Automatic Filter Design for Synthesis of Haptic Textures
from Recorded Acceleration Data

Joseph M. Romano*, Takashi Yoshioka®, and Katherine J. Kuchenbecker*

*Haptics Group, GRASP Laboratory
University of Pennsylvania, USA

{jrom, kuchenbe}@seas.upenn.edu

Abstract—Sliding a probe over a textured surface generates
a rich collection of vibrations that one can easily use to
create a mental model of the surface. Haptic virtual environ-
ments attempt to mimic these real interactions, but common
haptic rendering techniques typically fail to reproduce the
sensations that are encountered during texture exploration.
Past approaches have focused on building a representation of
textures using a priori ideas about surface properties. Instead,
this paper describes a process of synthesizing probe-surface
interactions from data recorded from real interactions. We
explain how to apply the mathematical principles of Linear
Predictive Coding (LPC) to develop a discrete transfer function
that represents the acceleration response under specific probe-
surface interaction conditions. We then use this predictive
transfer function to generate unique acceleration signals of
arbitrary length. In order to move between transfer functions
from different probe-surface interaction conditions, we develop
a method for interpolating the variables involved in the texture
synthesis process. Finally, we compare the results of this process
with real recorded acceleration signals, and we show that the
two correlate strongly in the frequency domain.

I. INTRODUCTION

Modern haptic devices are very successful in creating the
low frequency forces experienced during interactions with
virtual environments. Often the designer will program the
device to generate interaction forces by defining a spring
contact between the haptic device tip and the simulated
object surfaces. When the device tip intersects a region
occupied by a virtual object, a restoring spring force is
calculated based on the penetration depth between the haptic
device and the encountered object [19]. While this approach
succeeds in defining the coarse shape of virtual objects, their
surfaces typically feel too smooth to be real.

This odd sensation stems from the fact that the virtual
environment is often modeled as a rough approximation
consisting of parametric surfaces, such as planes, stitched
together to form a three-dimensional mesh. While these
meshes succeed in giving the user rough macro-scale in-
formation such as the size and shape of the object, they
fail to provide the user with any micro-scale features such
as surface texture. Geometrically modeling these micro-
scale properties is very challenging for several reasons.
First, the computing power and memory necessary to store
and perform collision detection algorithms on such detailed
models is well beyond the capabilities of today’s computers.

fZanvyl Krieger Mind/Brain Institute
Johns Hopkins University, USA
takashi@jhu.edu

A
A WAMAN WM A gyt
T
\
[yt M v
t
A
>
t
t
\
T
A
T
! F
>
t

Fig. 1. Top: The normal, tangential, and lateral forces generated by a user
holding a probe and dragging it over a real textured surface. Notice the high-
frequency force components that are a result of the probe interacting with
the micro-surface geometry. Bottom: Our proposed method for simulating
contact with a textured surface. The low-frequency components of the
normal, tangential, and lateral forces are rendered via a virtual proxy using
standard haptic rendering techniques and an impedance-type haptic device.
A high-frequency acceleration signal is generated along a single degree of
freedom to convey the texture response.

Second, virtual environment mesh surfaces are often defined
manually by the programmer, or from a three-dimensional
dataset collected from scanned objects. In both cases the
resolution of the data is not on the micro-scale necessary to
discriminate texture features. Lastly, traditional haptic device
controllers are not stiff enough to realistically render such
fine surface details.

In the following sections we present a new method for
synthesizing realistic textures. First we develop transfer

function models from real data that represent the acceleration
response of a probe-surface interaction. As shown in Fig. 1,
we aim to use these models to augment traditional haptic
virtual environments with a high frequency vibration in order
to increase the realism of the perceived interaction. We
explain how to distill these models from real data, and how to
generate acceleration signals in an efficient and robust way
so that they are suitable for implementation in a real-time
system.

A. Background

A long standing problem in computer graphics has been
the efficient display of visual textures. It is often desirable
to display a complex visual surface texture, but modeling
the correct three-dimensional shape and computing all the
appropriate lighting interactions is computationally imprac-
tical. In order to circumvent this complicated fine-detail
modeling, several different solutions have been created, such
as mapping images of texture onto flat surfaces to create the
illusion of volumetric texture [9]. It comes as no surprise
then that the earliest attempts to create virtual textures for
haptics were inspired by these graphical approaches.

The early work of Basdogan et al. [1] describes several
methods for creating geometric height fields based on “bump
map” images from the computer graphics community. By
taking a greyscale image of the texture they wish to represent,
and extruding the pixels of this image to different heights
based on their shading value, they are able to create a detailed
surface geometry. Unfortunately, there is no reliable real-
world relationship between surface height and pixel color,
and this approach is also mired in the problems that go
along with collision detection on large complex geometry.
One can use these maps to create very detailed surfaces, but
the generated surface is not guaranteed to match the real
surface that the bump map is attempting to approximate.
Parametric models, such as sinusoidal waveforms [4], can
greatly reduce the necessary mathematical computations, but
it is difficult to use these functions to generate textures with
the complexity of those found in the real world.

Significant research effort has also been put into using
force maps overlaid on the flat macro-scale surface of
coarse three-dimensional models to reduce the computational
complexity associated with generating micro-scale surface
geometry. Early work by Minsky et al. [15], [16] showed
that surface roughness could be simulated by applying
various repelling and attracting forces to the haptic probe
as it slid across a flat surface. Rather than model the
complex interactions of the haptic device and the micro-
surface geometry, one needs only the position of contact
between the haptic device and a single flat surface patch.
Once this information is known, a simple data lookup can
be performed to decide what additional disturbance force
should be applied to the user. These force lookup maps
were generated from spatially periodic patterns or specialized
noise generation functions. This approach was later advanced
by using three-dimensional Gaussian force fields in uniform
[20], and non-uniform distributions [6]. While this approach

was computationally tractable, the authors make no attempt
to correlate the generated textures with those encountered in
the real world.

In order to provide sensations that closely follow haptic
feedback encountered in the real world, several researchers
have explored data-driven approaches [8], [18], [17], [13]. By
recording data from the real world, such as the interaction
force between a tool and its environment, and later playing
back samples of this data during haptic simulation, it is
possible to generate more realistic sensations. For example,
Okamura et al. recorded cutting forces for surgical scissors
during a real tissue-cutting experiment, and then developed
a simulation system that used a lookup table to display
these recorded forces to the user [17]. A related approach
is taken by MacLean in developing the “Haptic Camera”
[13], a tool that captures data during probe interactions
with the real world. The recordings enable the creation of
parametric linear dynamic models that represent this real
world interaction. While this approach worked well for the
toggle switch modeled in [13], where an a priori model
structure was assumed, we will show that the dynamic
vibrations occurring from probe-surface interaction do not
have such intuitive analogs.

The major advantage of data-driven approaches is that they
are able to generate sensations that correspond closely to
real-world signals. However, these signals vary as a function
of many different parameters. In the case of surface texture
interaction, two such variables are scanning velocity over the
surface, and contact force between the haptic device and the
surface [10]. In order to be able to provide sensations over a
broad range of variables, data must be taken and stored over
an equally large range.

Data-driven approaches that rely on the concept of playing
back recorded signals to the user must overcome a variety
of additional challenges. A recorded signal inherently has
a predetermined length, but it is often desirable to display
a signal of differing length to the user. A naive approach
to solving this problem involves looping the same signal,
but humans have an uncanny ability to detect repetitive
patterns, and such looped signals can often be detected.
Stitching these signals together with other similar signals
is also a viable option, but this can create undesirable
artifacts, as smooth transitions between the various signals
are difficult to achieve. Additionally, when no data exists
for certain conditions, it is unclear what signal to present,
and interpolating between these pre-recorded time-domain
signals can produce results that feel distorted.

B. Our Approach

Many position-position haptic teleoperation environments
also have the goal of realistically relaying interaction events
to the master device that occur at the slave end. Unfortu-
nately, the controller stiffness with which the two devices
can be joined is severely limited by stability requirements.
Furthermore, the compliant linkage systems that connect the
motors and sensors of most haptic devices to the hand-held
tool do a poor job of transmitting position vibrations that

occur at high-frequencies and small amplitudes [3], [14].
When the probe tip undergoes such vibrations, very little
of this information is recorded by the slave device’s sensors
(often digital encoders mounted at the base of each joint).
These high-frequency small amplitude vibrations are the
same type of motion that is induced when a hand-held probe
is dragged over a textured surface. Several researchers [14],
[11] have shown that these high-frequency sensations can be
restored by attaching an accelerometer to the slave tool, and
a small dedicated high-frequency actuator to the master tool.
These high-frequency actuators are able to provide the user
with a better feel for the interaction by matching the second
time-derivative of these position vibrations (acceleration)
between the slave and master tools.

We believe that this same paradigm can be used to solve
the problem of representing virtual textures. In place of the
teleoperated slave, we propose a virtual model capable of
generating appropriate transient acceleration signals. We hy-
pothesize that if we can generate streams of acceleration data
that match those felt in real probe-surface interaction, and
then display these signals to the user with a system similar to
the master device used in the teleoperation research discussed
above, the resulting interactions will feel more realistic than
prior approaches in virtual texture modeling. The following
sections describe our methodology for creating these virtual
models from recorded data.

II. ACCELERATION DATA

This section discusses the hardware we use for collecting
acceleration data of probe-surface interactions. We then
explain several post-processing steps taken with the recorded
data to put it in a form more appropriate for use in the
generation of synthetic accelerations.

A. Data Collection Apparatus

The data collection apparatus consists of two distinct
parts: a hand-held tool and a rotating drum (Fig. 2). The
tool is made of a low-friction Delrin plastic with a 3 mm
hemispherical diameter tip. A three-axis Kistler 8692C5M1
accelerometer is mounted on the end of the tool. This
tool was specifically used in our study for its mechanical
simplicity and stiffness, properties that help to eliminate any
undesirable effects such as mechanical resonance or tool
deformation. The drum is a cylinder capable of rotating at
various servo-controlled speeds, and it has textured surfaces
mounted along its exterior. Four textures were studied in
this project: paper, organza, vinyl, and denim. The drum is
also actuated in two additional degrees of freedom. The first
is along the axis of drum rotation, so that it is possible to
reposition the various texture samples on the drum surface
for experimentation. The second degree of freedom is in
the vertical direction. It is actuated by a DC motor in an
open-loop control arrangement where the current through the
motor directly determines the contact force between the drum
and the probe tip.

During our data collection trials, the tool was always held
by a user, as opposed to other possibilities such as a mechan-

accelerometer

N
° ~—__ tri-axial
p—— z
|

ﬁ" \ y

X

drum rotation

\

Fig. 2. The data collection apparatus used to collect acceleration transience
signals. Pressure is applied in the positive z direction by the drum as it
rotates about the -y axis. The drum can be automatically repositioned so
that the different material strips are in contact with the probe tip.

ical mount. We purposely chose to have a human grip the
tool so that we can capture the acceleration response of the
entire hand-tool system, since these are the accelerations we
are later interested in recreating. Unless carefully designed
and validated, a tool held by any other apparatus would
experience vibrations that are different from what a human
feels. The user holds the tool with their forearm resting on
the arm rest, as seen in Fig. 2. A custom LabView program
on a Windows PC controls the drum to maintain the desired
constant velocity and upward force, and acceleration data is
recorded to the PC along all three acceleration axes of the
tool at a rate of 5000 Hz. Data for this study was taken for
all four surfaces at tangential speeds from 20 to 300 mm/s
at intervals of 20 mm/s. At each speed the force was varied
from O to 1.4 Newtons (N) at intervals of 0.2 N. A total
of fifteen different velocities were recorded at eight different
force levels for the four different textures, resulting in 480
unique trials.

B. Data Processing

After acceleration data is collected, we manually parse the
data into two-second samples. We then convert each sample
from voltage to m/s> using calibration constants. Since the
user holds the tool in a fixed position during data collection,
we know that no net motion occurs, and therefore any small
steady state offset in our voltage signal is assumed to be due
to sensor error. To eliminate this error, we subtract out the
mean of each two-second sample.

Our next goal is to reduce the acceleration information
from our three distinct axes into one single signal. We
perform this reduction because it has been shown that hand’s
primary vibration mechanoreceptors, the Pacinian corpus-
cles, are not sensitive to the direction of vibration [7]. We
use principal component analysis (PCA) to find the axis of
vibration containing the most energy, and we project our
three-dimensional acceleration onto this axis (Fig. 3). In

Acceleration Data Projected on Cartesian Axes
e 5000

X (m/s?)
o
Amplitu

200

o
N
IN
o

5000

Y (m/s?)
o
Amplitude

o
N
IN
o

200

5000

|
[¢)]

Z (m/s?)
o o,
Amplitude

[

200
Frequency (Hz)

0 2 4
Time (s)

o

Acceleration Data Projected on PCA Axes
o 5000

Amplitud

PC 1 (m/s?)
o

200

A

200

PC 2 (m/s?)
o
Amplitude

|
)]

PC 3 (m/s?)
o
Amplitude

200
Frequency (Hz)

o

2 4 0
Time (s)

Fig. 3. Data recorded from a probe interacting with denim at a scanning velocity of 200 mm/s and a normal force of 1.0 N. The FFT of the first principal
component (right) contains energy from all three of the cartesian components (left) and is one method of obtaining a single acceleration signal from three

cartesian components.

Fig. 4. Block diagram for prediction of the next contact acceleration a(k)
given the recorded series a(k) with residual e(k).

practice we have found that projecting onto the first principal
component captures 80% £ 10% of the total signal energy,
depending largely on the surface type.

III. TEXTURE MODEL

The previous section discussed the procedure necessary
to capture surface-probe interaction data and distill it into a
single meaningful time-domain acceleration signal. In this
section we show how to make a transfer function model
of this signal to capture its important time-domain and
frequency-domain components. Once we have created this
texture model, we show how to synthesize unique virtual
texture signals that have these same components. We first
proposed this idea in [12], and here we develop and test it
further. The next section briefly summarizes the mathematics
of linear prediction and acceleration synthesis below, using
the notation conventions of [2].

A. Linear Prediction

Our first goal is to develop a discrete time transfer function
that can predict the next sample in a texture acceleration
stream based on the previous acceleration values. Fig. 4
shows the block diagram used for this system identification
process. Let our acceleration data vector from PCA be called
d(k), the prediction of our filter be called a(k), and the

p

M M Apnh o, Mm i
VWW w'u va PredlctedSI nal\(

|
p

Acceleration (m/sz)
O

—2r Residual]
0 0.2 0.4 0.6 0.8 1
Time (s)
Fig. 5. Forward prediction signal generation and residual error. The data

shown are from a real sample of organza fabric moving at a tangential
velocity of 200.0 mm/s and a normal force of 0.8 N. The linear prediction
filter H(z) includes 400 coefficients.

residual of these two signals €(k). H(z) is defined as an IIR
filter of length n of the form H(z) = [~hiz7t — hoz2...
—hpz~"]. We can write the transfer function for P(z) as

— 1— H(2) = P(2) (1)

We can then define the vector of filter coefficients 1 =
[h1 ho h3 ... h,)T, and write out the residual at each step
in time with the following difference equation:

e(k) = a(k) — a(k) = a(k) — hTa(k — 1))
Our goal is to find an optimal filter vector, i_io, that cor-
responds to a minimum value of e(k). If we select a cost
function based on mean-square error, the problem can be
reduced to the Wiener-Hopf equation. In practice we apply
the Levinson-Durbin algorithm [5], to solve the Wiener-Hopf
equation and obtain h,. For demonstration, Fig. 5 shows a
sample plot of @(k), a(k), and &(k) for the optimal filter
H(z) of order n = 400.

Fig. 6. Block diagram for the synthesis of an acceleration signal ag(l)
from the appropriately scaled white noise input eg(l).

B. Synthesizing Accelerations

Now that we have developed the predictive filter H(z),
we can invert the P(z) filter to synthesize new acceleration
signals, as seen in Fig. 6. A white noise input signal €y (() is
passed into 1/P(z) in order to excite the system and generate
our desired acceleration response, d,(!). By rewriting (1), we
can formulate this new transfer function as follows:

dg(l) 1 1 3)
&) " 1-H() Pl
We now observe that the difference equation for the synthe-
sized acceleration is:

ag(l) = eg(l) + AT ay(1 - 1) @)

During texture synthesis, we generate ey(l), a white noise
signal with a Gaussian distribution of amplitudes. The aver-
age signal power of the white noise excitation, P{é€,(l)}, is
of critical importance for controlling the magnitude of the
desired acceleration signal d,(l). We use the definition of
power as:

) 1 Nl)
Pla()} = w D la(n)|)
n=0

Note that this definition of power is equivalent to signal
variance (02) because we are dealing with zero-mean sig-
nals. To synthesize a texture at a specific normal force
and translational speed, the power of the generated noise
signal P{€,(l)} must be equivalent to that of the average
signal power remaining in the residual, P{é(k)}, after filter
optimization. Fig. 7 shows one such sample in both the time
and frequency domains.

C. Coefficient Order

The order of our predictive filter, H(z), has a large impact
on our ability to accurately predict future acceleration values.
Higher order filters are desirable for their ability to reduce the
residual e(k), but they require more calculations when imple-
mented in a real-time system. In order to evaluate the quality
of our synthetic result, we use a cost function C {59(1)}
defined as the RMS error between the smoothed frequency-
domain amplitudes of the recorded and synthesized signals,
normalized by the RMS of the recorded signal’s smoothed
frequency-domain amplitude:

RMS (DFT.{a(l)} - DFT,{ay(1)})
RMS (DFTs{a(l)})

Clag(l)} = (6)

Recorded Data

-
"
£ 2 , 8000
e}

& o 2 4000
g g
9 Z 2000
8 -2t
Q
< " " " " " 0

0 02 04 06 08 1 1.2 0 100 200

Time (s) Frequency (Hz)
Synthesized Data

- ‘ : ‘
o Hl 6000
e 9
= 1¥ no 2 4000
£ OJ\J\NM w \//\/\/\/ N JMV/‘ =
o H \ Rl E
b /R 2 2000
g -2
< 0

0o 02 04 06 08 1 12 0 100 200

Time (s) Frequency (Hz)

Fig. 7. Time- and frequency-domain views of a recorded acceleration and
a signal synthesized to emulate that interaction using our novel texture-
modeling techniques. The real setup and the synthesis filter are the same as
those used in Fig. 5. While it is visually obvious that the two time-domain
signals are different from one another (left), they maintain the same spectral
characteristics (right), so they will feel the same to a user.

Denim at4 cm/s, 0.20 N
Vinyl at 4 cm/s, 0.20 N
Paperat4cm/s, 0.20 N
Organza at 4 cm/s, 0.20 N
0.9 fiL — — — Denimat 16 cm/s, 0.80 N
— — —Vinylat 16 cm/s, 0.80 N

— — — Paperat 16 cm/s, 0.80 N

— Organza at 16 cm/s, 0.80 N
Denim at 28 cm/s, 1.40 N
Vinyl at 28 cm/s, 1.40 N
Paper at 28 cm/s, 1.40 N
Organza at 28 cm/s, 1.40 N

0.8

LESAPAA
P S X\

=~ i

0.2 A

Normalized Frequency—Domain RMS Error

0.1} b

100 200 300 400 500 600 700
Recursive Coefficient Order

Fig. 8. Predictive filter order n versus our cost function (6) for several
synthesized accelerations. For the surfaces tested in this paper, a filter with
400 coefficients was found to be the threshold where additional coefficients
had minimal benefit for most tested samples.

Where DFT{Z} represents the smoothed vector of ampli-
tudes obtained from the discrete Fourier transform of vector
Z. Using this metric we choose the highest order coefficient
number after which C’{c:ig(l)} shows little or no decrease
(n = 400), as seen in Fig. 8.

D. Interpolation Between Models

We have now developed all the mathematical tools nec-
essary to synthesize an acceleration signal at discrete values
of normal force and tangential velocity. However, real user
interactions span a continuous and constantly changing range
of these parameters. Within a short sample of several sec-
onds, a user might decide to speed up or slow down their

S A LT 2
= texture models: h;j, o7
=14 ° °
+ ° °
+ ° ° ° °
user path
+ ° ° ° °
| | | | >
I I I I -
Velocity

Fig. 9. A graphical example of our velocity-force grid. Model data is
contained at each node in the form of a recursive coefficient vector ﬁ,
and the white noise signal variance o2. As the user moves about this two-
dimensional space, we generate continuous values of h and o2 using bilinear
interpolation.

motion, and also transition from pushing hard to pushing
soft. In order to make realistic acceleration signals, we need
a system that is capable of varying the synthesis parameters
according to these user-driven changes.

Looking back at our synthesis equation, (4), notice there
are two fixed variables that are unique for any given texture
under constant force and velocity conditions: e, (!) and h.
The vector h has length » and contains recursive filter
coefficients obtained from Linear Prediction. The value e (()
is a sample of Gaussian white noise. While e, () is a
randomly generated value, note that its variance (o2) is
scaled to make the vector over time €,(l) have the same
power P{ey(l)} as the original residual signal.

As shown in Fig. 9, we use our data collected at standard
velocity and force intervals to generate a regularly spaced
grid where each node stores the recursive coefficients h
and variance level o2 of a particular model. By applying
bilinear interpolation, we are able to move smoothly between
models in this two-dimensional space. As the user varies their
force and velocity, we calculate a proportional value of the
variance, and each individual recursion coefficient, based on
their distance from the four closest grid nodes. Fig. 9 shows
a schematic of our regular grid and what a user trajectory
might look like.

IV. RESULTS

Separate interpolation grids were made for each of the four
test surfaces using the 120 recorded data samples per surface.
We used these grids to generate test signals by purposely
removing a single node of the grid, and then interpolating
the data at this node from the surrounding nodes. Using this
interpolated data, we generate synthetic acceleration signals
using (4). A sample synthesis result is shown in Fig. 10.

Quantitative observations of the correlation between our
real and synthetic interpolated signals are contained in

Recorded Data

% sf
E » 4000
g, E
@ 2 2000
2 <
8
< 75t 0
0 0.5 1 1.5 2 0 100 200
Time (s) Frequency (Hz)
Synthesized Data
“— . . .
2 3f 1 o 4000
5 o e | A £
B W Lf | | | | g 2000
o | U <
[5%
Q
< 5t ‘ ‘ ‘] 0
0 05 1 15 2 0 100 200
Time (s) Frequency (Hz)

Fig. 10. Time- and frequency-domain views of both a recorded acceleration
and a signal synthesized from interpolated noise variance and recursive
coefficients. The recorded and synthesized data shown is of denim at a
velocity of 120.0 mm/s and normal force of 1.0 N. The node containing
data recorded at 120.0 mm/s and 1.0 N was purposely removed from the
interpolation table so that it would be interpolated from the surrounding
nodes. By removing this data from the interpolation table, we are later
able to compare the results of our synthesized signal with this real data.
Using our cost function (6) we calculate a 38% error in the frequency-
domain correlation between the recorded and synthesized signals. While it
is visually obvious that the two time-domain signals are unique (left), they
have similar spectral characteristics (right).

TABLE I
SYNTHESIZED DATA CORRELATION TABLE

| Organza | Paper | Denim | Vinyl

C{ag (D)} 29% 31% 36% 42%

St.Dev.(Clag()}) | 13% 12% 9% 20%

Avg(a2 W~ O%(Z)) 1.5e7% | 1.7e=* | 2.2e7% | 2.4e™4
ag

Table 1. The entry C{gg(l)} represents the average result
of our cost function (6), where lower numbers represent a
better correlation between the synthetic and real DFT results.
St.Dev.(C{gg(l)}) is the standard deviation of the above
data set. The average normalized error across all surfaces
is 34.5% + 13.5%. We do not yet know whether these
correlations are strong enough to fool the human sense
of touch, and we plan to investigate this topic in future
work. One should note that the metric we are using (6) is
quite strict, and frequency domain descrepancies will likely
be much lower when taking human sensory abilities into
consideration.

Also in Table I, Avg(o2 o o5y) is the average differ-
ence between the variance of the recorded and synthesized
white noise inputs. This variance discrepancy is a direct
indication of how much error our bilinear interpolation
introduces, and as expected the cost function increases as
this error rises. Sources of error include trial-to-trial data
recording variability, and any nonlinear behavior in the
variance that would violate the assumptions inherent in
bilinear interpolation. In addition to discrepancies between
the recorded and interpolated variance, it is also possible that
deviations exist between the real and interpolated recursive
coefficient h vectors, though we do not examine that here.

V. CONCLUSION

This paper describes a novel method for generating syn-
thetic texture signals via automated analysis of real recorded
data. This method is capable of modulating the synthetic
signal based on changes in two critical probe-surface inter-
action parameters, translational velocity and normal force,
by using bilinear interpolation. We have shown that these
synthetic signals are both simple and fast to compute, as
well as strongly matched to their real counterparts in the
time- and frequency-domains.

In future work we hope to improve our synthetic interpo-
lated signals by interpolating alternative representations of
the frequency-domain model, such as cepstral coefficients, in
place of the recursion coefficients h. We are also interested in
comparing and perhaps combining our texture models with
more event-based methods similar to those presented in [8].
We also intend to explore more natural means of data collec-
tion. One drawback of the data collection methods used in
this paper is that they require precise control of normal force
and translational velocity of the probe-surface interaction.
We hope that by investigating more advanced segmentation
algorithms we will be able to record and segment natural
human probe-surface interactions at a continuous range of
forces and speeds. Finally, work is currently underway in our
laboratory to develop haptic devices capable of detecting the
user’s normal force and translational velocity and outputting
the appropriate computed acceleration signal in real time.

VI. ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation (grant 1IS-0845670), the National Institutes of Health
(grant NS054180), and the University of Pennsylvania’s
GAANN and Ashton graduate research fellowships. We
thank our colleague Austin Chen for his assistance with the
data collection system, and our colleague Will McMahan
for his insights and assistance in the mathematical concepts
developed in this work.

REFERENCES

[1] C. Basdogan, C.-H. Ho, and M. A. Srinivasan. A ray-based haptic
rendering technique for displaying shape and texture of 3d objects in
virtual environments. In Proceedings of the ASME Dynamic Systems
and Control Division, pages 77-84, 1997.

[2] J. Benesty, M. M. Sondhi, and Y. Huang, editors. Springer Handbook
of Speech Processing. Springer Berlin / Heidelberg, 2008.

[3] G. Campion and V. Hayward. Fundamental limits in the rendering
of virtual haptic textures. In Proceedings of the First Joint Euro-
haptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pages 263-270, Washington,
DC, USA, 2005. IEEE Computer Society.

[4] S. Choi and H. Z. Tan. Toward realistic haptic rendering of surface
textures. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, pages
125-132, New York, NY, USA, 2005. ACM.

[5]1 J. Durbin. The fitting of time series models. Revue de [I’Institut
International de Statistique / Review of the International Statistical
Institute, 28(3):233-244, 1960.

[6] J. P. Fritz and K. E. Barner. Stochastic models for haptic texture. In
M. R. Stein, editor, Telemanipulator and Telepresence Technologies
111, volume 2901(1), pages 34—44. SPIE, 1996.

[71 E. P. Gardner and C. I. Palmer. Simulation of motion on the
skin. i. receptive fields and temporal frequency coding by cutaneous
mechanoreceptors of optacon pulses delivered to the hand. Journal of
Neurophysiology, 62(6):1410-1436, 1989.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

V. L. Guruswamy, J. Lang, and W. S. Lee. Modelling of haptic vibra-
tion textures with infinite-impulse-response filters. In Proceedings of
IEEE International Workshop on Haptic Audio Visual Environments
and Games (HAVE), pages 105-110, November 2009.

P. Heckbert. Survey of texture mapping. Computer Graphics and
Applications, 6(11):56-67, November 1986.

R. L. Klatzky, S. J. Lederman, C. Hamilton, M. Grindley, and R. H.
Swendsen. Feeling textures through a probe: Effects of probe and
surface geometry and exploratory factors. Perception & Psychophysics,
65:613-631, 2003.

D. A. Kontarinis and R. D. Howe. Tactile display of vibratory
information in teleoperation and virtual environments. Presence:
Teleoperators and Virtual Environments, 4:387-402, 1995.

K. J. Kuchenbecker, W. McMahan, and J. M. Romano. Haptography:
Capturing and recreating the rich feel of real surfaces. To appear
In Proceedings of the 14th International Symposium of Robotics
Research (ISRR 09), Lucerne, Switzerland, Aug. 31-Sept. 3 2009.
K. E. MacLean. The “Haptic Camera”: A technique for character-
izing and playing back haptic properties of real environments. In
Proceedings of the ASME Dynamic Systems and Control Division 5th
Annual Symposium on Haptic Interfaces for Virtual Environments and
Teleoperator Systems, volume DSC-58, pages 459-467, 1996.

W. McMahan and K. J. Kuchenbecker. Haptic display of realistic
tool contact via dynamically compensated control of a dedicated
actuator. In Proceedings of the IEEE/RSJ International Conference
on Intelligent RObots and Systems,, 2009.

M. Minsky and S. J. Lederman. Simulated haptic textures: Roughness.
In Proceedings of the ASME Dynamics Systems and Control Division,
volume 58, pages 421-426. ASME, 1996.

M. Minsky, O.-y. Ming, O. Steele, F. P. Brooks, Jr., and M. Behensky.
Feeling and seeing: issues in force display. In SI3D ’90: Proceedings
of the 1990 symposium on Interactive 3D graphics, volume 24, pages
235-241. ACM, 1990.

A. M. Okamura, R. J. Webster, J. Nolin, K. W. Johnson, and H. Jafry.
The haptic scissors: Cutting in virtual environments. In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), pages 828-833, September 2003.

D. K. Pai, K. v. d. Doel, D. L. James, J. Lang, J. E. Lloyd, J. L.
Richmond, and S. H. Yau. Scanning physical interaction behavior
of 3d objects. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, New
York, NY, USA, 87-96. ACM.

K. Salisbury, F. Conti, and F. Barbagli. Haptic rendering: Introductory
concepts. IEEE Computer Graphics and Applications, 24:24-32, 2004.
J. Siira and D. K. Pai. Haptic texturing - a stochastic approach. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 557-562, April 1996.

