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There are clear tradeoffs among security, flexibility, and 
cost in possible designs for such SOAs. Traditional (pre-GIG) 
DoD network architectures have created logical airgaps 
between different networks such as the NIPRNET and 
SIPRNET, and services are replicated in each such network 
environment. Information security is, in principle, guaran-
teed with separated networks, since there is no network 
path from the more secure to the less secure network.

Although the GIG is a DoD-specific project, many of 
the trust management problems it exposes also occur 

naturally in existing and emerging commercial and other 
public networked computing environments, particularly 
those based on SOAs. In particular, traditional decentral-
ized trust management architectures,1 while useful, do not 
directly address questions such as policy changes under 
rapidly changing network conditions or revocation and 
autonomous versus centralized control. These problems 
occur in any large-scale system based on a rapidly chang-
ing, potentially unreliable network framework such as the 
Internet. Therefore, we believe that the GIG architecture 
is a useful platform and opportunity for studying trust in 
large-scale computing in general, not just in the military 
and government.
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A 
service-oriented architecture (SOA) separates 
functions into services, which process requests 
from peers over a network. In processing a 
request, the service can, in turn, send requests 
to secondary services and so on.

The Global Information Grid (GIG), an ongoing effort by 
the US Department of Defense (DoD) and Intelligence Com-
munity (IC), rationalizes and modernizes the architecture 
of US network-centric operations. It couples a common 
network architecture to advanced information assurance 
techniques and, as GIG’s name implies, focuses on the in-
formation the network carries and the services it provides, 
rather than on the network’s attributes.
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Trust management forms the basis for 
communicating policy among system 
elements and demands credential 
checking for access to all virtual private 
service resources—along with careful 
evaluation of credentials against specified 
policies—before a party can be trusted.

Dynamic 
Trust 
Management
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GIG Challenges 
In practice, the GIG architecture has several problems. 

First, all nodes on the secure network must be trusted to 
operate at their designated security level, so accidental 
physical access—such as that by a laptop user—can break 
the security model. Second, the architecture can make 
sharing appropriate information difficult or impossible. 
Finally, the broad division of information into security 
levels such as unclassified, secret, and top secret does not 
provide fine-grained access control based on the need-to-
know principle, which is key in securing information.

The research problem faced by SOAs, then, is to provide 
fine-grained access control to services and information 
within the context of a shared network infrastructure. Our 
conception of the access-control challenge in dynamic 
environments might best be differentiated from previous 
ideas, such as role-based access control (RBAC), by calling 
it mission-based access control (MBAC).

Fine-grained access controls, such as those required 
for access on a need-to-know basis, require fine-grained 
specification of policies, sometimes to the level of indi-
vidual users and objects, but certainly at the level of roles 
and services. We believe that fine-grained access control 
is possible by using a formal specification of policy with a 
policy language that can be understood by both managers 
and interconnected systems that must make decisions to 
permit or deny access. Once such a policy is specified, the 
specification can be used to check access decisions for files 
on a computer, database records, imagery, Web services, 
or real-time chat.

Two Examples
Large-scale distributed malice provides our first example. 

In this scenario, malicious actors use botnets—connections 
of hijacked machines that coordinate operations with each 
other—to carry out a wide variety of actions.

The future promises more malice on a larger scale. A 
detected botnet should result in a security policy change 
such as access to services and protection of data manage-
ment facilities. A central research question we address 
considers how to react at machine speeds to an appar-
ently distributed adversary given that botnets operate 
from diverse locations. Clearly, the reaction itself must 
be global, and it must be rapid to minimize damage to 
information services. The “shields up” decision for each 
network, object, and service should let systems operate 
autonomously if required.

Dynamic team formation for disaster relief provides 
our second example. Suppose a search-and-rescue team 
is operating a disaster-relief effort in the aftermath of a 
hurricane or flood that has struck an urban area. Rescue 
team members possess GPS-augmented communications 

devices with a tracking capability that lets them visualize 
their locations relative to each other. Given that this is a 
worldwide disaster-relief effort, other teams must coordi-
nate with an independent force-tracking technology.

For the duration of disaster relief, the location informa-
tion should be shared because everyone has become part 
of the same team. Thus, this dynamic policy must authorize 
access to friendly location information and take into ac-
count issues such as personally identifiable information that 
cannot be shared between the communicating parties.

This effort raises questions regarding how accesses are 
authorized in such a situation and how accesses to particu-
lar services can be kept from extending to all networked 
services. It also presents a complex information-manage-
ment challenge that must be met in a way that does not 
require complete access to networks and servers to pro-
vide a necessary capability. Other issues involve

determining how to grant access rapidly in the face of 
a changing policy, as well as how to revoke it;
deciding how resources must be defended from unau-
thorized accesses at a fine-grained level; and
assessing how coordinated support for information-
sharing with team members will affect the resources 
required of the GIG.

Challenges for SOAs
In complex SOAs the problem becomes even more dif-

ficult. The goal might not be to rigidly enforce complete 
separation at all times due to mission demands and the 
flexible roles the network must take, such as support of 
dynamically changing disaster relief teaming. Rather, it 
might be desirable to maintain a high degree of separa-
tion between applications most of the time, but to relax or 
strengthen this separation under specific circumstances in 
response to emergencies or rapidly changing conditions.

For example, during specific operations or emergen-
cies, the need for relaxation of normal policy might occur 
in response to explicit decisions by a central authority, or 
the triggering of a predetermined risk-management strat-
egy—for example, for data in which the sensitivity decays 
over time. An increased security posture might be assumed 
when available network sensors, such as intrusion- 
detection systems, provide situation awareness that indi-
cates an increased threat level.

•

•

•

Trust management provides the  
basis for communicating policy  
among system elements.
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We see the challenge as dynamic provision of virtual 
private services (VPSs)—services for which access is con-
trolled on the basis of a security policy. Trust management 
provides the basis for communicating policy among system 
elements. Trust management systems demand credential 
checking for access to all VPS resources, along with careful 
evaluation of credentials against specified policies before a 
party can be trusted. Thus, the default assumption is to not 
trust. An architecture based on trust management systems 
and languages therefore provides an extremely promising 
approach for analysis and compliance enforcement in 
systems with complex architectures. If successful, such an 
approach will enable the secure composition of services 
needed to adaptively achieve mission-critical tasks in the 
short timeframes that today’s time-sensitive military en-
vironments mandate.

Dynamic Trust Management
At first glance, the hierarchical deployment of existing 

trust-management systems fits well with the concept of 
service orientation. Specification and enforcement of a 
security policy for a given service are decomposed accord-
ing to the service’s structure and partially conferred on  
the secondary services in terms of their policies.

In our past work, we defined and formalized trust 
management as an explicit policy compliance layer for 
decentralized systems1,2 and developed practical trust 
management languages and systems for small- and 
medium-scale applications such as distributed firewalls3 
and virtual private services.4 A VPS contains components 
distributed over several hosts on a network. A central au-
thority specifies security policies, but the host enforces 
the policies according to policy rules applicable to the VPS 
component deployed on that host.

Despite the seemingly good match, existing 
trust-management approaches are clearly insuf-
ficient for SOAs. The key problem is that policies 
specified by existing trust management systems 
are static: a VPS policy identifies precisely the 
subservices and hosts they are deployed on and 
prescribes the policy enforcement strategy. To 
support a modern SOA, a policy specification 
should be dynamic to accommodate changes in 
both the system and its environment.

Dynamic service availability
The network might have multiple hosts ca-

pable of performing the necessary service. To 
make things more complicated, service avail-
ability changes dynamically. Dynamic service 
discovery now forms an integral part of most 
modern SOAs, and should be accommodated 
by the SOA’s trust management system. Not all 
alternative services can be equivalent from the 

security perspective. Some services might require that a 
request have a higher degree of trust to gain access to the 
service. Others might have inferior trustworthiness if they 
are offered by less-trusted hosts, and thus cannot be used 
to serve some classes of requests.

Situational dynamism
The system’s changing environment provides the other 

source of dynamism in SOAs, when the same request 
might be processed differently depending on the situa-
tion. Suppose, for example, that a request requires access 
to a reliable and secure set of terrain data. In a particular 
situation, this set of data might be inaccessible, but less 
reliable or less secure data might be available. A static 
policy could reject this request because the required data 
is unavailable. However, even a less reliable result of the 
request might be critical to ensure an effort’s success. A 
dynamic policy will let the system either deny the request 
or service it with inferior data.

In its simplest form, situational dynamism can be im-
plemented by means of a set of predefined security modes. 
A security mode could be switched either manually by a 
person with sufficient privileges—by a commander in the 
field, for example—or by the enforcement engine auto-
matically, according to a given criteria set.

trust management ARCHITECTURE
Existing trust management systems such as Key-

Note rely on a strict boundary between the trusted and 
untrusted zones. Figure 1 shows the KeyNote system’s 
architecture. Requests from the untrusted zone sent by 
clients and peers are processed centrally by the trust 
management engine according to the policies of individ-
ual applications. This model works well for small- and 
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requests
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Figure 1. KeyNote system’s trust-management architecture. The 
trust-management engine processes requests from the untrusted 
zone sent by clients and peers according to the policies of individual 
applications. This model works well for small- and medium-scale 
applications.
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medium-scale applications in which there are well-de-
fined administrative and topological boundaries between 
internal and external services. But the model can make it 
difficult to support complex systems where these relation-
ships are more fluid.

By contrast, dynamic trust management does not rely 
on fixed boundaries between trusted and untrusted com-
ponents. Instead, each principal in the system, such as a 
service, derives a trust level for each principal with which 
it interacts. This trust level will be derived dynamically.

Figure 2 shows a possible architecture for such a system. 
The trust levels appearing in Figure 2 are shown from Ser-
vice A’s perspective, which receives a request from some 
client with the trust level TRUST_X. To process this re-
quest, Service A must send secondary requests to Services 
B and C. Service B is deployed locally with Service A and 
has the highest level of trust.

Service C, on the other hand, is deployed remotely and 
has a lower level of trust, TRUST_Y. The policy for Service 
A, then, is stated in terms of the dynamic trust levels for 
incoming requests and subservices that A uses. If the trust 
level of Service C is deemed too low to process the request, 
the request might be denied or an alternative to C might 
be sought.

The idea of cooperative policy evaluation5 is the starting 
point for our dynamic trust management system. A global 
policy controls evaluation of trust levels for principals in 
the system.

Trust Policy Language
The trust-management approach1 frames security 

questions as follows: “Does the set C of credentials prove 
that the request r complies with the local security policy 

P?” This approach subsumes traditional authentication 
and certification questions under an action authoriza-
tion model. In this model, remote requests with security 
implications are authorized or denied based on local 
policy in conjunction with credentials and authenticated 
identity.

The policy and credential language with which we will 
conduct our work will be based on KeyNote,6 with exten-
sions we will add to support dynamic policies. In particular, 
we will introduce new constructs to the language that sup-
port an active trigger mechanism for policies and tested 
conditions. The trust management model implemented 
by the current KeyNote system (and most other systems) 
is entirely passive. Policies and assertions are written in 
a scripting language in which an authorizer trusts one 
or more licensees to perform actions that match certain 
conditions. For example, a simple access control credential 
might be written as:

Authorizer: “rsa-hex:1023abcd....”

Licensees: “dsa-hex:986512a1...” || 
“rsa-hex:19abcd02...”

Comment: Authorizer delegates read 
access to

either of the Licensees

Conditions: (file == “/etc/passwd” &&

access == “read”) -> “true”;

Signature: “sig-rsa-md5-hex:f00f5673...”
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Figure 2. KeyNote system dynamic trust management architecture. Requests from the untrusted zone sent by clients and peers 
are processed by the trust management engine in a centralized fashion according to individual applications’ policies.
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This approach has proven useful for small- and 
medium-scale systems in which all security-sensitive 
applications and services can query the trust manage-
ment system explicitly whenever it receives a potentially 
dangerous remote request, but it does not easily sup-
port tight coupling to network conditions or actively 
pushing new policies into remote systems.

Developers are extending KeyNote to support an active 
model in which both the Licensees and Conditions can 
include not only passive pattern matching but also active 
triggers that can be executed automatically in response to 
changing conditions. 

We are investigating two kinds of active triggers: pred-
icates and actions. Predicate triggers cause a local policy 
to be evaluated asynchronously on a network element 
whenever the external state matches some predicate. 
Action triggers push policy change information out to 
other network elements and can appear as part of local 
policy.

In our current research, we address the exact syntax 
and semantics of these active trigger mechanisms, 
which allow highly dynamic trust management poli-
cies tightly coupled to network health and changing 
policy. For example, predicates could be triggered when  
the local network detects some botnet-style attack  
behavior, allowing the system to push out a policy  
that introduces more restrict ive access control  
rules:

authentication_failures(hosts>4) -> 
require_certificates()

Other approaches could be tailored to different threat 
levels.

Cooperative Policy Evaluation  
with Feedback

To evaluate dynamic policies, we are designing and 
implementing novel mechanisms for collaborative decen-
tralized policy enforcement. To that end, we propose a new 
model, dynamic policy evaluation. In DPE, security policy 
decisions can be revisited at any time during the session’s 
lifetime (with the term session informally defined as a 
temporally extended sequence of security-relevant interac-
tions among those components of the distributed system 
that collectively handle a specific request) and may recom-
mend actions beyond the typical permit/deny outcome of 
such security policies. 

The access-control mechanisms that govern the dis-
tributed system’s components participating in a session 
form a logical ad hoc clique for exchanging security-
critical information during the session’s lifetime. The 
clique avoids the performance and complexity of having 
all such components communicate with each other at 
all times. The exchanged information includes policy 
decisions made by the various components during the 
session, changes in the session environment—such as 
when traffic starts arriving over a wireless link—and 
information from other “sensors,” including intrusion 
detection systems, behavior-based anomaly detectors, 
and credential revocation. The dynamic policy evalua-
tion model is reevaluated as new information becomes 
available, and privileges could be revoked or restricted 
as a result.

Consider the simple system shown in Figure 3, consist-
ing of a website that uses a firewall, a front-end webserver 
such as Apache, a back-end business-logic server running 
PHP or JavaBeans, a file server storing static content, con-

Business logic

Database server

File serverWebserver

Firewall

Internet

Remote user

Remote user

Figure 3. Interaction between components of a webserver in the context of sessions initiated by external users.
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figuration files, executables and scripts, and a database 
storing order and customer information.

In this configuration example, an unauthorized wire-
less access point located inside the firewall perimeter lets 
outsiders access the webserver, whose security policy 
assumes that any traffic reaching it must have been autho-
rized by the firewall. Given that there is no way to validate 
this assumption—which changed due to external, unfore-
seen factors—the outsider can be granted access under 
false premises.

Further, once admitted by the access-control process 
of one component, the user can interact with the remain-
der of the system without much supervision by that first 
component. An attacker can probe the system for weak-
nesses without fear of losing already established access. 
For example, an attacker who exploits a misconfiguration 
of the firewall to probe the internal webserver’s scripts 
for SQL-injection vulnerabilities will have his access re-
stricted only after an administrator (possibly prompted 
by an intrusion-detection system) takes action. Although 
the firewall continues to verify the conformance of each 
packet to policy, the attacker’s misbehavior is invisible to 
the firewall.

We observe that, although the system components 
work together in handling application requests, there is 
no cooperation in determining the proper security con-
text for authorizing these requests. Currently, there is no 
mechanism through which security policy can reevaluate 
the privileges of that user and indicate some necessary 
action. For example, the firewall policy might request a 
reauthentication of the user, the webserver might decide to 
handle that user’s requests under a more restrictive policy, 
and the database might let the user issue queries but not 
update any tables.

Although it would seem straightforward to manually 
address the security problems in a small environment such 
as this example, configuration errors can lead to insecure 
postures even in configurations involving just one firewall.7 
The complexity of verifying security policy correctness 
and safety for a large nontrivial system—such as a finan-
cial-services firm with 50,000 servers, 90,000 desktops, 
2,500 financial applications, hundreds of entry points, and 
a large supporting infrastructure—is beyond the state of 
the art.8 Other examples of such systems include military 
networks, online gaming services, large ISPs and ASPs, 
and e-commerce sites.

There is no unified policy-based mechanism through 
which to scalably handle access control, intrusion detec-
tion, and other recovery mechanisms consistently across 
a large distributed system. We need a way for the secu-
rity policies across all these mechanisms to continuously 
validate the assumptions upon which access was initially 
granted, taking into consideration additional information 
as it becomes available.

Further, because we cannot determine the true intent 
of a user or system component that appears to be misbe-
having, the security policy must have a larger repertoire 
of reactions than simple accept or deny. Again in our ex-
ample, possible reactions beyond completely revoking 
the user’s access might be to slow down the handling of 
requests (potentially while notifying the administrator), 
redirecting traffic to an appropriately instrumented in-
stance of the webserver that might be much slower but 
will detect a wide variety of attacks, or request additional 
authentication and migrate the server and that user’s files 
to a honey-pot-like system that enables recovery from 
malicious changes to persistent storage.

DPE offers several advantages over traditional access-
control models. First, it unifies access control and intrusion 
detection under a common security policy, allowing ad-
ministrators to make better use of them. Second, it lets the 

system react to changes in the security environment faster, 
while remaining under security policy guidance. Third, 
it allows integration of mechanisms that go beyond the 
simple permit/deny approach of access-control policies, 
enabling finer-grained reaction to potential misbehavior.

Our approach can conceptually be viewed as com-
plementary to static policy-verification techniques: By 
allowing component policies to exchange information 
relevant to future and past decisions, we can continu-
ously verify the assumptions upon which statically verified 
policies are based and confirm their soundness and any 
deviations while the system operates.

Currently, our work proceeds along three fronts: formal, 
systems design, and experimental.

We are developing a model for DPE based on our 
previous work on trust-management systems.6 Our 
starting point is the PolicyMaker1,2 evaluation model; 
our concept of cross-layer communication stems from 
thesis work on the Strongman system.9

We are investigating integration of intrusion detection 
and other security-event generators with access-con-
trol mechanisms and other appropriate response 
and recovery mechanisms, such as slowdowns in 
response to attack.10 We plan to build research proto-
types demonstrating the proposed model for realistic 

•

•

There is no unified policy-based 
mechanism through which to scalably 
handle access control, intrusion 
detection, and other recovery 
mechanisms consistently across a  
large distributed system.
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environments, starting with deployments and exper-
imentation in lab environments, and scaling up to 
department-scale infrastructures and beyond, as op-
portunities for collaboration and deployment in other 
environments arise.
Our current plan seeks to experimentally validate DPE 
through participation in “capture the flag” experi-
ments in a “quantitative trust management” effort. 
This experimentation will seek to determine our mod-
el’s effectiveness and shortcomings, identify possible 
ways the system can fail, and develop techniques and 
mechanisms that can prevent or mitigate the impact 
of such failures.

System Prototyping and  
Experimental Evaluation

To evaluate the effectiveness of our approach to dynamic 
policy, we will implement and validate the DPE algorithm 
experimentally in realistic service-oriented environments. 
We will evaluate the strongman scaled enforcement of 
access-control policies to large-scale environments by 
translating high-level general security policies into com-
ponents specialized to address multiple local-enforcement 
points, but will leave policy correctness unaddressed. If 
the high-level policy made incorrect assumptions, local 
components could not detect this and recover and, due to 
the common translation process, would all be affected by 
the flawed assumption.

A self-recovering system must dynamically discover the 
set of components that should be exchanging information 
(a “community of interest,” as it were) and identify the 
conditions under which policy revaluation should occur. 
Distributed firewalls3 and distributed intrusion detection11 
provide a basis for statically determining possible compo-
nent interactions and the types of information that might 
be exchanged. Strongman introduced the notion of a com-
position hook, a piece of information exchanged between 
two policy enforcement mechanisms residing at different 
layers of the network stack in the same system.

Composition hooks are provisioned at policy-genera-
tion time, based on the high-level policy specification, 
and provide a simple mechanism for dynamically coordi-
nating different security mechanisms that coexist in the 
same system, such as IPsec and SSL in a webserver. This 
mechanism will be generalized to runtime events to permit 
ad hoc component interactions and integration with other 

•

dynamically generated information, such as IDS alerts.
We will use a distributed blackboard on which policy 

assertions post (and read) access-control decisions and 
other events of interest. Key foci in the detailed design 
of the system will be scalability and tradeoffs between 
performance and effectiveness. We believe that significant 
gains can be achieved in reducing false positives and creat-
ing more agile systems that can better react to changing 
circumstances. DPE policy evaluation will be based on the 
KeyNote model, which allows for answers to policy que-
ries from among a totally ordered set of valid responses, 
such as “permit unconditionally,” “permit with additional 
monitoring,” “permit in honey pot,” “deny,” or “deny and 
ban the user.”

The systems and software artifacts expected as the 
result of this work include middleware for creating 
sessions, integrated intrusion and anomaly detection 
capabilities, and behavior tracking. We plan to integrate 
existing security mechanisms that provide gradual re-
sponses, such as “shadow honey pots,” filesystem/database 
tracking/journaling, network rate-limiting, and reauthenti-
cation into our system, and then develop new mechanisms 
as our understanding of cooperative policy concepts in the 
proposed work matures.

That maturation process will require developing new 
policy models and language support for policy specifica-
tion. Our choice of KeyNote is beneficial because of its wide 
use and deployment on Apache webservers, which are 
representative of SOAs. Experimental evaluation of the pro-
totype will be performed on a surrogate SOA configuration 
with multiple independent but collaborating webservers, 
consistent with SOAs. Each system will be equipped with a 
database, fileserver, and firewall components. The system 
will also have its defenses “red-teamed” using “capture the 
flag” exercises with careful postmortems to strengthen our 
agile dynamic defense architecture for MBAC.

synergies
Trust management provides a unified approach to spec-

ifying and interpreting security policies, credentials, and 
relationships.2 We define some important trust manage-
ment terms informally. An access request seeks access 
to a resource, possibly in a specified mode. A policy is a 
specification of conditions under which access may be 
granted. A credential is a claim of meeting the conditions 
of some policy. A transaction is an access request followed 
by the granting of the request and subsequent access to the 
resource. An agent or component is any entity that interacts 
with other agents in the system by means of transactions. 
An agent is trusted in a transaction if its access request is 
granted.

The KeyNote system’s6 goal is to define notions of trust 
using policy specifications and to check that a transac-
tion request has the credentials necessary to satisfy the 

Trust management provides a unified 
approach to specifying and interpreting 
security policies, credentials, and 
relationships.
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relevant policy. Thus, rather than simply classifying the 
world as trusted and untrusted, this approach allows more- 
sophisticated policies and notions of trust. For example, 
trust that an unknown party’s public key is correct can 
be built up by having trusted parties certify this to be the 
case. Thus, systems such as KeyNote let users have very 
fine-grained notions of trust and manage trust flexibly. An 
obvious but important point is that most trust manage-
ment systems, including KeyNote, start with a complete 
absence of trust between parties. Only the active presen-
tation of a satisfactory credential can overcome this lack 
of trust. We believe that an architecture based on trust 
management systems and languages offers an extremely 
promising approach for analysis and compliance enforce-
ment in SOAs.

Several features of current trust management systems 
such as KeyNote are particularly attractive for SOAs. First, 
policies can encode complex rules and risk management 
strategies appropriate to a particular application or service. 
We can then analyze these polices for various required 
properties.2 Second, “credentials” are digitally signed and 
written in the same language as policies, making it possible 
to centrally control and dynamically modify the policies that 
govern even highly decentralized distributed systems.1

Researchers have successfully applied the KeyNote trust 
management language and compliance checking archi-
tecture (albeit at a smaller scale) to several subproblems 
of the large-scale SOA problem. In particular, KeyNote has 
been used as the basis for policy control in network-layer 
security (IPsec) and to control the interaction between ap-
plication- and network-layer policies, as in the webserver 
(SSL).9 Further, KeyNote has been used to encode complex 
risk-management strategies in a micropayment architecture 
that combines offline authorization of low-risk transactions 
with online control over higher-risk actions.12 KeyNote has 
also been used as the policy layer for flexible system-call-
based process execution supervision, such as distributed 
file systems with credential-based access control.

Work on next-generation management of scalable trust 
(Strongman) demonstrated the scalability of a trust-man-
agement-based architecture to manage large collections 
of networked systems.9 The separation of compliance 
checking from policy enforcement and the use of caching 
demonstrated particular advantages, ideas applied to the 
construction of a scalable distributed network boundary 
controller.

W
e continue to investigate the use of trust 
management techniques to specify 
dynamic policies in complex integrated 
service-oriented networks. For this 
work, we use the DoD GIG’s service-ori-

ented architecture as a focal point.

In this research’s initial phase, we are developing pro-
totype dynamic trust management policy services for a 
service-oriented architecture. We base our initial design 
on our existing trust management system and language, 
KeyNote, and on our prior work on distributed firewalls3 
and virtual private services.4 The service will provide a 
standard compliance checking interface to the various 
services running on the architecture.

In our research’s next phase, we will develop and ana-
lyze policies with properties that maintain strict separation 
between services while allowing exceptions. In particu-
lar, we will focus on supporting two kinds of exceptions. 
One will allow explicit centralized control, such as issuing 
orders that make classified information available to battle-
field networks during operations. Another will encode risk 
management strategies that allow exceptions based on 
predetermined criteria.

Finally, we are developing improved trust management 
languages and systems that more explicitly support dy-
namic policies in service-oriented architectures, based on 
the semantic and performance experiences gained in the 
research’s first phases.

Our focus will be twofold. First, we will explore adding 
trust-management language features that better support 
dynamic policies, based both on our experiences in the 
initial research and on the GIG’s specific requirements.

Second, we will conduct experiments to measure the 
performance implications of incorporating the trust man-
agement layer in the various layers of such systems. A 
significant open research question is whether trust man-
agement is architecturally best implemented as a low-level 
operating system service, an application-layer service, or 
somewhere in between. 
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