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We construct supergravity solutions describing a stack of D3-branes localized at a point on a blown-up

cycle of a resolved La;b;c cone. The geometry flows from AdS5 � La;b;c to AdS5 � S5=Zk. The

corresponding quiver gauge theory undergoes a renormalization group flow between two superconformal

fixed points, which leads to semi-infinite chains of flows between the various La;b;c fixed points. The

general system is described by a triplet of Heun equations, which can each be solved by an expansion with

a three-term recursion relation, though there are closed-form solutions for certain cases. This enables us to

read off the operators that acquire nonzero vacuum expectation values as the quiver gauge theory flows

away from a fixed point.
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I. INTRODUCTION

According to the AdS/CFT correspondence, type IIB
string theory on AdS5 � S5 is dual- to four-dimensional
N ¼ 4 UðNÞ superconformal Yang-Mills theory [1]. This
duality can be generalized to type IIB string theory on
AdS5 � X5 and N ¼ 1 superconformal quiver gauge
theories, where X5 is a smooth and compact Einstein-
Sasaki space. One route for obtaining explicit metrics for
such spaces consists of taking a scaling limit of Kerr–
de Sitter black holes [2] and then analytically continuing
to Euclidean signature. Following this procedure for a
black hole with two independent rotation parameters yields
the cohomogeneity-2 Einstein-Sasaki spaces La;b;c, which
are completely regular for appropriately chosen integers a,
b, and c [3,4]. This family of spaces encompasses the
cohomogeneity-1 Yp;q spaces [5,6], which arises when a ¼
p� q, b ¼ pþ q, and c ¼ p, as well as quotients of the
homogeneous spaces S5 and T1;1. The dual gauge theories
have been identified in [7] for T1;1, in [8,9] for Yp;q and in
[10–12] for La;b;c.

One can consider a more general field theory that has
one of these above superconformal fixed points for its UV
limit. According to the AdS/CFT dictionary, the radial
position in the supergravity background corresponds to
an energy scale of the field theory. This means that a
renormalization group (RG) flow, away from the UV fixed
point, is described by a supergravity background that has
nontrivial radial dependence. Thus, an important building
block for the relevant supergravity background is the six-
dimensional space that contains the radial direction.

A six-dimensional Calabi-Yau space can be constructed
simply by taking a cone over La;b;c. Although the La;b;c

spaces themselves are nonsingular, the cones over these
spaces have a power-law singularity at their apex. This is
not a problem for the purposes of constructing a super-
gravity description of a superconformal fixed point, since
adding a large number of D3-branes on the tip of the cone

actually results in the regular geometry AdS5 � La;b;c. The
description of a RG flow requires a six-dimensional space
with more complicated radial dependence. However, it is
unlikely that adding D3-branes will remove the singularity
in more complicated spaces, since this depended on the
exact cancellation of the radial dependence of the six-
dimensional space with that of the warp factor due to the
D3-branes. Thus, in order to obtain a well-behaved super-
gravity dual of a field theory undergoing a RG flow, one
can attempt to resolve the singularity in the six-
dimensional space before actually adding the D3-branes.
For the case of the cone over T1;1, the singularity can be

smoothed out in two ways [13], corresponding to complex
deformations and Kähler deformations. Complex deforma-
tions lead to the deformed conifold, which has a blown-up
3-cycle. Adding a large number of D3-branes that are
uniformly distributed, or ‘‘smeared,’’ over the blown-up
3-cycle at the tip of the deformed cone gives way to a
power-law curvature singularity. One way to avoid this
singularity is by adding 3-flux, which prevents the 3-cycle
from collapsing. The result is a completely well-behaved
supergravity background, which provides a geometrical
description of confinement in the IR region of the dual
gauge theory [14].
However, analogous constructions are not currently

known for any of the other La;b;c cones. Moreover, there
is an obstruction for the complex deformations of large
families of these spaces [15,16]. Thus, we will focus on
Kähler deformations. In general, this corresponds to giving
vacuum expectation values (VEV’s) to the bifundamental
fields, such that only baryonic operators get VEV’s (the
mesonic directions of the full moduli space correspond to
the motion of the D3-branes). The case of the resolved
conifold corresponds to a specific dimension-two operator
in the field theory acquiring a nonzero VEV [17].
Since the resolved conifold has a blown-up 2-cycle, one

has a choice of how the D3-branes are distributed over the
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2-cycle. The backreaction due to the D3-branes being
smeared over the blown-up 2-cycle leads to a power-la

w singularity at short distance [18], which is a common
property of continuous brane distributions. In order to
avoid a singularity, one must localize a stack of D3-branes
at a point (or multiple isolated points) on the blown-up 2-
cycle. Since the resolve conifold is completely regular,
locally it looks flat. Thus, the backreaction of a localized
stack of D3-branes produces an AdS5 � S5 throat. The
geometry then smoothly interpolates between AdS5 �
T1;1 at large distance and AdS5 � S5 at short distance.
This describes a RG flow from the SUðNÞ � SUðNÞ N ¼
1 theory in the UV to the SUðNÞ N ¼ 4 theory in the IR,
which has been confirmed from the behavior of the super-
potential. Also, the AdS/CFT dictionary relating normal-
izable supergravity modes with gauge theory VEV’s was
used to identify an infinite series of operators that acquire
nonzero VEV’s1 [22].

In this paper, we will generalize the construction of [22]
to cover all of the resolved cones over the La;b;c spaces.
The resolved La;b;c cones have Kähler moduli associated
with blown-up 2-cycles and 4-cycles. The construction for
a particular blown-up 4-cycle was given in [23,24]. In the
case of the La;b;c cones, this 4-cycle corresponds to the
Einstein-Kähler base space, whose metric can be obtained
by taking a certain scaling limit of a Euclideanized form of
the Plebanski-Demianski metric [25]. Resolved cones with
blown-up 4-cycles have been studied for the cases of
T1;1=Z2 [26,27], Yp;q [27–29], and La;b;c [29]. The more
general resolved La;b;c cones with two Kähler moduli were
constructed in [30,31].

The supergravity solution describing D3-branes uni-
formly smeared over the blown-up cycle was considered
in [32]. According to the AdS/CFT dictionary, the two
Kähler moduli correspond to the VEV’s of a dimension-
two and dimension-six operator in the field theory.
Although these backgrounds can be reliably used to de-
scribe perturbations around the UV superconformal fixed
point of the quiver gauge theories, there is a short-distance
power-law curvature singularity that is associated with the
fact that the D3-branes have been smeared.

In analogy with the construction of [22], we will con-
sider supergravity solutions which describe a stack of D3-
branes localized at a point on the blown-up cycle of a
resolved La;b;c cone, as shown in Fig. 1. Placing D3-branes
at a smooth point results in the throat geometryAdS5 � S5.
However, since a resolved La;b;c cone generally has an
orbifold-type singularity, placing the D3-branes on the
fixed point produces an AdS5 � S5=Zk throat, where k is
an integer. The dual field theories for string theory on these
orbifolds were first studied in [33]. The complete geometry

of the localized stack of D3-branes on the resolved La;b;c

cone flows from AdS5 � La;b;c to AdS5 � S5=Zk. This
provides a geometrical description of quiver gauge theories
that undergo a RG flow between two superconformal fixed
points. This result leads to chains of RG flows between
various La;b;c fixed points, including a chain of semi-
infinite length involving quotients of S5 and T1;1.
This paper is organized as follows. In Sec. II, we review

the metrics for the resolved cone over T1;1=Z2, as well as
those for the general resolved La;b;c cones. In Sec. III, we
consider a stack of D3-branes localized on a point within
the blown-up cycle of a resolved cone over T1;1=Z2, whose
resulting geometry is completely regular. We highlight a
few cases for which there are closed-form solutions. The
general system is described by a Heun equation, which can
be solved by a large-distance expansion with a three-term
recursion relation. This enables us to read off the VEV’s of
the operators in the dual field theory. We discuss the
behavior of the superpotential, which leads to the construc-
tion of a semi-infinite chain of RG flows. In Sec. IV, we
consider the general case of resolved cones over La;b;c

spaces. The D3-brane solution is now described by a triplet
of Heun equations. These equations can each be solved in
terms of an expansion with a three-term recursion relation,
which enables us to read off information on the VEV’s of
the quiver gauge theory operators. The geometry goes from
AdS5 � La;b;c down to AdS5 � S5=Zk. We discuss the
superpotential, as well as various chains of RG flows.
Lastly, conclusions are presented in Sec. V.

II. RESOLVED CALABI-YAU CONES

A. Resolved cone over T1;1 or T1;1=Z2

As the first example, we will consider the resolved cone
over T1;1 or T1;1=Z2. The corresponding metric can be
expressed as [26]

ds26 ¼ ��1ðrÞdr2 þ 1
9�ðrÞr2ðd þ cos�1d�1

þ cos�2d�2Þ2 þ 1
6r

2ðd�21 þ sin2�1d�
2
1Þ

þ 1
6ðr2 þ 6a2Þðd�22 þ sin2�2d�

2
2Þ; (2.1)

Smeared D3-branes Localized D3-branes

(a) (b)

FIG. 1 (color online). A stack of D3-branes (red) on a resolved
La;b;c cone. (a) Smearing the D3-branes over the blown-up cycle
results in a singular geometry. (b) Localizing the D3-branes at a
point on the blown-up cycle results in a well-behaved geometry.

1In the case of AdS5 � S5, the size of the supergravity pertur-
bations have been matched with the normalizations of the VEV’s
in the corresponding N ¼ 4 theory [19–21]. The precise nor-
malization factors are not calculated in the present paper.
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where

�ðrÞ ¼ r2 þ 9a2 � b6=r4

r2 þ 6a2
: (2.2)

This metric describes a complexline bundle over S2 � S2.
Since the coordinate  has a period of 2�, the principal
orbit is T1;1=Z2 instead of the T

1;1 of the resolved conifold.
For nonvanishing b, the geometry smoothly runs from
R2 � S2 � S2 at small distance to a cone over T1;1=Z2 at
large distance. However, if b vanishes, but a is nonvanish-
ing, then the geometry smoothly goes to R4 � S2 at short
distance, which is the topology of the manifold. Although
the metric reduces to that of the resolved conifold in the
limit of vanishing b, the principal orbit is still T1;1=Z2

instead of the T1;1 space of the resolved conifold. That is,
in order to recover the resolved cone over T1;1, we must
take the period of  to be 4�.
a and b parameterize two types of Kähler deformations,

which correspond to blowing up a 2-cycle and 4-cycle,
respectively. The a deformation is global since it changes
the position of branes at infinity. On the other hand, the b
deformation is local since the position of branes at infinity
is unaffected [27].

B. Resolved La;b;c cones

We now turn to the resolved cones over the
cohomogeneity-two La;b;c spaces. The number of a-type
global deformations is given by the number of external legs
in the (p, q) web (which is 4 for all of the La;b;c spaces)
minus 3 [27]. Thus, there is a single global deformation,
which corresponds to blowing up a 2-cycle. On the other
hand, the number of b-type local deformations is given by
the number of internal points in the toric diagram, which is
ðaþ b� 2Þ=2. These latter deformations correspond to
blowing up various 4-cycles.

At present, the metric is known only for the global
deformation and one particular local deformation. This
metric can be obtained from the Euclideanization of the
BPS limit of the six-dimensional Kerr-NUT-AdS solutions
[30,31]. This is the even-dimensional analog of the relation
between the Einstein-Sasaki spaces constructed in [34] and
odd-dimensional BPS Kerr-NUT-AdS solutions. The met-
ric for the resolved La;b;c cone is given by [31]

ds2 ¼ 1

4
ðu2dx2 þ v2dy2 þ w2dz2Þ þ 1

u2
ðd�þ ðyþ zÞd�

þ yzd Þ2 þ 1

v2
ðd�þ ðxþ zÞd�þ xzd Þ2

þ 1

w2
ðd�þ ðxþ yÞd�þ xyd Þ2; (2.3)

where the functions u, v, w are given by

u2 ¼ ðy� xÞðz� xÞ
X

; v2 ¼ ðx� yÞðz� yÞ
Y

;

w2 ¼ ðx� zÞðy� zÞ
Z

;

X ¼ xð�� xÞð�� xÞ � 2M;

Y ¼ yð�� yÞð�� yÞ � 2L1;

Z ¼ zð�� zÞð�� zÞ � 2L2:

(2.4)

Notice that the coordinates x, y, and z appear in the metric
on a symmetrical footing.We shall choose x to be the radial
direction with the range �1< x � x0, where XðxiÞ ¼ 0
and x0 < x1 < x2. y and z are nonazimuthal coordinates on
the La;b;c level sets such that y1 � y � y2 and z1 � z � z2,
where YðyiÞ ¼ ZðziÞ ¼ 0.
One must generally take a specific quotient of La;b;c in

order to avoid a conical singularity in the resolved cone
[27]. However, an orbifold-type singularity is generally
unavoidable. In the limit of a collapsing 2-cycle, this can
be seen simply, because at short distance the geometry
becomes a direct product of R2 and the four-dimensional
Einstein-Kähler base space of La;b;c, which is itself an
orbifold. Since this is a mild type of singularity on which
perturbative string dynamics is well defined, we refer to
these spaces as ‘‘resolved’’ cones.
Other than the cohomogeneity-one resolved cones over

T1;1 and T1;1=Z2, the only other example that is completely
regular is the resolved cone over Y2;1 [35,36]. Since the
resolved cone over Y2;1 is cohomogeneity two, Zmust have
a double root. This means that z1 ¼ z2 ¼ 1=3 and L2 ¼
2=27. In order for this space to be completely regular, we
must take

� ¼ � ¼ 1; M ¼ � 1
54ð133þ 37

ffiffiffiffiffiffi
13

p Þ;
L1 ¼ 1

432ð16þ
ffiffiffiffiffiffi
13

p Þ; x0 ¼ �1
3ð1þ

ffiffiffiffiffiffi
13

p Þ;
y1 ¼ 1

12ð5�
ffiffiffiffiffiffi
13

p Þ; y2 ¼ 1
12ð11�

ffiffiffiffiffiffi
13

p Þ:
(2.5)

It has been shown that the eigenvalue equation of the
scalar Laplacian on Yp;q reduces to the Heun equation after
the separation of variables [37]. The exponents at regular
singularities are directly related to the toric data. In the
case of the cone over La;b;c, two Heun equations are gen-
erally involved [38]. As we will see, the scalar Laplacian
on resolved La;b;c cones yields a triplet of Heun equations.

III. D3-BRANES ON THE RESOLVED CONE OVER
T1;1=Z2

A. General D3-brane solution

A supersymmetric D3-brane solution of type IIB theory
is given by

ds210 ¼ H�1=2ð�dt2 þ dx21 þ dx22 þ dx23Þ þH1=2ds26;

Fð5Þ ¼ ð1þ �Þdt ^ dx1 ^ dx2 ^ dx3 ^ dH�1; (3.1)
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where H is a solution of the Green’s equation on the
Calabi-Yau transverse space with the metric ds26. We shall

first take the metric ds26 to be that of the resolved cone over
T1;1=Z2, given by (2.1) and (2.2). As in [22], the solution of
the Green’s equation on the resolved cone over T1;1=Z2 can
be expanded in terms of the eigenfunctions YIðZÞ of the
angular Laplacian on T1;1 and radial functions HIðr; r0Þ as

H ¼ X
I

HIðr; r0ÞYIðZÞY�
I ðZ0Þ; (3.2)

where I specifies a set of symmetry charges. The resulting
radial equation is given by

� C

r3ðr2 þ 6a2Þ�ðr� r0Þ

¼ 1

r3ðr2 þ 6a2Þ
@

@r

�
r3ðr2 þ 6a2Þ�ðrÞ @

@r
H‘1‘2

�

�
�
6‘1ð‘1 þ 1Þ � 3R2=2

r2
þ 6‘2ð‘2 þ 1Þ � 3R2=2

r2 þ 6a2

þ 9R2

4�ðrÞr2
�
H‘1‘2 ; (3.3)

where C ¼ ð2�Þ4gsNð�0Þ2.
We have chosen to place the stack of D3-branes at the

radial position r ¼ r0, where r0 is the largest root of �.
Since the manifold is smooth everywhere and looks locally
flat, the backreaction of the stack of D3-branes leads to an
AdS5 � S5 or AdS� S5=Z2 throat, depending on whether
or not the b deformation parameter vanishes. Thus, as has
been shown in [22] for the case of vanishing b,H ! L4=r4

close to the stack of D3-branes, where L4 ¼ 27�gsNð�0Þ2
4 . We

have followed [22] in setting L ¼ 1 for convenience,
which leads to C ¼ 64

27�
3.

Thus, the function H must be a singlet under the Uð1Þ
that rotates  , since this has shrunk at r ¼ r0, and we can
set R ¼ 0 in (3.3). This equation can now be expressed as

@xðxðx� xþÞðx� x�Þ@xHÞ �
�
3

2
‘1ð‘1 þ 1Þðxþ c22Þ

þ 3

2
‘2ð‘2 þ 1Þðxþ c21Þ

�
H ¼ �C

4
�ðx� x0Þ; (3.4)

where

r2 ¼ xþ c21; 6a2 ¼ c22 � c21;

2b6 ¼ c41ð3c22 � c21Þ:
(3.5)

and

x� ¼ � 3

2
ðc21 þ c22Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðc21 � 3c22Þð3c21 � c22Þ

q
: (3.6)

For x � x0, where x ¼ x0 corresponds to r ¼ r0, this
equation has four regular singular points 0, x�, xþ, and
1. Taking z � x=xþ, z0 � x0=xþ, and u � x�=xþ enables
us to express this equation in the canonical form of Heun’s
equation

@2zH þ
�
1

z
þ 1

z� 1
þ 1

z� u

�
@zH � f=xþ þ ðg� 1Þz

zðz� 1Þðz� uÞ H

¼ � C�ðz� z0Þ
4zðz� 1Þðz� uÞ ; (3.7)

where

f � 3
2‘1ð‘1 þ 1Þc22 þ 3

2‘2ð‘2 þ 1Þc21;
g � 3

2‘1ð‘1 þ 1Þ þ 3
2‘2ð‘2 þ 1Þ þ 1;

(3.8)

and the radial position z ¼ z0 corresponds to the location
of the stack of D3-branes. The singular points have been
mapped to 0, 1, u,1. No general integral representation is
known for the Heun equation. However, as we will now
see, there are a few cases for which there are closed-form
solutions.

B. Closed-form solutions

1. Vanishing b

We will first review the case of vanishing b, which has
already been considered in [22]. This is equivalent to
taking c1 ¼ 0, so that xþ ¼ 0 and x� ¼ �3c21. Then
(3.4) becomes the confluent Heun equation with regular
singularities at x ¼ x� and 1 and an irregular singularity
of rank 1 at x ¼ 0.
In this case, for x0 ! 0, H must also be a singlet under

the SUð2Þ that rotates ð�1; �1Þ, and one can then set ‘1 ¼ 0
as well. Then the exact solution is given by

H‘10ðrÞ ¼
A�

r2þ2� 2F1

�
�; 1þ �; 1þ 2�;� 9a2

r2

�

þ B�2F1

�
1� �; 1þ �; 2;� r2

9a2

�
; (3.9)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3=2Þ‘1ð‘1 þ 1Þp

.
In order to find the solution with the �ðr� r0Þ function,

we need to match two solutions at r ¼ r0 and then take the
limit r0 ! 0. We will denote the solution for r > r0 as
Hþ
‘1‘2

with coefficients Aþ
� and Bþ

� , and for r < r0 we write

H�
‘1‘2

with A�
� and B�

� . In order for Hþ
‘1‘2

not to diverge at

large distance, we must set Bþ
� ¼ 0. Then at large distance,

Hþ
‘1‘2

� 1=r2þ2�. As r! 0, Hþ
‘1‘2

� 1=r2.

A�
� can be determined in terms of Aþ

� by matching the

two solutions at r ¼ r0, though we will not need this for
our purposes. We can determine Aþ

� from the condition on

the derivatives of the solutions from integrating past r0.
This condition is given by

r50

�
1� b6

r60

�
ð@rHþ

‘1‘2
� @rH

�
‘1‘2

Þjr¼r0 ¼ �C: (3.10)

One might worry that Aþ
� vanishes or diverges for certain

values of ‘1 and ‘2. We have checked that this does not
happen for ‘1, ‘2 � 1000. After taking the limit r0 ! 0,
we find simply that H‘1‘2ðrÞ ¼ Hþ

‘1‘2
ðrÞ.
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The full solution must go as H� 1=r4 as r! 0 in order
to reproduce theAdS5 � S5 throat close to the stack of D3-
branes, which results from having localized the D3-branes
at a smooth point on the six-dimensional transverse space.
This has been shown to indeed be the case in [22].

2. Vanishing a

Another case for which an exact solution can be found in
closed form is when a vanishes, though no confluence
occurs. The analysis follows along the same lines as in
[22]. The solution of (3.3) is given by (the real part of)

H‘1‘2 ¼ A�2F1

�
1

3
ð1� �Þ; 1

3
ð1þ �Þ; 2

3
;
r6

b6

�

þ B�2F1

�
1

3
ð2� �Þ; 2

3
ð2þ �Þ; 4

3
;
r6

b6

�
; (3.11)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
‘1ð‘1 þ 1Þ þ 3

2
‘2ð‘2 þ 1Þ

s
: (3.12)

As in the previous case, we need to match the solutions
Hþ
‘1‘2

and H�
‘1‘2

across the � function at r ¼ r0. However,

this time we will take the limit r0 ! b. In order for Hþ
‘1‘2

not to diverge at large distance, we must set

Bþ
� ¼ �ð2=3Þ½�ð2þ�3 Þ�2

�ð4=3Þ½�ð1þ�3 Þ�2b2 A
þ
� : (3.13)

Then at large distance, Hþ
‘1‘2

� 1=r2þ2�. As r! b,

Hþ
‘1‘2

� logðr� bÞ. Although the individual modes have

this behavior, the full solution must go asH � 1=r4 as r!
b, in order to reproduce the local geometry AdS5 � S5

throat close to the stack of D3-branes. In order for H�
‘1‘2

�
1 as r! b we set

B�
� ¼ � �ð2=3Þ�ð2��3 Þ�ð2þ�3 Þ

�ð4=3Þ�ð1��3 Þ�ð1þ�3 Þb2 A
�
� : (3.14)

A�
� can be determined in terms of Aþ

� by matching the two

solutions at r ¼ r0. We can determine Aþ
� from the condi-

tion on the derivatives of the solutions from integrating
past r0. This condition is given by

r50

�
1� b6

r60

�
ð@rHþ

‘1‘2
� @rH

�
‘1‘2

Þjr¼r0 ¼ �C: (3.15)

We finally take the limit r0 ! b to find that

Aþ
� ¼ 16�3

81b4
�ð1��3 Þ�ð1þ�3 Þ

�ð2=3Þ
�
1� 1ffiffiffi

3
p tan½��=3�

�
: (3.16)

One might worry that Aþ
� vanishes or diverges for certain

values of ‘1 and ‘2. We have checked that this does not
happen for ‘1, ‘2 � 1000. After taking the limit r0 ! b,
we find simply that H‘1‘2ðrÞ ¼ Hþ

‘1‘2
ðrÞ.

3. b6 ¼ 108a6

The third case for which a closed-form solution can be
found is when b6 ¼ 108a6, which is equivalent to taking
c22 ¼ 3c21. The analysis proceeds analogously to the first
two cases. Then (3.4) can be expressed as

@yðy2ðy� 6c21Þ@yHÞ �
�
3

2
‘1ð‘1 þ 1Þðy� 3c21Þ

þ 3

2
‘2ð‘2 þ 1Þðy� 5c21Þ

�
H ¼ �C

4
�ðy� 6c21 � y0Þ;

(3.17)

where we have used the shifted coordinate y ¼ xþ 6c21.
The above equation can be mapped to a confluent Heun
equation with regular singularities at y ¼ 6c21 and1 and an
irregular singularity of rank 1 at y ¼ 0. The solution is
given by

H‘1‘2 ¼
A‘1;‘2
yð1þ�2Þ=2 2F1

�
1

2
ð1��2 � 2�1Þ;12 ð1��2 þ 2�1Þ;

1��2;
y

6c21

�
þ B‘1;‘2
yð1��2Þ=2 2F1

�
1

2
ð1þ�2 � 2�1Þ;

1

2
ð1þ�2 þ 2�1Þ;1þ�2;

y

6c21

�
; (3.18)

where

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
‘1ð‘1 þ 1Þ þ 3

2
‘2ð‘2 þ 1Þ

s
;

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3‘1ð‘1 þ 1Þ þ 5‘2ð‘2 þ 1Þ

q
:

(3.19)

We need to match two solutions at y ¼ y0, which corre-
sponds to the radial position r ¼ r0 of the stack of D3-
branes. We will denote the solution for y > y0 asH

þ
‘1‘2

, and

for y < y0 we write H
�
‘1‘2

. In order for Hþ
‘1‘2

not to diverge

at large distance, we must set

Bþ
‘1;‘2

¼� �ð1��2Þ½�ð12 ð1þ 2�1þ�2ÞÞ�2
ð�6c21Þ�2�ð1þ�2Þ½�ð12 ð1þ 2�1��2ÞÞ�2

Aþ
‘1;‘2

:

(3.20)

Then at large distance, Hþ
‘1‘2

� 1=y1þ�1 . As y! 6c21,

Hþ
‘1‘2

� logðy� 6c21Þ.
In order for H�

‘1‘2
� 1 as y! 6c21 we set

B�
‘1;‘2

¼ � �ð1� �2Þ�ð12 ð1þ 2�1 þ �2ÞÞ�ð12 ð1� 2�1 þ �2ÞÞ
ð6c21Þ�2�ð1þ �2Þ�ð12 ð1� 2�1 � �2ÞÞ�ð12 ð1þ 2�1 � �2ÞÞ

A�
‘1;‘2

: (3.21)
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A�
‘1:‘2

can be determined in terms of Aþ
‘1;‘2

by matching the two solutions. We can determine Aþ
‘1;‘2

from the condition on

the derivatives of the solutions from integrating past y0,

Aþ
� ¼ 16ð6c21Þð�2�3Þ=2�3�ð12 ð1þ 2�1 � �2ÞÞ�ð12 ð1� 2�1 � �2ÞÞ

27�ð1� �2Þð1� ð�1Þ�2 cos½�ð�1 � �2=2Þ� sec½�ð�1 þ �2=2Þ�Þ
; (3.22)

where we have taken the limit y0 ! 0.

C. General asymptotic expansion

Other than the previously-mentioned cases for which
there are closed-form solutions, in order to solve the
Heun equation, one must resort to an expansion around
one of the singular points. We will expand around the
asymptotic region, since we will be interested in reading
off information regarding the dual field theory operators, as
the theory flows from the UV conformal fixed point. Note
that this is a general asymptotic expansion that is not
crucially dependent on the matching of the solutions at r ¼
r0.

From studying (3.7), we see that we are interested in the

solution that goes as H‘1‘2 ! z�ð1þ ffiffi
g

p Þ as z! 1. The

large-distance expansion that has this property is

H‘1‘2 ¼
1

z1þ
ffiffi
g

p
X1
n¼0

an
zn
; (3.23)

where

a0 ¼ 1; a1 ¼
f=xþ þ ð1þ uÞ ffiffiffi

g
p ð1þ ffiffiffi

g
p Þ

1þ 2
ffiffiffi
g

p ; (3.24)

and the coefficients an with n 	 2 can be obtained from the
three-term recursion relation

Ananþ2 þ Bnanþ1 þ Cnan ¼ 0; (3.25)

where

An ¼ ðnþ 2Þðnþ 2þ 2
ffiffiffi
g

p Þxþ;
Bn ¼ �½fþ ðnðnþ 3Þ þ 2þ g

þ ð2nþ 3Þ ffiffiffi
g

p Þð1þ uÞxþ�;
Cn ¼ ½nðnþ 2Þ þ gþ 2ðnþ 1Þ ffiffiffi

g
p �u:

(3.26)

D. Field theory operators

The dimensions of the operators being turned on in the
dual gauge theory can be read off from the asymptotic
expansion of H. Since the corresponding supergravity
modes are supersymmetric, these operators have protected
dimensions. These dimensions can be read off from the
asymptotic expansion of H relative to the leading 1=z2

term. There are two basic operators that get VEV’s due
to the asymptotics of the unwarped resolved cone over
T1;1=Z2. First, the dimension-two scalar operator

U ¼ A� �A� � B _�
�B _� þ C� �C� �D _�

�D _� (3.27)

gets a VEVof a1, where A�, B _�, C�, and D _� are bifunda-
mental fields [27]. Secondly, there is a dimension-six
operator that gets a VEV given by a3. Although the specific
operator has not actually been identified, it has been pro-
posed that it has the schematic form [27]

V ¼ X2
m¼1

cmWm
�Wm; (3.28)

whereW m is an operator associated with the field strength
for the gauge group, m and cm are constants. There may
also be contributions from the bifundamental fields of the
form

A� �A�B _�
�B _�C� �C�; (3.29)

and permutations thereof that involve D _�.
2 The VEV’s for

U andV are independent of where the stack of D3-branes
are located on S2 � S2.
There are also VEV’s given to an infinite series of

operators OI that are associated with the higher ‘1 and
‘2 modes. These operators have dimensions 2

ffiffiffi
g

p � 2 and

get VEV’s of the form hOIi / Y�
I ðZ0Þ. The subleading

terms in the asymptotic expansion of H describe series of
operators with the same symmetry I but with dimensions
2ð ffiffiffi

g
p � 1Þ þ 2n. This might correspond to giving VEV’s

to operators TrOIUn and TrOIV n.

E. Semi-infinite chains of RG flows

We will now consider the behavior of the superpotential
along the RG flow, which has already been analyzed in
[27]. The N ¼ 1 SUðNÞ4 superconformal fixed point in
the UV limit can be constructed by orbifolding the conifold
field theory. There are eight chiral fields A�, B _�, C�, and

D _�, where each of the indices can take on the values 1 and

2. This leads to the superpotential

W ¼ 	TrðA�B _�C�D _�Þ
��
 _� _�: (3.30)

From the point of view of the quiver gauge theory, the a
and b deformations both correspond to turning on Fayet-
Iliopoulos parameters.
Wewill first consider the case in which there is only an a

deformation. Then at energies below the scale set by a,
some fields are eaten by the Higgs mechanism. In particu-

2We thank Sergio Benvenuti for correspondence on this point.
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lar, placing the stack of D3-branes at a point on the blown-
upP1 corresponds to the fields A1 andC1 getting a nonzero
VEV, which we will call v1. Thus, the IR quiver has only
six chiral fields. This includes A2 and C2, which transform
as fields in the adjoint representation, and the remaining
four fields, which transform as bifundamentals. The super-
potential then reduces to

W ¼ v1	TrðA2B _�D _� � B _�C2D _�Þ
 _� _�: (3.31)

Notice that all of the superpotential terms are cubic and, in
particular, no massive terms have been generated. This is
precisely the matter content and superpotential of the
N ¼ 2 field theory with gauge group SUðNÞ � SUðNÞ,
which is associated with S5=Z2 [33].

If instead there is a b deformation, then the field B1 gets
a VEV v2, along with the above VEV’s for A1 and C1. This
means that for energies below the scale set by b, the field
theory is Higgsed to an SUðNÞ field theory with five
adjoints. As has been discussed in more detail in [27],
massive terms that arise in the superpotential can be inte-
grated out to yield the superpotential for theN ¼ 4 super-
symmetric Yang-Mills. If both the a and b deformations
are turned on, then the theory resembles the aboveN ¼ 2
field theory for the intermediate energy range b < E< a,
and flows to N ¼ 4 in the infrared limit.

It has already been shown that the T1;1 fixed point arises
from a RG flow of a relevant deformation of the N ¼ 2
S5=Z2 fixed point [7]. Also, the supergravity background
describing a RG flow between the T1;1 and S5 fixed points
was constructed in [22]. Orbifolding these flows gives a
flow between the S5=Z4 and T

1;1=Z2 fixed points and a flow
between the T1;1=Z2 and S5=Z2 fixed points, which we
have just discussed. These RG flows form a chain, as
shown in Fig. 2. In fact, this is a semi-infinite chain, since
we can keep adding links above by orbifolding the theory.
One can obtain additional flow chains simply by orbifold-
ing the present chain.

Let us consider the different types of deformations of
fixed points. A given T1;1=Z2k fixed point has a single a
deformation, which leads to a RG flow down to S5=Z2k.
Thus, one can flow down the chain by consecutive fixed
points, as the arrows illustrate in Fig. 2. In addition, each
T1;1=Z2k fixed point has 2k� 1 b-type deformations,
which lead to flows that bypass some fixed points entirely.
For instance, while the a deformation causes the T1;1=Z2

fixed point to flow down to the S5=Z2 fixed point, turning
on the b deformation leads to a flow directly to the S5 fixed
point. The multiple b deformations for larger values of k
lead to a fairly complex pattern of possible flows. While
fixed points can be bypassed, there can be intermediate
energy scales for which the theory resembles these missed
fixed points.

The ordering of fixed points in the flow chain is consis-
tent with an a theorem, since the corresponding central
charges obey the relation

aðS5Þ< aðT1;1Þ< aðS5=Z2Þ< aðT1;1=Z2Þ< 
 
 
 : (3.32)

This can easily be seen from the volumes of the spaces,
which are inversely related to the central charges. In par-
ticular, orbifolding decreases the volume of a space,
thereby increasing the corresponding central charge. On
the other hand, the S5 central charge is less than that of any
spaces considered in this paper, including all of the La;b;c

spaces. Thus, a continuation of the chain of RG flows
below S5 would necessarily involve a different family of
spaces.

IV. D3-BRANES ON RESOLVED La;b;c CONES

A. General D3-brane solution

We shall take the six-dimensional metric ds26 of the

transverse space to be the resolved cone over La;b;c, given
by (2.3) and (2.4). It was shown in [39–41] that the Klein-
Gordon equation for the general AdS-Kerr-NUT solutions
constructed in [31] is separable. Since our metrics arise as
the Euclideanization of the supersymmetric limit of AdS-
Kerr-NUT solutions, the corresponding equation for H is
hence also separable. To see this, we consider the ansatz

Hgh ¼ ReH1ðxÞH2ðyÞH3ðzÞe2iða0 �a1�þa2�Þ; (4.1)

where the meaning of g and h will be made clear momen-
tarily. Note that this ansatz breaks the Uð1Þ3 global sym-
metry for nonvanishing ai.
The Laplace equation away from the stack of D3-branes

is then given by

S5

T 1,1

S5/ Z2

S5/ Z4

T 1,1/ Z2

a deformation

b deformation

FIG. 2 (color online). A semi-infinite chain of RG flows.
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0 ¼ 1

ðy� xÞðz� xÞ
�ðXH0

1Þ0
H1

� ða0 þ a1xþ a2x
2Þ2

X

�

þ 1

ðx� yÞðz� yÞ
�ðYH0

2Þ0
H2

� ða0 þ a1yþ a2y
2Þ2

Y

�

þ 1

ðx� zÞðy� zÞ
�ðZH0

3Þ0
H3

� ða0 þ a1zþ a2z
2Þ2

Z

�
;

(4.2)

where X, Y, and Z are defined in (2.4), and a prime denotes
a derivative with respect to the separated variable associ-
ated with the function Hi. This equation can be expressed
as three separate equations in x, y, and z

ðXH0
1Þ0 �

�ða0 þ a1xþ a2x
2Þ2

X
þ hþ ðg� 1Þx

�
H1 ¼ 0;

ðYH0
2Þ0 �

�ða0 þ a1yþ a2y
2Þ2

Y
þ hþ ðg� 1Þy

�
H2 ¼ 0;

ðZH0
3Þ0 �

�ða0 þ a1zþ a2z
2Þ2

Z
þ hþ ðg� 1Þz

�
H3 ¼ 0;

(4.3)

where g and h are separation constants. Then the full
solution forH is given byH ¼ P

g;hHgh. This is analogous

with expanding H in terms of ‘1 and ‘2 in the last section.
For certain cases, one or more of the equations in (4.3)

can be solved in closed form. For example, for the Yp;q

subset of La;b;c, one of the equations for the angular
directions can be solved in terms of hypergeometric func-
tions. Moreover, if � ¼ � ¼ 0 or M ¼ 0, then the radial
equation can also be solved in terms of hypergeometric
functions. However, only for T1;1 and T1;1=Z2 are there
parameter specifications for which all of the equations can
be solved in closed form.

We will place a stack of D3-branes at x ¼ x0, y ¼ y1,
and z ¼ z1, where X ¼ Y ¼ Z ¼ 0. Then the Uð1Þ3 sym-
metry is preserved, and only harmonics with a0 ¼ a1 ¼
a2 ¼ 0 contribute to the warp factor H. Then, the equation
in (4.3) can be written in the canonical form of the Heun
equation as3

@2~xH1 þ
�
1

~x
þ 1

~x� 1
þ 1

~x� u

�
@~xH1

� h=xþ þ ðg� 1Þ~x
~xð~x� 1Þð~x� uÞ H1

¼ 0; (4.4)

where

~x ¼ x� x0
x1 � x0

; u ¼ x0 � x2
x0 � x1

;

f ¼ hþ ðg� 1Þx0; xþ ¼ x1 � x0:

(4.5)

Recall that x0, x1, and x2 are the roots of X such that x0 <
x1 < x2. The other two equations in (4.3) can also be
written in the canonical form of the Heun equation via
analogous transformations of the y and z coordinates.
The normalizable solution has the large-distance expan-

sion

Hgh ¼ 1

~x1þ
ffiffi
g

p
X1
n¼0

an
~xn
; (4.6)

where the coefficients a1 and a2 are given by (3.24), and an
with n 	 2 obey the three-term recursion relation given by
(3.25) and (3.26), where the parameters f, g, xþ, and u are
different than in the previous section. Note that the partic-
ulars due to the matching of solutions at x ¼ x0 are not
critical for the general analysis of this asymptotic
expansion.
An especially interesting case is that of the resolved

cone over Y2;1, since the geometry is completely regular.
The parameters given by (2.5) can be substituted into the
general large-distance expansion for H in order to analyze
this case more explicitly.

B. Field theory operators

As usual, the dimensions of the operators being turned
on in the dual gauge theory can be read off from the
asymptotic expansion of H. There are two basic operators
that get VEV’s due to the asymptotics of the unwarped
resolved cone over La;b;c. First, the dimension-two scalar
operator

K ¼ aA� �A� � cB _�
�B _� þ bC� �C� � dD _�

�D _�; (4.7)

gets a VEV of a1, where d ¼ aþ b� c. As before, A�,
B _�, C�, and D _� are bifundamental fields. Note that this
reduces to the case of the resolved cone over T1;1=Z2 for
a ¼ b ¼ c ¼ d ¼ 1.
Second, there is a dimension-six operator that gets a

VEV given by a3. As in the case of the resolved cone over
T1;1=Z2, it has been proposed that this operator has the
schematic form of (3.28), where now there are aþ bgauge
groups. There are also possible contributions from the
bifundamental fields of the form (3.29). The VEV’s for
U andV are independent of where the stack of D3-branes
are located on the four-dimensional Einstein-Kahler base
space of La;b;c.
There are also VEV’s given to an infinite series of

operators OI that are associated with the higher harmonic
modes. These operators have dimensions 2

ffiffiffi
g

p � 2. The
subleading terms in the asymptotic expansion of H de-
scribe series of operators with the same symmetry I but

3These equations can also be expressed in the Heun form for
nonvanishing ai, as has been shown in [38] for the singular cones
over La;b;c.
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with dimensions 2ð ffiffiffi
g

p � 1Þ þ 2n, which might correspond

to giving VEV’s to operators TrOIUn and TrOIV n.

C. Chains of RG flows

We will now consider the behavior of the superpotential
along the RG flow. The La;b;c field theories have aþ 3b
chiral fields, which come in six different types: bY, ðaþ
b� cÞU1, cU2, aZ, ðc� aÞV1, and ðb� cÞV2 fields. A
superpotential can be built out of these fields, which has
the following schematic form [11]:

W ¼ 2ðaTrðYU1ZU2Þ þ ðb� cÞTrðYU1V1Þ
þ ðc� aÞTrðYU2V2ÞÞ: (4.8)

Notice that there are 2a quartic terms and 2ðb� aÞ cubic
terms.

The La;b;c fixed point in the UV region can be Higgsed to
an IR fixed point corresponding to S5=Zk by turning on
nonzero VEV’s for some of these chiral fields. The value of
the integer k is determined by the initial La;b;c as well as
which fields are given VEV’s. We have a supergravity
description for the single global deformation as well as
one particular local deformation, though in general, there
are ðaþ b� 2Þ=2 local deformations.

The global deformation corresponds to a blown-up 2-
cycle. Placing the stack of D3-branes at a point on the
blown-up cycle corresponds to giving VEV’s to all of the Z
singlet fields. The Ui and Vi fields combine into bSUð2Þ
doublets, which we will call W, and there are still bY
singlets. The superpotential then has the form

W ¼ 2bTrðWWYÞ: (4.9)

This superpotential and matter content matches that of the
S5=Zb fixed point. Turning on various local deformations
as well would cause additional fields to acquire nonzero
VEV’s, thereby generating mass terms in the superpoten-
tial. Integrating out these mass terms leads to a super-
potential that corresponds to an S5=Zk fixed point, where
k < b. On the other hand, giving VEV’s to only some of the
Z singlets would cause the theory to flow down to an S5=Zk
fixed point with k > b. We will provide some examples of
this momentarily.

First, we will express the chain of RG flows in Fig. 2 in
terms of the La;b;c spaces. These involve spaces that are
quotients of either S5 or T1;1. Thus, they correspond to
La;b;c for which a, b, and c are not relatively coprime
integers. Specifically, S5=Z2k is the same as L0;2k;k, and
T1;1=Zk is the same as Lk;k;k. Fig. 3 includes the semi-
infinite chain of Fig. 2, rewritten in the language of La;b;c

spaces.
There are a large number of La;b;c fixed points that flow

down to this chain via various deformations. We include
just a sample of these La;b;c fixed points, for which we turn
on the global deformation corresponding to giving VEV’s
to all of the Z singlets. Once a given theory flows onto this
chain, deformations of the subsequent fixed points lead to

flows all the way down to the maximally supersymmetric
S5 theory. As in the previous section, it can be shown that
the ordering of these fixed points is consistent with an a
theorem.
Although the S5=Zk spaces with odd k are not part of the

Yp;q family, they are a subset of the La;b;c spaces. In
particular, L0;nk;k corresponds to S5=Zk, which can be
integrated into flow chains. A simple example is the
L1;3;2 fixed point, which flows down to the S5=Z3 theory
[42].
Since a given fixed point generally has a number of

different deformations, it can thus be connected to multiple
flow chains. As an example of this, we consider the L2;6;4

fixed point, for which there are two Z-type fields. If a VEV
is given to just one of the Z fields, then the RG flow goes to

S5

L4,4,4

L0,4,2

L2,4,3

L0,8,4

L8,8,8L2,8,5 L4,8,6

L1,4,3

L3,8,5 L6,8,7L5,8,7

FIG. 3 (color online). Chain of RG flows due to global defor-
mations of La;b;c fixed points.

L0,3,1

L3,3,3

L0,6,3

L6,6,6 L2,6,4

L0,7,1

L7,7,7

FIG. 4 (color online). Example of a fixed point connected to
two different semi-infinite chains.
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the L0;7;1 fixed point, which is the endpoint of a semi-
infinite chain. On the other hand, if both of the Z fields
get VEV’s, then the theory flows to the L0;6;3 fixed point,
which is part of a different semi-infinite chain. This ex-
ample is shown in Fig. 4. The result of all of this is a rather
intricate pattern of connected chains of RG flows.

V. CONCLUSIONS

We have constructed the supergravity solutions for a
stack of D3-branes that are localized at a single point on
the blown-up cycle of a resolved La;b;c cone. This describes
a RG flow of the quiver gauge theory between two super-
conformal fixed points. While there are generally orbifold-
type singularities, string theory is well defined on such
backgrounds. Moreover, the geometries are completely
regular for the cases of the resolved cones over T1;1,
T1;1=Z2, and Y

2;1. The general system is described by a
triplet of Heun equations that can each be solved by an
expansion with a three-term recursion relation, though
special cases have closed-form solutions. This enables us
to read off the operators that acquire nonzero vacuum
expectation values as the quiver gauge theory flows away
from the UV fixed point.

This leads to semi-infinite chains of RG flows between
various La;b;c fixed points. A given fixed point can be
connected to a number of different flow chains via various
deformations. Cones over La;b;c can themselves be ob-
tained by partial resolutions of orbifolds of C3. For ex-
ample, the L2;4;3 arises from the partial resolution of
C3=Z4 � Z4. This suggests that each La;b;c fixed point
may actually lie within longer, perhaps even semi-infinite,
chains of flows. On the other hand, there is the possibility
that these different fixed points originate from the same
orbifold model.

We have a supergravity description for a single global
and local deformation of an La;b;c fixed point. However, as
we have mentioned, cones over La;b;c spaces generally
have multiple 4-cycles that can be blown up, corresponding
to multiple local deformations. More generally, various
combinations of fields can be given VEV’s. For example,
the global deformation corresponds to all of the Z singlets
getting VEV’s. It would be interesting to understand this
myriad of possibilities from the supergravity point of view.

One underlying idea behind this paper has been that a
stack of D3-branes at a single point within any smooth

manifold is guaranteed to yield a geometry that is free of
singularities, other than the orbifold-type singularities that
are inherently connected to the resolved La;b;c cones. More
specifically, close to the stack the geometry must be
AdS5 � S5, or a quotient thereof. This has been illustrated
for the resolved conifold in [22]. If one chooses to smear
the D3-branes over the blown-up 2-cycle of the resolved
conifold, then an additional element is required in order to
eliminate the resulting singularity. For instance, if one of
the directions along the worldvolume of the D3-branes is
appropriately fibered over the resolved conifold, then the
resulting background is completely regular [43]. However,
one pays the penalty of breaking the four-dimensional
Lorentz invariance of the worldvolume, and the back-
ground is more appropriate for describing a RG flow to a
three-dimensional fixed point. Likewise, one expects that a
stack of D3-branes at a single point on the blown-up 3-
cycle of the deformed conifold yields a completely regular
geometry, which would be interesting to see explicitly. On
the other hand, for the Klebanov-Strassler solution the D3-
branes have been smeared over the blown-up 3-cycle. In
this case, the additional element that is needed to prevent a
singularity due to this smearing is the 3-flux, which sup-
ports fractional D3-branes [14].
The backgrounds of this paper can be generalized to

describe a RG flow between two marginally deformed
superconformal fixed points. The supergravity duals of
the� deformations for Yp;q and La;b;c superconformal field
theories were constructed in [44,45], respectively. The fact
that the resulting backgrounds preserve supersymmetry
stems from the Uð1Þ3 isometry (sub)group of the Yp;q

and La;b;c spaces. Since the solutions presented here pre-
serve theUð1Þ3 isometry of the La;b;c spaces, the procedure
for constructing the supergravity duals of � deformations
can be carried through for these backgrounds as well.
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MIRJAM CVETIČ AND J. F. VÁZQUEZ-PORITZ PHYSICAL REVIEW D 77, 126003 (2008)

126003-10



[5] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram,
Classical Quantum Gravity 21, 4335 (2004).

[6] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram,
Adv. Theor. Math. Phys. 8, 711 (2004).

[7] I. R. Klebanov and E. Witten, Nucl. Phys. B536, 199
(1998).

[8] D. Martelli and J. Sparks, Commun. Math. Phys. 262, 51
(2006).

[9] S. Benvenuti, S. Franco, A. Hanany, D. Martelli, and J.
Sparks, J. High Energy Phys. 06 (2005) 064.

[10] S. Benvenuti and M. Kruczenski, J. High Energy Phys. 04
(2006) 033.

[11] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and
B. Wecht, J. High Energy Phys. 01 (2006) 128.

[12] A. Butti, D. Forcella, and A. Zaffaroni, J. High Energy
Phys. 09 (2005) 018.

[13] P. Candelas and X. C. de la Ossa, Nucl. Phys. B342, 246
(1990).

[14] I. R. Klebanov and M. J. Strassler, J. High Energy Phys. 08
(2000) 052.

[15] K. Altmann, arXiv:alg-geom/9403004.
[16] K. Altmann, arXiv:alg-geom/9405008.
[17] I. R. Klebanov and E. Witten, Nucl. Phys. B556, 89

(1999).
[18] L. A. Pando Zayas and A.A. Tseytlin, J. High Energy

Phys. 11 (2000) 028.
[19] S. de Haro, S. N. Solodukhin, and K. Skenderis, Commun.

Math. Phys. 217, 595 (2001).
[20] K. Skenderis and M. Taylor, J. High Energy Phys. 05

(2006) 057.
[21] K. Skenderis and M. Taylor, J. High Energy Phys. 08

(2006) 001.
[22] I. R. Klebacnov and A. Murugan, J. High Energy Phys. 03

(2007) 042.
[23] L. Berard-Bergery, C.R. Acad. Sci. Paris, Ser. 1302, 159

(1986).
[24] D. N. Page and C.N. Pope, Classical Quantum Gravity 4,

213 (1987).
[25] D. Martelli and J. Sparks, Phys. Lett. B 621, 208 (2005).
[26] L. A. Pando Zayas and A.A. Tseytlin, Phys. Rev. D 63,

086006 (2001).
[27] S. Benvenuti, M. Mahato, L. A. Pando Zayas, and Y.

Tachikawa, arXiv:hep-th/0512061.
[28] S. S. Pal, Phys. Lett. B 614, 201 (2005).
[29] K. Sfetsos and D. Zoakos, Phys. Lett. B 625, 135 (2005).
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