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ABSTRACT

SPATIALLY-DENSE, MULTI-SPECTRAL, FREQUENCY-DOMAIN

DIFFUSE OPTICAL TOMOGRAPHY OF BREAST CANCER

Han Y. Ban

Arjun G. Yodh

Diffuse optical tomography (DOT) employs near-infrared light to image the concentration of

chromophores and cell organelles in tissue and thereby providing access to functional parameters

that can differentiate cancerous from normal tissues. This thesis describes research at the bench

and in the clinic that explores and identifies the potential of DOT breast cancer imaging. The

bench and clinic instrumentation differ but share important features: they utilize a very large,

spatially dense, set of source-detector pairs (107) for imaging in the parallel-plate geometry.

The bench experiments explored three-dimensional (3D) image resolution and fidelity as a

function of numerous parameters and also ascertained the effects of a chest wall phantom. The

chest wall is always present but is typically ignored in breast DOT. My experiments clarified

chest wall influences and developed schemes to mitigate these effects. Mostly, these schemes

involved selective data exclusion, but their efficacy also depended on reconstruction approach.

Reconstruction algorithms based on analytic (fast) Fourier inversion and linear algebraic tech-

niques were explored.

The clinical experiments centered around a DOT instrument that I designed, constructed, and

have begun to test (in-vitro and in-vivo). This instrumentation offers many features new to the

vii



field. Specifically, the imager employs spatially-dense, multi-spectral, frequency-domain data; it

possesses the world’s largest optical source-detector density yet reported, facilitated by highly-

parallel CCD-based frequency-domain imaging based on gain-modulation heterodyne detection.

The instrument thus measures both phase and amplitude of the diffusive light waves. Other fea-

tures include both frontal and sagittal breast imaging capabilities, ancillary cameras for measure-

ment of breast boundary profiles, real-time data normalization, and mechanical improvements

for patient comfort. The instrument design and construction is my most significant contribu-

tion, but first imaging experiments with tissue phantoms and of cancer bearing breasts were also

carried out. A parallel effort with simulated data has yielded important information about new

reconstruction regularization issues that arise when phase and amplitude are measured. With

these gains in device implementation and DOT reconstruction, my research takes valuable steps

towards bringing this novel imaging technique closer to clinical utilization.
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Chapter 1

Introduction

1.1 Diffuse Optics

The desire to use light to characterize human tissues and carry out tissue biopsy is pervasive in

science-fiction has begun to penetrate the more traditional scientific and medical communities.

Early attempts to use light for tissue imaging, for example, date back to the 1930’s when tran-

sillumination images of breast were used to detect the “shadows” of tumors [1]. Unfortunately,

because tissue is both highly absorbing and highly scattering, such crude light projections were

found to be too unreliable for medical use, especially when compared to standard techniques in

the clinic such as x-ray imaging.

The potential for clinical imaging with light was revisited in the 1970’s and 80’s with the

rediscovery of the so-called spectral “window” in tissue [2–4]. Indeed, light in the near-infrared

(NIR) part of the spectrum (600 − 1000 nm) is minimally absorbed by tissue hemoglobin and

water (Figure 1.1), though it is substantially scattered by tissue organelles. This realization even-

tually gave birth to the field of NIR spectroscopy. Minimal absorption in this spectral “window”

1



Figure 1.1: Spectra of the major chromophores in tissue showing the “Near-infrared window”.
H2O (×40) and lipid (×2000) has been scaled up to be visible on the plots. Hemoglobin concen-
trations for 150g Hb/L (whole blood). a) Low absorption region that defines the NIR window;
Inset: Estimated µ′s for breast tissues from Mie scattering theory in the NIR window. b) Tissue
absorption coefficients in the NIR window for common chromophores. Spectral data compiled
at http://omlc.org/spectra/index.html

permitted light to penetrate deeply into tissue and thereby provided optical access to information

about tissue chromophores such as oxy-hemoglobin (HbO2), deoxy-hemoglobin (Hb), lipid, and

water (H2O). However, at the time, these methods were better characterized as qualitative rather

than quantitative.

The situation changed in the late 1980’s and early 1990’s when the community recognized

that near-infrared (NIR) light diffuses in tissues [5–7]. In the diffusion model, photons travel

along random walk trajectories through tissue. These light trajectories are characterized by a

wavelength-dependent reduced scattering coefficient (µ′s(λ)) (see Figure 1.1 and Figure 1.2),

which is the reciprocal of the random walk step length, and a wavelength-dependent absorption

coefficient (µa(λ)), which depends on the concentrations of tissue chromophores such as oxy-

hemoglobin (HbO2), deoxy-hemoglobin (Hb), lipid, and water (H2O). Adoption of the diffusion
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Figure 1.2: Photograph showing a top-view image of a collimated NIR light beam as it passes
through solutions with variable scattering coefficient (µ′s). a) Small scattering coefficient. b)
Medium scattering coefficient. c) Large scattering coefficient.

model for light transport, in turn, opened up the possibility for quantitative diffuse optical spec-

troscopy (DOS) or near-infrared spectroscopy (NIRS). [8–32] and diffuse optical tomography

(DOT) [12, 33–55].

Of course, the key attraction of diffuse optical techniques is that they are sensitive to func-

tional information about tissue hemodynamics and oxygen metabolism, e.g., as reflected in the

variation of total hemoglobin concentration (THC), blood oxygen saturation (StO2), tissue scat-

tering (µ′s), and even tissue blood flow [15, 20, 46, 56–70]. Indeed, all of these physiologi-

cal parameters are pathologically relevant biomarkers of cancer, stroke, and other tissue dis-

ease/injury. Further, the diffuse optical methods have other attractive features. They are gen-

erally non-invasive, use non-ionizing radiation, are relatively rapid and portable, and they offer

high-throughput (e.g., repeated or continuous measurements at the bedside). Finally, optical

methods hold potential for use in multi-modal settings with other medical diagnostics such as

ultrasound, MRI, X-ray, and PET.

In this thesis, I employ diffuse optics for imaging oxy- and deoxy-hemoglobin and tissue
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scattering in the human breast. My long-range goal is to use the contrast offered by these physi-

ological parameters to identify and characterize breast lesions and to monitor breast tumor pro-

gression. This work builds on previous research in diffuse optical tomography, but it pushes the

current limits of breast DOT both instrumentally and algorithmically. It is my hope that this

research takes useful steps for clinical translation of quantitative DOT for breast cancer imaging.

1.2 Spectroscopic monitoring and imaging of breast cancer

For women in the U.S., breast cancer is the second most commonly diagnosed cancer (after

skin cancer) and the second leading cause of cancer death (after lung cancer) [71]. While the

mortality rate of breast cancer has decreased significantly in recent years, the overall number of

women affected remains large. In 2012, the American Cancer society estimated that 39, 510 of

the 226, 870 new cases of breast cancer would lead to death in the U.S. [72]. In addition, the

National Cancer Institute estimated the cost of breast cancer to the U.S. economy as greater than

$8 billion (2007) [73].

Currently, many imaging modalities are in use for the detection, diagnosis and manage-

ment of breast cancer. X-ray mammography is the most prevalent and widely adopted breast

cancer screening tool; it employs ionizing photons to create high resolution projection im-

ages (∼ 0.1 mm/pixel). Ultrasound imaging is another useful method that probes the acous-

tic/mechanical properties of tissue with high-frequency sound waves; e.g., it uses acoustic wave

reflection to locate a suspicious mass. Single Photon Emission Computed Tomography (SPECT)

and Positron Emission Tomography (PET) represent still other useful imaging modalities based
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on the detection of gamma rays emitted from radioactive tagged proteins or sugars that are in-

jected (or inhaled); tracking these macromolecules permits exploration of tissue metabolic path-

ways which can be different in tumors compared to normal tissues. Finally, Magnetic Resonance

Imaging (MRI) employs radio waves and strong magnetic fields to probe tissue structure and

function; these techniques rely on measurement of spin relaxation times to gain sensitivity to

tissue micro-environment and to diagnose disease.

All of these techniques have advantages (e.g., x-ray: high resolution, ultrasound: low cost,

PET: metabolism detection, MRI: function and structure) and disadvantages (e.g., x-ray: ioniz-

ing radiation, ultrasound: contrast and penetration, PET: ionizing radiation, MRI: throughput and

cost) that lead to arguments about which modality should be standard in breast cancer screening

and diagnosis. In reality, no technology is perfect for all scenarios, and most modern approaches

to breast cancer treatment utilize a combination of imaging technologies in synchrony with an

array of treatments tailored to the patient (e.g., neoadjuvant chemotherapy, lumpectomy, mastec-

tomy). In this environment, there is a need for additional modalities to detect cancers earlier, to

detect cancers in populations with low specificity (e.g., women with dense breasts), and to track

functional information during treatment (such as neoadjuvant chemotherapy).

By comparison to the medical diagnostics described above, diffuse optics is new. It also

has different contrast mechanisms and complementary strengths. For example, DOT’s ability

to measure endogenous tissue chromophores (Hb, HbO) and exogenous optical contrast agents

(ICG) provides access to functional processes and to parameters which are useful for detection

and characterization of breast tumors with high sensitivity and specificity [53, 74]. Cancer cells

are accompanied by various growth factors that spur angiogenesis and can result in higher blood
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Figure 1.3: Illustration of normal and cancer tissue. Cancer tissue regions have greater blood
vessel and cell/cell-organelle densities due to angiogenesis and cell growth which can be differ-
entiated optically compared to surrounding health tissue region. Figure courtesy of R. Choe. [80]

concentration in the tumor region [75–77]; this variation in hemoglobin content can be detected

as an absorption contrast optically. Further, cellular and extracelluar components, such as nu-

clei, mitochondia, and other organelles, are known to scatter light due to their refractive index

differences and size, and their scattering can be modeled with Mie scattering theory [78, 79].

In tumors, these regions of enhanced cell growth and mitochondrial density can produce greater

scattering compared to healthy tissue, and these scattering changes can be detected optically (see

Figure 1.3).

Further, as noted above, DOT is non-invasive, uses non-ionizing radiation, and is relatively

low in cost compared to most diagnostic modalities, though it suffers from issues of low spatial

resolution. Despite this apparent disadvantage, several groups (including ours) have shown that

changes in optics-based physiological contrast can be utilized to distinguish between healthy

and diseased tissue; this general approach has by now found use in investigations of muscle

[14, 59, 62, 81], brain [13, 15, 19, 20, 28, 56, 61, 65, 80, 82–89] and breast cancer. DOT, with

its access to functional information, low cost, high throughput (of patients), and potentially
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high specificity and sensitivity is an attractive modality for development in the current roster of

imaging technologies used in breast cancer diagnosis and treatment.

In the context of breast imaging, DOT utilizes light sources on the surface of tissues to illu-

minate the breast and employs detectors to access light that has been transmitted and scattered

in tissue. With literally many thousands of source-detector pairs on the tissue boundaries, DOT

readily employs these measured light fluence rate signals in order to computationally recon-

struct the 3D distribution of µa and µ′s within the sampled tissue. While large DOT datasets

have been prohibitively data intensive in the past, decreasing computational costs and increas-

ing computational processing power make DOT a more attractive modality for clinical devel-

opment. To date, DOT has successfully imaged tumors in the breast in a variety of clinical

situations. For example it has been shown that DOT can differentiate of malignant and benign tu-

mors [10,12,41,53,90–92]. DOT and DOS have also been shown to have potential for statistical

separation of responders from partial responders to inform chemotherapy treatments [32,93–98].

These studies point to DOT as a strong candidate for diagnosis and monitoring in modern breast

cancer treatments and regiments that are targeted and unique to patients.

1.3 Diffuse Optical Tomography instrumentation

Presently, a few groups are exploring DOT, and as of yet no consensus of its best implementation

has come about. Part of the problem is that DOT is quite flexible in its possible configurations,

and each configuration has its own set of advantages and disadvantages. Typically, DOT systems

vary in number of wavelengths used, number and arrangement of source-detector pairs, detection

techniques, and, of course, algorithmic approaches.
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Multi-spectral systems permit robust imaging of multiple chromophores, in part because

a priori spectral information about each chromophore exists and can be utilized. Many DOS

and DOT systems will employ at least two wavelengths, but the best systems employ more

wavelength which generally permit the quantification of more chromophores. Source-detector

arrangements vary too. Most employ either the remission or transmission geometry. In the

remission geometry, the source and detector are on the same side of the tissue surface; this

configuration offers a great deal of flexibility and ease of measurement. Many remission systems,

in fact, are handheld, and the optical properties of tissue located just below the probe are mapped

out as the device is placed at several locations on the breast surface. One disadvantage of this

geometry, however, is that the sensitivity function is depth-dependent, and the data are distorted

to varying degrees with depth. Also, it is hard to penetrate too deeply in this geometry (e.g., the

typical penetration is approximately one-half of the source-detector separation on the surface).

In the transmission geometry, typical DOT source-detector arrangements include the ring [99–

102] and the slab [53, 103, 104]. In general, transmission measurements provide much better

sensitivity for deep tissues, since the detected light in this geometry is more likely to travel

through all areas of interest.

These systems can be further divided by data-type, a property which also defines the ex-

perimental detection system and the nature of the experimental light sources. These data-types

generally fall into three categories: continuous-wave (CW), frequency-domain (FD), and time

domain (TD) (Figure 1.4). CW systems are the most simple; in this case the variation in light am-

plitude (fluence-rate amplitude) is measured. However, in these systems, the cross-talk between

absorption and scattering is often severe; the cross-talk can be ameliorated via multi-spectral
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Figure 1.4: Schematic illustration of the three optical data types used in diffuse optical experi-
ments. The input signal is colored red and the output (detected) signal is colored blue. Contin-
uous wave (CW) techniques measure the change in fluence rate amplitude ∆Φ. The frequency-
domain (FD) methods amplitude modulate the light sources and measure both ∆Φ and the phase
shift, ∆θ, between the input and output waveforms. The time-domain (TD) technique measures
to amplitude and broadening of a very short incident pulse as it travels through the medium;
TD methods can be thought of as a superposition of FD measurements with many modulation
frequencies.

techniques [45, 105], but the situation is definitely not perfect! Frequency-domain systems em-

ploy laser light sources that are intensity modulated (typically in the 50 MHz to GHz range); in

this scenario, a diffusive wave is injected into the tissue with amplitude and phase that evolve

as the light travels through the turbid medium. By measuring the amplitude and phase of the

output signal (e.g., as a function of position, modulation frequency, etc.), one can rigorously

separate absorption from scattering contrasts. The FD detection scheme can be either homodyne

or heterodyne. The data-types used in this thesis are either CW or FD. Time-domain (TD) sys-

tems use pulsed laser sources that inject short light pulses (≤ps) into the turbid medium; these

pulses broaden as they travel through the medium due to the different photon trajectories, and

their broadening is measured by sophisticated time-correlated photon counting detection sys-

tems. Like FD systems, the TD methods also permit separation of scattering from absorption.

The TD and FD experiments are essentially Fourier analogs. Numerous arguments have arisen
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in the community about whether TD is superior to FD or vice versa; these questions are still not

resolved. Many factors come into play in analyzing these questions, ranging from duty cycle for

best signal-to-noise, to detection systematic errors, to cost.

1.4 Diffuse Optical Tomography of Breast Cancer at Penn

DOT and, more generally, diffuse optics has had a long history at Penn. For example, the

first experimental tomographic reconstructions of absorption and scattering heterogeneities were

demonstrated at Penn [33]; similarly the first fluorescent lifetime tomography with diffuse op-

tics was carried out here [9], as was the first fluorescence breast cancer imaging in humans [49].

In a different vein, numerous comparison and validation studies of DOT and other imaging

modalities were performed here, including with PET [106] and MRI [47]. Further, instruments

have been developed that combine DOT with other modalities such as ultrasound [107,108] and

MRI [12, 38, 109, 110]; this approach enhances the ability of optics to extract functional infor-

mation about tissues by using structural information provided by other techniques to constrain

the inverse problem.

Parallel to this experimental work, our group has developed theoretical approaches for DOT,

including important research that shed light on the use and value of multiple optical wavelengths

(and the optimization of the wavelength choice) for clinical DOT and DOS devices [45, 105].

Experiments characterizing (and pushing) the resolution of stand-alone DOT imaging were car-

ried out [52], and a clinical DOT breast imaging device (Gen2) was built and used in a 47 patient

study; the latter study demonstrated statistically significant differences in DOT contrast between

malignant and benign lesions [53]. From this research, we have learned that it is possible to use
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optical imaging as a clinical and a research tool to advance our understanding of breast cancer

physiology and treatment.

In my thesis I present my work to build on this previous success at Penn, i.e., my work pushes

the frontier further in order to translate DOT into the clinical setting. Specifically, I explored and

addressed clinically relevant issues for DOT imaging such as the effect of the chest wall, and

I designed and built the next generation DOT breast imaging device. This new instrument will

advance the clinical application of DOT in terms of resolution and image fidelity (i.e., due sub-

stantially to the enormous amount of data obtainable from the new instrumentation and signal

normalization/calibration in-situ), information content (i.e., due to separation of absorption and

scattering contrast with frequency-domain detection), and overall image quality (i.e., due to im-

proved patient interfaces, etc.). Finally, I have begun to reconstruct images using the instrument

in tissue phantoms and in the clinic.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, I review the underlying

theory of diffuse light propagation in tissue, as well as selected image reconstruction techniques

(especially ones that I employ for my experiments). Specifically, I derive analytical solutions in

frequency domain for the geometries and boundary conditions commonly used in diffuse optical

tomography. I also describe the linear and nonlinear methods used to solve the forward and

inverse problems that are utilized in my experimental image reconstructions.

Chapter 3 describes a (published) benchtop experiment wherein I systematically explore

diffuse optical tomography in the clinically relevant slab geometry in the presence of the chest
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wall. The effect that the chest wall has on DOT reconstructions is not understood. The chest is

highly absorptive tissue that breaks the symmetry of the inverse problem, among other things.

DOT reconstruction methods have not been systematically studied in this important regime.

The use of a high spatial-density of source-detector pairs helps us to characterize the resulting

systematics and also enables us to explore various schemes to mitigate these chest wall effects.

Chapter 4 introduces, explains, and characterizes the new Gen3 breast imaging instrument;

then I describe first imaging tests with the instrument. These first experiments are deployed in

the lab (with tissue phantoms) and then in the clinic. Details of the optics, electronics, detection

are provided in Section 4.3. Details of the data processing and signal correction/normalization

are discussed in Section 4.4. The design, construction, and testing of this instrument is the most

important research in this thesis. The image reconstruction research takes the first of many steps

towards clinical DOT investigations, and teaches us about important issues in image regulariza-

tion with DOT. Data and image reconstructions from simulation and tissue phantom experiments

highlight the multi-spectral and frequency-domain capabilities of the device. Finally, the first

clinical image reconstructions from cancer patients are shown; with these first images, I estab-

lish that more work is needed to find the best algorithms for the apparatus, but the work helps to

define these new directions for research. Chapter 5 summarizes my work and offers suggestions

for further development of the research.
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Chapter 2

Theory

2.1 Modelling of light propagation in tissue

Photon migration through turbid media such as human tissue is usually well described by the ra-

diative transport equation [5,54]. The radiative transport equation, in turn, is well approximated

by the diffusion equation for the photon fluence rate when the medium has low absorption but

substantial scattering [5, 6]. The derivation of the photon diffusion equation from the transport

equation can be traced back to nuclear transport theory [7], and the reader who is interested in

the passage from the transport to diffusion equation should consult several useful review arti-

cles [54, 111, 112]. Herein, we will assume the diffusion approximation is valid for the media

we investigate, i.e., human tissues. Thus, for the purposes of this thesis, in a media with low

absorption and high scattering, we will assume that the photon fluence rate Φ(r, t) (W/cm2)

obeys the diffusion equation:

∇ · (D(r)∇Φ(r, t))− vµa(r)Φ(r, t) + S(r, t) =
∂Φ(r, t)

∂t
. (2.1)
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Here r represents position in the sample, t is time, v is the speed of light in the medium (i.e.,

c/n where c is the speed of light in vacuum and n is the index of refraction of the medium),

µa(r) (cm−1) is the tissue absorption coefficient, D(r) = v
3(µa(r)+µ′s(r)) is the tissue diffusion

coefficient wherein µ′s(r) (cm−1) is the tissue reduced scattering coefficient, and S(r, t) (W/cm3)

is the light source term. In the near-infrared (NIR) wavelength range, typical optical properties

of the human breast are µa ∼ 0.05 cm−1 and µ′s ∼ 8 cm−1.

The experiments in this thesis employ frequency-domain (FD) techniques. In the frequency-

domain, the light source is typically point-like in space (which we often model with a delta

function) and is modulated sinusoidally at an angular frequency ω. In this case, the source and

resulting photon fluence rate have DC and AC components.

S(r, t) = [Sdc + Sace
−iωt]δ(r− rs) ; (2.2)

Φ(r, t) = Φ(r)dc + Φ(r)ace
−iωt . (2.3)

Here Sdc is the DC light source power density (with units (W/cm3)), Sac is the AC light source

power density, and rs is the source location. Equation (2.2) shows that the photon fluence rate

also has corresponding AC and DC components. Note, here the equations are expressed using

complex notation; in this case, we expect that the AC components for both the source and the

fluence rate to be complex. In later chapters, we are mainly concerned with the phase and the

amplitude of the AC component of the fluence rate. Substituting for the light source and fluence

rate from the two equations above into the diffusion equation, one readily derives the following
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frequency-domain diffusion equation i.e., equation for the AC component of the fluence rate:

[−∇ ·D(r)∇+ vµa(r)− iω]Φ(r, ω) = Sδ(r− rs) . (2.4)

For clarity, I have suppressed the AC subscript, and explicitly written the frequency dependence,

ω, into the argument of the fluence rate in order to remind the reader of its importance. Equa-

tion (2.4) is the starting point for most of the analyses in this thesis, including the tomographic

image reconstruction algorithms. However, before we delve into the tomographic reconstruction,

we will solve this equation analytically for some common and simple geometries: homogeneous

infinite media, semi-infinite media and slab media.

2.1.1 Boundary Conditions

To find a complete solution to any differential equation, one needs boundary conditions. For

infinite medium, the primary requirement is for the photon fluence rate to reduce to zero at in-

finity. However, in practice, most important situations involve interfaces between diffuse and

non-diffuse media, e.g., the air-tissue interface. The boundary condition problem has been dis-

cussed in books and review papers [54, 113–116]. Here I provide a review of the key results

without detailed derivations.

To accomplish this task, we must return to the transport equation and its key functional quan-

tities. Consider a small volume element centered on the point at r. The radiance L (W/m2sr1),

is a measure of the light energy per unit area per unit solid angle at r and traveling in the di-

rection s. Thus, the isotropic fluence rate, Φ(r, t) in the diffusion equation above is obtained by

integrating the radiance over all possible angles/directions; the associated photon flux, j(r), is
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the vector sum of the radiance emerging from the volume element:

Φ(r) =

∫ ∫
4π
dΩ L(r, s) ; (2.5)

j(r) =

∫ ∫
4π
dΩ L(r, s) ŝ . (2.6)

In the diffusion approximation, which is also called the P1 approximation because it only

retains spherical harmonics of order zero and one from the transport equation, the radiance only

depends on the fluence rate and photon flux. Specifically, at any point, r, the radiance is simply

the sum of the isotropic fluence rate at r plus an additional term involving the dot product of the

photon flux at r and the unit vector along s, i.e.,

L(r, s) =
1

4π
[Φ(r) + 3j(r) · ŝ] . (2.7)

Typically, we study diffuse media (like tissue) that are bounded by non-diffuse media (like air).

Therefore, we must carefully consider what happens to the radiance at the air-tissue boundary

(see Fig. 2.1.1). Let n̂ be the outward unit normal on the tissue surface, and let ŝ define a

direction of the light radiance propagation. In this case, the radiance exiting and entering the

tissue at the boundary is determined, respectively, by integrating the radiance over all outward

directions (L(s)(̂s · n̂)) and integrating the radiance over all inward directions (L(s)(̂s · −n̂)).

Since air is non-scattering medium, the only light radiance that can enter the tissue from the

boundary is due to Fresnel (specular) reflections of outgoing light radiance at the boundary. Let

R(s) be the Fresnel reflection coefficient for unpolarized light at the angle θ (where ŝ · n̂ = cos θ
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Figure 2.1: At the air-tissue boundary, a fraction of the incident radianceL(ŝ) is Fresnel reflected
(R(ŝ)) back into the turbid medium due to index mismatch. This reflected light R(ŝ)L(ŝ) ac-
counts for all light diffusing inwards into the medium at the boundary. The boundary condition is
derived using this observation. n̂ is the unit vector normal to the air-tissue boundary. z increases
downward into the tissue and ρ is parallel with the boundary.

and ĵ · n̂ = jz cos θ), then

∫ ∫
ŝ·n̂>0

R(s)L(s)(̂s · n̂)dΩ =

∫ ∫
ŝ·n̂<0

L(s)(̂s · −n̂)dΩ . (2.8)

The solution of this equation leads us to the well-known partial-flux boundary condition

[113, 115], i.e.,

Φ + `∇Φ · n̂ = 0 ; (2.9)

` = 2D
1 +Reff
1−Reff

. (2.10)

Here Reff is the effective reflection coefficient due to the index of refraction differences at

the interface [117, 118]. The positive parameter, ` (Equation 2.10), is called the extrapolated

boundary length; it corresponds to the distance (along the direction normal to the interface)

for which the solution to Equation 2.9 is zero. (Note, this result is obtained with the Taylor

expandsion of the fluence rate around its value at the interface, while keeping only the terms up
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to first order). Again, the details of this approach have been worked out in [54, 113–115], and I

will not carry out the derivation here. The resulting so-called extrapolated boundary condition

is:

Φ(z = −`) = 0 . (2.11)

We will use this extrapolated boundary condition to construct the Green’s functions for semi-

infinite and slab media. These Green’s functions (or some equivalent form), in turn, facilitate

solution of the problem when the turbid medium is heterogeneous. Of course, this latter situation

is important for imaging inside a breast with cancerous lesions.

2.1.2 Analytical Solutions

This section covers three analytical solutions to the photon diffusion equation. We will solve for

the fluence rate, Φ, in homogenous turbid media in the infinite, the semi-infinite, and the slab

geometries. For the infinite medium, we will derive the Green’s function. For the semi-infinite

and slab problems we will use the method of images and the extrapolated boundary condition to

derive new Green’s functions.

2.1.2.1 Infinite Geometry

The simplest case we consider is the infinite geometry. Starting with the diffusion equation

in the frequency domain (Equation 2.4), we assume that both the diffusion coefficient and the

absorption coefficient of the medium are constant (i.e., the medium is homogeneous). Further,

we assume that the point light source sits at the origin of the coordinate system. After dividing

both sides by D, and defining the constant k2
0 = −vµ0a+iω

D , (Equation 2.4) can be written in the
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following Helmholtz-like form:

(∇2 + k2
0)Φ(r, rs) = − S

D
δ(r− rs) . (2.12)

Note, in this form, the photon fluence rate, Φ, due to a point source is proportional to the Green’s

function solution (in this case the proportionality constant is S/D) for the Helmholtz equation

(i.e., for the Helmholtz-like equation above with the unusual wave-vector). This equation for the

Green’s function with point source at rs is:

(∇2 + k2
0)G(r, rs) = −δ(r− rs) . (2.13)

With the boundary condition that the fluence rate goes to zero at infinity we obtain the well-

known result:

G(r, rs) =
1

4π

eiko|r−rs|

|r− rs|
. (2.14)

This Green’s function solution is an overdamped spherical wave that vanishes at infinity. The

wave-vector has real and imaginary parts that depend on the absorption coefficient, the reduced

scattering coefficient, and the modulation frequency. The photon fluence rate solution is com-

puted by spatial convolution of the Green’s function and source distribution (which can originate

at only a single point, but need not).

2.1.2.2 Semi-infinite Geometry

Now that we have the Green’s function solution for infinite media, it is straight-forward to derive

related solutions in the semi-infinite geometry. A key assumption from the partial-flux boundary
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condition facilitates the solution: the fluence rate is zero at the so-called extrapolated boundary

(which is typically close to the real air-tissue boundary) [113–115]. Thus, if we know the source

position, then we can use the method of images to construct our Green’s function such that it

vanishes at the extrapolated boundary. Recall that the extrapolated zero boundary is located a

distance ` from the air-diffusive media interface (z = 0) as shown in figure 2.2.

The solution for the semi-infinite geometry can be readily determined using the well-known

method of images. If a source exits some distance ` + zs away from the extrapolated boundary

(i.e., in the turbid medium), then we must place a sink the same distance on the opposite side

of the boundary to insure that the net fluence rate at the extrapolated boundary position (i.e.,

between the real and image sources) is zero (see figure 2.2). This method-of-images approach

yields the Green’s function for the semi-infinite medium. The Green’s function with the source

and image source is

G(ρs, zs; ρ, z) =
1

4π

(
exp[ikr+]

r+
− exp[ikr−]

r−

)
; (2.15)

r+ =
√

(ρ− ρs)2 + (z − z+)2 ;

r− =
√

(ρ− ρs)2 + (z − z−)2 . (2.16)

Here z+ = zs is the position of the source and z− = −2` − zs is the position of our image

source. Note, typically the source position due to a light fiber located at the air-tissue interface is

set to be at a distance (into the diffuse medium) equal to the reciprocal of the reduced scattering

coefficient and measured from the air-tissue interface at z = 0. Finally, as was the case for
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Figure 2.2: The semi-infinite case where the method of images is used to find the solution of the
Green’s function. The z direction increases downwards into the medium. z+ is the location of
the source, z− is the location of the image sink, and z = 0 is the boundary between the tissue
and air. The dotted line is where the extrapolated boundary is located a distance ` away from the
boundary. ρ is the distance between the source and detector fibers.

the infinite medium, the photon fluence rate solution is computed by spatial convolution of the

Green’s function and source distribution (which can originate at a only one point, but need not).

2.1.2.3 Slab Geometry

The solution for the slab geometry is just a more complicated variant of the solution for the semi-

infinite case. We use the method of images again. This time, however, there is a second boundary,

and we again make the assumption that Φ = 0 some distance ` away from the air/diffuse-media

boundary for the second interface at z = L. As in the semi-infinite case, we add an image sink

above the top (z = 0) boundary, but now we also need to add another image sink below the

bottom (z = L) boundary to the source.

Notably, every additional sink that is added would need its own image source, leading to a

recursive procedure of adding sources and sinks. Therefore a pattern in the position of these

sources and sinks emerge, and the Green’s function for the original source and all the images
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Figure 2.3: The slab case where the method of images is used to find the solution of the Green’s
function. z+, 0 is the location of the source, z−, 0 is the location of the image sink, z+, 1 is the
first source image, z−, 1 is the 2nd sink image and so on. z = 0, L is location of the boundaries
between the tissue and air. The dotted line is where the extrapolated boundaries are located a
distance ` away from the tissue/air boundaries. ρ is the distance between the source and detector
fibers. z increases downwards into the slab.

can be written as an infinite sum:

G(ρs, zs; ρ, z) =
1

4π

m=∞∑
m=−∞

{
exp[ikr+,m]

r+,m
− exp[ikr−,m]

r−,m

}
; (2.17)

r+,m =
√

(ρ− ρs)2 + (z − z+,m)2 ;

r−,m =
√

(ρ− ρs)2 + (z − z−,m)2 . (2.18)
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Here z+,m = 2m(L+ 2`) + zs, z−,m = 2m(L+ 2`)− 2`− zs, m = 0,±1,±2, ..., and L is the

thickness of the slab. For the semi-infinite geometry, only the m = 0 term is used.

Again, typically the source position due to a light fiber located at the air-tissue interface is

set to be at a distance (into the diffuse medium) equal to the reciprocal of the reduced scattering

coefficient; z+,m is positive as measured from air-tissue interface at z = 0. Also, the terms in

the sum are decreasing in size with distance of the image sources from the primary interface, so

one typically does not have to keep too many terms to obtain good agreement between theory

and experiment. Finally, as was the case for the infinite medium, the photon fluence rate solution

is computed by spatial convolution of the Green’s function and source distribution (which can

originate at only one point, but need not).

2.1.3 Multi-spectral Methods

2.1.3.1 Chromophore Absorption

In tissues and other turbid media, the total absorption, µa, is dependent on the relative concen-

trations of chromophores within the medium. If the number of chromophores is N , and they

have spatial concentration distributions ci(r),(i = 1..N ), then

µa(λ, r) =

N∑
i=1

ci(r)εi(λ) . (2.19)

Here λ is the wavelength of the probing light, and εi is the wavelength-dependent extinction co-

efficient of chromophore i. The εi are typically known from independent spectral measurements.

Notice, it is possible to determine the chromophore concentrations, ci, using this linear relation-

ship. That is, the chromophore concentrations can be reconstructed directly from measurements
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of the absorption coefficient (µa) at multiple wavelengths λj (j = 1..M ), provided the number

of independent equations (M ) is equal to or greater than the number of unknowns (N ).

In breast tissue, the major chromophores are deoxy- (Hb), oxy-hemogloblin (HbO2), lipid,

and water (H2O) in the near-infrared (NIR) wavelength range. The extinction coefficients for

these chromophores are known [119–122]. Furthermore, typical concentration values are known

for breast, and this knowledge often helps to provide bounds/constraints on the allowed absorp-

tion in tomographic reconstructions. In our reconstructions in Chapter 4 the volume concentra-

tions of water and lipid in the breast is assumed based on values from the literature [123–125].

Various analysis schemes are employed to extract physiological concentration information

from the wavelength-dependent data. The traditional method determines an absorption coef-

ficient at each wavelength, and then employs the equation above to extract chromophore con-

centrations. However, it is also possible to use all data at all wavelengths simultaneously to

reconstruct chromophore concentrations. This latter, so-called multi-spectral approach has been

shown to stabilize the reconstructions and to improve concentration fidelity [45, 126, 127], pro-

vided that enough wavelengths are utilized.

2.1.3.2 Scattering: Spectral Signatures from Mie Theory

In tissue, the scattering properties are due to a number of factors, especially organelles (e.g., mi-

tochondria, nuclei, cells, cell/tissue interfaces) and their concentration. In practice, the scattering

coefficient, µ′s, has been found to exhibit a power law variation as a function of wavelength in

the NIR. Interestingly, this power law follows from a Mie scattering analysis too; the simplest

Mie analysis assumes that all of the scattering is due to spherical particles of fixed size, but more

complex analyses can add in particle size polydispersity, etc.
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Mie scattering is a theory for light scattering from spherical particles based on Maxwell’s

equations. It is quite general, and it becomes especially important to use when the wavelength

of the incident light becomes comparable to the particle size.

Although Mie theory is old, its application to scattering in tissues in this context is rela-

tively recent [119, 122, 128]. If we assume a Mie scattering model as described above, then the

wavelength dependence of the scattering coefficient, µ′s, has a power-law form:

µ′s(λ, r) = a(2π%nm)bλ−b. (2.20)

Here a is a constant that is proportional to the scatterer density, % is the radius of the spheres, nm

is the index of refraction of the medium, and b is the scattering power. In biomedical optics, this

equation is often further simplified to

µ′s(λ, r) = A(r)λ−b . (2.21)

Here A is called the scattering prefactor. A few papers have been published that fit scattering

spectra from tissues, and, generally, b is found to vary between 0.5 and 3 [122, 128]. Notice, the

spatial distribution of scattering model parameters, A and b, can in principle be independently

reconstructed from multi-spectral data [105]. However, it is quite common for experimenters

to assume a fixed value for b and then reconstruct A and hence determine µ′s. Since the NIR

spectral range is not too broad, the scattering wavelength dependence is useful to employ in the

reconstructions, which are often not very sensitive to the exact values of A and b in lieu of µ′s.
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2.2 Reconstruction Methods

The main rationale for using Diffuse Optical Tomography (DOT) in breast cancer imaging is

that tumors have different physiological properties, such as vasculature, metabolic activity, or-

ganelle concenrations, and more, compared to surrounding healthy tissue. Furthermore, these

differences in physiological properties are reflected as differences in optical properties, such as

absorption and scattering coefficients.

Typical DOT instruments send photons into tissue at known points on the tissue surface

(sources); output light that has traveled through the breast is then detected at known locations on

the breast tissue surface (detectors). Importantly, this work is carried out in geometries that can

be modeled reasonably with Green’s function-based inverse problem approaches. Within these

schemes, we utilize the measured data to solve for unknown µa and µ′s values in each volume

element of the 3-dimensional image-space for the medium. Common reconstruction methods

require two basic steps: 1) solving the forward problem and 2) solving the inverse problem (see

Fig. 2.4).

The forward problem, in essence, involves solving the diffusion equation for the fluence rate

at known locations (e.g., within the medium or at the detector positions). The forward solution is

readily determined, provided we are given specific values of µa and µ′s in each volume element

within the sample, as well as information about input source locations and the tissue boundaries.

Solving the inverse problem is conceptually and technically more difficult than the forward

problem. It involves determining new values of µa and µ′s from a comparison of the fluence

rate at the boundary to the forward problem solution. Generally, as experimenters, we have

knowledge about the diffuse light that we send into the medium and about the light that we
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Figure 2.4: a) Forward problem diagram (model) for slab geometry. The forward problem cal-
culates the fluence Φmodel at detector locations, given values for the source (S) locations as well
as µa and µ′s at N voxel locations inside the turbid medium. b) Inverse problem diagram (exper-
imental). From the measured value for the fluence at the boundaries Φdata, and the calculated
fluence rate from the forward problem, the values for µa, µ′s are updated/calculated.

measure after its emergence from the medium. The task of the inverse problem is to find unique

solutions for the optical properties inside the medium, given this information.

For the forward problem, general theoretical approaches can be divided into three groups:

Analytical methods, Numerical methods, and Monte-Carlo (MC) methods. These schemes

range, respectively, from least to most computationally demanding. The analytical method is

the fastest and easiest scheme (if we can figure out the analytic solution); given the source dis-

tribution, sample geometry, and optical properties, all that is required is a Green’s function to

generate the fluence rate within the medium (and on its boundaries). In principle, these analyti-

cal or semi-analytical approaches are well suited to use with very large data sets. However, the

analytical approaches have limitations. These limitations come, in part, from true experimental

geometries that differ from ideal cases and other experimental limitations such as small hetero-

geneities in the medium. Numerical methods, though more computationally intensive, are a bit
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more versatile. For example, by using numerical schemes, the number of assumptions about ge-

ometry are reduced, and it is possible to utilize well-worn techniques such as the Finite Element

Method (FEM) and Finite Difference Method (FDM). The Monte-Carlo approach is a stochastic

method which employs random step or Markov-chain models to account for transport of pho-

tons through the tissue; each of these photon trajectories is traced through the medium, with

probability of absorption and scattering events included, until the photon exits or is absorbed.

Though probably the most accurate method, this procedure employs a large number of photons

(> 108) and thus very computationally and time intensive. Of the methods described above, we

will primarily investigate the first two groups.

The inverse problem is inherently more difficult than the forward problem; it involves the

inversion of matrices (or similar/related mathematical operations). Such inversions are necessary

to solve/update µa and µ′s from the measured and calculated fluence rates. Standard inversions

of the resulting sets of linear equations are non-trivial. For example, they can involve generating

a pseudoinverse matrix (e.g., using singular value decomposition (SVD)). These operations are

fast but are susceptible to large deviations due to the ill-conditioned matrices and noise, among

other factors. A different approach to derive a solution is iterative and nonlinear (to varying

degrees). In the nonlinear case, an iterative approach is utilized wherein the measured fluence is

compared to the forward model (e.g., FEM model) solution of the diffusion equation using a cost

function Ψ (see Section 2.2.2.2). The key iteration step chooses a direction in the solution-space

and calculates (e.g., using either the Conjugate-Gradient (CG) method or the Gauss-Newton

(GN) method) new optical property parameters; then the forward problem is solved again (with

the new optical properties) and the iteration steps are repeated until a pre-set convergence criteria
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is reached. The nonlinear methods, while more accurate and flexible, are computationally very

expensive and time consuming, especially when the data sets and the number of volume elements

are large.

In the following sections we describe two inverse problem approaches using analytic (Sec-

tion 2.2.1.2) and algebraic (Section 2.2.1.4) linear schemes. Further, these reconstructions are

used to analyze the experimental data described in Chapter 3. We will also discuss a nonlinear

reconstruction method which is used for the experimental data in Chapter 4.

2.2.1 Linear Reconstruction Methods

2.2.1.1 Linearized Integral Equations

Here we derive linear solutions to the diffusion equation (2.4) in turbid media with hetero-

geneities. To simplify our problem, we divide the absorption and scattering (i.e., light diffu-

sion coefficient) parameter into two parts: homogeneous background components and spatially

heterogeneous (i.e., perturbative) components:

µa(r) = µ0
a + δµa(r) ; (2.22)

D(r) = D0 + δD(r) . (2.23)

We use/substitute this perturbation expansion of the optical properties into the diffusion

equation (Equation 2.4) in the presence of a single point source at rs (and we replace the flu-

ence rate, Φ, with the corresponding Green’s function, G). Note, again, formally the fluence

rate in this situation, Φ(rs, r), is proportional to the Green’s function, G(rs, r). Rearranging this
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resulting equation as described, we obtain:

[
−D0∇2 + vµ0

a − iω
]
G(rs, r) = δ(r− rs)−

[
vδµa(r)−∇ · δD(r)∇

]
G(rs, r) . (2.24)

The LHS of this equation is essentially the homogeneous diffusion equation with aver-

age/background values of absorption and diffusion. The spatially heterogeneous perturbations

introduce important additional terms on the RHS of the equation. These terms account for how

the fluence rate propagation is modified by the heterogeneous perturbations. We can manipu-

late this equation to derive an expression for the Green’s function, G(rs, rd), for a particular

source-detector pair where rd is the detector position. The Green’s function satisifes the Dyson

equation:

G(rs, rd) = G0(rs, rd)−
∫
V
G0(r, rd)[δµa(r)−∇ · δD(r)∇]G(rs, r) d3r . (2.25)

Here the integral is taken over V , the full volume of our medium (i.e., the slab), and G0(rs, rd)

is the analytic Green’s function solution for the homogenous medium, i.e., homogenous slab, in

this case.

This equation is intrinsically nonlinear, since G(rs, r) depends on the optical properties

too. Linearization involves the recursive substitution of the Green’s function G(rs, r) in the

integrand, with Equation 2.25. The higher order terms are then neglected, leading to a linearized

equation, where we have now excluded G(rs, r) from the RHS. In addition, to simplify the

notation, we let α(r) = [vδµa(r)−∇ · δD(r)∇]. The lowest order linear solution, as might be

30



expected from any Born expansion, is:

G(rd, rs) = G0(rd, rs)−
∫
V
G0(rd, r)α(r) G0(rd, rs) d

3r . (2.26)

If, instead of the Born approximation the first Rytov approximation [129] is adopted, Equa-

tion (2.26) yields:

G(rd, rs) = G0(rd, rs) exp

[
−
∫
V

G0(rd, r)α(r)G0(r, rs) d
3r

G0(rd, rs)

]
. (2.27)

Now let us connect this result to the data we might measure in an experiment. In practice,

two independent measurements of the transmitted intensity are made. (Note, this intensity is

derived from and is proportional to the diffuse light fluence rate at the output plane.) One mea-

surement is made on a homogeneous (reference) media, and the another measurement is made

on the medium with heterogeneities (i.e., the medium we want to understand). We denote these

measurements by I0(rd, rs) and I(rd, rs), respectively, where rd and rs are vectors specifying

the positions of the detector and the source. Note, in my experimental work in Chapters 3 and

4, these quantities, I0 and I , are ultimately derived from measured CCD counts in particular

CCD pixels with specific integration times; the number of CCD counts in each pixel is linearly

proportional to the corresponding photon fluence rate from the detected region. These measure-

ments are readily connected to Green’s function (which is also proportional to the fluence rate)
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and thus related to the optical properties of the sample medium through the relations:

I(rd, rs) = Cd(rd)Cs(rs)G(rd, rs) ; (2.28)

I0(rd, rs) = Cd(rd)Cs(rs)G0(rd, rs) . (2.29)

As noted above, G(rd, rs) is the Green’s function solution that is proportional to the fluence

rate we should measure with our CCD. The quantities Cd(rd) and Cs(rs) are unknown coupling

coefficients on the detectors and sources respectively. The coupling coefficients are cancelled

out (in principle) when we normalize the true sample data by the reference measurement for the

reconstructions (i.e., when we compute I/I0).

We divide both sides of Equation 2.27 by G0, and take the natural log of both sides of the

resulting equation. Finally we multiply both sides by −G0 and obtain:

−G0(rd, rs) ln

[
G(rd, rs)

G0(rd, rs)

]
=

∫
V
G0(rd, r)α(r)G0(r, rs) d

3r ; (2.30)

φ(rd, rs) =

∫
V
G0(rd, r)α(r)G0(r, rs) d

3r . (2.31)

Here we define the so-called Rytov data function, φ(rd, rs) as

φ(rd, rs) = −G0(rd, rs) ln

[
I(rd, rs)

I0(rd, rs)

]
. (2.32)

Note, that the data function φ(rd, rs) is proportional to the measured fluence rate Φ(rd, rs). The

right-hand side of the equation above contains the measured data function, and the left-hand side

is an integral transform of the contrast within the sample. This formulation of the linearized
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DOT inverse problem is standard [129].

2.2.1.2 Analytical Inverse Reconstruction

The analytical inverse reconstruction method that describe here and use in Chapter 3 was pio-

neered by my collaborators [52,130–135]. Its application in the slab geometry has been reported

in Refs. [52, 136, 137]. In this method, the inverse problem is simplified by taking advantage

of symmetries which reduce the complexity of the Green’s function while also enabling sim-

plified data inversions through the use of the Fourier transform. To achieve this goal, one first

decomposes the Green’s function into plane waves so that it has the following form:

G(r, r′) =
1

(2π)3

∫
d3k g(k) eik·(r−r

′) . (2.33)

Here g(k) gives the amplitude and phase for each plane wave. For complex boundaries, it

is impossible to solve for g(k). However, for some simple symmetric geometries (i.e., semi-

infinite, slab, cylindrical, spherical), formulas for the Fourier components can be derived [132].

Our experiments in Chapters 3 and 4 are carried out in the slab geometry. Therefore, we will

study the specifics of the slab geometry. In the slab, we define r = (ρ, z) where z is depth in

the medium and ρ is parallel to the surfaces (see Fig. 2.2.1.2). In the Fourier space, k = (q, kz).

The form of the Helmholtz equation is thus modified:

(∇2
ρ +

∂2

∂z2
+ k2

0)G(r, r′) =
−1

D0
δ(r− r′) . (2.34)
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Figure 2.5: Coordinates in the slab geometry. The positive z direction points into the slab while
ρ is parallel to the surface.

Since no translational symmetry exists in the z direction, we expand the Greens function in plane

waves along ρ. Then

G(r, r′) =
1

(2π)2

∫
d2q g(q, z, z′)eiq·(ρ−ρ

′) . (2.35)

Substitution of Equation 2.35 into Equation 2.34 gives a one-dimensional differential equation

for each value of q.

(
∂2

∂z2
− (q2 − k2

0)

)
g(q, z, z′) =

−1

D
δ(z − z′) . (2.36)

Although I will not write out the derivation here (see reference [52, 138]), please note that
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g(q,z,z’) can be solved for in the slab geometry and has the form:

g(q; z, z′) =
`

D

sinh[Q(L− |z − z′|)] +Q`cosh[Q(L− |z − z′|)]
sinh(QL) + 2Q`cosh(QL) + (Q`)2sinh(QL)

(2.37)

where Q = q2 − k2
0 , L is the slab thickness, and ` is the extrapolated boundary distance.

2.2.1.3 Fourier Inversion Equations

We next derive the inversion equations. We begin by substituting the plane wave Green’s func-

tion (Equation 2.35) into the linearized forward equation we must solve (i.e., Equation 2.31).

This substitution yields the following equation for the data function:

φ(rs, rd) = 1
(2π)4

∫
d2qs

∫
d2qd

∫
d3r g(qd, z, zd)exp[iqd · (ρ− ρd)] ;

×α(r) g(qs, zs, z)exp[iqs · (ρs − ρ)] . (2.38)

For discrete source-detector pairs, the Fourier transform and the substitution of q = qs + qd,

and p = −qs, gives us a set of separate integral equations for each value of q:

φ̃(qs,qd) =

∫ zd

zs

[
κA(qs,qd; z) c δµ̃a(qs + qd) + κD(qs,qd; z) δD̃(qs + qd)

]
dz (2.39)
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where

κA(q,p; z) = g(−p; zs, z)g(q + p; z, zd) ; (2.40)

κD(q,p; z) =
∂g(−p; zs, z)

∂z

∂g(q + p; z, zd)

∂z
+ p · (q + p) g(−p; zs, z)g(q + p; z, zd) .

(2.41)

Each integral in Equation (2.39) can be inverted independently, thereby reducing computation

time. From these results, we obtain inverse equations for µa and D (and thus µ′s).

Specifically: 1) we compute the Fourier transform of Equation (2.38) to obtain Equation (2.39);

2) then we solve for δµa(q, z) and δD(q, z) using singular value decomposition; 3) finally, the

inverse Fourier transform for a given value of z is computed with the equations below.

δµa(r) =
1

(2π)2

∫
d2qexp(−iq · ρ)

∑
r,p

κ∗A(q, r; z) [κκ∗]−1(q, r,p)φ̃(q,p) . (2.42)

δD(r) =
1

(2π)2

∫
d2qexp(−iq · ρ)

∑
r,p

κ∗D(q, r; z) [κκ∗]−1(q, r,p)φ̃(q,p) . (2.43)

Here κ∗A[κκ∗]−1 is the SVD pseudoinverse.

As an aside, note that the computational complexity of the analytical reconstruction isO(NqN
3
p ),

where Nq is the number of discrete values of the vector q, and Np is the number of discrete val-

ues of p in Equation 2.39. In the numerical implementation of the analytical method in Chapter

3, we have closely followed reference [52] and used a total of 49×3249 ' 1.6×105 independent

Fourier-space data points. Using these parameters, the necessary computations require 7 × 109

floating point operations. On a single-core Intel Core 2 Duo processor with a peak performance

of 19 GFlops, this calculation translates to 7 minutes of computation time.
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2.2.1.4 Algebraic Method

In general, variants of the algebraic image reconstruction are among the most popular meth-

ods per linear inversion techniques that have been applied to DOT [33, 38, 139, 140]. These

reconstructions are obtained by discretization of the volume integral in Equation (2.31) and sub-

sequent computation of the pseudo-inverse of the obtained system of linearized equations [141].

This method does not require large windows (i.e., it does not need the large field-of-views which

are required by symmetry in the analytic inversions), and it can be used with any type of data

restriction. For the case of the analytical reconstruction method, on the other hand, for data

restriction, it must be assumed that the data function φ = 0 (see Equation (2.31) at these data

points (i.e., Φ/Φ0 = 1 at these restricted data points). On the other hand, the algebraic method

requires explicit volume discretization in terms of voxels, while the analytical method allows one

to reconstruct the target z plane without much additional effort and is not dependent on volume

discretization.

For the purpose of obtaining algebraic reconstructions we divide the slab into cubic vox-

els. In the discretization we approximate the integral in Equation (2.31) with a Riemann sum,

resulting in a system of algebraic equations Ax = φ where Amn is the M × N weight ma-

trix, where M is the number of distinct source-detector pairs, N is the number of voxels,

xn = δα(rn)/α0 is the vector of dimensionless contrast (n = 1, . . . , N), and φm is the m-th

data point (m = 1, . . . ,M). The equations are cast in dimensionless form by defining a dimen-

sionless Green’s functions according to G̃0(r, r′) = D0hG0(r, r′), where D0 is the diffusion
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coefficient in the background solution. Then we have:

Amn = (kdh)2G̃0(rdm, rn)G̃0(rn, rsm) ; (2.44)

φm = −G̃0(rdm, rsm) ln

[
I(rdm, rsm)

I0(rdm, rsm)

]
. (2.45)

Here kd =
√
α0/D0, rn is the position of the center of the n-th voxel, and rdm, rsm are the

detector and source positions of the m-th data point used in the reconstruction.

The pseudoinverse solution to the above system of equations is defined as the unique solution

to the system (A∗A+λ2I)x = A∗φ, where λ is the regularization parameter and I is the identity

matrix. In the experiments in Chapter 3, the number of measurements M is much larger than

the number of voxels N (e.g., M ∼ 107 and N ∼ 104). Correspondingly, the most time

consuming part of finding the pseudoinverse (at least, with the numerical approach we used) is

the computation of the matrix product A∗A. In the most challenging case considered, we have

used M = 2× 107 and N = 2× 104, which requires 8× 1015 floating point operations.

On an 8-core Xeon workstation with the peak performance of 56 GFlops, this calculation

translates into 40 hours of computation time. However, this time-consuming procedure need

only be repeated once for a given source-detector arrangement and given optical properties of

the background medium; this situation is the case for my experiment in Chapter 3. Importantly,

the resultant matrix, A∗A, once computed, can be stored on a hard drive and re-used for image

reconstruction with each new data set obtained, e.g., for various positions of the chest wall

phantom. Furthermore, computation of the projection, that is, of the N -component vector A∗φ,

involves only one matrix-vector multiplication, and its computational cost is insignificant. In our

case, the matrixA∗A is small enough to be diagonalized; its eigenvectors and eigenvalues can be
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also stored on a hard drive for future use. In the reconstructions of Chapter 3, however, we solved

the equation (A∗A+ λ2I)x = A∗φ directly by the conjugate-gradient descent method [142].

2.2.2 Nonlinear Reconstruction Methods

For the approaches described thus far, the tomography problem was linearized. Ultimately, how-

ever, it is desirable to employ nonlinear methods to find the solution, because in general the

relationship between the measurements made and the unknown optical parameters is nonlinear.

Among the advantages of the nonlinear reconstruction methods is that one typically has no re-

strictions on the experimental geometry; further, no linear assumptions are made to solve the

diffusion equation, i.e., as we did in Section 2.2.1.1. While these conditions usually result in the

problem being computationally intensive and time consuming, this drawback is typically com-

pensated with parallelization of the problem. The nonlinear method we employ in this thesis

is a model-based reconstruction technique. A forward model of light propagation generates an

expected fluence rate, and then we seek to iteratively minimize the differences between our mea-

surement and our model (forward) data by updating the parameters in the forward model. The

forward model (diffusion equation) is solved using the finite element method (FEM).

2.2.2.1 Finite Element Method

The FEM programs I employ are already standardized functions in most inversion software.

Nevertheless, here I will quickly describe the basic premise of FEM for DOT, and I refer the

interested reader to the literature for a more complete treatment [143,144]. To solve the forward

problem with FEM, we first define a diffusion equation operatorL = −∇·D(λ)∇+µa(λ)+iω/v
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such that:

LΦ(r) = q0(r) . (2.46)

Here q0(r) is a our source term (note, it doesn’t have to be a point source). The boundary

condition used here is the Robin-type (partial flux) boundary condition:

Φ(rb) +
D(zb)

α
n̂ · ∇Φ(rb) = 0 . (2.47)

Here rb is a point on the measurement boundary and α is a refractive index mismatch term

[145]. Assuming that our detected signal is the normal component of the photon flux φm =

n̂ · [−D(rb)∇Φ(rb)], the equation in the case of the Robin boundary condition simplifies to

φm(rb) = αΦ(rb) . (2.48)

The volume Ω we are interested in imaging (in our case the slab) is discretized into V ver-

tex nodes. If ui(r) is a basis function from a V-dimensional subspace, then the approximate

piecewise continuous polynomial FEM solution to Φ(r) is

Φh(r) =
V∑
i

Φiui(r) . (2.49)

The linear or higher order basis functions are defined over triangle (2D), tetrahedral (3D), or

square grid elements (3D, used in TOAST++ [146]).
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To find the appropriate basis vectors ui(r), we minimize the residual defined as:

LΦ(r)− q0(r) = R, (2.50)

=
V∑
i

Riui(r) , (2.51)

by requiring that R be orthogonal to ui (for i = 1...V ) which in Equation 2.50 gives

(K(D) + C(µa) + iωB + αA)Φ = Q ; (2.52)

Kij =

∫
ω
D(r)∇ui(r) · ∇uj(r)dΩ ; (2.53)

Cij =

∫
ω
µa(r)ui(r)uj(r)dΩ ; (2.54)

Bij =
1

v

∫
ω
ui(r)uj(r)dΩ ; (2.55)

Aij =

∫
ω
ui(r)uj(r)d(Ω) ; (2.56)

q0,i =

∫
ω
µa(r)ui(r)q0(r)dΩ . (2.57)

Here Φ is the FEM basis expansion coefficient vectors for Φ(r). These equations are the FEM

discretization of the diffusion equation. Note that K,C,B, and A are matrices of size V × V .

Equation (2.52) can can be inverted to give us our forward solver using Cholesky factorization

(CW only), LU Decomposition, or iterative solvers like the Conjugate-Gradient method and

GMRES.
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2.2.2.2 The Inverse Problem

The central problem to image reconstruction lies in finding a solution vector x̂ that best fits the

measurement data where

x = [µa,1, · · · , µ,V , µ′s,1, · · · , µ′s,V ]T . (2.58)

The elements of x are µa and µ′s (at a single wavelength) for every vertex of the volume that

we want to reconstruct. A straightforward way to utilize multi-spectral data is to reconstruct x

for each wavelength, and then convert µa and µ′s to Ci (where i indexes the chromophore) and

A using the relationship given by Equation (2.19) and (2.21). (Note, the exponent b can also be

a free parameter if desired but is often fixed). It has been learned that multi-spectral methods

stabilize various inverse problems [45, 105], so the preferred method (when the data quality is

good for many wavelengths) is to reconstruct for Ci and A utilizing all the data simultaneously

in the inversion. Then x is instead

x = [C1,1, · · · , C1,V , · · · , CK,1, · · · , CK,V , A1, · · · , AV ]T (2.59)

where the number of elements in x is N = [(K + 1)× V ].

Finding the solution vector x̂ can be approached as an optimization problem [147, 148]

wherein the solution x̂ is found by minimizing an objective function

x̂ = arg min
x

Ψ(x) , (2.60)
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where above we search for some parameter x that returns the minimum of Ψ(x). Here Ψ is

defined

Ψ =
1

2

L∑
l=1

S∑
s=1

Ds∑
d=1

[
Φc(x)− Φm

]2
. (2.61)

The summations are over all source-detector pairs and wavelengths in the data sets, where L is

the number of wavelengths, S is the number of source positions, andDs is the number of detector

positions for a given source. The total number of measurements is M = L×(
∑S

s=1Ds) . Φc(x)

is the fluence rate calculated by our forward FEM (Section 2.2.2.1) and Φ is our measured fluence

rate for a given source-detector pair, and thus the term to minimize is [Φc(x) − Φ]2. Fig. 2.6 is

Figure 2.6: Reconstruction flowchart.

the flowchart for the image reconstruction algorithms. We start with an initial guess x0 for the
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parameters, and then calculate the Ψ function by solving the forward problem for Φc(x) and

using the measured data Φm. The parameter vector x0 is updated by adding a scaled vector

∆x = γkpk. Then Ψ is recalculated with the updated parameter vector and checked again to

determine if the stopping criteria, which is set by the user to test how close the model fluence

rate is to the data, is satisfied. If the criteria, or some maximum iteration number, is not met,

then x is updated again, and the loop is continued.

∆x depends on the step size γ and the step direction p. γ is determined by a line search

along pk that sufficiently minimizes Ψ:

min
γ

Ψ(xk + γpk). (2.62)

The Taylor’s expansion of our updated objective function Ψ(xk + γpk) is:

Ψ(xk + γpk) = Ψ(x)k + γpTk∇Ψ(xk) +
1

2
γ2pTk∇2Ψ(x)kpk + · · · (2.63)

The search direction pk can be derived using either the first order derivative (Conjugate Gradient)

or the second order derivative (Gauss-Newton). We will briefly discuss these methods in the

following sections.

2.2.2.3 Conjugate Gradient Method

The Conjugate-Gradient technique is a commonly implemented method in DOT reconstruction

algorithms. For a detailed derivation of the Conjugate Gradient (CG) method, I refer the reader

to [147, 149]. Very briefly, to use the CG method, ∇Ψ from the 2nd term of Equation (2.63) is
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needed. It is

∇Ψ(x) = J(x)TF(x) ; (2.64)

fi(x) = Φc
i (x)− Φm

i ; (2.65)

F(x) =
[
f1(x), f2(x), · · · , fM (x)

]T
. (2.66)

where the Jacobian is

J =



∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xN

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xN

...
...

. . .
...

∂fM (x)
∂x1

∂fM (x)
∂x2

. . . ∂fM (x)
∂xN


. (2.67)

For real experimental data in Chapter 4, the Jacobians are arranged as shown in Fig. 2.2.2.3.

The Jacobian is typically calculated for known µa and µ′s. The image reconstruction software

that we use (Toast++) readily provides the gradients for the standard DOT optical coefficients,

i.e.,

f ′(µa) =
∂Φ

∂µa
, f ′(µs) =

∂Φ

∂µs
. (2.68)

For multi-spectral data, we want the Jacobian to be written in terms of the chromophore con-

centration and the scattering factor and power A, b. The required gradients with respect to these
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parameters can be obtained by applying the chain rule:

f ′(ci) =
L∑
j=1

f ′(µa)(λj)
∂µa(λj)

∂ci
=

L∑
j=1

f ′(µa)(λj)εi(λj) ; (2.69)

f ′(A) =
L∑
j=1

f ′(µs)(λj)
∂µs(λj)

∂A
=

L∑
j=1

f ′(µs)(λj)λ
−b
j ; (2.70)

f ′(b) =

L∑
j=1

f ′(µs)(λj)
∂µs(λj)

∂b
=

L∑
j=1

f ′(µs)(λj)Aλ
−b
j lnλj . (2.71)

Now we are able to use the Conjugate Gradient algorithm:

1. Initialize: k = 0 r0 = −∇Ψ(x0) ; (2.72)

p0 = r0 . (2.73)

2. Find step size (find γ): min
γ

Ψ(xk + γkpk) . (2.74)

3. Update parameters: xk+1 = xk + γkpk . (2.75)

4. Check
[
Ψ(xk+1) < criteria?

]
: Yes: Stop No: Continue

5. Update direction vector: rk+1 = −∇Ψ(rk+1) ; (2.76)

βk+1 =
rTk+1(rk+1 − rk)

rTk rk
; (2.77)

pk+1 = rk+1 + βk+1pk. (2.78)

6. k = k + 1. Move to Step 2.
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Figure 2.7: Illustration of the Jacobian matrix for datasets collected in Chapter 4. Row blocks are
organized by wavelengths; they are further divided into amplitude and phase. Column blocks are
organized by the chromophores (C), and A,b. The amplitude and phase data blocks (light blue)
consist of data for every source-detector pair: the rows indexes the sources s and the columns
indexes the detectors d for each source.

2.2.2.4 Gauss-Newton Method

The Gauss-Newton method is an iterative method that uses an approximation of second order

derivatives in the cost function. Consider Equation (2.63) with γ = 1. Let us assume that

Ψ(xk + γpk) is twice differentiable. Beginning with Equation (2.63) and differentiating both

sides with respect to pk we have:

∇Ψ(xk + γpk) = ∇Ψ(xk) +∇2Ψ(x)kpk . (2.79)

Ψ(xk + γpk) is minimized when∇Ψ(xk + γpk) = 0. The above equation then becomes:

∇2Ψ(x)kp
GN
k = −∇Ψ(xk) , (2.80)
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where pGNk is a vector that points in the Newton direction. We know
[
∇Ψ(xk) = 2J(xk)

TF(xk)
]

from Equation (2.64). ∇2Ψ(x) is

∇2Ψ(xk) =
M∑
m=1

∇2(Ψ(xk)
2) =

M∑
m=1

Hm(xk) , (2.81)

where Hm(xk) is the Hessian. Written out explicitly:

∇2Ψ(xk) = 2J(xk)
TJ(xk) +

M∑
m=1

N∑
i=1

N∑
j=1

fi(x)
∂fm(x)

∂xi∂xj
. (2.82)

The second term is much smaller than the first term, and in the Gauss-Newton method an ap-

proximation is made wherein the second term is ignored such that:

∇2Ψ(xk) = 2J(xk)
TJ(xk) . (2.83)

Thus the main equation in the Gauss-Newton method is:

2J(xk)
TJ(x)kp

N
k = −2J(xk)

TF(xk) . (2.84)

With this method to ascertain the Gauss-Newton direction pNk , this relation can be used

repeatedly in an iterative manner. A line search method can also be added into the algorithm

where the minimum is searched for along pNk . The Gauss-Newton algorithm is as follows:
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1. Initialize: k = 0

2. Evaluate: ∇Ψ(xk) = 2J(xk)
TF(xk) ; (2.85)

∇2Ψ(xk) = 2J(xk)
TJ(x)k . (2.86)

3. Solve for pNk in 2J(xk)
TJ(x)kp

N
k = −2J(xk)

TF(xk) (2.87)

(using GMRES, CG, etc.) .

4. Compute γk (line search) .

5. Update parameter: xk+1 = xk + γipk . (2.88)

6. Check
[
Ψ(xk) < criteria?

]
: Yes: Stop No: Continue

7. Update k = k + 1, go to Step 2.

2.2.2.5 Levenberg-Marquardt Method

The Levenberg-Marquardt Method is another technique commonly used in DOT reconstruc-

tion packages (e.g., TOAST++, NIRFAST) that I will very briefly summarize. The Levenberg-

Marquardt Method is a variation on the Gauss-Newton method wherein a term is added to the

Hessian in Equation 2.84

2[J(xk)
TJ(x)k + λI]pk = −2J(xk)

TF(xk) ; (2.89)

pk = −2[J(xk)
TJ(x)k]

−12J(xk)
TF(xk) . (2.90)
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λ is called the damping parameter. This additional term has two main effects. The first effect is

to increase the the number on the diagonals and therefore suppress the 2nd derivatives. A large λ

will result in the left hand side of the equation being more like the identity matrix, resulting in the

steps becoming more like the steepest descent method. One common technique is to start with a

large λ and then decrease its value at each iteration (i.e., by half every iteration); this procedure

causes a gradual switch from the gradient descent method to Gauss-Newton over each step of

the reconstruction. The second effect that this additional term introduces is to limit the step

size. Since they are inversely related with the search direction vector pk (Equation 2.90), higher

damping terms have the effect of decreasing the step size. This decrease in step size prevents

large changes in the iteration at early steps which is useful when there could be instabilities

due to errors in the initial guess. Overall these two functions have an effect of stabilizing the

reconstruction in the early iterations.

2.2.2.6 Regularization

The image reconstruction problems we discussed above are generally ill-posed and often under-

determined (i.e., the number of independent measurements are less than the number of un-

knowns). Among the characteristics of ill-posed problems is that small changes in detected

signals can induce large changes in the reconstructed optical properties This situation implies

that the reconstructions have non-uniqueness problems and will require additional constraints

to help achieve convergence. In practice the solution space is constrained or regularized to uti-

lize apriori information. Generally, any scientist working on ill-posed image reconstruction (or

ill-posed inverse problems) will utilize some type of regularization technique to optimize their

images. In the medical imaging field, regularization is common.
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For our nonlinear methods, regularization is typically introduced as a term in the objective

function as shown below:

Ψ =
1

2

L∑
l=1

S∑
s=1

Ds∑
d=1

[
Φc(x)− Φ

]2
+ ΛR(x) . (2.91)

Here Λ is the scaling factor, andR(x) is called the regularization functional. As in Equation 2.61,

L is the total number of wavelengths, S is the total number of sources, and Ds is the number

of detectors for a particular source s. The additional term can be thought of as a penalty on the

cost function based on the regularization functional. A few examples are: R = ||x− x0||22, R =

||∇x||1, and R = −∇ · (∇x/|∇x|); in these cases, the reconstruction is effectively penalized

for large optical property excursions within the image based on, respectively, its difference, its

gradient, or a function of its change in gradient. The relative importance of these penalties is

adjusted through the scaling factor Λ, which can be modified with each iteration as well. These

kinds of regularization terms are useful when spatial information about the optical properties

of the medium are known, or when some information about the optical property variations are

expected. The more information one has in advance, the more that can be included in the cost

function.

Throughout this thesis, I have explored the utility of various regularization schemes, and I

have tried to identify the best ones for our problem. These tasks are non-trivial and have only

just begun. In our reconstructions in Chapter 4, we found that the Total Variation (TV) method,

which is an edge-preserving regularization, can work well. TV was applied to preserve contrast

and to preserve transverse size of targets in our DOT reconstructions, but it also had the cost of

increasing certain classes of artifacts. The particular form we used is Λ
√
|∇x|2 + β2, which is
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actually an approximation of the TV method. Here β > 0 is a small parameter added to deal with

the non-differentiability of the absolute value |∇x| when ∇x = 0. It is worth noting that it is

also possible to employ different regularization multiplicative scaling terms for different optical

parameters. For example, in our reconstructions in Chapter 4, we found that using a separate

regularization factor for absorption and for scattering improved the spatial fidelity of the target

reconstructions (see Section 4.8.1 in Chapter 4).
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Chapter 3

Imaging Breast Cancer: Chest Wall

Effects

3.1 Introduction

Although various forms of diffuse optical tomography (DOT) have been employed to derive

spatial maps of physiological features in the human breast with some success, the fidelity of

these images is compromised by boundary effects such as those that arise from data obtained

near the subject’s chest wall.

The breast is sometimes approximated as a slab, which allows the formulation of imaging

problem with analytical Green’s functions. The chest wall falls within the vicinity of the breast

through which light can travel. Furthermore, from a general diffuse optics viewpoint, the very

existence of the chest wall breaks the natural symmetry of the slab geometry, a symmetry which

is often utilized when formulating Green’s functions for the imaging problem. The chest wall

introduces perturbations into the inverse problem that become more important as the source and
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detector locations move away from the nipple region and closer to the chest.

The DOT community has not dealt systematically with the influence of the chest wall. Deal-

ing with these chest wall issues is the primary purpose of the research described in this Chapter,

which is based on and expands upon my publication in the Journal of Biomedical Optics [137].

The remainder of this sub-section provides a brief perspective about the whole of my work on

this problem. Following the present section, it is organized as follows: in Section 3.2 the ex-

perimental set-up is described in detail; Section 3.3 explains our approaches to data restriction;

Section 3.4 presents the results, and Section 3.5 contains a brief discussion about the findings

and implications of the work.

Specifically, as part of our effort to translate DOT into the clinic, I set about to explore the

effect of the chest wall in a systematic study at the optical bench. I assessed image quality of

two types of DOT reconstructions: fast data-intensive analytic inversions and algebraic linear

DOT. The investigation employed tissue phantoms with sub-centimeter targets in the presence

of large absorbing regions that mimic the chest wall. My experiments show that this chest wall

phantom can introduce image artifacts, and that these artifacts are especially severe for features

near the boundary region. The responses are fully characterized, and I show how these artifacts

can be mitigated by exclusion of data near the chest wall. As part of this effort, in addition to

exploring the utility of well-understood analytic inversions, I introduce and demonstrate a linear

algebraic reconstruction method that is well suited for very large data sets (i.e., large data sets

characteristic of CCD-based imagers); I study the performance of this algorithm for the first time

as a function of distance from the phantom chest wall.
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Here we employ linear image reconstruction methods and take measurements using continuous-

wave (CW) illumination. In principle, one could also resort to time- [150–155] or frequency-

domain [82, 156–158] measurements and nonlinear reconstruction methods [35, 134] to obtain

a reconstruction of the target and the chest wall phantom simultaneously; however, these ap-

proaches require more expensive and complex instrumentation, as well as more time-consuming

computational schemes.

The algorithms and experimental apparatus employed for these studies were carefully chosen

to provide best case scenarios for breast imaging. It has been demonstrated that image quality

in DOT [52, 136, 159], and in other imaging modalities such as inverse diffraction [160], can be

significantly improved by utilization of large data sets for the reconstruction. Furthermore, it has

been shown that the plane-parallel transmission geometry is particularly well suited for utiliza-

tion of larger data sets. The plane-parallel transmission geometry benefits from the possibility of

non-contact source scanning [136,161–164] and detection where a collimated laser beam can be

scanned on one side of the sample for illumination, and is paired with a CCD camera for parallel

detection.

A characteristic feature of such non-contact scanning approaches is the availability of very

large data sets with up to ∼ 109 independent measurements, e.g., with ∼ 103 source positions

and∼ 106 CCD pixels per source. Unfortunately, utilization of data sets consisting of more than

∼ 105 independent measurements presents a serious computational challenge for traditional

inversion methods, primarily due to data storage requirements. For this reason, theorists in the

DOT community are motivated to develop new (and fast) algorithms capable of reconstructing

very large data sets, albeit in simple imaging geometries (including the slab geometry) [130,131,
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133–135]. Numerical simulations [131] have explored some aspects of these methodologies,

and they also indicate that large image windows (i.e., wide-field illumination and detection) are

required to achieve optimal resolution. For example, the simulations suggest that the dimensions

on both sides of the slab, wherein sources are scanned and CCD-detectors collect data, ideally,

should be larger by a factor of approximately 3 in both transverse directions compared to the

slab thickness. In practice, experimental studies have shown that a somewhat smaller ratio can

be used and the ultimate limits will be due to the presence of noise and other imperfections of the

imaging system [52,136]. My experiments employ this type of ideal experimental geometry and

data generation/collection scheme with the additional complication of the chest-wall phantom.

Thus my research helps to set best-case bounds for DOT breast imaging.

The tissue phantoms used for the experiment are similar to many that have been utilized with

success in the DOT community for preclinical, in vitro investigations that ascertain the strengths

and limitations of various image reconstruction schemes [44, 165, 166]. One advantage of the

present tissue phantom experiment is that it is possible to compare reconstructions obtained

under similar conditions but with different imaging windows and spatial sampling, some of

which would be difficult to realize in vivo. Thus, based on this single set of experimental results,

I am able to discuss and compare two (or more) approaches for image reconstruction of large

data sets under conditions of large/small imaging windows. In this way, one can more fully

explore methods to ameliorate chest wall effects.
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3.2 Experiment and Setup

In this sub-section, I will describe details of the experimental set-up including illumination,

detection, and mechanical features of the tissue phantom. The experimental apparatus is shown

in Fig. 3.1.

Figure 3.1: Schematic of the experimental setup at the optical bench. A CW 785 nm laser source
is raster scanned on one side of the imaging tank. The transmitted light on the detection plane is
collected in parallel by a CCD and then binned (flexibly) for each source position.

3.2.1 Light source

Source illumination light is derived from a collimated 785nm 90mW diode laser (Thorlabs,

L785P090). The laser is coupled to a 2D galvonometer scanner (Thorlabs, GV012). The diode

laser output is temperature sensitive, and therefore it is temperature controlled using a diode laser

mount (Thorlabs, TCLDM9) and a temperature controller (ILX lightwave, LDT-5525) with cus-

tom cable for different pin configurations (required when using different brands for the mount
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and controller). The laser is current driven at 160 mA using the diode laser controller (Thorlabs,

LDC500). The wavelength of the laser is 785 nm. The output of the beam is collimated (Thor-

labs, C140TMD-B) on the laser mount and is then focused, over a 2 m length, to a 0.5 mm spot

size onto the source plane of the imaging tank.

The beam is raster scanned across this source plane of the imaging tank. Specifically, the

collimated laser light is aligned with a pair of mirrors into the galvo scanner which raster scans a

35× 35 square grid with a 4 mm spacing covering an area of 13.6× 13.6 cm2 on the inner side

of the source window of the imaging tank. The galvo is controlled with a pair of drivers (one for

each mirror). Voltages can be applied to the driver card to change the angle of the mirrors. Each

mirror has a maximum angular displacement of ±20o, and 1V moves the mirror 1o. Resistor

pots on the driver were utilized to scale the voltage down (to 0.5V/1o) and to add an offset

(as needed). A DAQ board (National Instruments, USB-6251) was used to output two distinct

voltages (through its analog output channels a0 and a1) to the galvo scanner in series for each

source position.

3.2.2 Imaging Tank

The imaging tank shown in Fig. 3.3 is designed specifically for the chest wall experiment. The

tank is composed of aluminum walls on three surfaces (i.e., the bottom plate and two side plates)

with acrylic windows in the input and output planes, and an opening at the top. The latter

opening permits loading of Intralipid, targets and the chest wall phantom. In addition, a spigot

is built into the side for easy draining and cleaning of the tank. The inner dimensions of the

tank are 44× 44× 6 cm3. The 6 cm thickness of the tank was chosen to be close to the average

compression used in our DOT clinical studies [44, 53]. The unit has a removable black Delrin
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Figure 3.2: Photograph of the laser and source position control setup. The diode laser is mounted
on a TEC cooled mount with collimating lens that outputs the beam to a pair of mirrors which
redirects the beam onto the galvo mirrors for scanning.

target holder which lines the walls of the tank, and it has evenly spaced holes that can be threaded

with filamentous fishing lines to suspend various phantoms within the tank. These fishing lines

hold bar targets (described in Section 3.2.4). The windows are designed to be swappable and

are lined with o-rings for water tight sealing. In this experiment a pair of 1/2 − inch acrylic

windows were used. The top of the tank has optical posts that hold an aluminum plate which, in

turn, holds a pair of threaded rods from which the chest wall phantom is suspended downwards.

3.2.3 CCD Detection

For each illuminated source position, transmission data is collected on the opposite side of the

tank over a 21.2 × 21.2 cm2 field-of-view (FOV) area. These data are collected with a CCD
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Figure 3.3: Photograph of the imaging tank. a) The bar target is suspended below the chest wall
phantom with fishing lines. b) The tank filled with Intralipid solution.

camera (Andor, DV887ECS-UV, lens 25 mm F/0.95). The FOV is effectively mapped to a grid

of 512 × 512 CCD pixels. This mapping yields a corresponding detected rectangular grid on

the output surface of the tank with spacing p = 0.416 mm. The CCD typically employed an

exposure time of 500 ms at 16-bits (for a total of 216 ∼ 64K counts) with 1 × 1 binning. The

total measurement time per scan was ∼ 11 min.

3.2.4 Phantoms: Bar Target and Chest Wall

The bar target is made of silicon rubber (RTV-12, General Electric), titanium oxide (T-8141,

Sigma-Aldrich) and carbon black (Raven 5000 Ultra Powder II). It has absorption coefficient

µa = 0.2 cm−1 and reduced scattering coefficient µ′s = 7.5 cm−1. The tank is filled with

an indian ink and intralipid solution (µa = 0.05 cm−1 and µ′s = 7.5 cm−1); these background
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Figure 3.4: Schematic of the imaging tank with dimensions given in units of cm. The red sources
make up a 13.6×13.6 cm grid within the blue 21.3×21.3 cm field of view of the CCD. The green
dimensions are the tank size and the purple dimensions are those of the chest wall phantom.

optical properties are similar to those used in previous in vitro and clinical research. The contrast

between the target and the surrounding fluid is purely absorptive with ratio of about 4. The bar

target is suspended in the mid-plane of the tank (3 cm from either surface) using the fishing line.

A chest wall phantom (Biomimic, INO) with µa = 0.1 cm−1 and µ′s = 5.0 cm−1 and dimen-

sions 40× 20× 5.8 cm3) is suspended at various distances, d, from the top edge of the bar target

(d = 2, 5, 8, 11, 14, 17 cm) as shown in Fig. 3.6 (a). The optical properties of the chest wall

phantom were chosen to mimic muscle tissue [167–169]. Thus both absorptive and scattering

contrast exist between the chest wall phantom and the background fluid. The bar target and the

chest wall phantom are shown in Fig. 3.5. Note that the chest wall phantom almost entirely fills

the imaging tank; the clearance between the chest wall phantom and the inner surfaces of the

tank is 1 mm on both sides.
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Figure 3.5: Phantoms used in the experiment. a) 6 mm thick bar target with µa = 0.2 cm−1 and
µ′s = 7.5 cm−1 has slots 48 mm tall and 9 mm wide. The outer dimensions are 60 × 50 mm2.
b) The chest wall phantom with µa = 0.1 cm−1 and µ′s = 5.0 cm−1.

3.3 Methods

The experiments are straightforward. I first fill the tissue phantom tank with the background

Intralipid suspension, and I collect baseline image data by cycling through each of the source

positions and deriving a CCD-image output for each source position. Then I introduce the bar

target into the suspension, and I insert the chest wall phantom into the suspension above the bar

target (from the top). I then carry out another imaging measurement, i.e., obtaining CCD images

while cycling through the source positions, with the bar target and chest wall phantom in the

suspension and separated by a fixed distance. Lastly, I vary the distance between the bar target

and the chest wall phantom and repeat the imaging procedure; I do this for multiple target-wall

separation distances.

The data from the reference measurement and with the phantoms present are denoted by

I(rd, rs) and I(rd, rs) (Eqns. (2.28) amd (2.29) from Chapter 2) where rd rs which are the two

dimensional vectors specifying the lateral positions of the detector and source on the respective
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surfaces of the tank. Image reconstruction is carried out using the methods described in Chapter 2

(see Section 2.2.1.2 and 2.2.1.4). In this way, full 3D DOT reconstructions of the breast phantom

and bar target are obtained as a function of the distance between the chest wall phantom and the

bar target. This methodology permits characterization of the utility of the various methods in the

presence of the chest wall, and it also permits exploration of selective data rejection schemes to

ameliorate image artifacts. Below, I will describe this data rejection process in more detail.

In practice, a typical DOT measurement necessarily involves some rejection of data, i.e.,

rejection of data from source-detector pairs that are deemed unreliable or too noisy [28,89,170,

171]. This data rejection could be a result of signals that are too small, uncontrolled fluctuations

of the apparatus/subject, etc. In the usual approach, data are rejected based on a priori knowledge

or a statistical model without specific regard for the location of the rejected source-detector pairs.

In the present case, data restriction is used with a somewhat different goal to minimize systematic

error effects due to the chest wall. Here particular data are rejected based solely on location. The

purpose is not to suppress noise in the strictest sense, but rather to investigate the effects of

imaging window restrictions and the effects of the proximity of the chest wall phantom and bar

target on the quality of the image reconstructions. Importantly, the positions and distances of

sources and detectors in close proximity to the chest wall are explored to determine which of

them can be used, i.e., which source-detector pairs lead to reconstructions wherein the target is

not significantly distorted or contaminated by chest wall systematics.

The distance between the top of the bar target and the bottom of the chest wall phantom

as indicated in the figure is denoted d. Data is collected for d = 2, 5, 8, 11, 14, and 17 cm.

The various data sets are graphically illustrated in Fig. 3.6. In Fig. 3.6(b), red lines show the
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Figure 3.6: Models for data restriction. (a) Photograph of the drained imaging tank illustrating
the position the bar target with respect to the chest wall phantom. (b) Schematic of the imaging
tank. (c) Illustration of the various data sets used for the reconstructions. The dark blue square
is the CCD FOV; the inner light blue square indicates the reconstruction region. White dots in
a square grid indicate the source positions. To illustrate the target shape and position, a slice of
a sample reconstruction is superimposed with the drawing. Red lines indicate the three lowest
positions of the chest wall phantom (other positions are outside of the CCD FOV), and the green
lines illustrate the restricted data sets wherein all the sources and detectors situated above a given
green line have been discarded.

positions of the lower edge of the chest wall phantom corresponding to different values of d

which fall within the CCD field-of-view (e.g, d = 8, 5, and 3 cm). In this figure the source

positions are shown as a small square grid of dots. Note, the image is to scale, and a slice of the

sample reconstruction is superimposed with the drawing in order to indicate the target shape and

position. The large dark blue square corresponds to the field-of-view (FOV) of the CCD camera.

The linear reconstruction techniques (analytical and algebraic) discussed in Section 2.2.1 are

applied to the experimental data obtained using the apparatus described above. These techniques

are able to handle large data sets and permit comparison to previous work [52]. The maximum

number of independent source-detector pairs is (512 × 35)2 ' 3.2 × 108. However, only a
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fraction of this data (albeit still a large data set) was used in the reconstructions. Some data was

eliminated by “windowing” (i.e., in the algebraic image reconstruction); other data were elimi-

nated by a relatively sparse sampling of the detectors (e.g, in the algebraic reconstructions, every

second detector was used), and still other data were eliminated by numerical data restrictions

(described below). Thus the maximum data set utilized for reconstruction (in this case, for the

algebraic reconstruction) was still very large, i.e., it consisted of ' 2× 107 measurements.

In obtaining algebraic reconstructions, the reconstructed volume was divided into cubic vox-

els. The voxel size h was taken to be equal to 8 CCD pixels p. Thus, h = 8 × 0.416 mm '

3.3 mm. The grid consisted of 41 × 41 voxels in the lateral direction and 17 voxels in the

depth direction. Therefore, the discretized volume was a parallelepiped with the dimensions

13.6×13.6×4.3 cm3 consisting ofN = 21853 voxels. This parallelepiped was positioned from

each surface of the slab. The target was situated approximately in the middle of the discretized

volume. The computation of A∗A (see Section. 2.2.1.4is greatly accelerated by sampling the

detectors for the purpose of computing the product A∗A, but not for computing the projection

A∗φ. In this way, the number of data points and the voxels used is not reduced but the computa-

tion time is shortened dramatically with no or minimal effects on the image quality. Indeed, we

have verified that A∗A can be computed by using the method in Ref. [172] in about 2 hrs with

very minimal degradation of image quality.

An additional feature of the algebraic method is that it does not require that the set of detec-

tors used be independent of the position of the source. We have taken advantage of this feature

and have excluded the data points that are very far off-axis. Specifically, for each source, we

have used only such detectors that are situated no further from the axis of the source than a given
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radius R. We have used R = 6.25 cm, so that R is slightly larger than the width of the slab

(6 cm). The justification for discarding the strongly off-axis data points is that these measure-

ments contain predominantly noise.

The critical sources and detectors for the chest wall problem are those whose location is

physically near the chest wall. An important question concerns how close to the chest wall

one can collect data and maintain good image fidelity. Thus, for the present study, numerical

data restriction involved removing all sources and detectors above one of the green lines shown

in Fig. 3.6(c). In the case of algebraic reconstruction, sources and detectors above these lines

were simply not used; thus no additional approximation was made. In the case of the analytical

reconstruction (i.e., using analytic inversion formulas), data points cannot be excluded even for

points above the green line. Rather it was assumed that the corresponding data points for these

source-detector pairs (bm) are zero (I = I0), i.e., no change in intensity from the reference

measurement (see Section. 2.2.1.1 in Chapter 2). In the upcoming discussion, NR denotes

Numerical Data Restriction and is defined as the number of the source row (counting from top

to bottom) above which no sources and/or detectors are included in the reconstruction. For

example, NR = 5 excludes the four top-most lines of sources and all detectors that lie above the

fifth line of sources. In the test reconstructions, NR = 5, 8, 9, 10 were used; for each value of

NR, an image reconstruction was performed with all available values of d. Table 1 summarizes

the subsets of data used for each value of NR.
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Table 3.1: Data Restriction Sizes.
Numerical Data Restriction (NR) Number of sources Number of distinct

source-detector pairs
No restriction 35× 35 = 1, 225 20, 591, 492

5 35× 31 = 1, 085 16, 479, 152
8 35× 28 = 980 14, 661, 145
9 35× 27 = 945 14, 074, 728
10 35× 26 = 910 13, 457, 507

3.4 Results

In this section we report on the application of analytical and algebraic reconstruction methods

(Section 2.2.1.2 and 2.2.1.4) to the data sets collected as described above. The reconstruction

results are displayed. In particular, I will show various reconstructions of the bar target with the

chest wall at different distances d.

The reconstructed image contrast in all figures of this section is x(r) = α(r)/α0 + 1 where

α = cδµa. Note we have redefined α (different from the more general form in Section 2.2.1.1,

Chapter 2) for this experiment where only the absorption was reconstructed and scattering was

assumed to be constant. This function is non-negative since the medium does not amplify light.

However, the image reconstructions will employ various approximations. Sometimes a particu-

lar approximation can produce an unphysical negative value of absorption in the reconstruction;

these volume elements are shown in the figures by the color black (note, the same color scale is

used for all images). In practice, the occurrence of negative absorption can be avoided by using

a positivity constraint in the algebraic reconstruction method. The positivity constraint can be

directly incorporated into the conjugate-gradient descent algorithm, which was used to invert the

matrix A∗A. However, in practice the areas of negative absorption appear mostly for the ana-

lytic image reconstruction method, and it is not possible to incorporate the positivity constraint

67



into the analytic inversions. By contrast, the algebraic reconstructions have produced either no

areas of negative absorption, or artifacts so severe (e.g., when d = 2 cm and no numerical data

restriction is used) that the positivity constraint was unnecessary. Since no situation occurred

wherein the positivity constraint was simultaneously numerically sensible and useful, it was not

employed for the images shown in this chapter.

3.4.1 Analytical Reconstruction Results

Reconstructions of the central slice of the medium (3 cm from either of the slab surfaces) ob-

tained with varying values of d and various numerical data restriction (NR) are shown in Fig. 3.7.

It is apparent that the analytical inversion with no data restriction (the topmost row of images)

produces severe image artifacts when chest wall is at distances of d = 2 cm and even d = 5 cm

away from the target. To remove artifacts associated with the chest wall completely, NR = 10

is required. The data restriction with NR = 5 results in a reasonable, yet suboptimal, image

quality when d = 5 cm, but not when d = 2 cm.

Interestingly, when the data restriction NR = 8, 9, 10 is used in conjunction with the ana-

lytical reconstruction, it yields an additional image artifact, which is unrelated to the chest wall

phantom. To see that this is true, consider the images for d = 17 cm, which are not affected at

all by the chest wall phantom, yet exhibit the additional artifact just mentioned. This artifact is

evident as a black area wherein the reconstructed absorption coefficient is negative; therefore,

it is outside of the physically-allowable range. Thus, it is reasonable to conclude that recon-

structing the target via the analytical reconstruction method is feasible, especially with the use

of the appropriate data restriction, but additional image artifacts can arise where the absorption

is underestimated.
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Figure 3.7: Images of the central slice obtained by analytical reconstruction method. Different
columns show data obtained with the chest wall phantoms at different distances d from the bar
target. Different rows of images correspond to different data restrictions NR, as indicated.

In fact, the appearance of this artifact can be understood. As mentioned above, the data

restriction used with the analytical reconstruction amounts to assuming that the truncated data

points are zero. In other words, if it is assumed (even in the presence of the target) that the trun-

cated source-detector pairs would have measured the same intensity as in the homogeneous slab,

then I(rd, rs) = I0(rd, rs) for the truncated source-detector pairs (see Section 2.2.1.1, Chapter

2). The reconstruction algorithm seeks a contrast function δα(r), which is compatible with this

assumption. For a purely absorbing target, however, the actual intensity I(rd, rs) is smaller than

I0(rd, rs) when at least one of the points rd, rs is located not too far from the target (in the

lateral direction) due to increased optical absorption. Whenever such data points are discarded,
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Figure 3.8: Slices through the medium drawn at different depths (from plane of sources). The
analytical inversion reconstruction method used for d = 5 cm and d = 2 cm.
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an artifact with negative δα is produced by the reconstruction algorithm to compensate for the

absorption in the target. It can be seen that this artifact is located between the target and the re-

gion of source-detector pairs, which have been discarded. Of course, this analysis applies to the

case when the position and optical contrast of the target is known. In general, it may be difficult

to predict the position of this artifact or to distinguish it from a true occurrence of negative δα.

There may also be a spatial overlap of the artifact and a true inhomogeneity.

3.4.2 Algebraic Reconstruction Results

In the algebraic reconstructions in Fig. 3.9 with the unrestricted data set, the image quality is still

poor when the chest wall is to close. However, when the data restriction is gradually introduced

these artifacts disappear. In the case NR = 10 and d = 2 cm (the image in the bottom right

corner), the target is clearly visible, and the image quality is about the same as with the use of

the unrestricted data set and d = 17 cm. Thus, introduction of data restriction does not result in

substantively additional image artifacts or image quality degradation when the algebraic method

is used.

3.4.3 Comparison of Reconstruction methods and Projection Images

Figs. 3.8 and 3.10 show slices drawn through the medium at different depths. Fig. 3.8 displays

the results of the analytical image reconstruction for d = 5 cm and d = 2 cm and Fig. 3.10

displays analogous data obtained by the algebraic reconstruction. In addition, in the right-most

column of images, a different kind of image is shown; these images are reconstructions derived

by averaging the full 3D tomogram over the depth of the sample (that is, averaging over the

different slices). Note that, in all cases 13 slices in the tomogram are separated by the distance

71



Figure 3.9: Images of the central slice obtained by algebraic reconstruction method. Different
columns show data obtained with the chest wall phantoms at different distances d from the bar
target. Different rows of images correspond to different data restrictions NR, as indicated.

of ≈ 3.328mm, with the central slice located exactly in the mid-plane of the slab. The “av-

erage” reconstruction (in the right-most column of the images) was obtained by computing the

arithmetic average of all 13 slices.

These averaged (“projection”) images correspond to the usual radiological projections ob-

tained with a parallel beam of X-rays. Interestingly, the qualitative conclusions that can be

drawn from Figs. 3.8 and 3.10 are largely the same as given above for the full tomograms. The

analytical reconstruction produces reasonable image quality for the smallest chest wall-target

separation d = 2 cm and NR = 10, but at the cost of an additional image artifact. The algebraic

reconstruction is free from this artifact, but it underestimates the image contrast relative to the
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Figure 3.10: Same as in Fig. 3.8, but I this case the images are obtained by algebraic reconstruc-
tion
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analytic method (see below). The depth resolution is slightly better in algebraic reconstructions

but, overall (i.e., in both methods), depth resolution is worse than lateral resolution. This effect

is typical for DOT images.

Another interesting feature can be discerned from both types of image reconstructions. Gen-

erally, the projection images discussed above are more stable and exhibit reasonable quality even

when the individual slices contain substantial artifacts. For example, consider the d = 2 cm al-

gebraic reconstructions without data restriction (Fig. 3.10). Even though all slices drawn through

the medium are corrupted by the artifacts associated with proximity of the chest wall phantom,

the projection image shows the target clearly. Moreover, the edge of the chest wall phantom

is also clearly visible at the correct location. I was surprised, and indeed our group was sur-

prised by this result. It can be useful in situations when the depth resolution is not of essence.

However, it should be emphasized that obtaining the projections still requires knowledge of the

three-dimensional distribution of the absorption coefficient; the projections cannot be computed

or measured directly without such knowledge.

Finally, note that in both types of image reconstructions, an underestimation of the contrast

for the target phantom is observed compared to the expected value. This underestimation can

be attributed to the poor transverse (depth) resolution of the three-dimensional reconstruction

which results in the “spreading” of the contrast in that direction. Indeed, consider the depth-

integrated contrast, H(x, y) =
∫

[α(x, y, z)/α0 − 1] dz, where x, y are the coordinates in the

plane of the slab and z is the transverse (depth) coordinate. Inside the target, α(x, y, z)/α0 ' 4

and the target thickness in the transverse direction is ∆z = 0.6 cm. Therefore, the actual

value of H for a line passing through the target and perpendicularly to the slab surface is H '
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1.8 cm. In the reconstructed images, the transverse thickness of the target is overestimated and

is equal, approximately, to 2 cm while the quantity α(x, y, z)/α0 is underestimated and is equal,

approximately, to 2. By using the reconstructed values to estimate the integrated contrast, one

obtains H ' 2 cm, which is reasonably close to the actual value. Again, this effect (and analysis

scheme) can be useful in practice.

3.5 Summary

The aim of my experiment was to assess the effects of the chest wall on DOT and ultimately

to explore methods to mitigate the effect of the chest wall on DOT reconstructions. Both the

analytical and the algebraic data-intensive linearized image reconstruction methods produce rea-

sonable results, provided the data points are appropriately restricted to exclude measurements

that are strongly influenced by the chest wall. Under these conditions, an absorbing target with

sub-ccentimeter features can be clearly reconstructed in the middle of a 6 cm slab, even when

the chest wall is only 2 cm from the target. This situation corresponds to breast tumors very near

the chest wall. Specifically, good images of the target were obtained even in the presence of a

large chest wall phantom that introduces significant nonlinearities into the inverse problem, i.e.,

due to its larger absorption coefficient compared to the background as well as its large size.

A data restriction condition was discovered such that the presence of the chest wall phantom

imposes minimal artifacts or distortions in the image. The image quality of the projections was

good and it would be of interest to explore the utility of these reconstructions for improved 2D

imaging or improved quantification or in combination with other 2D modalities. The perfor-

mance of both algebraic and analytic image reconstruction methods were then compared under
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this condition and, while neither method is perfect, it appears that a role for both methods in

DOT exists, the choice depending upon the particular clinical application. For example, the ana-

lytical method provides faster reconstruction while suffering from minor artifacts and flexibility.

While the algebraic reconstruction method provides slightly better image quality, it will require a

library of weight matrices for faster inversion that would have to be stored ahead of time before

measurements (see Section 2.2.1.4. We hope to build on these techniques in the future, espe-

cially by implementing non-linear approaches or by modification of the Green’s function used

to account for the chest wall region and its optical properties.

76



Chapter 4

CCD-based Multispectral

Frequency-domain DOT:

Instrumentation, Pre-clinical and

Clinical Results

4.1 Introduction

Our group at Penn has played a leading role developing Diffuse Optical Tomography (DOT) for

breast imaging and, more generally, translating DOT techniques to the clinic [9, 12, 15, 38, 45,

107–110]. My work improves on this research by addressing critical limitations of the early

DOT imagers, that last of which I will refer to herein as the Gen2 instrument. These limitations

were ascertained through various clinical studies [44, 45, 47, 49, 53, 105].
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My DOT imager, which I will refer to herein as the Gen3 instrument, introduced significant

new capabilities for improved breast-DOT: 1) A multispectral frequency-domain mode of op-

eration in the transmission geometry that employs heterodyne detection; 2) the world’s largest

clinical source-detector data set to facilitate high-fidelity 3D DOT reconstruction; 3) multiple

channels for real-time normalization of instrument phase and amplitude shifts/drifts; and 4) a

projection-camera profilometry system for defining breast boundaries and thereby facilitating

improved breast segmentation; 5) an improved clinical patient interface. In this chapter, I will

provide an overview of the Gen3 instrument design, and I will discuss its new features. Then I

will describe experiments that characterize instrument performance, mainly using tissue simu-

lating phantoms. Finally, first clinical results from breast cancer patients will be presented.

4.2 The Early Optical Breast Imaging Instrument (Gen2)

In order to appreciate the new instrumentation I have built (Gen3), it is necessary to review the

inner workings of the Gen2 device. The Gen2 imager is shown schematically in Figure 4.1,

and it is described in detail in reference [47, 53]. The Gen2 device derived images of the breast

from transmission data, with light traveling through the parallel plate compression geometry.

Importantly (and in contrast to Gen3), the Gen2 sources are continuous wave (CW). Source

fibers couple input CW light from the diode lasers to the tissue surface; then this illuminating

light travels through the breast tissue, and after transmission through the breast the CW light is

detected by a CCD camera. Without phase information in the transmission signals (i.e., without

information that is only available when the light sources are frequency-modulated or pulsed),

the average/background tissue optical properties were estimated from a few frequency-domain
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Figure 4.1: Photograph of the previous generation Gen2 breast scanner located at the Hospital
of the University of Pennsylvania (HUP).

measurements in remission. Then, by combining these sparse remission frequency-domain data

with dense multi-spectral CW transmission data, it is possible to carry out DOT reconstructions.

The DOT measurement is made with the patient lying prone on a flat bed with her breast

inserted inside a recessed box. This box has a grid of source fibers on one side (source plate)

and a window on the other side (detector plate). The source plate is translated axially to softly

compress the breast between the source and detector plates. The box is filled with a matching

fluid whose optical properties are similar to those of the average human breast. The matching

fluid consists of water, india ink (for absorption) and Intralipid (for scattering).

The Gen2 source plate has 45 fiber positions arranged in a 9x5 square grid with a spacing of

16 mm between nearest neighbors (Figure 4.2). The light is launched in series into the medium

using cascading optical switches (DiCon Fiber Optics). At each source position, up to six dif-

ferent light source wavelengths were switched in from the fiber-coupled diode lasers (e.g., at
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Figure 4.2: Schematic of the Gen2 breast scanner. CW transmission and frequency-domain
(FD) remission measurements are taken simultaneously. The patient lies prone, and her breast is
compressed axially with the sources and FD detectors on top of the breast and the CCD detection
window against the bottom of the breast. The source plate consist of 45 source positions and 9
FD detectors with 16mm spacing between the sources. For the CW transmission measurements,
a subset of 984 detectors (pixels) with 3 mm spacing is selected from the CCD for reconstruction.
This Figure is adapted from a similar schematic by R. Choe [80]

wavelengths of 650, 690, 750, 785, 830, 905 nm). On the detection side, a CCD camera (Roper

Scientific, Trenton, NJ, VersArray:1300F) collected the exiting light in the transmission geome-

try. A full CCD image is thus obtained for each source (and each laser/wavelength combination)

with an exposure time of 500 ms. From each image, a grid of data is selected from the CCD

after a 2× 2 hardware binning of its pixels. For the frequency-domain remission measurements,

typically four lasers (690, 750, 786, and 830 nm) are modulated at 70 MHz; measurements are

made in remission with 3 mm diameter detector fibers arranged on the source plate in a 3 × 3

grid with 16 mm spacing. The light from these remission fibers are collected by an avalanche

photodiode for homodyne frequency-domain analysis.
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Of course, much was learned using this device, and these studies informed the design and

development of my current DOT breast imager. Perhaps most significantly, it was particularly

difficult to eliminate cross-talk between tissue absorption and scattering when employing only

CW measurements (see Chapter 2). This difficulty is well known in the community; it arises

because both tissue parameters (i.e., scattering and absorption) attenuate detected diffuse light

when the intervening medium is turbid (e.g., like breast tissue). By using multi-spectral mea-

surements in transmission and sparse frequency-domain measurements in remission, we were

able to ameliorate this problem to some degree. However, it was apparent that the apparatus

would benefit from a full frequency-domain approach, an approach that I incorporate in my

Gen3 instrument with heterodyne detection techniques.

Another problem concerned breast compression. The Gen2 instrument carried out breast

compression in the axial geometry. For comparison to other medical imaging techniques such as

MRI, however, the sagittal compression geometry is better and more common than the axial. The

Gen3 device employs sagittal compression. Furthermore, a rotation stage in the Gen3 instrument

enables DOT measurements in both sagittal and axial compression geometries.

Still another problem concerned instrumental drifts during the patient data-taking period.

We did not measure these drifts in situ with the Gen2 instrument. As will be described later in

the chapter, I implement two types of reference signals for real-time normalization in the new

instrument.

In addition, we employed (in Gen2) only very crude means to define the breast boundaries.

For example, we used the primary CCD camera image of the breast (before adding Intralipid)

to indicate the position of the breast boundary and then we approximated the remainder of the
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boundary as an ellipsoidal 3D surface. Improvements on this scheme for specification of the

breast boundaries should lead directly to improvements in DOT image reconstructions.

Finally, the patient interface needed improvements to increase patient comfort, breast cov-

erage, and to reduce the extent of the air-Intralipid boundary present in the Gen2 instrument

configuration. Taken together, all of the noted limitations and potential improvements (as well

as the substantially larger amount of data that was possible to obtain with Gen3) motivated us

build a whole new instrument system.

4.3 Clinical Breast Imaging Device (Gen3)

The instrumentation and schematic for the Gen3 clinical breast imager that I built is shown in

Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9. Here, the patient lies prone and perpendicular to the

modified biopsy bed (Figure 4.4) while one breast is centered and sagittally compressed between

the source plate and window in the breast tank (Figure 4.8). Typical thickness of compression

varies between 56 mm and 70 mm. As before, the tank is filled with a solution of Intralipid and

india ink mixture to match with the tissue optical properties of the patient in the near-infrared

(NIR) wavelength range.

The breast imager has several key components. Briefly, the laser system encompasses optics

and electronics for generating frequency-modulated source light at various NIR wavelengths.

This light is sent through a custom switch to one of 209 source positions on the inside a breast

tank wherein the breast is inserted. The breast tank has two sets of profilometry cameras and

projectors for determination of the breast boundary which, in turn, facilitates 3D segmentation

for image reconstruction. Finally, gain-modulated detection is applied to the transmitted light
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Figure 4.3: Schematic of the DOT breast imager. The source-lasers and detection-system are
RF modulated at slightly different frequencies. Five RF modulated laser modules are switched
through each source position (in series) to yield multi-spectral data. A 210 channel galvo switch
directs the laser light to 209 source positions and a calibration source on the input plate. The
patient breast is inserted in the tank between the source plate and window. Profilometry devices
on either side of the tank image the sides of the breast. Laser light exiting the tank window is
measured by a RF gain-modulated intensifier and CCD.

using an image intensifer mounted on the CCD-camera apparatus.

First and foremost, my DOT breast imaging device improved on the Gen2 instrument through

the incorporation of multispectral frequency-domain (FD) laser source illumination and CCD-

based heterodyne detection; the latter was enabled by gain-modulation of an image intensifier

placed between the sample output and the CCD-detector. These new capabilities improve sepa-

ration of tissue absorption from tissue scattering and thus improve the quantification capability

of the 3D DOT reconstruction. Furthermore, by using an improved CCD camera for detection,
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Figure 4.4: The breast imaging instrumentation in the mammography wing of Perelman Center
for Advanced Medicine at the Hospital of the University of Pennsylvania (HUP). a) Gen3 instru-
ment when not in use. b) Gen3 instrument set up for patient measurement. The patient would lie
in the prone position with her head on the head rest and body along the grey exam table. More
details about each sub-part of the instrument will be given throughout this chapter.

we were able to collect a very large number (106) of source-detector pairs in parallel, again facil-

itating improved resolution and image fidelity. In fact, my instrument collects the largest number

of source-detector pairs compared to any DOT instrument in the world today, e.g., by factors of

100x or more. I will describe how these components work in later sub-sections of this chapter.

The temperature in the hospital is not be well controlled (i.e., compared to typical physics

labs), and the shift from CW to FD electronics makes the instrument susceptible to long term

drifts and signal jitter. These issues are especially important when working with RF electronics

and long optical fibers (> 5 m). To address these issues, we have engineered both front-end

solutions such as RF shielding and temperature control to improve laser signal stability, and we

have also introduced active concurrent reference measurements for real time signal correction

and normalization. These improvements are novel and are further discussed in Section 4.4.

As noted above, every 3D reconstruction can benefit from knowledge of the breast bound-

ary. In principle, one could use the slab boundary conditions and reconstruct the breast boundary
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Figure 4.5: Photograph of the of the Gen3 bed with components shown. The bed frame was
constructed using 80/20 Industrial erector set for easy modification.

Figure 4.6: Hydraulic system installed on the Gen3 bed for maintenance and setup. It is motor-
ized to be able to lift the heavy stainless steel bed.
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Figure 4.7: Photograph of the instrument’s primary electronics rack and related components.
This rack contains most of the electronics, as well as the computer that run the Gen3 device. The
rack is set next to the patient bed.

directly; in practice, however, if one knows the location of the breast boundary, then one can seg-

ment the reconstruction and substantially reduce the number of unknowns in the inverse problem.

To this end, a pair of profilometry imaging systems were designed and were built into the new

instrument to provide 3D surface information about the breast shape (discussed in Section 4.5).

This ancillary instrumentation required overcoming several engineering challenges, e.g., cap-

turing images in the same compression condition as the DOT data, building opto-electronics to

work in small spaces (e.g., imaging within < 6cm spacings), compensating and calculating sur-

face information over areas wherein direct imaging could not be carried out, and developing fast

acquisition speeds in hardware and software.

Finally, significant effort was made to build a clinical grade device with a patient interface
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that maximized comfort and minimized movement during measurement. To this end, we de-

signed the bed around a modified breast needle biopsy bed. Since the biopsy bed is designed for

maximum breast insertion underneath the bed, we also benefit from resulting greater access to

tumors that lie closer to the chest wall. In addition, significant effort was devoted to the design of

software for the imager to enable simple and streamlined operation by our clinical collaborators

who have minimal technical training. These improvements are further detailed in Section 4.6.

4.3.1 Breast Tank and Patient Bed

The breast imaging system is built around a modified biopsy patient bed (Figure 4.5). The

bed permits more of the breast to be inserted into the tank for greater breast coverage, i.e.,

compared to Gen2. A minor but ultimately important improvement was a translating head-rest

that was added to improve neck positioning and comfort (Figure 4.8). The improved patient

comfort led to reduced patient motion. In addition, an ultrasound bed permitted the patient to lie

perpendicular to the biopsy bed which further improved patient comfort, ease of measurement,

and measurement mechanical stability.

The breast tank is located beneath the hole in the biopsy patient bed. The tank consists

of a source plate made from black Delrin that is rail-mounted to maintain parallel alignment

between the source plate and window during compression. On the opposite side is an acrylic

window with an anti-reflective coating in the NIR (Figure 4.9). The space between the window

and the detection setup is covered by a light box with an inner lining made of black felt that

prevents stray light from reaching the image intensifier and CCD. The tank is mounted above a

ball-bearing surface which permits the breast tank, light box, and detection system to rotate 90

degrees for either sagittal or axial compression of the breast. The tank is designed to be fitted

87



with a plastic bag (polyethylene, 3mil) so that the tank can be filled with Intralipid solution.

Using an optically matching solution compensates for the uneven thickness of the compressed

breast, reducing the dynamic range of the transmitted light signal and boundary effects.

The frame underneath the bed was custom built with 80/20 aluminum T-slot frames that

enable further customization and easy modification in the future. The frame rolls on four castor

lock wheels for easy movement and rigidity during measurements. Since the stainless steel bed

is of considerable weight, hydraulic lifts (47105T23, McMaster-Carr) in Figure 4.6 were added

to aid with maintenance and experiment setup/modification during non-clinical use.

4.3.2 Laser System

Source plate illumination is provided by a set of diode lasers operating at wavelengths of 660,

690, 785, 808, and 830 nm, respectively. Table 4.1 provides detailed characteristics of each

laser module (Figure 4.11). The laser output on average is about 80 mW from the module

fiber tip. The light delivered to the breast ranges in power from 10 to 15 mW. The diode

lasers are mounted on a custom copper block coupled to a thermistor and a thermoelectric cooler

(TEC) for temperature cooling and control at 13◦C with stability within 0.1◦C. Each diode laser

is driven and temperature controlled by a dedicated ILX module (LDC 391672, ILX). Note,

by comparison, the Gen2 instrument used controllers based around a simple driver (Thorlabs,

IP500) and lacked temperature control for its lasers. The CW stability of each laser is quite good

as a result of these front-end improvements, i.e., the intensity varies by less than 0.5% over three

hour periods.

Figure 4.10 shows the schematic of the lasers being amplitude modulated at 70 MHz using a

an RF signal from a frequency generator (Rhode and Schwartz, SMB100). More specifically, the
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Figure 4.8: Photograph of the bed headrest and breast insertion area. The headrest sits on a
translation stage that adjusts for left/right breast positions and height. The breast is compressed
between the source plate and the window.

Figure 4.9: Schematic of the gen3tank. The coordinates shown are those used in reconstruction
and breast profilometry describe in Section 4.5
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Figure 4.10: Schematic showing laser modules being RF driven. Signal from the frequency
generator is divided with an RF power splitter. Each branch is amplified then attenuated to
appropriate levels optimized for each laser. Each laser module has a driver and TEC control
with feedback. The driver provides CW current which is combined with the RF signal inside the
module.

Figure 4.11: a) Photograph of the laser module. b) Schematic of the laser module. The laser
module has three inputs: 1) the RF modulation and 2) the DC current drive, which are combined
by the bias-tee; 3) the TEC voltage, which drives the cooling element. The module has two
outputs: 1) the photodiode (if available) and the 2) thermistor. These outputs provide feedback
for the driver current and temperature control, respectively. The cold side of the TEC element
cools the copper block to the desired temperature, and heat is released into the module casing.
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70 MHz RF signal from the frequency generator is combined with the DC current from the ILX

driver for each laser with a bias-tee (Mini-circuits, ZFBT-4R2G). The DC and RF voltage input

for each laser was optimized using RF amplifiers (Mini-circuits, ZHL-2010+) and RF attenuators

(Mini-circuits, VAT series). The laser driver current is optimized for the best modulation depth

(80%) and a sinusoidal waveform. The frequency-modulated light from each laser is then fiber

coupled to a 6x1 100 µm core optical switch (Optojenna) which controls wavelength switching

in series. A photograph of the laser box is shown in Figure 4.12.

Figure 4.12: Photograph of the laser box. The RF signal (from frequency generator outside of
box) is split into five branches, and each is sent through 20dBm amplifiers and then attenuated
to the appropriate voltage for each laser module.
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λ Diode laser Pin type spec. current current AC input power
(nm) part no. (Thorlabs) typ./max (mA) ILX (mA) (dBm) (mW)
660 HL6545MG H 170 / 210 110 23 45
690 V2561-2 C 768 / 800 425 20 96
785 L785P090 C 120 / 160 93 22 67
808 L808P200 A 230 / 300 180 20 80
830 L830P150 C 200 / 250 123 19 78

Table 4.1: Laser inventory and specifications for the Gen3 device. The ILX driver provides the
DC current, and the AC modulation is derived from the RF frequency generator. The laser output
power is measured at the end of the pigtail fiber from the laser. Throughput loss is ∼ 80% from
the laser module to the source plate.

4.3.3 Source Position Switch and Source Plate

The output fiber from the wavelength switch is connected in series to a 95/5 fiber beam splitter

with the 5% going to the pickoff for signal normalization (which will be discussed in Section

4.4), and 95% going to a custom 1x210 channel optical galvo-switch (Figure 4.13). We upgraded

Gen3 to employ a galvo-switch for several reasons. By comparison, the Gen2 system switched

through 210 channels with a conventional switch cascade, based on mechanical or prism mech-

anisms, and it was costly, slow, and had high throughput losses. The Gen2 system switching

speed between sources ranged from 0.3 to 0.5 s and had an average throughput of 50%. More

importantly, the Gen2 switches had throughput heterogeneity which ranged from 10% to 80%

and which resulted in SNR variation between sources.

The Gen3 galvo-switch, by contrast, has more uniform throughput, i.e., with differences in

intensity between sources no greater than 10%. In the galvo switch, input light from a 100µm

core fiber is collimated and sent towards galvo-controlled mirrors which then redirect light into

a telecentric lens. This lens focuses the light onto a fiber bundle face with 210 fibers (600µm

core) as shown in Figure 4.14. Each fiber from the bundle is connected to a custom source fiber

with 600µm core. The source fibers were hand-polished (to achieve 98% throughput) and fitted
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with FC/PC connector on the end towards the fiber bundle, and a custom ferrule on the end

connecting to the delrin source plate.

The 209 source fibers are arranged on an 11x19 square grid on a black delrin plate with 8

mm spacing. The source plate is moved against the detection window and a picture is taken to

determine source positions for reconstruction as shown in Figure 4.15. One of the remaining

fibers is used as a calibration source and is thus placed far from the source grid. The purpose and

implementation of this calibration source will be discussed in Section 4.4.

4.3.4 Image Intensifier mounted CCD

The detection system consists of a back-illuminated EMCCD (Andor iXon DV887, Ireland)

with quantum efficiency optimized in the 500− 700 nm range as shown in Figure 4.16. One of

the most attractive features of this CCD is its “frame transfer” function which permits shutter-

less continuous measurement; this feature is beneficial for our heterodyne measurement scheme

which is described in Section 4.3.5. CCDs with frame transfer options feature a second CCD

chip that acts as a buffer while the first chip continues to be exposed. The speed at which it

shifts the data to this secondary chip is roughly 3µs per row of pixels. This allows for a series of

exposures to be taken continuously without a need for a mechanical shutter. The 512×512 pixel

CCD is cropped to a field-of-view corresponding to the breast tank window; with a 2 × 2 hard-

ware binning this set up produces an image 155× 200 pixels with a dpixel of 1.2268 mm/pixel

with a 16-bit depth. The CCD is mounted together with a relay lens and with a gain-modulated

image intensifier (Lambert Instruments, II8MD GENIII, Netherlands) that has a P43 Phosphor

screen with a peak emission at 545 nm. The lens element in front of the image intensifier is a

Xenon 25 mm f/0.95 C-Mount Lens for 1-Inch CCD (Schneider Optics, Germany).
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Figure 4.13: Schematic of switches and fibers in the Gen3 system. The output light from the
laser modules are fiber-coupled to a 6 × 1 wavelength switch. Output of the wavelength switch
is then directed through a beam splitter with 5% going to a pickoff source which is used as an
instrument source reference. The remainder is input to a 1 × 210 galvo switch which redirects
the light into one of 210 channels of a fiber bundle. The fiber bundle is connected via custom
source fibers to the source plate. 209 of the fibers are arranged in a 11 × 19 square grid with
8 mm separation, and one of the channels is used as a (second) calibration source placed far from
the breast measurement area.

Figure 4.14: Photograph of the (a) galvo switch, (b) the input face of the fiber bundle, and (c)
the custom source fibers and source plate
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Figure 4.15: Source plate photograph taken by the Breast Imager CCD after it has been moved
to the detection window. The fibers are lit by illuminating the back end of the fiber bundle.
In practice, this image is used to provide fairly precise estimates of the source positions for the
tomographic reconstructions. The spacing between sources are 8mm between nearest neighbors.

Briefly, the image intensifier works by converting light into electrons which are then ampli-

fied electronically before being converted back to light again (at the phosphor screen). Specif-

ically, incident light on the cathode (coated with a photosensitive compound) of the image in-

tensifier is converted to electrons via the photoelectric effect. When the voltage applied to the

cathode is negative, a potential difference between the cathode and anode is created and causes

electrons to move (accelerate) towards the anode. When a positive voltage is applied to the cath-

ode, the image intensifier is effectively ”off”; the electrons do not escape to the anode. When the

intensifier is on, the electron travels through the multichannel plate (MCP) and the number of

electrons is amplified/increased. These electrons are converted back into light when they strike

the phosphor screen at the back of the intensifier. This amplified light signal is then focused onto

the CCD by the relay lens. The electronic schematic for this process is shown in Figure 4.17.
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Figure 4.16: A photograph of our CCD with a Lambert instruments image intensifier mounted
in the front.)

The gain on the image intensifier is modulated at the cathode with a frequency of 70 MHz+1Hz,

thereby permitting heterodyne detection as described in the next section.

4.3.5 Frequency-Domain Heterodyne detection

The primary goal of the frequency-domain DOT system is to measure the AC amplitude and

phase components of the signal for each source detector pair. Generally, two approaches are

used to demodulate a high frequency RF signals: homodyne and heterodyne. Several homo-

dyne systems have been developed for diffuse optical imaging [173–175], including in our lab,

but here we describe the heterodyne approach. The heterodyne approach usually has better

signal-to-noise than homodyne schemes, as the signal can be filtered and is received at the

cross-correlation frequency (fcc); by working away from zero-frequency, the heterodyne mea-

surement exposure to so-called pink (1/f ) noise (and other noise) is less [112]. Heterodyne
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Figure 4.17: Schematic of the image intensifier electronics. The cathode converts light into
electrons which are amplified by the MCP. The image intensifier gain is RF modulated at the
cathode. (Figure from Lambert Instrument manual for II8MD)

detection also better enable concurrent amplitude and phase corrections via the pickoff normal-

ization/calibration signals thereby facilitating corrections to long-term drifts (see Section 4.4.

Our system uses an optical heterodyne detection scheme wherein an input source is modu-

lated at frequency, fs, is mixed (nonlinearly) with a reference detection signal modulated at a

similar frequency fd = fs + fcc where fcc = 1 Hz. In our instrumentation, the reference signal

is used to alter the detector gain. The result is that the detected light signal has a component that

oscillates at the beat frequency fcc from which the amplitude and phase data can be extracted.

In our system, the modulation frequencies at fs and fd are provided by a pair of phase-locked

frequency generators (Rohde and Schwarz, SMA100A).

The lasers are amplitude modulated at fs = 70 MHz. Therefore, the light source power
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density in the sample entrance is given by

Ss(rs, t) = Sdc(rs) + Sac(rs) cos(2πfst) . (4.1)

Here the angular frequency and the frequency are related according to f = ω/2π, and rs denotes

the spatial position of the source. For example, for a point-like source, the source function would

be a delta function in space. (Note, unlike Chapter 2, here we are not using complex notation for

the source and fluence rate.) When the light passes through the breast tank (i.e., through breast

and/or Intralipid solution), then the measured fluence rate, Φ, will be of the form

Φ(rs, rd, t) = Φdc(rs, rd) + Φac(rs, rd) cos(2πfst+ θ(rs, rd)) . (4.2)

Here Φdc, Φac, and θ represent the DC amplitude, AC amplitude and AC phase shift, re-

spectively. These factors all depend on source and detector positions; of course, in addition, the

properties of the medium are impressed onto the light fluence-rate as it traverses the medium

from the source position rs to detector position rd. Thus, these are the functions that contain

information about the sample. This information about the sample properties is ultimately derived

from the data via DOT inversions (see Chapter 2). The inversions yield optical absorption and

scattering coefficients, i.e., tissue optical properties. Herein I will drop rs and rd and assume that

the equations refer to diffuse light measured for a specific source-detector pair (i.e., a single light

source and a single pixel detector); these omissions simplify notation in the equations below.

The detection gain response of the image intensifier is shown in Figure 4.18. The gain is

controlled by the voltage level applied to the cathode. In our experiments, we apply a reference
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RF voltage signal to the cathode which has both DC offset and AC voltage modulation. The

reference modulation frequency is fd. When the voltages are set properly, the reference signal

turns the image intensifier gain on and off and thus produces a time-dependent gain. This time-

dependent gain effectively serves as a diffuse light signal sampler which, in turn, enables us to

derive Φac, and θ.

Specifically, the cathode DC voltage is set by the intensifier controller, and the AC voltage

modulation is derived from the second frequency generator (modulated at 70 MHz + 1 Hz).

Typically, the cathode DC offset is set to 0.8 V and the amplitude of the AC modulation is set

to 1.8 V. (As an aside, this corresponds to a frequency generator output setting of −13 dBm.)

The gain is ”off” until the modulation causes the bias to run up and down the linear part of

the gain curve at cathode voltages below −1V, as shown in Figure 4.18. The overall effect of

this reference modulation signal is to produce a gated gain curve with frequency fd; the gain

modulation is essentially a series of pulses with narrow time-width and a repetition period set

by the reciprocal of fd. This method is a commonly used technique for gated detection and

sampling.

In our analysis, we will approximate the time-dependent gain function by a series of Dirac

delta functions; the delta functions peak at t = nTd, where Td = 1/fd and n is an integer. In our

instrument, of course, each pulse in the comb will have a finite temporal width, but this width

will only change our results by a proportionality constant.

We thus model our detection system gain as a Dirac comb of pulses modulated at 70 MHz +
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Figure 4.18: a) Measured gain response curve for the image intensifier for various cathode volt-
age values. Green solid line shows where the cathode DC value is set to 0.8 V. Shaded region
between dotted lines show the input AC voltage modulation range from the frequency generator
with an amplitude of 1.8 V. b) Schematic of intensifier gain as a function of time (due to the
reference modulation). These curves will be approximated as a comb of delta functions for the
analysis.

1 Hz. The equation for the gain, in this case, is:

G(t) ≡
∞∑

n=−∞
G0 δ(t− nTd) . (4.3)

whereG0 is some effective gain constant which will ultimately be normalized out and Td = 1/fd

is the repetition period of our gain modulation. The measured signal, M , at the CCD is therefore

simply the product of Equation 4.2 and 4.3:

M(t) = Φ(t)G(t)

= (Φdc + Φac cos(2πfst+ θ))

( ∞∑
n=−∞

G0 δ(t− nTd)

)
. (4.4)
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To further simplify this equation we will utilize the convolution theorem. To do so we take

the Fourier transform of the fluence rate and gain. The Fourier transform for the fluence rate is

Φ̂(f) =

∫ ∞
−∞

(Φdc + Φac cos(2πfst+ φ)) e−2πiftdt

= Φdcδ(f) +
Φac

2

(
δ(f − fs)eiθ + δ(f + fs)e

−iθ
)
. (4.5)

The Fourier transform of a Dirac comb is

Ĝ(f) =
1

Td

∞∑
n=−∞

G0 δ

(
f − n

Td

)
. (4.6)

Now the convolution of Equation 4.5 and 4.6 is

M̂(f) = Φ̂ ∗ Ĝ

=

∫ ∞
−∞

[
Φdcδ(f

′) +
Φac

2

(
δ(f ′ − fs)eiθ + δ(f ′ + fs)e

−iθ
)]
Ĝ(f − f ′)df ′

= ΦdcĜ(f) +
Φac

2

(
Ĝ(f − fs)eiθ + Ĝ(f + fs)e

−iθ
)
. (4.7)

Using the definition of the Dirac Comb in Equation 4.3, Equation 4.7 becomes

M̂(f) =
G0

Td

∞∑
n=−∞

[
Φdcδ

(
f − n

Td

)

+
Φac

2

(
δ

(
f − fs −

n

Td

)
eiθ + δ

(
f + fs −

n

Td

)
e−iθ

)]
. (4.8)

Next, we compute the lower order terms. Expanding the first term (n = 0) we get
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M̂0(f) =
G0

Td

[
Φdcδ(f) +

Φac

2

(
δ(f − fs)eiθ + δ(f + fs)e

−iθ
)]

. (4.9)

For which the inverse Fourier transform is

M0(t) = F−1
[
M̂0(f)

]
=
G0

Td

(
Φdc + Φac cos(2πfst+ θ)

)
. (4.10)

For n = 1

M1(f) =
G0

Td

[
Φdcδ

(
f − 1

Td

)
+

Φac

2

(
δ

(
f − fs −

1

Td

)
eiθ + δ

(
f + fs −

1

Td

)
e−iθ

)]
=
G0

Td

[
Φdcδ(f − fs − fcc) +

Φac

2

(
δ(f − 2fs − fcc)eiθ + δ(f − fcc)e−iθ

)]
.

(4.11)

Here I have made the substitution fd = fs + fcc in the last step. The corresponding inverse

Fourier transform is

M1(t) =
G0

Td

∫ ∞
−∞

[
Φdcδ(f − fs − fcc) (4.12)

+
Φac

2

(
δ(f − 2fs − fcc)eiθ + δ(f − fcc)e−iθ

) ]
e2πiftdf . (4.13)

Similarly for n = −1

Mn=−1(t) =
G0

Td

∫ ∞
−∞

[
Φdcδ(f + fs + fcc) (4.14)

+
Φac

2

(
δ(f + fcc)e

iθ + δ(f + 2fs + fcc)e
−iθ
) ]
e2πiftdf . (4.15)
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Combining M1 and M−1 gives us

M1(t) +M−1(t) =
G0Φdc

Td

∫ ∞
−∞

(
δ(f − fs − fcc) + δ(f + fs + fcc)

)
e2πiftdf

+
G0Φac

2Td

∫ ∞
−∞

(
δ(f − 2fs − fcc)eiθ + δ(f + 2fs + fcc)e

−iθ
)
e2πiftdf

+
G0Φac

2Td

∫ ∞
−∞

(
δ(f − fcc)eiθ + δ(f + fcc)e

−iθ
)
e2πiftdf

=
G0Φdc

2Td
cos(2πfst) +

G0Φac

4Td
cos(2π(2fs + fcc) + θ)

+
G0Φac

4Td
cos(2π(fcc) + θ) . (4.16)

One can then write down the full series for M(t) as

M(t) =
G0

Td

(
Φdc + Φac cos(2π(fs + fcc)t+ θ)

)
(M0 term)

+
G0Φdc

2Td
cos(2πfst) +

G0Φac

4Td
cos(2π(2fs + fcc) + θ)

+
G0Φac

4Td
cos(2π(fcc) + θ) (M±1 term)

+
G0

Td

∞∑
n=2

[G0Φdc

2
cos(2πnfst) +

G0Φac

4

(
cos(2π(fs − nfd)t+ θ)

+ cos(2π(fs + nfd)t+ θ)
)]

. (n ≥ 1 terms)

(4.17)

This equation provides the light fluence-rate incident on the CCD for a given pixel. Note that one

DC and one 1 Hz) term arise. All other terms oscillate at a frequency of ∼ 70MHz or greater.

In the experiment, the response time of the detection is limited by our CCD exposure time

which is only very slightly less than∼ 100 ms (note also, the frame transfer function of the CCD

is 10Hz). Any term with a modulation frequency greater than 10 Hz (and certainly any term in
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the MHz range) will average to zero:

M(t) ∝ G0Φdc +
G0Φac

4
cos(2πfcct+ θ) + 0

(
higher freq. terms

)
. (4.18)

Of course, in practice the measurement is scaled with the camera aperature, gain pulse width,

exposure time, pixel size, etc., all of which affect the number of electrons that charge up the CCD

pixel (and all of which are canceled out by normalization). Equation (4.18) is the equation we

use to determine the values of Φdc, Φac and θ from the raw data. This conversion is the first step

in our data preprocessing.

4.3.6 DOT measurement and timing

The measurement timing is controlled using a National Instruments DAQ board (NI USB-6351)

which has an onboard clock, as well as analog and digital I/O that can be programmed with

Labview (Figure 4.3). The DAQ board output two synchronized clocked TTL signals at 10 MHz

and 0.5 Hz. The 10 MHz goes to the reference input of the two frequency generators to phase-

lock the two generators. The 0.5Hz signal is sent to the CCD to trigger the 17-point sequential

measurement series, thereby synchronizing to the heterodyne measurement (see Figure 4.3).

In our measurement protocol we switch through all the source positions for each wavelength

in series. The measurement at each source position takes two seconds (each triggered by the

0.5 Hz DAQ signal) resulting in a total measurement time per scan of 2 s × 209 sources × 5

wavelengths ∼ 35 minutes. For each two second measurement, 17 exposures are captured at at

10 frames/s for a total of 1.7 s. The remaining 300ms is used to write data from the camera

buffer to the computer hard-drive and to switch to the next source position and/or wavelength.
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4.4 Data Preprocessing

The raw data captured by the Gen3 imager must be preprocessed to determine the Φac and θ

values for each source-detector pair (i.e., pixel) from the heterodyne measurement discussed in

Section 4.3.5. A 17-frame series measurement for a single source position and wavelength is

shown in Figure 4.19 (a). Notice, in the bottom left corner of this image we can observe the

pickoff reference signal; its variation (as measured by a single pixel) is shown over time at the

top of Figure 4.19 (b). In the center of the field-of-view, we exhibit the signal image from source

position 200. Data from several of the nearby pixels (indicated by 2-5 in a)) are shown on the

bottom of Figure 4.19 (b). Note the decrease in the AC and DC amplitude, as well as the shift

phase with increasing pixel number (i.e., with increasing source-detector distance).

Figure 4.19: a) Full field time series of light measured by the CCD. The pickoff is in the bottom
left corner and measured concurrently. The calibration source is located on the bottom right and
taken in series b) (Top) Light signal for a pixel in the pickoff region as a function of time (17
frames shown). (bottom) Light signal for different pixels (indicated in (a)) as a function of time.
This data is fit to derive Φac, and θ.
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Figure 4.20: Φac and θ images after preprocessing for source 200. Every pixel in each im-
age corresponds to a specific source-detector pair with an assigned value for Φac(rd, rs) and
θ(rd, rs)

The Gen3 instrumentation utilizes the pickoff channel shown in Figure 4.3 to correct for

changes in phase due to laser or RF instabilities; this pickoff channel, however, will only account

for fluctuations that occur in the source-chain section before the light enters the galvo-switch.

This is the reason that we picked off five percent of the light using the 95/5 optical beam splitter;

the 5%-light is coupled into a fiber whose output is set in front of the detection window. Further,

a 1-inch thick white delrin is placed in front of the fiber tip and is used as a light diffuser. Im-

portantly, because it is placed in the field-of-view (FOV) of the detection window, this reference

signal is obtained concurrently with each source measurement. (Note, an attenuator is added into

the pickoff signal pathway so that the light level will be appropriate for the gain and dynamic

range of the DOT measurement).

Using the pickoff channel signal, preprocessing of the data is implemented in two steps:

1. First fit pickoff signal to obtain: Apick sin(2πfcct + θpick) (red dotted square shown in

Figure 4.19).

2. Then fit signal of remaining pixels over time to obtain: A sin(2πfcct+ θ − θpick).
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After these operations, we have obtain A (which is ∝ Φac) and θ, with the phase offsets from

the detection system (i.e., θpick) corrected. The preprocessed data is shown in Figure 4.20.

A single breast scan enable us to determine A = CΦac and θ (with some constant source-

detector offset θoffset). (See the equations in Section 4.3.5; C is some unknown coupling con-

stant that, ideally, is expected to be a unique number for each source-detector pair). However,

the quantities that we are interested in are Φac and θ (i.e., without the coupling factor and off-

set) which are due solely to the optical properties of the breast. By taking a second reference

scan with the Intralipid solution alone, we can divide out coupling constants C and subtract

out the source offset. For example, from Equation 4.18 we can fit the data to derive the ampli-

tude and phase associated with each source-detector pair for the breast/phantom measurement

and for the reference Intralipid measurement. In this case, the needed amplitude ratio and the

needed phase shift between sample and reference measurements are readily determined for each

source-detector pair, i.e.,

Abreast
Aref

=
CΦac,breast

CΦac,ref
=

Φac,breast

Φac,ref
; (4.19)

(
θbreast − θoffset

)
−
(
θref − θoffset

)
=
(
θbreast − θref

)
. (4.20)

This kind of normalization method is critical to implement, but, unfortunately, the approach

has limitations, especially since measurements are taken in series. Specifically, since each scan

takes 35 minutes, any drifts that occur in the signal (due to temperature changes, movement in

the fibers, etc.) will introduce additional errors into the data in addition to the phase that was

corrected for with the pickoff signal.
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Figure 4.21: Time series data showing value of real-time data normalization methods used for
the amplitude (Φac, left) and phase (θ, right). The red curve is the uncorrected signal, and blue
curve is the corrected curve. The amplitude is corrected using the calibration source and the
phase is corrected with the pickoff. This data is with 2× 2 pixel binning.

Therefore, in addition to the concurrent reference measurement described in Section 4.4, the

Gen3 instrumentation utilizes one additional source for normalization. This additional source

channel is obtained after the galvo-switch (it is the light in the 210th channel; its output is placed

far from where the breast signals will be measured as shown in Figure 4.15 and Figure 4.19. We

refer to this signal as the calibration source. This calibration signal passes through the sample and

is taken from another source position fiber; thus, the measurement is not taken concurrently with

the other DOT measurements, but rather in series with the DOT measurements. The calibration

measurement is typically taken once for every 10 source positions scanned. The advantage of

this calibration source is that, unlike the pickoff, the calibration source corrects for changes that

might arise due to the galvo or due to the tank and its contents; it is therefore extremely useful

for correcting additional relatively-short- and long-term drifts within the system.

Finally, the measurement error σΦ and σθ of each pixel is calculated by taking the spatial

standard deviation of 5× 5 pixels centered on that pixel. This was done using the stdfilt function

in Matlab over the images in Figure 4.20.
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4.5 Profilometry

4.5.1 Basics of Profilometry

To further improve our DOT reconstruction quality, we have built two sets of traditional imaging

devices based on the fringe projection profilometry technique. A review describing various

implementations of this technique can be found in [176]. We do not provide a comprehensive

discussion of the methodology here, as it is already worked out. Here we simply implement the

techniques proposed by Zhang et. al [177], with its emphasis on speed and reduced dependence

on the need for projector gamma calibrations (which are time consuming). The details of this

section can be skipped with little cost to the overall understanding of my work.

Figure 4.22 shows a picture of the profilometry device and the corresponding schematic with

related coordinate systems for the camera, projector, and the world/object coordinate. The basic

steps involved in measuring a 3D surface image with profilometry is the following:

Figure 4.22: a) Profilometry setup consisting of a camera and portable projector. b) Schematic
with the coordinate systems for the camera, projector, and the world or object coordinate.
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Figure 4.23: Phase map used by the projector based on fringe projection.

1. Project an function, in our case sinusoidal, with increasing phase φp(xp) along the x-axis

of the projector screen onto a flat surface (Figure 4.23).

2. Image phase map with camera at an angle (see Figure 4.22) with an object placed in the

phase map projection. The object will distort the phase φp(xp) recorded on the camera

pixel location xc, yc. Solve for xp from Φp(xp).

3. Convert (xc, yc, xp) to the world spatial coordinate (xw, yw, zw) (calibrations needed) which

gives us our surface 3D map.

In practice, a sinusoidal fringe projection (as shown in Figure 4.23) where each column on

the projector screen have the same value of φp(xp). Objects that are moved into the field of view

of this phase map will shift the columns of the fringe pattern (note that the shift direction depends

on the position of the camera relative to the projector). The magnitude of this shift will contain

information in the height of the object as bigger objects will result in bigger shifts in the fringe

patterns. Alternatively, the projector can be thought of defining a plane with a particular phase

value, while the pixel of the CCD defines a line that intersects the plane from its point-of-view.

The place where the line intersect with the plane will define a point in space from which we get
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our surface information.

Thus one only needs to record the the value of φp(xp) at a given camera pixel at (xc, yc),

solve for xp from φp(xp) (which is known), then map coordinates (xc, yc, xp) to the world spatial

coordinate (xw, yw, zw). Implementing the three steps above for fringe profilometry we have:

Step 1: Project fringe patterns onto the object we (Figure 4.24) (a):

φp(xp, yp) = 2πfpxp ; (4.21)

Pp,1(xp, yp) =
Pp,max

2

Pp,max
2

cos(φp(xp, yp)− 2π/3) ;

Pp,2(xp, yp) =
Pp,max

2

Pp,max
2

cos(φp(xp, yp)) ;

Pp,3(xp, yp) =
Pp,max

2

Pp,max
2

cos(φp(xp, yp) + 2π/3) . (4.22)

Here Pmax is the maximum intensity of the projector and φp(xp, yp) = φp(x) is the encoded

phase on the projector. fp is the spatial frequency of the fringe and scales with the change

in height variation that is expected in the objects we would like to measure and is determined

experimentally. Subscript p denotes that we are in the projector coordinates (more on this later).

In the above case we made φp(xp, yp) = φp(x) such that each column of the projector chip is

encoded with one phase value. Three projections are made with offset phase so that we can solve

for the phase when we measure the fringe patterns with the camera. Solving Equation 4.21 gives

us xp = φp/(2πfp).
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Figure 4.24: a) Binary and fringe projections from the projector. b) Unwrapping scheme pro-
posed by Zhang et al. that uses the binary information encoded by the binary projections.

Figure 4.25: a) Object image, b) fringe patterns projected onto object, c) phase image, and d)
unwrapped phase image.
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Step 2: Measure fringe patterns with camera and solve for the distorted phase due to the object.

Mc,1(xc, yc) = Mc,dc(xc, yc) +Mc,ac(xc, yc) cos(φc(xc, yc)− 2π/3)

Mc,2(xc, yc) = Mc,dc(xc, yc) +Mc,ac(xc, yc) cos(φc(xc, yc))

Mc,3(xc, yc) = Mc,dc(xc, yc) +Mc,ac(xc, yc) cos(φc(xc, yc) + 2π/3) (4.23)

φc(xc, yc) = arctan
(√3(Pc,1(xc, yc)− Pc,3(xc, yc)

2Pc,2(xc, yc)− Pc,3(xc, yc)

)
(4.24)

where Mc,dc is the measured average intensity, Pc,dc is the modulation amplitude and φc is the

phase value we want to solve for. The subscript c denotes the camera reference. Equation 4.24

can be used to solve for φc. Fortunately, since we chose to increase the phase map along one

axis, aligning the camera and projector parallel to this axis allow the approximation that φc = φp.

Before we can solve for our surface map, we need to unwrap as sinusoidal projections repeat in

phase over [−π, π]:

Φc(xc, yc) = φc(xc, yc) + 2π · k(xc, yc) (4.25)

Here k is called the fringe number. The value of k cannot be solved without additional informa-

tion. The value of k can be encoded into our camera by projecting an additional set of images

to encode binary information spatially [177]. A schematic diagram of the projections used and

the binary encoding method is shown in Figure 4.24(a). Using a set of four binary code images

encode each camera pixel with 4-bit information corresponding to a value of k. An example is

shown in Figure 4.24(b) for a 3-bit case. Implementing these steps, we are able to unwrap the

phase as shown in Figure 4.25(b).

Step 3: Convert (xc, yc, xp)→ (xw, yw, zw) At this point we have xc, yc, and xp. We can convert
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these values to a point in space with the following equations:

xc = Pc,11xw + Pc,12yw + Pc,13zw + Pc,14 ;

yc = Pc,21xw + Pc,22yw + Pc,23zw + Pc,24 ;

xp = Pp,11xw + Pp,12yw + Pp,13zw + Pp,14 , (4.26)

where Pc = Ai,c[Rc, tc] and Pp = Ai,p[Rp, tp] whereAi is the intrinsic parameter matrix (which

take into account the focal length and skew), R is the rotational matrix, and t is the translational

matrix. Solving Equation 4.26 gives us (xw, yw, zw) for every (xc, yc, xp) which, in turn, give

our 3D surface map! I will not go into details of the calibration method to find the values of

Ai, R, and t for the camera and projector, but I refer interested reader to [176, 178–180].

4.5.2 Profilometry Setup and Breast Shape Measurement

The profilometry setup used in the Gen3 system is shown in Figure 4.22(a). The setup consists

of a projector (M110, Dell) and a small CMOS camera (DMK 72AUC02, The Imaging Source)

with a 5 mm lens (H0514-MP2, The Imaging Source) mounted on a custom aluminum block.

Once the projector and camera positions are fixed relative to each other, the coordinate and height

calibrations are made. Two profilometry setups are used in the Gen3 system and mounted on the

sides of the imaging tank as shown in Figure 4.26.

After the breast is inserted into the imaging tank, profilometry images are taken from the

sides. Figure 4.28 shows data from a human subject. In most cases, the area covered by the two

profilometry sets is not large enough to obtain a 3D surface image of the whole breast. Thus, the

bottom side of the breast must be generated with a 3D surface fit based on data in Figure 4.28(a)
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Figure 4.26: a) Front view of profilometry system from Gen3 CCD perspective b) top view.

Figure 4.27: Photograph of the profilometry positioning calibration target use to map the images
from the profilometry sets and the Gen3 CCD onto the same space. The white plate, with three
holes, hangs down in the tank and is used to align the rotational and translational position of the
profilometry 3D surface images relative to one another.
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and (b). To improve the accuracy of this bottom surface fit, a sagittal image from the CCD is

acquired in addition to the profilometry data (see Figure 4.28(c)). The saggital image is used to

determine outer edge of the breast shown by a red line, which, in turn, is used to aid the bottom

surface fit.

The relative positions of the two profilometry surfaces are linked together with one additional

measurement obtained using a positioning calibration target shown in Figure 4.27. The three

holes in the target helps with the profilometry sets, i.e., helps to align their position and rotation

relative to each other. The target is designed to always fit into the tank in the same position; this

feature helps us match the profilometry sets to the Gen3 CCD (and the red line from the sagittal

image).

To generate the 3D surface image, the two surface point clouds generated by the profilometry

sets are combined with the outer trace (red line) of the breast image from the CCD to derive the

surface on the bottom side of the breast that was not illuminated by the profilometry projectors.

The resulting 3D surface fit is then used to generate a tetrahedral volume mesh to be used in the

DOT image reconstruction.

116



Figure 4.28: a) Fringe pattern projected on the breast (left side of tank), b) fringe pattern on right
side of tank, and c) sagittal view of breast from front CCD. Red line shows outer edge of breast
traced by hand.

Figure 4.29: a) 3D point cloud generated by fringe profilometry b) surface fit of 3D point cloud
c) line trace (red) from front CCD camera scaled and translated to match side surfaces d) 3D
surface fit of whole breast generated from fringe profilometry data and front image trace.
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4.6 Clinical Software

The software for the Gen3 device was written in Labview. Two sets of software were written to

run measurements on the Gen3 device. The Experimental Software permits an advanced user to

fully control the Gen3 device hardware settings and measurement sequences. This Experimental

Software is also used to generate a configuration file used in experiments where various CCD

settings can be set and saved for use on the Clinical Panel.

The Clinical Software was written with our clinical coordinators in mind (see Figs. 6.1). Five

modules in sequence take the user from tasks that organize the output files to tasks that choose

the source and wavelength configuration, tasks that optimize the detection gain and output light

levels, and finally to screens that allow the user to start the measurement sequence and see its

progress. For detailed description of the software I refer the user to Appendix A.

4.7 Instrument Characterization

4.7.1 Spectroscopy

Although the data used in DOT reconstructions are normalized to measure relative changes in

optical properties (see Section 4.4), one way to test the imaging system is to compare a measure-

ments that extract absolute values of µa and µ′s in a Intralipid solution to slab theory predictions.

In particular, this scheme enable us to evaluate the data quality of the frequency-Domain (FD)

detection capabilities of the Gen3 imager. Figure 4.30 shows data from the FD transmission data

that has been preprocessed; comparison to a slab solution model is also shown. The light was

from a source near the center of the detection lens. Figure 4.30 shows the slab solution fit for
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Figure 4.30: Comparison of ln(Φac × ρ) and Phase (θ) vs ρ of the Gen3 data from a line of
pixels and the analytical slab solution fit to the data for µa and µ′s. Expected values were µa =
0.021cm−1 and µ′s = 8cm−1

µa and µ′s of a homogeneous Intralipid solution; the results exhibit reasonable agreement with

expected values.

In general, determination of the absolute value of µa and µ′s in this way cannot take advan-

tage of all source locations, e.g., due to vignetting and barreling that occurs when light travels

too far from the center of the detection lens. However, when normalized with a reference mea-

surement as described in Section 4.4, then optical property changes can be measured using all

source-detector pairs. This is because one can account for the pathologies associated with each

source-detector.

To get a sense of these deviations in the data (in absolute terms), in Figure 4.31 and 4.32 we

plot the preprocessed data from all the detectors (CCD pixels) for every source and every wave-

length. The two data sets are derived from tissue phantom (red: two target–see next section) and

a Intralipid reference measurements (blue), respectively. This particular dataset should overlap

as the only differences in the measurement are due to two small perturbations. Figure 4.33 shows

plots the normalized amplitude, Φtarget/Φref , and the phase shift ∆θ = θtarget − θref for 660
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Figure 4.31: ln(Φac × r) vs r plot for all 209 sources at all 5 wavelengths. The tank thickness
is 63 mm. Usually, the data usage is cut off around r = 85 mm where noise starts to become
significant. Repeatability between target and reference data (blue vs red) as well as linearity vs
r provide criteria by which we can judge data quality.

Figure 4.32: θac vs r plot for the same data set in Figure 4.31. The distribution of values for
θ(63 mm) is due (in part) to variations of the source fiber length, i.e., since the fibers were
assembled by hand (see Section 4.3.3)

120



Figure 4.33: Plot of Φtarget/Φref (left) where the two target scan in Figure 4.31 is divided
by the reference scan (normalized) for each source detector pair. ∆θ = θtarget − θref (right,
radians) where the two target scan in Figure 4.32 for the two target and reference measurements
(at 660 nm) for all source detector pairs. The width of the differences is used to derive a criteria
for how large a source-detector separation (∼ 80mm) we should use before noise becomes
important.

nm. Thus the quality of the reference normalization can be determined the general agreement

in the data points. The SNR of the signal also determines how large r can be before the fluence

rate (ln(Φac × r)) and θ begin to lose linearity (e.g., around 85 mm).

4.7.2 Targets for Imaging Experiments

The frequency-domain capabilities of the Gen3 imager make it easier to reconstruct both absorp-

tion and scattering contrast properties. This capability was relatively weak in the Gen2 system.

As a result we developed new kinds of targets appropriate for frequency domain experiments.

The targets we use are typically hollow containers filled with contrast media for imaging. Our

old targets were made from translucent cylinder plastic containers (1.5 cm in diameter and 1.5

cm in height) connected to thin Tygon tubing for loading contrast media. For these targets, the
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Figure 4.34: Photograph of custom targets used for imaging liquid phantoms. The targets are
made of white delrin with 16 mm diameter and 1 mm thick walls. The targets are attached to a
thin nylon tubing and sealed with silicone gel. The targets are hung vertically and shaped so that
air bubbles freely escape.

Figure 4.35: a) Transillumination images of Delrin target (bottom left) and a typical translucent
plastic target. White delrin is a good choice as it has scattering and absorption properties similar
to Intralipid. (left) Transillumination amplitude data of Intralipid filled targets in the background
fluid (normalized intensity). (Right) Transillumination phase data (degrees).

perturbation to absorption was low (Figure 4.35(b), but the target material contributed signif-

icant phase contrast (Figure 4.35(c). In fact, we can more readily detect these phase contrast

signals with the new (Gen3) frequency domain system. Several translucent or white materials

were tested with the transillumination experiment shown in Figure 4.35. Targets filled with the
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background Intralipid (µa = 0.041cm−1, µ′s = 8cm−1) were suspended inside the reference

solution in a tank (the same tank used in Chapter 3) and the amplitude and phase data were col-

lected. Importantly, we found that white Delrin with thin PTFE tubing (microbore, Cole Palmer)

introduced the lowest amplitude and phase contrast artifacts (Figure 4.34).

4.8 Simulations

The data from the Gen3 imager was reconstructed using a software suite called TOAST++

(Time-resolved Optical Absorption Scattering Tomography) [146]. TOAST employs FEM for

the forward problem and Newton-type (Gauss-Newton, Levenberg-Marquardt, etc.) or gradient-

type (Conjugate Gradient) methods for the inverse problem. Simulation results based on the

Gen3 imager configuration (and related to actual experiments performed with the Gen3 imager)

are presented in this section.

Simulations are valuable. They permit testing of constraints for the geometry, source-detector

pair arrangement, and data type of a particular imaging system (e.g., Gen3). Furthermore, lim-

itations of the reconstruction method can be tested, and control parameters (e.g., regularization

parameters) can be adjusted with repeated reconstructions to reduce and optimize the parameter

space for ultimate experiments with real data.

4.8.1 2D Reconstructions of Simulated Data

We carried out a set of simulated 2D reconstructions on noiseless data. These test-studies enabled

us to confirm that we obtain expected results in situations wherein all aspects of the problem are

fully under control and the target medium is fully understood. Although significant differences
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Figure 4.36: Simultaneous 2D reconstruction of µa and µ′s with 3:1 contrast targets for both
based on simulated data. a) Exact image of the target absorption µa = 0.015 mm−1 (left) and
scattering µ′s = 1.5 mm−1 (right) with target background µa = 0.005 mm−1, µ′s = 0.5 mm−1

b) Gauss-Newton reconstruction of µa, µ′s from forward data obtained with this simulated phan-
tom with uniform regularization and scaling of both scattering and absorption heterogeneities to
their average/background.

can arise between 2D and 3D data, as well as for reconstructing with and without noise, the 2D

simulations we carry out significantly reduce the scale of the problem and enable us to explore

limitations of the reconstruction methods within a short period of time (i.e., on the order of

minutes per reconstruction in 2D, rather than hours in 3D).

Figure 4.36 shows the target medium from which simulated data was generated, as well as

the 2D reconstruction of the absorption and scattering targets. The reconstructed area is a 80×20

pixel (3 mm/pixel) with µa and µ′s inclusions that are 1.8 cm in diameter (Figure 4.36(a)). The

first column shows the true absorption contrast in the target medium and the second column

shows the true scattering contrast in the target medium. The reconstruction of these inclusions

is shown in Figure 4.36(b).
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Notice that the reconstructed absorption target in the simulation is larger than the scattering

target by about a factor of ∼ 50%. Further, the scattering target is close to the same size as the

test inclusion, but the absorption target is not. Also, a very small amount of crosstalk is evident

wherein the scattering inclusion shows up in the absorption reconstruction. We can partially

understand the size discrepancy between the absorption and scattering inclusions by considering

the sensitivity plots shown in Figure 4.37. The sensitivity plots show the spatial sensitivity of the

measured amplitude (Φac) and phase (θ) data with respect to µa and µ′s for a particular source-

detector pair. The plots in Figure 4.37 show that µa sensitivity spans over a larger spatial area

compared to scattering; this observation helps to explain the larger size of the absorbing target

in the reconstruction. Conversely, the µ′s sensitivity is spatially smaller and more localized than

absorption, which presumably helps to produce a more spatially defined target (i.e., compared to

absorption) in the reconstructions. We will return to describe a regularization strategy that can

cope with this observation of asymmetry between absorption and scattering reconstruction.

Before moving to the regularization strategies and tests, I describe one more technical effect

that we noticed about these systems from the simulations. This effect concerns the trade-off

between resolution/contrast and field-of-view angle. In our experimental data, for the typical

image slabs, the transverse distance that we can access above the noise level is approximately

8.5 cm. This transverse distance (and the slab separation) defines a maximum field-of-view

angle for the data set. In the simulation studies, since we have no noise, we were able to carry

out reconstructions for different transverse distances (at fixed slab thickness) and compare the

reconstructions. Figure 4.38 shows reconstructions wherein the transverse distance is set to be

a)r = 8 and b) r = 10 cm. As expected the larger r improves our resolution overall, but mostly
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Figure 4.37: Plot of the sensitivity regions (Jacobian) for a source-detector pair. a) The two
images are the sensitivity of ln Φac and θ to changes in µa; b) the two images are the sensitivity
of ln Φac and θ to changes in µ′s. Notice, ln Φac and θ have a broader area of sensitivity to
changes in the absorption compared to changes in scattering.

the improvements occur for the absorption heterogeneity. Therefore, this small but focused

2D simulation investigation informs us that substantial resolution gains can be made with our

apparatus, if the signal-to-noise ratio (SNR) of our system can be improved, i.e., if we can make

collect data at larger source-detector separations.

We now return to the regularization issue. To our knowledge, researchers in the DOT com-

munity have treated absorption and scattering on the same footing. However, we have shown that

the absorption target reconstruction is worse than the scattering target reconstruction (i.e., with

sensitivity curves and with the reconstructions of simulated data). This observation suggests that

it might be better to apply separate regularization for each of these parameters. We explored

this approach using Total Variation (TV) regularization, which is largely oriented towards the
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Figure 4.38: a) Same reconstruction as Figure 4.36(b) where the maximum transverse distance
(along the detection plane) for data taking is r = 8 cm. b) Reconstruction with maximum
transverse distance set to r = 10 cm. Larger r produces better resolution in the reconstruction.

spatial gradient of the optical properties and thus has the effect of conserving edge shapes. Total

Variation (TV) regularization was used here, because we found it to have an improved effect on

the resolution of the reconstructions of simulated data. Figure 4.39 shows the TV regularization

applied to our previous reconstruction with various hyperparameters and the TV parameter β

(see Section 2.2.2.6 in Chapter 2). By varying the parameters and then carrying out a corre-

sponding reconstruction, it was determined that the parameters Λ = 1×10−4, β = 1×10−3 for

µa, and Λ = 1× 10−3, β = 1× 10−2 for µ′s, gave the best fidelity for absorption at the cost of

some scattering contrast. This choice of regularization also brought the size of the reconstructed

absorption and scattering targets into the same range, which is also an improvement.

Therefore, from our 2D reconstructions we learned that it can be useful to separately regular-

ize absorption and scattering, and that it is important to optimize this regularization combination.
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Figure 4.39: 2D reconstructions for inclusions in Figure 4.36(a) but with Total Variation (TV)
regularization. Values for Λ the hyperparameter and β the TV parameter for µa are varied
separately. µ′s: Λ = 1×10−3, β = 1×10−2 for all images. µa: a) Λ = 1×10−2, β = 1×10−3;
b) Λ = 1×10−3, β = 1×10−1; c) Λ = 1×10−2, β = 1×10−3; d) Λ = 1×10−4, β = 1×10−3.

Without this scheme, the reconstructed absorption spatial resolution (and contrast) is consider-

ably worse than that of scattering. This effect was rationalized with the sensitivity curves, and

an effort was made to find the independent regularization parameters for which the reconstructed

µa and µ′s resolution was about the same. We will use these values, i.e., from 2D, in most of the

128



other reconstructions (both simulations and experiment); ultimately, we will want to carry out a

more comprehensive investigation of the independent regularization parameters for 3D simulated

data and experimental reconstructions. Note, we also tried other regularization schemes (e.g.,

Tikhonov, PM), but we found that Total Variation (TV) regularization worked best, at least in the

2D simulations. Unfortunately, these additional degrees of freedom in regularization open up

a great deal more phase-space for reconstruction optimization. On the other hand, and perhaps

most importantly, we have discovered an important new avenue for image improvement!

4.8.2 3D Reconstructions of Simulated Data

Having explored different regularization schemes and parameter values in 2D simulations, we

next moved to consider 3D simulations. Figure 4.40 is a 3D reconstruction of two targets with

the same diameter as in the 2D reconstructions and located in 3D within a 60 mm thick slab.

The top slices are closer to the source plane, and the lower slices are closer to the detector plane.

The center slice at 30 mm is shown. The sub-figures a) and b) are 3D reconstructions with

uniform versus independent TV regularization. Figure 4.40(b) employs separate regularization

for µa, µ′s, and we again see that the absorption spatial resolution and contrast improve. The

gains exhibited in 3D thus appear to parallel our 2D results, and they reaffirm our expectation

that improvements in 2D reconstructions translate to the 3D case. Of course, more work needs

to be done to test whether the optimal regularization parameters are the same for 2D and 3D, but

these initial results are encouraging.

Figure 4.44 shows the simulated 3D reconstruction of two targets with a 3× absorption

(with spectrum corresponding to the dye IR806, upper left) and a 3× scattering (corresponding

to Intralipid, lower right) contrast. (Here we use targets in the simulations which are somewhat
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Figure 4.40: Simulated 3D reconstruction with TV regularization. a) µa, µ′s: Λ = 1 × 10−4,
β = 1× 10−2, b) µa: Λ = 1× 10−4, β = 1× 10−2, µ′s: Λ = 1× 10−3, β = 1× 10−2

close to those in our 3D tissue phantom experiments.) For these reconstructions, the conjugate-

gradient method was used with TV regularization. A CW reconstruction where only amplitude

(ΦDC) information is used, and a FD reconstruction where both amplitude (Φac) and phase (θ)

data is used, are both shown in the figure. Slices are shown at 10 mm intervals and are parallel

to the source and detector planes. The slices stretch from the source plane (top) to the detector

plane (bottom). The simulations clearly show, as expected, that without FD data (i.e., without

amplitude and phase information), decoupling of µa and µ′s is poor. With FD data, importantly,

most of this cross-talk is eliminated. Interestingly, even with noiseless data there is still some
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Figure 4.41: Simulation 3D reconstructions of an absorption target (top left) and scattering target
(bottom right) with continuous-wave and frequency-domain data using TV regularization. The
simulation shows that most of the crosstalk between absorption and scattering is mitigated with
FD. The FD reconstruction of µa shows a 40% contrast ((0.15 cm−1 expected) with a 10%
crosstalk from µ′s. The FD reconstruction of µ′s shows a 60% contrast (15 cm−1 expected) at the
scattering target with minimal crosstalk from the absorption target. Top slices are closer to the
source plane and the lower slices are closer to the detector plane.
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Figure 4.42: Simulated 3D reconstruction of the two targets with different chromophores as
shown in Figure 4.43(b). The upper left target is filled with a Nigrosin contrast, and the bottom
right target is filled with IR806 contrast. Each has an expected absorption that is twice the
background Intralipid. The left columns show an early iteration wherein there is still crosstalk
in the chromophores, but reasonable contrast. At late iterations the crosstalk is diminished, but
the contrast is very high and the inclusion size small.
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Figure 4.43: a) Photograph of the two targets used in the multi-chromophore experiment; the
images was taken by the Gen3 CCD. b) Spectra of the Nigrosin (blue) and IR806 (green) chro-
mophores that were used in the multi-chromophore simulation and experiment.

crosstalk from µ′s to µa (10% in this case) for our particular source-detector arrangement and

geometry. Although the target medium inclusions are exactly in the slab center for both µa and

µ′s, there also seems to be a tendency for the reconstructed targets to be closer to the source

plate. This shift might be caused by the sparse number of sources compared to the large number

of detectors; in these simulations we have used just 60 sources (selected symmetrically out of

the 209 total sources) and 209 detectors to speed up our reconstructions for our analysis. This

type of issue is something that we intend to explore more with further reconstructions.

Finally, we also ran a simulation of two target inclusions with different chromophores (but

the same scattering); this reconstruction can in principle utilize spectral information. The con-

trast of the two dyes, Nigrosin and IR806, was again utilized to roughly match one of our tissue

phantom experiments for which the spectral information is known (see Figure 4.43). The sim-

ulation, in this case, shows how we can separate the two chromophores based on their spectral

information. In the clinical case, of course, it is desirable to differentiate the chromophore con-

centrations of oxy- and deoxy-hemoglobin in tissue. Figure 4.42 shows the results at different
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iterations of the multi-chromophore reconstruction. Notice that at iteration 20, the reconstructed

inclusions attain realistic values of the chromophore contrasts but there is still some crosstalk. At

iteration 50, the chromophores are clearly differentiated spatially, but the contrast overshoots the

expected values. Again, more work is needed to clarify these observations and derive approaches

to minimize the problems that surely could arise in real experiments.

4.9 Tissue Phantoms

After our work with simulations, we tested the Gen3 imager and reconstruction schemes with

tissue phantoms that roughly mimic optical the properties and contrast of breast tissue. Hollow

targets, 16 mm in diameter (Figure 4.34) with 1 mm thick walls, were filled with optical contrast

and submerged in a background solution.

Figure 4.44 shows the reconstruction using data from our Gen3 imager with the tissue phan-

toms. The background solution was mixed with India ink and Intralipid to have an approximate

absorption and scattering of µa = 0.05 cm−1 and µ′s = 5 cm−1 at 785 nm. The targets were

filled to have 3× chromophore concentration (India ink, upper left) and 2× scattering (Intralipid,

lower right) relative to the background. The top slices are closer to the source plane and the lower

slices are closer to the detector plane as in the 3D simulations.

Again, as expected (but this time with experiment rather than simulation), we find that FD

imaging reduces the crosstalk between absorption and scattering quite dramatically. There is a

“frame” of higher contrast levels on the edges of the absorption image in the FD reconstruction

in Figure 4.44, but that region lies outside the sensitivity range of our measurement and suggests
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Figure 4.44: 3D reconstruction of tissue phantom. The upper left target is India ink with 3× µa
contrast and the lower right target has a higher Intralipid concentration with 2 × µ′s contrast
compared to the background. The CW reconstructions (left) have relatively low contrast and
high crosstalk while the targets are well resolved spatially. In the FD reconstructions (right)
noticeable artifacts near the source are apparent, but significantly less crosstalk between µa and
µ′s is observed. The top slices are closer to the source plane and the lower slices are closer to the
detector plane (as in the 3D simulations).
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that updated/better initial guesses of the background properties could improve our reconstruc-

tion. In addition, the image appears to suffer from artifacts near the source plane; these artifacts

near the source and detector surfaces are known to arise in DOT, and methods exist that can be

employed to ameliorate them, e.g., spatially variant regularization. However, we did not im-

plement the spatially variant regularization technique here; it will be explored in future work.

Nevertheless, the spatial structure of the reconstructed targets are well resolved in the transverse

direction with some target broadening/elongation towards the source plate for both absorption

and scattering objects. Again, a lower number of sources (60 of 209) and detectors (∼ 320 of

5000 pixels) was utilized in the tomography so that we could carry out the reconstructions faster

(∼ 6−8 hours/reconstruction) with this data set. (Note, the small number of detectors is perhaps

less of an issue than the sources, because adjacent pixels are averaged in software to increase the

SNR.)

Although the spatial structure of the images is reasonably good, one nagging question con-

cerns contrast (or lack thereof) of the tissue phantoms and to a lesser extent, contrast in our

3D simulations. The actual reconstructed contrast is less than expected. This effect has been ob-

served previously in DOT devices [10,44,181], and it has largely been attributed to the spreading

of the reconstruction contrast that arises when the target (in the reconstructed image) is spread

out in size compared to the true target dimensions. The effective contrast in such images depends

on a product of the target volume and target contrast (e.g., when a reconstructed absorption tar-

get is broadened in size (volume), then its absorption contrast is decreased in proportion to the

volume). This problem is exacerbated in 3D, since there is an additional stretching in the lon-

gitudinal direction. In addition, some of the underestimation of optical contrast is also due to
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systemic offsets inherent in the instrument or reconstruction method which can be compensated

with calibration phantoms [182]. In fact, an area of research that these results suggest should be

pursued, concerns how to rescale the image contrast; one approach to this problem is to utilize

standard targets as part of every experimental run. In the case of our absorption and scattering

Figure 4.45: 3D reconstruction of the multi-chromophore data with Nigrosin (top left) and IR806
(bottom right) dyes with 2× background absorption. The absorption reconstructions looks simi-
lar to earlier iterations in the simulation (Figure 4.42(a)). Increasing iterations past ∼ 40 for the
data does not improve image quality as it is noise limited. Contrast level is low, but the main
spatial features separate nicely.

137



targets, the integrated signal is Γ = δµa ·V , where δµa is the fractional difference from the back-

ground, and V is the target volume. Here we will use the approximate shape of the target object

to estimate volume; using the FWHM to determine the bounding volume and integrating the

δµa absorption within that volume, we determine ∆Γµa = Γµarecon/Γ
µa
expected = 0.35. This result

(i.e., obtained by integration over the volume of the target object) is reasonable, especially given

that our contrast is very large and will thus contribute to the signal in the nonlinear regime (i.e.,

outside of the small perturbing limit), and given that the object shapes are not perfect spheres,

and given that our target objects have optical index of refraction differences with respect to the

background that are not accounted for in the reconstructions. Similarly for the scattering con-

trast we found ∆Γµ
′
s = 0.36. For comparison, in the CW case, we found ∆ΓCW,µ

′
s = 0.16 and

∆ΓCW,µ
′
s = 0.05. The resolution of the scattering target is quite good (except in the longitudi-

nal direction as we have discovered with our simulations, but remember we do not employ any

spatially variant regularization here). As expected the absorption targets are broader and larger

than the scattering targets; in the future, we will explore more TV parameters to increase the

absorption resolution.

In a different type of study, we employed two tissue phantoms to test the multi-spectral capa-

bilities of the Gen3 imager. The two targets shown in Figure 4.34 were each filled with Nigrosin

and IR806, respectively, to give approximately 2× the absorption and the same scattering as the

background Intralipid solution at 785 nm (µa = 0.04 cm−1, µ′s = 8cm−1). For this data set we

increased the number of sources (209 of 209), while keeping the number of detectors the same

as the previous experiment (∼ 320 of 5000).

Figure 4.45 shows the 3D reconstruction of the two targets compared to the simulation.
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There is a clear separation of the chromophores in the image with a small amount of crosstalk,

especially in the IR806 reconstruction (∼ 10%). Less crosstalk is apparent in the Nigrosin chro-

mophore reconstruction, and this improvement could be due to the strong spectral sensitivity of

the Nigrosin across the different wavelengths; by comparison, IR806 has very low contrast at

the lower wavelengths. At higher iteration number, the simulations suggest that the two chro-

mophores will eventually be differentiated. Unfortunately, at this time the data reconstruction is

noise limited to 80 iterations after which no further improvements or difference in image quality

can be found. For Nigrosin, ∆ΓNigrosin = 0.90 which accounts for most of our contrast. The

volume contrast for IR806 was also quite good with ∆ΓIR806 = 0.78. The crosstalk in the scat-

tering images from the absorbing targets were found to be ∼ 10% in this situation. Two reasons

might explain the improve contrast: the increased number of sources could improve resolution

and the lower perturbation (2× background instead of times) of the absorbers puts the problem

more in the perturbative limit. Improving resolution with increased numbers of sources and de-

tectors, improving our SNR which gives greater numbers of off-axis measurements, improving

absorption resolution with different regularization, are all obvious issues we hope to explore in

the near future with the Gen3 imager as a result of these experiments.

4.10 Clinical Results: Breast Images

The Gen3 breast imager resides the in Perelman Center for Advanced Medicine at the Hospital of

the University of Pennsylvania. It is currently being tested on breast cancer patients. These first

patient measurements have helped us to develop and improve the clinical hardware and software

interfaces. Patient measurements present a unique set of challenges that constrain our data sets.
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The primary challenge is measurement time; we want to keep it as short as possible. Other

challenges are present too. For example, the optical properties and breast boundary shapes vary

quite a lot and are unique to each patient. In addition, unlike the tissue phantom experiments,

the location and extent of the lesions in our clinical images are not known apiori; even if an MRI

of the breast has been taken, the MRI measurement is usually made at a different time and in a

different geometry, and of course, MRI has contrast mechanisms that are different from optics.

Thus, with some trepidation, in this section we present first results from the study of two patients

with the Gen3 breast imager.

4.10.1 Patient Measurement Protocol

First we describe the patient measurement protocol which was developed in accordance with

the policies outlined by the University of Pennsylvania’s Institutional Review Board (IRB). We

have taken pains here to elucidate the protocol in a step-by-step manner. The future user of the

instrument will benefit greatly from this step-by-step description.

1. Instrument setup and preparation.

(a) The laser system, CCD, frequency generators, and all hardware are turned on and

allowed to stabilize for at least 1 hour.

(b) A large polyethelene bag is placed within and then attached to the breast tank. Care is

taken to insure that the bag is set flush against the source plate, window and side ports.

(c) The galvo switch alignment is adjusted to maximize light throughput and minimize

instability before the measurement (note, this alignment can be done the night before).

(d) An optically matched India Ink and Intralipid solution is made before the patient ar-

rives. A typical solution would have approximate absorption and scattering values of
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µa = 0.06 cm−1 and µa = 8cm−1, respectively, at 785nm.

2. Once the patient has been consented and instrument preparation has been made, the patient

is placed on the Gen3 bed.

(a) The breast is then softly compressed between the source and detector plate until the

patient experiences only a slight discomfort. Typical plate separation is 6 cm. When

compression is complete, the plates are locked into place.

(b) The headrest and exam table height are adjusted for the patient. It is worthwhile to

take the time needed for this adjustment to be sure the patient is comfortable. Patient

comfort is important for reducing movement during the measurement.

3. The first data taken is associated with the profilometry measurements.

(a) Left side projector/camera measurement is taken.

(b) Then the right side projector/camera measurement is taken.

(c) Finally, the front illuminated Gen3 CCD measurement is made.

4. The breast imaging tank is filled with the India Ink and Intralipid solution that was prepared

earlier (to match patient breast optical properties).

5. The system light intensity and the detection gain is adjusted to optimize detection dynamic

range (Figure 6.5).

(a) The image intensifier MCP gain (typically 570V) is adjusted at brightest source posi-

tion; this task enables us to check for signal saturation, etc.

(b) The attenuator is adjusted for pickoff light level to prevent detector saturation (i.e.,, to

at most ∼ 50K counts for brightest laser).

6. Start the breast DOT measurement. With the current instrumentation, the duration of this
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measurement is ∼35 minutes.

7. When the measurement is finished, then the patient will dress, and during this time period

the tank is prepared for the reference measurement.

(a) At the same source plate and window separation (i.e., as used for the patient), fill the

tank to top with Intralipid solution.

(b) Place the solid chest wall phantom on top of tank (Figure 3.5, ensuring contact be-

tween phantom and Intralipid solution.

8. Begin reference measurement.

9. Obtain an image of the source positions. This image helps us locate the source positions in

for the reconstruction.

(a) Empty breast imaging tank of Intralipid.

(b) Move source plate to detection plane.

(c) Illuminate fiber bundle face via the galvo, and take image of this source plate with the

Gen3 CCD.

10. Calibrate Profilometry measurement using calibration target (Figure 4.27)

(a) Place calibration target in breast imaging tank.

(b) Left side projector/camera measurement.

(c) Right side projector/camera measurement.
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4.10.2 Cancer Patient 1

Our first patient is a 79-year-old post-menopausal Caucasian female. Ultrasound found hypoe-

choic nodules which span approximately 18× 10mm at the 3:30 region of the breast, 4 cm from

the areolar margin. A left breast core biopsy confirmed the presence of infiltrating mammary

carcinoma with ductal and lobular features, and with intermediate grade nuclei. The patient

consented to participate in our study in accordance with the consent policies outlined by the uni-

versity’s IRB. With the location of the tumor in mind, an effort was made to optimally place the

patient’s breast into the imaging tank. The plates were then compressed gently to fit the breast

and achieve patient comfort. The final plate separation had a fixed distance of 64mm.

The profilometry images were taken before the box was filled with Intralipid solution as

described in Section 4.10.1. After optimization of the light level and detection gain for this

particular breast, the DOT scan was initiated and run for 34 minutes. Finally, when the patient

measurement was complete, a reference DOT scan was made with the box filled completely

with Intralipid, and with the chest wall INO phantom (from Section 3.2.4, Chapter 3) placed

over the breast tank hole. This block was placed on top of the tank in order to extend the diffuse

medium in a manner analogous to the patient’s chestwall; this configuration also helped prevent

signal saturation caused by air boundaries. After the optical exam, the patient received a bilateral

MRI. The MRI of the breasts was performed on a 1.5 Tesla magnet at HUP. In the lower-outer

left breast, the MRI detected an area of abnormal enhancement that measured approximately

70× 13× 33 mm.

Figure 4.46 shows the DOT reconstruction from the patient. T1 image slices from an MRI

are shown, and the multi-spectral frequency-domain images of the hemoglobin concentration
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Figure 4.46: MRI and DOT images of a 79-year-old post-menopausal Caucasian female with
breast cancer. The first column shows an MRI of the cancer patient. Columns 2-4 show re-
sults from the 3D multi-spectral frequency-domain DOT reconstruction of HbO2, Hb, and µ′s
at 785nm. The tumor location in the MRI and the corresponding area in the DOT images are
indicated by white dotted circles. Note, however, the MRI and DOT breast compressions are
similar but are not identical. Interesting features are apparent in both images with high HbO2,
Hb and scattering near the tumor region (identified with biopsy clip in the MRI).

(HbO2), the deoxy-hemoglobin (Hb), and scattering (µ′s) are shown. The MRI slices was chosen

to correspond to the slice of the DOT images by choosing equally spaced slices. In Figure 4.47,

the derived parameters of total hemoglobin concentration THC = HbO2 + Hb, blood oxygen

saturation StO2 = HbO2/THC, and an optical index OI = THC × µ′s/StO2 (normalized to

healthy region) are exhibited. The optical index is a parameter which seeks to maximize optical
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Figure 4.47: MRI and DOT images of a 79-year-old post-menopausal Caucasian female with
breast cancer. The first column shows an MRI of the cancer patient. Columns 2-4 show results
from the 3D multi-spectral frequency-domain DOT reconstruction of the THC, StO2, andOI at
785nm. The tumor location in the MRI is indicated by a white dotted circle. White dotted circles
also indicate suspected tumor location on the DOT images. StO2 shows depressed oxygenation
region near the tumor location.

contrast with the assumption that in tumors an elevated level of THC and µ′s and depressed

levels of StO2 might be expected [24,53,93]. The optical/physiological properties all fall within

realistic values for the breast. Importantly, in the 10mm slice the DOT images show significant

contrast for multiple optical parameters. The dotted circle region where we suspect the tumor

is located in Figure 4.46, show a contrast of HbO2 ∼ 2.8, Hb ∼ 1.7, µ′s ∼ 4, THC ∼ 1.7,
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StO2 ∼ 0.8, and OI ∼ 11.6 when compared to the health region (i.e., as estimated from MRI

and from other examinations). From the Hb and Hb images on the same plane the tumor can be

estimated to be 25− 35 mm in diameter.

Much work remains. As in the simulations and phantom experiments, it appears that the

tumor region might be closer to the source plane than expected from the MRI. This first pa-

tient result is promising. A tumor was imaged. This tumor was quite large, and it is certainly

possible that the surrounding tissues also have optical properties that are different from normal

tissues and therefore give rise to a further broadened spatial contrast. Furthermore, the imaging

geometries of MRI and DOT are not the same, and thus the lesions could be spatially shifted in

corresponding images. Of course, numerous issues remain to be addressed. For example, why

does the contrast seem to be stronger near the source plane? We know that artifacts tend to arise

near the source and detection planes, but we need to find ways to reduce these effects. In the

future (see Chapter 5), many improvements can be made which should lead to improvements in

the DOT images.

4.10.3 Cancer Patient 2

The second patient is a 68-year-old post-menopausal Caucasian female. She is positive for in-

vasive mammary carcinoma with ductal and lobular features with associated in-situ carcinoma,

and with intermediate nuclear grade. Ultrasound evaluation of this region showed a 15 mm mass

with associated calcifications at the 12:00 region of the breast. A right breast core biopsy con-

firmed the presence of invasive mammary carcinoma with ductal and lobular features associated

with the in-situ carcinoma, and intermediate nuclear grade. This patient was consented in accor-

dance with the policies outlined by Penn’s IRB. The individual’s breast was gently compressed
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Figure 4.48: MRI and DOT images of a 68-year-old post-menopausal Caucasian female with
breast cancer. The first column shows the MRI of the cancer patient. Columns 2-4 show results
from the 3D multi-spectral frequency-domain DOT reconstruction of the HbO2, Hb, and µ′s at
785nm. The tumor location in the MRI and DOT images are indicated by white dotted circles.
The MRI and DOT breast compressions are similar but are not identical. Possible tumor location
shown in HbO2 (identified with biopsy clip in the MRI). The µ′s image seem to have difficulty
with this particular patient where there are large artifacts near the source and detector plane.

to achieve patient comfort; the plate separation was fixed distance at 60 mm. A measurement

procedure similar to that of Patient 1 followed. After completion of the research study, the pa-

tient received an MRI bilateral image of her breasts in a 1.5 Tesla magnet. The MRI reported

a moderate-to-large amount of glandular tissue. Approximately 9 mL of gadolinium contrast
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Figure 4.49: MRI and DOT images of a 68-year-old post-menopausal Caucasian female with
breast cancer. The first column shows the MRI of the cancer patient. Columns 2-4 show results
from the 3D multi-spectral frequency-domain DOT reconstruction of the THC, StO2, and OI
at 785nm. Interesting features are apparent in both images with high THC, StO2 and scattering
near the tumor region.

was administered intravenously for the MRI, and a 2 cm irregular mass was revealed in the

upper-inner anterior right breast. There was also a linear enhancement in gadolinium contrast

extending from the index mass anteriorly and posteriorly, with the overall extent of enhancement

approximately 4 cm. In addition, a cluster of enhancing irregular masses was found in the upper

outer breast at middle depth.
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This patient presents a difficult case for x-ray, because of its high radiographic density. Fig-

ure 4.48 and 4.49 shows the MRI as well as optical images for this patient. In this patient he

tumor is difficult to locate but the suspected tumor has been circled in the 30 mm slice of the

DOT image. The dotted white circle region where we suspect the tumor is located show a con-

trast of HbO2 ∼ 1.4, Hb ∼ 1.1, THC ∼ 1.4, StO2 ∼ 0.8, and OI ∼ 2 when compared to the

health region. The reconstruction algorithm also seemed to have difficulty with the scattering re-

gion, and thus it is challenging to ascertain a localized tumor area because of scattering artifacts

near the source and detector plane. As was the case with the first patient, the tumor in this case

was quite large and somewhat diffuse, and it is certainly possible that the surrounding tissues

also have optical properties that are different from normal tissues and therefore give rise to a

further broadened spatial contrast; further, since the imaging geometries of MRI and DOT are

not the same, the lesions in the corresponding images could be spatially shifted. Again, looking

to the future (see Chapter 5), the first results show promise, but many improvements can and

should be made which will very likely lead to improvements in the DOT images.

4.11 Summary

In this chapter I have described a DOT breast imager that has been developed for clinical use.

The instrument utilizes a spatially dense (107) source-detector pair arrangement, as well as multi-

spectral and frequency-domain data types to push standalone DOT imaging capabilities in the

clinical environment. These particular data types and source-detector geometry were explored

with imaging simulations, and the instrument was characterized and validated with tissue phan-

toms. In addition, first image reconstructions from cancer patient data has been obtained. These
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steps represent a beginning and will soon lead to needed further development and optimization

of image reconstruction and the hardware. Then the Gen3 imager will be translated to address

specific clinical problems.
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Chapter 5

Summary

In this thesis, I have presented research that further develops Diffuse Optical Tomography for

clinical breast imaging. This research was challenging because of its many facets, which ranged

from subtle optoelectronics in the physics instrumentation to complexities of the diffuse opti-

cal inverse problem algorithms and computation to our evolving understanding of breast cancer

biophysics and biophotonics. Ultimately, the clinical grade instrumentation we have built is

nonionizing (safe), low-cost (commercially attractive), high-throughput (accessible), and scal-

able (flexible). On the clinical side, DOT has many possible niches. The non-invasive optical

modality, for example, is attractive for medical niches such as detection and characterization of

cancer in the radiographically dense breast (e.g., for fibrotic breasts characteristic of, but not

limited to, young women), for repeated imaging in populations with genetic predisposition to

develop breast cancer (e.g., populations with BRCA mutations), for detection of some breast

cancer phenotypes that are sometimes been difficult to observe with traditional mammography

(e.g., some DCIS lesions), for use in combination with other techniques to improve diagnosis

151



(e.g., multi-modal imaging), for tracking functional information about cancer response in neoad-

juvant chemotherapy monitoring (e.g., to adjust the drug regimen), and more.

In Chapter 3, I used phantom experiments to systematically investigate the effects of the chest

wall on diffuse optical tomography (DOT) in the standard parallel-plate (slab) breast imaging ge-

ometry. Resolution and image quality was studied using a spatially-dense (source-detector) data

set and linear reconstruction methods. This research lead us to several promising conclusions.

First, although the presence of the chest wall phantom in close proximity to the target compli-

cates the inverse problem, we are able to reconstruct images of absorption contrast with CW

data. Further, we showed that the most severe effects of the chest wall can be rectified by appro-

priate data restriction in conjunction with linear image reconstruction. In the work, we carried

out both fast reconstructions using an analytical reconstruction method, and we developed and

experimentally verified an algebraic image reconstruction which turned out to be well suited

for use with these data sets that are compromised (and restricted versions of these data) by the

presence of the chest wall.

In the future, we will want to consider the research from Chapter 3 in a clinical context. In

practical clinical applications of DOT, the location of the chest wall relative to the sources and

detectors should be known, and therefore data restriction can be applied in vivo. Further, the fast

reconstruction times of the linear methods, and the ever improving computation and memory

costs, make real-time DOT imaging an appropriate goal in the clinical setting. If successful (and

work remains to achieve this goal), then it should be possible to develop data-driven algorithms

for data rejection in the clinical imagers which could utilize real-time adjustment of patient po-

sition, etc. Of course, further exploration of these datasets with nonlinear inversion methods
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should be interesting too. Additionally, my research points to the need to explore applications

of optical projection imaging, wherein the 3D tomographic images slices are averaged over the

whole depth of the plane-parallel (slab) sample; projection imaging appears to have real poten-

tial. Our research found that the projection images are much less sensitive to systematic errors

typically encountered in image reconstruction, i.e., compared to the individual reconstructed

slices; reconstructed slices often exhibit severe image artifacts, especially near boundaries. The

projection images, by contrast, were found to be free of many of these artifacts and to display

the targets clearly. (Recall that projection images still require 3D DOT.) This finding may be

significant since the optical projection image is rather similar to x-ray radiographic projection,

yet it displays optical contrast that is correlated to functional information about tissues (and can

possibly be acquired real time). Interestingly, with my clinical instrument, discussed in Chap-

ter 4, it is possible to carry out breast imaging in two different orthogonal geometries (frontal

and sagittal); thus, with two orthogonal image projections (used in tandem), more accurate ren-

derings of the tumor size, shape and character will be possible with fewer artifacts. Finally, it

could be very interesting to implement this projection image data as a prior (i.e., initial guess)

for nonlinear reconstructions.

In Chapter 4, I described the instrumentation that I built for clinical breast DOT in great de-

tail. The instrument provides unique imaging opportunities for the field because it has a spatially

dense (107) source-detector pair arrangement and multi-spectral/frequency-domain data types.

The result of my effort is the most data-intensive stand-alone DOT instrument yet reported. The

instrument was characterized and validated with tissue phantoms. Further, first cancer patient

data has been obtained. All of this initial data is now being used for reconstruction and hardware
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optimization.

Specifically, for our particular data type (frequency-domain) and source-detector geometry

(slab), we explored a small subset of possible reconstruction algorithms with various regular-

ization techniques (Tikhonov, Perona-Malik, Total Variation) in 2D and 3D. We carried out

studies with simulated data to test multi-chromophore and simultaneous absorption/scattering

reconstructions. We then tested the whole combination of instrumentation and algorithms (i.e.,

the best versions of the algorithms that we found in the studies of simulated data) using tissue

phantoms. In the process, we learned that with separate (i.e.., independent) regularization (TV

regularization) for absorption and scattering, the properties and resolution of the reconstructed

absorption targets were improved. We are also learning that tissue phantom and clinical problems

are different enough to warrant different reconstruction approaches, because the target objects

with sharp versus smooth optical transitions are imaged differently when employing different

reconstruction approaches.

This research represents the beginning of the clinical translation process. Thus far only a

small number of issues in the vast phase-space of our reconstruction software and in our Gen3

imager hardware has been explored. In the future, we will investigate the effects of combining

multiple regularization schemes, e.g., wherein some are spatially variant to reduce artifacts that

arise near the source and detector planes, and we will explore other regularization parameter

spaces and iterative image reconstruction processes. To try and further reduce these source and

detector plane boundary effects, we will try reconstructing source coupling coefficients and/or

the boundary conditions as a free parameter. Using the index of refraction as an additional

parameter could also yield interesting physiological information and improve reconstructions.
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In addition, the use of scattering or absorption only reconstructions as an image prior for a full

reconstruction is also an idea that is being explored.

In a different vein, and importantly, we also learned that upgrades in the instrument signal-to-

noise ratio (SNR) will translate to improved reconstruction fidelity. To this end, we will explore

hardware improvements such as pixel binning to decrease readout noise, increasing the cross-

correlation frequency to reduce pink noise near zero frequency (e.g., even an increase from 1

Hz to 2 Hz should substantially reduce noise), increasing the modulation frequency to improve

phase contrast (e.g., even an increase from 70 MHz to 85/90 MHz will improve phase-sensitivity

and will better separate absorption and scattering contributions to the signal), increasing our

data acquisition frame-rate, and increasing laser power (within allowed limits) and stability. The

additional use of the measured DC signal from our heterodyne detection is also being explored to

improve SNR and our image field-of-view. We will explore usage of calibration sources centered

through the breast (to detect potential motional artifacts), and we will explore the usage of DOT

measurements of the same breast with our two orthogonal views (frontal and sagittal). Finally,

we could reduce the acquisition time significantly by selecting only those sources most needed

for the reconstruction (this involves studying the full problem with 209 sources and then deleting

sources and comparing the images); for example, if we could save a factor of 4 in time by using

60 well-chosen sources, then the systematics will be reduced, the time between the reference

and patient measurements will be reduced, and we could add more wavelengths to detect other

chromophores (if desired).
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Once these improvements are implemented, and we gain more confidence in our reconstruc-

tions, the Gen3 imager will be utilized for focused work on several clinically applications. Exam-

ples of the latter that we are eager to address include imaging in the radiographically dense breast

populations, imaging in the genetic high-risk populations, neoadjuvant chemotherapy monitor-

ing, exploration of novel optical contrast agents (e.g., exogenous absorption and fluorescence

contrast agents), construction of multi-modal malignancy parameters based on optical data and

data from other medical imaging modalities, dynamic imaging (e.g., breast compression and

decompression), and more.
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Appendix A

Gen3 Software

Figure 6.1: The Gen3 Clinical software written in Labview. The software consist of a control
area (red) where the user interacts with the software, the notification area (area) where the instru-
ment status and notifications are displayed, and the imaging area (blue) where the image from
the Gen3 CCD is displayed.
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The Gen3 Clinical software was written with our clinical collaborators in mind. It minimizes

access to the hardware and simplifies the measurement process to reduce user error. Figure 6.1

shows the general layout of the software. The upper left area has the polymorphic interface

controls (indicated in red) where the user mainly interacts with the software. Right below is

the notification area (indicated in green) which displays the status of the instrument and various

errors and notifications. Finally on the right is the image display (indicated in blue) where images

from the Gen3 CCD is displayed.

The first panel that displays (Figure 6.2) is the initialization screen. Pressing the initialization

button will do a system check of the CCD and the DAQ module. If there are any errors or if these

Figure 6.2: The first screen in the software is the initialization configuration screen. At this step,
the hardware connection and statuses are checked before allowing the user to proceed. After the
hardware status is checked, the user can load a preconfigured config file or proceed without one.
The user can then continue onto the next step.
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parts are disconnected, it will be indicated in the notification area. If all checks are successful

and all green indicators are lit, the user can then load a configuration file (that has already been

created in the Gen3 Experimental Software). Once a configuration file is loaded successfully,

the user may proceed by clicking “next”.

The proceeding screen is the Data input screen where the measurement details are recorded.

The current date is automatically loaded and the control panel asks the user for the experiment

number and the number of measurements. The minimum number of measurements is two: 1)

one for the reference, and 2) one for a single breast measurement. The user can set up to 12

independent measurements before clicking “next”.

Figure 6.3: The second panel is the Data input screen where the details of the measurement is
entered. The patient number and the number of measurements can be indicated. The minimum
number of measurements is two (typically for reference and a single breast measurement) but
can be increased to 12.
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The third panel (Figure 6.4) in the clinical software is the source configuration screen. Here

the user can choose the sources and wavelengths that will be used for the measurement. The

first 11 × 19 indicators are for the source position. The second 11 × 19 grid is the calibration

source grid. The user can indicate after which source the calibration measurement is taken. In

Figure 6.4, for example, the calibration source is set to be taken after every 10th source. The

sources sequence during the measurement moves from top left to the bottom right (this is hard

coded). The last pair of 1× 5 indicator allow the user to choose the wavelengths for the sources

and calibration sources respectively.

The fourth panel of the software shown in Figure 6.5 the optimization panel. This panel is the

first panel where the CCD and lasers can be controlled by the user. At this panel, the detection

Figure 6.4: The third control panel is the source configuration screen. Here the source positions,
the calibration measurements, and wavelengths used in the experiment can be chosen.
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gain and the laser intensities are adjusted so that the CCD not saturated for the particular breast or

sourceplate detection window separation distance. The pickoff light level is adjusted at this stage.

Note that the pickoff does not go through the imaging tank, so it must be adjusted independently

of the laser sources.

The last panel in the clinical software is the measurement panel. At this point, the user can

begin the measurements. The steps displayed on this screen is dependent on the entries in the

previous panels. The user simply takes the measurement from the top to the bottom. The green

light after each measurement description lights up indicating that the measurement is completed.

Figure 6.5: The measurement optimization screen. At this stage, the CCD can be run in video
mode with the same exposure used in the actual measurements. The laser light level and detec-
tion gain is adjusted so that the CCD is not saturated or so that the light level is adequate for the
current experiment.

161



Figure 6.6: The measurement screen of the Gen3 clinical software. After setting up the exper-
iment, the user takes the measurements in series on this screen by pressing the measurement
buttons in sequence from top to bottom.
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