
Life with Ed: A Case Study of a LinuxBIOS/BProc Cluster�

Sung-Eun Choi Erik A. Hendriks Ronald G. Minnich Matthew J. Sottile

Advanced Computing Laboratory

Los Alamos National Laboratoryy

Los Alamos, NM 87545

fsungeun,hendriks,rminnich,mattg@lanl.gov

Aaron J. Marks

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

ajmarks@dsl.cis.upenn.edu

Abstract

In this paper, we describe experienc es with our 127-
no de/161-processor A lpha cluster testbed, Ed. Ed is
unique for two distinct reasons. First, we have replac ed
the standard BIOS on the cluster no deswith the Lin-
uxBIOS which loads Linux directly from non-volatile
memory (Flash RAM). Se cond, the op erating system
provides a single-system image of the entir e cluster,
much like a traditional supercomputer. We will discuss
the advantages of such a cluster, including time to boot
(101 se conds for 100 nodes), upgrade (same as time to
boot), and start processes (2.4 seconds for 15,000 pro-
cesses). A dditionally,we have disc over edthat certain
predictions about the nature of terascale clusters, such
as the ne ed for hier archical structur e,are false. Fi-
nally, we argue that to achieve true scalability, teras-
cale clusters must be built in the way of Ed.

1. Introduction

Beowulf-style cluster computers gained enormous
popularity because inherent in their design is the ca-
pability to lev erage bothhardw are and software from

�This research was funded b y a gran t from the Department of

Energy's OÆce of Science and the Los Alamos Computer Science

Institute. LANL LA-UR-02-1231.
yLos Alamos National Laboratory is operated by the Univer-

sity of California for the National Nuclear Security Administra-

tion of the United States Department of Energy under contract

W-7405-ENG-36.

the commodity computing market. Racks full of home
PCs running Linux or FreeBSD (or even Windows) are
a familiar sight in computer labs these days. But also
inherent in their design is exc ess. The cluster nodes
have all the hardware and capabilities of being inde-
pendent desktop w orkstations,when all they need is
a pow er supply, CPU, network interface, and the abil-
ity to spawn processes. Even specially designed cluster
nodes available from major hardware vendors ship with
either a oppy disk or CD-ROM drive (and sometimes
ev en k eyboard, video, and mouse capabilities), the pri-
mary purpose of which is installing and upgrading sys-
tem softw are.

Excess limits the ultimate scalability of a cluster in
terms of system administration as well as end user per-
formance. F or example, upgrading cluster softw are is
equivalen tto upgrading software on each of the indi-
vidual nodes. Starting a job to run on P nodes of
a cluster is equivalent to remotely logging in to eac h
of the P nodes and starting the job. Until recently,
these aspects of clustering w ereconsidered unimpor-
tan t. Downtime for upgrades is to be expected; job
startup is not considered part of program execution
time. While this may be acceptable if downtime is on
the order of an hour a w eekwith startup on the or-
der of seconds, the reality is that these overheads are
a function of the cluster size and grow rapidlyas the
number of nodes in the cluster increases. Moreover,
duplicating w ork in troduces points of failure. If ap-
plication softw are onone of the nodes is accidentally
miscon�gured (or con�gured di�erently from the rest),
unexpected application behavior arises; if an yone of

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

Switch

Ed Front End
ES40 - 4x833Mhz

 1Gb

5 x ES40
4 x 833MHz

16 x CS20
2 x 833MHz

105 x DS10L
466 MHz

1Gb 100 Mb 100 Mb

Figure 1. Ed, a Science Appliance testbed.
Ed’s front-end is a four processor Compaq
ES40. The computer nodes are comprised
of five ES40s, 105 single processor Compaq
DS10s, and 16 API dual processor CS20s.
The ES40s are connected to the front-end via
Gigabit Ethernet, and the remainder of the
nodes are connected via 100 Mb Ethernet.

the P remote log ins fails, the entire job startup fails.
Current solutions to these problems all involv eaddi-
tional softw are la yers thatcreate additional points of
failure [13, 2, 14].

The Cluster Research Lab at Los Alamos National
Laboratory (LANL) was formed in an e�ort to attack
these and other foreseeable problems with the next gen-
eration of cluster systems, which will becomprised of
thousands of nodes and hundreds of thousands of pro-
cessors. We have designed and built a prototype for
a terascale-and-beyond cluster called a Science Appli-
ance. The Science Appliance aims to enable a 1000-fold
increase in the computational power of clusters with a
10-fold decrease in the overhead of managing and using
the cluster.

In this paper, w edescribe Ed, the second Science
Appliance testbed. Ed is a 127-node/161-processor Al-
pha cluster (Figure 1). Ed's front-end is a four proces-
sor Compaq ES40. The compute nodes are comprised
of �ve ES40s, 105 (single processor) Compaq DS10s,
and 16 API dual processor CS20s. The ES40s are con-
nect to the fron t-end via Gigabit Ethernet, and the
remainder of the nodes are connected via 100 Mb Eth-
ernet. The compute nodes also have a single Quadrics
Elan 3 interface, though none of the performance num-
bers reported in this paper used the Quadrics intercon-
nect1. This mixed collection of machines and netw orks
gave us a few di�erent testbeds for our softw areall
within the same cluster.

1We were unable to use the Quadrics interconnect due to bugs

in the cards and vendor supplied drivers. By the printing of this

paper, the Quadrics cards will have been replaced with Myrinet

cards whic hwill hopefully provide a more reliable high speed

interconnect.

Ed's compute nodes boot diskless from non-volatile
memory (Flash RAM), and the operating system pro-
vides a single-system image of the entire cluster, muc h
like a traditional supercomputer. Some of the advan-
tages of such a cluster include time to boot (101 sec-
onds for 100 nodes), upgrade (same as time to boot),
and start processes (2.4 seconds for 15,000 processes).
F rom our experiments, w ehave also discovered that
certain predictions about the nature of terascale clus-
ters, such as the need for hierarchical structure, are
false.

The remainder of the paper is organized as follows.
In Section 2, we describe our prototype Science Appli-
ance, Ed, and the technology that distinguishes it from
existing clusters. In Section 3, we give preliminary per-
formance numbers and discussion, including surprising
discoveries. In Section 4, w e�nish with conclusions
and a discussion of future work.

2. Building a Science Appliance

The Science Appliance is unique in many ways. It
is so di�erent, in fact, that most of the problems of
managing more traditional clusters simply donotex-
ist. The key idea is to reduce the amount of softw are
needed to run the cluster. We achieve this by lev erag-
ing the \righ t" setof (open source) workstation soft-
w are and replacing vast amounts of redundant softw are
with simpler, cluster-speci�c softw are. T othe maxi-
mum extent possible, we have removed scripts, con�g-
uration tools, node daemons, and the hundreds of �les
associated with them.

2.1. A new cluster architecture

The Science Appliance is a complete restructuring
of the cluster architecture starting with the standard
Flash RAM based BIOS responsible for individual node
bring-up. Figure 2 contrasts the Science Appliance to
the traditional approach to building clusters. The tra-
ditional cluster (left) is built by replicating a complete
w orkstationinstallation on every node. The Science
Appliance (right) runs an enhanced single-system im-
age version of Lin uxcalled BProc [3]. The front-end
node looks very similar to a traditional cluster node.
The compute nodes run a similar kernel, but do not
run an y system services and in fact do not even have
direct access to program binaries. All program bina-
ries exist only on the front-end. They are started on
the front-end and moved to the nodes via a technique
called directed migration (described below).

We have replaced the normal BIOS with our own
BIOS, the LinuxBIOS [8]. The LinuxBIOS boots Linux

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

BIOS

Linux

Red Hat

System Services

MPI

BIOS

Linux

Red Hat

System Services

MPI

BIOS

Linux

Red Hat

System Services

MPI

BIOS

Linux

Red Hat

System Services

MPI

T raditional cluster architecture

LinuxBIOS

Linux

BProc

LinuxBIOS

Linux

BProc

LinuxBIOS

Linux

BProc

LinuxBIOS

Linux

Red Hat

BProc + Beoboot

System Services

MPI

LinuxBIOS

Linux

BProc

Science Appliance architecture

Figure 2. The traditional cluster architecture versus the Science Appliance. The traditional cluster
(left) is built by replicating a complete workstation environment on every node. The Science Appliance
(right) runs an enhanced single-system image version of Linux called BProc. The front-end node
looks very similar to a traditional cluster node; the compute nodes run a similar kernel, but do not
run any system services and in fact do not even have direct access to program binaries.

from the Flash memory, and starts Linux with an initial
RAM disk, also loaded from Flash memory. Because we
control the BIOS, we are able to control the nodes from
the �rst instruction after reset, so the nodes function as
purpose-built cluster nodes from pow er-on.Moreover,
the nodes are more reliable as they only require a work-
ing pow er supplyand CPU to boot. With a working
net w orkinterface, they are also net w orkmanageable
from pow er-on.

In most cases, the Flash kernel is not used as the
operational kernel, though it can be. The kernel loaded
from Flash is typically used to contact a front-end node
and prepare the machine to run the operational kernel,
which it receiv es fromthe fron t-end. In other words,
Lin ux is being used as a netw ork bootstrap to the front-
end node running BProc.

This tw o-phased boot process, called two-kernel
monte, is illustrated in Figure 3. Each node begins by
requesting an IP address, boot image (kernel) �lename,
and port numbers (steps 1 and 2). The nodes then re-
quest the operational kernel, which is distributed using
IP multicast (steps 3 and 4). Note that a single mul-
ticast message (dashed line) could be used by all the
nodes. Since the nodes cannot be expected to simulta-
neously reach this step, they begin receiving multicast
pac ketsimmediately, even if the transmission of the
message has already begun. Nodes that begin receiv-
ing part-way through the boot image continue into the
next multicast message until they have a complete im-
age. Though this implies that more than one multicast
message may be sent, in practice the number of copies
transmitted is far less than the number of nodes. Fi-
nally , the nodes boot the operational kernel and again
request an IP address (steps 5 and 6), and establish a
TCP connection to the front-end (not shown).

Notice that there is an explicit handshake betw een

each node and the front-end betw een steps 1 and 2
and again between steps 5 and 6. It was our antici-
pation that these handshakes w ould require us to add
hierarc hy tothe managemen t structure (i.e., multiple
front-end nodes) for clusters larger than 100 nodes. In
fact, hierarchical cluster structure has been the rule for
many existing production-grade cluster systems [11, 1].
In the next section, we show why we no longer believe
that hierarchical structure is necessary for cluster with
hundreds of nodes.

Here we see an immediate advan tage of using Linux
as the netw ork bootstrap mechanism: w e can exploit a
protocol (IP Multicast) that reduces the netw ork o ver-
head for booting from O(# nodes) to O(1). Contrast
this with the widely used approach of using PXE [4]
for net work boot. PXE is very limited as to which in-
terfaces (a limited number of Ethernet interfaces), pro-
tocols (one), and authentication mechanisms (none) it
supports, where as the Science Appliance can support
any thing Linux can support because Linux is our boot-
strap mechanism. The PXE boot protocol is both naive
and insecure, whereas the Science Appliance protocol
can be as secure as the most secure netw ork protocols
Lin ux can support.

The root �le system is maintained in a RAM disk.
Nodes actually come up with an empty �le system. The
few �les required for normal operation (a few entries in
/etc, /dev) are created or downloaded from the fron t
end at boot time. Dynamically linked libraries and the
dynamic linker itself are downloaded on demand from
the front end via multicast. Consequently, there are no
issues with version skew of binaries or libraries.

Contrast this with the tw o most popular approaches
of maintaining the root �le system: local disk or NFS.
The localdisk is very susceptible to version skew be-
cause each local disk must be individually installed and

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

compute nodecompute nodecompute nodecompute node

(1) RARP request (172 bytes)

(5) RARP request (172 bytes)

(2) IP address, boot image filename, port numbers (172 bytes)

(6) IP address, boot filename, port numbers (172 bytes)

(3) boot image (kernel) request (1 KB)

(4) boot image (IP multicast) (2.1 MB)
front-end node compute node

Figure 3. Cluster node boot process. Each node begins by requesting an IP address, boot image
(kernel) filename, and port numbers (steps 1 and 2). The nodes then request the operational kernel,
which is distributed using IP multicast (steps 3 and 4). Note that a single multicast message (dashed
line) could be used by all the nodes. Finally, the nodes boot the operational kernel and again request
and IP address, boot image (kernel) filename, and port numbers (steps 5 and 6).

con�gured in exactly the same manner. Keeping all the
local disks synchronized requires a complex tool chain
and continuous manual management of con�guration
�les. In a Science Appliance, if there is a working local
disk, it can be used for data �les, but it is not neces-
sary for node operation. We have found that one of
the most common failures on our clusters is the local
disk. Since a Science Appliance node will boot even if
the local disk fails, it can notify the front-end of the
failure and proper action can be taken.

Though they eliminate the version skew problem,
it is fairly common kno wledgethat NFS-based root
�le systems are not a scalable technology beyond 100
nodes. F or large scale clusters, this scaling limitation
requires that the cluster be arranged in sub-clusters of
32 or 64 nodes, with each domain served by a local NFS
server. In the case of a 1024-node Tru64 Alpha cluster
maintained by another group at LANL, there are 32
separate NFS domains, each requiring a primary and
bac kupserv er. Sandia National Laboratories demon-
strated that scaling NFS for CPlant [11], one of the
largest production clusters in existence, required the
creation of whole new NFS subsystems.

2.2. Other technologies

On top of the basic architecture for the Science Ap-
pliance w e have added other technologies that con-
tribute to a �nal cluster environment. Here we briey
describe two: Supermon, a cluster monitoring tool, and
edb, a scalable parallel debugger.

Supermon Supermon is a high speed cluster moni-
toring tool, able to achiev e samplingrates never seen

before [9, 12]. The dramatically lower overheard cou-
pled with the higher precision of Supermon as com-
pared to the standard Linux monitoring tools such as
rstatd allows us to see behavior that was previously
invisible. Supermon consists of tw o data collection
programs, a loadable kernel module, and a library for
managing the data. The �rst program, \mon," is a
data server that runs on each node and does primary
data collection. Mon can accept many connections to
remote data gathering programs. Mon also supports
dynamic �lters so that only the data needed by remote
programs need move over the network. The second
program, \supermon," is a data concentrator that can
collate the data from many mons so that user programs
do not need to manage this task. F urthermore, since
the protocol used by mon and supermon is compati-
ble, supermon programs can be composed into a hier-
archy to optimize communications based on the clus-
ter interconnect topology (though we have not seen the
need for this on Ed). The kernel module provides addi-
tional entries in /proc which are read by mon. Finally,
the libraries support a data manipulation API so that
users can easily dev elop programs for analysing data.
We have data �lters for Perl, Ja va, MatLab, and other
programs. Some programs provide a GUI-style inter-
face for interactiv e real-time monitoring, and other pro-
grams are used for o�-line data analysis of supermon
trace�les.

Edb Edb is an in teractiv eparallel debugger for at
scale application debugging [5]. Edb is currently im-
plemented usingthe UNIX ptrace() system call. On
most clusters using ptrace w ould limit edb to run-

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

ning on a single node. Since BProc transparently sup-
ports ptrace operations over the netw orkto remote
nodes, edb can control processes on all the nodes in
Ed. It uses the bfd library to acquire the target sym-
bol table, the proc �lesystem to query the status of
running processes and the readline library for an en-
hanced, Emacs-like command-line interface (which in-
cludes command history and completion). Debugging
commands exist for loading and running a parallel ap-
plication, process control (e.g., wait, continue, signals),
examining and modifying state and process selection.
All debugging commands are executed on the current
process group (called a process focus). Users can cre-
ate, name, and use as many process foci as needed. By
default, the process focus is all processes, but this can
be modi�ed at any time during the debugging session.

2.3. Summary

The Science Appliance e�ectively reuses commodity
desktop hardware and softw are.The design eliminates
vestigial elements of PC clusters such as the BIOS and
local or NFS-mounted root, while lev eraging existing
softw are suc h as the Linux operating system. Remov-
ing dependence on the BIOS and local or NFS-mounted
root makes for enormous improvements in reliabilit y
and greatly reduces the management e�ort, as well as
eliminating all the scripts, tools, and documentation
needed for keeping nodes in sync. Leveraging Lin ux
enables the use of the most appropriate and best avail-
able netw ork drivers, protocols, as well as programming
tools.

3. Performance Evaluation

In this section, we present a performance evaluation
of our Science Appliance, Ed, with respect to instal-
lation and upgrade time, job startup time, Supermon,
and edb.

3.1. Installation and upgrade (boot) time

Ultimately, it is our hope that all vendors will sell
cluster nodes with LinuxBIOS pre-installed. Currently
tw o such vendors exist (Lin uxLabs and Linux Net-
w orx), and only one (Linux Labs) o�ers BProc exten-
sions to the installed operating system. For Ed, Lin-
uxBIOS had to be installed manually which involv ed
setting up a standard network boot on each node. Once
the nodes came up as part of the cluster, the Flash
RAM was overwritten with LinuxBIOS from the front-
end node over the netw ork.This was the �rst and only

nodes boot time time per additional node
1 69 seconds N/A
10 71 seconds 0.22 seconds
100 101 seconds 0.32 seconds

Table 1. Boot time from power-on to node
ready for one, ten, and 100 DS10 nodes and
the time to boot each additional node.

time we had to write the Flash because the operational
kernel is downloaded from the front-end node.

Once a node has been booted by LinuxBIOS, it con-
tacts the front-end node for the operational kernel and
reboots itself. Upgrading the cluster nodes is achiev ed
by building a new operational kernel on the front-end
and rebooting the cluster nodes.

In the previous section, w ementioned the current
belief that hierarchical structure is necessary for clus-
ters larger than 100 nodes. We found that using mul-
ticast capabilities changed our view on hierarc hical
structure.

Table 1 shows the time to boot one, ten, and 100
DS10 nodes and the time to boot each additional node.
Using a faster netw ork, w ebelieve these boot times
will improve to better than 8 minutes (based on ex-
trpolation from the current numbers). As a reference
point, prior to adding multicast functionality, we were
unable to boot 100 nodes simultaneously due to time
outs induced by excessive load on the network and the
front end machine. Another 128-node Alpha cluster at
LANL running Tru64 cannot be booted in less than
two hours.

3.2. Job startup time

Job startup time is crucial to overall application per-
formance. Consider the case of a 10-hour sequential job
running on a cluster with 100 nodes. T oachieve the
full capability of the cluster, scalar overheads should be
less than 1/100 the ideal parallel runtime, i.e., perfect
speed-up. Since the ideal parallel runtime is 6 minutes,
the limit on scalar overhead is 3.6 seconds. Y et we have
clocked MPI startup times on a cluster this size at 15
seconds. The problem only gets worse as we grow the
cluster to 1024 nodes, which would in turn limit scalar
overhead to less than 1/2 second.

Table 2 compares remote job fork using a at (se-
quential) or tree-based startup for up to 15,000 pro-
cesses on 120 nodes. For small numbers of small pro-
cesses, a linear start-up is faster. This is partly due to
the fact that the front end machine is connected via

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

job size process linear tree
(processes) size spawn spawn

10 150k 0.03 0.06
100 150k 0.36 0.18
1000 150k 5.00 0.24
10000 150k 63.00 1.54
15000 150k 81.00 2.40

10 5MB 0.81 1.5
100 5MB 7.40 4.8
1000 5MB 90.00 4.8
10000 5MB 837.00 4.9

Table 2. Job startup times in seconds. Linear
spawn starts every process on the front end
and migrates it to a node. Tree spawn repli-
cates processes in a tree structure to exploit
parallelism in the network.

Gigabit Ethernet and the nodes are connected via fast
Ethernet. The tree spawn's time becomes basically at
once the number of processes reac hes the number of
nodes in the system. This is because the tree spawner
uses local fork once it gets a single process on a node.
Each one of those forks creates a new child which must
be represented on the fron t end machine so there is
communication for each one of those forks. Due to the
apparent lack of overhead there, w ebeliev ethe tree
based job startup will scale very w ellto large (thou-
sands) numbers of machines.

Notice that while job startup is hierarchic al, the clus-
ter structure itself do es not need to be hierarchical.

In previously published work, it was sho wn that Su-
permon can collect 100 samples per second without
noticeably a�ecting node performance [9]. More re-
cen tly, improvements to the data protocol and node
data source drastically increased this eÆciency [12].
Supermon is composed of three levels through which
data is �ltered and passed back to clients. The low est
level, a kernel module providing additional en tries in
/proc, provides the raw monitoring data at a maxi-
mum sampling rate of 3500 Hz on Ed's nodes (up to
6600 Hz on Intel platforms). The single node TCP
data server (mon) takes this data, �lters it, and passes
it to clien ts at a maximum sampling rate of 1400 Hz.
Finally, a data concentrator (supermon) collects data
from mon servers and returns it to clients over TCP at
a maximum sampling rate of 750 Hz for a single node.
These rates, sho wnin Figure 4, reect the entire 1K
per node data set being transferred, and are higher for
�ltered subsets of this data.

0 500 1000 1500 2000 2500 3000 3500

samples

0.0

0.5

1.0

ti
m

e
(s

ec
on

ds
)

Comparing /proc, mon, and supermon performance

/proc
mon
supermon

Figure 4. Comparison of /proc, mon, and su-
permon sampling rates for single node mon-
itoring

3.3. Edb scalability

T o demonstrate the scalability of edb, we measured
its response time for startup and continuation of 15,000
processes. Startup includes distribution and process
initialization of the target application and continuation
includes the issue and return of a ptrace continue com-
mand for all processes. F or an interactive debugging
session with 15,000 processes, we measured 40 seconds
for startup and 10 seconds for continuation.

4. Conclusions and F utureWork

The current state-of-the-art technology for building
cluster computers will not be usable for terascale-and-
beyond systems due to the direct relationship betw een
cluster size and cluster management and programming
overhead. In this paper, w eha vepresented our ex-
perience with a protot ypeScience Appliance, Ed, a
testbed for future generation cluster computers. We
have sho wn that Lin uxBIOS,a replacement for the
standard PC BIOS, can be used as a netw ork boostrap
to bring up the cluster nodes. The front-end node pro-
vides a single-system image of the cluster, muc h like a
traditional supercomputer, and thus the nodes can be
conveniently and eÆciently managed from the front-
end. Our Science Appliance can be booted in under
two minutes, which means that it can be upgraded in
under two minutes. The front-end can support 15,000
processes which can be started on the computed nodes
in 2.4 seconds, using a simple tree-based startup. Fi-
nally, we have built t w o cluster aw are tools, Supermon
and edb, which also scale well to large clusters.

Our initial experiences with Ed have shown us that
hierarchical structure, already being used in produc-

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

tion clusters today, may not be necessary for clusters
up to 1000 nodes if they are built in the way of Ed. No-
tice that hierarc hy is neededfor job startup, but this
does not require hierarchical structure.

Compared to LANL's other experiences with ven-
dor supported clusters of similar size and make, Ed
is several orders of magnitude easier to manage and
maintain. Consequently, we can only advocate building
terascale-and-beyond clusters as Science Appliances.

4.1. Future Work

By the prin tingof this paper, Ed's high speed in-
terconnect will have been replaced with Myrinet. We
expect to see even more impressive numbers for boot
time and start up using Myrinet (versus 100 MB Eth-
ernet). Our next steps with this cluster will include
additional scaling w ork, a scheduler, and �le system
research.

Lighter weight boot process The current boot
process involv esrunning scripts on the fron t-end to
setup the nodes. These scripts are currently complex
and involve a fair amount of processing per node on the
fron t-end.Replacing these scripts with equivalen t pro-
grams which can do the same work on the slave node
instead of the front-end would considerably lighten the
fron t-end's load at boot time.

BProc Job Scheduler BProc's single-system image
requires a new job scheduler. The interesting aspect of
the sc heduler is that the nodes have attributes similar
to �les and thus access to the nodes can be trivially
managed from the fron t end. Unlike existing cluster
schedulers, there is no need to contact the individual
nodes. In addition,fast boot times open up other in-
teresting possibilities such as rebooting the nodes after
each job for securit y reasons orbooting di�erent ker-
nels for di�erent jobs.

Private Name Spaces Current research in cluster
�le systems attempt to provide a global �le system for
the entire cluster. Our belief is that this is inherently
unscalable. We are currently implementing Plan 9 [10]
style Priv ateName Spaces for Lin ux[6, 7]. We will
incorporate this into the next Science Appliance envi-
ronment.

References

[1] Argonne National Laboratory. City - The MCS Large
Cluster System Software Toolkit.

[2] G. Bruno and P . M. P apadopoulos. NPA CIRocks:
T ools and Techniques for Easily Deploying Manage-
able Linux Clusters. In Proceedings of Cluster 2001,
Anaheim, CA, October 2001.

[3] E. A. Hendriks. The Beowulf distributed process
space. Submitted for public ation, 2002.

[4] Intel Corporation. Preboot execution environment
(PXE) speci�cation.

[5] A. J. Marks. T ow ard the design and implementation
of a scalable debugger. (In preparation), 2001.

[6] R. Minnich. 9.2.u: A user-mode private name space
system for unix. Technical report, Defense Advanced
Research Projects Agency, September 1998.

[7] R. Minnich. Private namespaces for linux. Dr. Dobb's
Journal, December 2001.

[8] R. Minnich, J. Hendricks, and D. Webster. The Linux
BIOS. In Proceedings of the Fourth Annual Linux

Showcase and Conference, Atlan ta, GA, October 2000.
[9] R. Minnich and K. Reid. Supermon: High perfor-

mance monitoring for linux clusters. In Pr oceedings

of the Fifh A nnualLinux Showcase and Conference,
Oakland, CA, November 2001.

[10] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221{254,
1995.

[11] R. Riesen, R. Brightwell, L. A. Fisk, T. Hudson,
J. Otto, and A. B. Maccabe. Cplant. In Pr oceedings

of the Second Extreme Linux Workshop, June 1999.
[12] M. J. Sottile and R. G. Minnich. Supermon: Cluster

monitoring as if performance mattered. Submitted for

public ation, 2002.
[13] The Open Cluster Group. OSCAR: A packaged cluster

softw are stack for high performance computing.Jan-
uary 2001.

[14] T urboLinux. Turbolinux P owerCockpit T echnology
Overview (white paper). September 2001.

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

