c g) ,

cjog := c j + cg, and cb m a p (f) := I C f .

The above establishes an upper bound on the size of output of queries in h?3L(monus, unique, powerset).
This upper bound is later used to characterize arithmetic properties of mL(monus , unique,powerset). But
its immediate consequence is the separation of powerbag from bsr i .

Theorem 8.4 m' (powerbag , monus, unique) 5 M L (b s r i , monus, unique).

Proof. Inclusion is easy [5]. To prove strictness, define an auxiliary function g : (lunitk + (IunitD in
m L (b s r i , monus, unique) by g := b-map(!) o powerbag. It is easy to see that on an input of size n ,
g produces the output of size 2n. Now define f := Xn.sri(g o n2, n) (n) . A straightforward analysis
shows that size f (o) = hyper(size o, size 0). Therefore, by proposition 8.3, f can not be expressed in
mL(powerbag, monus, unique).

8.2 Bounded loop and structural recursion

As mentioned earlier, powerbag is not a good primitive for increasing the power of the language. It is not
polynomial time and compels a programmer to use clumsy solutions for problems that can be easily solved
in polynomial time. In addition, powerbag is weaker than structural recursion. On the other hand, bsri is
efficient [3] but its well definedness precondition can not be verified by a compiler [4]. In this section, we
present a bounded loop construct

Its semantics is as follows: loop(f) ((lo l , . . . , onD, o) = f (. . . f (0) . . .) where f is applied n times to o.
Remark that it is enough to consider only loopunit(f) : {unitb x s -+ s.

The bounded loop construct is more satisfactory as a primitive than powerbag and bsr i for several reasons.
First, in contrast to powerbag, efficient algorithms for transitive closure, division, etc. can be described
using it. Second, it is very similar to the for-next-loop construct of familiar programming languages such as
Pascal and Fortran. Third, in contrast to bsr i , it has no preconditions to be satisfied. Lastly, it has the same
power as bsr i .

Theorem 8.5 JI@L (monus , unique, loop) - N?3..(monus, unique, bsri).

Proof. For the n/LL(rnonus, unique, loop) 5 A@L(monus, unique, b s r i) part, it suffices to observe that
loop(f) (n , e) = bsri(f o 7r2, e) (n) . The NBL(monus, unique, b s r i) NBL(monus, unique, loop) part is
more involved. Let G f (R) := { (A monus {aD, f (a , 6)) ((A , b) E R, a E AD. Should the f above
fail the commutativity requirement, bmap(n2)(unique(loop(@f)(n7 { (n , e) b)) is then a bag containing all
possible outcomes (one for each order of applying f) of bsri (f , e) (n) . However, if f : s x t -+ t
satisfies the commutativity precondition, then un ique (l~op(@~) (n , (I(n, e)D)) is a singleton bag and is equal
to (I ({I b, bsri (f , e)(n))D. b m a p (r 2) can then be applied to the result to get a singleton bag containing
bsri (f , e) (n) . This shows that bsri is expressible in N?3L(monus, unique, loop).

Therefore replacing structural recursion by bounded loop eliminates the need for verifying any precondition.
If the i in bsr i (i , e) is not commuta.tive, the translation used in the proof simply produces a bag containing
all possible outcomes of applying bsr i (i , e) , depending on how elements of the input are enumerated. If i
is commutative, then such a bag has one element which is the result of applying bsr i (i , e) . Hence bsri is
really an optimized bounded loop obtained by exploiting the knowledge that i is commutative, Furthermore,
loop coincides with structural recursion over sets, bags, and (with appropriately chosen primitives) lists.

The implementation of bsr i (i , e) using the bounded loop construct given in the proof of theorem 8.5 has
exponential complexity but the source of inefficiency is in computing all permutations in order to return all
possible outcomes. If we allow to pick a particular order of application of i in bsr i (i , e) , then more efficient
implementations are possible. For example, define G;(R) as {(Amonus { a b , f (n2 a, b)) I (A , b) E R, a E
unique(max(A))D, where max returns the subbag of maximal elements with respect to the linear order (see
corollary 5.5). Then loop(@;)(X, (I (sor t (X) , e)D) returns {({ b , bsri(f , e) (X))D . However, if f is not
commutative, then loop(@;)(X, { (s o r t (X) , e)D) equals to (I((I b, f (01, f (0 2 , f (. . . , f (ok , e) . . .))))D where
X = (lol, . . . , okD and ol 5 . . . 5 ok in the linear order of theorem 5.4.

8.3 Arithmetic properties of non-polynomial languages

In this section functions on natural numbers expressible in n/L3L(monus, unique, loop) are characterized.
Before proving the two theorems, let us argue that they are very intuitive and are not unexpected. There
are two classical results in recursion theory [25]. One, due to Meyer and Ritchie, states that the functions
computable by the language that has assignment statement and for n do S , are precisely the primitive recursive
functions. The semantics of for n do S is to repeat S n times. A similar result by Robinson, later improved
by Gladstone, says that the primitive recursive functions are functions built from the initial functions by
composition and iteration. That is, f (n, Z) = g(n)(Z) , see [25]. In view of these results and the fact the
loop construct is just a for-do iteration, the following result is very natural.

Theorem 8.6 The class offunctions f : N x . . . x N - N dejinable in hrljL(monus, unique, loop) coincides
with the class of primitive recursive functions.

Grumbach and Milo showed [12] that their bag language, which is equivalent to ~ L (m o n u s , unique,
powerbag), expresses all elementary queries. They obtained this result by encoding computations on Turing
machines in the language. Recall that the class of Kalmar-elementary functions E is the smallest class that
contains basic functions, addition, multiplication, modified subtraction A and is closed under bounded sums
and bounded products [30]. That is, the following functions are in E if g is in E:

n n

Using techniques different from [12], we prove the following:

Theorem 8.7 The class of functions f : N x . . . x N -, N definable in h@,L(monus, unique, powerbag)
coincides with the class of Kalmar-elementary functions.

Let us first give the proof of theorem 8.6.

Proof of theorem 8.6. Throughout the proof we use N as abbreviation for (Iunit D and n as an abbreviation for
(I(), . . . , () D (n times). We start with theorem 8.6. First observe that since powerbag can be expressed in the
language, 2n as a function of n can be expressed as we have done it in the proof of theorem 8.4. Therefore,
encoding and decoding functions for tuples can be expressed. In view of that and the Robinson-Gladstone
result [25], to prove that all primitive recursive functions can be computed by m . (m o n u s , unique, loop),
it is enough to show that if g (m) can be computed, then so can f (n , m) = g (n) (m) . But this is obvious
because f (n , m) = loop(g)(n, m) .

To prove the converse, first verify this claim: for any expression e : s -+ t in A@?A(monus, unique, loop)
there is a monotone primitive recursive function cp , of one argument such that s izee(o) < cp,(sizeo).
The verification proceeds by structural induction on e. The only two problematic cases are b m p (f) and
loop(f) . Let f : s' -t t' and b m p (f) (d) = d' where d = (Io l , . .. ,okD and d' = (I o ; , . . . ,o#. Then
size d' = zi size o: < xi y j (s i z e oi) 5 xi cp (size d) < s ized . yf (s i ze d) . So cpbmap(f) can be picked

(n) to be n - cpj(n) which is clearly monotonic. For the case of loop(f), define yloop() (n) = y j (n) . From
monotonicity of (o f it can be easily derived that cploop(f) satisfies the desired property and is monotone
itself.

Now a straightforward translation of operations of ABd(monus, unique, loop) into computations on a Turing
machine shows that the space complexity for every expression in the language remains bounded by a primitive
recursive functions. Therefore, if f : N x . . . x N -, N is a function computable A?3L(monus, unique, loop),
it is recursive and the space complexity (and therefore time complexity) of its computation on a Turing
machine is bounded by a primitive recursive function. Now, if f is obtained from the initial functions by
using primitive recursion schema and minimization, this shows that every instance of minimization can be
replaced by bounded minimization which is known not to enlarge the class of primitive recursive functions.
Thus, f is primitive recursive. This completes the proof.

Next we give the

Proof of theorem 8.7. First we show that bounded sum and bounded product are expressible in ld!3L(monus,
unique, powerbag). Since coding functions for tuples are available, we restrict ourselves only to the case

of f i (n) = Cy=O g (i) and f ~ (n) = ny="=,(i). Let powerset := unique o powerbag. It is easy to see that
powerset(n) = (10 ,1 ,2 , . . . , nD. Therefore, b-po b m a p (g) applied to powerset(n) gives us f i (n) . The proof
of expressibility of f2 resembles the proof of expressibility of the cw primitive of [22] for or-sets. Again, g
is mapped over powerset(n) to obtain (Ig(O), g (l) , . . . , g (n) b . If at least one of g (i) is 0 (that is, an empty
bag), the result is 0 . Otherwise each occurrence of () inside each g (i) is paired with i. The resulting bag is
flattened and the powerbag is taken. From this powerbag such subbags are selected that they contain exactly
one pair tagged with i for each i . The number of such subbags is exactly f 2 (n) . So f;! is expressible.

The proof of the converse is similar to the proof for the primitive recursive functions. The space complexity
for every expression in A@3.(monus, unique,powerbag) is bounded above by hyp,er(c, n) where c is a
constant, see proposition 8.3. That is, by a function in C . Again, a simple translation into computation on a
Turing machine shows that complexity remains bounded by a function from I . Now if f : N x . . . x N -. N
is computable in A&?L(monus, unique,powerbag), it can be computed by a Turing machine whose space
complexity is bound by a function from f. Whence f E C , see [23]. This finishes the proof of theorem 8.7.

As a corollary, we show how to obtain all unary primitive recursive functions using simpler constructs.
First observe that powersetunit : Qunitb -+ {{unit O D is a polynomial operation: powersetun't(n) =
{ 0 , 1 , 2 , . . . , nD. We simplify loop construct by defining iter(f) : (It D + {unit D where f : (Iunit D + (l unit D
by i t e r (f) (l o l , . .. ,onD = f (f (. . . (f (I D) . . .)) where is f applied n times.

Corollary 8.8 AQ?,L(rnonus, unique, iter , powerset "nit) expresses all unary primitive recursive functions.

Proof. It is known that all unary primitive recursive functions can be obtained from the iteration schema:
g (n) = f (n) (~) and an extended list of initial functions, see [30, 1.41. It is straightforward to verify that all
additional initial functions can be expressed in the presence of powersetunit.

9 Conclusion and future work

Many results on bags are presented in this report. A large combination of primitives have been investigated
and the relative strength is determined. The relationship between bags and sets has been studied from two
different perspectives. First, various bag languages are compared with a standard nested relational language to
understand their set-theoretic expressive power. Second, the extra expressive power of bags is characterized
accurately. An ordering for dealing with partial information in bags is given and a technique for lifting linear
order on base types to linear order on all types is presented. The linear order is used to prove that our bag
languages are conservative with respect to height of input and output. The relationship between bags and
natural numbers is studied via the conservative extension property. In particular, we showed that properties
that are simultaneously infinite and co-infinite are inexpressible. Finally, the relationship between structural
recursion and powerbag operator has been re-examined. The former is shown to be stronger than the latter.
Then we introduce the bounded loop construct that captures the power of structural recursion but has the
advantage of not requiring verification of any precondition. Moreover, we prove that structural recursion
gives us all primitive recursive functions.

These results complement earlier ones obtained by Breazu-Tannen, Buneman, and Wong on sets [5]. These
two reports taken together are a foundation for programming with collection types using the paradigm of
monad and structural recursion first investigated by Breazu-Tannen, Buneman, and Naqvi [3].

Future work. There are many further problems which we would like to investigate. Many properties of the
partial order on bags proposed to deal with incomplete information remain to be explored. For instance, its
role in the theory of powerdomains remains to be seen. Powerdomains are typically used to give semantics
for collections in programming languages, see [7, 14, 211. We also would like to see how the idea of using
approximations to model partial information [6, 131 can be extended to bags.

It is known that the presence of a linear order adds tremendous power to first-order query languages [16, 341.
Our language for nested setshags has enough power to express a linear order at all types. It is a good
framework for investigating the impact of linear orders on nested collections. Also, other kinds of linear
orders on nested collections such as those in [20] should be studied.

There are several conjectures we have not yet proved. Does adding primitive gen : N + {N) that produces
numbers from 0 to n for a given input n gives us precisely lower elementary functions [30]? Are functions
such as transitive closure or test for balanced binary trees expressible in the set language equivalent to
ML(rnonus, unique)? What is the expressive power of this set language augmented by transitive closure?
We know that test for balanced binary trees can be expressed in this language, but can it express bounded
fixpoint?

We were able to demonstrate the conservative extension property for the nested set language with aggregate
functions and additional primitives such as transitive closure, bounded fixpoint and powerset by reducing these
primitives to the corresponding ones on natural numbers. What is the general property of these primitives
that allowed this reduction?

Breazu-Tannen, Buneman and Wong [5] , Libkin and Wong [22], and this paper studied the use of monads
and structural recursion for querying sets, or-sets and bags respectively. We hope to extend this methodology
to other collection types such as lists, arrays, etc.

Acknowledgements. Peter Buneman gave us the initial inspiration and provided many helpful suggestions.
Val Breazu-Tannen and Dan Suciu helped us understand programming with collection types. We also thank
Jean Gallier and Scott Weinstein for answering many of our questions and Paul Taylor for the diagram
macros.

References

[I] S. Abiteboul and C. Been. On the power of languages for the manipulation of complex objects. In
Proceedings of International Workshop on Theory and Applications of Nested Relations and Complex
Objects, Darmstadt, 1988.

[2] J. Albert. Algebraic properties of bag data types. -In Proceedings of 17th International Conference on
Very Large Databases, pages 21 1-219, 1991.

[3] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceedings
of 3rd International Workshop on Database Programming Languages, pages 9-19, Naphlion, Greece,
August 1991. Morgan Kaufmann.

[4] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming with
setshags/lists. In LNCS 510: Proceedings of 18th International Colloquium on Automata, Languages,
and Programming, Madrid, Spain, July 1991, pages 60-75. Springer Verlag, 1991.

[5] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In J. Biskup
and R. Hull, editors, LNCS 646: Proceedings of International Conference on Database Theory, Berlin,
Germany, October, 1992, pages 140-154. Springer-Verlag, October 1992. Full paper available as UPenn
Technical Report MS-CIS-92-47.

[6] P. Buneman, S. Davidson and A. Watters, A semantics for complex objects and approximate answers,
Journal of Computer and System Sciences, 43: 170-21 8, 1991.

[7] P. Buneman, A. Ohori, and A. Jung. Using powerdomains to generalize relational databases. Theoretical
Computer Science, 91 :23-55, 1991.

[8] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and
System Sciences, 25:99-128, 1982.

[9] L. S. Colby. A recursive algebra for nested relations. Information Systems, 15(5):567-582, 1990.

[lo] J. Van den Bussche. Complex object manipulation through identifiers: an algebraic perspective. technical
Report 92-41, University of Antwerp, Department of Mathematics and Computer Science, Universiteit-
splein 1, B-2610 Antwerp, Belgium, September 1992.

[l l] J. Van den Bussche and J. Paredaens. The expressive power of structured values in pure OODB.
Technical Report 90-23, University of Antwerp, Department of Mathematics and Computer Science,
Universiteitsplein 1, B-2610 Antwerp, Belgium, November 1990. Revised version appeared in proceed-
ings of PODS'91.

[I 21 S. Grumbach and T. Milo. Towards tractable algebras for bags. In Proceedings of 12th ACM Symposium
on Principles of Database Systems, Washington, D. C., May 1993. To appear.

[13] C. Gunter, The mixed powerdomain, Theoretical Computer Science, 103:311-334, 1992.

[14] C. A. Gunter. "Semantics of Programming Languages: Structures and Techniques". The MIT Press,
1992.

[15] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of the ACM,
31:761-791, 1984.

[16] N. Immerman, Relational queries computable in polynomial time, Information and Control, 68:86-104,
1986

[17] L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern matching and subtypes. In Proceedings
of ACM Conference on LISP and Functional Programming, pages 198-21 1, Snowbird, Utah, July 1988.

[18] A. Klausner and N. Goodman. Multirelations: semantics and languages. In A. Pirotte and Y. Vassiliou,
editors, Proceedings of 1 lth International Conference on Very Large Databases, Stockholm, August 1985,
pages 25 1-258, Los Altos, CA, August 1985. Morgan Kaufmann.

[19] A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate
functions. Journal of the ACM, 29(3):699-717, 1982.

[20] K. Kupert, G. Saake, and L. Wegner. Duplicate detection and deletion in the extended NF' data model.
In W. Litwin and H. J. Schek, editors, W C S 367: Foundation of Data Organization and Algorithms,
pages 83-101. Springer-Verlag, June 1989.

[21] L. Libkin. A relational algebra for complex objects based on partial information. In J. Demetrovics
and B. Thalheim editors, LNCS 495: Proceedings of Symposium on Mathematical Fundamentals of
Database Systems, Rostock, May 1991, pages 3641. Springer-Verlag, 1991.

[22] L. Libkin and L. Wong. Semantic representations and query languages for or-sets. In Proceedings of
12th ACM Symposium on Principles of Database Systems, Washington, D. C., May 1993. To appear.
Full paper available as UPenn Technical Report MS-CIS-92-88.

[23] M. Machtey and P. Young. "An introduction to the General Theory of Algorithms". North Holland,
1978.

[24] E. Moggi. Notions of computation and monads. Information and Computation, 9355-92, 1991.

[25] P. Odifreddi. "Classical Recursion Theory". North Holland, 1989.

[26] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli: a polymorphic
language with static type inference. In James Clifford, Bruce Lindsay, and David Maier, editors, Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data, pages 46-57, Portland,
Oregon, June 1989.

[27] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational algebra and relational calculus with
set-valued attributes and aggregate functions. ACM Transactions on Database Systems, 12(4):566-592,
1987.

[28] C. Papadimitriou and K. Steiglitz. "Combinatorial Optimization: Algorithms and Complexity ". Prentice
Hall, 1982.

[29] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17(1):65-93, 1992.

[30] H. E. Rose. "Subrecursion: Functions and Hierarchies ". Clarendon Press, Oxford, 1984.

[31] H.-J. Schek and M. H. Scholl. The relational model with relation-valued attributes. Information Systems,
11(2):137-147, 1986.

[32] D. Suciu, Fixpoints and bounded fixpoints for complex objects, Technical Report MS-CIS-93-32/L&C
58, University of Pennsylvania, 1993.

[33] S. J. Thomas and P. C. Fischer. Nested Relational Structures. In P. C. Kanellakis, editor, Advances in
Computing Research: The Theory of Databases, pages 269-307. JAI Press, 1986.

[34] M. Vardi, The complexity of relational query languages, Proceedings of ACM SZGACT Symposium on
the Theory of Computing, 1982, pages 137-146.

[35] S. Vickers. Geometric theories and databases. In P. Johnstone and A. Pitts, editors, Applications of
Categories in Computer Science, volume 177 of London Mathematical Society Lecture Notes, pages
288-314. Cambridge University Press, 1992.

[36] P. Wadler. Comprehending monads. In Proceedings of ACM Conference on Lisp and Functional
Programming, Nice, June 1990.

[37] D. A. Watt and P. Trinder. Towards a theory of bulk types. Fide Technical Report 91/26, Glasgow
University, Glasgow G12 8QQ, Scotland, July 1991.

[38] L. Wong. A conservative property of a nested relational query language. Technical Report MS-CIS-
92-59/L&C 48, University of Pennsylvania, Philadelphia, PA 19104, July 1992. Extended abstract to
appear in proceedings of PODS793.

Addendum: Conservative extension in the presence of aggregate functions

In this addendum, we prove that N x (e q b , N , a,-, +, C, cond) has the conservative extension property. Here
the boolean type bool is simulated by N by representing true using 1 and false using 0. First,

Proposition A Equality test at all types is dejinable.

Proof. We define = s : s x s -. boo1 by induction on s.

r =b is the given equality test at base type 6.

r x = s x t y := i f a 1 x =,TI y then T:! x = t ~ 2 yelse 0

r X ={,} Y := if X c, Y then Y G, X else 0

X C_, Y := (1 A C{if x E, Y then 0 else 1 I x E X))

r x Es Y := C{i f x =, y then 1 else 0 I y E Y) .

As mentioned in the main part of the report, existence of a computable linear order is used to prove
conservativity of A%C(eqb, N, a,.-, +, C , cond). Hence we need

Proposition B A linear order at all types is dejinable.

Proof. The linear order 5, defined in the main report is implemented by induction on s.

r x SsXt y := if TI x 5, TI y then (i f TI x =, nl y then 7r2 x I t n2 y else 1) else 0

X Q,} Y := i f X E: Y then (if Y IIj X =N 0 then 1 else X 5 9) else 0, where

r X 5: Y := (C{ i f x E, Y then 0 else (i f (C{ i f y Es X then 0 else x 5, y I y E Y)) =N
0 then 1 else 0) (x E X)) =N 0.

Next we present a rewriting system adapted from Wong [38] for A&Z(eqb, N, -,A, +, C, cond).

3. e ?.i () if e : unit and e is not 0.

4. if 1 then el else e2 -u el

5. if 0 then el else ez r~ e2

6. r i (i f el then e;! else e3) - i f el then T ; e2 else r; e3

7. U{e I x E 0) - 0
8. U { O I x E e l - 0
9. U { e I x E { e l)) - e[e l / x]

10. U { e i 1 5 E U{e2 I Y E e s)) - U{U{el 1 x E ea) 1 Y E e s)

11. U { e I x E el U e 2) - U { e I x E e l) U U { e 1 x E e2)

12. U { e I x E i f el then e2 else e s) - i f el then U { e I x E e 2 } else U { e I x E e3)

13. C{e I x E {}) - 0

14. C { e I x E {e l }) -u e[e l / x]

15. C { e I x E el U en} -u C{e 1 x E e l } + C{if x E el then 0 else e) x E e z)

16. C{e I x E if el then e2 else es} - if el then C{e I x E e 2) else C{e I x E es)

17. C{e I x E U{el I y E e2}} - C{C{i f (E{i f x E e l [w / x] then (i f w = y then 0 else w 5
y) else 0 I w E e2)) = 0 then e else 0 I x E e l } I y E e 2)

This system of rewrite rules preserves meaning of expressions. That is,

Proposition C Zfe - e', then e = e'.

To prove that N W (e q b , N , - ,A, +, C , cond) has the conservative extension property, we first show that the
normal forms induced by the above rewriting system have set height not exceeding their types and that of
their free variables. Observe that any normal form of any expression of type s + t always looks like Xx.e
where A-abstraction does not appear in e. So it suffices to prove

Proposition D Let e : s be an expression of N W (e q a , N, .,A, +, C, cond) in normal form, where e contains
no lambda abstraction. Then h t (e) 5 max({h t (s)) U {h t (s) I s is the type of a free variable occurring in e)) .

Proof. The proof proceeds by induction on e. Let k = max{ht(s) I s is the type of a free variable occurring
in e) . We present the only case not covered by Wong [38] here. Suppose e : s is C{el (x E e z) . Then
e2 must be a chain of projections on a free variable. Hence h t (x) < k . Note that el has type s too. By
hypothesis, ht (e l) 5 max{h t (s) , k , h t (x) } = max{ht(s) , k } . The case holds.

It remains to check that every expression has a normal form. While rules 15, 16, and 17 seem to increase
the "character count" of expressions, it should be remarked that C{e I x E e'} is always rewritten to an
expression that decreases in the e1 position (see claim 111 below). This is the key to the proof of the following
proposition.

Proposition E The rewriting system consisting of the above rules is strongly normalizing.

Proof. A precharacteristic a is an infinite tuple (. . . . a (l) , ~ (0)) whose components are natural numbers,
all but finitely many of which are 0. a becomes a characteristic if a(0) > 2. We write a[n/i] for the
a' such that ul(i) = n but agrees with a otherwise. We write a1 * 6 2 for the a' such that for each i,
u'(i) = max(al(i), a2(i)). An environment y is a function that assigns characteristics to variables. We
write y[a/x] for the y' such that ql(x) = a but agree with a otherwise. The size Ilelly of expression e in
environment y is defined below as a precharacteristic and is ordered lexicographically.

II"II9 := 44

11011~ := llcllv := 11011~ := (. - . , o , 2)

(1"; ell9 := Il{e)lly := 4 3 a(O)/O] where a = Ilelly.

I l(ei ,ez)ll~ := llei u e2lly := [lei + e211q := llel A e2llcp := llel e211cp := llel = b e211cp :=
(a1 * a2)[o1(0), a2(0)/0] where a; = Ile;lly.

Ilif el then e2 else e3((y := (al *a2 * a3)[u1(0). (1 + a2(0) + a3(0))/0] where a; = Ile;llq.

llXx.ell9 := Ilellv[(. . - 3 3)/xl

11 Ute1 I x E e 2) l l ~ := (01 * a z) [a i (0) ~ ~ (~) / 0] where a 2 = Ile2lly and a1 = ((elllq[a2/x].

It is routine to verify the following claims:

Claim II. Suppose for each x, yl(x) 5 y2(x) and yl(x)(O) 5 y2(x)(0). Then Ilellyl 5 Ilellq2 and
(Ilellcp1)(0) I (Ilellcp2>(0).

b Claim III. Let e10e2 be any of el =, e2, el Cs e2, el E, e2, el Cs e2, el 5: e2, or el 5, e2 as defined
earlier. Let a; = IJeil(y and a = Ile10e211q. Let j > (al(0) max ~ (0)) . Then a (j) = a l (j) max a2(j).

Using these claims, a simple case analysis can be performed on the rewrite rules to reveal that whenever
el - e2, Ilelllcp > Ilezllp for any environment cp. Hence the system is strongly normalizing.

Putting these propositions together, we have

Theorem F NRLC(eqb, N, -, A, + , C , cond) has the conservative extension property.

By replacing the last rewrite rule with: item C{e 1 x E U{el I y E e2)) - C{C{(e +- C{C{x = v I v E
el[u/y]) 1 u E e2)) 1 x E el) 1 y E e2}, we can also show using a similar technique that

Theorem G N'E (eqb , cond, + , i , ., C, Q) has the conservative extension property.

