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We propose a new formulation for full (weakening and constants
included) multiplicative and exponential (MELL) proof nets, allow-
ing a complete set of rewriting rules to parse them. The recognizing
grammar defined by such a rewriting system (confluent and strong
normalizing on the new proof nets) gives a correctness criterion
that we show equivalent to the Danos-Regnier one.

1 Introduction

Before the arrival on the scene of linear logic there were essentially two possible
formulations for proofs: sequent calculus and natural deduction. Both enjoying
the property that each application of a rule is correct (locally correct in the
case of sequent calculus and globally correct in the case of natural deduction).
Namely, each instance of a rule of the calculus transforms a (correct) proof
into another (correct) proof. It was a general belief that any reasonable logical
calculus should have had such a kind of inductive definition based on the
application of correct rules. In his seminal paper [Gir87] Girard changed this
point of view introducing proof nets.

The definition of a proof net is no more inductive, but it splits in two distinct
sequential phases: (i) Starting from axiom links, by free application of a set of
logical rules (logical links), we construct a graph (more precisely a hypergraph)
called proof structure whose correctness is not guaranteed. (ii) By a suitable
correctness criterion, we test whether the previously built proof structure is
correct or not. Namely, if it is a proof net. Girard proposed an exponential al-
gorithm to check correctness of proof structures, successively simplified in the
well-known Danos-Regnier criterion [DR89] based on a topological approach.
Successively, Lafont [Laf95] attacked the problem of correctness of pure mul-
tiplicative proof structures in a complete different perspective. Lafont’s idea



was to give a parsing algorithm to check correctness, that is, a rewriting sys-
tem of proof structures enriched by a new kind of link (called parsing box).
Lafont’s solution works for pure multiplicative constant and weakening free
nets only. The main reason of this fact is that Lafont deals with nets without
an “a priori” weakening and L box assignment. Lafont observed that, due to
the presence of disconnected components caused by 1 and weakening links
(in the following, we will frequently use just weakening links to refer to both),
“there is no hope to find a good parsing algorithm for the full multiplicative
fragment” [Laf95, p. 239].

To overcome such a problem we propose to change the notion of net. Our idea
is to have a primitive notion of exponential box but we eliminate the necessity
of weakening boxes. This is possible as, for any given MELL sequent proof,
it is (semantically) sound to permute its weakenings towards its axioms, so
we directly connect weakening formulas to proof net axioms. As a result, our
proof nets are always connected. Consequently, we are able to give a complete
set of rewriting rules to parse full multiplicative and exponential (MELL) proof
nets. We claim that our formulation of proof nets is a good alternative of the
classical one not simply a technical escape from the problem. Such an approach
might also be seen as a specialization of the probe technique of Banach [Ban95].
Anyhow, differently from Banach, we do not need any new extra-logical link.

The structure of the paper: Section 2 defines MELL™, a weakening free formu-
lation of MELL. Section 3 introduces the MELL™ proof nets. Section 4 states
the Danos-Regnier criterion. Section 5 defines the parsing rewriting system.
Section 6 proves the equivalence between the parsing system and the Danos-
Regnier criterion. Section 7 shows the adequacy of the MELL™ proof nets.

2 Permutations: the calculus MELL Y

The classical sequent calculus for the multiplicative (®,’®, L, 1) and exponen-
tial (?,!) fragment of linear logic (MELL) has two kinds of weakening rules:

=T =T
Ww? — WL
FT2A FIL

The W? rule permutes with any other rule according to the following scheme:

FT (FA) FT
—_ % W?
FY permutes to FT,2A (FA)
W? *
FX ?A F X, ?2A

also in the case in which * is an of-course introduction rule. However, the



previous permutations do not hold taking WL in place of W?. In fact:

FTl B FT B
! — Wl
FHT !B permutes to B, L
— W1 —!
2T !B, L Fe !B, L

would introduce a rule (the last one) which violates the side condition of
the ! rule. On the other hand, even if the previous instance of an ! rule is
syntactically wrong, it is semantically sound. More generally, the rule:

FI,B

FT,!1B

!

€1

where each formula in I' is a why-not formula or a L, is semantically correct,
since it is derivable in MELL. Replacing the ! rule of MELL with the ! rule,
both W? and W L can be pushed towards the axioms and eventually merged
with them. We obtain in this way a variant of MELL that we call MELL™,
which is like MELL except for:

(i) In MELL™ the introduction rule for !'is I, .
(ii) The rules W? and W L of MELL are dropped.
(iii) The axioms of MELL™ are (T is a sequence of L or why-not formulas):

Fp,p-,T 1,7

The key point of MELL™ is that it is a weakening free calculus.

3 Proof Structures

According to MELL™, we reshape proof structures and proof nets. As usual, (at
least in the last years) we represent them as hypergraphs (see [Gue96,Reg92]).
Their differences w.r.t the classical ones (i.e., as defined by Girard) are:

(i) The L formulas may be auxiliary doors of the exponential boxes (as a
consequence we shall have an explicit link to contract L formulas).
(ii) There are not weakening boxes.
(iii) The axiom links have variable arity.

Remark 1 The use of a contraction rule for L formulas could be avoided at
the level of presentation of these notes. It turned to be mandatory if we would
study the dynamics of the MELL™ proof nets or to prove cut elimination.



3.1 Links and structures

A MELL™ link is a hyperarc labeled by a type, one of the MELL connectives
or constants {ax, cut, ®,’2,!,?, e L 1} (we use ® to denote the contraction).

1L
A B Xi € {L,?A{} A A
A%B PP Xy Xy IA
par p-axiom cut promotion
A B X X

Xi € {L1,?A4}

@ [: lXe{J_,?A}
A®B 1 Xpereero Xy X 2A

tensor 1-aziom contraction dereliction

P is an atomic formula — A, A;, B are arbitrary MELL formulas

Fig. 1. MELL™ links.

A MELL™ structure G is a directed hypergraph whose hyperarcs are MELL™
links, and whose vertices are occurrences of formulas. The tail of a link of G is
the ordered set of its premises; its head is the ordered set of its conclusions. The
number and the shape of the premises/conclusions of a link are constrained
by its type, see Figure 1. Each formula of G is conclusion of exactly one link
and premise of at most one link; no formula of G may be at the same time
premise and conclusion of the same link (this restriction is relevant only for the
e links). For any formula A of G, the link above A is the link whose conclusion
is A; the link below A is the link a premise of which is A. The formulas I' which
are not premise of any link of G are the conclusions of G, written G - T'.

Remark 2 [t is crucial for the proposed approach the elimination of explicit
links (without premises) introducing weakening formulas. All the weakening
formulas are instead introduced by axiom links. In such a way we ensure con-
nectedness of our MELL™ proof nets and we shall apply the Danos-Regnier
correctness criterion without the need to refer to connected components.

A sub-structure H of a structure G is determined by the set of its links. So,
the usual set operations will be used to compose and compare structures. In
addition, by G* we shall denote the set of the links of type x contained in G.



3.2 Bozes

A box B is a structure in which all the conclusions are why-not or bottom
formulas but one, its principal door, which is an of-course formula; the why-
not or L conclusions of B are its auxiliary doors. No auxiliary door of a box
can be the conclusion of a e link (see Figure 2). The ! link 1 whose conclusion
is the principal door of B is its principal door link, that is, PDL(B) = L.

Fig. 2. Box.

Remark 3 Allowing auziliary doors of boxes to be L formulas is fully justified
by the !, rule of MELL™.

3.8 Proof structures

A MELL™ proof structure ¢ with conclusions I' (written ¢ + T') is a pair
formed by a MELL™ structure G + I', and of a boxing map, assigning to
each 1 € G' a box By, with PDL(B;) = 1. Boxes have to satisfy the so-called
box nesting condition, that is, two distinct boxes may nest but not partially
overlap. More formally, the set BOx(G) = {By | L € G'} of the boxes of G
satisfies the box nesting condition when: for any pair By, B, € Box(G), if
neither By C B, nor B, C By, then By N B, = (). Anyhow, according to such a
definition, distinct boxes may share one or more auxiliary doors.

The inclusion relation among structures naturally extends to proof structures.
Namely, .77 C ¢4 if H C G and BOX(H) C BOX(G). The box nesting condition
also ensures that to any box B € BOX(G) corresponds a proof sub-structure
A, the proof boz of B, defined taking BoXx(B) = {B’ € Box(G)|PDL(B’) € B}.

4 Danos-Regnier correctness criterion

To build the switch structures by which we shall characterize proof nets, we
add three new kinds of links: (¢) the net link, and (i7) the switched % and



(7ii) the switched e links. The net link has no premise and an arbitrary non-
empty set of conclusions. The switched links are instead obtained from a
corresponding '@ or e link marking as erased all its premises but one (so,
they have only one premise and one conclusion).

Fig. 3. Net link.

A switching pair for a MELL™ proof structure ¢ is a pair (Sp,S1) in which
So € BOX(G) and S; is a set of formulas obtained choosing a premise for each
= and any L link of G. Let (Sg, S1) be a switching pair for ¢, the corresponding
switch of ¢ is the structure S obtained from G replacing each proof box Z F T’
corresponding to B € Sy by a net link with conclusions I', and by replacing
each 1 € G® U G* by the corresponding switched link obtained marking as
erased the premises of 1 not in S;. Note that the conclusions A of S are the
conclusions of G plus the premises of ¢ and e links not in S;.

To any switch S = A we associate an undirected graph S* with a root node for
any conclusion of S by: (i) replacing each link of S by a node; (ii) replacing
each formula A of S by an edge connecting the link above A to a root of S*,
when A € A, or by an edge connecting the links above and below A, otherwise.
A switch S is acyclic if S" is; it is connected if S™ is.

Definition 4 (DR-correct structures) A MELL™ proof structure 4 is DR-
correct if each switch of 9 is acyclic and connected.

Definition 5 (MELL™ proof net) A MELL™ proof structure is a MELL™
proof net if it is DR-correct.

5 Parsing

The DR-correctness is a topological characterization of MELL™ proof nets. We
know (and we shall prove) that any MELL™ proof net is the image of (at least)
a MELL™ derivation (modulo some permutations of rules). Namely, that any
MELL™ proof net may be sequentialized. We shall show that the inductive
definition corresponding to such a sequentialization induces a parsing (graph)
grammar o for MELL™ proof structures accepting MELL™ proof nets only.

A parsing MELL™ proof structure is a MELL™ proof structure whose hyper-
graph may also contain net links (but not switched links), that is, they are the



intermediate structures obtained applying the o-grammar. The definitions of
switch and DR-correctness naturally extend to parsing proof structure.

Definition 6 (o-grammar) The o-grammar is the graph grammar given by
the rewriting rules of Figure 4, with the proviso that an instance v of the l.h.s.
of a rule is a o-redezx (and then it can be contracted) only if the following two
stde-conditions hold:

(i) No border of a box splits v in two non-empty parts, that is, for any box
B, if TN B #0, then r C B.

(i) If v is a ® or cut redex (i.e., a redex for the rule scanning a ® or cut
link), then the two net links in v are distinct.

21 P10

PPt Xy Xy PPt Xy e Xy 1 Xqeeees X 1 Xqeeeees Xy

Fig. 4. The rules of the o-grammar.



Each rule of o contracts a redex to a net link (since we do not consider cut
elimination, there is no ambiguity in saying redex or reduction dropping the
prefix 0). In other words, net links play the role of non-terminal symbols
and each rule of o corresponds to the scanning of a MELLY link. Hence,
since a redex is uniquely determined by the MELL™ link it scans, a reduction
p = lply...lx will be denoted by the sequence of the links it scans.

The syntax category corresponding to net links composes of the MELL™ proof
structures ¢ = I which reduce to a parsing structure formed of a net link with
conclusions I' (let us denote such a structure by netr).

Definition 7 (o-correctness) A (parsing) MELL™Y proof structure 4 =T is
o-correct if 4 —% netr.

6 Equivalence of the correctness criteria

Lemma 8 Let & F T be a parsing MELL™ proof structure with no ! link. If
P is DR-correct and is not netr, then it contains at least a o-reder.

PROOF. Let us assume that & does not contain a redex scanning an axiom,
a’®, a e ora ?link. Namely, that &2 might only contain redexes for ® or
cut links. Our aim is to prove that, if &2 is DR-correct and is not netr, then
it contains at least a ® or a cut link whose premises are conclusions of two
distinct net links. We see that &7 does not contain any axiom link, and that
no ? link of & is below a conclusion of a net link. We claim that any net link of
2 has at least a conclusion which is the premise of a ® or a cut link (because
of the DR-correctness). Hence, let S be a switch of &. Let us consider the
set X of the ® and cut links a premise of which is conclusion of a net link
of S. Since & is DR-correct, there is no link 1 € X whose premises are both
conclusions of the same net link. Then, to prove that &2 contains a redex it
suffices to show that there exists 1 € X whose premises are both conclusions
of net links. Let us proceed by reductio ad absurdum, showing that if such
an L € X does not exist, then S contains a cycle. By the previous claim, for
any net link n there is a conclusion A s.t. the link 1 below it is in X. If B
is the other premise of 1, let ¢ be the maximal ascending path of S starting
from B (a sequence ApliAj...A; 1LiA;... of formulas A; and links 1; is an
ascending path when A; ; is the conclusion of l; and A; one of its premises).
By hypothesis ¢ is not empty and the path p = AlB¢d of S* connects a
conclusion of n to the conclusion of another net link. The last link of 1 is
not in X, since ¢ is maximal and we are assuming that there is no link of X
whose premises are both conclusions of a net link. So, starting from a net link
Ny, we find a path 1y connecting the conclusions Ay of ng to a conclusion Cy



of a net link ny; proceeding from n;, we find a path {7 that concatenated to
Vo gives the path Poni; connecting Ay to the conclusion C; of a net link
n, (the path is correct since the last link of )y and the first link of ¢ are
definitely distinct); and so on building a sequence of net links ng,nq,...,ny
crossed by the path ony...ny 11; connecting ny to ny. But, since S is finite,
we eventually find an 1 > 0 for which n; = ny, with j < i, that is, we get a
path of S* which is a cycle, contradicting the DR-correctness of &2. O

Theorem 9 (equivalence) A (parsing) MELL™ proof structure &7 is DR-
correct iff it is o-correct.

PROOF. By inspection of the rules of o, we see that the DR-correctness is
invariant under o-reduction. So, if & —% net, then &7 is DR-correct. Let us
prove the converse proceeding by induction on the number of boxes of Z.
The base case is proved by Lemma 8. For the induction case, let us take
the proof sub-structure %’ obtained by a proof box % removing its principal
door link. By repeated application of the induction hypothesis, we see that
P =L R —s £ —% net where Z' and Z are the parsing proof structures
obtained from &2 putting a net link in place of £’ and %, respectively. O

Corollary 10 (unique normal form) The o-grammar is strongly normal-
izing and netr is the unique normal form of any MELL™ proof net ¢ - T.

PROOF. Let 4 —, 2. We have that: (i) The size of & is smaller than the
one of ¢; (ii) & is DR-correct; (iii) &2 = T'. So, there is no infinite reduction
of 4 and, by Theorem 9, netr is the unique normal form of ¢ - T'. O

7 Adequacy and sequentialization

So far we have got a new correctness criterion for proof structures that we
have proved equivalent to the topological one of Danos-Regnier . On the other
hand our proof nets are not standard. So, we have to prove that they are
adequate for MELL™. Namely, that for any MELL™ proof TT with conclusions
=T (let us denote it TT  T') there is a corresponding MELL™Y proof net with
the same conclusions.

Theorem 11 (adequacy) Let TTHT be a MELL™ proof. There is a MELL™Y
proof net ¢ = T with a link for each inference rule of TI.



PROOF. By an easy induction on the construction of TT. Some care is re-
quired just in the treatment of the ! rule, because of the restriction that no
auxiliary door of a box can be conclusion of a contraction link. O

Theorem 12 (sequentialization) For any MELL™ proof net 4 =T there is
a MELL™ proof TI[nt] = T effectively constructed via 7 :9 —% netr.

PROOF. Let us start observing that, if mw: ¥ —% &, then for any 1 € P
there is: (7) a proof net A C ¢ with conclusions I s.t. ¢ is obtained replacing
each 1 € P"™* with the corresponding .A4{; (ii) a reduction m C 7 (i.e., 7t is
obtained by m erasing some of its redexes) s.t. m : .4 —% netr. The proofs
of such observations are by induction on the length of Tt = 1;...l¢ and by case
analysis on the type of ly. Hence, let us proceed by induction on the size of
¢. The base case is direct: ¢ composes of an axiom link only. For the other
cases, let m: ¥ —% % — netr. By the initial observations, we can associate
to each net link 1 € R"™ a o-correct proof sub-structure of ¢4 and then, by
the induction hypothesis, a MELL™ proof with the same conclusions. Hence,
replacing the net links in the redex R by their corresponding MELL™ proof,
and replacing the MELL link of R by an inference rule of the same type, we
get the MELL™™ proof TT[7t] we are looking for. The way in which TT[7] is built
shows that it contains an inference rule for each link of & and that the order in
which such rules are applied accords to the order in which the corresponding
links are scanned by . O

8 Conclusions

There is a natural two-way mapping between MELL™ and MELL proof struc-
tures according to the permutations described in Section 2 (because of such
permutations the previous mapping cannot however be a bijection). Given a
MELL™ proof structure ¢4 we obtain a Girard proof structure (4_)* by: (i)
choosing a weakening formula X which is conclusion of an axiom link a; (1)
replacing the connection of X to a with a box containing all the boxes having
X as an auxiliary door; (iii) iterating the steps (i-ii) until there are no more
X’s. Vice versa, given a Girard proof structure ¢ we obtain a MELL™ proof
structure (%)~ just replacing the link 1 above each weakening formula X of ¢
with a direct connection between X and an axiom a contained in the box of L.
Correctness is invariant under the previous translation from MELL™ to MELL
proof structures, but not under the mapping going in the opposite direction.
In fact, given a MELL proof net ¢, each proof structure ¢ is definitely cor-
rect, but 4~ may be correct also in the case that ¢ is a proof structure with
a wrong assignment of weakening boxes—even if all the ¢4~ are correct we
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could not state that ¢ is a proof net. To solve such a problem we could re-
formulate the o grammar for MELL giving for weakening boxes a rule similar
to the one proposed for the exponential boxes. Nevertheless, since we think
that weakening boxes are unnatural, we do not like such a solution and in our
approach we replace weakening boxes with the minimal information required
to get a correct sequentialization, if any. Lafont too implicitly shows in his
paper [Laf95] his dislike with respect to weakening boxes neglecting them at
all. The main consequence of this disregard is the increase of the cost of the
validation of nets. In fact, since in the constant only multiplicative fragment
(no atomic symbols but the constants) the provability problem can be reduced
to the proof structure correctness problem, and since such a fragment is NP-
complete as the multiplicative one [Lin95], if we do not use weakening boxes
at all there is no hope to get a polynomial parsing algorithm in the presence of
constants. The latter is the first main reason because of which we claim that
our solution is not only a technical escape. In fact, the cost of the validation
of a proof net cannot be comparable with the cost of the search of a proof
ending with its conclusions. So, we propose the o grammar giving a quadratic
algorithm to validate proof nets: any accepting reduction of a proof net with
n links has length n, but at each step a search linear in the current size of the
structure is required to get the next redex to be reduced. The second reason
because of which we support our choice is connected with the implementation
of cut elimination. In fact, the use of exponential boxes can be avoided in-
dexing each formula by a level (see [MM95]) which may be interpreted as the
box nesting depth of the formula [Gue96,GMM96a]. A parsing grammar can
then be given also for such leveled proof nets without boxes. Such a grammar,
suitably extended to implement a mark and sweep algorithm for garbage col-
lection, is the key point used for the local and distributed implementation of
the cut elimination we studied with Martini [GMM96b].
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