
computer	44

COVER FE ATURE

There are clear tradeoffs among security, flexibility, and
cost in possible designs for such SOAs. Traditional (pre-GIG)
DoD network architectures have created logical airgaps
between different networks such as the NIPRNET and
SIPRNET, and services are replicated in each such network
environment. Information security is, in principle, guaran-
teed with separated networks, since there is no network
path from the more secure to the less secure network.

Although the GIG is a DoD-specific project, many of
the trust management problems it exposes also occur

naturally in existing and emerging commercial and other
public networked computing environments, particularly
those based on SOAs. In particular, traditional decentral-
ized trust management architectures,1 while useful, do not
directly address questions such as policy changes under
rapidly changing network conditions or revocation and
autonomous versus centralized control. These problems
occur in any large-scale system based on a rapidly chang-
ing, potentially unreliable network framework such as the
Internet. Therefore, we believe that the GIG architecture
is a useful platform and opportunity for studying trust in
large-scale computing in general, not just in the military
and government.

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE	

A
service-oriented architecture (SOA) separates
functions into services, which process requests
from peers over a network. In processing a
request, the service can, in turn, send requests
to secondary services and so on.

The Global Information Grid (GIG), an ongoing effort by
the US Department of Defense (DoD) and Intelligence Com-
munity (IC), rationalizes and modernizes the architecture
of US network-centric operations. It couples a common
network architecture to advanced information assurance
techniques and, as GIG’s name implies, focuses on the in-
formation the network carries and the services it provides,
rather than on the network’s attributes.

Matt Blaze, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Jonathan M. Smith,
University of Pennsylvania

Angelos D. Keromytis, Columbia University

Wenke Lee, Georgia Institute of Technology

Trust management forms the basis for
communicating policy among system
elements and demands credential
checking for access to all virtual private
service resources—along with careful
evaluation of credentials against specified
policies—before a party can be trusted.

Dynamic
Trust
Management

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

GIG Challenges
In practice, the GIG architecture has several problems.

First, all nodes on the secure network must be trusted to
operate at their designated security level, so accidental
physical access—such as that by a laptop user—can break
the security model. Second, the architecture can make
sharing appropriate information difficult or impossible.
Finally, the broad division of information into security
levels such as unclassified, secret, and top secret does not
provide fine-grained access control based on the need-to-
know principle, which is key in securing information.

The research problem faced by SOAs, then, is to provide
fine-grained access control to services and information
within the context of a shared network infrastructure. Our
conception of the access-control challenge in dynamic
environments might best be differentiated from previous
ideas, such as role-based access control (RBAC), by calling
it mission-based access control (MBAC).

Fine-grained access controls, such as those required
for access on a need-to-know basis, require fine-grained
specification of policies, sometimes to the level of indi-
vidual users and objects, but certainly at the level of roles
and services. We believe that fine-grained access control
is possible by using a formal specification of policy with a
policy language that can be understood by both managers
and interconnected systems that must make decisions to
permit or deny access. Once such a policy is specified, the
specification can be used to check access decisions for files
on a computer, database records, imagery, Web services,
or real-time chat.

Two Examples
Large-scale distributed malice provides our first example.

In this scenario, malicious actors use botnets—connections
of hijacked machines that coordinate operations with each
other—to carry out a wide variety of actions.

The future promises more malice on a larger scale. A
detected botnet should result in a security policy change
such as access to services and protection of data manage-
ment facilities. A central research question we address
considers how to react at machine speeds to an appar-
ently distributed adversary given that botnets operate
from diverse locations. Clearly, the reaction itself must
be global, and it must be rapid to minimize damage to
information services. The “shields up” decision for each
network, object, and service should let systems operate
autonomously if required.

Dynamic team formation for disaster relief provides
our second example. Suppose a search-and-rescue team
is operating a disaster-relief effort in the aftermath of a
hurricane or flood that has struck an urban area. Rescue
team members possess GPS-augmented communications

devices with a tracking capability that lets them visualize
their locations relative to each other. Given that this is a
worldwide disaster-relief effort, other teams must coordi-
nate with an independent force-tracking technology.

For the duration of disaster relief, the location informa-
tion should be shared because everyone has become part
of the same team. Thus, this dynamic policy must authorize
access to friendly location information and take into ac-
count issues such as personally identifiable information that
cannot be shared between the communicating parties.

This effort raises questions regarding how accesses are
authorized in such a situation and how accesses to particu-
lar services can be kept from extending to all networked
services. It also presents a complex information-manage-
ment challenge that must be met in a way that does not
require complete access to networks and servers to pro-
vide a necessary capability. Other issues involve

determining how to grant access rapidly in the face of
a changing policy, as well as how to revoke it;
deciding how resources must be defended from unau-
thorized accesses at a fine-grained level; and
assessing how coordinated support for information-
sharing with team members will affect the resources
required of the GIG.

Challenges for SOAs
In complex SOAs the problem becomes even more dif-

ficult. The goal might not be to rigidly enforce complete
separation at all times due to mission demands and the
flexible roles the network must take, such as support of
dynamically changing disaster relief teaming. Rather, it
might be desirable to maintain a high degree of separa-
tion between applications most of the time, but to relax or
strengthen this separation under specific circumstances in
response to emergencies or rapidly changing conditions.

For example, during specific operations or emergen-
cies, the need for relaxation of normal policy might occur
in response to explicit decisions by a central authority, or
the triggering of a predetermined risk-management strat-
egy—for example, for data in which the sensitivity decays
over time. An increased security posture might be assumed
when available network sensors, such as intrusion-
detection systems, provide situation awareness that indi-
cates an increased threat level.

•

•

•

Trust management provides the
basis for communicating policy
among system elements.

45FEBRUARY 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

cover FE ATURE

computer	46

We see the challenge as dynamic provision of virtual
private services (VPSs)—services for which access is con-
trolled on the basis of a security policy. Trust management
provides the basis for communicating policy among system
elements. Trust management systems demand credential
checking for access to all VPS resources, along with careful
evaluation of credentials against specified policies before a
party can be trusted. Thus, the default assumption is to not
trust. An architecture based on trust management systems
and languages therefore provides an extremely promising
approach for analysis and compliance enforcement in
systems with complex architectures. If successful, such an
approach will enable the secure composition of services
needed to adaptively achieve mission-critical tasks in the
short timeframes that today’s time-sensitive military en-
vironments mandate.

Dynamic Trust Management
At first glance, the hierarchical deployment of existing

trust-management systems fits well with the concept of
service orientation. Specification and enforcement of a
security policy for a given service are decomposed accord-
ing to the service’s structure and partially conferred on
the secondary services in terms of their policies.

In our past work, we defined and formalized trust
management as an explicit policy compliance layer for
decentralized systems1,2 and developed practical trust
management languages and systems for small- and
medium-scale applications such as distributed firewalls3
and virtual private services.4 A VPS contains components
distributed over several hosts on a network. A central au-
thority specifies security policies, but the host enforces
the policies according to policy rules applicable to the VPS
component deployed on that host.

Despite the seemingly good match, existing
trust-management approaches are clearly insuf-
ficient for SOAs. The key problem is that policies
specified by existing trust management systems
are static: a VPS policy identifies precisely the
subservices and hosts they are deployed on and
prescribes the policy enforcement strategy. To
support a modern SOA, a policy specification
should be dynamic to accommodate changes in
both the system and its environment.

Dynamic service availability
The network might have multiple hosts ca-

pable of performing the necessary service. To
make things more complicated, service avail-
ability changes dynamically. Dynamic service
discovery now forms an integral part of most
modern SOAs, and should be accommodated
by the SOA’s trust management system. Not all
alternative services can be equivalent from the

security perspective. Some services might require that a
request have a higher degree of trust to gain access to the
service. Others might have inferior trustworthiness if they
are offered by less-trusted hosts, and thus cannot be used
to serve some classes of requests.

Situational dynamism
The system’s changing environment provides the other

source of dynamism in SOAs, when the same request
might be processed differently depending on the situa-
tion. Suppose, for example, that a request requires access
to a reliable and secure set of terrain data. In a particular
situation, this set of data might be inaccessible, but less
reliable or less secure data might be available. A static
policy could reject this request because the required data
is unavailable. However, even a less reliable result of the
request might be critical to ensure an effort’s success. A
dynamic policy will let the system either deny the request
or service it with inferior data.

In its simplest form, situational dynamism can be im-
plemented by means of a set of predefined security modes.
A security mode could be switched either manually by a
person with sufficient privileges—by a commander in the
field, for example—or by the enforcement engine auto-
matically, according to a given criteria set.

trust management ARCHITECTURE
Existing trust management systems such as Key-

Note rely on a strict boundary between the trusted and
untrusted zones. Figure 1 shows the KeyNote system’s
architecture. Requests from the untrusted zone sent by
clients and peers are processed centrally by the trust
management engine according to the policies of individ-
ual applications. This model works well for small- and

Trust
management

system

Credential
management

Application

Policy

Application

Policy

Trusted zoneUntrusted zone

Untrusted
requests

Client

Client

Client

Figure 1. KeyNote system’s trust-management architecture. The
trust-management engine processes requests from the untrusted
zone sent by clients and peers according to the policies of individual
applications. This model works well for small- and medium-scale
applications.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

medium-scale applications in which there are well-de-
fined administrative and topological boundaries between
internal and external services. But the model can make it
difficult to support complex systems where these relation-
ships are more fluid.

By contrast, dynamic trust management does not rely
on fixed boundaries between trusted and untrusted com-
ponents. Instead, each principal in the system, such as a
service, derives a trust level for each principal with which
it interacts. This trust level will be derived dynamically.

Figure 2 shows a possible architecture for such a system.
The trust levels appearing in Figure 2 are shown from Ser-
vice A’s perspective, which receives a request from some
client with the trust level TRUST_X. To process this re-
quest, Service A must send secondary requests to Services
B and C. Service B is deployed locally with Service A and
has the highest level of trust.

Service C, on the other hand, is deployed remotely and
has a lower level of trust, TRUST_Y. The policy for Service
A, then, is stated in terms of the dynamic trust levels for
incoming requests and subservices that A uses. If the trust
level of Service C is deemed too low to process the request,
the request might be denied or an alternative to C might
be sought.

The idea of cooperative policy evaluation5 is the starting
point for our dynamic trust management system. A global
policy controls evaluation of trust levels for principals in
the system.

Trust Policy Language
The trust-management approach1 frames security

questions as follows: “Does the set C of credentials prove
that the request r complies with the local security policy

P?” This approach subsumes traditional authentication
and certification questions under an action authoriza-
tion model. In this model, remote requests with security
implications are authorized or denied based on local
policy in conjunction with credentials and authenticated
identity.

The policy and credential language with which we will
conduct our work will be based on KeyNote,6 with exten-
sions we will add to support dynamic policies. In particular,
we will introduce new constructs to the language that sup-
port an active trigger mechanism for policies and tested
conditions. The trust management model implemented
by the current KeyNote system (and most other systems)
is entirely passive. Policies and assertions are written in
a scripting language in which an authorizer trusts one
or more licensees to perform actions that match certain
conditions. For example, a simple access control credential
might be written as:

Authorizer: “rsa-hex:1023abcd....”

Licensees: “dsa-hex:986512a1...” ||
“rsa-hex:19abcd02...”

Comment: Authorizer delegates read
access to

either of the Licensees

Conditions: (file == “/etc/passwd” &&

access == “read”) -> “true”;

Signature: “sig-rsa-md5-hex:f00f5673...”

Network host

Cooperative
policy

evaluation

Credential
management

Service C
TRUST_Y

PolicyCooperative
policy

evaluation

Credential
management

Service A

Policy

Service B
TRUST_MAX

Policy

Network host
Request

TRUST_X
Client

Client

Client

Global policy

Figure 2. KeyNote system dynamic trust management architecture. Requests from the untrusted zone sent by clients and peers
are processed by the trust management engine in a centralized fashion according to individual applications’ policies.

47FEBRUARY 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

This approach has proven useful for small- and
medium-scale systems in which all security-sensitive
applications and services can query the trust manage-
ment system explicitly whenever it receives a potentially
dangerous remote request, but it does not easily sup-
port tight coupling to network conditions or actively
pushing new policies into remote systems.

Developers are extending KeyNote to support an active
model in which both the Licensees and Conditions can
include not only passive pattern matching but also active
triggers that can be executed automatically in response to
changing conditions.

We are investigating two kinds of active triggers: pred-
icates and actions. Predicate triggers cause a local policy
to be evaluated asynchronously on a network element
whenever the external state matches some predicate.
Action triggers push policy change information out to
other network elements and can appear as part of local
policy.

In our current research, we address the exact syntax
and semantics of these active trigger mechanisms,
which allow highly dynamic trust management poli-
cies tightly coupled to network health and changing
policy. For example, predicates could be triggered when
the local network detects some botnet-style attack
behavior, allowing the system to push out a policy
that introduces more restrict ive access control
rules:

authentication_failures(hosts>4) ->
require_certificates()

Other approaches could be tailored to different threat
levels.

Cooperative Policy Evaluation
with Feedback

To evaluate dynamic policies, we are designing and
implementing novel mechanisms for collaborative decen-
tralized policy enforcement. To that end, we propose a new
model, dynamic policy evaluation. In DPE, security policy
decisions can be revisited at any time during the session’s
lifetime (with the term session informally defined as a
temporally extended sequence of security-relevant interac-
tions among those components of the distributed system
that collectively handle a specific request) and may recom-
mend actions beyond the typical permit/deny outcome of
such security policies.

The access-control mechanisms that govern the dis-
tributed system’s components participating in a session
form a logical ad hoc clique for exchanging security-
critical information during the session’s lifetime. The
clique avoids the performance and complexity of having
all such components communicate with each other at
all times. The exchanged information includes policy
decisions made by the various components during the
session, changes in the session environment—such as
when traffic starts arriving over a wireless link—and
information from other “sensors,” including intrusion
detection systems, behavior-based anomaly detectors,
and credential revocation. The dynamic policy evalua-
tion model is reevaluated as new information becomes
available, and privileges could be revoked or restricted
as a result.

Consider the simple system shown in Figure 3, consist-
ing of a website that uses a firewall, a front-end webserver
such as Apache, a back-end business-logic server running
PHP or JavaBeans, a file server storing static content, con-

Business logic

Database server

File serverWebserver

Firewall

Internet

Remote user

Remote user

Figure 3. Interaction between components of a webserver in the context of sessions initiated by external users.

cover FE ATURE

computer	48

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

figuration files, executables and scripts, and a database
storing order and customer information.

In this configuration example, an unauthorized wire-
less access point located inside the firewall perimeter lets
outsiders access the webserver, whose security policy
assumes that any traffic reaching it must have been autho-
rized by the firewall. Given that there is no way to validate
this assumption—which changed due to external, unfore-
seen factors—the outsider can be granted access under
false premises.

Further, once admitted by the access-control process
of one component, the user can interact with the remain-
der of the system without much supervision by that first
component. An attacker can probe the system for weak-
nesses without fear of losing already established access.
For example, an attacker who exploits a misconfiguration
of the firewall to probe the internal webserver’s scripts
for SQL-injection vulnerabilities will have his access re-
stricted only after an administrator (possibly prompted
by an intrusion-detection system) takes action. Although
the firewall continues to verify the conformance of each
packet to policy, the attacker’s misbehavior is invisible to
the firewall.

We observe that, although the system components
work together in handling application requests, there is
no cooperation in determining the proper security con-
text for authorizing these requests. Currently, there is no
mechanism through which security policy can reevaluate
the privileges of that user and indicate some necessary
action. For example, the firewall policy might request a
reauthentication of the user, the webserver might decide to
handle that user’s requests under a more restrictive policy,
and the database might let the user issue queries but not
update any tables.

Although it would seem straightforward to manually
address the security problems in a small environment such
as this example, configuration errors can lead to insecure
postures even in configurations involving just one firewall.7
The complexity of verifying security policy correctness
and safety for a large nontrivial system—such as a finan-
cial-services firm with 50,000 servers, 90,000 desktops,
2,500 financial applications, hundreds of entry points, and
a large supporting infrastructure—is beyond the state of
the art.8 Other examples of such systems include military
networks, online gaming services, large ISPs and ASPs,
and e-commerce sites.

There is no unified policy-based mechanism through
which to scalably handle access control, intrusion detec-
tion, and other recovery mechanisms consistently across
a large distributed system. We need a way for the secu-
rity policies across all these mechanisms to continuously
validate the assumptions upon which access was initially
granted, taking into consideration additional information
as it becomes available.

Further, because we cannot determine the true intent
of a user or system component that appears to be misbe-
having, the security policy must have a larger repertoire
of reactions than simple accept or deny. Again in our ex-
ample, possible reactions beyond completely revoking
the user’s access might be to slow down the handling of
requests (potentially while notifying the administrator),
redirecting traffic to an appropriately instrumented in-
stance of the webserver that might be much slower but
will detect a wide variety of attacks, or request additional
authentication and migrate the server and that user’s files
to a honey-pot-like system that enables recovery from
malicious changes to persistent storage.

DPE offers several advantages over traditional access-
control models. First, it unifies access control and intrusion
detection under a common security policy, allowing ad-
ministrators to make better use of them. Second, it lets the

system react to changes in the security environment faster,
while remaining under security policy guidance. Third,
it allows integration of mechanisms that go beyond the
simple permit/deny approach of access-control policies,
enabling finer-grained reaction to potential misbehavior.

Our approach can conceptually be viewed as com-
plementary to static policy-verification techniques: By
allowing component policies to exchange information
relevant to future and past decisions, we can continu-
ously verify the assumptions upon which statically verified
policies are based and confirm their soundness and any
deviations while the system operates.

Currently, our work proceeds along three fronts: formal,
systems design, and experimental.

We are developing a model for DPE based on our
previous work on trust-management systems.6 Our
starting point is the PolicyMaker1,2 evaluation model;
our concept of cross-layer communication stems from
thesis work on the Strongman system.9

We are investigating integration of intrusion detection
and other security-event generators with access-con-
trol mechanisms and other appropriate response
and recovery mechanisms, such as slowdowns in
response to attack.10 We plan to build research proto-
types demonstrating the proposed model for realistic

•

•

There is no unified policy-based
mechanism through which to scalably
handle access control, intrusion
detection, and other recovery
mechanisms consistently across a
large distributed system.

49FEBRUARY 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

environments, starting with deployments and exper-
imentation in lab environments, and scaling up to
department-scale infrastructures and beyond, as op-
portunities for collaboration and deployment in other
environments arise.
Our current plan seeks to experimentally validate DPE
through participation in “capture the flag” experi-
ments in a “quantitative trust management” effort.
This experimentation will seek to determine our mod-
el’s effectiveness and shortcomings, identify possible
ways the system can fail, and develop techniques and
mechanisms that can prevent or mitigate the impact
of such failures.

System Prototyping and
Experimental Evaluation

To evaluate the effectiveness of our approach to dynamic
policy, we will implement and validate the DPE algorithm
experimentally in realistic service-oriented environments.
We will evaluate the strongman scaled enforcement of
access-control policies to large-scale environments by
translating high-level general security policies into com-
ponents specialized to address multiple local-enforcement
points, but will leave policy correctness unaddressed. If
the high-level policy made incorrect assumptions, local
components could not detect this and recover and, due to
the common translation process, would all be affected by
the flawed assumption.

A self-recovering system must dynamically discover the
set of components that should be exchanging information
(a “community of interest,” as it were) and identify the
conditions under which policy revaluation should occur.
Distributed firewalls3 and distributed intrusion detection11
provide a basis for statically determining possible compo-
nent interactions and the types of information that might
be exchanged. Strongman introduced the notion of a com-
position hook, a piece of information exchanged between
two policy enforcement mechanisms residing at different
layers of the network stack in the same system.

Composition hooks are provisioned at policy-genera-
tion time, based on the high-level policy specification,
and provide a simple mechanism for dynamically coordi-
nating different security mechanisms that coexist in the
same system, such as IPsec and SSL in a webserver. This
mechanism will be generalized to runtime events to permit
ad hoc component interactions and integration with other

•

dynamically generated information, such as IDS alerts.
We will use a distributed blackboard on which policy

assertions post (and read) access-control decisions and
other events of interest. Key foci in the detailed design
of the system will be scalability and tradeoffs between
performance and effectiveness. We believe that significant
gains can be achieved in reducing false positives and creat-
ing more agile systems that can better react to changing
circumstances. DPE policy evaluation will be based on the
KeyNote model, which allows for answers to policy que-
ries from among a totally ordered set of valid responses,
such as “permit unconditionally,” “permit with additional
monitoring,” “permit in honey pot,” “deny,” or “deny and
ban the user.”

The systems and software artifacts expected as the
result of this work include middleware for creating
sessions, integrated intrusion and anomaly detection
capabilities, and behavior tracking. We plan to integrate
existing security mechanisms that provide gradual re-
sponses, such as “shadow honey pots,” filesystem/database
tracking/journaling, network rate-limiting, and reauthenti-
cation into our system, and then develop new mechanisms
as our understanding of cooperative policy concepts in the
proposed work matures.

That maturation process will require developing new
policy models and language support for policy specifica-
tion. Our choice of KeyNote is beneficial because of its wide
use and deployment on Apache webservers, which are
representative of SOAs. Experimental evaluation of the pro-
totype will be performed on a surrogate SOA configuration
with multiple independent but collaborating webservers,
consistent with SOAs. Each system will be equipped with a
database, fileserver, and firewall components. The system
will also have its defenses “red-teamed” using “capture the
flag” exercises with careful postmortems to strengthen our
agile dynamic defense architecture for MBAC.

synergies
Trust management provides a unified approach to spec-

ifying and interpreting security policies, credentials, and
relationships.2 We define some important trust manage-
ment terms informally. An access request seeks access
to a resource, possibly in a specified mode. A policy is a
specification of conditions under which access may be
granted. A credential is a claim of meeting the conditions
of some policy. A transaction is an access request followed
by the granting of the request and subsequent access to the
resource. An agent or component is any entity that interacts
with other agents in the system by means of transactions.
An agent is trusted in a transaction if its access request is
granted.

The KeyNote system’s6 goal is to define notions of trust
using policy specifications and to check that a transac-
tion request has the credentials necessary to satisfy the

Trust management provides a unified
approach to specifying and interpreting
security policies, credentials, and
relationships.

cover FE ATURE

computer	50

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

51FEBRUARY 2009

relevant policy. Thus, rather than simply classifying the
world as trusted and untrusted, this approach allows more-
sophisticated policies and notions of trust. For example,
trust that an unknown party’s public key is correct can
be built up by having trusted parties certify this to be the
case. Thus, systems such as KeyNote let users have very
fine-grained notions of trust and manage trust flexibly. An
obvious but important point is that most trust manage-
ment systems, including KeyNote, start with a complete
absence of trust between parties. Only the active presen-
tation of a satisfactory credential can overcome this lack
of trust. We believe that an architecture based on trust
management systems and languages offers an extremely
promising approach for analysis and compliance enforce-
ment in SOAs.

Several features of current trust management systems
such as KeyNote are particularly attractive for SOAs. First,
policies can encode complex rules and risk management
strategies appropriate to a particular application or service.
We can then analyze these polices for various required
properties.2 Second, “credentials” are digitally signed and
written in the same language as policies, making it possible
to centrally control and dynamically modify the policies that
govern even highly decentralized distributed systems.1

Researchers have successfully applied the KeyNote trust
management language and compliance checking archi-
tecture (albeit at a smaller scale) to several subproblems
of the large-scale SOA problem. In particular, KeyNote has
been used as the basis for policy control in network-layer
security (IPsec) and to control the interaction between ap-
plication- and network-layer policies, as in the webserver
(SSL).9 Further, KeyNote has been used to encode complex
risk-management strategies in a micropayment architecture
that combines offline authorization of low-risk transactions
with online control over higher-risk actions.12 KeyNote has
also been used as the policy layer for flexible system-call-
based process execution supervision, such as distributed
file systems with credential-based access control.

Work on next-generation management of scalable trust
(Strongman) demonstrated the scalability of a trust-man-
agement-based architecture to manage large collections
of networked systems.9 The separation of compliance
checking from policy enforcement and the use of caching
demonstrated particular advantages, ideas applied to the
construction of a scalable distributed network boundary
controller.

W
e continue to investigate the use of trust
management techniques to specify
dynamic policies in complex integrated
service-oriented networks. For this
work, we use the DoD GIG’s service-ori-

ented architecture as a focal point.

In this research’s initial phase, we are developing pro-
totype dynamic trust management policy services for a
service-oriented architecture. We base our initial design
on our existing trust management system and language,
KeyNote, and on our prior work on distributed firewalls3
and virtual private services.4 The service will provide a
standard compliance checking interface to the various
services running on the architecture.

In our research’s next phase, we will develop and ana-
lyze policies with properties that maintain strict separation
between services while allowing exceptions. In particu-
lar, we will focus on supporting two kinds of exceptions.
One will allow explicit centralized control, such as issuing
orders that make classified information available to battle-
field networks during operations. Another will encode risk
management strategies that allow exceptions based on
predetermined criteria.

Finally, we are developing improved trust management
languages and systems that more explicitly support dy-
namic policies in service-oriented architectures, based on
the semantic and performance experiences gained in the
research’s first phases.

Our focus will be twofold. First, we will explore adding
trust-management language features that better support
dynamic policies, based both on our experiences in the
initial research and on the GIG’s specific requirements.

Second, we will conduct experiments to measure the
performance implications of incorporating the trust man-
agement layer in the various layers of such systems. A
significant open research question is whether trust man-
agement is architecturally best implemented as a low-level
operating system service, an application-layer service, or
somewhere in between.

Acknowledgment
This work was supported by ONR MURI N00014-07-1-0907,

CIS Department, University of Pennsylvania.

References
	 1.	 M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust

Management,” Proc. 17th Symp. Security and Privacy, IEEE
CS Press, 1996, pp. 164-173.

	 2.	 M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance
Checking in the PolicyMaker Trust-Management System,”
Proc. Financial Cryptography 98, LNCS 1465, Springer,
1998, pp. 254-274.

	 3.	 S. Ioannidis et al., “Implementing a Distributed Firewall,”
Proc. Computer and Communications Security (CCS), 2000;
www.itsec.gov.cn/webportal/download/2004_ccs-df.pdf.

	 4.	 S. Ioannidis et al., “Design and Implementation of Virtual
Private Services,” Proc. IEEE Int’l Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Workshop on Enterprise Security, Special
Session on Trust Management in Collaborative Global
Computing, IEEE Press, 2003, pp. 269-275.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

IEEE Annals of the History
of Computing is an active
center for the collection
and dissemination of
information on historical
projects and organizations,
oral history activities, and
international conferences.

www.computer.org/
annals

 5. S. Ioannidis, “Security Policy Consistency and Distributed
Evaluation in Heterogeneous Environments,” doctoral dis-
sertation, University of Pennsylvania, 2005.

 6. M. Blaze, J. Ioannidis, and A.D. Keromytis, “Experience
with the KeyNote Trust Management System: Applica-
tions and Future Directions,” Proc. 1st Int’l Conf. Trust
Management, 2003; http://nsl.cs.columbia.edu/projects/
gridlock/newkeynote.pdf.

 7. A. Wool, “A Quantitative Study of Firewall Confi guration
Errors,” Computer, June 2004, pp. 62-67.

 8. W.H. Winsborough and N. Li, “Safety in Automated Trust
Negotiation,” Proc. IEEE Symp. Security & Privacy, IEEE
Press, 2004, pp. 147-160.

 9. A.D. Keromytis et al., “The Strongman Architecture,” Proc.
3rdDARPA Information Survivability Conf. and Exposition
(DISCEX III), 2003; www1.cs.columbia.edu/~angelos/
Papers/strongman.pdf.

 10. A. Somayaji and S. Forrest, “Automated Response Using
System-Call Delays,” Proc. 9th Usenix Security Symposium,
Usenix, 2000; www.csd.uoc.gr/~hy558/papers/somayaji-
00automated.pdf.

 11. M.E. Locasto et al., “Towards Collaborative Security and
P2P Intrusion Detection,” Proc. 6th Ann. IEEE SMC Infor-
mation Assurance Workshop (IAW), IEEE Press, 2005, pp.
333-339.

 12. M. Blaze, J. Ioannidis, and A.D. Keromytis, “Offl ine Mi-
cropayments without Trusted Hardware,” Proc. 5th
Financial Cryptography (FC) Conf., 2001; www.crypto.
com/papers/knpay.pdf.

Matt Blaze is an associate professor of Computer and In-
formation Science at the University of Pennsylvania. His
research focuses on cryptography and its applications,
trust management, human scale security, secure systems
design, and networking and distributed computing. He is
particularly interested in security technology with bearing
on public policy issues, including cryptography policy (key
escrow), wiretapping and surveillance, and the security of
electronic voting systems. Blaze received a PhD in computer
science from Princeton University. Contact him at blaze@
cis.upenn.edu.

Sampath Kannan is a professor in Computer and Infor-
mation Science at the University of Pennsylvania. He is
currently on leave and serving as the Director of the Com-
puting and Communication Foundations Division at NSF.
His research interests are in algorithms, program reliabil-
ity, and security. Contact him at kannan@cis.upenn.edu.

Insup Lee is the Cecilia Fitler Moore Professor of Computer
and Information Science at the University of Pennsylva-
nia. His research interests include embedded and real-time
systems, cyber-physical systems, medical device systems,
model-based development, and quantitative trust manage-
ment. Lee received a PhD in computer science from the
University of Wisconsin, Madison. He is a Fellow of the
IEEE. Contact him at lee@cis.upenn.edu.

Oleg Sokolsky is a research associate professor of Computer
and Information Science at the University of Pennsylvania.
His research interests include application of formal meth-
ods to model-based development and real-time systems,
quantitative trust management, and runtime verifi cation.
Sokolsky a received a PhD in computer science from Stony
Brook University. He is a member of the IEEE. Contact him
at sokolsky@cis.upenn.edu.

Jonathan M. Smith is the Olga and Alberico Pompa Profes-
sor of Engineering and Applied Science at the University of
Pennsylvania. He recently returned to Penn after serving
as a program manager at DARPA/IPTO, where he initiated
research programs in cognitive networking and distributed
radio. His current research interests are in terabit-per-
second networks and wireless network security. He is a
Fellow of the IEEE. Contact him at jms@cis.upenn.edu.

Angelos D. Keromytis is an associate professor with the
Department of Computer Science at Columbia Univer-
sity, and director of the Network Security Laboratory. His
research interests revolve around systems and network
security. Keromytis received a BS in computer science
from the University of Crete, in Greece, and an MS and
PhD from the Computer and Information Science Depart-
ment, University of Pennsylvania. Contact him at angelos@
cs.columbia.edu.

Wenke Lee is an associate professor in the School of Com-
puter Science, College of Computing, the Georgia Institute
of Technology. His research interests are in systems and
network security, applied cryptography, and data mining.
Contact him at wenke@cc.gatech.edu.

COVER FE ATURE

computer	52

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

