
Model Based Teleoperation To Eliminate
Feedback Delay

NSF Grant BCS89-01352
Second Report

MS-CIS-92-75
GRASP LAB 333

Richard P. Paul
Janez Funda

Thomas Lindsay
Craig Sayers

Masahiko Hashimot

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

October 1992

Model Based Teleoperation to
Eliminate Feedback Delay
NSF Grant BCS89-01352

Second Report

August 1991

Richard P. Paul
Janez Funda Thomas Lindsay

Craig Sayers Masahiko Hashimoto

The University of Pennsylvania
GRASP Laboratory

Philadelphia PA 19104

ABSTRACT

We are conducting research in the area of teleoperation with feed-
back delay. Delay occurs with earth-based teleoperation in space and
with surface-based teleoperation with untethered submersibles when
acoustic communication Links are involved. The delay in obtaining po-
sition and force feedback from remote slave arms makes teleoperation
extremely difficult leading to very low productivity.

We have combined computer graphics with manipulator program-
ming to provide a solution to the problem. A teleoperator master
arm is interfaced to a graphics based simulator of the remote environ-
ment. This system is then coupled with a robot manipulator at the
remote, delayed site. The operator's actions are monitored to provide
both kinesthetic and visual feedback and to generate symbolic motion

commands to the remote slave. The slave robot then executes these
symbolic commands delayed in time. While much of a task proceeds
error free, when an error does occur, the slave system transmits data
back to the master environment which is then "reset7' to the error
state from which the operator continues the task.

Contents

1 Introduction 1

2 Past Research 3

3 Current Research 3
3.1 Master . 4
3.2 Slave . 4

4 Talks and Presentations 5

5 Documentation 6

6 References 8

A APPENDICES 9
A .1 Teleprogr amming : Towards Delay-Invariant Remote Manipu-

lation . 9
A.2 Contact Operations Using an Instrumented Compliant Wrist . 146

1 Introduction

Teleoperation of a remote manipulator system is severely hampered by the
presence of any significant delays in the communication channel between the
two sites. The presence of geosynchronous satellites in the communication
path causes delays during earth-based teleoperation of robotic systems in
space. Similarly, acoustic communication links result in significant delays
in information propagation during surface-based teleoperation of untethered
submersibles. Such delays destabilize the feedback control loop between the
master and the slave sites, forcing the operator to slow down and thus re-
sulting in low productivity.

We have developed a novel combination of computer graphics and ma-
nipulator programming to solve the problem. In our system a teleoperator
master arm is interfaced to a graphics based simulator of the remote en-
vironment in which the operator can perform a task without delay. The
operator's actions are monitored to provide immediate kinesthetic as well as
visual feedback and to generate symbolic motion commands to the remote
slave. These instructions are based on the hybrid position/force model of
robot's interaction with its environment and are generated so as to account
for the estimated uncertainty in the graphical model of the remote environ-
ment. These instructions are then sent to the remote slave in real time and
executed remotely delayed in time.

The graphical model of the remote environment is constructed on the
basis of range, video, or sonar scans of the actual environment. Interfaced
to the geometric modeling system is a six-degree-of-freedom input device
which controls the Cartesian motion of the immediately reacting simulated
slave robot and any object that it might be holding or carrying. The system
monitors the position of the slave arm, in the geometric model, to detect
penetration of any work objects by the slave arm or by any object it is
carrying. When this occurs, the input device (PUMA 250) is backdriven
so as to maintain positional and orientational correspondence between the
input master device and the image. This provides the operator with a good
approximation to real-time force feedback, which has been found cruicial for
natural and efficient teleoperation.

With these capabilities, the operator can not only see what is going on but
can also feel, kinesthetically, the objects represented in the display. When the
inside of a box is displayed the operator can feel along a surface to a corner

between two surfaces; the operator can slide along the edge into the corner
of the box. The combination of the visual display of a scene with kinesthetic
feedback from the scene provides an extremely strong telepresence. The
operator can really feel that she/he is "there."

The robot commands automatically generated for execution at the re-
mote site are very simple consisting of free space moves and guarded and
compliant moves. Whenever the operator brings two objects toget her, so
that a collision is detected, a guarded move is sent to the remote site. The
system does not generate any conditionals, such as "if a happened then do
b else do c". Therefore, if an execution error occurs at the remote site, the
system waits for the operator to interpret the situation and to generate the
appropriate corrective actions. Conditionals have plagued robot program-
ming as every situation must be anticipated and every possible outcome of
an action predicted and programmed. As any robot programmer knows, it is
impossible to account for everything that can happen during task execution,
especially when one realizes that the corrective action for every error will
itself involve errors - a hopeless situation [I].

The symbolic robot commands describing the operations that are being
performed on the image are executed by a slave manipulator at a remote site
a communication delay later in time. Notice that the time delay between
the operator input and the slave execution may be quite arbitrary; the slave
is simply following along as if someone were sitting at a terminal writing a
program and executing it line by line. Of course, due to unmodelled dynamics
the slave may fail to carry out a commanded motion. At this point the remote
site communicates the state of the remote system back to the operator's
station and the operator is alerted of the error condition through an audio
interface and the displayed state of the slave robot and the environment is
reset back to the state in which the slave is "hung up". The constraints on
the motion of the input device are also changed to correspond to the current
situation at the remote site. The operator then resumes task execution from
this new state. Once again, these actions are translated into symbolic robot
commands and sent to the slave, thus recovering from the error condition
and proceeding with the task.

Past Research

During the first year of the grant we made substantial progress with the mas-
lmeon ter station. We built a data base using the Jack graphics system [3]. S'

Thierry, representing the the Laboratoire d'Automatique et d'Analyse des
Systemes with whom we are jointly conducting this research, developed the
distance algorithm based on the approach of Gilbert [4] so that we could
monitor collisions between objects. A small PUMA 250 robot manipulator
was interfaced to the Sun control computer to act as the kinesthetic master
input device. A Lord forceJtorque sensor, located at the wrist of the ma-
nipulator, was also interfaced to the Sun as part of the master. Programs
have been written, running on both the Sun and the Jiffe processors [5] to
control the image of the slave robot by means of the kinesthetic input device.
See Appendix A.1. The kinesthetic input is quite dramatic providing a good
sense of "telepresence," The operator can both see and feel what is going on
in the simulation of the remote site.

We also began working on the slave robot system. An initial interpreter
was developed to run the robot, fitted with the passively compliant wrist,
developed here by Yangsheng Xu [6] and Tom Lindsay. The wrist allows us to
come into contact with the environment and to control forces of interaction.

3 Current Research

During the last year the master station was completed, to the extent that
the operator could perform a task in the modeled world and automatically
generate robot manipulator instructions for the slave, see Appendix A.1. The
slave station was also completed, to the extent that robot instructions could
be received and then executed after introducing an appropriate delay see
Appendix A.2. The task we choose was the exploration of a box with the
operator finding the box, its sides, bottom and corners, etc. The slave was
delayed by about 3 seconds. Only primitive error recovery was developed,
but, by the end of the year the system was quite reliable and we could sustain
operation for up to an hour at a time.

3.1 Master

Research at the master station involved the robot instruction generation
based on contact information and the rate of change of the operator's in-
puts. A low level language was developed and a parser written for the slave
manipulator. Delay in parsing instructions by the slave were solved by a
double buffering scheme so that the slave manipulator was kept in synchro-
nization with the master but with a constant delay. The kinesthetic feedback
was used to confirm, to the operator, the motions the slave was to perform,
and to maintain kinematic correspondence between the master and the slave
arms. We also developed a system of automatic re-indexing of the master as
it approached kinematic singularities.

3.2 Slave

The slave was interfaced to the master using ethernet and sockets. We intro-
duced an artificial delay into the communications to approximate an acous-
tic link. A double buffered parser was written for the command language
to translate the kinematic commands received from the master into instruc-
tions that the slave could execute. All dynamic and frictional effects were
taken care of by the slave system. Research was undertaken into estimating
stopping conditions by statistically modeling the environment as the slave
moved.

4 Talks and Presentations
1. Janez Funda, November 1990, IEEE Conference on Systems, Man and

Cybernetics, "Teleprogramming: Overcoming Communication Delays
in Remote Manipulation," presenter.

2. =chard P. Paul, July 1990, DOE/Industry /University /Lab forum
on Robotics for Environmental Restoration, Waste Management and
Waste Minimization, "Teleprogramming: A Basis for Waste Han-
dling," invited present ation.

3. Richard P. Paul, October 1990, ICAR, First Workshop on Mobile
Robots for Subsea Environments, "Teleprogramming: Overcoming
Communications Delays in Remote Manipulation," workshop paper.

4. Kichard P. Paul, January 1991, The Second Workshop on Archi-
tectures for Real-Time Intelligent Control of Unmanned Vehicle Sys-
tems, "Teleprogramrning: Overcoming Communication Delays in Re-
mote Manipulation," invited presentation.

5 . Janez Funda, April 1991, 1991 IEEE International Conference on
Robotics and Automation, "Remote Control of a Robotic System by
Teleprogramming," presenter.

6. Richard P. Paul, April 1991, 1991 IEEE International Conference on
Robotics and Automation, "The Application of Robotics to the Han-
dling of Hazardous Wastes, Materials, and Equipment," workshop or-
ganizer and presenter.

7. Thomas Lindsay, June 1991, Second International Symposium on Ex-
perimental Robotics, "Contact Operations Using an Instrumented
Compliant Wrist ," presenter.

8. Richard P. Paul, September 1991, Seventh International Symposium on
Unmanned, Untethered, Submersible Technology, "Teleprogramrning
for Manipulation by Autonomous Underwater Vehicles," presenter.

9. Janez Funda, October 1991, Oceans '91 Conference, "A Symbolic Tele-
operator Interface for Time-Delayed Underwater Robot Manipulation,"
presenter.

5 Documentation

1. J. Funda, T. Lindsay and R. P. Paul, "Teleprogramming: To-
wards delay-invariant remote manipulation". To appear in Pres-
ence: Teleoperators and Virtual Environments.

2. J . Funda and R. P. Paul, "Efficient control of a robotic system for
time-delayed environments'' . In Proceedings of the Fifth Int erna-
tional Conference on Advanced Robotics, pp. 219-224, Pisa, Italy,
June 1991.

3. T. Lindsay, J. Funda and R. P. Paul, "Contact operations using
an instrumented compliant wrist". Presented at the Second Inter-
national Symposium On Experimental Robotics, Toulouse, France,
June 1991.

4. J. Funda and R. P. Paul, "Model-based, delay-tolerant teleoper-
ation in unstructured environments". In Proceedings of the IEEE
Melecon '91 Mediterranean Electrotechnical Conference, Ljubljana,
Yugoslavia, May 1991.

5. J. Funda and R. P. Paul, "Remote control of a robotic system by
teleprograrnming" . Presented at the IEEE International Confer-
ence on Robotics and Automation, Sacramento, CA, April 1991.

6. J . Funda and R. P. Paul, "Teleoperation for remote or hazardous
environments". Presented at the Workshop on the Application of
Robotics to Handling of Hazardous Wastes, Materials, and Equip-
ment, IEEE International Conference on Robotics and Automation,
Sacramento, CA, April 1991.

7. J. Funda and R. P. Paul, "Teleprogramming: overcoming comrnuni-
cation delays in remote manipulation". In Proceedings of the First
Workshop on Mobile Robots for Subsea Environments, Monterey,
CA, October 1990.

8. R. Paul, J. Funda and T. Lindsay, "Teleprogramming for au-
tonomous underwater manipulation system". In Proceedings of the
Eighth Annual Intervention '90 Conference, pp. 91-95, Vancouver,
Canada, June 1990.

9. J. Funda and R. P. Paul, "Teleprogramming: overcoming com-
munication delays in remote manipulation". In Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics,
pp. 873-875, Los Angeles, CA, November 1990.

10. J. Funda and R. P. Paul, "Teleprogramming for manipulation by
autonomous underwater vehicles". To appear in 7th International
Symposium on Unmanned Untethered Submersible Technology, Uni-
versity of New Hampshire, September 199 1.

11. J. Funda and R. P. Paul, "A symbolic teleoperator interface for
time-delayed underwater robot manipulation". To appear in Pro-
ceedings of Oceans 1991 Conference, Honolulu, Hawaii, October
1991.

6 References

[I] Richard P. Paul. Programming languages for manipulation. In G.
Saridis, editor, Advances in Automation and Robotics: Theory and
Applications, JAI Press, 1983.

[2] Marilyn Niksa. Alurninum-oxygen batteries as power sources for
submersibles. In The Fifth International Symposium on Unmanned,
Untethered Submersible Technology, pages 121-127, Marine Systems
Engineering Laboratory, University of New Hampshire, June 1987.

[3] Cary B. Phillips and Norman I. Badler. Jack: a toolkit for ma-
nipulating articulated figures. In Proceedings of A CM/SIGGRA PH
Symposium on User Interface Software, Banff, Alberta, Canada,,
1988.

[4] E.G. Gilbert, D.W. Johnson, and S.S Keerthi. A fast procedure for
computing the distance between objects in three space. In IEEE
International conference on Robotics and Automation, 1987.

[5] R. L. Andersson. Computer architectures for robot control: a com-
parison and a new processor delivering 20 real mflops. In Proceed-
ings of the IEEE International Conference on Robotics and Au-
tomation, pages 1162-1167, 1989.

[6] Yangsheng Xu and Richard P. Paul. Hybrid position force control
of robot manipulator with an instrumented compliant wrist. In V.
Hayward and 0. Khatib, editors, Experimental Robotics 1, Lecture
Notes in Control and Information Science, pages 244-270, Springer-
Verlag, 1990.

A APPENDICES

A. 1 Teleprogramming: Towards Delay-Invariant
Remote Manipulation

Teleprogramming : Towards Delay-Invariant
Remote Manipulation

Janez Fullda
Genera.1 Itobotics and Sensory Perception La.boratory
U~liversi ty of Pennsylvania, Plliladelphia, PA 191 04

August 15, 1991

Abstract

This dissertation addresses the proble~n of re~note ma.nipulation in the presence
of coinmunicalio~~ de1a.y~. Dela,ys occur with ca.rt1i-based co~ltrol of a robotic sys te~n
in space or when an untetlrered sub~ncrsible sys ten~ is coritroled froln the surface via

acoustic communication channel. The resulting delay in obta.ining positxion and
force feedback from the remote slave arm(s) makes direct telcoperation infeasible.

We propose a new control nlethodology, called teleprogranznzi~ag, which allows
for eflicient control of a, robotic systeln in the presence of significant feedba.ck de-
lays wi Chou t subs1a.ntia.l degradation in tlie overall systein performance. A telepro-
gra,~nming systeln allows the operator to kinesthetic.adly, as well as visua.lly, int.era.ct,
with a. graphical sirnula.tior~ of the remote environment and to interactively, on-line
teleprogram the remote manipulator tlirougll a sequence of elementary syrnbolic in-
struct,ions. Thesc instrucbio~~s a.re gcnera.tetl a~iitoma.tica.l~y by tbc operator's sta.tion
software in real t,ime a.s t l ~ e task progresses. The slavc robot executes these sy~nbolic
comina.nc-Is dela.yed in tirrlc and, should a.n error occur, allows the opcra.tor to specify
t.he necessaxy corrective a.ctions and continue with the task.

Teleprogra.mming offcrs a, 1)ra.ctica.l compromise between the ult i~nate and the
fea.sible, aad provides aa effectti ve and lime-eficient* a.pproach to remote ma.nipula.-
t,ion. Rdva.ntages of teleprogra.mming over existing control metjhodologies inclildc a.
relatively motlesb required levcl of remole sitc a.utonolny, a,nd the absence of the ilccd
for complex a.utornatic task pla.nners and preprograinmed error recovery modules.

This clocument describes the overall conceptual architecture of telepr~gra~mrniug
and presents a, detailed t,rea.tment of all major components a teleprogramming sys-
tem. An operatios~a,l protot,ype systeln is described and prclimi~lary experimcnt:lI
results a.re reported. Experimental results ha.ve confirmed the va,lidity a.nd fea.si-
bility of t8he teleprogramming colitrol methodology. Sustained and eficient remotc
control o l a robot ~nanipulator in tlie presence of a f ve second fecdba.ck delay was
successfully accomplished for simple contact tasks.

Contents

Introductioi~ and Problem Statement 1
. 1.1 Introduction 1

. 1.2 I'roblem Stateruent 3
1.2.1 Comluunicatio~~ Dc1a.y~ . 3
1.2.2 Communica.tion Delays a.nd Ta.sk Performa.nce 4
1.2.3 Communicat;ion De1a.y~ and Telepresence 5

. 1.3 Rcsea.1~11 Gods G
. 1.4 Oubline of the Disserta.tion G

2 Background and Related Work 8
. 2.1 Overcomillg Commui~ication De1a.y~ 8

. 2.2 Providing I<ineslhetic FeecI1)ack 10

. 2.3 Auto~llatic Robot Programmil~g 12

3 The Teleprogral~lming Solution 15
. 3.1 General Approa.ch 15

. 3.2 The World Model 17
. 3.3 The Gra.pl1ica.l Silnula. tor 19

3.4 R4otiou llestrictioil a.11d I(ines1. hetic Fecdba. ck 20
. 3.5 Genera. ting Symbolic Motion Comina.nds 21

. 3.6 Tllc Ta.sk Model 22
. 3.7 Tlie ltemote Workcell 23

3.8 Error IIandling and Model Corlsistellcy, 24
. 3.9 Summa.ry and Evalua.tion 25

4 Master and Cotltrol of the Simulated Slave 27
. 4.1 The Master Device 27

. 4.2 Reindexing Techniques 28
. 4.3 Coiltrol of the Sin~ula.t.ed Slave 31

5 The Graphical Silllulation 3 4
. 5.1 The Si~nulation Tcclllliqtie 34

. 5.2 Polyhedral Contact T y p e s . 35
. 5.3 Contact Norlnals 37

. 5.4 Desired a.nd Undesired Collisions
. 5.5 Distancc Computation

. 5.6 Collision Detection
. 5.7 Contact Inlormation Ma.~la,gement

. 5.8 The Algorithm
. 5.9 Cont,a.ct 'Type Transitio~ls

6 Motion Restriction and Kinesthetic Feedback
. 6.1 Motion Mode Classificatio~~

. 6.2 Frec Spa. cc Motion
. 6.3 Contact Motion

. 6.4 Restriction Operators
. 6.4.1 Cont.a.ct. s and Const.ra.int. s

. 6.4.2 Sliding
. 6.4.3 Pivoting
. 6.4.4 Puslling

. 6.5 Kinesthetic Feedback

7 Sylnbolic Command Stream Generation
. 7.1 Ckneral

7.2 Low-level Comtnand Generation .
. 7.2.1 Approach

. 7.2.2 Esecution Environments
. 7.2.3 The Global Algorithm

. 7.2.4 Free-space Motion
. 7.2.5 Sliding

. 7.2.6 Pivoting

. 7.2.7 Pushirlg

8 The Remote Slave
. 8.1 Command Parsing and Translation

. 8.2 Execution Mana.gcment and Lag Control
. 8.3 Control of the Slave Manipulator

. 8.4 Error IIandling a. nd R.ccovery

9 Experilllental Results
. 9.1 The Espcrimenl

. 9.2 Results
. 9.2.1 The Operator's Station

9.2.2 Tllc Low-lcvcl Sy~nbolic J, anguage
. 9.2.3 R.cnlot. e Site Execution

. 9.2.4 Error Detection a. 11d Rccovery
. 9.2.5 Overall Perforlnanre o l the System

10 Conclusion and Future Work 9 8
. 10.1 Conch~sion 98

. 10.2 Contribution 100

. 10.3 Future Work 100

A Notation and Coordinate Transforlnations 104
. A.1 Notation 104

. A.2 Coordinate Fra.mes a.nd Rotational Makrices 104
. A.3 Ma. pping Rotations Between Frames 105

. A.4 Displace~nent of a Point Due to Motion of the Fra.mc 106

B The Sylnbolic Command Language 107
. 13.1 Task Frame Ma.nage~nent 107
. B.2 Force Control Co~llrna.nds 108

. B.3 Motion Comma.nds 109

C The Experimental Systenl 110
. C.l IIa.rdwa.re 110

. C.2 Solt.wa.re 113

. C.3 Cavea.ts 116

D Example Symbolic Prograiil 118

Bibliography 123

Chapter 1

Introduction and Problem Statement

1.1 Introduction

While robots have failed to become the logical conclusion of the industrial revolution,

robotics has had good success in industrial environments. This is due to the fact that

factory automation is characterized by a structured, well-controlled, and static work en-

vironment and that the tasks to be automated are often relatively simple, repetitive, and

do not require sophisticated environmental interaction on the part of the robot. The work

pieces are presented to the robot in precise position and orientation at precise time inter-

vals and the robot blindly and tirelessly executes its task. No attempt a t understanding its

actions or even recovering from accidental errors is usually made in these situations.

Factory automation exemplifies an application where robots have been brought into the

production process to relieve people of repetitive work as well as to increase productivity,

efficiency, and in some cases quality of labor. A parallel application of robotics has been in

environments where people can not perform work themselves. Examples of such applications

are performing work in areas of biological, chemical, or nuclear contamination, which is

hazardous or detrimental to humans, clean room facilities, where people may disturb the

precisely controlled production environment, etc. Similarly, robotic technology has been

introduced in applications, such as space and undersea exploration, where the cost and risk

of manned missions is often prohibitive.

The latter class of applications is characterized by unstructured and often a priori un-

known working environments, as well as non-repetitive tasks, where the robotic system is

required to interact with the environment and react intelligently to the dynamically chang-

ing environmental circumstances. Consequently, if robotic devices are to be effective in

2 1. Introduction and Problem Statement

such situations, they must possess a much greater degree of sophistication than their less

ambitious industrial counterparts. The development of such autonomous robotic devices

has proved to be a great challenge. Some of the major difficulties relate to the need to

(a) adequately model the complexities or real world physics and dynamics, (b) develop

general strategy planning techniques, transcending any particular limited application do-

main, (c) anticipate and correct the multitude of possible error conditions arising during

task execution, (d) provide the robot system with real-time reactive and adaptive behavior

to accommodate the changes in the surrounding environment, (e) allow for on-line learn-

ing and performance improvement through "experience", etc. The classical approach to

tackle these problems has been to introduce problem solvers and expert systems as part

of the remote robot workcell control system.l However, such systems tend to be limited

in scope and application domain in order to remain intellectually and implementationally

manageable. They are normally too slow to be useful in real-time robot task execution,

and by virtue of their limited and discretized knowledge of the world and a predetermined

set of inference rules generally fail to adequately model the complexity and generality of

real world interactions. Likewise, detecting, and correcting all possible run-time error con-

ditions poses a major obstacle in the development of autonomous robotic systems. This is

a difficult problem even in well-structured industrial environments and becomes hopeless in

situations where the environment is only pa,rtia,lly known and significant modeling, sensing,

and control errors exist. These error conditions must be anticipated ahead of time and ap-

propriate detection and recovery routines must be programmed prior to deployment of the

system. This of course implies that error handling is only as complete as the programmer's

mental model of the application environment. Finally, recovery procedures are themselves

subject to errors and the error handling process thus suffers from a combinatorial explosion

in both volume and complexity.

Consequently, teleoperation remains the most reliable option for performing work in

situations where people are forced to be physically separated from the actual work environ-

ment. Teleoperators were developed with the advent of nuclear industry in the mid 1940's

and have since found applications in many other areas, such as undersea resource explo-

ration, waste management, and pollution monitoring, as well as in outer space for sample

acquisition, satellite deployment and repair, etc. The early prototypes were essentially me-

chanical pantographic linkages of kinematically similar master and slave arms [Goertz,1954].

'We will in this document refer to a robot manipulator, along with its onboard sensors and the supporting

(possibly movable) platform, as a "robotic workcell".

1.2. Problem Statement 3

Despite their simplicity, they provided for good kinesthetic control of remote manipulation.

However, as the spectrum of tasks to be performed under teleoperated control expanded,

the need for kinematically dissimilar masters and slaves became increasingly more appar-

ent. This was necessitated by applications where the operator's actions (displacements and

forces) needed to be scaled upward or downward into the task domain. Similarly, the me-

chanical linking precluded indexed or relative-motion control which would often be more

natural to the operator. This led to the introduction of electrically actuated teleoperators

under computer control [Goertz,1954], which removed the limitations of the mechanical link-

ages, but which were unable to provide kinesthetic feedback to the operator [Goertz,1963].

The development of bilateral, force-reflecting systems once again allowed the operator to

"feel" the remote environment through the teleoperator. Since then, sophisticated tele-

operated systems have been designed and built, offering high dexterity of manipulation

and low fatigue on the part of the operator [Ballard,1986], [NASA,1988], [Schenker,l987],

[Hirzinger,l989], [Hatamura,l990]. These systems feature dissimilar master and slave ma-

nipulators, coordinated two-arm telemanipulation, high bandwidth communication between

the master and slave sites, high fidelity stereo visual feedback from the remote site, as well

as force-reflecting bilateral servo control for target tasks ranging from molecular docking to

mining. The combination of the above affords the operator an effective working environ-

ment and a good sense of telepresence, i.e., the illusion that she is actively present in the

remote environment.

1.2 Problem Statement

1.2.1 Communication Delays

Direct teleoperation assumes high-speed, high-bandwidth communication between the op-

erator's station and the remote site. While this can be achieved for most land-based, close

proximity telerobotic applications, it becomes a problem when the master and slave sites

are separated by a large distance (e.g., earth-moon) or are forced to communicate over a

limited bandwidth communication link (e.g., acoustic link to an underwater manipulator)

[Ferre11,1966], [Ferrell&Sheridan71967]. Under such circumstances, both the instructions to

the slave manipulator (desired velocities and forces) as well as the feedback from the slave

back to the operator (visual and kinesthetic information) are delayed. This adversely affects

the efficiency of task performance, as the result of the operator's motion commands to the

slave is not known to her until a communication delay later, when the feedback arrives. A

1. Introduction and Problem Statement

Task Canpletion Time vs Task Length
800

task length [min]

Figure 1.1: Total task completion time versus task length for t = 1 second and different

values of the communication delay r (in seconds).

typical operator's response under such circumstances is to adopt a "move-and-wait" strategy

([Ferre11,1965], [Ferre11,1966]), where the operator repeatedly issues small motion commands

and then waits for feedback (resulting state) from the remote environment to determine the

effect of each motion.

1.2.2 Communication Delays and Task Performance

To illustrate the delay problem in more concrete terms, consider a situation where we

are teleoperating in the presence of a (one-way) time delay T , due to the combination of

transmission and other delays in the system.2 Let A denote a task, which takes Ttak time to

execute without delay, by executing elementary commands, each of which takes on average

t time to execute. Then the total time to execute the task in the delayed environment by

using the move-and-wait approach, is

Figure 1.1 illustrates the effect of communication delays on the total task completion

time using the move-and-wait strategy for t = 1 second and three different values of the

'We will throughout this work refer to this lumped delay as the communication delay or the feedback

delay.

1.2. Problem Statement 5

communication delay T. The bottom-most line (T = 0) in Figure 1.1 corresponds to the

case where there are no delays in the control loop at all, i.e., Ttotal = Tt,k.

Thus, in view of Eq. (1.1), if we consider a twenty minute task (Ttask = 20 min), with

an elementary command execution time of 1 second (t = 1 sec) and with a feedback delay

time of 10 seconds (T = 10 sec), the total time to execute the task would be 7 hours! Clearly

this is not satisfactory for most applications.

1.2.3 Communication Delays and Telepresence

As we have seen, time delays can severely reduce the efficiency of task performance by forcing

the operator to wait. Moreover, delays can also severely degrade or even destroy the sense

of telepresence during contact manipulation. This is a direct consequence of the fact that

both the video signal, as well as the information about the forces experienced by the slave

arm, are delayed by 2r . While delays in receiving both visual and kinesthetic information

cause a problem, the delay in receiving force information has been shown to be perceptually

more significant [Ouh-young,l989]. Physiological studies have shown that the neurological

control of human musculoskeletal movements operates at the rate of approximately 5 Hz

([Stark,1987], [Brooks,l990]), and that a time delay of approximately 300 ms (x 113 sec) is

clearly perceptible and distracting to humans [Stark&Kim,l988]. Consequently, feedback

delays approaching one second severely destabilize the performance of a human operator

relying on real-time feedback information [Ferre11,1966], [Black,1971], [Bejczy&Kim,l990].

Unfortunately, in space and undersea applications, communication delays often exceed

this threshold. Round-trip communication delays between the ground station and a slave

workcell in low earth orbit (e.g., Space Shuttle) are normally in the range of 2 to 8 sec-

onds, depending on the number of intermedia,te geosynchronous satellite relay stations, the

exact nature of the computer processing/buffering at the sending and receiving stations,

etc. [Kim et a1.,1990], [Sheridan,l990]. If teleoperated work is to be performed in shallow

space (e.g., moon), then delays approaching or exceeding 10 seconds should be expected.

Similarly, substantial delays arise during remote control of autonomous underwater vehicles

(AUV) and their on-board manipulator arms. Acoustic communication links are normally

established between the AUV and the surface ship (or a land-based operator's station), and

with the sound transmission underwater being limited to 1460 m/s, the round-trip time

delay over a distance of 1 mile therefore exceeds 2 seconds [Sheridan,l990].

1. Introduction and Problem Statement

1.3 Research Goals

The goal of this research is to address the issue of communication delays in remote manipu-

lation and to design, as well as experimentally verify, a new control methodology, capable of

controlling a remote robotic workcell in the presence of significant feedback delays without

a substantial degradation of the overall system performance. In particular, we will develop

a delay-tolerant control strategy, which will allow for continuous and efficient control for

feedback delays up to approximately 20 seconds. In light of the discussion in Section 1.2.3

above, this delay interval should include most, if not all, earth-based, ocean-based, as well

as shallow space telerobotic applications.

According to basic control theory, sustained, stable closed-loop control in the presence of

a significant time delay is not possible [Sheridan,l990]. However, various control strategies

and ways of sharing the necessary control functions between the remote site and the ground

station in a remotely controlled robotic system are possible, which can dramatically improve

our ability to perform useful and effective work over large distances. We will in this work

present and demonstrate a solution to this problem, based on the concept of teleprogram-

ming the remote robotic workcell. The basic components of the teleprogmmming control

methodology include a real-time graphical simulation of the remote environment, real-time

extraction of approximate kinesthetic feedback from the graphical simulation, and on-line

automatic generation of elementary task commands to be sent to the slave.

1.4 Outline of the Dissertation

The remainder of this document is organized as follows. Chapter 2 reviews related work by

other researchers and describes the state of the art in time-delayed manipulation technology.

In Chapter 3 we offer a brief description of our proposed control n~ethodology and its

major conceptual components. Subsequent chapters address individual building blocks of

a teleprogmmming system in detail. Issues related to the master input device and control

of the simulated slave are discussed in Chapter 4. The graphical simulation of the remote

environment is addressed in Chapter 5. Geometric constraint enforcement and computation

of the kinesthetic feedback to the operator is detailed in Chapter 6. In Chapter 7 we

detail the symbolic command generation, and Chapter 8 addresses the issues of command

translation and execution at the remote site. Experimental results are reported in Chapter 9.

The concluding remarks, the contribution of this work, and the future research directions

are summarized in Chapter 10.

1.4. Outline of the Dissertation 7

The first of the four appendices (Appendix A) reviews some of the basic results in

kinematics, which are used in the text. Next, Appendix B gives a brief description of the

syntax and semantics of the low-level symbolic command language. Appendix C describes

the details of the hardware and software architecture of the prototype teleprogramming

system, which was used to verify the conceptual design and ideas. Finally, Appendix D lists

a portion of a program, generated by our experimental system during one of the test runs.

Chapter 2

Background and Related Work

The following sections offer a brief review of related work in three main areas, addressed by

this dissertation: approaches to overcoming communication delays in remote manipulation,

research in providing the operator with a real-time approximation to the delayed force

information, and automatic generation of robot control programs.

2.1 Overcoming Communication Delays

Overcoming communication delays has been recognized as one of the central areas of re-

search in telerobotics for some time [Stark,l987]. Among the proposed approaches to solve

the problem are:

slowing down the motion so as to minimize the effect of the delay [Ferrell,1965]

strengthening the slave arm and the objects which it manipulates in order to avoid

damage (e.g., underwater remotely operated vehicles, ROV's)

adopting a "move-and-wait" strategy, where the operator proceeds through a sequence

of incremental open-loop motions, each one followed by a wait of one round-trip delay

to receive the correct feedback [Ferre11,1965]

"supervisory control": limited autonomy at the remote site - sensory feedback loops

are closed locally, the slave makes low-level decisions on its own, whereas the oper-

ator supervises the execution of tasks and supplies high-level goal information [Fer-

rell&S heridan,l967]

2.1. Overcoming Communication Delays 9

formally modeling up-link and down-link delays by augmenting the dynamic state-

space model of the system (environment + slave) - delays are modeled as delay

lines on the output and introduce (a potentially large number of) additional states

[Hirzinger et a1.,1989]

control theoretic approaches, such as modeling a teleoperated system as a two-ported

network, and devising control laws which attempt to cancel the effects of feedback

delays [Anderson&Spong,l988], [Raju,1988], IHannaford,l989]

using predictive visual (graphical) displays to allow the operator to "preview" the

effects of her conimands on the remote environment [Noyes&Sheridan,l984], [Be-

jczy&Kim,l990]

full autonomy at the remote site: automatic on-line sensing, sensory data interpre-

tation, strategy generation, task and motion planning, execution monitoring, error

detection, replanning and recovery

Unfortunately, none of the existing approaches to overcoming communication delays in

remote manipulation has proven to be entirely satisfactory. In the presence of delays in

excess of one second, simple move-and- wai t strategies become impractical for most appli-

cations. At the other extreme, full autonomy at the remote site is beyond the state of

the art. At present, it seems that the integration of the available, however limited, remote

site autonomy, carefully designed control laws, and sophisticated operator station based

predictive displays offers the best compromise between the desirable and the feasible.

Supervisory control [Ferrell&Sheridan,l967] provides a broad conceptual framework for

the design of effective telerobotic systems despite communication delays. The central idea,

as outlined above, is to distribute decision making and control between the operator's sta-

tion and the slave workcell in favor of the remote site, to the extent possible. This results

in greater independence of the supervisory and the remote control loops, the two now be-

ing coupled only through a low-bandwidth, asynchronous exchange of commands (from the

operator to the remote workcell) and state information (from the remote workcell to the

operator). However, the realization of the full promise of supervisory control methodol-

ogy in remote manipulation has been hampered by the difficulty of adequately automating

the low-level environmental interaction at the remote site. This relates primarily to the

difficulty of incorporating sufficiently sophisticated knowledge of the world and models of

contact physics into on-board reasoning systems, as well as designing corresponding ma-

nipulator control algorithms, capable of operating reliably in unstructured and a priori

10 2. Background and Related Work

unknown environments. A related problem, as discussed in Section 1.1, is the need to an-

ticipate, detect and provide preprogrammed corrective actions for the multitude of possible

error conditions arising during subtask execution in order to support the necessary level

of autonomy at the remote site. With error handlers themselves being subject t o errors,

the error handling code can easily come to dominate an application program as well as the

programming effort itself.

Many approaclies to time-delayed remote manipulation rely on predictive displays as

a means of providing approximate, partial feedback to the operator in real time. In such

systems, the operator's station makes use of computer models of the remote environment

and the remote workcell. These models are then graphically displayed to the operator, and

the effects of operator's commands are computed in this simulated environment, offering

the operator an immediate visual feedback of her actions. The pioneering work in predic-

tive display technology was done at MIT [Noyes&Sheridan,l984], [Hashimoto et a1.,1986],

[Buzan,1989]. Other experiments have shown that 2-D perspective projections alone are not

sufficient to represent 3-D information [Stark,1987], [Stark,1988]. Additional depth cues are

needed to aid the operator in performing motions along the line of sight of the TV cam-

era or along the graphical projection axis. Alternatively, stereoscopic displays can be used

[Stark,1988]. [Pepper et a1.,1981] have demonstrated the superiority of stereo displays over

mono displays, and shown that the advantage of visual stereo increases with the complexity

of the scene. State of the art predictive displays can synchronize and overlay real-time com-

puter graphics (complete with shading and a realistic lighting model) with the incoming

delayed video camera signal on the same physical display [Bejczy et aE.,1990].

2.2 Providing Kinesthetic Feedback

It is well established that force-reflection dramatically improves the sense of teleperception

in teleoperation [Ferre11,1966], [Hannaford,l988], [Hannaford,l989]. Since visual and kines-

thetic information can be supplied to the operator through different sensory input channels,

they naturally integrate and augment each other. In fact, it has been shown that kinesthetic

feedback can be at least as important as 3-D visual information [Kilpatrick,l976] and that,

in some circumstances, force feedback alone can be more valuable than visual feedback alone

[Ouh-young et a1.,1989].

Communication delays preclude direct reflection of the reaction forces, experienced by

the slave, to the operator's hand controller. Numerous studies have shown that delayed

2.2. Providing Kinesthetic Feedback 11

force feedback can destabilize the control loop. Moreover, experiments indicate that no

force information at all may be better than delayed force feedback, since the perceived loss

of the action/reaction causality tends to be confusing to the operator [Buzan,1989]. This

confusion and disorientation arises regardless of whether the delayed force signal is fed to

the active hand (i.e., the one controlling the master arm) or the passive hand.

Consequently, delays in force information motivated research in generating artificial

kinesthetic feedback, which would approximate the expected actual force signal. Most of

the effort concentrated on extracting force information from the predictive displays, i.e.,

graphical simulations of the slave's interaction with the remote environment. Since too

few physical parameters of the remote world and the objects therein are known for a full

dynamic model to be useful and meaningful (even if there was time to compute it), remote

environment simulations are almost invariably non-d ynamic. Thus, the best one can do is to

compute a reasonable approximation to the actual forces. A possible solution is to monitor

contacts between objects in the graphical environment and compute the pseudo interaction

force as an inverse function of decreasing distance between objects (beyond some proximity

threshold). Both quadratic [No11,1972] and linear laws [Fong et aE.,1986] have been proposed

for one-dimensional force reflection.

An interesting application for extracting force information from a graphical display was

proposed by [Ouh-young et a1.,1988], [Ouh-young et a1.,1989]. In this work, researchers

simulate the interaction forces between a drug molecule and a specific receptor site on a

protein or nucleic acid molecule to find "good fits" by feel, rather than visualization alone.

"Goodness of fit" is characterized by minimizing the interaction energy, which is a function

of electric charges of the atoms and inter-atomic distances. The operator interacts with a

magnified graphical display of the molecules and attempts to find, kinesthetically, the best

geometric and electrostatic fit.

The state of the art telerobotic systems currently use sophisticated predictive displays

but rarely at tempt to generate force information from the interaction between the simu-

lated slave and its environment. Normally, slave contact interactions are handled via local

compliant control strategies at the slave site without generating kinesthetic feedback to the

operator [Kim et a1.,1990].

12 2. Background and Related Work

2.3 Automatic Robot Programming

While robots can be used to perform non-contact tasks, such as inspection or surveilance,

the majority of robotic manipulation tasks require that the robot physically interact with

its environment. However, this interaction with the environment complicates control of

robot manipulators, due to oscillatory dynamic effects on contact and time-varying, high-

frequency interaction between the manipulator's end-effector and the environment during

contact manipulation. These effects are difficult to model accurately and can result in

control instabilities. Consequently, sophisticated control strategies are needed to deal with

contact manipulation and a variety of control laws have been proposed: resolved accelera-

tion control [Luh et a1.,1980], operational space method [Khatib,1985], impedance control

[Hogan,1980], stiffness control [Salisbury,l980], hybrid control [Raibert&Craig,l981], and

others (see [Whitney,l987] or [An&Hollerbach,1989] for an overview of force control tech-

niques).

Perhaps the most popular of these control strategies is the hybrid position/force control

method. The hybrid position/force approach separates the robot's Cartesian d.0.f. of

motion into force and position (velocity) controlled directions. [Mason,l981] proposed a

theoretical framework which allows us to analyze the geometry of contact(s) between the

robot and the environment and define mutually orthogonal "naturally constrained" and

"artificially constrained" directions. These directions can be thought of as specifying a

task frame, centered at the contact point, in which the robot's desired force and position

trajectories can be conveniently specified. A task can thus be defined as a sequence of

task frame specifications and position/force trajectories along the artificially and naturally

constrained d.o.f., respectively, in the current task frame.

While force control enables the robot to perform contact manipulation more stably and

reliably, programming such applications is significa.ntly more complex and intricate than

programming simple positioning tasks. In order to facilitate easier and more convenient

programming, a variety of programming languages has emerged: MANTRAN [Barber,1967],

WAVE [Pau1,1977], AL [Finkel et aZ.,1974], AUTOPASS [Lieberman&Wesley,l977], VAL

[Shimano,l979], AML [Taylor et a1.,1982], etc. The target application for most of these

languages were assembly problems in manufacturing and automation, and programs were

designed either off-line or interactively through a step-by-step interpretative process.

More recently, work has been done on at least partially automating the process of

generating robot programs. [Grossman&Taylor,l978] used the manipulator itself as a

three-dimensional pointing device to interactively generate object models and automati-

2.3. Automatic Robot Programming 13

cally produce the corresponding object declarations for the AL language. Asada et al.

([Asada&Izumi,l987], [Asada&Yang,l989]) have used a "teaching-by-showing" technique to

automatically generate simple hybrid position/force control instructions for the robot. In

this approach, the operator performs the task by holding on to the robot end-effector. Dur-

ing the teaching phase, the interaction forces and position trajectories are recorded and later

processed off-line by using pattern matching techniques to map sensor signals to elementary

motion commands. De Schutter et al. ([DeSchutter,l987], [DeSchutter&VanBrusse1,1988])

proposed a method for automatically tracking and adjusting task frame position and orien-

tation during task execution. The strategy consists of monitoring (on-line, through sensory

readings) the evolution of the natural constraints and aligning the task frame with these

dynamically determined constraints.

Most of the work on automatic robot program generation, to date, has concentrated in

the area of automatic assembly task planning and strategy generation. Some of the major

areas of research in this domain are:

representational formalisms

o representation of assembly parts (polyhedral models [Lozano-Perez et a1.,1987],

boundary representation models [Liu&Popplestone,l987], CSG models [Hoffman,

19891)

o representations of assembly sequences (AND/OR graphs [Sanderson,l988], other

types of graphs and trees),

o representations of part mating geometric constraints (Clifford algebra of projec-

tive 3-space [Ge&McCarthy,l990])

formal frameworks for planing strategies

o formal models for synthesizing compliant motion strategies from geometric de-

scriptions of assembly operations and explicitly estimating errors in sensing and

control [Lozano-Perez et a1.,1983]

o mathematical models for describing strategies which are guaranteed to succeed

in the presence of sensory, control, and modeling errors [Donald,1986], [Jennings

et a1.,1989]

o automatically generating assembly programs from design information by search-

ing through a graph of contact formations [Desai&Volz,l989]

14 2. Background and Related Work

What emerges clearly from these efforts is that automatic generation of robot programs

in the presence of significant modeling, sensory, and control errors is extremely difficult, and,

in general, quite possibly unachievable [Desai&Volz,l989]. Typically, these methods analyze

the problem of disassembly (a mathematically more constrained problem), produce a tree

or a graph of all possible plans and call any reverse path through the graph a solution,

i.e., an assembly sequence. The search for a good (or at least feasible) solution in this

graph may be guided by rule-based systems, heuristic data-bases, etc. Consequently, plan

searching and selection must often be done off-line. In order to cope with the complexities of

the problem, many simplifying assumptions are normally introduced into problem analysis

(e.g., planar surfaces only, translations only, etc.), which limit the scope and usefulness of

such schemes. Adaptive behavior and on-line learning techniques are needed for successful

autonomous planning, error detection and replanning in the presence of uncertainties (e.g.,

in unstructured environments).

Chapter 3

The Teleprogramming Solution

3.1 General Approach

There is a clearly established and growing need to perform work in remote environments,

unreachable or unsafe for humans. Of course, a purely autonomous manipulative capability

would provide the solution to the problem. However, as discussed in Section 1.1, its real-

ization remains beyond the state of the art in robotics. On the other hand, as we saw in

Section 1.2, direct teleoperation degrades to move-and-wait control in the presence of any

significant feedback delays in the control loop. Consequently, intermediate solutions must

be explored and Chapter 2 outlined some of the approaches proposed by other researchers.

We propose to solve the problem of time-delayed remote manipulation by a new control

methodology, based on incremental teleprogramming of the remote workcell. Figure 3.1

illustrates the high-level view of the teleprogramming concept. As in supervisory control,

the low-bandwidth human-master-slave control loop is separated into two locally closed,

high-bandwidth control loops, which exchange information over the low-bandwidth, delayed

communication link. However, unlike supervisory control, the teleprogramming control pa-

radigm requires a relatively modest amount of autonomy at the remote site and relies on a

different type of information exchange between the operator's station and the remote site,

as explained below.

Teleprogramming provides a practical solution to time-delayed remote manipulation by

combining the power of a graphical previewing display with the provision of real-time kines-

thetic feedback, to allow the operator to interactively, through a bilateral kinesthetic cou-

pling with a virtual environment, define the task to be performed remotely. The locally

closed, high-bandwidth feedback loop at the operator's station allows for stable interaction

3. The Teleprogramming Solution

-

(delayed executbn, partial aulonomy)

dmulator rnaeter

P
(immediate vicrual 8 kinesthetic feedback)

0 symbolic robot instructions

execution status / error information I-

Figure 3.1: A high-level view of teleprogramming.

between the operator and the simulated task environment, and the immediate visual and

kinesthetic feedback provide for a strong sense of teleperception. As the operator performs

the task in the simulated environment, the system continuously monitors the operator's ac-

tions and generates a stream of symbolic robot instructions, capturing all essential features

of the task in progress. The action interpretation and command stream generation process

is guided by Q priori information about the nature and goals of the task. The resulting

instructions are symbolic in nature and at the level of guarded and compliant motion prim-

itives to allow for discrepancies between the world and the operator's station based model.

The instructions are generated automatically, on-line, as the task progresses and are sent to

the remote workcell incrementally, as they become available. The remote site r%ceives them

a transmission delay later, translates them into the local control language, and executes

them (delayed in time) under the control of a local high-bandwidth sensory feedback con-

troller. Due to modeling, sensing, and control errors, execution failures will inevitably occur

in the remote environment. On detecting an error, the slave sends all relevant information

about the error state to the operator's station. There this information is used to alert the

operator to the error condition, properly adjust and update the graphical world model, and

allow the operator to specify the necessary corrective actions and proceed with the task.

3.2. The World Model 17

A more detailed overview of the teleprogramming control paradigm is given in Fig-

ure 3.2, which illustrates all the major components of the conceptual system architecture

and indicates the basic inter-relationships. In the following sections we will outline the

functionality of these components in order to present a comprehensive view of the proposed

control methodology. Detailed treatment of each component is presented in Chapters 4 to

8.

3.2 The World Model

We assume in this work that we are manipulating in an a priori unknown environment.

Upon arrival to the designated work area, the remote workcell obtains the initial description

of the environment through the use of its on-board sensors, such as vision cameras, sonars,

or range scanners. This sensor information is then sent to the operator's station, where it is

used to construct an initial geometric model of the remote area. This is a difficult problem

in general, involving sensor fusion, multi-stage image processing, and segmentation of the

final regions into three-dimensional objects [Besl&Jain,l985], [Bolle&Vemuri,l991]. While

automating many of the stages of this process is within the state of the art of computer vision

and image processing, it may be difficult to obtain a high-level segmentation, consistent with

the operator's mental model of the scene, in a purely automatic fashion. This is particularly

true if the original data is noisy and of poor quality, which may very well be the case with

data, such as undersea vision images. Likewise, occlusions in cluttered environments result

in incomplete data, further complicating the segmentation process.

As this geometric model is constructed only once at the beginning of a teleprogrum-

ming session, we propose that the operator interact with the segmentation process and

aid the system in constructing a model of the environment, that is consistent with the

operator's best estimate of the nature and relationships of objects in the images. There-

fore, the output of this stage is an unambiguous description of the environment in terms

of identifiable objects, which in turn are described in terms of faces, edges, and vertices.

Such descriptions can then be converted into standard representations, such as polyhedral

models, constructive solid geometrical (CSG) models, generalized cylinder models, etc. [Sri-

hari,1981], [Aristides&Requicha,1980], [Badler&Bajcsy,l978]. By augmenting this graphical

world with a corresponding model of the manipulator workcell itself, we obtain a complete

geometric representation of the remote environment, which can be displayed, animated and

manipulated in real time using standard computer graphics techniques [Pentland,1986].

3. The Teleprogramming Solution

Figure 3.2: The conceptual organization of telepmgramming.

3.3. The Graphical Simulator 19

Sensor imperfections will invariably introduce errors into the initial data and conse-

quently the resulting model. It is important that adequate models of sensor characteristics

exist to estimate and at least bracket the positional and orientational uncertainties in the

resulting world model. This information will later be used both by the symbolic command

generation module (Section 3.5, Chapter 7), as well as by the on-line model refinement

process (Section 3.8).

3.3 The Graphical Simulator

Having constructed a three-dimensional geometrical model of the remote environment and

the workcell, we now need to allow the operator to interact with this simulated world and

specify tasks to be performed by the actual workcell. Toward this end, a 6 d.0.f. master

input device is interfaced to the graphical display, allowing the operator to control positional

and orientational parameters of the simulated workcell.

Because we are presumably operating in unstructured and largely unknown surround-

ings, many of the dynamic parameters of the remote environment, such as masses, inertial

parameters, and frictional properties, will not be known a priori. This, along with the dif-

ficulty of adequately modeling effects, such as hydrodynamics and buoyancy in underwater

applications, suggests that we employ a non-dynamic, kinematic simulation of the remote

environment, including the slave robot.

The primary task of the graphical simulator in a teleprogramming system is to provide a

real-time, realistic graphical animation of the slave workcell operating in the simulated en-

vironment under operator's control. Secondly, the simulator software continuously monitors

the slave robot and any object in its grasp for collisions or contacts with the environment.

The system distinguishes between desired and undesired contacts. Desired contacts will

normally occur between the slave's end-effector or an object it is currently holding, and

some part of the remote environment involved in the execution of the task. Undesired colli-

sions, on the other hand, are all other collisions and will normally involve some non-effector

part of the slave robot and an environmental obstacle. The information as to which object

pairs are expected to come into contact during the execution of a given task is part of the

task model, discussed in Section 3.6.

Each commanded incremental positional displacement to the simulated slave is checked

to see if it causes a collision between any of the object pairs. If so, the offending motion

is modified by computing the fraction of the commanded displacement, which results in a

20 3. The Teleprogramming Solution

non-penetrating configuration, placing the most deeply penetrating object pair exactly in

contact. For each new contact the system records the necessary information to uniquely

and unambiguously describe the contact geometry. This information is updated a t each

simulation step and is used by the motion restriction and kinesthetic feedback computation

modules (Section 3.4, Chapter 6), as well as by the command generation process (Section 3.5,

Chapter 7).

3.4 Motion Restriction and Kinesthetic Feedback

When the operator brings the simulated workcell into contact with the environment, the

commanded motion of the slave manipulator is appropriately modified to prevent pene-

tration of environmental surfaces, and the geometric information describing the contact is

added to the list of all currently active contacts (Section 3.3, Chapter 5). While the oper-

ator remains in contact with the environment, the motion constraints resulting from these

contacts must be enforced on subsequent commanded motions to the slave manipulator in

order to produce correct and realistic motion of the simulated slave. This is accomplished

by computing the set of independent, orthogonal constraints on the motion of the slave

workcell corresponding to the current contact set and restricting (i.e., modifying) the op-

erator's commanded motions of the slave manipulator with respect t o this constraint set.

This allows the simulated slave to slide along surfaces, follow edges, reach corners, reorient

its end-effector or the grasped object while in contact, etc.

Secondly, this constraint set is also used to provide the operator with a real-time sense

of kinesthetic interaction with the environment. This is accomplished by using the same

constraint set, derived from the graphical simulation, to restrict the motion of the master

device as well. The operator-supplied commanded motions are therefore modified in accor-

dance with the currently active Cartesian motion constraints and the master arm is actively

servoed to resist attempted motion in the constrained directions. This allows the operator

holding the master device to kinesthetically feel the impact of contacting a surface, reaching

a corner, pivoting about an edge, etc. This feature is very important as it affords the oper-

ator a sense of kinesthetic teleperception despite the fact that the actual force information

is delayed, and thus not available for real-time reflection to the operator.

3.5. Generating Symbolic Motion Commands

3.5 Generating Symbolic Motion Commands

So far the operator can perform tasks in a virtual environment by visually and kinesthet-

ically interacting with the simulation of the remote site. The next important feature of

the teleprogramming system is that the operator's station software is capable of monitoring

the operator's activity in this simulated environment and extracting from it a stream of

elementary robot instructions that capture all essential features of the task in progress.

This action interpretation process is guided globally by the a priori information about the

nature and goals of the task (Section 3.6). At a more immediate level, the system monitors

the elapsed time, the motion and force trajectories of the simulated slave and manipu-

lated objects, as well as the contact state information, to generate a stream of instructions,

describing the activity in the simulated environment. As the model of the remote environ-

ment is only approximate, the nature of these instructions must reflect and accommodate

possible discrepancies between the model and the actual world. While this is not critical

during free space motion, it is vitally important when attempting to establish or maintain

contact with the environment. Consequently, for the case of contact motion, the system

generates instructions of the type "move along a given direction until contact'' (guarded

motion) or "move along a given feature while maintaining contact" (compliant motion).

These instructions are based on the hybrid position/force model of robot's interaction with

the environment and have model error tolerances built into the motion parameters. Due to

the kinematic nature of the simulation, the necessary dynamic parameters, such as frictional

coefficients or compliance forces, are supplied symbolically, rather than numerically.

Aside from these low-level instructions, the system should also recognize and correctly

interpret the operator's intent to initiate special-purpose subtasks, such as for example

a grasping action. Similarly, the system should allow the operator at any point during

the execution of a task to specify (kinesthetically and orally) a sequence of actions t o

be encapsulated as an unparameterized, unnamed, one-time "procedure", and be executed

repeatedly until some terminating condition is reached. The decision-level support, allowing

the command generation module to correctly disambiguate and interpret operator's input,

is provided by the task model, discussed next. We will address command generation in

more detail in Chapter 7.

22 3. The Teleprogramrning Solution

3.6 The Task Model

In order for the simulator software to correctly interpret the operator's actions, it may

require some knowledge of the general goal of the task in progress or be aware of special

characteristics of the task. For instance, a sequence of rapid contact changes may be

interpreted either as noisy data (and thus be smoothed) or a purposeful action, such as

tapping, scraping, or rocking (in which case it should be kept intact). Similarly, a highly

irregular path of an object during a sliding motion could be taken as unintended or it could

correspond to a motion such as polishing or sanding. In order t o disambiguate between such

interpretations, the system needs additional information about the task, and in particular,

the types of expected primitive motions (e.g., pick and place, polishing, pounding), which are

to be expected during execution of the upcoming task. Other relevant information includes

a list of environmental objects and features, which are expected to come into contact with

the slave arm during the task. This information can be used by the graphical simulator

(Section 3.3, Chapter 5) to efficiently manage the collision computation load. Similarly,

an indication of the relevant relationships between environmental objects, involved in the

execution of the task (e.g., which objects are rigidly attached to their support, which ones

are detachable, pushable, etc.), can be used by the simulator and the command generation

process (Section 3.5, Chapter 7).

At a more sophisticated level, the task model should encode the knowledge of the special-

purpose actions and iterative procedures, mentioned in Section 3.5 above, as well as their

associated terminating conditions. This information can then guide the command genera-

tion process to correctly detect and interpret such actions, when they appear in the input

stream. The audio interface can be used in conjunction with this feature to ensure proper

interpretation and facilitate on-line adjustments in the definition and execution of these

actions, if necessary. The task model may be also used by the system to automatically and

dynamically adjust the viewing angle, zoom, and other viewing parameters of the simulated

remote environment. Based on the geometry of the task environment and basic knowledge

of the current subtask, the system can select the viewing parameters so as to provide the

operator an unoccluded and intuitive view of the work area throughout the execution of

the task. Similarly, drawing on the knowledge of the dexterity of the basic subtasks to be

expected during a given task, the system can automatically adjust the scaling of the com-

manded master device displacements or exerted forces into the slave task space. Naturally,

the operator should be able to override or disable the automatic view-adjustment module,

as well as the automatic displacement/force scaling, if so desired.

3.7. The Remote Workcell 23

The task information discussed above can be gathered either by using a pre-prepared

database, by querying the operator prior to the task, or by maintaining an on-line dialogue

with the operator. Any combination of the above methods may also be used. In particular,

the last approach can be used as a run-time supplement allowing the operator to augment

and modify the current task information while the task is in progress. Likewise, run-time

on-line dialogue with the operator may be used by the command stream generator to request

additional information from the operator when her intent is unclear.

3.7 The Remote Workcell

The operator's station sends the symbolic instructions to the remote workcell continuously

as the task progresses. These instructions are received at the slave site a transmission delay

later. The slave high-level control software then parses incoming command strings, substi-

tutes numerical values for the symbolically specified dynamic parameters, translates them

into the local control language, and passes them to the low-level controller for execution.

It is crucial that the remote workcell be capable of some autonomy in executing the

commanded motion primitives. In order to support its expected degree of autonomy, the

remote robotic system needs to be equipped with sufficient sensing capability to carry out

elementary motion commands robustly despite small errors in the command parameters,

as well as local sensory and control errors. In view of the hybrid force/position control

paradigm, external forces and torques, acting on the slave manipulator, must be available

to the local control algorithm to provide for compliant and locally adaptive response in

contact motion. Additionally, sensory information from other external sensors (such as TV

cameras, sonars, or range scanners) may be gathered, fused into a consistent representation

of the state of the system and the environment, and integrated with the control algorithm.

This is particularly crucial as the commanded motions are derived from imperfect opera-

tor's station based model of the remote environment. Consequently, the control of the slave

workcell must exhibit sufficient flexibility to accommodate the majority of such discrepan-

cies without execution failures. A good part of this flexibility has already been designed

into the control language describing the actions to be performed (Section 3.5, Chapter 7).

However, a,dditional mechanisms, such as robust, low-level, sensor-based controllers, smart

end-effectors, local sensory reflex loops, passive end-effector compliance, etc., may further

enhance the performance and reliability of the workcell.

During task performance, the slave workcell must monitor its execution status, verifying

24 3. The Teleprogramming Solution

that elementary motions terminate correctly or identifying that an execution error has

occurred. In either case, this information should be propagated to the operator's station

to report the status of the remote workcell. We will discuss the remote workcell command

execution management and controller design in more detail in Chapter 8.

3.8 Error Handling and Model Consistency

We now have a system where a human operator can teieprogram a remote slave robot, over-

coming the communication delay problem by using real-time simulated visual and kines-

thetic feedback. Of course, while all is well in the simulated world, various things may still

go wrong in the actual work environment. The slave can detect such error conditions by not

reaching an expected motion-terminating condition, by hitting an obstacle, by sensing ex-

cessive or premature motor torques, etc. Upon detecting such a condition, the slave signals

the occurrence of an error state to the operator's station, which in turn alerts the operator

and interrupts the task. Alerting the operator can be done through a variety of visual or

auditory means, such as flashing the display, issuing synthesized voice warnings, etc. (see

Figure 3.2). If the error state is not clear from the information supplied to the operator by

the slave workcell, the operator may initiate various exploratory procedures and maneuvers

at the remote site to clarify the resulting state of the workcell and the environment. Both

contact (force based) and non-contact (vision or sonar based) exploratory actions can be

invoked in order to gather additional information about the error configuration. When the

state of the slave and the remote environment has been determined, the graphical model

at the operator's station is updated to reflect the error configuration and the operator can

proceed by taking appropriate corrective actions and continue with the task. Therefore, by

keeping the human operator in the control loop, the system eliminates the need for elaborate

exception and error handlers to be preprogrammed off-line.

Note that the above facility of executing local exploratory procedures to determine the

state of the environment is useful not only for situations when the slave has entered an error

state, but also when the operator wishes to verify poorly recovered or uncertain features

of the workspace. Similarly, in order to ensure that dynamic changes in the environment,

caused by external agents or influences (e.g., winds, water currents, etc.) are properly

reflected in the operator's station based world model, such exploratory procedures could

be invoked periodically or whenever there is reason to suspect that unmodeled dynamic

changes have occurred in the remote environment.

3.9. Summary and Evaluation 25

Going a step further, we may choose to update the operator's station model continuously

as the task progresses. While interacting with the environment, the slave manipulator comes

into contact with various objects and features in the environment and can thus precisely

determine their position and orientation relative to its local reference coordinates. As

the task progresses, this information can be accumulated and used to provide for on-line

refinement of the operator's station based model of the remote environment. However, as

this information will normally be discretized and local, care must be taken in propagating

this local corrective information through the model.

3.9 Summary and Evaluation

The teleprogramming concept, outlined above, distributes decision-making and control be-

tween the human operator (who provides for task planning and error recovery) and the

remote workcell control system (which provides for low-level autonomous execution and

control, as well as error state identification). Within this paradigm, commands may be sent

from the operator's station one after another in a continuous stream, relying on the partial

autonomy at the remote site to execute these commands under local sensory supervision

a communication delay r later. Therefore, the operator need not wait for explicit feed-

back from the remote site following each elementary command. When an error does occur,

however, the remote control system stops the robot and alerts the operator. The operator

then replans from this point, once again starting a stream of commands to be executed au-

tonomously by the slave. In view of our earlier discussion of the total task completion times

using the move-and-wait strategy (Section 1.2.2), we can now compute the corresponding

behavior for the teleprogramming paradigm. If n is the number of elementary commands

that are executed by the slave workcell, on average, without entering an error state, then

the time to perform a task is given by

Clearly, in the interest of minimizing the overall completion time, the desired behavior of

the system is

nt >> r (3.2)

Figure 3.3 illustrates total completioll times (TtOtal) versus task length (Ttak) for T = 10

seconds, t = 1 second, and three different values of n. Note that the case of n = 1

corresponds to the move-and-wait strategy (Eq. (1.1)) and the solid line on the very bottom

3. The Teleprogramrning Solution

Task Completion Time vs Task Length
800

task length [min]

Figure 3.3: Total task completion times versus task length for r = 10 sec, t = 1 sec, and

three different values of n.

corresponds to direct teleoperation with no delay (Ttotal = Ttmk). The figure suggests

that even a relatively modest amount of remote site autonomy, e.g., nt = T, dramatically

improves the system's throughput (task completion times), whereas autonomy at the level of

nt = lor results in completion times which are only slightly longer than the times obtained

with direct teleoperation when there is no delay in the control loop at all. For shallow space

and underwater applications we normally have r < 10 sec, and so

nt < 100 sec (3.3)

which is clearly within the state of the art of modern robot control strategies. This suggests

that the teleprogramming control paradigm can be successfully applied in shallow space and

underwater environments, effectively eliminating the adverse effects of transmission delays,

and allowing for near-optimal remote control of robotic workcells in these environments.

Chapter 4

Master and Control of the Simulated

Slave

4.1 The Master Device

The choice of the master device is a crucial factor in operator's comfort, her physical and

mental load, and dexterity of the achievable manipulation. In selecting a master device, the

following core requirements should be considered (see [Fischer,l990] for a more comprehen-

sive description of desired master device specifications):

1. the master should be spatially mobile, affording the operator unconstrained maneu-

verability within a workspace volume that is comfortable to a human operator

2. the master should allow for specification of arbitrary positional and orientational

parameters, and should thus possess at least 6 d.0.f. of motion

3. the master should allow for bilateral control, i.e., force reflection back to the operator,

and should thus be actively servoed during operation

4. the kinematic structure of the master should be transparent to the operator, and

should be free of control singularities within the normal workspace

5. the kinematic structure of the master should in no way constrain or dictate the kine-

matics of the slave

6. the master should allow for relative or indexed motion, so that the operator can

detach and relocate the master arbitrarily during operation and resume control of the

4. Master and Control of the Simulated Slave

slave from a new, presumably more comfortable or natural master configuration (see

Section 4.2)

7. the master should allow for controllable (i.e., programmable) impedance and in-

put/output displacement/force scaling; it is generally considered best to cancel (pas-

sively or actively) the inertial effects of the master and slave arms while retaining a

fraction of the inertial effect of the load [Fischer,l990]

8. the master should afford feed-forward (power) bandwidth of a t least 10 Hz, and feed-

back (information) bandwidth in the KHz range [Brooks,l990]

9. the master should possess sufficient velocity and acceleration response to not frustrate

the operator, regardless of the corresponding characteristics of the slave (Section 10.3)

State-of-the-art master devices (or hand controllers, as they are commonly referred to)

are specifically designed to meet the above requirements and typically feature low inertia,

as well as high-fidelity motion input and force reflection [Bejczy et a1.,1988] [Fancello et

a1.,1988] [Hatamura et aE.,1990].

4.2 Reindexing Techniques

A particularly crucial consideration in controlling the master is ensuring that its particular

kinematic properties do not affect the process of controlling the slave. The operator should

not be concerned with the nature or implementation of the master device. Moreover, if

the master device does possess kinematic singularities in its workspace, the master con-

troller must ensure that the corresponding configurations are never reached. The control

techniques, aimed at solving this problem, are often referred to as reindexing methods.

In our work we have used a small, standard G d.0.f. industrial manipulator as the master

device (see Appendix C). While suboptimal in some respects (in particular on the issue of

kinematic singularities), this choice meets most of the stated requirements for a good master

input device. The problem of numerous orientational, as well as positional singularities led

us to address the issue in some more detail. In particular, we have formulated and evaluated

three different reindexing schemes

a manual reindexing,

a continuous drift-back, and

4.2. Reindexing Techniques

automatic reindexing

We will discuss their advantages and disadvantages in turn. Note that all reindexing meth-

ods imply that the display is decoupled from the motions of the master during reindexing.

Manual reindexing: This approach ofloads the reindexing responsibility to the operator.

The operator must monitor the master's motions and identify that it is approaching a

singular configuration. She can then detach the master from the simulation and manually

reposition the device to a convenient, non-singular configuration.

This can be easily implemented by allowing the operator to signal the system (via a

push button, step pedal, voice command, etc.) that she wishes to reindex the master. The

master servo controller is then switched from position (or velocity) mode to torque mode

with only gravity compensation torques being applied to the actuators. The master can

be then freely repositioned to an arbitrary configuration and the normal servo mode is

resumed.

The obvious disadvantage of this reindexing scheme is that it requires the operator to

be aware of the master kinematics and pay attention to its configuration. This is clearly an

unacceptable additional mental load on the operator, particularly as her visual and mental

attention is already focused on the display of the remote task environment.

Continuous drift-back: Here, reiltdexing is accomplished via a continuous drift back

to the master's "home position". The home position can be taken to be the master's

configuration on start-up and can be dynamically changed during task execution by using a

mechanism, similar to the manual reindexing above. In tlze continuous drift-back method,

the magnitude of the restoring drift velocity is a function of the master's distance (for

translations) and twist amplitude (for rotations) from the home position. Thus, denoting

the current Cartesian location of the master's kinematic tip (wrist)' by B ~ W and the home

position by B~~ (both with respect to the base coordinates, FB), we have

w TH = (B ~ W) - ' t B ~ H
(4.1)

and the positional and rotational drift velocities can be computed (in n~aster's wrist coor-

dinates) as

'For lack of an established term, we will in the remainder of this document refer t o the tip of the

kinematic chain of the master arm (i.e., TG,) as its "wrist", even though this nomenclature may not apply

t o all kinematic designs.

4. Master and Control of the Simulated Slave

Figure 4.1: Linear and exponential drift-back reindexing schemes.

In Eq. (4.2), p = ~ r a n s (~ ~ H) , p* = p/llpll, k6 = R O ~ (~ T H) with 8 > 02, and t

denotes the Cartesian control sampling interval. f,, f, are scalar functions, determining

the magnitude of the drift-back rate. Both linear (f (x) = K x) and exponential (f (x) =

K (e f f X - 1)) drift-back rates have been investigated, as shown in Figure 4.1.

This reindexing method relieves the operator of being concerned with the kinematics of

the master and, especially for the case of the exponential drift-back, produces a smooth,

exponentially decaying drift back to the home position. By choosing a an K appropriately,

the master can be constrained to remain within the desired singularity-free radius of its

Cartesian origin and produce a "comfortable" rate of return home. However, this in most

cases reduces the available workspace of the master, which is typically not spherical. More-

over, the configuration-dependent drift-back interferes with force reflection during contact

manipulation. This reduces the fidelity of the kinesthetic teleperception as the reflected

force information becomes intertwined with the effort exerted against the operator due to

the drift-back. Small force information can be entirely lost while manipulating near the

outer boundary of the master's spherical workspace envelope.

Automatic reindexing: In this reindexing mode, the master device monitors its own

motions and alerts the operator when it approaches a singular configuration. The operator

can be alerted through visual (e.g., flashing the display) or auditory means (e.g., synthesized

or prerecorded message playback). The master then automatically returns to the home

position and signals to the operator that she may proceed with the task.

'For any rotational displacement, two corresponding anglelaxis descriptions can be obtained, namely k 6'
and -k(-6'). We have here stipulated that the desired solution be the one which yields a positive twist

angle 0.

4.3. Control of the Simulated Slave 3 1

This method combines the advantages of the above two approaches. It relieves the

operator of the need to pay attention to the master device while allowing unconstrained

motion and high-fidelity force reflection within the singularity-free workspace of the master.

Should the master approach a singular configuration, the operator is informed of this and

asked to interrupt task specification for the duration of the automatic reindexing maneuver.

We have in our experimental system adopted this reindexing strategy (see Appendix C).

4.3 Control of the Simulated Slave

If the master device is mechanically backdriveable, then the desired motion parameters can

be specified to it by simply exerting forces against it. The direction and magnitude of the

motion command can be derived from the servo position and/or torque errors. However, it is

important to note that stiction and friction effects will limit the force threshold (resolution),

as well as accuracy, that can be achieved.

Alternatively, a sensor of operator's exerted effort, such as a force/torque sensor, can

be integrated into the master device. This provides the commanded motions directly and

is insensitive to frictional characteristics of the master device drive train.

We will in this work adopt the latter method and propose a sensor based approach

to deriving the input motion command from the operator's exerted effort as illustrated

in Figure 4.2. The six-vector of Cartesian raw sensor measurements 'F is first low-pass

filtered to smooth the data. Despite relatively low minimum requirements on the feed-

forward bandwidth (approximately 10 Hz, as discussed in Section 4.1 above), it is critical

to sample the data sufficiently fast, so that noisy data can be adequately smoothed without

introducing a significant phase lag. To illustrate this important point, consider the first

order digital low-pass filter

Yk = I<uk + (1 - I{) Yk-I (4.3)

whose time constant r, for a given sampling frequency 1/T, is given by [Palm,1983]

Consequently, in order to properly smooth a noisy signal, a small filter gain K must be

offset by a high sampling frequency 1/T in order to control the lag, introduced by filtering.

This filtered force information ('F') is then scaled into the Cartesian velocity (incre-

mental displacement 'Dm) of the sensor frame (3'). The scaling factors correspond to the

ratio of the operator's exerted effort (force) versus the resulting flow (master velocity) and

4. Master and Control of the Simulated Slave

0 Master

Q
Slm. Slave

Figure 4.2: Transforming operator's effort into slave's motion.

4.3. Control of the Simulated Slave 33

thus determine the effective impedance of the master arm as perceived by the operator. By

changing these parameters, different master, as well as reflected slave and load inertias can

be simulated.

This incremental Cartesian displacement S ~ m is further transformed through the kine-

matic structure of the master device into the view independent coordinate frame 31. This

frame serves as the common orientational reference between the master device and the

viewpoint-dependent display of the remote slave. In other words, as the view of the sim-

ulated remote environment changes (either under operator's explicit control, or under the

automatic guidance of the task model), this reference frame remains unchanged. This af-

fords the operator an intuitive, constant reference frame, with a left-to-right movement of

the master device always corresponding to the left-to-right movement of the slave, regardless

of the display parameters, determining the view of the remote environment. This correspon-

dence between telekinesthesis and visual feedback is an important special case of a broader

issue of consistency of information channels in man-machine interfaces [Fischer,l990].

The view-independent displacement I D , of the master is then appropriately scaled into

the slave workspace. The corresponding scalars determine the magnification or reduction of

the operator's motions into the task space. Research has shown that scaling orientational

parameters causes confusion on the part of the operator and is therefore normally not

done [Fischer,l990]. Finally, the magnified slave motion ID^ is transformed through the

kinematics of the slave arm to become the incremental Cartesian displacement of the slave

wrist3 W ~ , .

Through this chain of transformations we have thus established a Cartesian correspon-

dence of motion between the master sensor frame 3 s and the slave wrist frame FW. More-

over, this correspondence is view independent, intuitive, and allows for easy, dynamically

adjustable master-to-slave displacement and/or force scaling for a broad range of target

tasks.

3As in the case of the master arm, we will refer to the kinematic tip of the slave, i .e. , T6,, manipulator

as the slave's "wrist".

Chapter 5

The Graphical Simulation

5.1 The Simulation Technique

We have adopted a polyhedral, boundary-representation based graphical model of the world.

While other representations are clearly possible (e.g., constructive solid geometry (CSG),

generalized cylinders etc.), polyhedral models are widely used and consequently a variety of

algorithms exist for polyhedral analysis. Perhaps the most important advantage, however,

is the convenience of polyhedral models for contact analysis, which is a central requirement

and feature of a teleprogramming system.

A key decision in this work has been to use a kinematic simulation of the motion of

the slave and the manipulated objects. The simulation therefore does not account for the

dynamic effects of either the slave robot or the environment. Moreover, the slave plus any

grasped or manipulated object are assumed to be the only moving parts in the environment.

We will hereafter refer to the movable portions of the remote environment, which are directly

under operator's control, collectively as the movable object and abbreviate them as MO.

Because of the kinematic nature of the simulation, dynamic changes in the environment,

other than the state of the workcell and the object(s) being directly manipulated, need

to be relayed to the operator's station and incorporated into the world model through

the available environment updating mechanisms, as discussed in Section 3.8, rather than

direct simulation. This applies to the dynamic changes caused by the slave (e.g., dropping

or breaking an object), as well as those produced by external environmental agents (e.g.,

winds, water currents). While the choice of a kinematic simulation may seem restrictive,

we believe that it is the most practical approach for the following reasons:

since only approximate information about the world is available, we can not expect to

5.2. Polyhedral Con tact Types 35

have complete information about the masses, inertias, frictional properties, etc. about

the objects in the environment; yet, these parameters are essential for a dynamic

simulation

a in many environments and situations, a rigid-body dynamic model may not be ade-

quate; we may be manipulating on a soft ocean bottom, or we may have erroneous

confidence in the hardness or stress resistance of the objects in the slave world

a dynamic simulation of both the robot and the environment represents a significant

computational burden; in all but the simplest cases it, in fact, may not be computable

in real time

unmodelable and unpredictable external agents (water turbulence, buoyancy effects)

may significantly affect the dynamic state of the world, further diminishing the utility

of a dynamic simulation

Clearly, a kinematic simulation leaves much to be desired. However, while nothing in the

conceptual design of the teleprogramming methodology precludes incorporation of partial or

full dynamic modeling into the system, it is not clear whether this is the proper direction in

which to extend the system [Bejczy,l990]. This is to a large extent due to the fact that we

are designing a control methodology, which is to be used in unstructured environments and

which should not require a detailed knowledge of the dynamic properties of the environment

to be useful and effective. The latter issue will be further clarified when we discuss the types

of instructions, in terms of which the system describes operator's activity in the simulated

world, and which in turn are sent to the remote workcell for execution.

5.2 Polyhedral Contact Types

Motion simulation, constraint analysis, as well as interpretation of operator's actions in

the simulated environment critically depends on a detailed knowledge of the nature of

polyhedral interactions between the slave workcell (MO) and the environment. Figure 5.1

lists the types of polyhedral contacts that we will consider in this work. Contact types are

defined in terms of the elementary polyhedral features, i.e., vertex, edge, and face. The basic

contact types (e.g., vertexledge, edgelface, etc.) are further classified as either point, line,

or plane contacts, as shown in Figure 5.1. We will refer t o the latter categories as contact

classes.

5. The Graphical Simulation

Figure 5.1: Types of polyhedral contacts.

I t is easy to see that convex vertex/vertex and vertexledge contacts represent highly

transient contact types and will rarely occur in practice. However, as pointed out in [Sawada

et a1. ,19891, the two types of contacts can be persistent and stable when one of the contacting

features is concave. Following this work in recognizing that vertices and edges can be either

convex or concave, we generalize the contacts involving these two features t o include both

cases. This is reflected in Figure 5.1 by juxtaposing the two cases, separating them with a

vertical dashed line.

In the following sections we will have the occasion of referring to adjacent, as well as

high or low order contacts. All of these terms are to be interpreted in view of Figure 5.1.

We will define an adjacent contact to be one which can be reached in one contact change

from the current contact state. Also, we will say that a contact ci is higher (of higher order)

than contact c j , if c; offers fewer remaining d.0.f. of motion than c j .

5.3. Contact Normals

n = (n, + n,)'

Figure 5.2: Contact normals for the three types of polyhedral features.

5.3 Contact Normals

An important parameter of every polyhedral contact is the corresponding contact normal.

Clearly, the contact normal will be a function of the contact type and the feature normals,

associated with the two polyhedral features, defining the contact. These feature normals

are obtained in a straightforward manner and are illustrated in Figure 5.2.' Note that

this definition assumes that all face normals of a convex polyhedral object are directed

outward. The following paragraphs offer a convention which uses feature normal information

to unambiguously define the contact normal direction for each contact type.

We will let the contact normal in each case be directed away from the environment

contact feature and towards the movable object (MO), i.e., the normal specifies the direction

against which MO can not move. Referring to Figure 5.1, it seems natural to consider the

geometry of both contacting features in determining the direction of this normal. Still,

different conventions may prove to be equally reasonable and practical. We choose to let

the higher-order feature in each case dominate the choice and will break the ties in favor

of the environment feature. The only exception to this rule will be the edgeledge point

contact (see Figure 5.1), where the normal is most naturally defined by the cross-product

of the two edge directions.

In keeping with the above convention, the contact normal direction for a face/face

planar contact is then given by the face normal of the environment plane. Similarly, for

the two line contacts involving only edges, as well as for the vertexlvertex point contact,

the environment feature determines the normal. In all remaining contact types (except the

'The asterisk (*) in Figure 5.2 denotes that the corresponding vector is of unit magnitude.

38 5. The Graphical Simulation

already mentioned edgeledge point contact), the higher-order feature (regardless of which

object it belongs to) determines the axis, but not necessarily the direction, of the contact

normal.

5.4 Desired and Undesired Collisions

In Section 3.3 we made a distinction between desired and undesired collisions. We defined

desired collisioils as those, resulting from the intentional operator-specified interaction be-

tween the slave workcell and its environment. Such collisions will normally involve the slave

manipulator's end effector or grasped object, and some part of the environment, involved in

the execution of the task. As we saw in Section 3.6, the task model contains the information

as to which objects in the environment are to be directly manipulated. The system therefore

possesses all the necessary information to construct a list of all object pairs that are expected

to come into contact during task execution. We will refer to this list as the desired collision

list. In order to provide for an accurate simulation of these intentional slave-environment

interactions, the simulator must be supplied with the corresponding polyhedral models that

closely approximate the geometric description of the real objects.

Undesired or accidental collisions, on the other hand, were defined as all other collisions

in the environment. These will normally involve some non-effector part of the slave manip-

ulator linkage (such as the slave arm's "elbow") and a part of the environment, not directly

involved in the execution of the task, according to the task model. In principal, we could

therefore construct and undesired collision list by including all potentially colliding object

pairs, which are not part of the desired collision list. However, practical considerations (e.g.,

computational efficiency) necessitate, that we restrict this list to a small number of object

pairs, most likely to be involved in an unintended collision. This will be a function of the

environment (obstacle distribution), the slave workcell kinematics, as well as the nature of

the task itself, and should be specified as part of the task model. In order to further reduce

the computational load of the graphical simulator, the obstacles and the slave manipula-

tor features, which constitute the undesired collision list, can be described by simple and

conservative polyhedral envelopes, as precise distance information is not necessary in this

case.

During task execution, the graphical simulator thus checks commanded incremental

motions for inter-object collisions. In the case of an undesired collision, the system refuses

to perform the offending motion that would cause the collision and alerts the operator by

5.5. Distance Computation

"freezing" the motion of the master arm and informs her of the condition via the audio

subsystem (Section 3.1). The operator can then adjust her intended motion to avoid the

collision or back up and replan the last portion of the task. Note that this feature offers

a rudimentary collision avoidance facility, where motion adjustment and/or replanning are

left to the operator.

In the case of a desired collision, on the other hand, the system stops the motion of the

object pair precisely in contact and records the necessary information to unambiguously

describe the geometry of the contact. We will address this process in detail in the following

sections.

5.5 Distance Computation

In order to support contact manipulation, the graphical simulator of a teleprogramming

system must be able to monitor distances between objects in the simulated environment,

detect collisions between them, and appropriately modify subsequent commanded motions

of the slave workcell so as to not violate any of the geometric motion constraints.

As we saw in Section 5.4 above, the graphical simulator is supplied with the initial model

of the remote environment and the desired and undesired collision lists. As the task pro-

gresses, the graphical simulator must then continuously monitor distances between object

pairs on both lists and provide complete information about the contact geometry in the

simulated environment at any instant in time. For complex environments or manipulation

intensive tasks, a large number of inter-object distances may thus need to be computed at

each simulation step. The basic software component, necessary to support this facility, is a

fast distance estimator for polyhedral objects.

Several methods exist to compute distances between polyhedral object^.^ In our work

we have chosen to adopt the distance computation algorithm for convex polyhedra described

in [Gilbert&Johnson,l987]. While many distance computation algorithms exhibit quadratic

or even cubic complexity, this algorithm is near-linear in the total number of vertices of the

two objects, whose inter-distance is being computed. The algorithm operates on a pair

of convex sets of points and returns two points, one belonging to each set, which define

the endpoints of the shortest straight line segment between the two sets. We will in the

remainder of this chapter refer to these points as nearest points. For a pair of contacting

21n this context, distance between two objects is defined as the magnitude of the shortest translation

that will put them precisely into contact.

40 5. The Graphical Simulation

objects, we will also use the term contact point to denote the pair of closely spaced nearest

points on the surfaces of the respective objects.

In order to facilitate higher-level contact type determination and management (Sec-

tion 5.7), we have extended the algorithm to also return the closest polyhedral features

(e.g., vertex, edge, face). The result is a fast and reliable distance computation module

which is used extensively throughout the task simulation. Section 5.6 bellow uses this mod-

ule to detect collisions between objects and prevent inter-penetration of contacting objects.

5.6 Collision Detection

We now make use of the distance computation algorithm to implement a general polyhedral

collision detection module.

Let XA and XB denote the closest points between two convex objects A and B . The

distance between them is then given by d = IlxB - xAll. If incremental displacements

AdA = (AtA, ArA) and Adg = (Atg, Arg) are applied to A and B, respectively, it can be

shown [Faverjon et a1.,1987] that the distance variation between the two objects (Ad) can

be expressed as

Ad = n . (AxB - AxA) (5.1)

where n = (xB - xA)/d and AxA, AxB are the positional displacements of the points XA

and x ~ , due to the object displacements AdA and AdB, respectively. We define the objects

A and B to be in contact whenever d < E, where E is a small positive distance which is

imperceptible to the operator's eye, but keeps the mathematics of collision computation

well behaved.

Clearly, a positive Ad indicates that the motion causes the objects t o be separated

further apart. Even if Ad is negative, there is no danger of collision as long as /Ad[< (d-E).

Otherwise, the commanded incremental motion will cause a collision and must thus be

modified to apply only the allowable portion of the motion, i.e., to stop the offending

motion in a non-penetrating contact configuration. The allowed fraction of the motion is

given by the contact coeficient
-(d - E)

t =
Ad

Note that the computational load of the graphical simulator can be significantly reduced if

a bound on the maximum displacements per simulation step ((Ad),,,) for any object in

the environment is available. This information may be task dependent and as such derived

from the task model. Alternatively, a conservative estimate can always be made based on

5.7. Con tact Information Management 41

the properties of the master device (Section 4.1). A lazy collision detection scheme can

then be implemented by only monitoring an object pair when their inter-object distance

approaches or becomes less that (Ad),,,. Therefore, if a call to the distance computation

module for an object pair (O;, Oj) returns

d > k (Ad),,, ; k E IN (5.3)

then the distance between these two objects need not be recomputed for the next k simu-

lation steps.

It should also be noted that the distance variation computation of Eq. (5.2) is only

valid for strictly convex sets of points3. Consequently, special steps are needed to handle

situations where the nearest point on the surface of either object crosses a local surface

tangent discontinuity. In practical terms, this corresponds to a sudden dramatic shift of the

contact point along the object's surface, such as during an edge/face to face/face contact

transition. We will address this problem in Section 5.9.

5.7 Contact Information Management

So far we are able to detect impending collisions and stop the offending motion precisely in

contact. In order for the system to compute the motion constraints, corresponding to the

current contact set, and enforce these constraints on subsequent commanded motions to the

slave workcell (Chapter 6), the system must first analyze and record the exact nature of each

existing contact. This information should include reliable and noise-tolerant indication of

the contact type and the contact feature centroids for both contacting objects. As described

in Section 5.6, the collision detection algorithm returns the following information:

the contact coeficient t , where 0 5 t 5 1

the two nearest points, pl and pa, on the surfaces of the two objects

the two contact features, fl and f2, where fi E { vertex, edge, face }

If a new contact occurred during the last incremental motion, then t < 1 and llpl - pzI(= E .

Moreover, the pair of the returned contact features identify the contact type (e.g., ver-

tex/face, edge/face, etc.) and it seems that we have all the information about the contact

that we need.
- - - - - - - - -

3Strictly convex sets exhibit a continuous tangent along the surface.

42 5. The Graphical Simulation

However, the nearest points returned by the distance computation algorithm (Sec-

tion 5.5) may not necessarily correspond to the contact feature centroids. More importantly,

as contacting objects slide and pivot with respect to each other, small numerical errors in

computing their successive locations (Chapter 6) accumulate and cause small misalignments

of contacting features. These errors are negligible on the scale of the task world parameters,

but are sufficient to affect the mathematics of the distance estimator. Thus, an incrementd

motion that was intended (i.e., generated by the motion computation module of Chapter 6)

to place two objects into an face/face contact, may appear, due to small alignment errors,

to the distance estimator as an edgeiface or even a vertex/face contact. Consequently, an

additional step is necessary to correct for this "numerical noise". This is accomplished by

establishing tolerance bounds on the relative orientation of pairs of contacting features and

upgrading the contact to a higher-order contact type (Section 5.2) whenever the amount of

misalignment lies within the tolerance interval. To improve the numerical stability of the

following computational steps, the misaligned features are also physically adjusted in the

simulator to remove the misalignment. Once the final contact features are determined and

realigned, the exact contact feature centroids are computed for both contacting objects in

straightforward manner.

Having obtained this information, a contact is then defined as a pair of contacting

features along with a set of parameters that uniquely define the geometry of the contact.

It is easy to verify that the following parameters suffice to uniquely and unambiguously

describe the geometry of a contact, regardless of the type of contacting features

the contact vector p connecting the slave wrist (Fw, Section 8.3), where the com-

manded motions are applied, and the contact point (feature centroid, associated with

the contact)

a the contact normal n (see Section 5.3)

a the edge direction e, in case of a line contact (see Section 5.2)

For convenience, all of the above vector quantities are computed with respect to the common

global reference frame FB. Therefore, a contact c; is encoded as the quintuple

5.8. The Algorithm 43

1. for each p i j E L

- simulate the effect of Ad on the motion of 0;

- compute dist(Oi,Oj) and the contact coefficient tig

2. t t min {tij)

3. perform the motion t (Ad)

4. update the contact information in C

5. for each p;,j E L, recompute dist(O;,Oj)

Algorithm 5.1: Outline of the collision checking algorithm.

where fi and f2 correspond to the contact features of MO and the environment, respectively.

The list of all (N) currently active contacts is stored as the contact set C, where

This information is then used to restrict subsequent commanded motions of the simulated

workcell so as to not violate any of the environmental motion constraints, as well as to

provide real-time kinesthetic feedback to the operator (Chapter 6). As we will see in Chap-

ter 7, this information will also play a vital role in generation the symbolic conimand strings,

describing the operator's activity in the simulated environment.

5.8 The Algorithm

Let L denote the desired collision list of all object pairs p;,j = (O;, Oj) which are currently

being monitored for collisions and let Ad = (At , Ar) denote the current commanded incre-

mental displacement of the slave manipulator. Moreover, let 0; in each pair belong to the

movable object (i.e., 0; is rigidly attached to the slave), and let Oj belong to the environ-

ment. The skeleton of the collision checking algorithm is given in Algorithm 5.1 below.

Step 1 above examines the effect of the commanded motion Ad on each object pair without

actually performing the motion. For each pair, the system checks to see if the motion causes

the nearest point pi E 0; to penetrate the €-envelope of Oj. In either case, the contact

coefficient t;,j 5 1 (Section 5.6) is recorded. In step 2 the minimum over all t;,j is taken

as the overall contact coefficient and the corresponding fraction of the commanded motion

is performed (step 3). Step 4 ensures that any resulting new or persistent contacts are

5. The Graphical Simulation

step i -1 slep i step i +I

edgenace I lacelface I edgenace

Figure 5.3: edgelface + facelface + edgelface contact type transition.

reflected in the updated contact set C. Finally, in step 5, inter-object distances are recom-

puted for all object pairs in L. This is done to ensure that any contact point discontinuities

are detected (see Section 5.9) and that object locations, contact information (type, features,

centroids), and other configuration-dependent information is properly updated with respect

to the final environment configuration.

5.9 Contact Type Transitions

Observe that only the current nearest point p; is being checked for penetration in step 1

above. Still, all is well as long as the nearest point travels slowly and continuously along

the surface of 0;. However, if this nearest point changes significantly in a single simulation

step (e.g., from one edge to another), then the motion may seem acceptable based on the

resulting motion of the old nearest point, but nevertheless cause penetration of Oj's 6-

envelope. The nearest point p: following the motion belongs to the penetrating portion of

0; and in fact corresponds t o the deepest point of penetration. Therefore, it is this point

that the collision estimator should have monitored for contact instead of p;.

Figure 5.3 illustrates the side view of a typical discontinuity in the location of the nearest

point on the movable object. The block in the figure is being pivoted about its bottom left

edge in the clockwise direction and it is the operator's intent to tumble the block through

the facelface contact into an edge/face contact, where the edge now is the bottom right

edge. Suppose that an incremental motion in the (i - l) t h step left the block as shown

in Figure 5.3-a. Then, in the ith step, the intended motion will be checked to ensure that

p; does not penetrate Oj's €-envelope. Since the operator's commanded motion has been

restricted such as to leave the contact point fixed (see Chapter 6)) it will pass the check

and the motion will be applied in full. This may result in the configuration of Figure 5.3-b,

5.9. Contact Type Transitions

which, of course, constitutes a collision.

Step 5 of the contact monitoring algorithm in Section 5.8 above allows us to handle such

situations. The corresponding call to the distance estimator will reveal that dist(O;, Oj) < E
and that pl # Having determined the new contact point, we now set the block back into

its original position (Figure 5.3-a), set p; = and repeat steps 1-5. This time, the motion

will be found to be only partly realizable and only the corresponding fraction t (t < 1)

of Ad will be applied, bringing the block into a face/face contact. The post-processing

realigning step of Section 5.7 will compute the new contact feature centroids for the two

objects as shown in Figure 5.3-c. Assuming that the pivoting motion persists, the (i + l)th

step will similarly produce the situation of Figure 5.3-d, where the contact point p; again

moves discontinuously to the right edge (p:). As before, this is detected by the call to the

distance estimator in step 5, the block is reset to its face/face configuration and the same

motion is reapplied with pi serving as the contact point. Clearly, this motion is allowable

and the block transitions to the edge/face contact of Figure 5.3-e.

The collision detection and contact management algorithm of Section 5.8 thus allows

for smooth transitions between contact types and offers the operator a wide repertoire of

pivoting contact motions.

4Because the results of the distance computation are reliable only when the distance between the two

polyhedra is positive, we must perform an extra step of separating the objects along the direction of smallest

translational distance, issue a call to the distance estimator while they are separated, and subsequently

return them to their original (penetrating) locations.

Chapter 6

Motion Restriction and Kinesthetic

Feedback

6.1 Motion Mode Classification

A teleprogramming system should offer the operator control over a wide range of slave

workcell motions both in free space (while approaching/leaving the work area) and in contact

with the surroundings (while performing the work). At the same time the operator should

be able to select different subsets of the physically realizable motion, which would allow her

to concentrate on only those motion parameters that are relevant to the current subtask.

This can be accomplished by defining a set of elementary motion modes, which provide a

collection of basic and intuitive motion modalities.

A natural way to simplify general motion (both for the operator and the slave robot)

is to separate rotations and translations whenever possible. This is particularly crucial in

contact motion, as the contact point is normally physically removed from the wrist-based

reference location (Fw, Figure 4.2)) where motion is commanded. This separation gives

rise to a remote compliance center and consequently introduces complex and dynamically

changing coupling between rotational and translational parameters of the wrist and contact

frames. This coupling may lead to control instabilities at the slave workcell ([Whitney,l982],

[Zhang,1986], [An&Hollerbach]) and may result in confusing reflected motion applied to the

master device and perceived by the operator.

The choice of elementary motion modes should strive to eliminate such coupling effects

without compromising the flexibility and power of the teleprogramming system. Therefore,

in view of the above considerations, we propose the following set of elementary classes of

6.2. Free Space Motion

motions:

1. Free Space Motion

free motion (both rotations and translations)

a translation (fixed orientation)

a rotation (fixed position)

2. Contact Motion

sliding (translation along constraint features, fixed orientation)

pivoting (rotational motion about contact point, fixed position)

pushing

Given a set of elementary motion modes, a mechanism to switch between them needs to be

designed. In order t o minimize the burden on the operator, mode switching should be done

automatically whenever possible. In particular, in contact motion, the motion mode can be

inferred automatically from the current contact state (between MO and the environment)

and the commanded force and motion input from the operator. In free space, on the other

hand, kinesthetic information can not be used for mode selection. In this case, as well as

when the operator wishes to override the automatically inferred mode, the operator can use

the audio interface to communicate the desired motion mode to the system.

6.2 Free Space Motion

In free space the system should offer the operator the maximum possible maneuverability.

At the same time it should aid the operator preserve positional/orientational parameters

that she wishes to keep constant during a significant portion of a manipulation task. For

instance, if the operator has achieved the desired approach orientation, then the system

should allow her to freeze (lock) it and subsequently concentrate on translational motion

of the slave robot (and MO) only. Similarly, situations may arise (e.g., screwing, valve

adjusting), where the operator has positioned the slave end-effector and wishes to freeze the

position and concentrate on grasping or turning the grasped feature. Therefore, we provide

three corresponding elementary free space modes of motion. One could proceed further

and introduce single d.0.f. motion modes restricting the operator's motion to translations

along a single direction at a time or rotations about a single axis. However, we have decided

48 6. Motion Restriction and Kinesthetic Feedback

against such facilities as they increase the burden on the operator of having to mentally keep

track of some task-based and view-dependent coordinate frame in which these restrictions

would be specified, all at a dubious benefit to the operator's ability to perform tasks more

easily or more efficiently.

Given the operator supplied commanded motion Ad = (t , r), the restricted motion Ad',

corresponding to each of the three free-space motion modes, is trivially computed as follows

free motion: Ad' = (t , r)

translation: Ad' = (t , 0)

rotation: Ad' = (0,r)

6.3 Contact Motion

The teleprogmmming system provides three contact motion modes, as indicated in Sec-

tion 6.1.

In sliding mode, the operator can slide MO along the constraining feature(s) (surfaces,

edges) in the permissible directions, i.e., such that none of the geometric motion constraints

are violated. The orientation of MO remains fixed for the duration of motion in this mode.

The system can be asked to help the operator maintain contact with the environment by

providing a small amount of surface adhesion, if desired, but will allow the operator to break

existing contact(s) if she clearly indicates such intent. This aids the operator in preserving

high-order contacts (which are presumed preferred), while still allowing her to transition to

an arbitrary adjacent contact. We will analyze this class of motions in the case of a single

constraint, as well as in a situation where multiple contacts are restricting the motion of

MO.

Alternatively, the operator can adjust the orientation of MO or transition between

adjacent contacts by rotating or pivoting about the contact point (pivoting mode). In

this mode the contact point is not allowed to slide along or depart from the supporting

environment contact feature. As the contact type (between MO and the environment)

changes, the contact point moves on the surfa,ce of MO and with it the pivoting point about

which rotational motions are computed. This allows a variety of reorienting and contact

changing motions of MO. Again, the system performs motion analysis on the commanded

displacements in order to aid the operator in achieving the desired changes of orientation.

6.4. Restriction Operators 49

The system also provides a restricted version of this motion modality for multiple-contact

configurations.

A third contact motion mode (pushing) is provided to support a rudimentary pushing ca-

pability. Predicting the exact outcome of pushing motions in actual situations is extremely

difficult, because the motion of a pushed object critically depends on the complex interac-

tions between the microscopic features of the two sliding surfaces [Peshkin&Sanderson,l987],

[Mason,1985], [Mason,1986]. Consequently, in order to generate instructions, which can be

executed successfully and reliably under slave's local sensory supervision, the system of-

fers only a restricted, straight-line pushing mode. In Section 6.4.4 we will address both

single-contact and multiple-contact pushing.

6.4 Restriction Operators

6.4.1 Contacts and Constraints

In Chapter 5 we described how the teleprogramming system detects collisions, examines con-

tacts, and maintains the resulting collection of all currently active contacts as the contact set

C. Associated with each contact are one or more mutually orthogonal Cartesian constraints

on the relative motion of the contacting objects [Mason&Salisbury,l985]. The number of

resulting motion constraints is a function of the geometric contact type (Section 5.2) and

the physical properties of the contacting surfaces (e.g., friction). It is crucial to note that

constraints in this context are defined with respect to Cartesian reference coordinates and

are thus mutually orthogonal. In contrast, the collection of contacts in C, and in particular

their associated contact normals, bear no particular relationship with each other and in

general will not be mutually orthogonal. For situations where multiple contacts define the

current contact state between two object, we must therefore orthogonalize the associated

constraints with respect to a set of reference coordinates in order to obtain a meaningful

description of the constraints, restricting the relative motion of the two bodies. In the trivial

case of a single contact, an orthogonal frame can be aligned with the only contact normal

and the resulting constraints can be defined in this frame. In the case of multiple contacts,

however, such a frame in general does not exist (unless all contact normals happen to be

mutually orthogonal). In this case, then, we need to define a set of orthogonal reference

coordinates and project the constraints associated with each contact into this common ref-

erence coordinate frame to obtain the constraint set S. Any subsequent motion imparted

on an object, whose contact set is given by C, is thus constrained by S. Specifically, effort

50 6. Motion Restriction and Kinesthetic Feed back

exerted on the object along any of the orthogonal constrained directions in S will not result

in motion.

In our case, the objects are MO and the environment. For each contact configuration

(regardless of its contact multiplicity) we will define a restriction frame FR, which will be

aligned with the dominant contact features and chosen so as to facilitate easy and intuitive

restriction of commanded motion with respect to the current constraint set. For single

contact configurations, the commanded motion, appropriately mapped into the restriction

frame, will be restricted with respect to the only constraint {cl) = C. For MO/environment

configurations with contact multiplicity greater than 1, on the other hand, the constraints

associated with the contacts c; E C will be mapped into this restriction frame and the

commanded motion will be restricted based on the resulting orthogonal set of motion con-

straints.

We will in the upcoming discussion use the terms contact normal and constraint nor-

mal interchangeably for single contact configurations. We will also refer to a constrained

direction ii; as the negative of the corresponding contact normal ni, i.e., ni = -n;.

In the following sections we will present the details of contact motion computation and

restriction for all three contact motion modes.

6.4.2 Sliding

Single contact sliding

Given the desired motion of the slave wrist (A Bd = (B t , Br)), we compute the corresponding

contact point translational motion as1

The contact information C, as defined in Section 5.7, specifies the single unit constraint

normal as Bn. The resulting restricted contact (as well as wrist) motion ABdl1 is therefore

given by

ABd'l = (Btl1
0) (6.2)

where

I t , otherwise

'Note that the incremental translational displacement of MO's contact point is the same as the com-

manded translational displacement of the slave's wrist frame Fw, despite the offset between them.

6.4. Restriction Operators

Figure 6.1: Single contact sliding.

Figure 6.1 illustrates a typical situation for single-contact sliding, where w.p. and c.p. de-

note the slave wrist center, where motion is commanded, and the contact point, respectively.

Note that for E > 0, the operation of Eq. (6.3) above will remove not only the component

of the commanded translation against the constraint normal n;, but also the component

along n; (i.e., away from the contact) if its magnitude is smaller than E (Figure 6.1). This,

in effect, provides a programmable amount of contact surface adhesion. Clearly, E can be

set to 0 and the effect disappears. Alternatively, E can be set to be small positive value,

in which case the system will aid the operator in preserving attained contacts, while still

allowing her to break a sliding contact if she indicates such intent by commanding a decisive

motion away from the contact surface.

Mul t ip le contact sliding

Figure 6.2 illustrates a typical situation, where the motion of MO is being restricted by

two contacts, with the corresponding constraints forming a non-orthogonal constraint set.'

In this situation the operator should be able to slide MO along both constraining surfaces,

break either contact and slide along the other contact's environment feature (surface), or

even break both contacts and transition to free-space motion.

Again we will assume that the commanded incremental slave wrist motion is given as

nBd = (Bt , Br). The analysis of the multi-contact case centers on identifying the primary

constrained direction iip (Section 6.4.1). The primary constrained direction is defined to be

the one which absorbs the largest component of the operator's exerted translational effort.

'A two-contact example has been chosen for illustrative convenience. The discussion and results of this

section apply to higher-multiplicity contacts as well.

6. Motion Restriction and Kinesthetic Feedback

Figure 6.2: Multiple contact sliding.

Computationally, it is taken to be the one with the largest (positive) projection o f t along

its unit direction (see Algorithm 6.1). Given the primary constrained direction n,, we then

construct an orthogonal restriction frame 3R, such that n, is one of its axes, and the cross

product with any other constrained direction iij, j # i, gives its second orthogonal axis,

i .e.,

This choice of a restriction coordinate frame is adopted because a commanded transla-

tional motion t in a multi-contact case will normally give rise to a sliding motion along

the constraint feature, whose associated constrained direction is closest to t . The goal of

this computation is not to produce dynamically, or even quasi-statically, correct motion

predictions, but merely to produce a resulting motion of MO in the simulated environment,

which appears intuitively correct with respect to the effort exerted on the master device by

the operator.

Having constructed the restriction frame, we then express both the commanded mo-

tion Bt and the constrained directions Biik in this frame (i.e., Rt,Riik) and restrict the

commanded slave wrist motion accordingly. Algorithm 6.1 below formalizes the restriction

procedure and supplies the necessary details. Steps 1 and 2 of the algorithm identify

the primary constrained direction iip. In step 3 we construct the restriction frame FR. The

commanded displacement *t is mapped into this frame in step 4. The core of the restriction

process is step 5, where each constrained direction ii is in turn rotated into the restriction

frame to produce the corresponding constraint set S. The components of the commanded

motion Rt are then restricted with respect to the A restriction operator, operating in 3 ~ .

6.4. Restriction Operators 53

1. for all c; E C, compute the projections pi = (~ t ~ i i ~)

2. let pk = max{pj) and let B f i p = B f i l c

3. construct the restriction frame F R , according to Eq. (6.4) and

define the rotational matrix B ~ R from FR (see Appendix A.2)

4. map Bt into FR, i.e., Rt = (BRR)-' * Bt

5. for each c E C, map c into FR and restrict Rt accordingly,
-1

a map Bi into F R , i.e., R f i = (BRR) * Bii

a restrict each component of Rt in turn, i.e.,

A (Rtz, Rfi,), A (R t y , Riiy) 5 A (R tZ , R f i z)

6. map restricted Rt back into FBI i.e., Bt' = B ~ R * Rt

Algorithm 6.1: Multi-contact sliding motion restriction.

This operator is defined as follows

a , if (b = 0) or (a . sgn(b)) 5 - 6
A(a,b) : a =

0 , otherwise

where a, b E IR. Therefore, in view of step 5 of Algorithm 6.1, any constrained components

of the commanded motion are zeroed. Also, small components away from the constrained

orthogonal directions are zeroed as well, providing a sense of surface adhesion as in the

single contact case above.3 Having performed the restriction operation on Rt, the restricted

commanded displacement Rt' is then rotated back into the base reference frame (step 6).

The restricted motion of the slave wrist is then assembled as a B d ' = (~ t ' , 0) .

Observe that a restriction frame is constructed even in the case where the original

commanded motion does not violate any of the active constraints, i.e., when all pi in step 1

are negative. This is done so that the removal of small components away from the contact

features in step 5 (which must be done in this case as well) is performed in an orthogonal

frame. Finally, for clarity, various optimizations of the above procedure have been omitted

(in particular, in step 5). Any implementation must consider these carefully.

3The same c value may be used both in single and multiple contact situations.

6. Motion Restriction and Kinesthetic Feedback

6.4.3 Pivoting

Single contact pivoting

Compu t ing t h e contact motion: As in the case of sliding, the input t o the restriction

module are the commanded (operator supplied) incremental motion of the slave wrist (a B d)

and the current contact information C (Section 5.7). The first step in the restriction process

is to compute the rotational motion of MO about the current contact point, based on the

supplied slave wrist motion and subject to the requirement that the contact point remain

fixed. In view of Section 4.3, the commanded incremental wrist displacement aBd can be

written as

where (f, 7) corresponds to the original operator's effort (force), exerted at the master de-

vice. The scalar parameters a and ,8 represent the product of the effective master impedance

and the magnification factors for translational and rotational motions, respectively (Sec-

tion 4.3). Under the assumption of contact point stiction, the operator's effort (f , T), applied

at the slave wrist, results in a moment about the contact point equal to

Using the relationship between exerted forces and incremental displacements of Eq. (6.6),

we obtain the equivalent rotational motion about the contact point as

1
r' = - (T + (p x f))

P
1

= - (Pr + Q(P X t)) P
Q

= r + - (p x t)
P

where all vector quantities in Eq. (6.7) and Eq. (6.8) are given in base coordinates (i.e.,

with respect to FB). Therefore, the contact displacement a B d t is

with "rl given by Eq. (6.8). Note that the dimension of the term a//? is

rad [;I = 2
and so the dimension of the resulting incremental rotational displacement is

[Br'] = rad

6.4. Restriction Operators 55

as expected. Also note that the magnitude of the resulting contact point rotation includes

contributions from both the rotation and translation at the slave wrist, i.e.,

where 4 is the angle between p and t. In particular, the magnitude of the contribution, due

to the exerted pure force f , is a function of the angle 4, as well as the offset between the slave

wrist and the contact point (llpll). AS the direction of the force f approaches the direction

of the offset vector p (i.e., p) (t) , the contribution vanishes. Similarly, assuming that

p x t # 0, the larger the offset llpll, the more significant the corresponding contribution.

Conversely, as this offset approaches zero, the corresponding contribution to the contact

rotation also vanishes, as expected.

Restr ic t ing t h e contact motion: Having computed the rotational motion of MO's

contact point, we now restrict this motion with respect to the constraints imposed by the

particular contact type. The restriction is done primarily to discard small (presumably

unintended) rotational components and has the effect of biasing the interpretation of op-

erator's motions towards higher order contact types. In the following paragraphs we will

describe the restriction procedure for each contact type.

In order to perform the restriction, we will first define a restriction frame FR, centered at

the contact point, and aligned with the dominant contact features. We will then express the

computed contact rotation of MO in this frame and perform the restriction with respect to

its coordinates. In each case the restriction frame will be defined in terms of the geometric

parameters supplied by the contact information C. (see Section 5.7). The input to this

restriction process is the contact point displacement n B d l as computed above.

(a) Point Contacts: A restriction frame need not be specified in this case as all three

orthogonal rotations are permissible in all point contacts (see Figure 6.3-a). Therefore, no

restriction is necessary and we have

(b) Line Contacts: A line contact always involves an edge (see Figure 5.1), and it is

this edge direction (Be), together with the constraint normal (Bn), that defines the most

convenient restriction frame, i.e.,

6. Motion Restriction and Kinesthetic Feedback

Figure 6.3: Single contact pivoting.

where Be and B n are assumed to be of unit magnitude. The specification of the rotational

matrix B ~ R follows immediately (see Appendix A.2). Figure 6.3-b illustrates the case of

an edge/face line contact.

The restriction operation is now performed by first rotating the contact point motion

aBd ' , using "RR, into the restriction frame to obtain n R d ' (see Appendix A.3). Removal

of small rotational components about (e x n), tending to destabilize the line contact is

then accomplished by applying the T restriction operator as follows

where the z-axis component of rotation has been removed completely under the assumption

of stiction, and the Y operator is defined as follows

0 , if 1x1 < <, > 0 T(x) =
x , otherwise

(c) P l a n e Contacts : The only representative of this class of contacts is the face/face

contact (see Figure 5.1). Here, the restriction frame is defined as follows

where v is any unit vector not parallel to n. As before, the rotational matrix B ~ R can be

constructed directly from the definition of the restriction frame. Figure 6.3-c illustrates the

situation.

Again, a two-stage restriction procedure is employed. The given rotational motion of

the contact point is first mapped from FB into FR (via the rotational matrix "RR). The

second stage then eliminates the rotational component about the contact normal (stiction)

6.4. Restriction Operators 57

and removes from Rr' small destabilizing rotations about the a: and y-axes of the restriction

frame, i.e.,

Rrl' = (T(Rr:)) Y (RT;)) 0)
where the T restriction operator is defined in Eq. (6.16) above.

Comput ing equivalent restricted wrist motion: Having computed the restricted mo-

tion of the pivoting contact point, we must now produce the corresponding motion of the

slave wrist in the reference (FB) coordinates, as this is the motion ultimately commanded

to the simulated slave manipulator. This is accomplished by mapping the restricted con-

tact point motion ARd" = (0 , Rrlt) into ~ ~ d " (see Appendix A.3) and computing the

corresponding displacement of the slave wrist in base coordinates, FB (see Appendix A.4).

Mult iple contact pivoting

In this section we extend the results of the previous section to accommodate a restricted, but

useful subset of multiple-contact pivoting motions. The restrictions are imposed to aid the

operator in performing simple and intuitive multi-contact rotations, keep the geometrical

and numerical complexity of the motion analysis low, as well as to limit the complexity of

the corresponding execution process at the remote site.

A typical situation which this motion mode is intended to address is one where the

operator has brought the movable object into a multi-contact configuration and wishes to

align MO with respect to the environment so as to obtain a higher order, and thus more

stable, contact type. Figure 6.4-a illustrates an example, where MO has been slid along a

surface (face/face contact) against a wall (vertex/face contact). This mode will allow the

operator to rotate the object into a stable configuration with respect to the environment

(i.e., edge/face wall contact, Figure 6.4-b) and align MO for subsequent sliding along either

or both of the constraining surfaces.

It is clear, that in view of the intended applications of this motion mode, the only practi-

cal situations will involve two contacts. Also, we will assume that realigning motions either

preserve or raise the order of existing contacts. Finally, as any pivoting multi-constraint

motion will involve sliding of the moving object along one of the constraining features, we

will require that one of the contacts be a face/face contact.

While the imposed conditions may seem restrictive, the allowed motions still span a

sizable set of useful realignment motions that may be needed in a practical application. For

instance, most two-contact situations will arise by sliding the movable object into a second

6. Motion Restriction and Kinesthetic Feed back

Figure 6.4: Multiple contact pivoting.

contact, where the single constraint sliding motion will be performed in a facelface contact

state for obvious reasons of convenience and stability. Similarly, upon encountering a second

contact, the most likely subsequent motion (if any) is one where the object is pivoted about

this new contact into a higher order multiple contact state.

In order to compute the allowed motion of MO in a two-contact situation, we will

again make use of the notion of a primary contact, cp. By convention, we will refer to

the mandatory face/face contact as the secondary contact, c,. The motion of MO will

then be computed as a pure rotation about the contact point associated with the primary

contact, and restricted such that it will not violate any of the constraints, resulting from

the secondary contact. Clearly, if any rotation is to take place, the primary contact must be

of a lower order (e.g., vertexlface, edgelface, faceledge, etc.) than the secondary contact.

Moreover, if the primary contact is a line contact (see Figure 5.1), then motion will only be

possible if the corresponding edge direction is parallel to the secondary contact normal n,

(see Figure 6.4).

Once again, let the original commanded motion of the slave wrist be given by n B d =

(Bt ,Br) . Assuming that the above set of conditions is satisfied, we identify the primary

contact c, and compute the rotational motion B< about its associated contact point as in

the case of single pivoting contact above. This rotation must then be restricted so as to

retain only the rotation about the axis parallel to the normal of the secondary constraint.

We therefore define a restriction frame TR, such that one of its axes (e.g., z) coincides with

this normal direction, i.e.,

and map the rotation Br' into this frame to obtain Rrl (see Appendix A.3). The restricted

6.4. Restriction Operators

rotation is then obtained trivially as

The remaining task is to compute the corresponding motion nBd" of the slave wrist in the

reference frame coordinates (FB). This is accomplished in a straightforward fashion as for

the case of single contact pivoting.

6.4.4 Pushing

Single contact pushing

As mentioned in Section 6.3, accurate prediction of the outcome of a pushing motion is

extremely difficult without a detailed knowledge of the surface textures and the distribu-

tion of the support forces. In order to facilitate rudimentary pushing operations and yet

generate instructions which can be executed successfully and reliably under the slave's local

supervision, we provide a simple pushing mode, where the operator can indicate to the

system that she wishes to push an object along a straight-line trajectory. We require that

the object to be pushed be in a planar (facelface) contact with some supporting surface

and that the task information (Section 3.6) indicate that this object is in fact pushable.

We also require that the slave establish a planar contact with the pushed object (PO). The

requirements of a straight-line pushing motion and a planar pushing contact (between PO

and the slave) minimize the possibility of slippage along the pushing contact or unexpected

twists of the pushed object in the actual environment.

A third requirement aimed at avoiding slippage along the pushing contact is that the

pushing contact plane have a "reasonable" orientation with respect to the sliding surface.

We quantify this condition by introducing a pushing frame

centered at the contact point associated with the pushing contact, and requiring that the

pushing aad sliding contact normals (n, and n,) form a sufficiently large angle a, so as to

prevent slippage (see Figure 6.5)*:

a = at an2 (1 1 np x ns 1 1 , n, - n,) > a,;, (6.22)

4The vector labeled t' in the figure is the projection of the commanded translation vector Bt onto the

x-z plane of Fp.

6. Motion Restriction and Kinesthetic Feedback

Figure 6.5: Single contact pushing.

Likewise, no sliding motion should be generated unless the commanded displacement

vector Bt lies below and has a positive component along the sliding direction Bd, (see

Figure 6.5). Rotating the commanded motion nBd into the pushing frame, we can express

the above conditions in terms of restrictions on nPd as follows

where
, ((~ t , , 0 ,0) , if ('1. > 0) and < 0) P t =

I 0 , otherwise

Computing the corresponding displacement nBdl then gives the resulting pushing motion

in the reference (FB) coordinates.

In order for pushing motion to take place, the operator must first establish a planar

contact with some environment object. The operator can signal her intent to push the

object by exerting a significant (and therefore easily identifiable) force against it or via

the audio interface. If the task model identifies this object as pushable, the system then

enters the pushing mode. In this mode, the graphical simulator rigidly attaches the pushed

object to the slave at the point of pushing contact and restricts subsequent commanded

slave motions according to Eq. (6.24) so as to move MO in a straight line along the sliding

surface. Similarly, a decisive pull away from the pushing contact or a corresponding voice

command will cause the system to exit the pushing mode.

Whereas a number of precautions have been taken to ensure that pushing motion com-

mands, generated at the operator's station, are simple and easily executable by the slave,

6.5. Ifinesthetic Feedback 6 1

things can still go wrong. In particular, as the operator's station relies on a kinematic

simulation of the slave world, the operator has no sense of the frictional forces and error

conditions such as the pushed object tipping over in the remote world can not be predicted

and detected ahead of time. Avoiding such situations is thus left to the operator who can

rely on her best guess of the relevant dynamic parameters in choosing a reasonable pushing

contact and a proper motion velocity.

Multiple contact pushing

In order to enhance the versatility of the system, we again extend the single-constraint

pushing motion mode to multi-contact situations. This class of motions is used to align a

free (i.e., not grasped) object with respect to a pair of environmental features or to slide

an object along an environmental feature by pushing it. The analysis of such aligning and

pushing motions is therefore analogous to the analysis of two-contact pivoting and sliding

motions, respectively.

6.5 Kinesthetic Feedback

It is well established that force reflection dramatically improves the sense of telepresence in

teleoperation [Goertz,1963], [Ferre11,1966], [Hannaford,l988]. In fact, it has been shown that

kinesthetic feedback can be at least as important as 3-D visual information [Kilpatrick,l976],

and that, in some circumstances, force feedback alone can be more valuable than visual

feedback alone [Ouh-young,l989].

One of the major features of the teleprogramming concept is the provision of real-time,

bilateral kinesthetic interaction between the operator and the virtual environment of the

graphical simulation, despite delayed communication with the remote site. The operator

supplies input to the system by exerting forces a t the master device and kinesthetically

specifies the desired motion of the virtual slave robot. Conversely, a teleprogmmming system

provides the operator with a sense of real-time kinesthetic feedback of the slave's interactions

with the virtual environment. Because the actual information arriving from the remote

site is delayed, this real-time kinesthetic feedback must be derived from the simulated

interactions between the virtual slave and its environment.

In view of Section 6.4, a teleprogramming system provides this facility by using the same

constraint set S, which was used above to restrict the contact motion of the virtual slave

6. Motion Restriction and Kinesthetic Feedback

... :.:.. , ::::::.:.:.:.:.,
S

.:.:.:.:.:.:.:.. .:.: :., ,,

S
.,.(.,:.::C,,.,.,.,,.. ..., . :..: C :::::::: ...

....
...*.... :.:<:::
.:.:I... .,.,.,.. ,,.,... :.:.:.:.

simulator master

Figure 6.6: Virtual slave and master arm motion restriction.

robot, to also restrict the operator-supplied commanded motion of the master arm, i.e.,

Figure 6.6 illustrates the flow of constraint information between the virtual environment

of the graphical simulation and the master arm. The constraint set is updated by the

simulation process a t each step and used to restrict the commanded motion of the simulated

slave. It is then transformed into the view independent coordinates (Section 4.3) and sent

to the master's controller. Here, the constraint set is scaled into the master's workspace

and applied to the input motion as derived from the operator's exerted effort (Section 4.3).

The operator-supplied motion command to the master arm Dm is therefore restricted by

the same set of restriction operators, introduced in Section 6.4, to produce the modified set

of motion parameters D',, which in turn are used to drive the master device. The master is

thus actively servoed to resist attempted motion in the constrained directions. This allows

the operator holding the master arm to kinesthetically feel the impact of contacting a surface,

reaching a corner, pivoting about an edge, etc. Despite its simplicity, this geometrically

derived kinesthetic feedback provides a good approximation to actual force reflection for

rigid- body environmental interactions.

The kinesthetic feedback facility not only provides for real-time pseudo force reflection,

but also ensures that the geometric correspondence between the master and the virtual

slave is maintained. This is crucial in order to maintain intuitive consistency between the

expected and perceived spatial relationships on the part of the operator. The combination of

consistent and mutually complementary real-time visual and kinesthetic feedback provides

the operator with a strong sense of teleperception, which is essential for natural and efficient

remote control of a robotic system.

Chapter 7

Symbolic Command Stream Generation

7.1 General

So far the operator can perform a task in the virtual environment by visually and kinesthet-

ically interacting with the simulation of the remote site. The next important feature of the

teleprogramming system is that the operator's station software is capable of monitoring the

operator's activity in this simulated environment and extract from it a stream of symbolic

robot instructions that capture all essential features of the task in progress. Figure 7.1

illustrates the "black-box" view of the command generation process.

Two sources of information are available to this module. The first consists of the low-

level position and force trajectories, imparted by the operator, together with the current

contact state and motion mode information. This information is provided directly by the

graphical simulator and is updated at each simulation step (Chapter 5). The other source of

information, which is available to the symbolic command generation module, is the a priori

information about the task in progress, as defined in Section 3.6. This task model allows

the teleprogramming system to anticipate, recognize, and correctly interpret special-purpose

operations which are being performed by the operator.

The output of the command generation module are symbolic instructions, which can be

again classified into two groups, as indicated in Figure 7.1. The first group is composed

of low-level commands, essentially encompassing guarded and compliant motions. These

commands are generated to execute simple tasks such as free-space navigation, motion into

contact with the environment, contour following, etc., and are generated solely on the basis

of positional, force and contact state information.

The special-purpose class of motions, on the other hand, encompasses special-purpose

7. Symbolic Command Stream Generation

Figure 7.1: The command generation process.

or fine-precision operations, which are best executed autonomously by the slave under local

sensory supervision. Examples of such actions include fine precision object alignment,

grasping and handling of fragile or deformable objects, high-dexterity dynamically reactive

manipulation tasks, etc. In this case, the task model provides global guidance to the process

of interpreting low-level motions in the simulated environment, such that these special-

purpose operations can be recognized in the input stream and proper symbolic instructions

generated. The teleprogramming system should also provide a facility, whereby the operator

could perform a small portion of a repetitive task (such as sawing, valve tightening, or

polishing) and specify to the system to continue executing this task fragment until some

terminating condition is met (such as excessive torque for valve tightening, or disappearance

of the normal and tangential forces in sawing). These "procedures" should be simple,

unparameterized, and defined on-line for one-time use. Again, the task model must contain

sufficient information about the structure of the task to allow the system to recognize the

opera,tor's intent to initiate such a subtask. Likewise, the correct terminating conditions,

corresponding to an initiated iterative procedure should be specified in (or inferable from)

the task model.

We will in this chapter focus on the low-level command stream generation as i t is the

more basic and fundamental of the two command types. Section 7.2.1 describes the overall

approach to low-level command generation and motivates the use of a hybrid position/force

control model as the framework for the resulting instruction stream. In Section 7.2.2 we

introduce the notion of execution environments, while Section 7.2.3 presents the global corn-

7.2. Low-level Command Generation 65

mand generation algorithm. In Sections 7.2.4 through 7.2.7 we then give detailed description

of the command generation process for various motion modes and contact configurations.

7.2 Low-level Command Generation

7.2.1 Approach

As the operator's station based model of the remote environment is only approximate

(within known tolerance bounds), the nature of the generated low-level commands must

reflect and accommodate the discrepancies between the modeled and the actual world.

While this is not critical during free space motion, it is vitally important when attempt-

ing to establish or maintain contact with the environment. Consequently, for the case of

contact motion, the system generates sequences of guarded and compliant motion primi-

tives, with the modeling uncertainties built into the motion parameters. Moreover, as the

operator's station based simulation of the slave environment is kinematic in nature, the

dynamic parameters of the requested motions (e.g., guard and compliance forces, frictional

parameters) can not be given precisely. Instead, symbolic (or normalized numerical) values

for these parameters are supplied to the slave, which in turn must substitute its estimates

of the actual values prior to execution. These estimates are based on the slave's previous

interactions with the environment, i.e., task history, and are derived from the local sensory

readings at the remote site.

In order to cope with modeling uncertainties, as well as to increase the execution re-

liability and robustness a t the remote site despite sensing and control errors, we adopted

the hybrid force/position model ([Mason,l981], [Raibert&Craig,l981]) for the command

stream generation process, as well as remote site execution. In this control methodology,

the Cartesian space of manipulator's end-effector motions is partitioned into free and con-

stmined directions. A free direction is one along (or about) which the manipulator can move

freely, but can not exert any forces (or moments) on the environment. These directions of

motion are therefore controlled in position mode. Dually, a constrained direction is one

along (or about) which the manipulator can not move, but can exert arbitrary forces (or

moments) on the environment. These axes are controlled in force mode. Thus, during free-

space motion all six Cartesian motion directions are designated as free and thus position

controlled. When in contact, on the other hand, the separation of the Cartesian motion

parameters into free and constrained directions is determined by the nature and alignment

of contact features. This normally results in position being controlled along some of the

66 7. Symbolic Command Stream Generation

Cartesian axes, while force is controlled along the others. The symbolic language, which

the system uses to specify low-level actions to the remote slave, was designed to match this

hybrid force/position control paradigm. Appendix B gives a description of the syntax and

semantics of the low-level symbolic command language.

7.2.2 Execution Environments

The command generation process proceeds in terms of execution environments. An exe-

cution environment is a sequence of elementary instructions, which completely specifies a

motion primitive and consists of pre-motion, motion, and post-motion phases.

The primary role of the pre-motion phase is to identify the coordinate frame (task frame

TF) in which the subsequent motion parameters are to be interpreted. One of two predefined

coordinate frames, the end-effector frame (EE) or the kinematic-base frame (KB), can be

selected, or an entirely new task frame can be constructed from any three component vectors

(origin plus any two axes). Moreover, the system can specify whether the task frame is to

move along with the manipulator (dynamic task frame) or remain fixed with respect to

world coordinates throughout the upcoming motion (static task frame) (see Appendix B

for syntax and details). By convention, free space motions are commanded with respect

to EE (dynamic frame). During contact manipulations, the task frame is centered at the

primary contact point (Section 6.4.2) and aligned with the contacting features in such a way

as to facilitate a clean separation of force and position controlled Cartesian directions for

the remote slave manipulator [Mason,l981]. Besides the task frame, the pre-motion phase

of an execution environment must specify the force guards in case of a guarded move and

ensure that the existing force preloads (if any), as well as the control mode information, are

correctly expressed in the new task frame.

The motion phase, in view of Section 6.1, specifies either a free-space movement, a sliding

motion, or a pivoting motion. Finally, following the motion, we may need to reset the force

guards to their default values (if the motion was guarded) and update the mode information

and force preloads to reflect the new contact set (if the motion resulted in addition or

deletion of contacts). These instructions are referred to as post-motion instructions.

7.2.3 The Global Algorithm

The telepmgramming system generates low-level symbolic commands by monitoring the

elapsed time, contact state information, and motion trajectories of the slave manipulator

and the movable object(s) in the simulated environment. A new sequence of instructions is

7.2. Low-level Command Generation 67

at the end of each simulation step {

1. ti t current time

2. ei + ti - ti-1

3. Ci t current contact set

4. Ci-l t old contact set

5. a K B d + end-effector displacement

6. case motion-mode of {

freespace : Section 7.2.4 (Algorithm 7.2)

sliding : Section 7.2.5 (Algorithm 7.4)

pivoting : Section 7.2.6 (Algorithm 7.5)

pushing : Section 7.2.7

1
7. if command-generated {

Algorithm 7.1: Low-level command generation algorithm.

issued after each addition or deletion of a contact or after the same contact state has per-

sisted for t,,, seconds. The time interval t,,, is a function of the rate at which significant

changes occur in the environment. Because this rate is limited by the human neuro-muscular

bandwidth, t,,, can be taken to be on the order of 1 second.

Algorithm 7.1 gives the global outline of the command generation process. Steps 1

and 2 of the algorithm compute the elapsed time since the time when the last execution

environment was generated. Steps 3 and 4 make available to the system the current and old

contact state information, as maintained by the graphical simulator (Chapter 5). In step 5

the incremental Cartesian end-effector displacement AKBd = (t, I-) is computed as follows

t = Trans (A K B ~) ; r = RPY (~ o t (a K B ~)) (7.1)

68

where

7. Symbolic Command Stream Generation

and the RPY operator denotes that the corresponding incremental rotational motion is

expressed as a roll/pitch/yaw vector. The homogeneous transform T6k in Eq. (7.2) above

denotes the location of the manipulator's wrist with respect to its kinematic base (KB)

at k-th simulation step. The heart of the procedure is step 6, where the changes in the

simulated environment since the generation of the last execution environment are examined

and the corresponding symbolic instructions generated, if appropriate. Different command

generation algorithms apply to different motion modes. We will develop each of these

algorithms in the following sections. Finally, if a new execution environment was generated

in this step, the relevant current information is stored to serve as "old" information for

subsequent iterations of the algorithm.

The following sections address command generation for free-space motion (Section 7.2.4),

as well as for each of the three contact motion modes (Sections 7.2.5 through 7.2.7). Each

section presents the analysis of representative cases and gives the corresponding execution

environments (command sequences), as well as the final algorithm, summarizing the results.

In the interest of brevity and proper emphasis on the methodology and semantics, rather

than syntax, we will in the following sections occasionally abbreviate the syntax of the

language (Appendix B). In particular, where no confusion can arise, we may write v in

place of the syntactic construct < v,,vy, v, >, indicate default parameter values simply as

<default>, etc. Other abbreviations and notational conventions will be introduced in the

text as needed.

7.2.4 Free-space Motion

During free-space motion, command generation proceeds in a straightforward fashion ac-

cording to Algorithm 7.2. The vectors t and r are the incremental translational and

rotational wrist-based displacements of Eq. (7.1), appropriately rotated into the current

task frame (EE), and t denotes the duration of the requested motion (seconds).

7.2. Low-level Command Generation 69

if (ei > tmax) {

case motion-mode of {

free-motion : Move (t; < t,,t,, t, >;< T,,T,, T, >)

translation : Move (t; < tx,ty,t, >;< 0,0,O >)

rotation : Move (t; < 0,0,0 >;< r,, r,, T, >)

}

1

Algorithm 7.2: Command generation algorithm for free-space motion.

7.2.5 Sliding

Case Analysis

(i) motion within contact: IIC;II > 0

1. Slide(t; < t,, t,, t, >) (7.3)

This case corresponds to sliding in contact (single or multiple) without changing the contact

type(s) or multiplicity. As in the case of free-space motion, a new execution environment

is generated if the sliding contact state persists for tmax seconds. Note that only the

motion trajectory information need be specified to the slave. The task frame as well as the

associated control modes and force preloads remain unchanged.

(ii) motion into contact: IIC;-l 1 1 = 0, IIC;II = 1

This case corresponds to the situation where the movable object is traasitioning from free-

space into a single-contact configuration. Figure 7.2 illustrates representative examples of

7. Symbolic Command Stream Generation

(a) (b) (c)

Figure 7.2: Representative examples of the three contact classes.

the three possible contact configurations on impact (see also Figure 5.1). In each case, as

indicated by the corresponding figures, the task frame is centered at the impending contact

point and aligned with the impending contact features.' The task frame T F in each of the

above cases is specified with a sequence of instructions of the form2

1. DefineVector(CP;< cp,, cp,, cp, >:Fl)

2. DefineVector(X;< ax,, ax,, ax, >:F2)

3. DefineVector(Z;< az,, az, , az, >:F3)

4. DefineTaskFrame(TF:F4;CP;X;?;Z)

where CP denotes the contact point (task frame origin) and X and Z label the corresponding

T F axes. The numeric values of the vectors are obtained from the graphical simulation.

The coordinate frames F1 through F4 are not necessarily distinct and must either have been

defined with a previous DefineTaskFrame command or are equal to one of the predefined

coordinate frames (EE or KB). In the interest of brevity we will omit these task frame

specification instruction sequences and indicate their presence with an ellipse (. a) , where

appropriate, as in the execution environment 7.4 above.

The pre-motion phase (instructions 1-2) of the execution environment (7.4) identify the

task frame to be used throughout the environment, and indicate to the slave controller

that a contact force in the approach direction (TF z-axis) is expected during the upcoming

motion. The contact force FcOntact is specified as a normalized numerical value, rather than

an actual force value. The incremental motion parameters t and r , as computed from

the graphical simulation (Section 7.2.3), are adjusted by the estimated upper bounds on

'Note the similarity of this task frame assignment to the assignment of the restriction frame in Chapter 6.

2See Appendix B for the explanation of the syntax and semantics of vector and frame specification.

7.2. Low-level Command Generation 71

the positional (E,) and orientational (E,) uncertainty in the world model (Section 3.2).3

Once the guard force is encountered and the motion stops, the post-motion phase begins

by updating the control mode information. In view of Figure 7.2, the six-vector of modes,

specified in instruction 4, is given as follows

for a point contact

for a line contact

for a plane contact

The post-motion phase terminates by specifying a compliance force against the new con-

straint (along negative TF z-axis), and resetting the force guards to their default values.

Again, Fcomply will be given as a normalized numerical value, and its actual magnitude

will be determined at 'the remote site, based on the frictional properties of the contact.

For sliding motions, Fcomply will normally be a relatively small force to avoid introducing

excessive additional contact friction. In particular, we presumably have FcOntact > Fcomply,

and we may therefore want to distinguish between compliance and contact forces by using

different normalized values for the two.

(iii) motion out of contact: IIC;-lll > 0, llCill = 0

This case corresponds to the situation where MO breaks contact(s) with the environment

and transitions into free-space. The pre-motion phase here specifies that the end-effector

frame (EE) is to be used as the task frame (see Section 7.2.2), zeroes any force preloads

and compliance forces, and places all task frame axes into position mode. The post-motion

phase in this case is null.

3 ~ h e notation sgn(u)v is used t o denote < sgn(u,)v,,sgn(uy)vy, sgn(uz)vz >.

72 7. Symbolic Command Stream Generation

(iv) mot ion in to contact: IIC;-lll > 0, IIC;II > IIC;-111

TF=(?,7, n,)

GuardForce(< f,, f,, f, >; < T,,T,,T, >)

Slide(t; t + sgn(t)~,)

AssignMode(. -) (7.6)

Force(. -)

GuardForce(<default>)

This case corresponds to the situation where MO, already in contact, reaches a higher

contact multiplicity configuration (i.e., another contact). The old task frame TF;-l is used

to specify the sliding motion into the new contact state. The pre-motion phase therefore

consists only of specifying the guard forces, which are to be expected during the upcoming

motion. These guard forces must be expressed in the task frame (TF) and are computed

as follows

T F h'B T F f = RKB * K B f = T F ~ K B * (a n)

T F T = i (K B I x 1 c B f) = T F ~ K B t K B (I x (a n)) (7-7)

where n is the contact normal of the upcoming contact c. As before, within the framework

of symbolic instruction generation, a n is taken as the normalized value of the contact force

vector (a E R). The vector 1 denotes the KB-frame moment arm connecting the origin of

T F with the impending contact point (see the figure).

Following the motion, the new contact c E C; must be reflected in the control mode and

force preload information. Therefore, the post-motion phase in this case needs to project

the newly added force controlled directions into T F and properly update the mode and

force information (instructions 3 and 4). Depending on the type of the new contact, the

added force/torque controlled directions are given in c's local frame of reference as shown

in Table 7.1.~ These additional force controlled directions are mapped into T F and their

contributions reflected in the TF-based force preload and mode information according to

the procedure given in Algorithm 7.3. In view of Table 7.1, steps 2 and 3 of Algorithm 7.3

compute the new force and torque controlled directions in TF, respectively, and return the

updated information in the six-vector force. Likewise, the updated six-vector of T F control

modes is returned in mode. The parameter X 5 1 in Algorithm 7.3 denotes the normalized

force projection threshold, i.e., if any of the new force/torque controlled directions project

onto more that 100X% of a position controlled T F axis, then this axis is designated as

*The vector n' in Table 7.1 is chosen such that n x n' # 0.

7.2. Low-level Command Generation

1. T F n = T F R I C B * K B n

2. for j = 1 t o 3 do {

1
3. case ContactClass(c) {

contact class

point contact

line contact

pla.ne contact

force

n

n

n

point-contact :

line-contact : TFu = T F ~ ~ ~ * IiB(n x e)

Table 7.1: Local force/torque constraints for the three contact classes.

torque

0

n x e

n x n', (n x n') x n

for j = 1 t o 3 do {

if (IITFulj] 1 1 > A) model i t31 = F

1
plane-contact : T F ~ = T F ~ ~ ~ * ICB(n x n')

T F v = T F ~ K B * I C B ((n x n') x n)

for j = 1 to 3 do {

if (IITFuh] 1 1 > A) rnodeCjf 31 = F

if (IITFvlj] 11 > A) modelj+3] = F

}

Algorithm 7.3: Computing force and control mode information.

74 7. Symbolic Command Stream Generation

force controlled and a force preload is specified along it.5 Note that the correct direction

of the force preload needs to be identified for each axis in step 2 as compliance forces are

specified against constrained directions. Moreover, torque preloads are identically zero and

so force[4-61 need not be computed in step 3.

The mode information as computed in mode is then used to instantiate instruction 3 in

the execution environnient (7.6) above. Likewise, the force information returned in force

gives the normalized force preloads required by instruction 4. Finally, in instruction 5 the

post-motion phase of the execution environment terminates by resetting the force guards

that were in effect during the motion into contact to their default values.

(v) motion o u t of contact: IIC;II > 0

. . .

1. UseFrame(TF)

2. AssignMode(. - -)

3. Force(. . .)
4. Slide(t;< t,, t,,t, >)

This case corresponds to sliding from a higher-multiplicity to a lower-multiplicity contact.

The pre-motion phase defines the new task frame, based on the new primary contact point

and the new contact set Ci. In order to properly reflect the new (reduced) contact set in

the control mode and force preload information in the new task frame, we again make use

of Algorithm 7.3, where the algorithm is called once for each c E C;. The resulting mode

and force preload information is then used to instantiate instructions 2 and 3 above.

The Algor i thm

The complete command generation procedure for sliding motions is given in Algorithm 7.4.

For simplicity, the above discussion of contact sliding motions omitted the specification of

velocity guards (Guardve loc i ty statement, Appendix B). Velocity guards can be specified

along force controlled task frame axes in situations where there is a danger of the movable

object accidentally being slid off the supporting surface (e.g., the supporting environment

feature is small or MO is being slid close to a supporting surface edge). Should MO be

accidentally slid off the supporting surface and start falling, a sudden acceleration along

the corresponding force controlled task frame axis would trigger the velocity guard condition

5 A reasonable value for X may be 0.15 (15%).

7.2. Low-level Command Generation

case nc; of {

1 : case (ii) of Section 7.2.5

2, 3 : case (iv) of Section 7.2.5

}

1
else i f (nc; < {

case nc; of {

0 : case (iii) of Section 7.2.5

1, 2 : case (v) of Section 7.2.5

1
}
else i f (e; > t,,,) {

case (i) of Section 7.2.5

}

Algorithm 7.4: Command generation algorithm for sliding contact motion.

76 7. Symbolic Command Stream Generation

and stop the motion. In fact, we may choose to explicitly specify such velocity guards along

every force controlled direction or, indeed, specify them implicitly by making their presence

the default.

7.2.6 Pivoting

For the case of pivoting, the slave workcell is asked to execute a motion, which results in a

pure translation about the current contact point. We will assume in the case analysis below

that the slave manipulator (e.g., MO) has been brought into contact with the environment

and that the pivoting motion mode has been selected. In order to aid the remote workcell

in executing pivoting motions, we will request a substantial compliance force FpiVot against

the supporting surface (i.e., Fpivot > Fcomply) and assume the frictional contact model

[Mason&Salisbury,l985]. The hybrid control modes for the case of pivoting motions are

therefore assigned as follows

(W9',P7P,P) for a point contact

(F,F,F,F,P,F) for a line contact

(F',F,F,F,F,F) for a plane contact

Case Analysis

(i) pivoting within contact type: IIC;II = 1

This case pertains to the single-contact pivoting situations where the incremental motion

does not change the contact type. In view of Figure 7.2, the following single command

execution environments are generated for the case of point, line, and plane contact, respec-

tively

(a) Pivot(t ; < r,, r,, r, >)

(b) Pivot(t ; < O,r,,r, >)

(c) Pivot(t; < O,O,r, >)

Note that the rotational contact motion is specified in the old task frame. Also, the existing

mode information as well as force preloads (compliance forces) remain in effect. The above

commands are generated only after the contact state has persisted for t,,, seconds.

7.2. Low-level Command Generation

(ii) pivoting between contact types: (IC;(I = 1

This case pertains to situations where the motion to be commanded to the slave changes

the (single) contact type between MO and the environment. The following four cases detail

command generation for a representative subset of all possible situations.

(a) point contact + line contact

2. GuardForce(0; < -sgn(B,)(E . Fc,,tact)7 0,O >)

3. Pivot (t ; < 8, + sgn(O,)~,, 8,, 8, >)
. . . (7.10)

Here, the pre-motion phase aligns TF with the impending edge contact and specifies the

proper torque guard on T F x-axis. Following the motion, the task frame is repositioned (no

change in orientation) to the center of the new edge contact (instruction 4), and the mode

information is updated to reflect the new contact state.

(b) line contact -+ point contact

In this case, the pre-motion phase translates the task frame to the upcoming vertex contact.

Control modes are updated following the motion.

78 7. Symbolic Command Stream Generation

(c) line contact + plane contact

The pre-motion phase need not change the task frame. However, following the guarded

motion into the planar contact, the task frame is translated to the centroid of the contacting

planar surface (instruction 3), and the control modes are updated with respect to the new

contact state.

(d) plane contact i line contact

TF=(?,e, n)

In this case, the pre-motion stage positions the task frame at the center of the edge, cor-

responding to the upcoming line contact feature, and properly aligns T F with the edge

direction. Mode information is updated in the post-motion phase.

(iii) pivoting i n multiple contact: llCdll = 2

TF = (7, n,x n,, n,) 6. UseFrame(TF')

7. AssignMode(F,F,F,F,F,F)

8. GuardForce(< default >)

This case encompasses the reorienting pivoting motions with two active contacts as discussed

7.2. Low-level Command Generation 79

in Section 6.4.3. Using the conventions and terminology introduced in Chapter 6, the task

frame T F is centered at the primary contact point and aligned as shown in the figure above

(instruction 1). The pre-motion force preload and mode information is then properly rotated

into this new task frame by invoking Algorithm 7.3 for each contact c E C;-l (instructions 2

and 3). The pre-motion phase of the execution environment terminates by specifying the

necessary guard forces relative to T F (instruction 4). Following the rotational motion about

TF z-u is , the task frame is repositioned to the primary contact feature centroid and the

mode information is updated to reflect the changed nature of the contact set (instructions 6

and 7). Note that the preload information need not be updated, as zero torque preloads are

the default. Finally, as in every guarded move, the guard forces are reset t o their default

values following the motion.

The Algori thm

The complete command generation procedure for pivoting motions is given in Algorithm 7.5,

where ci-1 and c; denote the primary contact before and after the motion, respectively.

7.2.7 Pushing

The command generation for the three basic types of pushing motions - straight-line single

contact pushing, rotational realignment pushing, and pushing along a pair of surfaces (Sec-

tion 6.4.4) proceeds analogously to the command generation for the corresponding sliding

and pivoting cases. The only exception is the addition of force/torque preloads along the

pushing directions. These are specified in order to aid the slave manipulator in overcoming

the frictional forces, working against the desired motion. In the interest of brevity we will

omit the detailed description of the corresponding execution environments.

As in the case of sliding, we may also choose to specify velocity guards along the push-

ing direction to detect conditions such as tipping or twisting of the pushed object. Both

conditions would result in sudden acceleration of the slave arm along the pushing direction,

which in turn would trigger the velocity guards and safely stop the motion.

7. Symbolic Command Stream Generation

case nc; of {

1 : case ContactClass(ci) o f {

point-contact : case ContactClass(c;-I) of {

point-contact : case (i.a) of Section 7.2.6

line-contact : case (ii.a) of Section 7.2.6

plane-contact : ?

}
line-contact : case C~ntac tC lass(c~-~) of {

point-contact : case (ii.b) o f Section 7.2.6

line-contact : case (i.b) o f Section 7.2.6

plane-contact : case (ii.c) o f Section 7.2.6

1
planerontact : case ContactClass(c;-I) o f {

point-contact : ?

line-contact : case (i d) o f Section 7.2.6

plane-contact : case (i.c) of Section 7.2.6

1
}

2 : case (iii) o f Section 7.2.6

Algorithm 7.5: Command generation algorithm for pivoting contact motion.

Chapter 8

The Remote Slave

The preceding chapters (4 through 7) have dealt with the operator's station portion of the

teleprogramming system (see Figure 3.2). The operator's station visually and kinestheti-

cally couples a human operator to a graphical simulation of the remote environment and

allows her to interactively, via a 6 d.0.f. master device, specify the task to be performed

remotely. The final output of the operator's station, as described in Chapter 7, is a stream

of execution environments, each containing a description of an elementary motion or action

to be performed by the slave workcell.

In this chapter we turn our attention to the remote slave workcell and its interaction

with the environment as well as with the operator's station. In the upcoming sections

we will first address the instruction parsing and translation (Section 8.1). We will next

present a strategy for parsing, scheduling, and executing the received instructions, which

guarantees that the time lag between the master and the slave will not increase during the

task (Section 8.2). In Section 8.3 we suggest a simple Cartesian level hybrid force/position

control algorithm for the slave manipulator, and Section 8.4 closes our brief treatment of

the remote workcell with some general comments on error handling and recovery.

8.1 Command Parsing and Translation

As the operator performs a task by interacting with a ground-station based graphical sim-

ulation of the remote environment, the operator's station software generates (on line) a

stream of symbolic instructions, describing the operator's activity in the simulated envi-

ronment (Chapter 7). These instructions, grouped into execution environments, arrive to

the remote workcell a transmission delay T after they were generated and sent from the

8. The Remote Slave

operator's station. Execution at the remote site then proceeds by

1. parsing and translating the contents of successive execution environments into the

local control language,

2. substituting numerical values for the symbolic (or normalized numeric) dynamic pa-

rameters (e.g . , friction coefficients, compliance force levels),

3. passing the resulting code to the local controller for execution, and

4. monitoring the execution process - detecting error conditions, stopping the slave

workcell safely on error, and reporting resulting error state to the operator's station

The symbolic command language, which is used by the teleprogramming system to

encode elementary slave motion and action information (Appendix B), was designed to

be closely compatible with the hybrid position/force control paradigm, as proposed by

[Raibert&Craig,l981]. If the slave control software supports the same control strategy, then

the process of parsing the incoming symbolic instructions and producing the corresponding

instructions, which are directly executable by the local slave controller, is straightforward.

The symbolic command language described in Appendix B is a context-free language

and consists of simple declarative statements with no looping or branching constructs. The

corresponding BNF grammar can therefore be readily produced and fed to an automatic

parser generator (such as yacc) to produce a parser (an LALR parser in case of yacc)

[Aho et a1.,1986]. Having produced a parser, the code generation process then proceeds as

follows:

1. Some of the instructions, such as UseFrame, AssignMode, Move, P ivot , and

Slide, set the corresponding control parameters (i.e., current task frame, control

modes, motion time and trajectory) in the slave's controller directly, and no additional

processing is necessary.

2. Other instructions, such as Force, GuardForce, and GuardVelocity, however, do

require some additional processing. In particular, in view of the kinematic nature

of the operator's station based simulation (Chapter 5)) the parameters, supplied by

these instructions, do not reflect proper dynamics of the slave manipulator and the

environmental objects being manipulated. As we saw in Chapter 7, the instructions

instead contain symbolic or normalized numeric values to denote dynamic parameters,

such as frictional properties of a sliding contact, compliance forces during sliding,

8.1. Command Parsing and Translation

WST ORG EE KB

. VECTOR VECTOR FRAME FRAME
EE KB EE

Null Vector ldenlty
Transform

Figure 8.1: Slave controller symbol table.

guard forces while approaching a new contact, etc. The translation process must

therefore substitute actual (estimated) values for the symbolic placeholders. These

estimates of the dynamic parameters of the slave's interaction with the environment

are refined as the task progresses and sensory measurements can be used to get a

better sense of the frictional characteristics of the immediate environment, masses

and inertial properties of the manipulated objects, etc. The responsibility of obtaining

this information lies with the slave controller which must keep track of the relevant

dynamic parameters and record the necessary sensory data during motion, in order

to maintain updated estimates of their actual values.

3. The third group of instructions, represented by Definevector and DefineTask-

Frame, serves to update the symbol table of currently defined vectors and coordinate

frames, known to the slave controller. In view of Section 7.2.2, the symbol table con-

tains four predefined entries and has the general form as illustrated in Figure 8.1.'

The two frames KB and EE correspond to the kinematic base and end-effector (wrist)

frames, respectively. Likewise, ORG and WST denote their respective origins in local

coordinates. This suffices to bootstrap the task frame definition process, whereby new

vectors can be defined with respect to any defined coordinate frame, and new task

frames, in turn, can be composed from any combination of these vectors. In view

of Section 7.2.2, task frames are specified to be either static (defined with respect to

I<B) or dynamic (defined with respect to EE). The symbol table of Figure 8.1 can

therefore be thought of as encoding the conceptual data structure of Figure 8.2. In

order to correctly translate a statement of the form

'For clarity, the symbol table in Figure 8.1 is shown as a linked list. More time and space efficient data

structures, such as hash tables, should be used in actual implementations.

8. The Remote Slave

Figure 8.2: Conceptual relationship between task frames.

1. dst-fm = Fj

2. srcfm = (Lookup(v))-+ref-fm

3. dst-root = Lookup(dstfm)-tref-fm

4. src-root = Lookup(src~fm)+ref~fm

5 . T = I

6. if (dst-fm # dst-root) T = T * (~ooku~(dst-fm)-+value)-'

7. if (src-root # dst-root) T = T * ((dst-root == KB) ? T6 : ~ 6 - I)

8. if (srcfm # src-root) T = T * Lookup(src-fm)-tvalue

Algorithm 8.1: Traversing the symbol table to compute d s t - f m ~ src-fm.

the vectors V1, V2, and V3 must be rotated from their respective reference frames

(defined as part of their symbol table entries) into F3 and the resulting vectors used

to assemble the new coordinate frame data structure FTF. The corresponding symbol

table entry with name=TF, type=FRAME, ref-fm=F3, and value=FTF is then added

to the symbol table. The key operation in this context is fast and efficient mapping

of a vector v, given with respect to Fi coordinates, into Fj coordinates. In order to

affect this transformation, the parser/translator needs to compute the transformation

(rotation matrix) F j ~ F i . In view of Figure 8.2, the corresponding procedure is given

by Algorithm 8.1. Note that further optimizations of the algorithms are possible.

They have been omitted here for brevity and simplicity.

8.2 Execution Management and Lag Control

During execution care must be ta.ken to avoid increasing the lag time 7 between the master

and the slave manipulators as the task proceeds. A straightforward dequeue-parse-execute

8.2. Execution Management and Lag Control

Figure 8.3: Sequential dequeue-parse-execute execution management.

loop leads to the behavior of Figure 8.3, where the lag time increases throughout the dura-

tion of the task. The following notation is used in Figure 8.3 and throughout this section

a - the ith execution environment

gT; - time when started being generated

sTi - time when a was sent from the operator's station

rT; - time when a was received by the remote controller

eTi - time when a began executing at the remote site

t ; - execution length of

pti - parsing time for a
wti - time spent waiting for 0

The waiting time wt; is defined as follows

; - (T 1 + t) , if rTi > (eTi-1 + 1 ; - 1)
wt; =

otherwise

Note that the waiting time can not be negative. Then, using sequential dequeue-parse-

execute approach, the lag time 7; at time eTi (just before executing a) is given by

86 8. The Remote Slave

Eq. (8.2) implies that even if the sum of waiting times is bounded, i.e., if

lim zutj < W
i-00 .

]=I

for some arbitrarily large constant W, we have

lim 17; = oa
i400

indicating that the lag time not only increases as the task progresses, but is in fact un-

bounded.

In order to solve this problem, we employ a double-buffering execution scheme, as illus-

trated in Figure 8.4. In the double-buffering execution paradigm each dequeued execution

environment is translated and placed into a command bufler. The remote controller main-

tains two such buffers (A and B in Figure 8.4) - while one is being executed, the other

is being constructed by parsing and translating the next execution environment. We will

show below that the combination of this parallelism and an artificially introduced holding

time htl, which delays the execution of a by htl , can be used to control the lag. The

holding time htl initially increases the 1a.g time, but keeps it constant and bounded from

then on, as will be shown below.

In terms of the above nomenclature, the necessary and sufficient condition to ensure

non-increasing lag time 7, is

A stricter version of the above condition can be stated as the following pair of requirements

Vi : rT; 5 eT;-l , and

V : pt; 5 ti-1

Clearly, satisfaction of conditions (8.6) and (8.7) implies satisfaction of condition (8.5). The

above requires a to have arrived at the remote site before the (i - l) th execution environ-

ment begins executing, and that a be ready for execution (parsed and translated into the

back-up command buffer) before the (i - l) th execution environment finishes executing.

Practical considerations allow us to assume that the requirement of Eq. (8.7) will be satis-

fied in all situations. What remains to be shown is that we can guarantee the condition of

Eq. (8.6). The following proposition establishes this result. See Figure 8.5 for illustration.

8.2. Execution Management and Lag Control

Figure 8.4: Double-buffering remote site execution scheme.

8. The Remote Slave

Figure 8.5: Double-buffering execution management.

Proposition : Let htl = (2tmax - t l) and assume that V i : pt; 5 Then

'di : TT; 5 eT;-l and 7 5 (2tmaX + r)

Proof : In double-buffering execution paradigm, the times gT;, sTi, TT;, and eT; are

formally defined as follows

Recalling that t; 5 tma, (Chapter 7) , we have

8.3. Control of the Slave Manipulator

Moreover,

= lim (t l t T + h t l)
i-+w

This completes the proof that the double-buffering execution scheme keeps the lag time

between the master and the slave arms not only bounded, but constant throughout the

execution of a teleprogramming task.

Notice, however, that the above execution scheme maintains a lag time of q = 2tma,

even in the presence of no communication delay (T = 0). This is a direct consequence of

conditions (8.6) and (8.7).

8.3 Control of the Slave Manipulator

The symbolic instructions arriving at the slave site are based on an imperfect model of the

actual environment. Despite the fact that the critical motion parameters (e.g., distances to

surfaces or edges) have been computed so as to account for the estimated uncertainties in the

modeling, other information, such as constraint normals and therefore task frame axes, may

be out of alignment with the actual environment. This, coupled with sensing and control

errors during execution, may cause execution failures. Consequently, a robust controller

and integrated real-time sensing capability is needed to handle contact interactions with

imperfectly known environment. The slave execution process must proceed as a high-

bandwidth local feedback loop with sensory input participating in the real-time control

decisions. Among the sensors that can be used at the remote site are CCD cameras, laser

90 8. The Remote Slave

range finders, sonar scanners, force sensors, etc. At minimum, the slave manipulator needs

to be equipped with a sensor of external forces acting on the manipulator's end-effector.

This is a central requirement of the hybrid position/force control strategy which relies on the

manipulator's ability to realize arbitrary force trajectories in a Cartesian contact-based task

frame. Additionally, a small amount of end-effector passive compliance may dramatically

reduce the problem of control instabilities on contact with the environment [Xu&Pau1,1989].

We propose to use the Cartesian hybrid control algorithm, illustrated in Figure 8.6

[Fisher,l991]. The inputs to the controller are the desired position (xd) and force (fd)

TF

Figure 8.6: Slave hybrid force/position controller.

x a

I

trajectories of the slave manipulator, along with the current actual position (x,) and sensed

external forces (fa). All Cartesian input quantities relate to and are expressed in the current

task frame (TI?). The vectors TFx, and TFfe denote the six-vectors of positional and force

errors in TF. S denotes the selection matrix (functionally analogous to the mode vector of

Chapter 7), and S' denotes its orthogonal complement. The pseudo-inverse of the selected

Jacobian matrix (SJ)+ is then used to map the subspace of the selected Cartesian errors

into the corresponding joint displacement errors. Similarly, the transpose of the selected

Jacobian matrix (s'J)~ maps the Cartesian force errors into the corresponding joint torque

 error^.^ The position and force control laws then produce control torques, whose sum is fed

to the robot. Note also that the feedback quantities must be appropriately transformed into

the task frame (the actual joint displacements 8, are mapped through direct kinematics into

the corresponding Cartesian task frame displacements, and the external forces, measured

force

'See [Fisher,l991] for a detailed description and derivation of these mappings.

-
forward

kinematics4

TFfa
transform

SFfa

@a

8.4. Error Handling and Recovery 91

in the sensor frame SFfa, are mapped into the equivalent force vector in the task frame).

8.4 Error Handling and Recovery

As we saw in Chapter 7, the low-level contact motions consist of guarded and compliant

moves with built-in estimated modeling errors. This, along with the control algorithm of

Section 8.3 should provide for stable and reliable execution of the commanded motions at

the remote site. However, things still may (and will!) go wrong. Some of the common errors

encountered during execution are not reaching an expected motion terminating condition

(force, distance), hitting an obstacle in the workspace, stopping prematurely by mistaking

friction forces for guard conditions, jamming, etc. The slave should be able to detect most

of these error conditions by monitoring its position, velocity, force at the end-effector, and

motor torques. Information from the external sensors, such as vision cameras, can be

used (if available) to confirm an error condition and aid the system in gathering relevant

information about the error state.

Upon detecting an error, the slave must respond in a manner that minimizes the possi-

bility of damage to itself, as well as to environmental objects. If relatively small and static

unexpected forces are encountered, the slave controller may choose to stop and maintain

the current position until the operator can resolve the situation. Alternatively, the slave

may need to comply with large time-varying forces to avoid damage to the arm. Low-level

default error handlers should be in place to stop the manipulator when significant forces

are encountered along a position controlled direction, and designate the corresponding task

frame axis as force controlled until the condition is relayed to the operator and resolved.

Likewise, a sudden acceleration (or velocity) along a force controlled direction should stop

the motion and place the corresponding axis in position mode, as this situation probably

corresponds to loss of supporting surface (i.e., falling).

Upon detecting an error condition, it is critical that the slave be able to gather as much

relevant information about the error state as possible, and relay this information to the

operator's station. Because of the transmission and other delays between the operator's

station and the remote site, the operator learns about an error condition at the slave site

q+r seconds later. During this time, the operator had continued with the task and possibly

modified the simulated environment. The error packet arriving from the slave must therefore

contain sufficient information to restore the simulated environment (and the display) to the

error state and present to the operator the critical remote site sensory data. Moreover,

8. The Remote Slave

as discussed in Section 3.8, the error information can also provide local corrections to

the operator's station based world model, by giving more accurate information about the

location of various environmental features. The error reporting and resolving mechanism

can therefore also be used to facilitate on-line refinement of the world model.

If the initial error state information, as received by the operator's station, should not

suffice for the operator to understand the nature of the problem at the remote site, she

should be able to initiate exploratory actions at the slave workcell (e.g., request additional

camera views of the contact area) and gather additional information. Once the operator

has determined the cause of the error, she can specify corrective actions to recover from the

error and continue with the task.

The critical feature of this approach to error recovery is that the operator is asked to re-

solve the error condition. This capitalizes on the fact that people are much better at quickly

grasping the nature of an arbitrary error state and planning appropriate corrective actions

than any automatic state-of-the-art reasoning system. Most importantly, this approach to

remote manipulation and error recovery eliminates the need for off-line pre-programming

of error handlers for all possible error situations, which is a hopeless undertaking in any

realistic application (Chapter 1).

Chapter 9

Experimental Results

9.1 The Experiment

In order to test the teleprogramming control methodology, we designed and implemented an

experimental teleprogramming system, called MERIONETTE. The hardware and software

structure of MERIONETTE, as well as the origin of its name, are described in Appendix C.

We have chosen a relatively simple task on which to asses the feasibility of the telepro-

gramming control methodology as well as the performance of our experimental system. The

task was to explore the inside of an open box using a near-cubic end-effector (a Kleenex box),

which was attached at the end of the slave's compliant wrist assembly (see Appendix C).

Figure 9.1 illustrates the task environment. The box exploration task was chosen because

of its interactive nature - while performing the task, the operator spends much of the time

in contact with the environment (the box), sliding along surfaces, reaching corners, etc.

This allows extensive testing of many of the critical features of the teleprogramming control

paradigm: the kinesthetic interaction between the operator and the simulated environment,

on-line low-level symbolic command generation, remote site command translation and hy-

brid control execution, as well as the preliminary version of error detection and recovery.

The box and end-effector probe dimensions were 41 x 36 x 11 cm and 12 x 12 x 13 cm,

respectively. A transmission delay of r = 3 seconds was artificially introduced into the

system, and t,,, was set at 1 second for a total lag time of q = r + 2 t,,, = 5 seconds (see

Section 8.2).

A typical experimental run consisted of the operator starting from free space, bringing

the end-effector probe into contact with the bottom surface of the box, sliding towards a

side of the box, following the edge into a corner, sliding back out of the corner, etc. The

9. Experimental Results

Figure 9.1: The experimental task environment.

critical parameters being observed were:

1. the convenience and naturalness of the operator's interaction with the graphical sim-

ulator of the remote environment,

2. the correctness and adequacy of the automatically extracted symbolic instructions

describing the operator's actions,

3. the stability and reliability of remote site execution of contact motions,

4. feasibility and effectiveness of on-line error recovery, and

5. overall efficiency of performing the task, despite the substantial transmission delay

The following section presents the main results of a series of preliminary qualitative evalu-

ations of the teleprogrumming methodology using our experimental system.

9.2 Results

We will in the following paragraphs sequentially address the performance criteria listed in

Section 9.1.

9.2. Results 95

9.2.1 The Operator's Station

The operator's station, and in particular the graphical simulation of the remote environ-

ment, motion restriction, and generation of the corresponding kinesthetic feedback to the

operator, are the most exlzaustively tested components of our experimental system. Tests

using the operator's station alone, as well as tests involving the entire system, have shown

that the combination of three-dimensional computer graphics and real-time kinesthetic feed-

back allows the operator to interact with the virtual remote environment in a very natural

manner. The operator is able to close her eyes and determine the size and orientation of

the box with confidence, using only kinesthetic interaction with the simulated environment.

Together with real-time visual feedback, the system offers the operator a strong sense of

teleperception.

The tests have also confirmed the importance of an audio information channel between

the system and the human operator. Even a simple one-way audio channel, used in MERI-

ONETTE (i.e., playback of prerecorded digitized messages), proved to be extremely useful.

This is due to the fact that the operator's visual capacity is already committed to the

visual interaction with the graphical simulation, and so presenting status and other addi-

tional run-time information visually, can easily overload the operator's visual capacity and

increase operator fatigue. Audio communication can be used to take advantage of a largely

unexploited human input channel - hearing. Likewise, it is easy to imagine the added con-

venience and power of utilizing huma.n operator's audio output (i.e., speech) as input to the

teleprogramming system. Future refinements to the system should consider this option.

Other lessons that we learned in experimenting with our particular implementation of

the teleprqramming system include the importance of a sufficiently high video update rate

of the graphical display, as well as the importance of a high-fidelity, singularity-free master

input device. Since these and similar conclusions and results pertain more to our particular

experimental set-up than to the evaluation of the general concept of teleprogramming, we

will defer their treatment to Appendix C.

9.2.2 The Low-level Symbolic Language

The box exploration task exhaustively exercises the free-space and sliding contact motion

instruction generation. A new execution elzvironments is generated whenever the state of

the environment changes "significantly" (e.g., the contact multiplicity or the nature of an

existing contact between MO and the environment has changed) and at least once every

t,,, seconds. The experimental system has demonstrated that the process of extracting

9 6 9. Experimental Results

symbolic descriptions of low-level slave-environment interactions in the virtual environment

can in fact be automated. Moreover, the corresponding instructions can be generated on

line, in real time, and have shown to posess sufficient expressive power to describe the low-

level activity in the simulated environment in sufficient detail to allow accurate reproduction

of the operator's actions at the remote site. Also, owing to the simplicity of the symbolic

language, the remote site parser/translator module is straightforward and requires minimal

computational resources.

9.2.3 Remote Site Execution

The close match between the nature of the symbolic instructions as generated by the oper-

ator's station and the slave workcell's hybrid control execution paradigm allows for reliable

execution of the commanded guarded and compliant motions at the remote site. Particularly

crucial in this context is the presence of information as to the direction and approximate

(relative) magnitude of the dynamic parameters, necessary for safe and reliable execution

of the commanded contact motions. These parameters allow the slave workcell to take

full advantage of the hybrid control execution paradigm. The Cartesian task frame axes

are appropriately partitioned into position and force controlled directions and elementary

motion execution proceeds as a high-bandwidth local feedback process, guided by real-time

on-board sensory information (e.g., contact force/torque information).

The double-buffering execution management scheme of Section 8.2 successfully ensures

that the lag time between the master and the slave manipulators remains constant through-

out the execution of a task. Contributing to the importance of this issue is the negative

psychological effect of the increasing lag time on the operator, who naturally expects the

lag to be constant. This can manifest itself in the frustration on the part of the operator if

the setback in the progression of the task, when an error is detected at the remote site, is

significantly larger, or even unpredictably different, than expected.

9.2.4 Error Detection and Recovery

Preliminary experiments have shown that reasonably reliable execution behavior can be

achieved using a simple Cartesian hybrid controller at the slave workcell. As expected,

execution errors relate primarily to the unmodelled static and dynamic effects of real world

contact interactions. In particular, friction forces are occasionally mistaken for terminating

conditions in guarded moves, or the estimated compliance forces are insufficient to maintain

contact during a compliant motion. The slave controller has shown good ability to detect

9.2. Results 97

various error conditions by monitoring its position, velocity, external forces, and its own

actuator torques. Experiments have shown that even if an error is not detected immediately,

the likelihood of the resulting discrepancy going unnoticed through the remainder of the

task is effectively null. Upon detecting an error, a preliminary error recovery mechanism,

employed by MERIONETTE, stops the slave motion, alerts the operator to the condition,

and updates the operator's graphical model to reflect the error configuration, based on

the data supplied by the remote workcell. The operator is then informed (via the audio

interface) to resume the task from the error configuration.

Given the simplicity of our example task environment, the current error detection and

recovery mechanism is relatively straightforward. Future research will need to address the

problem of error recovery in a more general framework, where the slave workcell would

be able to gather more detailed information about its error configuration through local

exploratory procedures. Likewise, issues related to on-line model refinement should also be

investigated in order to make the overall system more flexible and dynamically adaptive.

9.2.5 Overall Performance of the System

In summary, whereas much more work remains to be done in refining our prototype telepm-

gramming system, experimental results have decisively confirmed the validity and effective-

ness of the teleprogramming control paradigm for remote manipulation in the presence of

substantial feedback delays. Remote site autonomy at the level of nt = 100 seconds was

successfully achieved and exceeded with the box exploration task, verifying the feasibility

of near-optimal teleprogramming remote control as postulated in Section 1.2. In more chal-

lenging applications, the degree of attainable remote site autonomy will dictate the overall

efficiency of task execution under teleprogranzming control.

Chapter

Conclusion and Future Work

10.1 Conclusion

The teleprogramming concept described in this document provides the necessary bridge

between conventional teleoperation (which cannot function in the presence of communi-

cation delays) and fully autonomous manipulative capability (which is not yet feasible).

Teleprogrumming a remote manipulator essentially corresponds to visually and kinestheti-

cally interacting with a virtual world (a graphical simulation of the remote environment),

and on-line, automatically generating a sequence of symbolic instructions to the remote

robotic system, based on the operator's interactions with the virtual environment. Cou-

pled with a small degree of autonomy at the remote site, this system is able to provide for

continuous and efficient remote control of a robotic system, with the flow of control being

interrupted only when errors occur at the remote site. The applicability and effectiveness of

the teleprogmmming control paradigm (in terms of the amount of allowable feedback delay)

is limited only by the level of autonomy that a robotic workcell can provide and by the

amount of time and work that the operator can tolerate losing when an error is reported

and she is placed back to the point in the task execution where the error occurred. The

latter poses a constraint on the maximum allowable lag time between the master and the

slave, and thus the maximum length of the feedback delays that the system can gracefully

tolerate.

Experimental results with our prototype teleprogramming platform have confirmed the

feasibility and effectiveness of the teleprogramming concept and provided strong encour-

agement for future refinements and extensions to the existing methodology. Although the

preliminary experiments have demonstrated only very basic functionality, it is important

10.1. Conclusion

to note that much of the manipulative capability required in space and underwater appli-

cations (e.g., satellite module replacement, locating an eye-bolt and inserting a hook, etc.)

relates to the ability t o kinesthetically explore the surroundings and locate various features,

using sequences of primitive contact motions of the type demonstrated in our system. Fu-

ture work will be aimed at increasing the dexterity and versatility of the current system to

allow for broader applicability in various situations and environments.

As we have mentioned before, we see primary applications of this technology in under-

water and shallow space environments, where communication delays preclude direct remote

control of robotic systems. However, a teleprogramming system can be employed in non-

delayed situations as well. In particular, the operator's station portion of a teleprogramming

system could be used as a stand-alone facility for automatic generation of robot programs,

based on operator's task specification in a model-based virtual environment. Industrial

robots could thus be reprogrammed quickly by untrained operators, who could simply show

the system the desired new task in the simulated environment. Good models of the working

environment are generally available in industrial applications.

Application of the teleprogramming technology to undersea manipulation would free us

from the need to maintain a wide bandwidth communications link (tether) between the op-

erator and the vehicle. While it is within the state-of-the-art to eliminate the tether based

on energy considerations [Niksa,1987], it is still impossible to eliminate the tether based on

manipulation control considerations. This is due to the fact that acoustic communication

links provide insufficient bandwidth to support existing remote manipulator control strate-

gies. Using the teleprogramming approach, it would be possible to deploy a submersible

from a plane together with an acoustic relay buoy and to then control operations at the

ocean bottom remotely over a radio link from a shore-based station. The principal cost

saving is, of course, the elimination of the need for a surface ship maintaining station dur-

ing the entire underwater operation. Secondary cost savings relate to the elimination of

the tether and the possibility of working in environments in which the tether might become

tangled, as well as the possibility of using more than one submersible in the same working

area, when the control of tethers becomes an important consideration.

In shallow space, we see applications of teleprogramming in performing a variety of

routine exploratory, maintenance, or even construction tasks. Cost justifications in this

domain relate to the possibility of eliminating the need for astronauts in performing "extra-

vehicular activities" (EVA), or even the prospect of eliminating human crews altogether.

In the latter scenario, the entire mission, together with on-board experiments and routine

100 10. Conclusion and Future Work

vehicle maintenance, would be controlled remotely from a ground-based control center,

vastly reducing both the cost and risk involved in manned missions.

10.2 Contribution

We see the major contributions of this work in the following areas:

r The overall design of a delay-tolerant control methodology for remote manipulation,

which requires a relatively modest amount of remote site autonomy and offers the pos-

sibility of near-optimal task performance in the presence of substantial communication

delays between the master and slave sites.

r The design and successful experimental verification of an effective approach for pro-

viding the operator with real-time kinesthetic feedback despite the communication

delays. This information is derived by analyzing the operator's interaction with the

simulated environment and has proved to provide a good approximation to actual

force reflection.

r The design of a symbolic low-level command language, based on the hybrid posi-

tion/force control model, which can adequately describe the operator's interaction

with the virtual environment to allow accurate reproduction of the operator's activity

at the remote site.

a The design and successful demonstration of on-line analysis of operator's activity in

the simulated environment and real-time extraction of the corresponding sequences of

symbolic robot instructions.

r The design of a remote site execution strategy, relating to parsing, scheduling, and

execution management of the incoming instructions, which guarantee a constant time

lag between the master and the slave systems.

r Successful experimental verification that the necessary level of remote site autonomy

can be achieved using a relatively simple remote site controller.

10.3 Future Work

The teleprogramming concept, as described in this document, can be considered as the

basis, upon which more general control methodologies can be developed. We will in the

10.3. Future Work 101

following paragraphs outline some of the immediate as well as some of the more far-reaching

extensions to the basic teleprogmmming control paradigm.

1. world modeling: The issue of constructing the initial model of the remote envi-

ronment has not been addressed in this work. However, as indicated in Section 3.2,

the necessary technology, needed to facilitate interactive, off-line construction of the

initial environment model, exists. What is needed is a relatively low-complexity, prac-

tical approach to integrating existing results and algorithms in image processing and

data fusion, along with a convenient mechanism to allow operator's participation in

the high-level segmentation process. The operator would participate in this process

in a supervisory role, resolving ambiguities when necessary, and ensuring that the

extracted model is consistent with the operator's mental model of the remote envi-

ronment.

2. Special-purpose commands a n d procedures: In Section 7.1 we motivated the

need for special-purpose commands in the context of actions, which are more conve-

niently executed as local high-bandwidth feedback processes a t the remote site. As

discussed in Section 7.1, examples of such actions are fine precision object alignment,

grasping and handling of fragile or deformable objects, and high-dexterity dynamically

reactive manipulation tasks. In order to support this level of task specification, a more

general framework for interpreting operator's activity in the virtual environment must

be designed, which in turn will require a more sophisticated a priori knowledge about

the task in progress. The corresponding campability to execute such actions under local

sensory supervision must exist a t the remote site.

A related enhancement to the system would be the provision of an on-line procedural

facility, where the operator would be able to specify a general pattern (cycle) of an

iterative subtask, such as sawing, polishing, hammering, etc., and have the system

perform the action repeatedly until some terminating condition is reached. Again,

the task model would need to contain the necessary information to appropriately

terminate the subtask execution.

3. e r r o r recovery: Error recovery has been addressed only briefly in this work. MERI-

ONETTE uses a simple mechanism, where, upon detecting an error, the slave con-

troller reports the kinematic configuration of the slave manipulator and the manipu-

lated object to the operator's station. There the state of the graphical simulation is

updated to reflect the error state. However, because of the discrepancies between the

102 10. Conclusion and Future Work

model and the actual environment, purely kinematic error status information does not

suffice to unambiguously reconstruct the state of the remote workcell. At mininlum,

the remote slave should be able to identify its current contact state (i.e., number and

types of currently active contacts). This could be done by employing special-purpose

exploratory procedures, which would perturb the slave system in a controlled manner

and use the measured response data to construct a model of the error state, which in

turn would be relayed to the operator's station for analysis.

A more sophisticated error recovery mechanism may at tempt t o monitor the operator's

corrective actions and resume autonomous execution as soon as it recognizes a state,

which belongs to the original task specification. The operator could then be brought

back to the point in the task specification, where she was interrupted to attend to the

error condition. This would significantly improve the overall system efficiency, as well

as operator satisfaction.

4. on-line model refinement: Taking the above ideas a step further, we may want to

take advantage of the interruption during error recovery and try to refine the operator's

station resident model of the remote environment, based on the information supplied

by the remote workcell as part of the error state information packet. As the slave

encounter various environmental features during task execution, it can record their

actual position and orientation and relay this data to the operator's station along with

error information. The operator's station software can then use this (possibly sparse)

local corrective information to refine the geometric relationships in the model. A key

issue in this process is ensuring consistent propagation of local corrections throughout

the model.

Clearly, the on-line refinement mechanism can proceed independently of error recovery

as well.

5. hybrid control: An important issue that has not been addressed in this work is the

stability of the hybrid controller of Section 8.3 in situations where the task frame is

significantly removed from the manipulator's wrist, where rotations and translations

are normally kinematically decoupled. This separation gives rise to a remote center

of compliance, which in turn causes the control of the positional and orientational

linkages of the n~anipulator's kinematic structure to become strongly coupled. The-

oretical investigations [Zhang,l986] have shown that, in general, stable control of a

manipulator system can be guaranteed only if the center of compliance is coincident

10.3. Future Work

with the point, where translations and rotations are kinematically decoupled (e.g., in-

tersection of the three axes of rotation in a spherical wrist). An interesting direction

of research may he to investigate whether alternative strategies for control of contact

manipulation can be formulated, such that the compliance center remains fixed at the

wrist center, regardless of the contact location and geometry.

6. virtual editor: A broader extension of the telepmgramming control paradigm may

generalize the idea into a model-based virtual editor, in which an operator could con-

trol nzultiple robotic and other devices simultaneously through direct kinesthetic and

visual coupling. In such a system, the operator would no longer be constrained by the

execution rates of the actual workcells or vehicles (agents) in the remote environment.

Instead, she could interleave task specifications for different agents in the virtual ed-

itor, with the execution at the remote site proceeding at a slower, agent-dependent

rate. In case of an execution error at a specific agent, the operator could (according

to a priority scheme) attend to this agent, resolve the problem according to the error

recovery scheme in item 3, and resume task specification for other agents. Similarly,

having specified the desired actions for a set of agents, the operator may stand by idle

while execution at the remote site unfolds. This type of control relieves the operator

of continuous interaction with the operator's station and provides the basis for more

general forms of supervisory control of robotic devices.

Appendix A

Notation and Coordinate

Transformations

A. l Notation

Both three and six-dimensional vector quantities are denoted as boldface (lower-case) char-

acters with an optional preceding superscript indicating the coordinate frame with respect

to which they are given, i.e., a, Bn, etc.

A coordinate frame is specified by a triple of mutually orthogonal unit vectors, with an

optional indication of the frame's origin, i.e.,

Rotational matrices are denoted by upper-case boldface letters with optional super-

scripts and subscripts indicating which two coordinate frames they relate, e.g., the matrix

B ~ F describes the orientation of frame TF w.r.t. FB.

Finally, we occasionally use the following non-standard vector notation

A.2 Coordinate Frames and Rotational Matrices

Let FA be a coordinate frame and let A y and Az be two mutually orthogonal unit vectors,

expressed in FA7s coordinates. Then the two vectors can be thought of as defining a second

A.3. Mapping Rotations Between Frames

coordinate frame
A A

F B = { (" y x A z) , Y, z}

whose origin is coincident with FA'S and whose orientation w.r.t. FA is given by the

rotational matrix

I I I
A ~ E l z 1 p y y A z) 1

The rotational matrix can be used to map (rotate) an arbitrary vector Br expressed

in -Tg7s coordinates into its corresponding description in FA coordinates, i.e.,

Likewise,

where = (ARB)

A.3 Mapping Rot at ions Between Frames

Let FA and FB be two arbitrary coordinate frames and let A r = O Ak* denote a rotation

expressed in F A ' S coordinates. The same rotation can be expressed in frame FB as

B r = f l . B k * = e . (B ~ A * A k *) = B ~ A * A r (A-7)

Alternatively, if the rotation Ar is expressed as a triple of roll/pitch/yaw parameters,

i.e., Ar = (O,, d,, O,), the equivalent rotation expressed w.r.t. FB7s coordinates is obtained

by

assembling a rotational matrix representing A r

transforming this matrix to FB's coordinates

B~ = (l ~ ~) - ' ,: A~ I A ~ B

extracting the new triple of RPY parameters

'r = M ~ O R P Y (B ~)

See [Pau1,1981] for a detailed discussion of the RPYtoM and MtoRPY conversion operators.

For the Linear-algebraic basis of these operations, the reader is referred to [Nering,l970].

106 A. Notation and Coordinate Transformations

A.4 Displacement of a Point Due to Motion of the Frame

Let FA be a coordinate frame undergoing a translational and rotational motion ~~d =

(t , r). Then the resulting displacement of a point located at A p w.r.t. the origin of FA is

nAdP = (t + (R * p) - p , r)

where R = RPYtoM(r).

(A. 11)

Appendix B

The Symbolic Command Language

This appendix summarizes the main constructs of the low-level command language inter-

face between the operator's station and the remote workcell. Brief explanations of the

correspoilding semantics have been included, where deemed necessary.

B. l Task Frame Management

Definevector (name; < v,, v,, v, > : ref-frame)

Give a character string label (name) to the numeric vector v. Only names are

used in subsequent vector references, e.g., for task frame construction. Conse-

quently, all vectors must be labeled before they are used. Note that the string

label of the reference frame (ref-frame), with respect to which the vector's nu-

meric value is given, must also be specified. This frame must have been defined

previously. Two predefined vector are recognized - the origin of the kinematic

base frame (ORG) and the origin of the end-effector frame (WST).

DefineTaskFrame (name : ref-frame ; origin ; x-axis ; y-axis ; z-axis)

This instruction assembles a right-handed coordinate frame (task frame) from

the supplied axes and gives it a symbolic name name. Of the four component

vectors, only the origin and two of the three coordinate axes need be specified.

The axis vector, which is not explicitly specified (if any), is denoted by 1. The

task frame reference frame (ref-frame) is either the kinematic base frame KB

(in which case the task frame remains fixed with respect to the world and is said

108 B. The Symbolic Command Language

to be static) or the slave end-effector frame EE (in which case the task frame

moves along with the slave robot and is said to be dynamic). The coordinate

frames KB and EE are predefined.

UseF'rame (frame)

Use coordinate frame frame from now on until overriden. All subsequent coor-

dinate-frame dependent parameters are interpreted with respect to frame.

B.2 Force Control Commands

AssignMode (X, X, X, X, X, X) , X E { P , F)

Specify force (X=F) and position (X=P) controlled directions (along task frame

axes). A force-controlled direction is assumed to require 0 force compliance

(default), unless otherwise specified by a subsequent Force() statement. In

effect until overriden.

Force (< fz, f,, fz > ; < T z , ~ , , r z >)

Specifies a force preload (f , ~) along task frame axes. If a preload is specified

on a force-controlled axis, it is interpreted as a compliance force. If a preload is

specified on a position-controlled direction, it is interpreted as a preload force for

operations like pushing, screw or valve tightening, etc. In effect until overriden.

GuardForce (< f,, f,, fz > ; < rz,~, ,rz >)
Guardveloc i ty (< v,, v,, vz > ; < w,, wy, wz >)

These instructions specify terminating conditions for the subsequent motion.

The argument six-vectors to the above instructions a.re interpreted in accordance

with the current AssignMode parameters (hybrid control modes). Therefore,

force guards only make sense along position controlled directions and position

(and velocity) guards are only relevant along the force-controlled directions.

Note that these guards are task dependent and are different from low-level safety

force guards (i.e., actuator torque limits), which must be active at all times (task

independent). In effect until overriden.

B.3. Motion Commands

B.3 Motion Commands

All motion commands are subject to velocity constraints imposed on the motion by the time

parameter t . If t = 0 , then the system is expected to determine the best timing/velocity

parameters for the motion.

Free-space motions. The argument t is the allowed motion time (in seconds). p

and qb give the incremental translation and rotation vectors in the current task

frame.

Contact sliding - we must be in contact, a t least one axis should be force

controlled, and a compliance force should be given along that axis. t specifies the

allowed motion time (unless t = 0), whereas p gives the numeric (translational)

motion parameters along the sliding surface.

Perform a pivoting (rotational) motion about the contact point (i.e., task frame

origin). The duration of the motion is given by t and the corresponding rota-

tional parameters are given as a roll/pitch/yaw vector +.

Appendix C

The Experimental System

This appendix contains the description of the experimental teleprogramming system, which

was designed and built at the GRASP laboratory to test the teleprogramming concept.

The system was christened MERIONETTE, for Model-based EditoR for Interactive ON-

linE Teleprogramming in Time-delayed Environments. Figure C.l shows an actual view

of the operator's station (top) and the remote slave (bottom) in MERIONETTE. At the

operator's station, the display on the right shows the real-time graphical simulation of

the remote environment, whereas the display on the left provides the delayed actual video

information from the remote site. The master arm is shown to the right of the graphical

display in the top picture. A close-up view of the slave robot, its compliant wrist sensor,

and the example environment (Chapter 9) is shown in the bottom picture.

C . l Hardware

A schematic diagram of the experimental system's hardware is illustrated in Figure C.2.

The master device in our set-up is a Unimation PUMA 250 manipulator. This "joystick"

provides 6 d.0.f. of motion within a sufficiently large workspace envelope to give the operator

a good sense of spatial maneuvering. Hardware control for the master is provided by the PC-

bus based Modular Motor Control System (MMCS) [Corke,1989]. This system was designed

and built at the laboratory as an experimental PC-bus based general purpose digital motor

controller capable of controlling up to 16 independent actuators simultaneously. The MMCS

hardware is interfaced to the Unimation controller, whose only remaining function is to

provide power and the front panel interface. The MMCS chassis is connected to the VME

bus via a custom-designed PCjVME adaptor. Mounted at the wrist of the master is a

C . 1. Hardware

Figure C.l: MERIONETTE: operator's station (top) and remote site (bottom).

C. The Experimental System

ethernet
I

JIFFE

LTS-200

VMElPC

I
MMCS I

Unimation
Controller

(a) Operator's Station (b) Remote Workcell

Figure C.2: The experimental teleprogrammi~zg testbed.

6-axis force/torque sensor (LORD Corp., LTS-200) enclosed within a "whiffle-ball" handle

assembly for convenient grasping by the operator. The sensor is read over a serial line and

provides information at a rate of 30 Hz.

The computational engine of the operator's station subsystem is JIFFE - a fast, 20

Mflop, VME-based scalar floating point co-processor [Andersson,l989]. The processor has

a standard VME interface and physically resides inside the Sun cage (see Figure C.2). It is

fully C-programmable and supports most of the essential UNIX operating system facilities.

J IFFE runs both the low-level joint servo code for the master (500 Hz), as well as the

Cartesian level servo code (30 Hz). It communicates with the host G u n 3 4 6 0) via a

-

JIFFE-resident shared memory segment.

MERIONETTE's graphical workstation is a 16 MIPS Personal Iris 4D-25, equipped

with a hardware turbo graphics option to increase its rendering speed. Interfaced t o the

Iris is an audio speaker, which d o w s us to use the Irix /dev/audio facility for playback

of prerecorded, digitized audio messages. Communication between JIFFE and the Iris is

accomplished indirectly via the shared memory interface between JIFFE and the Sun and

a bidirectional UNIX TCP socket connection between the Sun and the Iris. The round-trip

communication latency is on the order of a few milliseconds.

The remote manipulator in our experimental system is a PUMA 560. The low-level

joint servo control is accomplished via the standard Unimation controller (w 1000 Hz),

C.2. Soft ware

while a Microvax I1 provides for Cartesian control of the manipulator (x 35 Hz). The

manipulator is programmed using a Cartesian hybrid control algorithm built on top of the

RCI programming environment [Hayward,l983], [Lloyd,1985]. The communication between

the operator's station and the slave manipulator is again facilitated by a bidirectional UNIX

TCP socket link.

A 6 d.0.f. instrumented compliant wrist, mounted at the slave's tip, is used as the remote

force sensing device [Xu&Pau1,1989], [Lindsay&Paul,l991]. The passive compliance of the

wrist and the active compliance of the hybrid control algorithm allow the manipulator to

move stably in reliably in contact with the environment.

C.2 Software

The software architecture of MERIONETTE is illustrated in Figure C.3. As is evident

from the figure, the software is distributed over four computers and consists of eight main

interdependent and intercommunicating processes. We will in the following paragraphs

briefly outline the organization and functionality of the major software modules.

At the lowest level in the software hierarchy, JIFFE executes a single real-time process,

which controls the master arm at both the joint servo and Cartesian levels. The joint

servo loop is a position PD loop with gravity feed-forward and executes at 500 Hz. The

Cartesian control bandwidth is limited by the bandwidth of the force/torque sensor, which

provides incremental Cartesian directional input to the master arm. The Cartesian servo

loop therefore proceeds at 30 Hz. It performs motion restriction of the commanded master

displacements Dm with respect to the current contact set C (see Chapter 6) and issues the

resulting restricted Cartesian displacements DL to the master arm. This enforcement of the

current motion constraints thus provides the operator with a sense of real-time kinesthetic

feedback.

The desired incremental master displacements are computed by the Sun and passed to

JIFFE through a shared memory segment. A dedicated process running on the Sun reads

the force/torque sensor as fast as the sensor can supply information (30 Hz) and computes

the resulting Cartesian master displacement Dm according to the algorithm discussed in

Chapter 4. A second process on the Sun in the current implementation of the system serves

essentially as the communication bridge between the graphical workstation (the Iris) and

JIFFE. Its main role is to perform the necessary scaling between the master and the slave

workspaces and manage the TCP socket connection with the Iris. It also takes care of the

C. The Experimental System

data reception & transmission

collision detection
contact set management (C)

symbolic command generation

audio interface
... ,fi;;;;:.. :; ;;;;;,;,;,:,

1

Sun 31160 *
... I / motion scaling 1 c--> 4 1 Cartesian level master control
... user dialogue ... I (.:.:.
,

IrisNlFFE communication 1 1
.

Figure C.3: The software organization of MERIONETTE.

C.2. Software 115

data transfer between the socket buffer and the JIFFE-resident shared memory buffer (i.e.,

it passes the latest contact set C to JIFFE and sends the new incremental motion request

D, t o the slave). In later stages of the system design and implementation, the Sun's role will

be expanded to include the management of an on-line task-level dialogue with the operator,

as discussed in Section 3.6.

The Iris workstation maintains three concurrent, cooperating processes. The simulation

process represents the heart of activity at the Iris workstation. This process analyzes the

commanded incremental Cartesian displacement D, (supplied by the Sun) and checks the

resulting motion for possible collisions with the environment. In case of collision(s), i t

performs the proper motion restriction and contact management as described in Chapter 5.

It also ensures that the resulting motion is within the reachable workspace of the slave and

away from any kinematic singularities. The output of this stage of processing is the contact

set C, which in turn is relayed to the Sun and indirectly to JIFFE, where it is used for

constraint enforcement on the master arm. The software modeling environment for 3-D

manipulation of articulated figures was provided by the Computer Graphics Laboratory at

the University of Pennsylvania [Phillips&Badler,1988]. This basic platform was extended by

incorporating a near-linear polyhedral collision detection module [Gilbert&Johnson,1987]

and all application-specific software, including the support for accepting animation input

from an external source.

The tail end of each simulation step issues a call to the command generation module,

which analyzes the current state of the simulated environment according to the algorithms

presented in Chapter 7 and generates an instruction sequence (execution environment), if

appropriate. The resulting execution environment is passed to the communication module,

which artificially delays the data by the communication delay T and sends it to the remote

workcell after the expiration of the delay period. This mechanism is implemented using

a shared memory circular queue and a globd software timer (resolution 3 1 0 ms). The

simulation process enqueues newly generated execution environments, along with a time

stamp indicating the time when they should be sent out, and the communication process

ensures that they are in fact sent on their way at the appropriate times.

Finally, the third process executing on the Iris is a background audio process, which

accepts requests for audio messages from other processes (through a combination of shared

memory and the UNIX signal facility) and issues appropriate calls to the Irix Idevlaudio

interface, which in turn reproduces the requested digitized audio messages through the

attached speaker.

116 C. The Experimental System

The computational platform of the remote workcell is a MicroVax 11. The MicroVax

maintains two processes, a non-real-time communication and command translation process

and a real-time Cartesian control process. The communication process accepts the delayed

execution environments and parses them using a simple lex/yacc-based parser. The output

of the parsing/translation stage is the updated symbol table of defined vectors and coor-

dinate frames in the task environment, and the corresponding command buffer, containing

directly executable hybrid control instructions for the slave real-time controller (Chapter 8).

The real-time control process implements a modified version of the standard hybrid control

algorithm [Raibert &Craig,l981], which is designed on top of the RCI programming environ-

ment. The controller integrates the external sensory force data (supplied by the compliant

wrist sensor) with the requested motion commands and issues joint displacement requests

to the slave manipulator at the rate of 35 Hz.

C.3 Caveats

The experimental results obtained with this experimental testbed are described in Chap-

ter 9. The following paragraphs will outline some of the more MERIONETTE-specific

lessons that we learned, while experimenting with the system. Whereas the system per-

formed well and certainly sufficed as a demonstration of the teleprogramming principle,

certain (primarily hardware) limitations became apparent during testing. In particular,

the main bottlenecks in the existing system are tlze LORD force/torque sensor bandwidth,

the kinematics of the master arm, the rendering speed of the Iris workstation, and the

computational power of the MicroVax.

At the operator's station, the bandwidth of the force/torque sensor limits the bandwidth

of the Cartesian control of the master device. Because the force signal is fairly noisy and

therefore has to be filtered with a relatively small low-pass filter gain, the sampling frequency

needs to be high in order to avoid introducing a time lag into the signal (Section 4.3). In

light of this we have found that the sampling frequency of 30 Hz is insufficient. Moreover,

in the current implementation of MERIONETTE the sensor is read by the Sun through a

standard UNIX serial port. Due to the non-real-time nature of UNIX, additional variations

are introduced into the sampling frequency, which further degrade the sensor information.

As pointed out in Chapter 4, the kinematics of the master device should be completely

transparent to the operator. In particular, the master should be free of kinematic singulari-

ties in its workspace. In view of this, a standard industrial manipulator, such as PUMA 250,

C.3. Caveats 117

is not an optimal choice, due to numerous (primarily orientational) singularities through-

out its workspace. The resulting frequent reindexing of the master is distracting to the

operator and adversely affects the overall efficiency of task performance. Specially designed

hand controllers, offering a convenient interface, a singularity-free workspace, and precisely

controllable impedance should be considered instead [Bejczy&Salisbury,l983], [Hatamura

et a1.,1990].

Another valuable lesson, which we learned while experimenting with the system, is

the importance of sufficient video quality and bandwidth. MERIONETTE's Personal Iris

currently allows us to obtain video refresh rates of about 7 Hz for medium complexity

environments (i.e., polygon count on the order of 500) and using only partial shading to

speed up the drawing process. This has proved to be distracting both in terms of the

insufficient update rate, as well as in terms of the poor sense of realism, due to the absence

of full shading and the inability to use proper lighting models. However, state-of-the-art

graphics hardware, which can resolve both of the above deficiencies to a high degree of

satisfaction, is available [Bejczy et aE.,1990].

On the slave side, the MicroVax has proved to be too slow to adequately support the

computational load imposed on it by the teleprogr~mming control paradigm. Due to the low-

level, interrupt driven kernel process, which implements the hybrid control algorithm and

runs at high priority, insufficient computational power remains for the parsingltranslating

process. Consequently, this process has trouble supplying command buffers t o the control

process sufficiently fast to guarantee nonincreasing lag time during execution, as described

in Section 8.2.

Finally, the experimental system should be moved away from custom hardware, such as

JIFFE and MMCS, to a standard, commercially supported hardware platform.

Appendix D

Example Symbolic Program

The following is a portion of the program as generated by the experimental teEeprogramming

system of Appendix C for the box exploration task, described in Chapter 9.

. a * .

>> Execution Environment #O.
>> moving within contact (0 contacts).

UseFrame(EE)

AssignMode(P,P,P,P,P,P)

Move(0.960;<0.001,0.000,0.355>;<O.OOOyO.OOOyO.OOO>)

..
>> Execution Environment #I.

>> moving within contact (0 contacts).
Move(0.900;<0.002,0.000,0.497>;~O.OOO~O.OOOyO.OOO~)

.
>> Execution Environment #2.
>> moving within contact (0 contacts).
Move(0.970;<0.79i,i.304,6.590>;<0.000,0.OOOyO.OOO>)

.
>> Execution Environment #3.
>> moving into contact (0 --> 1 contacts).

DefineVector(CP;<0.122,0.000,29.232>:EE)

DefineVector(Z;<0.000,0.000,1.000>:KB)

DefineVector(Y;<1.000,0.000,0.000>:KB)

DefineTaskFrame(TF:EE;CP;?;Y;Z)

UseFrame (TF)

GuardForce(<0.000,0.000,1.000>;<0.000,0.000,0.000~~

Move(0.840;<0.762,-0.659,-7.353>;<OOOO4,O.OOO,O.OOO>)

AssignMode(P,P,F,F,F,P)

Force(<0.000,0.000,-1.000>;<0.000,0.000,0.000~~

. a

>> Execution Environment #4.

>> moving within contact (1 contacts).
Slide(0.900;<0.049,0.093,0.000>)

.
>> Execution Environment #5.
>> moving within contact (1 contacts).

Slide(0.970;<4.931,-2.201,0,000>)

.
>> Execution Environment #6.
>> moving within contact (1 contacts).
Slide(0.980;<7.554,-2.124,0.000>)

.
>> Execution Environment #7.

>> moving into contact (1 --> 2 contacts).

DefineVector(CP;<O.O00,0.000,29.233>:EE)

DefineVector(X;<l.OO0,0.000,0.000>:KB)

DefineVector(Z;<O.OOOIO.OOO,l.OOO>:KB)

DefineTaskFrame(TF:EE;CP;X;?;Z)

UseFrame (TF)

AssignMode(P,P,F,F,F,F)

Force(<0.000,0.000,-1.000>;<0.000,0.000,0.000>)

GuardForce(<0.000,1.000IO.OOO>;<-0.057,0.OOO,O.OO6>)

Slide(0.490;<-0.820,-5.963,0.000>)

AssignMode(P,F,F,F,F,F)

Force(<0.000,-1.000,-l.OOO>;<O.OOO,OOOOO,O.OOO>)

.
>> Execution Environment #8.
>> moving within contact (2 contacts) .

D. Example Symbolic Program

. ...
>> Execution Environment #9.
>> moving within contact (2 contacts).
Slide(0.980;<-4.825,0.000,0.000>)

.
>> Execution Environment #lo.
>> moving into contact (2 --> 3 contacts).
DefineVector(CP;<O.O00,0.000,29.232>:EE)

Def inevector (X ; <O .OO0 , - 1.000,O. 000> : KB)
DefineVector(Z;<O.OO0,0.000,1 .OOO>:KB)

DefineTaskFrame(TF:EE;CP;X;?;Z)

UseFrame (TF)

AssignMode(F,P,F,F,F,F)

Force(<1.000,0.000,-1.000>;<0.000,0.000,0.000>)

GuardForce(<0.000,i.000,0.000>;<-0.068,0.000,0.000~)

Slide(0.670;<0.000,-7.063,0.000>)

AssignMode(F,F,F,F,F,F)

Force(<1.000,-1.000,-1.000>;<0.000,0.000,0.000~)

...
>> Execution Environment #11.
>> moving within contact (3 contacts).

Slide(0.970;<0.000,0.000,0.000>)

.
>> Execution Environment #12.

>> moving away from contact (3 --> 2 contacts).

DefineVector(CP;<O.O00,0.000,29.233>:EE)

DefineVector(Z;~O.OO0,0.000,1.000>:KB)

DefineVector(Y;<1.000,0.000,O.OOO>:KB)

DefineTaskFrame(TF:EE;CP;?;Y;Z)

UseFrame (TF)

AssignMode (P , F, F, F, F , F)
Force(<0.000,-1.000,-1.000>;<0.000,0.000,0.000>~

Slide(0.710;<-0.411,0.000,0.000>)

. a

>> Execution Environment #13.
>> moving within contact (2 contacts).
Slide(0.970;<-8.320,0.000,0.000>)

>> Execution Environment #14.
>> moving within contact (2 contacts).

Slide(0.970;~-6.413,0.00010.000>)

.
>> Execution Environment #15.

>> moving within contact (2 contacts) .
Slide(0.960;<-6.228,0.000,0.000>)

.
>> Execution Environment #16.
>> moving into contact (2 --> 3 contacts).

DefineVector(CP;~0.000y0.000y29.233>:EE)

DefineVector(X;<-1.000,0.000,0.000>:KB)

DefineVector(Z;<O.OOOIO.OOOyl.OOO>:KB)

DefineTaskFrame(TF:EE;CP;X;?;Z)

UseFrame (TF)

AssignMode(F,P,F,F,F,F)

Force(<1.000,0.000,-1.000>;<0.000,0.000,0.000>~

GuardForce(<0.000,1.000yO.OOO>;<-0.057,0.OOOy-O.O29>)

Slide(0.860;<0.000,-8.928,0.000>)

AssignMode(F,F,F,F,F,F)

Force(<1.000,-1.000,-1.000>;<0.000,0.000,0~000>)

.
>> Execution Environment #17.
>> moving within contact (3 contacts).
Slide(0.980;<0.000,0.000,0,000>)

D. Example Symbolic Program

Bibliography

[I] A. V . Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison Wesley, 1986.

[2] C. H . An and J. M. Hollerbach. The role of dynamics in Cartesian force control of

manipulators. The International Journal of Robotics Research, 8(4):51-72, August

1989.

[3] R. J . Anderson and M. W. Spong. Bilateral control of teleoperators with time delay.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 131-137, 1988.

[4] R. L. Andersson. Computer architectures for robot control: a comparison and a new

processor delivering 20 real Mflops. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, pages 1162-1167, 1989.

[5] H . Asada and H. Izumi. Direct teaching and automatic program generation for the

hybrid control of robot manipulators. In Proceedings of IEEE International Conference

o n Robotics and Automation, pages 1401-1406, 1987.

[6] H . Asada and B. Yang. Skill acquisition from human experts through pattern processing

of teaching data. In Proceeclings of IEEE International Conference on Robotics and

Automation, pages 1302-1307, 1989.

[7] N . Badler and R. Bajcsy. Three-dimensional representations for computer graphics and

computer vision. Computer Graphics, 12:153-160, 1978.

[8] R. D. Ballard. A last long look at Tita.nic. National Geographic, 17016, December

1986.

[9] D. J . Barber. Mantran: A symbolic language for supervisory control of an intelligent

remote manipulator. Technical Report 70283-3, MIT Engineering Projects Lab., 1967.

124 Bibliography

[lo] A. K. Bejczy and M. Handlykken. Experimental results with a six-degree-of-freedom

force reflecting hand controller. In Proceedings of the 17th Annual Conference on

Manual Control, June 1988. Los Angeles.

[ll] A. K. Bejczy and W. S. Kim. Predictive displays and shared compliance control for

time-delayed telemanipulation. In IEEE International Workshop on Intelligent Robots

and Systems, July 1990. Ibaraki, Japan.

[12] A. K. Bejczy, W. S. Kim, and S. C. Venema. The Phantom robot: Predictive displays

for teleoperation with time delays. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 546-551, 1990.

[13] A. K. Bejczy and J. K. Salisbury. Controling remote manipulators through kinesthetic

coupling. Computers in mechanical engineering, 1(1):48-60, July 1983.

[14] Antal K. Bejczy. 1990. Personal communication.

[15] Paul J. Besl and Ramesh C. Jain. Three-dimensional object recognition. ACM Com-

puting Surveys, 17(1), March 1985.

[16] J. H. Black. Factorial study of remote manipulation with transmission time delay.

Master's thesis, MIT, Department of Mechanical Enginnering, 1971.

[17] Ruud M. Bolle and Baba C. Vemuri. On three-dimensional surface reconstruction

methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(1),

Jan 1991.

[18] Thurston L. Brooks. Telerobotic response requirements. In Proceedings of the IEEE

International Conference on Systems, hJan, and Cybernetics, pages 113-120, 1990.

[19] Forrest T. Buzan. Control of telemanipulators with time delay: a predictive operator

aid with force fedback. PhD thesis, Massachusetts Institute of Technology, 1989.

[20] Peter I. Corke. A new approach to laboratory motor control: The modular motor control

system. Technical Report, University of Pennsylvania, Philadelphia, PA, 1989.

[21] R. Desai and R. A. Volz. Identification a.nd verification of termina.tion conditions in

fine motion in presence of sensor errors and geometric uncertainties. In Proceedings of

IEEE International Conference on Robotics and Automation, pages 800-807, 1989.

Bibliography 125

[22] Bruce R. Donald. Robot motion planning with uncertainty in the geometric models

of the robot and environment: a formal framework for error detection and recov-

ery. In Proceedings of IEEE International Conference o n Robotics and Automation,

pages 1588-1593, 1986.

[23] A. Fancello, J . P. Porter, and E. R. Reinhart. Force reflection effects on operator

performance of remote maintenance and inspection systems. In Utility/Manufacturer

Robot User Group, 1988.

[24] B . Faverjon and P. Tournassoud. A local based approach for path planning of manip-

ulators with a high number of degrees of freedom. In IEEE International conference

o n Robotics and Automation, 1987.

[25] W . R. Ferrell. Delayed force feedback. IEEE Tmns. Human Factors i n Electronics,

449-455, October 1966.

[26] W . R. Ferrell. Remote manipulation with transmission delay. IEEE Tmns. Human

Factors in Electronics, 1965. HFE-6, 1.

[27] W . R. Ferrell and T. B. Sheridan. Supervisory control of remote manipulation. IEEE

Spectrum, 81-88, October 1967. 4-10.

[28] R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman. A L , a programming system

for automation. Technical Report STAN-CS-74-456, Stanford University, 1974.

[29] P. Fischer, R. Daniel, and K. V. Siva. Specification and design of input devices for

teleoperation. In Proceedings of the IEEE International Conference on Robotics and

Autonzation, pages 540-545, 1990.

[30] W. D. Fisher and M. S. Mujtaba. Hybrid position/force control: a correct formulation.

to be published.

[31] C . P. Fong, R. S. Dotson, and A. K. Bejczy. Distributed microcomputer control system

for advanced teleoperation. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 987-995, 1986.

[32] Q . J . Ge and J. M. McCarthy. Functional constraints as algebraic manifolds in a clifford

algebra. To appear in The International Journal of Robotics Research.

126 Bibliography

[33] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the

distance between objects in three-space. In IEEE International conference on Robotics

and Automation, 1987.

[34] R. C. Goertz and R. C. Thompson. Electronically controlled manipulator. Nucleonics,

1954.

[35] Ray C. Goertz. Manipulators used for handling radioactive materials. In E. M. Bennett,

editor, Human Factors in Technology, chapter 27, McGraw Hill, 1963.

[36] D. D. Grossman and R. H. Taylor. Interactive generation of object models with a

manipulator. IEEE Transactions on Systems, Man and Cybernetics, SMC-8(9):667-

679, September 1978.

[37] B. Hannaford and R. Anderson. Experimental and simulation studies of hard contact

in force reflecting teleoperation. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 584-589, April 1988. Vol. 1.

[38] B. Hannaford and P. Lee. Hidden Markov model analysis of force/torque information

in telemanipulation. In Proceedings of 1st International Symposium on Experimental

Robotics, 1989.

[39] Blake Hannaford. A design framework for teleoperators with kinesthetic feedback.

IEEE Transactions on Robotics and Automation, 5(4), August 1989.

[40] T . Hashimoto, T. B. Sheridan, and M. V. Noyes. Effects of predictive information in

teleoperation with time delay. Japanese journal of ergonomics, 22(2), 1986.

[41] Y. Hatamura and H. Morishita. Direct coupling system between nanometer world

and human world. In IEEE Conference on h4icroelectronic and Mechanical Systems,

February 1990. Napa Valley, CA.

[42] Vincent Hayward. RCCL User's Manzinl. Technical Report TR-EE-83-46, Purdue

University, 1983.

[43] G. Hirzinger, J. Heindl, and K. Landzettel. Predictive and knowledge-based telerobotic

control concepts. In IEEE International Conference on Robotics and Automation,

pages 1768-1777, 1989.

[44] Richard Hoffman. Automated assembly in a CSG domain. In Proceedings of the IEEE

International Conference on Robotics and Automation, 1989.

Bibliography 127

[45] Neville Hogan. Mechanical impedance control in assistive devices and manipulators. In

Proceedings of the Joint Automatic Control Conference, pages TAlO-B, San Francisco,

1980.

[46] J . Jennings, B. Donald, and D. Campbell. Towards experimental verification of an

automated compliant motion planner based on a geometric theory of error detection

and recovery. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 623-637, 1989.

[47] 0. Khatib. The operational space formulation in robot manipulator control. In 15th

ISIR, Tokyo, Japan, September 1985.

[48] J. P. Kilpatrick. The Use of Kinesthetic Supplement in an Interactive System. PhD

thesis, University of North Carolina at Chapel Hill, 1976. Computer Science Depart-

ment.

[49] W. S. Kim, B. Hannaford, and A. I<. Bejczy. Shared compliance control for time-

delayed telemanipulation. In First Internnational Symposium on Measurement and

Control in Robotics, June 1990.

[50] L. I. Lieberman and M. A. Wesley. Autopass: An automatic programming system for

computer controlled mechanical a.ssembly. IBM Journal of Research and Development,

21(4), 1977.

[51] Thomas Lindsay. Design of a Tool-Surrounding Compliant Instrumented Wrist. Tech-

nical Report MS-CIS-91-30, University of Pennsylvania, 1991.

[52] Y. Liu and R. J . Popplestone. Planning for assembly from solid models. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 222-227,

1989.

[53] John Lloyd. Implementation of a robot control development environment. Master's

thesis, McGill University, 1985.

[54] T. Lozano-Perez, J. Jones, E. Mazer, P. 07Donnell, W. Grimson, P. Tournassoud,

and A. Lanusse. Handey: A robot system that recognizes, plans and manipulates.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 843-849, 1987.

128 Bibliography

[55] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine motion

strategies for robots. In Robotics Research: The First International Symposium, August

1983.

[56] J . Y. S. Luh, M. W. Walker, and R. P. Paul. Resolved-acceleration control of mechanical

manipulators. IEEE Transactions on Automatic Control, AC-25:468-474, 1980.

[57] M. T. Mason and J. K. Salisbury. Robot hands and the mechanics of manipulation.

MIT Press, Cambridge, Massachusetts, 1985.

[58] Matthew T. Mason. Compliance and force control for computer controlled manipula-

tors. IEEE Tmnsactions on Systems, Man and Cybernetics, SMC-11(6):418-432, June

1981.

[59] Matthew T. Mason. Mechanics and planning of manipulator pushing operations. The

International Journal of Robotics Research, 1986.

[60] Matthew T. Mason. On the scope of quasi-static pushing. In Robotics Research: The

Third International Symposium, October 1985.

[GI] NASA. Flight Telerobotic Servicer, Tinman Concept, In-house Phase B Study - Final

Report. Technical Report, Goddard Space Flight Center, Greenbelt, MD, September

1988. Volumes I and 11.

[62] Evar D. Nering. Linear algebra and matrix theory. John Wiley & Sons, Inc., New York,

2 edition, 1970.

[63] Marilyn Niksa. Aluminum-oxygen batteries as power sources for submersibles. In

The Fifth International Symposium on Unmanned, Untethered Submersible Technology,

pages 121-127, Marine Systems Engineering Laboratory, University of New Hanpshire,

June 1987.

1641 Michael A. Noll. Man-machine tactile communication. SID journal, July/August 1972.

[65] M. Noyes and T . B. Sheridan. A novel predictor for telemanipulation through a time

delay. In Proceedings of the 20th Annual Conference on Manual Control, Moffett Field,

CA: NASA Ames Research Center, 1984.

[66] M. Ouh-young, D. Beard, and F. Brooks. Force display performs better than visual dis-

play in a simple 6-D docking task. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 1462-1466, 1989.

Bibliography 129

[67] M. Ouh-young, M. Pique, J. Hughes, N. Srinivasan, and I?. Brooks. Using a manipulator

for force display in molecular docking. In Proceedings of IEEE International Conference

012 Robotics and Automation, pages 1824-1829, 1988.

[68] William J . Palm. Modeling, Analysis and Control of Dynamic Systems. John Wiley &

Son, Inc., 1983.

[69] Richard P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT

Press Series i n Artificial Intelligence, MIT Press, Cambridge, Massachusetts, 1981.

[70] Richard P. Paul. WAVE: a model-based language for manipulator control. Industrial

Robot, 4(1):10-17, March 1977.

[71] A.P. Pentland. Perceptual organization and the representation of natural form. Arti-

ficial Intelligence, 28(2):293-331, Feb 1986.

[72] R. L. Pepper, D. C. Smith, and R. E. Cole. Stereo tv improves operator performance

under degraded visibility conditions. Optical engineering, 20:579-585, 1981.

[73] M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation strategies for

sliding objects. In Proceedings of the IEEE International Conference o n Robotics and

Automation, pages 696-701, 1987.

[74] C. B. Phillips and N. I. Badler. Jack: a toolkit for manipulating articulated figures.

In Proceedings of ACM/SIGGRAPH Symposium on User Interface Software, Banff,

Alberta, Canada, 1988.

[75] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators. ASME

Journal of Dynamic Systems, Measurement and Control, 126-133, June 1981.

[76] G. J. Raju. Operator Adjustable Impedance i n Bilateral Remote Manipulation. PhD

thesis, M.I.T., Department of Mechanical Engineering, September 1988.

[77] Aristides A. G. Requicha. Representations for rigid solids: theory, methods, and sys-

tems. ACM Computing Surveys, 12(4), Dec 1980.

[78] J. K. Salisbury. Active stiffness control of a manipulator in Cartesian coordinates. In

19th IEEE Conference on Decision and Control, December 1980.

130 Bibliography

[79] A. C. Sanderson, M. A. Peshkin, and H. De Mello. Task planning for robotic manipula-

tion in space. In IEEE Transactions on Aerospace and Electronic Systems, pages 619-

628, 1988.

[80] C. Sawada, H. Ishikawa, K. Kawase, and M. Takata. Specification and generation of a

motion path for compliant motion. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 808-815, 1989.

[81] F. Schenker, R. French, and A. Sirota. The NASA/JPL telerobot testbed : an evolvable

system demonstration. In IEEE International Conference on Robotics and Automation,

March 1987.

[82] J . De Schutter and H. Van Brussel. Compliant robot motion I: a formalism for spec-

ifying compliant motion tasks. The International Journal of Robotics Research, 7(4),

August 1988.

[83] J . De Schutter and H. Van Brussel. Compliant robot motion 11: a control approach

based on external control loops. The International Journal of Robotics Research, 7(4),

August 1988.

[84] J. De Schutter and J. Leysen. Tracking in compliant robot motion: automatic gen-

eration of the task frame trajectory based on observation of the natural constraints.

In Proceedings of the International Symposium on Robotics Research, pages 127-135,

1987.

[85] Thomas B. Sheridan. Telerobotics and human supervisory control. to be published as

a book.

[86] Bruce Shimano. VAL: a versatile robot programming and control system. In Proceedings

of COMPSAC, Chicago, November 1979.

[87] S. N. Srihari. Representation of three-dimensional digital ima,ges. A CM Computing

Surveys, 13(4), Dec 1981.

[88] L. W. Stark, W. S. Kim, and F. Tendick. Cooperative control in telerobotics. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation, pages 593-

595, 1988.

[89] Lawrence Stark. Teleobotics: problems and research needs. In IEEE Transactions on

Aerospace and Electronic Systems, pages 542-551, 1988.

Bibliography 131

[go] Lawrence Stark. Telerobotics: display, control, and communication problems. IEEE

Journal of Robotics and Automation, RA-3(1), February 1987.

[91] R. H. Taylor, P. D. Summers, and J. M. Meyer. AML: A Manufacturing Language.

The International Journal of Robotics Research, 1(3):19-41, 1982.

[92] Daniel E. Whitney. Historical perspective and state of the art in robot force control.

The International Journal of Robotics Research, 6(1), 1987.

[93] Daniel E. Whitney. Quasi-static assembly of compliantly supported rigid parts. A S M E

Journal of Dynamic Systems, Measurement and Control, 104:65-77, March 1982.

[94] Yangsheng Xu. Compliant wrist design and hybrid position/force control of robot ma-

nipulators. PhD thesis, University of Pennsylvania, 1989.

[95] Hong Zhang. Design and Implementation of a Robot Force and Motion Server. PhD

thesis, Purdue University, 1986.

A.2 Contact Operations Using an Instrumented
Compliant Wrist

Contact Operations Using an Instrumented
Compliant ~ r i s t t

Thomas Lindsay, Janez E'unda, and Richard Paul

Abstract
Teleprogmmming was developed as a solution to problems of teleoperation sys-

tems with significant time delays [5] . The human operator interacts in real time
with a graphical model of the remote site, which provides for real time visual and
force feedback that is an important tool for teleoperation. The master system au-
tomatically generates symbolic commands based on the motions of the master arm
and the manipulator/model interactions, given predefined criteria of what types of
motions are to be expected. These commands are then sent via the communication
link, which may delay the signals, to the remote site. Based upon a remote world
model, defined beforehand and possibly refined as more information is obtained,
and the commands sent from the master, the slave carries out operations in the
remote world and decides whether each command has been executed correctly.

Contact operations involve the robot interactions with the environment, includ-
ing planned and unplanned collisions, and motion within contact with the envi-
ronment. A hybrid position/force control scheme using a compliant instrumented
wrist has been demonstrated to be very effective for these types of operations. In
particular, switching between position and force modes (when contacting a surface,
for example) does not present problems for the system. A brief introduction of
teleprogramming and contact operations is presented, including a model of sliding
motions and early experimental results. Problems with these early experiments are
presented, and solutions to these problems are discussed. The criteria for an object
to slide rather than tip over are presented, relating to the geometry of the object
and the applied forces. Finally, methods are presented to match the experimental
results to a simple model, to help the remote manipulator to quickly and robustly
sense collisions.

1 Introduction

Teleoperation systems are important for executing tasks in hazardous and unstructured
environments. Hazardous environments range from those extremely dangerous to humans,
such as contaminated nuclear power plants and hazardous waste sites, t o those such as
space and deep sea tha t can be made fairly safe to humans, for short periods a t great ex-
pense. Completely autonomous activity and manipula.tioi1 is inlpractical in unstructured
environments with s tate of the ar t artificial intelligence.

t ~ h i s material is based upon work supported by the National Science Foundation under Grant No.
BCS-89-01352, "Model-Based Teleoperation in the Presence of Delay." Any opinions, findings, co~iclusions
or recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

When delays in excess of one second occur, direct force reflecting teleoperation be-
comes difficult to impossible [6, 121. Delays can occur on the order of 2-8 seconds for
communication with a remote site orbiting the earth (shallow space),and up to 20 sec-
onds for subsea operations (communicating via acoustic link). In order to solve problems
associated with communication delays, we have developed a novel teleoperation structure,
teleprogramming [9]. At the master site, a human operator works with a 6-DOF master
arm to guide a simulated slave robot in a geometric model of the remote site. The model
provides for monitoring of contacts, and feeds back information to the master arm to
give the operator kinesthetic feedback, lacking in most of the current work involving time
delays [2, 8, 11, 121.

The master system generates commands based upon the motions and manipula-
tor/model interactions. This information is sent to the remote site, which interprets
and executes these low level command steps. Each step is executed autonomously, and
the resulting motion of the slave manipulator is analyzed as to whether it succeeded or
failed. If it succeeds, an acknowledgment is sent to the master and the slave continues
with the next command. Conmands from the master are sent continuously, so there is
no delay between commands at the remote site if they are executed without an error
occurring. If a command fails, information about the error state is sent to the master,
and then the slave waits for the human operator to send a new set of commands that will
correct the error.

This system closes the force feedback loop at each site, and only uses the delayed com-
munication link between sites to send commands, acknowledgments, and error messages,
and not for control feedback. The system can operate with significant time delays, and
will operate a t the same rate as a direct teleoperation system without time delays unless
errors occur in execution.

At the remote site, the slave interprets small execution model steps that make up
individual motions. Each execution model step contains information about how long and
how far to move, information about contacts and contact forces, and information about
what conditions the slave should expect to terminate the motion. For example, a typical
move could command the slave manipulator to slide along a surface, pushing against it
with a given force, and stop when a wall is encountered. Several errors can occur while
trying to execute such a move. The slave system has the task of determining whether any
of these errors has occurred. Errors in this example could include falling off the surface,
failing to find the specified wall, and encountering an unexpected obstacle.

Identifying such errors in an ideal world would be simple. If the normal force disap-
pears, contact with the surface has been lost. If a contact force in the normal direction
to the wall is not found within a specified distance, the wall is not where we expect it.
Unexpected forces in other directions, or forces in the wall direction before a specified
distance has been traveled indicate that an obstacle has been encountered. In practice,
however, there are problems with such a simple approach.

We are using an instrumented compliant wrist for sensory feedback [16]. The compli-
ance is extremely beneficial for the interactions (expected and unexpected) between the
manipulator and the environment [lo]. However, the compliance makes sliding ~llolions
more complex. Depending on the surface friction and the applied forces, the object on
the surface may tend to tip over instead of sliding. Control and other probleins lead to
non-constant steady state forces in the normal and tangential directions. Peaks in these
forces, which are used to determine expected and unexpected collisions, can cause a false

identification of an error state. The level of system 'noise' is partially a function of manip-
ulator configuration and direction of movement, so that constant limits that would work
successfully in one direction will not work in another. A more robust method of .detecting
collisions while performing contact operations is necessary.

The rest of the paper is organized as follows. First, the experimental teleprogramming
testbed is presented. Next, contact operations in the task environment are examined,
from both a model based and experimental based perspective. Criteria for an object
to slide rather than tip over are presented. Finally, methods to relate the model and
experimental results are examined, with an emphasis on a more general and robust method
for interpreting sensor readings.

2 Experimental Setup

The GRASP Lab teleprogramming testbed is shown in schematic form in figure 1. The
operator's station and the remote workcell are physically separated. The system can be
divided into the master site, the remote site, the communication link between these sites,
and the task environment.

VME + I I

1

PVAX II Unirnation
Controller

a w l lc Q-bmB
k I

(a) Operator's Station (b) Remote Workcell

Figure 1: The experimental teleprogramming test bed

2.1 Master Site

The master site is composed of a Unimation Puma 250 robot, acting as a 6-DOF backdriv-
able input device, and several computers. The Puma hardware is controlled by PC-bus
based Modular Motor Control System (MMCS) [4]. There is a 6-d.0.f. force/torque
sensor (LORD Corp., LTS-200) mounted a t the tip of the 250, which measures the direc-
tional input from the human operator. Joint and cartesian level control for the master

'General Robotics and Active Sensory Perception Laboratory, University of Pennsylvania Dept. of
Computer and Information Science, Philadelphia, PA. Ruzena Bajcsy, Director.

is performed by JIFFE - a 20 Mflop VMEbased floating point co-processor [I]. JIFFE
communicates with its host (Sun 31160) via shared memory and with the graphical work-
station (Iris 4D/25) via the Sun and ethernet socket connection. The Iris runs a model-
ing environment for 3-D manipulation of articulated figures, provided by the Computer
Graphics Laboratory at the University of Pennsylvania [3]. This software provides the
operator with a graphical model of the remote manipulator and its environment. Manip-
ulator/environment interaction is monitored, and is fed back to the master manipulator.
This provides the operator with kinesthetic feedback, which is an important part of the
teleprograrnrning system. The master system contains no information about the dynamics
or friction at the remote site.

2.2 Remote Site

The remote manipulator is a Puma 560 robot, linked to a MicroVax 11. The robot uses
a cartesian-based hybrid position/force controller, built upon the low-level RCI robot
interface [7] . The hybrid controller has been shown experimentally to be stable in the
operating region we are using, as long as the task frame origin is located relatively close
(within 20 cm) to the robot wrist point. We use a 6-DOF instrumented compliant wrist
for force/ torque measurements.

The compliance of the wrist simplifies interactions between the robot and the environ-
ment. This is especially beneficial in dealing with the impact forces generated when the
robot makes the transition from free space motion to motion in contact with the environ-
ment. Both natural and active damping help absorb the energy of impact [14]. Also, the
compliance of the sensor helps to make the force control more responsive [lo]. Because
the wrist is instrumented, the characteristics of the compliance can be changed with the
control laws. This means that the effective compliance of the wrist can be changed to
suit the task, so that the effective wrist stiffness can be changed for force control and for
position control. Also, the position of the environment with respect to the robot is known
via the sensors.

2.3 Communication

Conmunication from master to slave is composed of execution models (EMS), which are
automatically generated at the master site. These made up of small packets of commands
that together make up the entire program. Each EM step can contain informa.tion about
the working task frame, the hybrid modes, contact forces, and movement inforination.
Information not supplied in a given EM step is assumed to carry over from the previous
step, thus communication time is reduced by elimination of repetition of known informa-
tion. The EM step does not contain information about the dynamics or friction of the
environment.

The communication between the robots in the lab, using an ethernet connection, is
virtually instantaneous. Therefore, we have a programmed delay to emulate communica-
tion delay. This delay can be varied. Currently, we are using a delay of 3 seconds for our
experiments.

Figure 2: Remote Site and Task Environment

2.4 Task Environment

We are currently experimenting with very simple contact operations. A small box at-
tached to the manipulator is maneuvered into and around a larger box, as shown in figure
2. Elements of tasks include free-space motion, transitions between free-space (position
mode) and constrained space (force mode), and constrained motion. In this environment
we can test error detection and error recovery. Within this task environm.ent, our com-
mand language and teleprogramming concept have been shown to be effective. Problems
between theory and experimental work have also been examined, and in many cases we
have modified how commands are interpreted a t the remote site. Complex procedures
can be built using the commands we can now generate. Current work includes creating a
new task environment which requires more complex motions.

Contact Operations - Experimental Results

Although many tasks include free-space motion, most tasks require interaction with the
environment. Free-space motion is a relatively simple operation; there is no need for
feedback at the operator's station, and therefore a telerobotic scheme that has only visual
feedback (in real time) would work (as with JPL's predictive display). Most of our work
concentrates on contact operations, where the manipulator interacts with the environ-
ment. The actions presented in this paper include contacting surfaces, and sliding along
surfaces.

For two reasons, contact operations are executed semi-autonomously. First, the com-
munication delays make force feedback to the operator impossible. Therefore, the remote
site must close the feedback loop locally. Second, there may be inaccuracy in the graphical
model at the master site. If the geometry of the environment is known only to a tolerance

Figure 3: Second Order Model

6 , the remote site must locally deal with this inaccuracy. The remote site can deal with
these factors; hence the term semi-autonomous. However, the system still runs into prob-
lems. A fully autonomous system would have to understand all possible problems and
deal with them appropriately; this is beyond the scope of modern artificial intelligence.
When the remote system runs into a problem that it cannot correct, it simply sends back
information to the human operator, who can reason through the problem and create a
suitable correction.

Due to the slow and often unreliable (esp. with acoustic links) communications, the
commands sent to and from the remote site need to be minimal. The remote site receives
only information about the kinematics of the system. Dynamics and friction must be dealt
with locally at the remote site. Further, the remote site must keep pace with the master
site, albeit delayed by the communications. The slave therefore has no opportunity to
explore the environment beyond the scope of the commanded actions. Thus the system
can only gain information about the remote environment, such as friction, while it is also
trying to discern expected and unexpected changes from the sensor data. Within these
constraints, the remote system must react with the environment and robustly sense forces,
contacts, and collisions.

3.1 Contact Model

Motion of the robot/sensor/environment interaction can be simulated for one degree of
freedom using a second order model. The second order model is a mass-spring-damper
system with a velocity input and coulomb friction. The equation for this model is shown
below:

where f represents the coulomb friction.

pS1N(&) if (&)i2 > vs and F > p.[N(&)

i f (&) x ~ < ~ . a n d F > p ~ c N (~)

otherwise

where

- 1 . 5 ~ I
0 5 10 15 20 25 30

time

Figure 4: Second Order Model Response

and N is the surface normal force. The value of v, is the cutoff velocity that defines
where, for simulation purposes, pSt (static friction) no longer applies, and the value p , ~
(sliding friction) is used. Values for m, c, and k are selected to model the wrist behavior,
but do not represent the exact physical parameters of the wrist.

The spring-damper subsystem models the wrist sensor. The output from the sensor
will be the change in spring length, Ax, and can be interpreted explicitly as a position
deflection, or implicitly, using Hooke's law F = k Ax, as a force. Figure 3 illustrates the
second order model. Figure 4 displays data from a simulation of the second order model,
with the velocity input shown. For a given mass and input velocity, the rise time and the
output level are a function of the spring constant and the coulomb friction. Overshoot is
a function of the coulomb friction value and the viscous damping term.

3.2 Experimental Data

Data from the system can be collected and compared to the simulation model. In this
section, some of the data will be presented, along with an introduction to some of the
problems that were encountered while using the system. One problem was that the box
being moved had a tendency to tip over while being pushed. Also, there were many
problems associated with sliding along a surface until a wall was encountered. False
interpretation of sensor readings, due to uneven frictional force and noise caused by sensor
electronics and by arm control, cause the system to stop before hitting a wall or to press on

Figure 5: Sensor Readings From a Typical Move

the wall with a large force before deciding to stop. Methods to overcome these problems
are presented later in this paper.

Figure 5 shows the sensor readings, for translational direction;, of a typical move. The
robot moves at approximately 2 cm/sec. Section A-B is a free-space motion. There is a
small amount of noise at the beginning of move A-B, which is caused by the transition
from the previous free-space motion. Section B-C is a guarded move. At the end of move
B-C, the robot comes into contact with the environment. Here, there is a large change
in the z-direction sensor reading. The contact is smooth and stable, and the robot never
breaks contact with the environment. Move C-D is a standard sliding motion, with the
robot in contact with the environment and moving in the negative y-direction. The robot
tries to maintain a normal force (2-direction) of approximately 1 lb. (.34 mm) while
sliding. There are large, unexpected changes in the x and y sensor readings during this
section of the motion. Theoretically, there should be no forces in the x-direction, and
the y-direction should have a constant frictional force of pN. The sensors, however, show
that the tangential force (y-direction) has a minimum below zero, and a maximum of
approximately 0.6 lb. Section D-E is another guarded move, and the robot comes into
contact with a wall of the box. The slope of the y-direction sensor reading is high, but
the actual value of the reading when the robot touches the wall is not significantly higher
than other readings in the D-E section.

Figures 6 and 7 illustrate one of the inaccuracies of the sensor readings. Data "testl"
and "test2" are from similar moves. Section B-C shows the robot coming into contact
with the environment. In section C-D, the robot moves slightly away from the wall, and
in section D-E the robot moves into contact with the wall. Motion is in the x-direction for
the "test 1" data, while test2 motion is in the y-direction. Notice that while figure 6 shows
very similar normal forces for the two tests, section D-E in figure 7 shows very different
tangential forces. If we assume that the tangential forces in section C-D are accurate, and

Figure 6: Direction Dependent Sensor Readings: Normal Force

Sonsor Reading (mm)

Figure 7: Direction Dependent Sensor Readings: Tangential Force

the frictional force is approximately .5 lb., the force in section D-E for test1 is too high at
the mid point of the move, and the force for test2 is very low. The cause of this direction
dependent phenomena is unknown, but a method to overcome the problem must be found
in order to correctly monitor collisions and contacts.

The data presented above was collected after the tipping problem, presented below,
was overcome.

4 Sliding vs. Tipping

Figure 8: Forces on box in tool tip coordinates

When sliding in contact with the environment, the robot sometimes has the tendency to
let the box tip over. There are many factors that contribute to this tipping phenomenon.
Three factors discussed here are the height to width ratio of the box, the normal to
tangential force ratio, and the effect of rotational compliance upon sliding stability.

Expressing the applied forces in tool tip coordinates [15], which for this case will be
the bottom of the box, the conditions for the box to tip over in the positive and negative
Y-directions are found by summing the moments about the center of mass. The normal
force N will act at the left side of the box if it is tipping about the negative Y-direction
(into the page in figure 8), and the criteria for a Zdimensional box not to tip is:

(F. - f)h + M + N (;) t 0 (4)

The normal force will act at the right side if it is tipping in the positive Y-direction.
The criteria for the box not to tip in this direction is:

where

(See figure 8) . Reorganizing,

C C
hFz - (ph - -)Fz - mg(ph - -) 2 -M 2 2

If we assume that mg is negligible compared with applied forces and moments,

In terms of h/c, these equations become

These equations are plotted in figure 9, with parameters: F, = 1 . 0 , ~ = . l , and F,
as shown. Note that for a given F,, if h is large compared to c, then a moment must be
applied for the box to remain stable. Also note that as F, increases, the box will not tip
for a greater range of applied moments. It is therefore more stable.

In terms of &IF,, equations 12 and 13 become

These equations are plotted in figure 10 with parameters: h = 5 . 0 , ~ = .l, and c as
shown. For a given value of c, if F, is large compared with F,, a moment must be applied
for the box to remain stable. As c increases, the range for the applied moment becomes
greater, and the box becomes more stable.

The conditions above are intuitive and easy to compensate for. However, in our
experimentation the box still tends to tip. The reason has to do with the rotational
compliance, and with transforming the applied forces and moment into the tool tip frame.

To transform the forces and moment, the compliance values (inverse of spring con-
stants) of the wrist are needed. There are two parts to the compliance that are important
here: the physical compliance and the control compliance. The physical compliance is

Solid: Fz = 1.0. Dashed. Fz = 2.0. Dotted: F ~ 3 . 0

Figure 9: -M/c vs. h/c

Solid: c = 3.0, Dashed: c = 5.0, Dotted: c = 7.0

Figure 10: -M/Fz vs. Fx/Fz

Figure 11: Transformation of forces from application to tool tip coordinates

inherent in the structure of the wrist and its compliant elements. The control compliance
is a result of the gains used in the control of the system. A stiff wrist can be made more
compliant with higher gains, if it remains stable. The important thing to note is that we
can change the control compliance to suit our needs.

To transform the applied forces and moment for the two-dimensional wrist, the fol-
lowing equations are needed (see figure 11)

Substitution yields:

Kt

Figure 12: Fx vs. Kt for different values of M

Figure 13: Fz vs. K t for different values of M

These equations are plotted in figures 12, 13, and 14. The constants in these equations are
chosen to approximate the behavior of the wrist: K, = 7.29 N/mm, K, = 12.36 N/mm,
I , = 25 cm, c = 10 cm, Fx = 1 N, FZ = 1 N, and M, in N-m, as shown. Variable a was
chosen to be 25 cm, which would correspond to the case where the center of compliance
is at the tool tip (bottom of box, here), although in the wrist it is less than this. The
physical value for Kt is 6.93 N-m.

The plots show how the transformed forces and torque vary from those applied to the
wrist. It is obvious that small values of Kt do not yield satisfactory performance. After
decreasing the control compliance (increased K t) , the box became much more stable. Note
here that figures 12, 13, and 14 also show that the tool tip forces are never the same as
the applied forces. It is important to the stability of the box that the tool tip forces are
controlled accurately, and the compliance of the wrist must be cornpensated for in the
control. By examining equations 23 and 24, it is seen that the smaller the distance from
the applied forces to the center of compliance (a) , the less effect that the force F, has
upon changing the values of the peg tip forces. Better results would be obtained for the

Figure 14: M vs. Kt for different values of M

operation of sliding if the center of compliance coincided with the applied forces. This
is much different than the conclusions for peg insertion operations with RCC devices by
Whitney [15], for which the center of compliance should be located at the tool tip.

5 Robust Stopping Conditions

The data presented in section 3.2 deviates from the second order model of the system.
The deviations have many causes, and as a whole wlll be termed "noise".

Noise from the sensors is inherent in any system. Initially, the sensor data is condi-
tioned using a low-pass filter in the software, in order to reduce electrically-induced sensor
noise. However, the experiments suggest noise that may be dependent on more complex
phenomena that may be difficult or impossible to model. Such phenomena include non-
homogeneous friction, static friction, sensor coupling (coupling of compliant directions
in the sensor), orientation inst abilities (tipping, as presented above), and sensor- based
hysteresis. These phenomena are all responsible for sensor "noise".

As the manipulator slides around the environment, it attempts to maintain a constant
normal force. With a constant normal force, the sliding friction should also be constant,
assuming homogeneous surface friction. Contact with a side wall of the box thus could
be determined by even a small increase in the tangential force. However, experiments
have shown that a small threshold value causes the system to stop on noisy data. Using a
constant threshold based stopping condition, a high threshold is needed to keep the noisy
data from interfering with normal stopping criteria. Too high of a threshold causes the
system to interpret an actual contact with the wall as mere noise. Also, a high threshold
causes the box to impact the environment with much more force than is wanted.

The following sections present attempts at developing more robust methods for deter-
mining stopping conditions, including ways to reduce the effects of the sensor noise, and
to determine stopping criteria under noisy conditions.

time

Figure 15: 2nd Order Model With Motion Perturbation

5.1 Torque Preloads

Some of the control noise could be a result of the box being on the verge of tipping over.
In order to reduce this noise, a torque preload could be used to make the box more stable.
The preload is computed as

constant * (F x v) (27)

Using this preload unfortunately does not reduce the control noise, and does not
significantly improve the performance of the system. However, it will make the box stable
under more adverse conditions, at little computational cost.

5.2 Motion Perturbation

By perturbing the motion of the manipulator with small amplitude sine waves, some of the
effects of noise phenomena can be actively reduced. Specifically, static friction problems
can be overcome.

Figure 15 shows the simulated output of the second order model with a velocity input
as in figure 4, with a superimposed sine wave with an amplitude of 1/5 the constant
velocity input. The output is quite similar to that of figure 4, superimposed with a very
small amplitude sine wave. The sine wave perturbation causes no adverse effects to the
output as long as the frequency is not near the natural frequency of the system.

Experimental results from motion perturbation are shown in Figures 16 and 17. Fig-
ure 16 can be compared with figure 5 to show the improvement of the sensor output
with motion perturbation. The z-direction output is similar for both moves, but in the

Figure 16: Typical Move With Motion Perturbation

perturbed motion move, the x-direction (normal to motion) output remains close to zero
until the wall is encountered. Further, the y-direction (motion direction) output has the
characteristics of a 2nd order system. As the motion in the y-direction begins, the sensor
output rises to a peak value, and then oscillates about a (in this case never reached)
steady state value. Contact with the wall is indicated with a distinct rise in the sensor
output. Figure 17 compares multiple moves. The data spread for the steady state value
of the output is much smaller than similar moves without perturbation. The point at
which the box comes into contact with the wall (at the end of the data), can therefore be
determined more accurately using a constant threshold.

With data as shown in figures 16 and 17, the use of a constant threshold value for
determination of contact can be revised. If a move that is known to terminate in contact
is long enough to create a model, contact with the wall can be determined by a data
point that falls outside n standard deviations computed from data collected after the rise
time of the move (see figure 17). A simple collision detection algorithm is shown in figure
18. The " X n in figure 16 indicates where a collision would have been detected using this
algorithm, with n = 3.5. Figure 19 shows a closeup of the data from figure 17 where the
wall is encountered. The "X" marks indicate where the wall would have been detected.

Two refinements to this algorithm can be made. The first is to retain an absolute
maximum constant threshold, so that if the data readings are very noisy, or if an obstacle
is encountered before an adequate model can be built, the robot can still stop on a given
force. This would eliminate the possibility of damage to the robot and the environment.
Second, the algorithm as it stands uses all of the data points after the rise time to compute
the mean and standard deviation. This is computationally expensive. Computing the
mean and standard deviation from only the previous N data points would he faster, and
may lead to even better results.

Motion perturbation, while improving the performance of the system by reducing

Sen- Reading (ram)

I 1 I I I I 1Xdpt.l

Figure 17: Experimental Data With Motion Perturbation

Build Mean and Standard Deviation
from 1st i data points

Y , Collision
Detected

Y , Collision
Detected

Update Mean and
Standard Deviation

Figure 18: Collision Detection Algorithm

Figure 19: Magnified View of Collision Data

the effects of static friction, still does not overcome the "noise" associated with non-
homogeneous friction. It does, however, produce sensor output that conforms well to
a system model. The system can detect collisions sooner using the collision detection
algorithm. This algorithm is also beneficial when the environment contains other surfaces
with different coefficients of friction. A constant threshold based stopping criteria would
not be able to adapt to these different conditions.

5.3 Exploratory Procedures

In some instances, surface conditions may impede command execution to the point that
contact operations are impossible under the current model of the environment. An exam-
ple of this would be trying to detect collision with a foam rubber wall while sliding across
a very rough surface. In cases like this, it may become necessary for the remote site to
autonomously explore surface conditions while the human operator waits.

A more refined model of the environment obviously leads to more accurate analysis of
sensor data. The operator works in a model world dealing with kinematics only. While
the slave manipulator operates in the real world, data about the environment can be
gathered, analyzed, and used to refine new incoming data. Many surface attributes can be
recovered through normal operation of the manipulator, including penetrability, hardness,
compliance, compressibility, deformability, and surface roughness [13]. These criteria may
be enough to refine the environment model to the point where contact operations can
again be accomplished using the same types of commands from the master site as before.
However, there may be surfaces where the current paradigm of contact operatiorls cannot
be used. At this point, the human operator must adapt the motion strategies to reflect
the surface attributes. Instead of sliding along a surface to find a wall, for example, the
operator may have to move above the surface, poking the surface occasionally to make

sure that "contactn has not been lost, until the wall is encountered.

' 6 Conclusions

Although the criterion for contact operations, including collision and error detection,
appear to be simple, it is shown that using real world sensors and control, a much more
robust set of rules must be used. By utilizing robust criterion for error detection, limited
execution model commands can be successfully executed, and actual error states can be
discerned from spurious data.

References

[I] R. L. Andersson. Computer architectures for robot control: a comparison and a
new processor delivering 20 real Mflops. In Proceedins of the IEEE International
Conference on Robotics and Automation, pages 1162-1167, 1989.

[2] Forrest T . Buzan. Control of Telemanipulators with Time Delay: A Predictive Op-
erator Aid with Force Feedback. PhD thesis, Massachusetts Institute of Technology,
1989.

[3] C.B.Phillips and N.I.Badler. Jack: a toolkit for manipulating articulated figures.
In Proceedings of ACM/SIGGRAPH Symposium on User Interface Software, Banff,
Alberta, Canada, 1988.

[4] Peter I. Corke. A New Approach to Laboratory Motor Control: The Modular Motor
Control System. Technical Report, University of Pennsylvania, Philadelphia, PA,
1989.

[5] Janez Funda. Teleprogramming: Towards Delay-Invariant Remote Afanil~ulation.
PhD thesis, University of Pennsylvania, 1991.

[6] Blake Hannaford and Won S. Kim. Force reflection, shared control, and time delay in
telemanipulation. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 133-137, 1989.

[7] Vincent Hayward. RCCL User's Manual. Technical Report TR-EE-83-46, Purdue
University, 1983.

[8] B. Hirzinger, J. Heindl, and K. Landzettel. Predictive and knowledge-ba.sed teler-
obotic control concepts. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1768-1777, 1989.

[9] Richard P. Paul, Janez Funda, Thierry Simeon, and Thomas Lindsay. Telepro-
gramming for autonomous underwater manipulation systems. In Intervention '90,
pages 9 1-95, The Marine Technology Society, June 1990.

[lo] Randall K. Roberts, R. P. Paul, and Benjamin M. Hillberry. The effect of wrist force
sensor stiffness on the control of robot manipulators. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 269-274, April 1985.

[ll] P. S. Schenker and A. K. Bejczy. Workspace visualization and time delay in teler-
obotic operations. In 13th Annual AAS Guidance and Control Conference, Aerospace
Human Factors Session, February 1990. Keystone, CO.

[12] Thomas B. Sheridan. Telerobotics and human supervisory control. To be published
as a book.

[13] Pramath R. Sinha, Yangsheng Xu, Ruzena Bajcsy, and Richard P. Paul. Robotic
Exploration of Surfaces With a Compliant Wrist Sensor. Technical Report MS-CIS-
90-92, GRASP LAB 244, University of Pennsylvania, Philadelphia, PA, 1990.

[14] Richard Volpe and Pradeep Khosla. Experimental verification of a strategy for im-
pact control. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1854-1860, 1991.

[15] Daniel E. Whitney. Quasi-static assembly for compliantly supported rigid parts. In
M. Brady, J.M.Hollerback, T.L.Johnson, T.Lozano-Perez, and M.T.Mason, editors,
Robot Motion: Planning and Control, pages 429462, MIT Press, 1982.

[16] Yangsheng Xu. Compliant wrist design and hybrid position/force control of robot
manipulators. PhD thesis, University of Pennsylvania, 1989.

