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Abstract

Several recent results show that the Lambek Calculus L and its close
relative L1 is sound and complete under (possibly relativized) rela-
tional interpretation. The paper transfers these results to L<, the
multi-modal extension of the Lambek Calculus that was proposed in
Moortgat 1996. Two natural relational interpretations of L are pro-
posed and shown to be sound and complete. The completeness proofs
make heavy use of the method of relational labeling from Kurtonina
1995. Finally, it is demonstrated that relational interpretation pro-
vides a semantic justification for the tranlation from L< to L from
Versmissen 1996.

1 Introduction

In the field of logical investigations into the structure of natural language,
the past decade has seen a remarkable shift of attention. Research doesn’t
only focus on linguistic structures as such anymore, but on how these struc-
tures are built and processed. This tendency is most evident in the study of
meanings, where Dynamic Semantics (initiated mainly by Groenendijk and



Stokhof 1991 and Veltman 1996) has found wide acceptance. In logical syn-
tax this trend is manifest in the revived interest in Lambek style Categorial
Grammar, now embedded into the broader perspective of substructural or
research conscious logics. Here the notion of inference has a procedural fla-
vor; premises and conclusion of an inference are to be considered as input
and output of a process of reasoning rather than as eternal truths.

This in mind, it seems worthwhile to figure out whether this conceptual kin-
ship between Dynamic Semantics and Categorial Grammar can be made pre-
cise on the formal level. Van Benthem 1991 addressed this question and gave
a partial answer in proving that the Lambek Calculus (Lambek 1958) is sound
under relational interpretation. There van Benthem also asked whether this
interpretation is complete. Even though this question is to be answered neg-
atively, recent results (that will be discussed in the next section) show that
completeness can be obtained by minor modifications either to the syntax of
the Lambek Calculus or to van Benthem’s semantics for it.

However, current research in Type Logical Grammar mainly uses multi-
modal extensions of the Lambek Calculus (cf. Moortgat 1997 for an overview),
and so the question of soundness and completeness under relational interpre-
tation arises for each of these mixed logics anew. The present paper addresses
this issue for the simplest of these logics. Two natural dynamic semantics are
proposed and soundness and completeness are proved. Finally, it is demon-
strated that relational interpretation provides a semantic justification for
translation between different Categorial logics.

2 Relational semantics for the Lambek Cal-
culus

Formulas of the Lambek Calculus L are defined by the closure of a set of
primitive types under the three binary connectives o,\, and /. Derivability
is given by the following sequent rules, where A, B etc. range over formulas
and X,Y etc. over finite sequences of formulas. As an additional constraint,
premises of sequents must not be empty.

Definition 1 (Sequent Calculus)
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X=A Y,B,Z = C X, A= B
Y,B/A, X, Z=C "7 X=B/A™M

X, A B)Y=C X=A Y =B

X, AeB Y =C " X,Y=AeB "M

In Pankrat’ev 1994 and Andréka and Mikulds 1994 it is shown that L is
sound and complete with respect to the following semantics. Let a model
consist of a set of possible worlds W, a transitive relation < on W, and a
valuation function V' that maps atomic formulas to sub-relations of <. The
semantics of complex formulas is given by the following clauses:

Definition 2 (Relational semantics)

(a,b) p i (a,b) € V(p)
(a,b) = AeB iff
(a,b) E A\ B iff
(a,b) = BJA iff
(a,b) A, X iff

A sequent A;...A, = B is valid iff for all models M and possible worlds
a,b, if {a,b) = Ay ... A,, then (a,b) = B. If we identify the relation < with
W x W, we arrive at a notion of validity that corresponds to derivability in
L1 (which is L without the restriction to non-empty premises), as shown in
Andréka and Mikulas 1994 and in Kurtonina 1995.

3 Multi-modal extension

L can be extended to its multi-modal version L by adding a finite family of
pairs of unary connectives <; and O, and by extending the sequent calculus
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with the following rules:!

Definition 3 (Sequent Calculus for L)

X,(;A);,Y = B X=4
X,0AY =B " ((X); = O 4
X,AY = B ) (X); = A
[O7L]

X, i0;A);,Y = B

The premise of a sequent is now a bracketed sequence of formulas, i.e. a
finite labeled tree. The subscript ¢ will be dropped in the remainder of the
paper if no confusion arises.

There are two ways how the relational semantics given above can be extended
to the multi-modal calculi. The first option is inspired by the way modal for-
mulas are interpreted in Kripke semantics. If we use a procedural metaphor,
to verify a formula ¢ A in a world a, we (a) make a transition from a to some
other world b that is related to a via the accessibility relation R, (b) we verify
Ain b, and (¢) we make a transition in the reverse direction back to a. The
main novelty in a genuinely dynamic interpretation is the fact that verifying
A may lead us to a world ¢ that is distinct from b, and accordingly, making a
R~!'-transition from ¢ may lead us to a world d that is distinct from a. The
static and the dynamic picture is given schematically in figure 1.

static dynamic
A

() :
b b — T c

R R R R
a a d

Figure 1: Static and vertical dynamic interpretation of GA

!Taken form Moortgat 1996, who proves Cut Elimination and Decidability.



Note that the input-output pairs (a,d) and (b, c) have to be related by the
ordering relation <, while there is no such restriction for the R-relation.
Inspired by the picture we might say that formulas relate points horizontally,
while the accessibility relation R is vertical. Following this suggestion, we
call this semantics vertical relational semantics.

Formally, a vertical relational model for L< is a model for L enriched with
a family of binary relations R; on W. The recursive truth definition is given
below.

Definition 4 (Vertical relational Semantics for L)

(a,b) Fop iff (a,b) € V(p)
(a,b) =, Ae B iff a<bA3Te({a,c) E, AN {c,b) =, B)
(a,b) =y A\ B iff a<bAVe((c,a) F, A= (c,b) =, B)
(a,b) =, BJA iff a<bAVe((be) Ey A= (a,c¢) E, B)
(a,by =y O;A i a < bA3Je,d(aRic NOR;d A {(c,d) =, A)
(a,b) =, O7 A iff  a <bAVe,d(cRia NdRb AN e < d=(c,d) |, A)
(a,b) EF, A, X iff a<bATc((a,c) =y AN {c,b) =, X)
(a,b) =y (;X); iff a<bATe,daRic NOR;d A (c,d) =, X)

a,c

We say that a sequent X = A is vertically valid (}=, X = A) iff for all
models M and worlds a and b: if M, (a,b) =, X, then M, (a,b) =, A.

The second option for a relational interpretation of L< is inspired by the
embedding from L< to L proposed in Versmissen 1996. Here & A is translated
as toe Aety, where ty and ¢, are two fresh atomic formulas of L. Adapted to
relational semantics, this means that there are two distinguished relations R
and S, and a & A-transition can be decomposed into a R-transition, followed
by an A-step and an S-step (figure 2). R and S have to be sub-relations of
<; thus the resulting semantics can be dubbed horizontal semantics.

To make this precise, a horizontal relational model for L< is a model for L
which is enriched by a family of pairs of relations R; and S; on W such that
for all i, R;,S; C<.

Definition 5 (Horizontal relational Semantics for L)
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Figure 2: Horizontal dynamic interpretation of GA

() Eap i (a8 € V()
(a,b) Ep, Ao B iff a<bA3Te((a,c) =, AN {c,b) En B)
(a,b) =n A\ B iff a<bAVe((c,a) = A= (c,b) =1 B)
(a,by = B/A iff a <bAVe((b,c) =, A= (a,c) =, B)
(a,b) Ep O;A iff a<bATe,d(aRic A {c,d) Ep ANdS;b)
(a,b) En O A iff  a <bAVe,d(cRia NbS;d A e < d={c,d) E, A)
(a,by = A X iff a <bA3Te((a,c) En AN (e, b) F=n X)
(a,b) Ep (;X); iff a<bATe,d(aR;c A {(c,d) En X A dS;b)

Horizontal validity is defined analogously to vertical validity.

4 Weak completeness of vertical relational se-
mantics

Theorem 1 (Weak Completeness) For every sequent X = A:

Fro X = Aiff F, X = B

Soundness can easily checked by induction on the length of derivations. The
completeness proof follows largely the strategy of Kurtonina 1995 in her
completeness proof for L1 in its relational interpretation. In a first step, we
augment the formulas in the sequent system with labels which reflect the
truth conditions of formulas. Each formula in a sequent is labeled with a
pair of labels, representing the input state and the output state of the corre-
sponding transition. Matters are somewhat complicated by the fact that we
have to distinguish horizontal and vertical transitions. To do so, we assume



that labels are structured objects themselves: they consist of a state param-
eter (u,v,w...) and a color index (r,s,t,...). The color index is written as
a subscript to the state parameter. We use letters a, b, ¢, ... as metavariables
over labels. The idea is that horizontal transitions only change the state
parameter, while vertical transitions change both components. Brackets are
treated like formulas; they are labeled with input label and output label as
well. For better readability, we use “0,” and “1;,” instead of opening and
closing brackets.

Definition 6 (Labeled Sequent Calculus)

Uyt A= u, t A el
X=ab: A Yab: A, Z = cd : B
Y X, Z=cd:B

X=ab: A Yiac: B, Z = de : C
Y,X,bc: A\B,Z = de: C e

[Cut]

u, vy A, X = uww, : B
X =uvw,: A\ B e

X=ab: A Yeb: B, Z = de: C
Y,ac: B/A, X, 7 = de : C v

X, uv, 0 A= ww, : B
X = w,u, : B/A

X, uv, : Ajv,w, : B)Y = de: C
X, u,w, : Ae BY = de: C

X=ab: A Y=b:B
X, Y=ac:AeB

[/R]

[eL]

[oR]

X,upv, 1 00w, : A,wr, 0 1;,Y = ef 1 B
Xoupzx, : O;AY =>ef: B

[0 L]

X=uwv : A
;R
wytty 05, X, 0,25 0 1; = wewy : O;A ]




X, uv, : AJY = ab: B
X, upwy : 0, wexs : OfA zgv, : 1;,Y = ab: B

4
[0 L]

u,vs 2 0, Xwer, 1, = u,x, A
X = vw, : OYA

4
[OF R]

The underlined labels have to fresh, i.e. they must not occur elsewhere in the
sequent.

Definition 7 (Proper and canonical labeling) A sequent a1b; : Ay, ..., a,b, :
A, = ab: A is properly labeled iff

e a;=a,b,=0b

o Vi(l<i<mn—b =ay1).

e I[f A, =0o0r A; =1, a; and b; have different colors.
e Otherwise, a; and b; have the same color.

e If A; =0, then there is a j > ¢ with A; =1 and the input color of A;
equals the output color of A; and vice versa.

e If A; =1, then there is a j < i with A; = 0 and the input color of A4;
equals the output color of A; and vice versa.

It is canonically labeled iff

e it is properly labeled.

e Each label occurs exactly twice.
Lemma 1 If a sequent is derivable, it is properly labeled.

Proof:
By induction over the length of derivations.

Lemma 2 (Renaming Lemma) If aga; : Ay, ...,a,_1a, : A, = aoa, : B
is derivable, then the result of renaming all occurrences of an arbitrary a;
with a label of the same color is also derivable.



Proof:
By induction on the length of derivations.

The idea of the completeness proof can be sketched as follows. Suppose a
given sequent A = B is underivable.? Then the labeled sequent ab : A =
ab : B (a and b being distinct and having the same color) is underivable as
well (otherwise we could transform every proof of the latter into a proof of
the former simply by dropping the labels). We will construct a falsifying
model whose domain is the set of labels and which has the property that
(a,b) &= A,(a,b) = B. To this end, we mark labeled formulas with their
intended truth value. This gives us the set {Tab: A, Fab: B}. Let’s call us
such sets T-F sets. We show that every consistent T-F set can be extended
to a maximally consistent T—F set, and furthermore that each maximally
consistent T—F set corresponds to a model which verifies all T-marked and
falsifies all F-marked formulas in it. Hence for each underivable sequent we
can construct a falsifying model, which means that every valid sequent is
derivable.

To simplify the model construction, we reify the ordering relation and treat
< as a formula too.

Definition 8 (T-F set) A T-F formula is either a formula of L&, “07,
“17, or “<”, which is labeled with a pair of labels and marked either with
“T” or with “F”. A T-F set is a set of T-F formulas.

By Ca we refer to the transitive closure of the relation {(a,b)|Tab : <€ A}.

Definition 9 (Maxiconsistency) A T-F set A is called maziconsistent if
it obeys the following constraints:

e For any labeled formula ab: A (A # 0,1, <), either Tab: A or Fab: A
is in A, but not both.

o If Tab: A€ A and a # 0,1, then Tab :<€ A.

e A is saturated, i.e.

2Tt is sufficient to show completeness for sequents with a single formula as premise, since
any proper sequent can be transformed into a formula with the same truth conditions by
replacing commas with products and bracket pairs with diamonds.



(i) If Fab : A\ B € A and a Ca b, then there is a ¢ such that
Tca: A, Feb: B € A.

(ii) If Fab : A/B € A and a Ta b, then there is a ¢ such that
The: B,Fac: A € A.

(iii) If Tab : AeB € A, then thereis a ¢ such that Tac: A,T'chb: B € A.

(iv) If Tab : A € A, then there are ¢ and d such that Tac : 0,Tcd :
A Tdb:1€A.

(v) If Fab: O'A € A and a Ca b, then there are ¢ and d such that
Tca:0,Fed: A,Tbd : 1, Ted :<€ A.

(vi) Tab: 0 € Aiff Tha : 1 € A.

e A is deductively closed, i.e. if a sequent «; ..., = [ derivable, and
forall1 <¢<n:Ta; € A, then T3 € A.

From a maxiconsistent set we can construct a model in the following way:

Definition 10 (Canonical Model) Let A be a maxiconsistent set. The
canonical model for A is Ma = (W, <, [,{R;|i € I},V), where

1. W is the set of labels occurring in A.
2.a<bif aCa b

3. aR;biff Tab:0; € A

4. {a,by € V(p) iff Tab: p € A.

Fact 1 If A is maxiconsistent, Ma is a vertical relational model for L

Proof:

Transitivity of < follows immediately from the model construction. The
requirement that A is maxiconsistent ensures that V(p) C< for arbitrary
atoms p.

Lemma 3 (Truth Lemma) For all maxiconsistent sets A, formulas A and
labels a, b:
Tab: A e Aiff Ma,ab =, A
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Proof:
By induction on the complexity of A. For the base case, the conclusion
follows from the definition of MAx.

1. A= Be(,= Since A is saturated, there is a ¢ such that Tac : B,Tcb :
C' € A. By induction hypothesis, ac = B,cb = C, and furthermore
a < b, hence ab = B e C.

2. < By the semantics of e, there is a ¢ such that ac = B,cb = C. By
induction hypothesis Tac: B,Tcb: C' € A. Since ac: B,cb: C = ab:
B e C, deductive closure of A gives us Tab: Be C € A.

3. A= B\ C,= Suppose ab = B\ C. Since a < b by maxiconsistency,
there is a ¢ such that ca E B,cb £ C. By induction hypothesis,
Tca:B,Fcb:C € A. Since ca: Byab: B\ C = c¢b:C, Tch: C € A,
which violates consistency of A.

4. <= Suppose Tab: B\ C ¢ A. By completeness of A, Fab: B\ C € A.
Since a < b by the semantics of “\”, a Ca b and therefore saturation
entails that there is a ¢ such that T'ca : B, Fcb : C € A. By induction
hypothesis, ca = B, c¢b = C', which is impossible.

5. A= B/C Likewise.

6. A = OB,= By saturation, Tab :<€ A, and there are ¢ and d such
that Tac : 0,Ted : B,Tdb: 1 € A. By induction hypothesis, c¢d = B.
The construction of Ma ensures that aRc, bRd, and a < b. Hence
ab = OB.

7. < By the semantics of <, there are ¢ and d such that aRc, bRd, and
cd = B. By induction hypothesis, T'ed : B € A. By the construction
of M and maxiconsistency, T'ac : 0,Tdb : 1 € A. Since - ac : 0,¢d :
B,db:1 = ab: B and A is deductively closed, Tab : OB € A.

8. A = O'B,= Suppose ab [ O'B. Then there are ¢ and d such that
cRa,dRb, ¢ < d, and cd £ B. By induction hypothesis, Fed : B € A,
and the construction of Mx ensures that Tca : 0,Tbd : 1 € A. Since
Focea: 0,ab: O0'B,bd : 1 = cd : B, Ted : b € A, which violates
consistency.
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9. < Suppose Tab : O*B ¢ A. By completeness, Flab : O'B € A. By
saturation, there are ¢ and d such that T'ca : 0,7Tbd : 1,¢ Ca d, Fed :
B € A. Hence cRa,dRb,c < d and cd £ B, which is impossible
according to the truth conditions for “O*”.H

To extend the initial T-F set to a saturated one, we constructively enforce
saturation by adding “Henkin witnesses”:

Assume an ordering of the set of labels.

Definition 11 (Henkin witnesses) Let A be a T-F set and a be a T-F
labeled formula. a and b are always assumed to be distinct.

(i) f « = Tab: Ae B, then H(A,a) = AU {a,Tac : A, Tac :<,Tch :
B,Tecb :<}, where c is the first label having the same color as a which
does not occur in A.

(ii) fa = Fab: A\B and a C"a b, then H(A, o) = AU{a,Tca: A, Tea :<
, Fcb : B}, where c is the first label of a’s color not occurring in A.

(iii) fa = Fab: A/B and a CTa b, then H(A,a) = AU{«,Tbc: B, Thc :<
, Fac: A}, where c is the first label of a’s color not occurring in A.

(iv) If o =Tab: OA, then H(A, o) = AU {a, Taw, : 0,Tw,a : 1, Tw,u, :
A, Tw,u, <, Tuyb : 1,Tbu, : 0}, where w and u are the first distinct
state parameters and r is the first color index not occurring in A.

(v) Ifa= Fab: 0'*A and a Ca b, then H(A,a) = AU{a, Tw,a : 0, Taw, :
1, Fwyu, » A, Thu, : 1,Tub : 0, Twyu, :<} where w and u are the first
distinct state parameters and r is the first color index not occurring in
A.

(vi) Else H(A, ) = A.

Adding Henkin witnesses preserves three properties of T-F sets that are
essential to prove maxiconsistency.

Definition 12 (Deep Consistency) A set A is called deeply consistent iff
it has the properties that if - a,...,, = fand Ta; € A forall 1 < <n,
then F/3 & A.
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Definition 13 (Acyclicity) A T-F set A is called acyclic iff there is no
sequence of labels a; ...a, such that Ta;_1a; :<,Ta,a; :<€ A.

Definition 14 (Well-Coloredness) A T-F set A is well-colored iff the fol-
lowing conditions hold:

o If Tab :<€ A, then a and b have the same color.

o If Tab:0€ AorTab:1 € A, then a and b have different colors.

Lemma 4 If a € A and A is deeply consistent, acyclic and well-colored,
then H(A, «) is also deeply consistent, acyclic and well-colored.

Proof:

As for acyclicity, observe that addition of T'ac :< cannot destroy it provided ¢
is fresh and a # ¢. This covers cases (ii) trough (v). In the first cases, assume
that adding T'ac :<, T'ch :< destroys acyclicity. This means that there is a
sequence aj . .. a, such that Ta;_qa; :<, Taya; :<€ AU{Tac :<,Tch:<}. In
this sequence, all occurrences of ¢ have to occur between a and b. Since the
fact that Tab: A @ B € A entails that Tab :<€ A, removing all occurrences
of ¢ would yield a closed cycle for A, contra assumption.

Preservation of well-coloredness is immediate from the definition of Henkin
witnesses.

To prove preservation of deep consistency, we assume the contrary and derive
a contradiction in each case.

(i) Since in every derivable sequent each label occurs an even number
of times, the sequent that violates deep consistency must have the
form Xi,ac : A,eb @ B,...,X,,ac : A,cb : B,Y = « where all
formulas occurring in X; ... X,,, Y, a already occur in A. By the re-
naming lemma, the following sequent is thence also valid: Xy, ac; :
Aeb: B,...,X,,ac, : A,cpb: B,Y = «, from which we can derive
Xi,ab: AeB,... ., X,,ab: Ae B,Y = « Since all formulas involved
are already in A and A is deeply consistent, F'o cannot be in A, which
is a contradiction.
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(i)

By the same reasoning as above, both new formulas must occur in the
sequent that causes violation of deep consistency. Hence its conclusion
is ¢b : B. The only place where the other occurrence of ¢ can possibly
occur is the first premise, hence the sequent has the form ca : A, X =
cb : B with X consisting only of old T-marked formulas. Since a T b
and A is acyclic and hence irreflexive, a # b which ensures that X is
non-empty. Therefore from this sequent we can derive X = ab: A\ B,
which is excluded by the deep consistency of A.

Likewise.

Suppose w,a : 1 occurs in the sequent that destroys deep consistency.
Since w, is fresh, there is no F-formula with w, as input label, and
the only T-formula with w, as output label is T'aw, : 0. Hence the
sequent in question would have the form X, aw, : 0,w,a : 1,Y = «,
which is impossible since there are no valid sequents where a closing
bracket immediately follows an opening bracket. In the same way it
can be shown that Tu,b : 0 cannot be involved in the destruction of
deep consistency. Thus by familiar reasoning, the guilty sequent has
the form Xi,aw, : 0,w,u, : A,u.b:1,...,X,,aw, : 0,w,u, : A, u.b :
1,Y = a. By the renaming lemma, Xi,aw,; : 0, w,1u,1 @ A, up1b :
L., Xp,awpp : 0,0ty p t A uppb i 1,Y = o with w,; and u,; fresh
is also valid. From this we derive the validity of X;,ab: CA,... ab:
CAY = a which is incompatible with the assumption of the deep
consistency of A.

Suppose aw, : 1 would occur in the sequent that undermines deep
consistency. Since every valid sequent is properly labeled and w, is
a new label, this sequent has to take the form A;,...,aw, : 1,w,a :
0,...A, = «, where all premises are T-marked and the conclusion is F-
marked in H (A, «). By proper labeling we know that aw, : 1 has to be
preceded by cu, : 0 for some ¢, u. But this is impossible since r is a new
color. Thus Taw, : 1 cannot destroy deep consistency. The same case
can be made for Tu,b : 0. Therefore destruction of deep consistency
entails that there is a valid sequent w,a : 0, X, bu, : 1 = w,u, : A such
that all formulas in X are T-marked in A. Since Tab :<€ A, a # b
due to acyclicity and hence X is non-empty. Therefore the sequent
x = ab : OA is also valid, which contradicts deep consistency of A.
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(vi) Immediate.

It remains to be shown that any deeply consistent, acyclic and well-colored
T-F set can be extended to a maxiconsistent T—F set.

Lemma 5 If A is deeply consistent, acyclic, and well-colored, A # 0,1 and a
and b have the same color, then either AU{T'ab : A, Tab :<} or AU{Fab: A}
is deeply consistent, acyclic, and well-colored.

Proof:

Suppose adding Fab : A destroys deep consistency, acyclicity, or well-coloredness.
Adding an F-marked formula cannot destroy acyclicity or well-coloredness,
hence A U {Fab : A} is not deeply consistent. This means that there is a
set of formulas Tac; : Ay, ..., Tc,_1b: A, € A such that ac; : A;...cp_1b:
A, = ab: A is valid. Now suppose adding T'ab : A would destroy deep con-
sistency, too. Then there would be a valid sequent X;,ab : A,..., X,,,ab :
A)Y = cd : C such that Fed : C € A and X;...X,, consist of T-marked
formulas from A. By repeated application of Cut we would obtain the valid
sequent Xy,ac; : Ay...cp, b A,... X ,ac c Ar.ooep1b i ALY = ed O
where the premise consists only of T-marked formula and the conclusion is
F-marked, which is excluded by the deep consistency of A. Adding T'ab :<
cannot, destroy acyclicity since Tac; :< ...Tc,_1b :< are in A and A is
acyclic. Preservation of well-coloredness is obvious.

This allows us to construct a maxiconsistent set by the following procedure:

Definition 15 Let A be a deeply consistent set and ¢ be an enumeration
of labeled formulas (excluding 0, 1, and <).

1. AOZA

2. If o, =ab: A, and A, U{Tp,,Tab :<} is deeply consistent, acyclic,
and well-colored, then A, ., = H(A, U{Ty,,Tab :<},Ty,).

3. Otherwise A, 1 = H(A, U{Fo,}, Fon).
4. Ay = Upew An-
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Lemma 6 If n < m, a and b are labels occurring in A,,, and —a Ca,, b, then
—a Ca, b.

Proof:
Induction over n and m.—

Lemma 7 If A is deeply consistent, acyclic, and well-colored, and Va, b(Tab :
0€ A<+ Tha:1e€A), then A, is maxiconsistent.

Proof:

By the construction, either T or Fav is in A, for all labeled formulas a.
Lemmas 4 and 5 ensure that each A, is deeply consistent. If both T'a. and
Fa were in A, they would be in some A, too, which is impossible since
these are deeply consistent. An inspection of the clauses for Henkin witnesses
shows that each addition of a formula T'ab : A is accompanied by addition of
Tab :<. Clauses (i) — (v) of saturation are ensured by closure under Henkin
witnesses together with lemma 6. By assumption, clause (vi) of the definition
of saturation hold of Ay, and it is easy to see that it is preserved under every
step from A, to A,,;. Thus it also holds of A, since otherwise it would
already fail for some A,,. Since A, is complete, failure of deductive closure
would entail failure of deep consistency for some A,,.-

Lemma 8 If a1b; : Ay...a,b, : A, = « is canonically labeled and under-
ivable, then {Ta;b; : A;, Fa} U {Ta;b; :< |0 # A; # 1} is deeply consistent,
acyclic, and well-colored.

Proof:

Since the sequent is canonically labeled, the only properly labeled sequent
made from its components is the original sequent itself. Hence there is no
valid sequent consisting only of formulas from the set in question. Acyclicity
and well-coloredness follow from the definition of canonical labeling.

Lemma 9 If ab: A = ab : B is derivable in the labeled calculus, A = B is
derivable in the unlabeled calculus.

Proof:
Simply drop the labels in the proof, and replace “0” by “(” and “1” by “)”.-
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Now suppose A = B is underivable in the unlabeled calculus. By the last
lemma, w,u, : A = w,u, : B (w and u distinct) is canonically labeled and
underivable in the labeled calculus. Hence in the canonical model constructed
from {Tw,u, : A, Tw,u, :<, Fw,u, : B},, (w,,u,) verifies A and falsifies B.
This completes the proof of Theorem 1.

5 Weak Completeness of horizontal relational
semantics

Theorem 2 (Weak Completeness) For every sequent X = A:

|_L<>X2>A2ﬁ ):hX:>B

The soundness proof is again a straightforward induction over the length
of derivations. The completeness proof is very similar to the proof in the
previous section, so I will content myself with pointing out the differences.

Definition 16

Let A be a T-F set. We say that a Ca b iff there are labels ¢; ...¢, such
that a = ¢1,b =c¢,, Ta;_1a; :<€ AV Ta;_1a; :0 € AVTa;_ia;: 1€ A for all
1 <1< n.

The definition of a maxiconsistent set now runs as follows:

Definition 17 (Maxiconsistency) A T-F set A is called maziconsistent
iff it obeys the following constraints:

e For any labeled formula ab: A (A # 0,1, <), either Tab: A or Fab: A
is in A, but not both.

o IfTab: A€ A and A # 0,1, then Tab :<€ A.
e A is saturated, i.e.

(i) If Fab : A\ B € A and a Ca b, then there is a ¢ such that
Tca: A, Feb: B € A.
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(ii) If Fab : A/B € A and a Ta b, then there is a ¢ such that
The: B,Fac: A € A.

(iii) If Tab: AeB € A, then thereisa csuch that Tac: A,Tcb: B € A.

(iv) If Tab : CA € A, then there are ¢ and d such that Tac: 0,Ted :
A,Tdb:1€A.

(v) If Fab:O'A € A, then there are ¢ and d such that Tca : 0, Fed :
A, Thd : 1,Ted <€ A.

(vi) If Tab: A€ A, A;B # 0,1, then Tab :<€ A.

e A is deductively closed, i.e. if a sequent oy ...a, = 3 derivable, and
forall 1 <¢<n:Ta; € A, then T3 € A.

From a maxiconsistent set we can construct a canonical model for horizontal
semantics:

Definition 18 (Canonical Model) Let A be a maxiconsistent set. The
canonical model for A is My = (W, <,I,{R;|i € I},{S;|i € I},V), where

1. W is the set of labels occurring in A.

2.a<biffaCA b

3. aR;biff Tab:0; € A

4. aS;biff Tab:1;, € A

5. {(a,by € V(p) iff Tab: p € A.
Fact 2 If A is maxiconsistent, Ma is a horizontal relational model for L
Proof:

By the definition of C A, < is transitive and R;, S; C<. The requirement that
A is maxiconsistent ensures that V(p) C< for arbitrary atoms p. -

Lemma 10 (Truth Lemma) For all maxiconsistent sets A, formulas A
and labels a, b:
Tab: Ae Aiff Ma,ab = A
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Proof:
By induction over the complexity of A. Cases 1-5 are identical to the proof
for vertical semantics.

7. A= OB, = By saturation, Tab :<€ A, and there are ¢ and d such that
Tac:0,Tcd: B,Tdb:1 € A. By induction hypothesis, ¢d = B. The
construction of Ma ensures that aRe, dSb, and a < b. Hence ab = ¢B.

8. < By the semantics of &, there are ¢ and d such that aRc, dSb, and
cd = B. By induction hypothesis, T'ed : B € A. By the construction
of Ma, Tac : 0,Tdb:1 € A. Since - ac : 0,¢ed: B,db:1 = ab: OB
and A is deductively closed, Tab : OB € A.

9. A = O'B,= Suppose ab [ O'B. Then there are ¢ and d such that
cRa,bSd, ¢ < d, and cd [~ B. By induction hypothesis, Fed : B € A,
and the construction of Mx ensures that Tca : 0,Tbd : 1 € A. Since
Feca:0,ab: O0'Bbd : 1 = cd: B, Ted : B € A, which violates
consistency.

10. <= Suppose Tab : O'B ¢ A. By completeness, Fab : O'B € A. By
saturation, there are ¢ and d such that T'ca : 0,7bd : 1,Tcd :<, Fed :
B € A. Hence cRa,bSd, ¢ < d and ¢d £~ B, which is impossible due to
the truth conditions for “0O0+”.H

In the definition of Henkin witnesses, the clauses for the modal formulas are
modified:

Definition 19 (Henkin witnesses)

(v) f @ = Tab : OA, then H(A,a) = AU{a,Tac : 0,Tecd : A, Ted :<
,Tdb : 1}, where ¢ and d are the first distinct labels not occurring in
A.

(vi) If @« = Fab: 0'A and a Ca b, then H(A,a) = AU{«a,Tca: 0,Fcd :
A, Tbd : 1,Ted :<}, where ¢ and d are the first distinct labels not
occurring in A.

For horizontal semantics, we can ignore well-coloredness.
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Lemma 11 If @ € A and A is deeply consistent and acyclic, then H (A, «)
is also deeply consistent and acyclic.

Proof:

Preservation of acyclicity is as above. As for deep consistency, the proof runs
basically as above too. For the Lambek connectives, it is just identical, and
for the modal operators, it is even simpler since fewer formulas are added at
each step of adding Henkin witnesses.

Lemma 12 If A is deeply consistent and acyclic, and A # 0, 1, then either
AU{Tab: A,Tab:<} or AU{Fab: A} is deeply consistent and acyclic.

Proof:
As above.

The construction of a maxiconsistent T—F set doesn’t differ from the vertical
case.

Lemma 13 If A is deeply consistent and acyclic, then A, is maxiconsistent.

Proof:
See above.

Lemma 14 If a6, : A;...a,b, : A, = « is canonically labeled and under-
ivable, then {Ta;b; : A;, Fa} U {Ta;b; :< |0 # A; # 1} is deeply consistent
and acyclic.

Proof:
See above.

As in the horizontal case, the last lemma ensures that for each underivable
sequent, we can construct a model that falsifies it.-

6 Strong completeness

Kurtonina 1995 shows that L1 is also complete in its relational interpretation
if conceived as an “axiomatic-sequent” calculus. Under this perspective,
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derivability and entailment are relations between (sets of) sequents and not
formulas.

Definition 20 (Derivability) A sequent ¢ is L<-derivable from a set of
sequents I iff there is a sequence of sequents ¢y, ..., d, with J,, = ¢ such that
each 9; is either an axiom of L<, an element of I', or it can be obtained from
01,...,0;_1 by inference rules of L.

A sequent X = A is said to be true in a model M iff || X||x¢ C ||Al|ps- This
leads immediately to a notion of entailments between sequents.

Definition 21 (Entailment) A sequent ¢ is (horizontally/vertically) en-
tailed by a set of sequents I' iff in all models where all elements of I" are
(horizontally /vertically) true, ¢ is true as well.

Theorem 3 (Strong Completeness) A sequent ¢ is LO-derivable from a
set of sequents I iff it is vertically entailed by I' iff it is horizontally entailed
by I

Proof:

Soundness is straightforward by induction on the length of derivations. As
for completeness, Kurtonina’s 1995 proof for the corresponding theorem for
L1 immediately carries over to LO. We assume that ¢ is not derivable from
I and show that it cannot be entailed. First we define the set I'; as the set of
all canonically labeled instances of elements of ['. The notion of derivability
of sequents above (definition 20) is extended to labeled sequents by replacing
L< with its labeled version. A set A of labeled T'— F formulas is called (ver-
tically /horizontally) I'-maxiconsistent iff it is (vertically /horizontally) maxi-
consistent and furthermore it is I'-closed, i.e. if a sequent «y ..., = [ is
derivable from I';, and for all 1 < i < n: Ta; € A, then T € A. Since
[-maxiconsistency is a stronger notion than maxiconsistency, fact 1/2 and
lemma 3/10 also hold if we replace the latter by the former. In a similar
fashion, we strengthen the notion of deep consistency to I'-consistency by
replacing derivability with derivability from I';. The lemmas 4-7/11-13 re-
main valid if we replace deep consistency with ['-consistency. Now suppose
I' /1,0 ¢ = A1... Ay = B. Since this sequent is not derivable from T', nei-
ther is any of its canonically labeled versions ab; : A;...b,_1c: A, = ac: B
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derivable from T';. Hence {Tab, : Ay,...T : b, 1¢ : A,,Fac : B} is I'-
consistent, i.e. it can be extended to a I'-maxiconsistent set which gives rise
to a canonical model. By the truth lemma, this model falsifies . On the
other hand, I'-closure guarantees that all elements of I' are true in this model.
Hence ¢ cannot be entailed by I'. 4

7 Translation L = L&

Versmissen 1996 proves soundness and completeness of the following trans-
lation from L< to L:

Definition 22

bl = »p (p atomic) (1)
[AeB] = [A]e][B] (2)
[A\B] = [A]\[B] (3)
[A/B] = [A]/[B] (4)
[OiA] = tige[A] et (5)
[O:A] = ;0\ [A]/tin (6)
[GX)i] = tia, [X] tan (7)

where ¢; o and ¢, ; are fresh atomic formulas.

Versmissen’s proof is purely syntactic. Completeness of L< in horizontal
relational interpretation lends itself naturally for a semantic proof, following
the strategy of Kurtonina and Moortgat 1995. First we show that every
horizontal model for L can be transformed into a model for L which verifies
the same formulas modulo translation.

Lemma 15 Let M = (W, <,I,{R;|i € I},{S;|i € I},V) be an arbitrary
model for LS and M’ be the L-model (W, <, V'), where V' extends V by
mapping ¢;o to R; and ¢;; to S;. Then it holds that for all L<-formulas and
bracketed sequences of L<O-formulas X that

M, (a,b) = X iff M', (a,b) |= [X]
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Proof: By induction on the complexity of X. The induction base and the

[P

induction step for “e” “\” /7 and sequencing are straightforward.

1. X = OB,= Suppose M,ab = OA. Then there are ¢,d such that

aRyc, M, cd = B, and dR;b. By induction hypothesis, M', c¢d = [B].
By the construction of M'; M’ ac | to, M',db = t;. Hence ac =
to L] [B] and ab ): to L] [B] ot = [<>B]

. <= Suppose M’ ab |= t, ® [B] ® t;. Then there are ¢,d with M’ ac |=

to, M, cd = [B], M',db = t;. By hypothesis, M, cd = B, and by the
construction of M’ aRyc,dR1b. Hence M, ab = OB.

. X = O'B,= Suppose M,ab = O'B. This entails that a < b. Now

assume that M’  ab [~ to\[B]/t;. Then there are ¢, d such that M', ca =
to, M',bd |= t;, M, ed = [B]. By hypothesis M, cd = B, and by the
construction of M', ¢Rya,bRyd. By transitivity of <, ¢ < d, which
contradicts the assumption.

. <. Suppose M’ ab |= ty \ [B]/t1, and M, ab [~ O'B. Then there are

¢,d such that cRya (i.e. M’ ca | ty) and bRid (i.e. M'jbd = ty).
By transitivity, ¢ < d, and M,ecd = B. By induction hypothesis,
M/, cd = [B], which leads to a contradiction.

. X = (Y) Analogous to <.

_|

Theorem 4

Left to right is an easy induction on the length of derivations. For the other
direction, assume that /o X = A. By completeness, there is a model M
such that M | X, M }£ A. By the truth lemma, M' = [X], M }£ [A]. By
soundness, 7, [X] = [A].

_|
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