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Abstract 

We prove the decidability of the Tensor-Bang fragment of linear logic and establish upper 
(doubly exponential) and lower (NP-hard) bounds. 

1 Introduction 

Since Lincoln et al. [9] discovered in 1990 that propositional linear logic is undecidable, there has 
been a great deal of interest in determining the complexity of different fragments. Gehlot and 
Gunter [2,5] established in 1991 that provability in the tensor fragment of linear logic with proper 
axioms (PrTLL) was equivalent to the reachability problem for Petri nets, whose decidability was 
established in 1982 in a difficult paper [8] by Kosaraju. It follows easily that the multiplicativc+bang 
( @,+, !) fragment, MBLL (also called MELL) can encode Petri Net reachability. On the other 
hand it is known that MALL (the exponent-free or multiplicative-additive fragment of linear logic) 
is decidable (and PSPACE-complete) and that MLL is NP-complete [7] (see also below). It is thus 
of great interest to understand the "boundary" region (TBLL, PrTLL, MBLL) both to pin down 
as much as possible where undecidability happens as possibly to shed more light on the complexity 
of Petri Net reachability from a linear logic perspective. 

Here we investigate the first such fragment, using a direct analysis of deduction somewhat in 
the spirit of formal language theory. We begin with the ground rules. The tensor-bang fragment 
of linear logic (TBLL) is comprised of the following symbols and rules of inference. The language 
consists of a (linearly ordered) set C of propositional letters { A 1 , .  . . ,A,). The logical constants 
are the binary connective tensor (@) and the unary (prefix) connective bang1 (!). 

'An abbreviated version appeared in the proceedings of Computer Science Logic (CSL) ' 9 1 ,  LNCS 626,  Springer, 
1992. 

'also called "of coursen 



Rules of Inference: Sequents r I- 8  consist of finite sequences r of propositions (separated by 
commas) and single propositions 19. In the rule called "axiom", only propositional letters occur. 

A l - A  " axiom" 

I9 I- ' ~ereliction (D) r, !I9 t- cp 

weakening (W) r7 !e I- 9 

r t c p  A t ' $  
@ intro-right (@ R)  

r , A k c p @ $  

I?, !6, !I9 !- p 
Contraction ( C )  r, ! B  t- p 

The only structural rules are exchange (x): 

and cut 

The following result will simplify our work below. 

Theorem 1.1 T B L L  admits cut-elimination. 

The proof is almost identical to that for the full propositional logic. See e.g. [4]. 

2 A decision algorithm for deducibility in TBLL 

To begin with we will need a series of translations and technical lemmas to  define our main algo- 
rithm. 

Definition 2.1 A formula cw is  i n  T L L  (tensor-linear logic) i f  it is  built up from propositional 
letters using only the connective 8. 

Definition 2.2 A formula in T B L L  is  called banged i f  i t  is of the form !a where a is  any TBLL-  
formula, or if it i s  of the form a! @ p where a and p are bansea. For a multiset r, @r is the tensor 
product of all the formulas i n  I?. A rnultiset r  is banged if @r is. 

The following properties of banged formulas will be useful. 

Lemma 2.3 The weakening and contraction rules of inference remain valid for arbitrary banged 
formulas /3 in place of !6' above. W e  can also replace the premiss in  the rule of !-introduction by  
any banged formula. 

'This agrees with Girard's recent definition of positive polarity of a formula 



The proof is immediate by structural induction. 
We define a canonical form which will be repeatedly used in the sequel. 

Lemma 2.4 (decomposition lemma) Every T B L L  formula a is either 

1. i n  T L L  or 

2. banged or 

3. equivalent (with respect to TBLL-deducibility) to a formula of the form a 0  8 a1 where a 0  is 
i n  TLL and a1 is banged. 

proof: If (1)  and (2) do not hold, then a is of the form y @ S where not both y and 6 are in TLL. 
Inducting on length of formulas, and applying the tensoring rules of inference, there is a formula 
yo @ 71 8 60 @ 61, with yo and 60 in TLL, y l  and S1 banged, which is equivalent to a (the cases y 
in TLL, 6 in TLL are left to the reader). Therefore a E (yo @ 60) 8 ( Y ~  8 61). I 

We will call case (3) in the statement of the previous lemma a decomposition of a TBLL formula 
a. The first formula will be called the unbanged or pure tensor part of the decomposition. Formulas 
in case (3) are said to be nontrivial, or to have a nontrivial decomposition. 

We first tackle the problem of deciding when one can deduce sequents of the form I? I- a with r 
in TBLL and a in TLL. The number of occurrences of each letter of C in a will help determine the 
possible replications (contractions) of banged formulas in the antecedent required in the associated 
deduction we are trying to reconstruct. In order to make this precise we define the notion of an 
instance of a TBLL formula, namely a certain expression obtained by "decorating" the ! symbols 
with natural numbers. 

Definition 2.5 (instances) Let y be a T B L L  formula. 

1. If y is an  atom A, then A is the sole instance of y .  

1 
2. 6(S1) is an instance of !S i f  and only i f  (6') i s  an instance of 6 and every ! i n  the subexpression 

(6') is instantiated to 0 .  

1 
3. k ( 6 ' )  (m > 0) is  an instance of !6 if 6' is  an instance of S and m is a natural number. 

4. 6' @ y' is  an  instance of 6 8 y i f  6' (resp. 7') is an instance of 6 (resp. y).  

It will also be convenient to define a symbolic version of an instance. 

Definition 2.6 A symbolic instance of a T B L L  formula is an indexing of every ! with a fresh 
variable. 



Note that if we pick a standard list of variables, and demand that consecutive variables be used 
as we proceed along the formula from left to right, a symbolic instance of a formula is unique. We 
now define a translation from TBLL formulas to a "polynomial expression" in the propositional 
letters of the language. 

Def in i t ion  2.7 C-po lynomia l  express ions  are (ordered) expressions of the form 

where Ai E C, A; < A;+I in the C-order, and each ei is  a sum Cij e;j of terms of the form k;j 
or k i j x i j  where kij is a natural number and xij a variable. The product of two such expressions 
A: AT . . . A? and A$ A$ . . . A$ is ~ i 1  + j ~  ~ i 2 + j 2  . . . . 1 2 

Let 0' be a symbolic instance of a proposition of TBLL.  W e  define the po lynomia l  f o r m  of 9' 
to be the following C-polynomial expression p(%'), by induction on the structure of 8': 

1. p(A) gf A for A E C. 

3. p(ry') gf p(y')(x) where we define the e x p o n e n t  as follows: 

W e  will also call such an expression a polynomial form of the original TBLL-formula % itself. 

Note in the preceding definition that p and the exponent are defined via a series of rewrite rules. 
Strictly speaking p(9) is the polynomial obtained by applying the above rewritings until a poly- 
nomial expression results (which is unique, once C is ordered, up to the names of the variables). 
Also note that the translation proceeds somewhat like an instantiation of regular expressions (with 
! taking the place of *) except for the unusual iterated exponentiation l aw"  (u(~))(")  *Zf - U(Y) Note 
also that for cr in TLL, p(a)  has no variables, and is essentially a lexicographical re-ordering of a. 
When instantiated with natural numbers, the exponents of the polynomials just defined will cor- 
respond to certain choices of instantiations (copies) of banged formulas in the proof theory. 

We are now in a position to define a string test which will be repeatedly used in our decision 
procedure, and which is, as we shall see below, sufficient to decide the special case t- o when a 
is in TLL. 

Def in i t ion  2.8 Let r and a be propositions i n  T B L L  and T L L  respectively. Then the pair (r, a )  
is said to satisfy the s t r ing  t e s t  ( in  symbols kcr) i f  



1. There are natural number values for the variables in the polynomials p ( @ ( r ) ) ,  p ( a )  such that 
the following equation has a solution: 

and 

2. These numerical values for the variables in p ( @ ( r ) )  correspond to a legal instance ( in the 
sense of definition 2.5) of the original formula (multiset) l? when substituted for the same 
variables i n  the corresponding symbolic instance of  9.  In particular any solution to 1 that 
results in the assignment of a nonzero decoration to  a bang within the scope of a does not 

0 
qualify. 

We remark that certain variables from the symbolic instance of 0 may not occur in p(0) because of 
the collapse of exponents. This is always the case when there is a subformula of 0 of the form !a 
where a is banged. In this case, our notion of "checking the legality" of a solution to equation (1) 
requires comment. We first replace those variables which occur in the polynomial equation with 
their numerical values. Then all uninstantiated variables in the scope of a are set equal to 0. All 

0 
the remaining ones are set equal to 1. 

We will call an instantiation of the variables in p(0) a polynomial instance for 0. If a is in T L L ,  
I' is in T B L L ,  and r ka, we call the corresponding instance of r the one "induced by the string 
test'' I' ka. 

In the next definition and the lemma that follows it, it will be convenient to introduce the T L L -  
unit 1. For the purposes of the lemma we add the axiom t 1 as a legal proof rule to the rules of 
T B L L .  We call the resulting fragments T ( B ) L L l .  

Definition 2.9 Every instance 0 has an associated TLL-normal form, namely the T L L l  formula 
obtained as follows. 

4 .  T ( A ~ )  (0 < m) zf a @ . . .@ a @ T ( 4 )  where a @ is the canonical decomposition of y (i.e. - 
m times 

a i n  T L L  and P banged). 

W e  lift the definition of instances to multisets of formulas in the obvious way. 

Lemma 2.10 Let y be i n  T B L L .  Then for any instance y' of y .  the following sequent is derivable 
in TBLL1:  y t T ( y f ) .  

proof: The proof is by induction on the structure of y 



1. If y is an atom A then its instance is A. The conclusion is immediate. 

2. Suppose y is # @ 6 .  By definition we have that T(#' @ 6') = T(#') @ T(6'). The result is thus 
obtained by induction hypothesis and @ - R. 

3. Suppose y is !#. By definition we have that T(;#') = 1. But then we have the deduction 

If m > 0 we have 
~ ( & h ' )  = a @ . . . @  a @T(P1) - 

m times 

where a @ /3 is a canonical decomposition of 4, and /3' is an instance of p. We take m to  be 
2 for ease of notation below. The induction hypothesis /3 I- T(Pt) along with uses of @ - R 
and the derived rule of weakening for banged formulas completes the proof shown below. 

We give an example: 

p ( ~ @ ! ( ~ @ ! ~ )  B ( ! (A@!B 8 B ) ) )  = P(A  8 I ( B  8 L A )  8 (:(A @ B B) ) )  = A ~+v+z B X + U + Z  

X Y U ( 2 )  

If we take, e.g., x = 2, y = 2, z = 0 and u = 0 we obtain the instance 

A @  A ( B @  A A ) @ ( ~ ( A @ $ B @  B ) )  

The corresponding polynomial instance is A3B2 and the associated tensor normal form is 

We consider a join operation on instances. 

Definition 2.11 (join) Let C', C" be instances of the TBLL-formula C.  We define the join 
C'MC" as follows: 

If C is a n  atom A, CWC = C 



If C is of the form ! O ,  with C' = LO' and C" = LO" then 
m n 

If c is of the form a @ p ,  and C' = 0' €3 p' and CN = a'' 8 p'' then 

Observe that if (Y is in TLL then aWa is a. 

Lemma 2.12 (TLL-join lemma) Let y'and y" be instances of the same banged formula y 

proof: Suppose y = ! c p .  Then y', y" are of the form lp' and Lcp" for some m and n. Then we 
m n 

have 

Let a @ p  be the canonical decomposition of cp.  Then cp1Wcp" must be equivalent to a@ (P'WP'') where 
p', P" are the instances of 0 occurring in the instances cp', cp". By definition of T, the expressions 
in (3) are equivalent to 

(Y @ . . . @  @T(P1~,L?"). - 
m + n times 

This is easily shown equivalent to T ( L ~ ' )  @ T ( L # )  once we apply the definition of T and the 
m n 

induction hypothesis to P' and P". The case 6 = S 8 y is a straightforward induction and rear- 
rangement of tensorands. The reader can easily check that in the I cases the appropriate TBLLl 

0 
sequent is provable. In particular if the left hand side is 1 or a tensor of l's, the right hand side 
must also be of this form. I 

Theorem 2.13 Let a be a proposition in TLL logic, and I? a formula in TBLL. Then 

a iff r k a .  
proof: We establish "soundness" ( r I- a + r ka)  by induction on the length of proofs. 

If r t- (Y is a one step proof by "axiom": A l- A then the polynomials are identical. 
Now suppose that r t (I. is a proof with n + 1 steps and inductively assume soundness holds 

for all proofs of shorter length. We consider the possible cases for the last step of the proof. 

case @ R  The last step in the proof is an inference of the form 

A t @  A l - y  

A , A k P @ y  ' 

By the induction hypothesis and the definition of p the result is immediate. 



case @ - L Soundness for tensor left is built into the definition of the string-test. 

case D The last step is an inference using dereliction: 

we can obtain a solution to p(A@!B) = p(a) by using the instantiations obtained by inductive 
hypothesis, extended to the new premiss by taking the variable corresponding to the introduced ! 
to be 1 (assuming it is not eliminated due to collapse of exponents). 

case C Suppose the last step in the proof is an instance of the rule of contraction: 

By induction there is a polynomial instance of the left hand side of the sequent I?, !O ,  !B I- cr agreeing 
with p(a)  and satisfying the legality criterion of the string test. Note that the polynomial instances 
u and v corresponding to the first and second indicated occurrences of !O may be different. Let 
il . . . ,in and jl . . . , j, be the corresponding instantiations of exponents in u and v. Observe that 
the sequence of natural numbers il + jl, . . . , in + j, instantiating the polynomial associated with 
the indicated occurrence of !B in the sequent r, !8 k a, satisfies 

1 1 The instance is legal, since, if some . occurs on the scope of a .- where is + js = 0 then + jr as + IS 
is = j, = 0 so by legality of the original solutions, i, = j ,  = 0. 

case W Suppose the last rule used was weakening: 

r, !9 I- a 

by inductive hypothesis we have a solution to 

~ ( r )  = p(a) 

By instantiating all the variables associated with the indicated !B to 0 we get a solution for 

p(r@!B) = p(a) 



case x This is true by induction hypothesis and the fact that the polynomials are unaffected by 
exchange. 

Now we prove the other direction: "completeness" (I? ka I' I- a ) ,  i.e., if there is a solution to 
p(I') = p(a)  then r I- a. Lemma 2.10 gives us that I' t- T(rl) ,  for any instance I" of r. It is easy to 
show that the instance obtained by the String Test is some permutation of a ,  thus I' proves T(I")  
and T( r l )  proves a. Hence by Cut we are done. I 

The string test algorithm 

The string test problem, and hence the decidability of the TBLL-TLL -fragment is NP-complete. 

Lemma 2.14 (NP-hardness) Provability in the TBLL/TLL-fragment is NP-hard. 

proof: The set cover decision problem is a well known NP-complete problem (see e.g. [I, 61). We 
give a brief description here. Let F = { S j }  be a finite family of finite sets. Let T be a subset of F. 
We say T is a cover of F if u st = u s;. 

S,ET S, EF 

Let k be a natural number. The set cover decision problem is, given inputs ( F ,  k), to  determine 
if there is a cover of F containing Ic sets. 

We now show that this problem can be reduced to provability in TBLLITLL. Suppose F = 
{Sj : 1 5 j 5 n) and 

sj={sjl, .--,sjt,} ( I l j I n )  

and define C = U; Sj. Suppose C = {al,. . .,ar}. Introduce propositional letters Al , . .  . , Al (one 
for each of the elements ai), B1,. . . , B, (one for each of the members of F) and an additional 
letter Z. Then we claim that the set-cover problem (F, k)  has a positive solution if and only if the 
following sequent is derivable in TBLL: 

(!B1 @ . - . @ ! B , ) @  

! [(!sll @ . . . 8!slt1 ) 8 8 Bl] 8 . . . @! [(!snl @ . @!snt,) 8 Z 8 Bn] 
I- 

(A1 Q, A2 Q, . . . @ Al) @ zk @ (81 Q, . . - @ B,). (4) 

In order to discuss our claim it will be convenient to  selectively instantiate certain of the ! 
symbols in (4). Consider 

(!B1 @ . .  . @!B,)@ 
I 6 [(!sn (8 . - . @!sit, ) '8 Z (8 Bl] @ . . . @ L En [(isnl @ . - - @!snt,) @ Z @ B,] 

I- 

(A1 @ A2 @ - - - @  A,) @ zk @ (B1 @ - - .  @ B,). 



Observe that if the sequent is provable, only instantiations of 0 or 1 for the ti could have occurred 
in the string test. Otherwise one of the Bi would occur more than once on the left and only once on 
the right. Observe that the presence of (!B1 @ . . . @!B,) in the top row of the sequent is to supply 
one copy of B; if the instantiation of ti induced by the string test is 0. An instantiation of ti to 
1 corresponds to the inclusion of the ith set in the cover. We also note that the letters Al, . . . , Al 
each occur only once on the right hand side of the sequent, but may occur more than once (as 
one of the sij) on the left. This is the reason each s;j occurs with a ! in each of the tensorands 
[(!sil @ . . .!sit,) @ Z @ Bi], so that it may be instantiated to 0 if the letter has already occurred as 
s,, for some u < i. We illustrate with an example and leave the details to the reader. Let 

and let k= 3. The set-cover problem for ( F ,  3) has the positive solution {1,2,4,7){2,6,7,8){1,3,6}, 
the union of which is the set {1,2,3,4,6,7,8). The test-sequent for this problem is produced as 
follows. We introduce letters A], A2, A3, A4, A6, A7, A8 corresponding to the members of U F, as 
well as B1,. . . , B5 and Z as described above. The associated sequent, then, is 

It is easy to check that the following instantiations, which reflect the set-cover solution given above 
satisfy the string test: 



Lemma 2.15 (NP-completeness) Provability in the TBLL/TLL-fragment is NP-complete. 

proof: This is almost immediate from the discussion of the deterministic string-algorithm in the 
next paragraph. To show a test sequent r t a derivable one has to guess the value (in the equations 
(10) below) of as many variables as there are ! symbols in the sequent. Each value is bounded 
by the number of occurrences of letters in a hence both the number of guesses and the values are 
bounded by the length of the test sequent. I 

We can describe a deterministic string test algorithm informally as follows. The input is an 
ordered pair (r, a )  with r in TBLL and a in TLL. We then compute the polynomial forms p(a) 
and p(@I') associated with these formulas (see definition 2.7). For a in TLL, p(a) is an expression 
of the form 

A ~ A ?  . . . ~ k  
and ~ ( r )  is of the form 

B:' Bi2 . . . B&m 

where the f; > 0 are natural numbers and the e j  are sums of terms of the form kij or kijxij. 
The string test algorithm checks that every A; is among the Bj. If A; matches Bj then we get 

an equation f ;  = ej else it fails as f; = 0 has no solution. If all letters in A;'s are found among the 
Bj's then we get a set of equations of the following kind. 

Then it tries to solve these equations using bounded search, the bound being given by f j  for the 
variables in e;, . Moreover the algorithm checks that the solution corresponds to a legal instantiation 
of I' (in the sense of definition 2.5). 

The number of variables in e; is bounded by br, the number of bangs in I' and f i  are bounded 
by l a ,  the length of a. Thus the search is bounded by 0(1$). 

An Example 

Consider the candidate sequent "A@!(B@!A) @ (!(A@!B @ B)) l- A @ ( B  @ A)." Applying the 
string test reduces to finding if there are x, y, z,  u E N for which 



x = 1, y = 1, u = a = 0 is a solution, and a legal instance, so the test succeeds, showing that 
the sequent is in fact derivable. Of course, the test can always be performed by a bounded search. 
Each equation generated is of the form 

where each a; on the right is a natural number, and each xi on the right satisfies 0 5 xi < k .  
The following example suggests that there is no immediate generalization of the string test 

to deal with the general case of TBLL-sequents. Consider I? :=! (A @ A @ A)@!(A @ A) and 
8 := A @ A@!A. 

The set of polynomial instances of r is { A 3 x + 2 y  : x,y E N} which is precisely the same set 
{A"+~" : z E N) of instances associated with 0 (Using a little algebra: the set (32 + 2y : x, y E N) 
is the (semi)- ideal of N generated by gcd(3,2) intersected with the set of numbers greater than 
(3-1)(2-1) = 2). However I? Y 0 and 0 Y r, as can be checked using the algorithm described next. 

Now we are ready to deal with general TBLL-sequents. 

Definition 2.16 (reductions) Let 6' be an instance of a TBLL-formula cp (i.e. a decoration of 
every ! in the original formula with a numerical subscript, as in  definition 2.5). W e  abuse language 
and define a decomposition of the instance 6' to be the "decorated" decomposition of the original 
formula cp i n  which we retain the subscripts of the instance 6'. Let the reduced fo rm r(Of) be the 
following associated TBLL-formula defined by induction on the structure of O f .  Primed formulas 
denote instances, and are dropped for TLL-formulas, (whose sole instances are themselves). 

1. r ( a ) =  a (a an atom). 

' , where a 8 j3' is a decomposition of  p'. 4. r ( i Y t )  ( k  > 0) =!cp @ ak @ r(/3 ) 

We establish a few properties of the reduction T .  

L e m m a  2.17 Let cp be any TBLL-formula, with instance y'. Then 

proof: By structural induction. The atomic case is axiom. In the case that y' is a tensor, the 
result is immediate from the induction hypothesis. Suppose cp' is L+'. Then use the induction 

m 
hypothesis on +' together and the derived rules of weakening and contraction on banged formulas 
(2.3) to obtain the proof. I 



Lemma 2.18 Let a @,8 be a decomposition of a nontrivial TBLL-formula. Then 

proof: It is clear that a @J ,f3 t- a ,  by weakening on P which is banged (2.3). By the cut rule r I- a. 
Now by the Soundness of the String Test we get the result. I 

Lemma 2.19 Suppose a is in TBLL and it is banged. If r t- a then I' is banged. 

proof: The lemma is shown by an easy induction on proofs. The only rule to check is that of 
- R, as in all other rules if the context r is banged prior to the application of the rule then it 

remains so after the application. 
rot-P rlF6 
r0,rl PC96 * 

then ro and I'l are banged by induction hypothesis, hence so is r = ro, rl. I 

Definition 2.20 Let y' be an instance of the TBLL formula y. The !-closure ŷ' of y' is a banged 
formula (or the empty multiset) defined inductively as follows. 

I f a  is an atom li is the empty multiset. 

Lemma 2.21 (TBLL-join lemma) Let y'and y" be instances of the same banged formula y 

The proof of this is a straight forward induction on the structure of the formula, and is quite 
similar to the proof of TLL-join lemma. 

Theorem 2.22 (bang-closure theorem) Let a @ P be a decomposition of a TBL  L-formula, and 
suppose 

A I - C - U ~ ~ .  

Then there is an instance A' of A  such that 



Conversely, suppose a is in  TLL, P is a banged formula, and A k a ,  inducing an instance A'. Then 

proof: ( a ) Suppose A I- a @I P. By the preceding lemma A k a ,  i.e., we have solution to 
p(A) = p(a) which yields an instance A'. Now by lemma 2.10 we have that T(A') I- a. 

Now we show I- p. By the cut elimination theorem, there is a proof of A I- a @I 3. whose last 
right-introduction is (@ - R) resulting in the formation of a @I P, i.e., there is a proof of the form: 

where the final steps are left introductions. Our proof that I- ,B will be by induction on the 
length of the displayed proof of A I- a @ P starting from Ao, A1 I- (Y @ p, in particular on the length 
n of the "mid-section" (*). Our induction hypothesis is that if the proof above has length n then 
A ka and for the instance A' induced by the string test, I- p. 

IIh 

Base case: If n = 0 then A is Ao, Al and we must show that Ao1,Al' I- P. Since the bang- 
closure of a formula is banged, it suffices to  notice that for banged formulas cp, 2 I- cp (almost 

immediate from the definition). As Al is banged as /3 is, then we have Al' I- Al and Al I- P, 
which, by the cut rule gives Al' I- P ,  whence by the derived rule of weakening for banged formulas 

A -  

(see 2.3), we obtain Aol,Al' I- P. 

Induct ive case: suppose the induction hypothesis true for all shorter derivations than the one 
displayed above in (12). We consider all possible rules used in the last step. 

D:: Suppose that the last step of (12) is a dereliction: - 

By our induction hypothesis, I', C a and the instance I", C' induced by the string test satisfies - 
I? @ C' I- p. It is easy to  see that I?, !C kcr with the following instantiation 



By decorating the outermost ! of !C with a 1, we preserve precisely the same instance we had 
before. Now by the definition of !-closure 

A A 

But we have r', C' I- by the induction hypothesis, hence, by weakening r^', !C, C? t P. 

€4-L: This is immediate: the string test and the definition of instance and !-closure remain un- - 
changed when a subformula of a premiss C, D is rewritten as C €4 D. 

W: Suppose the last step of the proof (12) is weakening: - 

We take the zero instance LC for !C, and use the same instance of r. Then note that LC' =!C 
0 0 

By induction hypothesis f' t- 4 and so F , !C  I- P as well. 

C: We are left with the only slightly delicate case, namely where the last step in the proof (12)  is - 
contraction: 

l', !C7 !C k a €4 6 
r , ! c I - a @ p  . 

and the induction hypothesis that there are instances r',!C1,!C" induced by the string-test, for 
A - -  

which I", !C', !C" I- P. Now !C'w!C" provides us an instantiation such that the instantiation of the 
conclusion is the same as that of the premiss. Now use TBLL-join lemma along with the Induction 
hypothesis to get fi, !cGc" I- 4. 

( +) Suppose that A kcr. Let A' be the instance of A induced by  the string test as defined in 
definition (2.5). Now by (lemma 2.17) we get that 

Notice that ~ ( i l ' )  is (equivalent to) z , T ( A 1 ) .  This gives us the result. I 

We are now ready to describe a decision procedure for TBLL. 



The Algorithm: "decide-TBLL" 

Input: An ordered pair (r, B) where r is a multiset of TBLL formulas, and 4 is a formula in TBLL. 

begin 

1. if 8 E TLL then execute string-test for (I?, 8), else 

2. if 4 is banged then check r is banged and 

case 1: 4 is !cp. Then apply decide-TBLL to (I?, cp) 

case 2: 8 is a @ T, (where a and T are banged): then apply decide-TBLL to (I', a) and (I', T). 

3. else let a @ cp be a nontrivial decomposition of 4 ( a  in TLL, 9 banged). Then do: 

3.1 apply string-test to (I',a). If it fails then fail. If it succeeds, let I" := an instance 
induced by the string test not already used up. If all are used up then fail. 

3.2 let r̂' be the bang-closure of r' 
3.3 apply decide-TBLL to (fl,cp). If it fails, then call this instance I?' used up, and goto 

3.1. 

end 

Remark on the algorithm Note that in step 3. we backtrack through all instantiations pro- 
duced by the string test. 

We briefly reconsider the example discussed following the string test algorithm, above. 
We claimed that 

r y 4  and B y r  
where r :=!(A 8 A @ A)@!(A @ A) and 4 := A @ A@!A. 

As our algorithm shows in two cycles, I? I- 8 is not a theorem of TBLL: (A @ A)@!A is a 
decomposition of 8, so we apply decide-TBLL to (I', A @ A) and (1', !A).  The first input yields 
"yes" (by the string-test) but the second one yields the application of decide-TBLL to  (I?, A) which 
fails the string-test. The failure of 8 k I? is immediate: 4 is not banged. 



2.1 Correctness and complexity of the algorithm 

The correctness of the algorithm decide-TBLL is essentially the content of lemma 2.13 (which 
justifies step I.), the decomposition lemma 2.4, lemma 2.4, lemma 2.19 on banged formulas, and 
the bang-closure theorem 2.22. The complexity is bounded by the complexity of the string test 
times number of calls to  the string test on the pair (?, a)  where f; is the bang-closure of I'. , f; is 
bounded by the "full" bang-closure obtained by the taking the multiset of all banged subformulas 
of r whose length is bounded by lth(r2).  The number of calls is bounded by the 2(Ba) where (@a)  
= number of tensors in a ,  which is bounded by 1. Letting 1 = Eth(a) + lth(I'), !!I = lth(f;) 5: 12, 
This gives a bound of (!!I)'' - 2l steps. We state this bound as a theorem and leave the details 
of formalizing this argument to the reader. We also recall that an NP lower bound for just the 
TBLL/TLL-fragment was established in lemma 2.14 above. 

Theorem 2.23 There is an o(l2l2) algorithm for deciding the derivability of sequents i n  TBLL. 
The problem is NP-hard. 

The authors would like to thank Andre Scedrov and Ramesh Subrahmanyam for comments and 
suggestions, and Dirk Roorda for pointing out errors in earlier drafts and for helpful suggestions. 

References 

[I] Garey, Michael R. and Johnson, Davis S.[1979] Computers and intractabiiity : a guide to the theory of 
NP-completeness San Francisco : W. H. Freeman. 

[2] Gehlot, V.[1991] A proof-theoretic approach to semantics of concurrency, Dissertation, University of 
Pennsylvania. 

[3] Girard, Lafont, Taylor [I9891 Proofs and Types, Cambridge University Press (Cambridge Tracts in 
Theoretical Computer Science 7),  Cambridge. 

[4] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:l-102, 1987. 

[5] Gunter, C.A. and V. Gehlot [I9891 "Nets as Tensor Theories" in Proc. 10-th International Conference 
on Application and Theory of Petri Nets, Bonn, G .  De Michelis, ed. 

[6] Horowitz, E. and Sahni S. [I9781 Fundamentals of Computer Algorithms, Computer Science Press. 

[7] Kanovich, M. [I9921 "Horn Programming in Linear Logic is NP-complete" in Proc. 7-th Annual IEEE 
Symposium on Logic in Computer Science, Santa Cruz, California, pp. 200-210, IEEE Computer 
Society Press, Los Alamitos, California. 

[8] Kosaraju, S.R. [1982], "Decidability of Reachability in Vector Addition Systems", Proc. 14-th ACM 
Symp. on Theory of Computing, pp. 267-281. 

[9] Lincoln, P. Mitchell, J . ,  Scedrov, A, and Shankar, N. [1990] "Decision Problems for Propositional Linear 
Logic", proc. 31st IEEE symp. on Foundations of Computer Science. 



[lo] Stockmeyer, L. [I9871 "Classifying the computational complexity of problems", Journal of Symbolic 
Logic, volume 52, pp. 1-43. 

[ l l]  Troelstra, A. S. [1991], Lectures on Linear Logic and Lectures on Linear Logic: errata and Supplement, 
lecture notes, Institute for Language, logic and information, Department of mathematics and Computer 
Science, University of Amsterdam. To appear as a book in the CSLI- Stanford series. 


