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Abstract—Clouds have become appealing platforms for not
only general-purpose applications, but also real-time ones. How-
ever, current clouds cannot provide real-time performance to
virtual machines (VMs). We observe the demand and the ad-
vantage of co-hosting real-time (RT) VMs with non-real-time
(regular) VMs in a same cloud. RT VMs can benefit from the
easily deployed, elastic resource provisioning provided by the
cloud, while regular VMs effectively utilize remaining resources
without affecting the performance of RT VMs through proper
resource management at both the cloud and the hypervisor
levels. This paper presents RT-OpenStack, a cloud CPU resource
management system for co-hosting real-time and regular VMs.
RT-OpenStack entails three main contributions: (1) integration of
a real-time hypervisor (RT-Xen) and a cloud management system
(OpenStack) through a real-time resource interface; (2) a real-
time VM scheduler to allow regular VMs to share hosts with RT
VMs without interfering the real-time performance of RT VMs;
and (3) a VM-to-host mapping strategy that provisions real-time
performance to RT VMs while allowing effective resource sharing
with regular VMs. Experimental results demonstrate that RT-
OpenStack can effectively improve the real-time performance of
RT VMs while allowing regular VMs to fully utilize the remaining
CPU resources.

I. INTRODUCTION

An important advantage to run real-time applications in
a cloud is its abundant computing resources, which makes
cloud computing an attractive choice for hosting computation-
intensive real-time tasks, such as object recognition and track-
ing, high-definition video and audio stream processing, and
feedback control loops in general. For example, a gaming
console can use the computing power in the cloud to provide
better image quality to the end user [1]. Prolonged latency
for such applications often leads to frustrating or unacceptable
experience to end users. Such applications therefore require
latency guarantees.

Despite the growing demand for running real-time appli-
cations in the cloud, however, current clouds provide limited
support for real-time performance. Most clouds allow users
to specify only the number of Virtual CPUs (VCPUs) as-
sociated with a VM and/or their CPU shares. Furthermore,
cloud management systems often oversubscribe the system
to better utilize the resources. As a result, if a co-locating
VMs consumes lots of resources, other VMs on that host will
suffer performance degradation, which is known as the “noisy
neighbor” problem.

The lack of cloud resource management for latency guar-
antees has led cloud providers and users to develop proprietary

application-level solutions to cope with resource uncertainty.
For example, Netflix, which runs its services in Amazon EC2,
constantly monitors the resources used by each VM. If one
VM cannot meet its performance requirement (usually due
to a co-located noisy neighbor), Netflix shuts down the VM
and restarts it on another host, hoping that the newly located
host is less crowded [2]. Moreover, Netflix developed a tool
called “chaos monkey” [3], which introduces artificial delays
to simulate service degradation and then measures whether the
application can respond appropriately. An alternative solution
is to pay for dedicated hosts for running real-time applications,
which usually results in resource under-utilization and may not
be cost-effective.

This paper presents RT-OpenStack, a CPU resource man-
ager for co-hosting real-time and non real-time (regular) VMs,
RT-OpenStack makes three main contributions: (1) integration
of a real-time hypervisor (RT-Xen) and a cloud management
system through real-time resource interfaces; (2) a real-time
VM scheduler allowing effective resource sharing between
regular and real-time VMs while maintaining real-time per-
formance of real-time VMs; and (3) a VM-to-host mapping
strategy that provisions real-time performance to real-time
VMs while allowing effective resource sharing by regular
VMs. We have implemented and evaluated RT-OpenStack
by extending the OpenStack cloud manager and the Xen
hypervisor, in principle our approaches may be extended to
other cloud management systems and hypervisors.

The rest of the paper is structured as follows: In Sec-
tion II we introduce background about Xen and OpenStack,
and their key limitations in supporting real-time applications.
After discussing related work in Section III, we present the
design and implementation of RT-OpenStack in Section IV
and experimental evaluation in Section V. We conclude the
whole paper in Section VI.

II. BACKGROUND

We first introduce Xen and our previous work on RT-
Xen. We then review the OpenStack cloud management system
and its scheduling components. We identify their limitations
in supporting real-time applications alongside general purpose
applications which motivate the design of RT-OpenStack.



A. Xen Virtual Machine Monitor

Xen [4] is a type-1 (bare metal) open-source virtual ma-
chine monitor (VMM)1 used in commercial clouds, such as
Amazon EC2 and RackSpace. It sits between the hardware
and operating systems. From the scheduling perspective, each
virtual machine (called a domain in Xen) contains multiple
VCPUs that are scheduled by a VMM scheduler on a host with
multiple physical CPUs (PCPUs). At boot time, Xen creates
a privileged domain called domain 0, which is responsible
for managing the other guest domains. By default, Xen uses
a credit scheduler based on a proportional-share scheduling
policy: each VM is associated with a weight, which represents
the share of CPU resource it will receive relative to other
VMs. The system administrator can also specify a cap per VM,
which is the maximum CPU resource that can be allocated to
each VM. As the credit scheduler does not consider timing
constraints of the applications, it is not suitable for real-
time applications [5, 6]. To support real-time applications, the
recently released Xen 4.5 include a real-time scheduler called
RTDS [6] developed in the RT-Xen project described in the
next subsection.

B. RT-Xen

We have designed and implemented RT-Xen [5, 7, 6],
a real-time scheduling framework for Xen. In RT-Xen, each
VCPU specifies its demand for CPU resources as a resource
interface, which includes three parameters: budget (the amount
of time a VCPU is allowed to run per period); period; and
cpumask, the set of the PCPUs on which the VCPU is
allowed to run. The current multi-core scheduler in RT-Xen [6]
supports a rich set of real-time scheduling policies includ-
ing earliest deadline first (EDF) and rate monotonic (RM)
priority schemes, global and partitioned scheduling policies,
and different budget management schemes such as deferrable
and periodic servers. Among all the combinations of real-
time scheduling policies, global EDF (gEDF) with deferrable
server delivered the best real-time performance in our experi-
ments [6]. From Xen 4.5, the gEDF with deferrable server is
included in the Xen release as the RTDS scheduler [8].

However, RT-Xen has two drawbacks in supporting RT
VMs in a cloud. First, RT-Xen employs compositional schedul-
ing analysis (CSA) [9] to compute the resource interfaces
of VCPUs needed to guarantee the real-time performance of
applications running in the VMs. CSA represents the resource
requirements of each VM based on the multiprocessor periodic
resource model, µ = 〈Π,Θ,m′〉, in which in every period of
Π time units, the resource allocation provides a total of Θ

execution time units, with a maximum level of parallelism m′.
The CSA interface naturally maps to a VM with m′ VCPUs
with a period of Π ms and a total budget of Θ ms. While
CSA provides real-time guarantees on RT-Xen, the resource
interfaces computed based on the CSA are often conservative
due to the pessimism of its schedulability analysis. As a result,
provisioning CPU resources based on the resource interfaces
may lead to significant CPU under-utilization [6]. Second,
there is no distinction between RT and regular VMs. Both
RT and regular VMs are scheduled using the same type of
resource interface, and the regular VMs must be incorporated

1We use the terms hypervisor and VMM interchangeably.

into the underlying compositional schedulability analysis even
though they do not require latency guarantees. Thus, if we
directly apply the current RT-Xen in a cloud, the host may be
under-utilized.

C. OpenStack

OpenStack [10] is a popular cloud management system.
It adopts a centralized architecture consisting of interrelated
modules that control pools of CPU, memory, networking, and
storage resource of many machines. When integrated with Xen,
a special agent domain is created on each host to support these
resource management functions in co-ordination with domain
0 of the host.

We now review three aspects of OpenStack that are critical
for managing the performance of VMs: (1) the resource
interface that specifies the resource requirement of a VM; (2)
the admission control scheme for each host to avoid overload;
and (3) the VM allocation scheme that maps VMs to hosts:

Resource Interface: The resource interface in OpenStack is
represented by a pre-set type (called a “flavor”). The cloud
manager can configure the number of VCPUs, memory size,
and disk size. A user cannot specify the resource demand of
each VCPU, which may be necessary to provide real-time
performance guarantees.

Admission Control: Admission control in OpenStack is re-
ferred to as “filtering”. OpenStack provides a framework where
users can plug-in different filters. Many filters are provided
for checking sufficient memory, storage, as well as for VM
image compatibility. Two of the filters are related to the CPU
resources: (1) the core filter, which uses a VCPU-to-PCPU
ratio to limit the maximum number of VCPUs per host (by
default, this ratio is set to 16:1); (2) the max VM filter,
which limits the maximum number of VMs per host (by
default, this value is set to 50). Clearly, these filters cannot
provide real-time performance guarantees to real-time VMs
because it ignores the different resource demands and latency
requirements among VMs.

VM Allocation: After the filtering process, OpenStack needs
to select a host to place the VM. This is referred to as
“weighing”. By default, OpenStack uses a worst-fit algorithm
based on the amount of free memory on each host. This policy
again does not take into account the CPU resource demands
of different VMs.

While OpenStack is widely used in general purpose cloud,
it cannot support real-time VMs demanding latency guarantees.
First, the resource interface is inadequate. A user can configure
only the number of VCPUs, and cannot specify the resource
demand needed to achieve real-time performance guarantees.
Moreover, the VM allocation heuristics similarly ignores the
CPU resources needed to meet the real-time performance
requirements.

III. RELATED WORK

This paper focuses on co-hosting RT VMs with regular
VMs, both on a single host (RT-Xen 2.1) and in a public cloud
(RT-OpenStack). We now discuss related work in both areas.

There is a rich body of theoretical results on hierarchical
real-time scheduling [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].



These approaches cover different aspects of the problem, and
differ in the scheduling policies and resource interfaces used
in a multi-core environment. However, none of them considers
the problem of co-hosting RT VMs with regular VMs.

Earlier works on real-time hypervisor scheduling [21, 22,
23] employ heuristics to enhance the default schedulers in Xen.
RT-Xen provides a new real-time scheduling framework to
plug-in different real-time schedulers based on compositional
scheduling analysis. One of the multi-core RT-Xen schedulers
called RTDS [6] has recently been included in Xen 4.5 as an
experimental feature. While these earlier efforts on RT-Xen
aims to support real-time VMs only, the RT-Xen 2.1 scheduler
introduced in this paper represents a new contribution by co-
scheduling RT and regular VMs while maintaining the real-
time guarantees to RT VMs. While the implementation of RT-
Xen is specific to the Xen platform, the approach can be easily
applied to other virtualization technologies like KVM [24, 25]
and micro-kernels [26, 27, 28].

How to provide real-time performance with regards to
other resources like cache, memory, and network I/Os have
also been studied theoretically and/or practically. For example,
[19] presented a cache-aware compositional analysis to ensure
timing guarantees of tasks running on a multi-core virtualized
platform; and [29] provided a modification to domain-0 to
prioritizing network traffic for different VMs. RT-OpenStack
and RT-Xen can be extended to consider these resources by
using existing solutions like dominant resources [30], which
we leave to future work.

VMWare vCenter [31] maintains each host’s utilization
between 45% and 81%, and dynamically powers up or shut
down standby hosts to save energy. The vCenter also performs
VM live migration to balance the load between multiple hosts.
We plan to investigate VM migration as future work. For
open source cloud management systems, the most related work
is [32], which also migrates VM to balance the load between
hosts. In contrast, RT-OpenStack addresses the VM placement
problem to provide real-time guarantees to real-time VMs.

IV. DESIGN OF RT-OPENSTACK

As the first step toward a cloud resource management for
real-time VMs, we have developed RT-OpenStack, a CPU
resource manager for real-time and regular VMs sharing a
common cloud computing platform. 2 The salient feature of
RT-OpenStack lies in its capability to meet the real-time
performance requirements of real-time VMs, while allowing
regular VMs to effectively share remaining CPU resources
in a cloud computing platform. Specifically, RT-OpenStack is
designed based on the following principles:

• It should support a resource interface that allows a
real-time VM to specify the amount and temporal
granularity of CPU resource allocation needed to
meet the real-time performance requirements of its
applications.

• It should guarantee the CPU resources provisioned to
each real-time VM according to its resource interfaces.

2The current RT-OpenStack focuses on CPU resource management which
has significant impacts on VM latency. The other resources such as storage
and networking can also impact latency and will be addressed in future work.

• It should perform real-time-aware VM-to-Host map-
ping to maintain the schedulability of real-time VMs
without overloading the hosts.

• It should be work-conserving and allow regular VMs
to effectively utilize remaining CPU resources without
affecting the real-time performance of real-time VMs.

RT-OpenStack integrates real-time VM scheduling at the
host level and CPU resource management at the cloud level.
At the host level, we designed RT-Xen 2.1, a real-time VM
scheduler in the Xen hypervisor that is specifically designed for
effective resource sharing between real-time and regular VMs
on a same host, while maintaining real-time performance of
real-time VMs. At the cloud management level, we developed
a new VM-to-host mapping strategies to meet the real-time
performance requirements of real-time VMs while allowing
regular VMs to utilize remaining CPU resources in the cloud
computing platform.

In the following parts, we first describe the co-scheduling
RT and regular VMs at a single host level, and then detail the
process of the VM-to-host mapping for both RT and regular
VMs. Finally, we provide the implementation details on how
to pass RT VMs’ information between OpenStack and Xen
hypervisor.

A. Hypervisor scheduling policy

We designed RT-Xen 2.1 to co-schedule RT and regular
VMs on a same host. The key difference between RT-Xen 2.1
and previous RT-Xen is that RT-Xen 2.1 can integrate regular
VMs into the scheduling framework without interfering RT
VMs’ performance. There are three key changes. First, the
resource interface are now represented by four parameters:
budget (the amount of time a VCPU is allowed to run per
period); period; cpumask, the set of the PCPUs on which the
VCPU is allowed to run; and rt, indicating this VM is RT
or regular VM. With the new rt flag, RT-Xen 2.1 implements
a strict fix priority scheduling where the regular VM always
has lower priority than RT VMs. Second, we organize the run
queue as shown in Figure 1. A run queue holds all VCPUs
with tasks running, and the scheduler always picks the head
(as allowed by cpumask) to make the scheduling decision.
We divide the VCPUs into two categories: with or without
of budget. Within each category, we strictly prioritize the real-
time VMs’ VCPUs over the regular VMs’ VCPUs. Therefore,
the regular VMs do not affect the compositional schedulability
analysis of the real-time VMs. At the same time, they can
utilize the remaining CPU resources. Third, for RT VMs, we
use the gEDF scheduling policy with a deferrable server, which
had the best performance in our previous experiments [6] and
was included in Xen 4.5; and for regular VMs, we use a
round-robin scheduling policy between them. We can apply
more sophisticated scheduling policies for regular VMs, but is
deferred as future work.

B. VM-to-host scheduling policy

Another important part is the VM-to-host mapping when
creating a VM. Recall that OpenStack divides this process into
two phases: “filtering” and “weighing”. For regular VMs, we
use existing filters and weigher as the default setup; For RT
VMs, we use existing filters plus a RT-Filter in the filtering



TABLE I: RT-OpenStack for real-time and regular VMs

Resource Interface Admission Control VM Allocation
RT VM CSA Existing Filters + RT-Filter RT-Weigher

Regular VM Full CPU Existing Filters Existing Weighers

Fig. 1: Run Queue Architecture in RT-Xen 2.1

phase, and use a RT-Weigher in the weighing process. Table I
summarizes the different treatment of RT vs. regular VMs in
RT-OpenStack. We next detail the design principle behind RT-
Filter and RT-Weigher.

RT-Filter: In addition to the existing filters in the Nova
scheduler, we implemented a RT-Filter for RT VMs. For each
host, the RT-Filter records its total CPU capability (number
of available cores), and also the RT VMs with their interface
parameters running on the host. Note that regular VMs are
ignored in this process, as RT VMs has strict higher priority
than regular VMs. When a user creates an RT VM, the RT-
Filter performs the compositional scheduling analysis on all
hosts one by one, assuming that the RT VM is placed on the
considered host. If the output of the compositional scheduling
analysis requires more cores than the host’s total number of
cores, the RT-Filter filters out the host; otherwise recored the
host. In the end, RT-Filter returns a set of hosts, each of them
can safely accept the newly created RT VM without hurting
its real-time performance.

RT-Weigher: After the RT-Filter (and other existing filters)
selected a set of hosts for RT VMs, we apply the RT-Weigher
to selected the best one to host the created RT VM. Since this
paper focuses on the CPU resources, we consider a worst-fit
allocation mechanism in terms of remaining real-time CPU
capabilities. We first perform the compositional scheduling
analysis for RT VMs on each host to calculate the minimal
number of cores to schedule existing RT VMs, then calculate
the remaining CPU capability as total number of cores minus
the minimal required number of cores. Finally, we select the
one with most remaining CPU capability to host the created RT
VM. Note that RT-Weigher only applies for RT VM request,
and also ignores existing regular VMs when performing the
analysis. The existing regular VM weighing process is worst-
fit based on remaining memory.

In summary, for RT VMs, besides the existing filters,
we also use a RT-Filter to filter out hosts in short of CPU
resources, and use a RT-Weigher to select a host with most
remaining CPU resources to place the VM. Both RT-Filter and
RT-Weigher ignores regular VMs as they have lower priority
than RT VMs and thus cannot affect RT VMs’ performance.
For regular VMs, we fall back to existing filters and use the
default weighing process to select the host based on remaining

memory. A more complex weighing process consider both
CPU and memory resources for RT and regular VMs is
deferred as future work.

C. Implementation

Recall that OpenStack lacks an adequate resource interface
for real-time VMs. We now describe how to specify the
real-time resource interface when creating VMs, pass this
information to RT-OpenStack, and further pass it to the RT-
Xen on selected host.

When creating a RT VMs in RT-OpenStack, we use exist-
ing flavors to specify the required number of VCPUs, and pass
three pieces of information to the scheduler via a scheduler
hint: a total budget for all VCPUs, a shared period for all
VCPUs, and a rt flag. When there are multiple VCPUs in a
flavor, we evenly distribute the total budget among all VCPUs.
After a host is selected to host the RT VM, we simply use the
information to change the scheduler parameters on the RT-Xen
of that host.

For regular VMs in RT-OpenStack, we leverage the same
interface as RT VMs for simplicity. We set all regular VMs
to use the same period, and each VCPU’s budget equals its
period. in RT-Xen 2.1, we use the tie-breaking for gEDG
scheduling, as a result, all regular VMs are scheduled in a
round-robin fashion. Moreover, since all regular VMs’ VCPU
has full budget, they can utilize the remaining CPU resources
left by RT VMs as much as possible.

We have implemented RT-Xen 2.1 in Xen 4.1.2 hypervi-
sor. We also extended the RT-Xen tool for including the rt
parameters. The RT-Filter and RT-Weigher are implemented
in Python and integrated into the OpenStack (version Havana)
scheduling framework.

V. EVALUATION

In this section, we present our experimental evaluation of
RT-OpenStack. We first evaluate the effectiveness of our RT-
Xen 2.1 hypervisor scheduler in scheduling RT and regular
VMs on a same host. We then conduct a series of experiments
to evaluation RT-OpenStack’s efficacy in co-hosting RT and
regular VMs on a cloud computing platform.

A. Experiment Platform

Our cloud computing testbed contains seven multi-core
machines, configured as follows: host 0 is equipped with
an Intel 4 core chip with 8GB memory, and works as the
controller; host 1 is an Intel i7 4770 4 core machine with
8GB memory; host 2 is an Intel i7 x980 6 core machine with
12GB memory; host 3-6 are Intel i5 4590 4 core machines with
16GB memory each. XenServer 6.2 patched with RT-Xen 2.1
is installed on all machines. On each machine, domain 0 is
configured with 1 VCPU, 1 GB memory and is pinned to core
0; the agent VM is configured with 1 VCPU, 3 GB memory



and is also pinned to core 0. The XenServer takes around
200MB of memory on each machine. The remaining cores
and memory are used to run the guest VMs. We use the gEDF
scheduler with deferrable server on each machine, as it was
shown to work best in our previous studies [6]. Within the real-
time VMs, we apply the LitmusRT [33] patch to Linux 3.10
and use the gEDF scheduler at the guest OS level. All regular
VMs run Linux 3.10 as the guest OS. To facilitate predictable
real-time performance, we disable dynamic frequency scaling,
turbo boost, and hyper-threading so that each PCPU worked
at constant speed. All other unnecessary services were turned
off during the experiment.

B. Co-scheduling RT and regular VMs on a host

1) RT VM’s reservation on a single core: We first run
a simple experiment to test the capability of RT-Xen 2.1 to
enforce specified CPU resource allocation for an RT VM in
face of competing regular VMs on a single host. We boot 1
RT VM and 5 competing regular VMs (VM1 to VM5). They
all have 1 VCPU each, and are pinned to a single common
core (through cpumask). The RT VM is configured with a
budget of 4 ms and period of 10 ms. All VMs run a CPU
busy program to take as much CPU resource as possible. We
start with only one RT VM running, then gradually enable
the CPU busy program in regular VMs, and record the CPU
resources received by the RT VM (via the xentop command).

TABLE II: CPU Utilization Test on Single Core

RT VM 40.3% 40.2% 40.2% 40.2% 40.2% 40.2%
VM 1 - 59.5% 29.8% 19.9% 14.9% 11.9%
VM 2 - - 29.8% 19.8% 14.8% 11.9%
VM 3 - - - 19.9% 14.9& 12.0%
VM 4 - - - - 14.8% 12.0%
VM 5 - - - - - 12.0%
Total 40.3% 99.7% 99.8% 99.8% 99.6% 100%

Table II shows the results. Clearly the RT VM’s CPU uti-
lization is not affected by regular VMs, even under stress test-
ing. We also notice that when multiple regular VMs overload
the CPU, the remaining CPU resources are distributed evenly
among them as expected under our round-robin scheduling
policy for regular VCPUs. Another observation is that all CPU
utilizations add up to at least 99.5%, which demonstrates the
capability of RT-Xen 2.1 to achieve high CPU utilization. For
credit scheduler, because there is no distinguish between RT
VM and regular VMs, every running VMs would receive equal
fraction of the CPU resources, e.g., if RT VM and VM 1-3 are
enabled, each VM would receive 25% CPU resources (4 VMs
in total). Note that user can configure a VM’s credit to get
different allocations, but that cannot guarantee the real-time
performance of VMs, as demonstrated in previous work [6].

2) Schedulability of RT VMs: The second set of experi-
ments is designed to evaluate the real-time performance of RT
VMs under RT-Xen 2.1.

It is also important to show that RT-Xen 2.1 can provide
CPU resources to each RT VM at the right time to meet the
real-time application’s deadlines. We set up this experiment
as follows: Each RT VM’s contains two real-time tasks, with
a period randomly selected from 20 ms to 33 ms, and an
execution time randomly selected from 10 ms to 20 ms. The

number of VCPUs varies based on the randomly generated
task parameters. We iterate through all possible periods for the
VCPU(s): for each period, we use the compositional schedul-
ing theory to calculate the desired budget for the VCPU(s).
Among getting all the combinations, we pick the one with
minimal bandwidth (defined as ratio of budget to period).

We ran the experiments with three PCPUs, and generated
2 RT VMs, the actual total task utilization was 2.03, while
the total VCPU bandwidth was 2.93, and they required three
full PCPU to schedule them. We again booted up two regular
VMs, and configured the cpu test program in sysbench [34] to
run in them. The program kept calculating prime numbers, and
reported the number of rounds it achieved during a given time.
The real-time task and the sysbench task were configured to
run for 1 minute. We performed the experiments under three
different regular VM workload: 1) both regular VMs are idle;
2) only regular VM1 runs the sysbench; and 3) both VMs runs
the sysbench We also repeated the experiment with the credit
scheduler.

TABLE III: Schedulability Test on Multi-Core

Deadline Miss Ratio Number of Rounds Calculating Pi
RT VM 1 RT VM 2 Regular VM 1 Regular VM 2

RT-Xen 2.1
0% 0% - -
0% 0% 1929 -
0% 0% 1280 1266

Credit
0.01% 0.5% - -
3.4% 15.3% 2596 -

73.7% 40.7% 1941 1736

As shown in Table III in all the tested cases, RT-Xen 2.1
met the deadlines of the tasks running in the real-time VMs,
and evenly distributed the remaining resources for regular
VMs. In sharp contrast, under the credit scheduler the real-
time VMs experienced deadline misses (0.01% and 0.5%) for
both real-time VMs even when there are no interference, and
the deadline miss ratio grew to 73.5% for RT VM 1 when
there were two regular VMs running.

Summary: On a single host, RT-Xen 2.1 can maintain
real-time VMs’ performance while allowing regular VMs to
utilize the remaining CPU resources.

C. Real-Time Cloud Management

This experiment was designed to evaluate RT-OpenStack
on a cluster running RT and regular VMs of seven hosts. In
each RT VM, we emulate a cloud gaming server (described
in [1]), where there are two real-time tasks: a video encoder
and an audio encoder. We generated the configuration for RT
VMs in the same way as in Section V-B2, and configured all
regular VMs to be a Hadoop cluster to run the standard pi
program to test its performance.

We first booted the 7 hosts with RT-OpenStack, then kept
creating RT VMs until rejected by the RT-Filter. Each RT VM
is configured with 1.5 G memory. 11 RT VMs were created.
After that, we kept booting regular VMs with 2 VCPUs and 4G
memory each, until one was rejected by the existing filters. 9
regular VMs were booted. We also repeated the same booting
sequence using OpenStack for comparison.

Figures 2a and 2b show the VM allocation scheme under
RT-OpenStack. We can see that the RT VMs were evenly



TABLE IV: Deadline Miss Ratio in each RT VM, and Hadoop finish time

Deadline Miss Ratio Hadoop finish time
VMs RT 1 RT 2 RT 3 RT 4 RT 5 RT 6 RT 7 RT 8 RT 9 RT 10 RT 11 Regular VMs

RT-OpenStack+RT-Xen 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 435 s
RT-OpenStack+Credit 3% 1% 54% 35% 21% 14% 0% 0% 51% 35% 0% 254 s
OpenStack+RT-Xen 9% 0% 0% 0% 2% 0% 0% 0% 41% 11% 0% –
OpenStack+Credit 37% 31% 61% 13% 75% 29% 30% 36% 73% 47% 32% 314 s
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Fig. 2: VM Allocation

Controller Host 1 Host 2 Host 3 Host 4 Host 5 Host 6
0

1

2

3

4

5

A
llo

ca
te

d
 C

P
U

 C
o

re
s

 

 

Real−time VMs
Non−real−time VMs

(a) Actual CPU Resource Usage

Controller Host 1 Host 2 Host 3 Host 4 Host 5 Host 6
0

1

2

3

4

5

C
la

im
ed

 C
P

U
 C

o
re

s

 

 

Real−time VMs
Idle CPU Resources

(b) Claimed CPU Resource Usage

Fig. 3: RT-OpenStack CPU Resource Usage



distributed among the 7 hosts, and the regular VMs were
booted on hosts with enough memory to take advantage of
the remaining CPU resources. As regular VMs can consume
the remaining CPU resources not used by RT VMs under RT-
Xen 2.1, we did not show their CPU resource utilization in the
figure.

In comparison, Figures 2c and 2d show the allocation by
OpenStack using its default filter (does not consider CPU
resources) and its worst-fit weigher (based on remaining mem-
ory), and the first 11 RT VMs are being packed on hosts 3-6.
As a result, these 4 hosts’ CPU resources are overloaded.

After all the VMs were ready, we ran the Hadoop workload
in the regular VMs, and at the same time started the real-time
tasks in the RT VMs. When the Hadoop workload finished,
we manually terminated the real-time task in each RT VM
and recorded its deadline miss ratio.

Table IV shows the results. The RT-OpenStack + RT-Xen
combination experienced no deadline miss in 11 RT VMs, and
finished the Hadoop task in 435 seconds; In contrast, using
the same RT-OpenStack allocation scheme but with the credit
VMM scheduler, 8 out of 11 RT VMs experienced deadline
misses, and 2 of them missed more than 50% of the deadlines
(RT VMs 3 and 9). However, the Hadoop tasks finished in 254
seconds, which is 3 minutes faster than its completion time
with the RT-Xen scheduler. This is because the regular VM
receives more CPU resources under the Credit scheduler at the
cost of the RT VMs. Interestingly, when using the OpenStack
VM allocation scheme with the RT-Xen scheduler, the Hadoop
computation makes no progress at all. So we terminated the
experiments at 5 minutes and report only the deadline miss ra-
tios in RT VMs. Moreover, four RT VMs experienced deadline
misses: we further examined the allocation and found three RT
VMs were being allocated on the same host (host 6), saturating
its CPU resources. Although RT-Xen can prioritize the CPU
resources to RT VMs, due to the allocation scheme, on host 6
there are not enough CPU resources. The CPU overload caused
by the VM-to-host mapping by OpenStack led to poor real-
time performance despite the real-time hypervisor scheduler.
It also explains the freeze of the Hadoop program: RT-Xen
strictly prioritize RT VMs over regular VMs, and the Hadoop
programs cannot get CPU resources and frozen. This results
highlights the importance of real-time VM-to-host mapping
even in the presence of real-time hypervisor scheduling. As
expected, the OpenStack + Credit combination experienced
the worst deadline miss ratios for all RT VMs as a result of
both a non-real-time hypervisor scheduling and poor VM-to-
host mapping. Also, the Hadoop computation task finished 1
minute later than the RT-OpenStack + Credit combination, due
to CPU overloading on hosts 3-6.

Since the Hadoop program takes longer to finish in the
RT-OpenStack + RT-Xen combination, it was necessary to test
if the CPU resources were fully utilized, i.e., if the Hadoop
program consumed as much CPU resource unused by the real-
time VMs. We repeated the experiment and recorded each
domain’s actual CPU consumption for 10 seconds. Figure 3a
shows the actual CPU usage of RT and regular VMs, while
Figure 3b shows the CPU allocation claimed by the RT VMs
according to their resource interfaces. Comparing the actual
CPU usage of all VMs with the CPU resources claimed by RT
VMs led to the following insights: (1) although the claimed

CPU resources almost reached the total CPU capacity, the
actual CPU consumption by the RT VM is much less than
the claimed ones. This shows the pessimism of the hierarchical
scheduling theory that motivates co-hosting real-time VM with
regular VMs; (2) on hosts 3 to 6, the actual total CPU
utilization had already reached the limit, which means any
improvements by the Hadoop program would have affected
the real-time performance of RT VMs. On host 2, the actual
CPU allocation for non real-time VMs reached 200%, which
is the upper limit for 2 VCPUs.

Summary: The combination of RT-OpenStack + RT-Xen
can guarantee the real-time performance for RT VMs, while
allowing regular VMs to effectively utilizing the remaining
CPU resources.

VI. CONCLUSION

We explore the opportunities and challenges in supporting
real-time application in cloud computing platforms, especially
in the presence of resource contention from regular VMs. This
paper presents RT-OpenStack, a cloud CPU resource manager
specifically designed for co-hosting both RT and regular VMs.
RT-OpenStack entails three main contributions: (1) integration
of a real-time hypervisor and a cloud management system
through real-time resource interface; (2) extension of the RT-
Xen VM scheduler to allow regular VMs to share hosts without
interfering with the real-time performance of RT VMs; and
(3) a VM-to-host mapping strategy that provision real-time
performance to RT VMs while allowing regular VMs to exploit
remaining CPU resources. Experimental results demonstrate
that RT-OpenStack can provide latency guarantees for RT VMs
in a cloud while achieving high CPU resource utilization by
co-hosting regular VMs. While RT-OpenStack represents a step
toward supporting real-time applications in the cloud, an area
of our future research is extend RT-OpenStack by managing
other resources (e.g., storage and network) that can also impact
the real-time performance of VMs.
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