
Polymorphism and Type Inference In
Database Programming

MS- CIS-92-72
LOGIC & COMPUTATION 52

Peter Buneman
(University of Pennsylvania)

Atsushi Ohori
(Oki Electric)

Universit,~ of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

September 1992

Polymorphism and Type Inference in Database Programming

Peter Buneman*
Department of Computer and Informatior1 Science

University of Pennsylvania

Philadelphia, PA 19104, U.S.A.

Atsushi Ohorit
Oki Electric, Kansai Laboratory

Crystal Tower, 1-2-27 Shiromi

Chuo-ku, Osaka 540, JAPAN

Abstract

The polymorphic type system of ML can be extended in two ways to make it the appropriate basis

of a database programming language. The first is an extension to the language of types that captures

the polymorphic nature of field selection; the second is a technique that generalizes relational operators

to arbitrary data structures. The combination provides a statically typed language in which relational

databases may be cleanly represented as typed structures. As in M L types are inferred, which relieves

the programmer of making the rather complicated type assertions that may be required to express the

most general type of a program that involving field selection and generalized relational operators.

These extensions may also be used to provide static polymorphic typechecking in object-oriented

languages and databases. A problem that arises with object-oriented databases is the apparent need for

dynamic typechecking when dealing with queries on heterogeneous collections of objects. An extension of

the type system needed for generalized relational operations can also be used for manipulating collections

of dynamically typed values in a statically typed language. A prototype language based on these ideas

has been implemented. While it lacks a proper treatment of persistent data, it demonstrates that a wide

variety of database structures can be cleanly represented in a polymorphic programming language.

1 Introduction

Expressions such as 3 + "cat" and [Name = "J. Doe"] .PartNumber contain type errors - applications

of primitive operations such as "+" or "." (field selection) t o inappropriate values. T h e detection of type

errors in a program before it is executed is, we believe, of great importance in database programming, which

is characterized by t h e complexity and size of t he d a t a structures involved. For relational query languages

checking of the type correctness of a query such as

select Name

from Employee

where Salary > 100000

*Supported by research grants NSF IRI86-10617, ARO DAA6-29-84-k-0061 and ONR NOOO-14-88-K-0634
tThis work was performed in part while the second author was supported by a Royal Society Research Fellowship at

University of Glasgow, Scotland

is a straightforward process that is routinely carried out by the compiler, not only as a partial check on

the correctness of the program, but also as an essential part of the optimization process However, once we

add some form of procedural abstraction to the language, typechecking is no longer straightforward. For
example, how do we check the type correctness of a program containing the function definition

function Wealthy(S) = select Name

from S
where Salary > 100000

This function is polymorphic in the sense that it should be applicable to any relation S with Name and

Salary fields of the appropriate type. In database programming languages there have been two general strate-

gies. One is to follow the approach of Pascal-R [Sch77] and Galileo [AC085] and insist that the parameters

of procedures are given specific types, e.g. function Wealthy(S:EmployeeReI) Type checking in both these

languages is static and the database types are relatively simple and elegant extensions t o the existing type

systems of the programming languages on which they are based. However, in these languages it is not possi-

ble t o express the kind of polymorphism inherent in a function such as Wealthy. The other approach is used

in persistent languages such as PS-algol [ABC+83] and some of the more recent object-oriented database

languages such as Gemstone [CM84], EXODUS [CDJS86] and Trellis-Owl [OBS86] where, if i t is a t all pos-

sible t o write polymorphic code, some dynamic type-checking is required. Napier [MBCD89] attempts to

combine parametric polymorphism [Rey74, Gir711 and persistence, but its polymorphism does not extend

to operations on records and other database structures. The current practice in database programming is t o

use a query language embedded in a host language. In this arrangement, communication between programs

in different languages is so low-level that type-checking is effectively non-existent, and programs that violate

the intended types can have disastrous consequences. See [AB87] for a survey of various approaches to

type-checking in database programming.

The language ML [MTHSO] has a type inference system which infers, if it exists, a most general poly-

morphic type for a program [Mi178, DM821. Because of this, ML enjoys much of the flexibility of untyped

(or dynamically typed) languages without sacrificing the advantages of static type checking. Unfortunately

the polymorphism in ML is not general enough to express the generic nature of field selection, which occurs

in functions such as such as Wealthy and quite generally in database programming. Our goal in this paper

is t o show that an extension t o ML's type system can express the polymorphic nature of the data types and

operations that are used in relational and object-oriented databases and is therefore an appropriate basis for

a general-purpose database programming language. These ideas are embodied in Machiavelli [OBBT89], an

experimental programming language based on ML, developed at University of Pennsylvania. A prototype

implementation has been developed that demonstrates most of the material presented here with the excep-

tion of reference types, cyclic data, and persistence. Our hope is that Machiavelli, or some language like it ,

will provide a framework for dealing uniformly with both relational and object-oriented databases.

To illustrate a program in Machiavelli, consider the function Wealthy. This function takes a set of records

(i.e. a relation) with Name and Salary information and returns the set of all Name values that occur in records
with Salary values over 100K. For example, applied to the relation

{[Name = "Joe", Salary = 223401,

[Name = "Fred", Salary = 1234561,

[Name = "Helen", Salary = 1320001)

which is Machiavelli syntax for a set of records, this function should yield the set {" Fred", "Helen") of

character strings. This function is written in Machiavelli (whose syntax largely follows that of ML) as

follows

fun Wealthy(S) = select x.Name

from x <- S

where x.Salary > 100000;

The select . . . from . . . where . . . form is simple syntactic sugar for more basic Machiavelli program structure

(see section 2).

Although no types are mentioned in the code, Machiavelli infers the type information

Wealthy : {d :: [Name : d', Salary : in t]) -+ {d') .

To understand what this means, consider first the type given to the function cons, the function that adds

an element t o a list, by ML. I t is the type expression t * list(t) -+ list(t) in which t is a type variable. This

represents the polymorphic type Vt.t * list(t) -+ list(t) where t in t * list(t) - list(t) is universally quantified

over types. This means that the valid types for cons may be obtained by substituting any type for t . Thus

int * list(int) -+ list(int), string * list(string) -+ list(string), and list(int) * list(list(int)) -+ list(list(int)) are

all valid types for cons. Now in the type for Wealthy above d and d' are also type variables, but unlike the

variable t in the previous example we cannot perform arbitrary substitutions of types for these variables.

There are two restrictions. The first is indicated by the decora.tion ":: [Name : d', Salary : int]" on the

type variable d. This allows only certain record types to be substituted for dl i.e. those with a Salary : int
field, a Name : S field (where 6 is obtained by substituting some type for dl), and possibly other fields.

This represents polymorphic type of the form Vdl.Vd :: [[Name : dl, Salary : int].{d) - {d') where the

type variable d is quantified over only those record types that contain Name and Salary fields of appropriate

types. Thus

{[Name : siring, Salary : int]} - {string)
{[Name : string, Age : int, Salary : int]} -+ {string)

{[Name : [First : strin,g, Last : string], Weight : int, Salary : in t])
-+ {[First : string, Last : string]}

are allowable instances of the type of wealthy, while

{[Name : string]) -+ {string)
{[Name : string, Age : int, Salary : string]) - {string)

{ in t) -+ {string)

are not allowable instances, for the subst.itutions for d that generate them do not match with the constraints

imposed by the decoration [Name : dl, Salary : int]. Type variables whose instantiation is controlled by

such a decoration are called kinded type varia.bles.

The second constraint we place on the type variables d and d' is that they can only be instantiated with
description types. Some of the essential operations on databases require computable equality, and this is not
available on function types and, may be unavailable on certain base types. Description types are those that

can be constructed from the allowed base types through any type construction other than a function type

that appears outside the scope of a reference type. Equality is always available on references regardless of

their associated values. We therefore allow description types to contain function types inside of reference

type constructor. ML recognizes a similar coiistraint on type variables.

In order to display type variables using conventional programming fonts we follow the ML convention

of displaying ordinary type variables as 'a, 'b, . . .and description type variables as " a , " b etc. Thus the

type {d :: [Name : dl , Salary : int]) + {d') will be displayed in examples as {"a::[Name : " b, Salary : int])

-> {" b).

The typing Wealthy: {"a::[Name : " b, Salary : int]} -> {" b) places restrictions on how Wealthy may be

used. For example, all of the following

Wealthy({[Name = "Joe"], [Name = " Fred"]))

Wealthy({[Name = "Joe", Salary = "nonsense"]))

sum(Wealthy({[Name = " Fred", Salary = 30000],
[Name = "Joe", Salary = 200000]}))

will be rejected by the compiler. In the first application the Salary field is missing; in the second it has the

wrong type. In neither case can we find a suitable instantiation for the kinded type variable "a::[Narne : " b,
Salary : int]. In the third case we can find such an instantiation, but this results in the variable " b being

bound to string, so that the result of Wealthy is of type {string} - an inappropriate argument for sum.

There is a close relationship between the polymorphism represented by the kinded type variables the

generic nature of object-oriented programming. The type scheme {"a::[Name : " b, Salary : int]) can be

thought of as a class, and functions that are polymorphic with respect to this, such as Wealthy, can be

thought of as methods of that class. For the purposes of finding a typed approach t o object-oriented

programming, Machiavelli's type system has similar goals to the systems proposed by Cardelli and Wegner

[Car$$, CW851. However, there are important technical differences, the most important of which is that in

Machiavelli database values have unique types, while they have nlultiple types in Cardelli and Wegner's type

systems. Database types in Machiavelli specify the exact structure of values and this property is needed in

order to implement various database operations such as equality and natural jozn. (See [BTB089] for more

discussion.) Inheritance is thus achieved not by subtyping but by polymorphic instantiation of kinded type

variables. The most important practical difference is that this polymorphism is inferred, which means that

the programmer does not have to declare and explicitly instantiate the rather complicated forms needed in

the Cardelli and Wegner system to capture precisely the polymorphic nature of functions such as Wealthy.

Another important extension to these type systems for objects and inheritance is that Machiavelli uni-

formly integrates set types and various database operations, including generalized join and projection in

its polymorphic type system. Sets may be constructed on any description type. Combined with labeled
records, labeled variants and cyclic definitions, the Machiavelli type system allows us to represent most of

the structures found in various complex data models [HK87]. Cyclic structures are supported by exploiting

the properties of regular trees [Cou83]. Join and projection are generalized to arbitrary, possibly cyclic,

structures and are polymorphic functions in Machiavelli's type system. "Complex object" or "non-first-

normal-form" relations are usually taken as relations whose entries are not restricted to being atomic values,

but may themselves be relations. The structures we shall describe are more general in that they can also

include variants and cyclic structures. Thus Machiavelli provides a, natural representation of a generalized
relational (or complex object) data model within a polymorphic type system of a programming language

and achieves a natural integration of databases and data. types.

The attempt to understand the nature of object-oriented databases has centered more on a discussion of
features[ABD+89] than on any principled attempt to provide a formal semantics. However, looking at these

features, there are some that are not directly captured in a functional language with the relational extensions

we have described above. First, the class structure of object-oriented languages provides a form of abstraction

and inheritance that does not immediately fall out of an ML-style type system. Second, object identity is not

provided in the relational model (though it is an open issue as t o whether it requires more than the addition

of a reference type, as in ML.) Third, and perhaps most interesting from the standpoint of object-oriented

databases, there is an implicit requirement that helerogeneous collections should be representable in the

language. We believe that these issues can be satisfactorily resolved in the context of the type system we are

advocating. In particular, the heterogeneous collections - which would appear to be inconsistent with static

type-checking - can be satisfactorily represented using essentially the same apparatus developed to handle

relational data types. This is discussed in section 5.

The organization of this paper is as follows. Section 2 introduces the basic data structures of Machiavelli

including records, variants and sets, and shows how relational queries can be obtained with the operations

for these structures. Section 3 contains a definition of the core language itself. I t defines the syntax of types

and terms, and describes the type inference system. Section 3 also presents the type inference process in

some detail for the basic operations required for records, sets and variants. In section 4, the language is

extended with relational operations - specifically join and projection - that cannot be derived from basic

set operations, and the type inference system is extended to handle them. In section 5 we discuss how this

type system can be used to capture an important aspect of object oriented databases, the manipulation of

heterogeneous collections. Section 6 concludes with a brief discussion of further applications of these ideas

to object-oriented languages and databa.ses.

2 Basic Structures for Data Representation

As we have just mentioned, the main goal of this st,ucly is t.o develop a polymorphic type system that serves

as a medium in which to represent various database structures. In pa.rticular it should be expressive enough

to represent various forms of complex objects that violate the "first-normal-form assumption" that underlies

most implemented relational database systems and most of the traditional theory of relational databases.

For example we want to be able to deal with structures such as

{[Name = [First = " Bridget", Last = " Ludford"], Children = {" Jeremyw, "Christopher")I,
[Name = [First = " Ellen", Last = " Gurman"], Children = { "Adam" , " Benjaminw)])

which is built up out of records and (uniformly typed) sets. This structure is a non-first-normal-form relation

in which the Name field contains a record and the Children field contains a set of strings. It is an example
of a description term, and in this section we shall describe the constructors that enable us to build up such

terms from atomic data: records, variants, sets and references. We shall also describe how cyclic structures

are created. As we describe each constructor, we shall say under what conditions it constructs a description

term. For example, a record whose fields contain functions can be very useful, but such a value cannot be

placed directly in a set. This would give rise to a type error.

We start with the basic syntactic forms of Machiavelli for va.lue and function definition, which are exactly

those of ML. Names are bound to values by the use of val, a,s in

val four = 2 + 2

functions are defined through the use of fun, as in

fun f(n) = if eq(n, l) then 1 else n * f(n-1)

and there is a function constructor fn x => . . . that is used to create functions without naming them, as in

(fn x => x + x) (4)

which evaluates t o 8. In fact, since a fixed point operator is lambda-definable in Machiavelli (using recursive

types), recursive function definition can be obtained from value definition and is not essential. It is used

here for convenience. Finally there is the form let x = el in e2 end, which evaluates ez in the environment in

which x is bound to e l . Example:

let x = 4 + 5 in x + x*x end

which evaluates to 90. In an untyped language, let . . . i n . . . end is also not essential, but the type inference

rules are such that this form is treated specially, and it is the basis for ML's polymorphism. By implicit or

explicit use of let, polymorphic functions are bound and used. Polymorphic function definitions such as that

of our Wealthy example are treated as shorthand for a let binding whose scope is the rest of the program.

2.1 Labeled Records and Labeled Variants

The syntax for labeled records is:

where 11, . . . ,1, stand for labels. A record is a description term if all its fields vl, . . . , vn are description terms.
Other than record construction, ([. . . I), there are two primitives for records. The first, -.I is field selection;

r.1 selects the 1 field form the record r. The second, modify(-,l,-), is field modification in which rnodify(r,l,e)

creates a new record identical to r except on the 1 field where its value is e. For example,

rnodify([Name = " J . Doe", Age = 211, Age, 22)

evaluates t o [Name = " J . Doe", Age = 221. It is important to note that modify does not have a side-effect.

I t is a function that returns another record. This construct enables us to modify a record field that is not

a reference. With the polymorpliic typing of Machiavelli presented later, it achieves added flexibility in

programming with records.

We shall make frequent use of the syntax (el, ez) for pairs. This is simply an abbreviation for the record

[first = e l , second = e2]. Triples and, generally, n-tuples are similarly constructed.

Variants are used to "tag" values in order to treat them uniformly. For example, the values <Int = 7>
and <Real = 3.0> could both be treated as numbers, and the tags used to indicate how the value is to be

interpreted (e.g. real or integer.) A program may use these tags in deciding what operations to perform on

the tagged values (e.g. real or integer arithmetic.) The synt,ax for constructing a variant is:

The operation for analyzing a variant is a case expression:

case e of
<ll=xl> => e l ,

<1, =x,> => en ,
else eo

endcase

where each x i in <li=xi> => ei is a variable whose scope is in ei. This operation first evaluates e and if it

yields a variant <li=v> then binds the variable x i to the value v and evaluates ei under this binding. If there

is no matching case then the else clause is selected. The else is optional, and, if omitted, the argument e

must be evaluated to a variant labeled with one of l l , . . . , I , . It is a property of the type system that this

condition can be statically checked.

For example,

case <Consultant = [Name = " J. Doe", Address = " 10 Main St.",

Phone = " 222-1234"]>

of

<Consultant = x> => x.Phone,

<Employee = y> => y.Extension

endcase

yields " 222-1234".

Note that case . . . o f . . . endcase is an expression, and returns a value. The possible results el , . . . , en, eo

should all have the same type. A variant <I = v> is a description term if v is a description term.

2.2 Sets

Sets in Machiavelli can only contain description terms and sets themselves are always description terms.

This restriction is essential to generalize database operatlions over structures containing sets. There are four

basic operations for sets:

{I empty set,

{XI singleton set constructor,
union(sl ,s2) set union,

hom(f,op,z,s) homomorphic extension

The syntax {xl, xa, . . . , x,) is syntactic shorthand for union({zl), union({x2), union(. . . ,{xn))))

Of these operations, horn requires some explanation. This is a primitive function in Machiavelli, similar

to the "pump" operation in FAD [BBKV88] and the "fold" or "reduce" of many functional languages. Its

definition is

hom(f ,op,z,{)) = 2,

horn(f ,op,z,{e)) =f (e)

hom(f ,op,%,union(el ,e2)) = op(hom(f ,op,z,el),hom(f ,opP2,e2))

for example, a function to check if there is at least one element satisfying property P in a set can be defined

as

fun exists P S = hom(P, or, false, S)

and a function that finds the largest member of a set of non-negative integers is

fun max S = horn(fn x => x, fn (x ,~) => i f x > y then x else y, 0, S)

In general the result of this operation will depend on the order in which the elements of the set are encoun-

tered; however if op is an associative, commutative and idempotent operation with identity z and f has no

side-effects (as is the case in the exists and rnax examples) then the result of horn will be independent of the

order of this evaluation. Now one would also like to use horn on operations that are not idempotent, for

example

fun sum S = horn(fn x => x, +, 0, S)

However + is not idempotent, and it is easy to construct programs with ambiguous outcomes if evaluated

according t o the rules above and a further rule that says union(s, s) = s. For example1

Now it is easy enough to remove such ambiguous outcomes by insisting - as we have done in our implemen-

tation - that , in the representation of sets, we do not have duplicated elements. This is equivalent to putting

a condition on the third line of the definition of horn that the expressions el and e2 denote disjoint sets.

Unfortunately this considerably complicates the operational semantics of the language, and it precludes the

possibility of lazy evaluation. For a resolution of this issue, see [BTSSl, BTBNSl], which disuss the semantic

properties of programs with sets and other collection types. In this paper we shall occasionally make use of

"incorrect" applications of horn; however we are confident that the adoption of an alternative semantics will
not affect typing issues, which are the main concern here.

Various useful functions can be defined using correct applications of horn. A function rnap(f, S), which

applies the function f to each member of S is:

fun map(f,S) = horn(fn x => {f x), union, {), S)

For example rnap(rnax,{{l,2),{3), {6,5,4}}) evaluates to {2,3,6).

A selection function is defined by

fun filter(p,S) = horn(fn x => if p(x) then {x) else {), union,{),S)

filter(p, S) extracts those members of S that satisfy property p; for example filter(even,{l,2,3,4)) evaluates

to {2,4).

In addition to these examples, horn can be used to define set intersection, membership in a set, set

difference, the n-fold cartesian product (denoted by prod-n below) of sets and the powerset (the set of

subsets) of a set. Also, the form

select E
f rom XI <- S1,

2 2 <- S 2 ,

xn <- Sn
where P

in which X I , 22,. . . , x, may occur free in E and P, is provided in the spirit of relational query languages and

the list comprehensions of Miranda [Tur85]. This can be implemented as

We are grateful to Val Tannen for this example and for much of the ensuing discussion.

8

in which map, filter and prodn are the functions we have just described, and (E , P) is a pair of values

(implemented in Machiavelli as records). See [Wadgo] for a related discussion of syntax for programming

with lists.

2.3 Cyclic Structures

In many languages, the ability to define cyclic structures depends on the ability t o reassign a pointer. In

Machiavelli, these two ideas are separated. It is possible to create a structure with cycles through use of the

(rec v.e) construct, e.g.

val Montana = (rec v.[Narne = "Montana", Motto = "Big Sky Country",
Capital = [Name = "Helena", State = v]])

This record behaves like an infinite tree obtained by arbitrary unfolding by substitution for v. For exam-

ple, the expressions Montana.Capital, Montana.Capital.State, Montana.Capital.State.Capital, etc. are all valid.

Moreover, equality and other database operations on des~ript~ion terms generalize to those cyclic structures.

This uniform treatment is achieved by treating description terms as regular trees [Cou83]. The syntax (rec

v.e) denotes the regular tree given as the solution to the equation v = el where e may contain the symbol v

but not v itself. To ensure that the equation v = e has a proper solution, we place the restriction that if e

contains a new constructor then the argument of new may not contain x.

2.4 References

We believe - though we shall comment more on this in section 6 - that the notion of "object identity" in

databases is equivalent to that of references as they are implemented in ML. There are three primitives for

references:

new(v) reference creation,

! r de-referencing,

r:=v assignment.

new(v) creates a new reference and assigns the value v to it , ! r returns the value associated with the reference

r, and r:=v changes the value associated with the reference r to v. In a database context, they correspond

respectively to creating an object with identity, retrieving the value of an object, and changing the associated
value of an object without affecting its identity.

The uniqueness of identity is guaranteed by the uniqueness of each reference. Two references are equal

only if they are the results of the same invocation of new primitive. For example if we create the following

two objects (i.e. references t o records),

John1 = new([Name=" John", Age= 211);

John2 = new([Name=" John", Age= 211);

then J o h n l = Johnl and !John1 = !John2 are true but Johnl = John2 is false even though their associated

values are the same. Sharing and mutability are captured by references. If we define a department object as

SalesDept = new([Name = "Sales", Building = 111);

and from this we define two employee objects as

John = new([Name=" John", Age =21, Dept = SalesDept]);

Mary = new([Name=" Mary", Age =31, Dept = SalesDept]);

then John and Mary share the same object SalesDept as the value of Dept field. Thus, an update to the

object SalesDept as seen from John,

(!John).Dept := modify(!((!John).Dept), Building, 98)

is reflected in the department as seen from Mary. After this statement,

evaluates to 98 . Unlike many languages references do not have an optional "nil" or "undefined" value. If
such an option is required it must be explicitly introduced through the use of a variant.

3 Type Inference and Polymorphism in Machiavelli

Type inference is a method to infer type information that represents the polymorphic nature of a given

untyped (or partially typed) program. Hindley [Hi11691 established a complete type inference algorithm for

untyped lambda expressions. Independently, Milner [Mi1781 developed a complete type inference algorithm

for a functional programming language including polymorphic definition (using let construct.) Damas and

Milner [DM821 formulated its type system and showed the completeness of Milner's type inference algorithm.

This has been successfully used in the ML family of programming languages [Aug84, MTHSO] and also been

adopted by other functional languages [Tur85, HPJW+92]. Unfortunately this method cannot be used

directly with some of the data structures and operations we have described in the previous section. In this

section we give an account for the extension to the Damas-Milner type system that is used in Machiavelli,

first through some examples and then through a definition of the "core" language and its type system.

The extension is a departure from that given in our original outline of Machiavelli [OBBT89] in that the

notion of kinded types allows us to obtain a "principal type" result for expressions in a core language. This

significantly simplifies the presentation of the type inference algorithm.

For programs which do not involve field selection, variants and database operations, Machiavelli infers

type information similar to those of ML. For example, for the identity function

fun id x = x:

the type system infers the following type information

where 'a is a type variable intuitively representing an "arbitrary type". The notation 'a -> 'a is a type
representing the set of types that can be obtained by substituting its type variables with some types (such

as int, boo1 or int -+ int) . This type can be understood as a representation of a polymorphic type of the form

Vt. t - t in the second-order polymorphic lambda calculus [Rey74, Gir711. The most important property of

the ML type system is that for any type consistent expression it infers a principal t y p e . This is a type such

that all its instances are types of the expression and conversely any type of the expression is its instance.
This means that the type system infers a type that exactly represents the set of all possible types of an

expression. In the example of id above, the set of instances of 'a -> 'a is the set of all types of the form T -+ T

and is exactly the set of all possible types of id. By this mechanism, ML achieves p o l y m o r p h i s m without

explicit type abstraction and type application.

A more substantial example of type inference is given by the function map of the previous section, which

has the following type.

map : ("a -> " b * {"a}) -> {" b)

Here "a and " b are also type variables, but in this case they only represent description types. The type

for map indicates that i t is a function that takes a function of type 61 -62 and a set of type (61) and

returns a set of type {S2) where bl, b2 can be any description types. Thus map(max, {{1,2,3),{7},{5,2))) is

a legitimate application of map. Again, the type ("a -> " b * {"a)) -> {" b) is principal in that any type for

map is obtained by substituting description types for the type variables " a and " b. In the example, ({int}

-> int * {{int))) -> {int) is the type of map in map(max, {{1,2,3) , . . .)).

Similar examples are possible in ML and its relatives. However it is not possible for ML1s type inference

method t o infer a type for a program involving field selection, variants or the relational database operations

that we shall describe later. For example, the simplest function using field selection

fun name x = x.Name

cannot be typed by ML. (In Standard ML, this function is written fun name x = (#Name x), which is

rejected by the compiler unless a complete type is specified for the argument x.) The difficulty is that the
conventional notion of types in ML is not general enough to represent the relationship between the argument

type and the result type, which in this case is the inclusion of a field type in a record type.

Wand attempted [Wan871 to solve this problem (with the operation that extends a record with a field)

using the notion of row variables, which are variables ranging over finite sets of record fields. His system,

however, does not share with ML the property of principal typing (see [OB88, Wan881 for the analysis of

the problem and [JM88, Rem89] for the refinements of the system.) Based on Wand's general observation,

in [OB88] we developed a type inference method which overconles the difficulty and extends the method to

database operations. Instead of using row variables, we introduced syntactic conditions t o control substitu-

tion of type variables. For records and variants, the necessary conditions can be represented as kinded type

variables [Oho92], as we have seen in the example of Wealthy in Introduction. For example, the function
name above is given the following type

name : 'a::[Name : 'b] -> 'b

As explained in the introduction, the notation all record types containing the field Name : T where T is any

instance of 'b. Substitutions are restricted to those t11a.t respect kind restrictions of type variables. The type
above then represents the exact set of all possible types of the function name and is therefore regarded as

a principal (kinded) type for name. More examples of type inference for records and variants are shown in
Figure 1 which shows an interactive session in Machiavelli. Input to the system is prompted by -> , and
output is preceded by >> . The top level input is either a value or function binding; i t is a name for the

-> val j o e = [Name=" Joe", Age=21,

Status=<Consultant = [Address=" Philadelphia", Telephone=2221234]>];

>> val j o e = [Name=" Joe". Age=21,

Status=<Consultant = [Address=" Philadelphia", Telephone=2221234]>]

: [Name : str ing, Age : in t , Status : 'a::<Consultant : [Address : string,Telephone : int]>]

-> f u n phone(x) = case x.Status o f

endcase

>> val phone = fn : 'a::[Status : <Employee : 'b::[Extension : 'dl ,

Consultant : 'c::[Telephone : 'dl>] -> 'd

-> phone(joe);

>> val it = 2221234 : i n t

-> fun increment-age(x) = modify(x, Age, x.Age + 1);

>> val increment-age = f n : 'a::[Age : int] -> 'a::[Age : int]

-> increment _age([Name=" John" ,Age=21]);

>> val it = [Name=" John",Age=22] : [Name : str ing,Age : int]

Figure 1: Some Simple hlachiavelli Examples

result of evaluation of an expression. The out,put consist,^ of some description of the value that has just been

evaluaked or bound, together with its inferred type.

We now define a small polyn~orphic funct,ional language by combining the da ta structures described in

the previous section with a functional calculus and giving its type system. This will serve as the polymorphic

"core" of Machiavelli.

3.1 Expressions

The syntax of programs or expressions of the core language is given by

e ::= c, I () I x I (fn x => e) I e(e) I let x=e in e end I
if e then e else e I eq(e,e) I
[l=e,. . .,l=e] I e.1 I modify(e,l,e) I
<l=e> I case e o f <l=x> => e,. . ., <1=x> => e endcase 1
case e o f <I=x> => e,. . ., <l=x> => e else => e endcase I
{e) (union(e,e) I hom(e,e,e,e) I
new(e) I (!e) I e:=e I
(rec x.e)

In this, c , stands for standard constants i~iclucliiig constai~ts of base types and ordinary primitive functions

on base types. x stands for the variables of the language. () is t,he single value of type uni t and is returned

by expressions such as assignment. Examples of the syntax have already been given in Section 2 and, in

particular, in Figure 1. The set-valued expression {el.. . . , en} is shorthand for union({el),union(. . .,{en)). . .).

The binding val id = e l ; e:! is syntactic sugar for le t id = e l i n ez end. Recursive function definition with

multiple argument is also syntactic sugar for expressions constructed from let , records, field selection and a

fixed point combinator, which is already lambda-definable in Machiavelli using recursive types. Evaluation

rules for those expressions are obtained by ehtending the operational semantics of ML such as the one

defined in [Toft381 with the rules for eq and the operations on records, sets, variants and the rules for

recursive expressions. The rule for eq requires delicate treatment in connection with cyclic structures and

sets and we defer it until we discuss database operations in section 4. We have already informally described

how operations on records, sets and variants are evaluated, and these can readily be formulated as reduction

rules. In order to handle recursive expressions, we add the following rules. Let E (x) be one of the expressions

e.1, rnodify(x,l,e), case x o f -.., union(x,e), union(e,x), or hom(el,ez,ea,x).

where e[(rec x.e)/x] is the expression obtained form e by substituting (rec x.e) for all free occurrences of x in

e (with necessary renaming of bound variables.) This rule corresponds to "unfolding" of cyclic definitions.

3.2 Types and Description Types

The set of types of Machiavelli, ranged over by r, is the set of regular trees [Cou83] represented by the

following type expressions :

T ::= t I un i t 1 b I bd I r+r ([i : ~ , . . .,l:r] (< l : r , . . . , l : r> ({T) I re f (r) I (rec v . r (v))

t stands for type variables. uni t is the trivial type whose only value is (). b and bd range respectively over the

base types and base description types in the language. The other type expressions are: T -+ T for function

types, [i : ~ , . . .,I:T] for record types, <i:r , . . . , l : r> for variant types, and {r) for set types. In (rec v.r(v)), r (v)

is a type expression, other than v itself, in which the type variable v may occur free, and the entire expression

denotes the solution to the equation v = r (v) , which exists as a regular trees. In keeping with our syntax
for records we shall use the notation rl * r 2 as an abbreviation for the type [f irst : 71, second : r2] Triples

and, generally, n-tuple types are similarly treated.

Database examples of Machiavelli types are: a relatioil type,

{ [PartNum : in t , Par tName : str ing, Color : <Red : un i t , Green : un i t , Blue : unit>])

a complex object type,

{[Name : [First : str ing, Last : string], Children : {string)])

and a mutable object type,

(rec p. ref([ld# : in t , Name : str ing, Children : {p)]))

Note that (rec v . r (v)) is not a type constructor but syntax to denote the solution to the equation v = r(v) .

As a consequence, distinct type expressions may denote the same type. For example, the following type
expression denotes the same type as the one above:

2While most of the ideas in this paper related to type-checking can be generalized to work for regular trees, we have not

always given this generalization. It is often enough to think of the types in Machiavelli as simply the expressions defined by
this syntax

(rec p. ref([ld# : int, Name : string,

Children : {ref([id# : int, Name : string, Children : {p)]))]))

There is an efficient algorithm [Cou83] to test whether two type expressions denote the same type (i.e.

regular tree) or not. We can therefore identify type expressions as the types they denote. Note also that an

"infinite" (cyclic) type does not necessarily mean that its values are cyclic. In the last example, while the

type is cyclic, a cyclic value of this type presents some biological difficulties.

The set of description types, ranged over by 6, is the subset of types represented by the following syntax:

6 ..- ..- d I unit I bd I 1 [1:6,. . .,[:&I 1 < I : & , . . . , I :&> 1 (6) I ref(r) I (rec v.&(v))

d stands for description type variables, i.e. those type variables whose instances are restricted t o description

types. T in ref(r) ranges over the syntax of all types given previously. This syntax forbids the use of a

function type or a base type which is not a description type in a description type unless within a ref(. . .).
Thus int -> int is not a description type but,

ref([x-coord : int, y-coord : int, move-horizontal : int -> ()I)
is a description type.

3.3 Type Inference without Records and Variants

As we have already indicated, the Machiavelli type system is based on type inference. A legal program

corresponds to an (untyped) expression associated with a type inferred by the type inference system. As

such, the definition of this implicit system requires two steps: first we give the typing rules, which determine

when an untyped expression e is considered to have a type r and is therefore considered as a well typed

expression; second, we develop a type inference algorithm that infers, for any type consistent expression, a

principal type. In order to increase readability, we develop the description of the type system, in two stages:

in the rest of this subsection and the following subsection, we describe the type system for expressions that
do not involve records and variants; then, in subsection 3.4 we extend the system to records and variants by

introducing kinding.

The typing rules are given as a set of rules to derive typing judgments. Since, in general, an expression e

contains free variables and the type of e depends on the types assigned to those variables, a typing judgment

is defined relative to a type assignment of free variables. M'e let A range over type assignments, which

are functions from a finite subset of variables to types. We write d (x , T) for the function A' such that

domain(A1) = domain(d) U {x), A1(x) = T and A1(y) = A(y) for y # x. A typing judgment is a formula of

the form:

A ~ e : r

expressing the fact that expression e has type r under type assignment A. The typing rules for those

operations in Machiavelli that do not involve records are shown in Figure 2. Note that in some of them such
as (UNION), types are restricted to description types, which is indicated by the use of 6 instead of T.

In (LET), the notation el[e2/x] denotes the expression obtained from el by substituting ez for all free

occurrences of x. This rule for polymorphic let differs form that of Damas-Milner system [DM821 in that it
does not use generic types (a type expression of the form Vt . r) but instead it uses syntactic substitution

of expressions. I t is shown in [Oho89a] that this proof system is equivalent to that of Damas-Milner. The

(UNIT) A D () : uni t

A D e l [e 2 / x] : ~ A D e 2 : r 1
(LET) A D let x = e2 in e l end : T

A ~ e ~ : b o o l A ~ e ~ : r A ~ e ~ : r
(IF) A D if e l then e2 else es : r

A t > e : 6
(SINGLETON)

A D {e) : (6)

d D e l : 6 + r 1 d b e 2 : (T I * T ~) + T ~ A b e g : r 2 A b e 4 : (6)
(~ 0 ~ 1 A D hom(el,e~,eg,e4) : r 2

A D e l : r e f (r) A D e 2 : r
(ASSIGN)

d D el:=ea : un i t

A (v ,6) D e(v) : 6
(REC) A I> (rec v. e(v)) : 6

Figure 2: Typing Rules for Expressions Without Records and Variants

advantage of our treatment of let is that it yields simpler proofs of various properties of the type system and

that the type system can be extended to records, variants and database operations. While it is still possible to

extend Damas-Milner generic types to records and variants using kinded type abstraction [Oho92], we do not

know how to extend them to the conditional typing that we shall require for database operations. However, a

naive implementation of a type inference algorithm based on this typing rule would require recursive unfolding

of let definitions. This unfolding process always terminates but would decrease efficiency and prohibit the

possibility of incremental type-checking. This problem is overcome by adding an extra parameter to a type

inference algorithm to maintain principal types for let-bound variables. We will comment on this when we
describe the type inference algorithm.

The proof system of Figure 2 determines which expressions are type correct Machiavelli programs (not

involving operations on records and variants.) Unlike the simple type discipline, this proof system does not

immediately yield a decision procedure for type checking expressions. The second step of the definition of

the type system is to give such a decision procedure.

Following [Hin69, Mi1781, we solve this problem by developing an algorithm that always infers a principal

type for any type consistlent expressions. A subsliitrtion S is a f~nct~ ion from type variables to types. A
substitution may be extended t o type expressions, arid we identify a substitution and its extension, i.e. we

shall write S(T) for the expression obtained by replacing each type variable t in T with S(t). A typing
dl D e : 71 is more general than Az D e : rz if doin.ain(Al) C doinain.(A2) and there is some substitution

S such that 72 = S(r l) and Az(x) = S(Al(x)) for all x E domain,(A1). A typing A D e : T is principal if it

is more general than any other derivable typing of e .

Figure 3 shows an algorithm to compute a principal typing for any untyped expression of Machiavelli

that does not contain records, variants a.nd database operations. The algorithm consists of a set of functions,

one for each typing rule, together with the main function Typing. Based on the typing rule (RULE), P,,,,
synthesizes a principal typing for an expression e from those of its subexpressions. It generates the equations

that make the typings of the subexpressions conform to the premises of the rule, solves the equations

and generates the typing corresponding to the conclusion of the rule. Unify used in these functions is a

unification algorithm. allpairs((A1, . . . , A,)) denotes the set of pa.irs {(Ai(z), Aj(x))lx E domain(Ai) n
domain(Aj), i # j } . The notation ~t~ denotes the restriction of the function F to the set X C domain(F).

For example, consider the function PA,,, which takes principal typings of el and e2, and synthesizes

a principal typing of el(e2). It first generates the equations that require the common variables of el and

and ez to have the same type assignment, together with the equation that makes the type of e2 to be

the domain type of the type of el . They are respectively the set of equations allpairs((A1, Az)) and the

equation (r1, TZ + t) . It then solves these equations by Unify which always finds a most general solution to

the equations (if it exists) in the form of a substitution S. Finally, it returns the type assignment S(A1 ud2)
and a type S(t) , corresponding to the conclusion of the rule APP .

The main function Typing is presented in the style of [MitSO]. It analyzes the structure of the given

expression, recursively calls itself on it,s subexpressions to get their principal typings and then calls an
appropriate function P that corresponds to the outermost constructor of the expression. The extra parameter

L to Typing is an environment that records the principal typings of let-bound variables. By maintaining
this environment, the algorithm avoids repeated computation of a principal type of el in inferring a typing

of expressions of the form let x=el in ez end, and it also enables incremental compilation. Renaming type

variables in the case of x E domain(L) effectively achieves the same effect of computing the principal typing

of el for each occurrence of x in e2.

As an example of type inference, let us use the algorithm to compute a principal typing of the function

insert and of its application:

val insert = fn x => fn S => union({x), S);
insert 2 {I;

Figure 4 shows the sequence of the function calls and their results during the computation. Line 1 is the

top level call of the algorithm on fn x => fn S => union({x), S). Line 3 is the first recursive call on its only

subexpression, whose result is shown on line 15. Line 9 and 12 contain a call of Typ ing on a variable which

immediately returns a principal typing. In Ps,,,,,,o, on line 10 and 11, type variable t l is unified with a

fresh description type variable dl . In line 13 and 14, PUNION unifies type variable t2 with type { d l) and takes

the union of type assignments. Line 17 shows a principal typing of insert. Line 18 - 35 shows an inference

process for insert 2 I), which is a shorthand for let insert = fn x => fn S => union({x), S) i n insert 2 {) end.

I t requires some work to show that the algorithm we have described has the desired properties. We have

also glossed over some important details such as the treatment of description type variables, recursive types

and references. Before dealing with these issues let us first show how the typing rules and the inference

system may be extended t o handle records and variants.

3.4 Kinded Type Inference for Records and Variants

To extend the type system to records and variants, we need to introduce kind constraints on type variables.

The set of kinds in Machiavelli is given by the syntax:

The idea is that U denotes the set of all types, [l1:r1,. . .,l,l:rn] denotes the set of record types containing the

set of all fields ll : TI, . . . , in : r,, and ((11 :rl ,. . .,I,:T,)) denotes the set of variant types containing the set of

all fields l1 : TI, . . . ,1, : r, .

In the extended type system, type variables must be kinded by a kind assignment K, which is a mapping

from type variables to kinds. We write {tl :: kl, . . . , t , :: h,) for a kind assignment K that maps ti to ki
(1 5 i < n). A type T has a kind k under a kind assignnlent K, denoted by K t T :: k , if it satisfies the

conditions shown in Figure 5. For example, the following is a legal kinding:

{tl :: U,t2 :: [[Name : t l , Age : int]} l- t2 :: [Name : t l]

A typing judgment is now refined to incorpora.te kind constraints on type variables:

Typing judgments of the form A D e : T described in t.he previous subsection should now be taken as

judgments of the form Ko,A D e : r where KO is the kind assignment mapping all the type variables

appearing in A, T to the universal kind U. The typing rules for records and variants in the extended type

system are given in Figure 6. The rules for other constructors are the same as before except that they should
be reinterpreted by adding the universal kinding stated above. Note that the kinding constraints in the rules

pAw((d1, TI)1(-42172)) =
let S = Unify(allpairs((A1, A z }) U { (T I , 7 2 -+ t))) (t fresh)

in (S (A 1) U S (A 2), S (t))
end

PABs((d1 X) =
if x E dornain(A) then (AT A($) + T)

else (A l l t -+ 7) (t fresh)

PLET((d1, T I) , (A z , 72)) =
let S = Unify(allpairs({A1, A 2 }))

in (S (A 1 U A2), S (T ~))
end

P , , ~ , ~ ~ ~ , ~ (A , T) = let S = Unify({(r , d) }) in (S (A) , { S (d) }) end (d fresh)

PUNION((A1lTl)l (d29 '2)) =
let S = ~ n i f ~ (a l l p a i r s ({ d l , A 2)) U { (T I , 7 2 1 , (T I , I t)) }) (t fresh)

in (S (A 1 U A2I1 S ({ t)))
end

Typ ing(e , L) =
case e of:

CT * (0 , 7)
x * if x E domain.(L) then L (x) wi th all type variables renamed

else ({ x : t } , t) (t fresh)

fn x => e * PABS(T~~ing(e l L) , x)

e l (e2) ==+ PAPP(Typing(e1, L) , Typing(e2, L))
let x = el in ea * let (d l , 7 1) = Typing(e1, L)

L1 = L (x l (A1 71))

in PLET((A1, T I) , Typin.g(e2, L1))

{ e l * PsIN,LE,o, (Typing(eI L))
union(e1 ,e2) * P u , , o N (T ~ ~ i ~ g (e l , L) , T y p i n d e z , L))

endcase

Figure 3: T y p e Inference Algorithm without Records, Variants

Typ ing (l e t insert = fn x => fn S => union({x) ,S) in insert 2 {) end,@)

= PLE,((O, d l + { d l) + { d l))) , Typing(insert 2 0 , {(insert, (0 , d l + { d l) -+ { d l)))))

)Typing(insert 2 {I, {(insert, (0 , dl -+ { d l) -+ { d l)))))

) = PAPp(Typing(insert 2 , {(insert, (0 , d l -+ { d l) + { d l))))) ,

T y p i n g ({) , {(insert, (0 , d l + { d l) - + { d l })))))

))Typing(insert 2 , {(insert, (0 , dl + { d l) + { d l)))))

)) = PAPp(Typing(inser t , {(insert, (0 , dl -+ { d l) + { d l))))) ,
T y p i n g (2 , {(insert, (0 , dl + { d l) + { d l))))))

)))Typing(insert , {(insert, (0 , dl + { d l } + { d l)))))

))) = (01 d2+ { d z) + { d 2))
)))Typ ing (2 , {(insert , (0 , dl + { d l) -+ { d l)))))

))) = (0 , i n t)

)) = PAPP((0, d2 -+ { d 2) + {d33) , (0, i n , t))
)) = (0 , { i n t) -+ { i n t))

)) T y p i n g ({) , {(insert , (0 , d l 4 { d l) -- { d l)))))

)) = (01 (d 3))

) = pAPP((0, { int) + iint 11, (0 , { (/ 3)))

) = (0 , { i n t))

= PIe,((O, d l + { d l) + { d l }) , (0 , {inti))
= (0 , { i n t))

Figure 4: Computiilg a Principal Typing

Figure 5: Kinding Rules

d D e : < l : ~ l , . . . , n : ~ n > K , d (x i , ri) I> ei : T (1 5 i 5 n)
(CASE)

K , A D case e of <ll=xl> => e l , . . ., <ln=x,> => en endcase : T

K , A ~e : TO K , d (~ i , T i) ~ e i : T (1 ~ i ~ n) K , d Deo : T K t :: ((l l : ~ l , . . . , l n : ~ n))
(CASE')

K , A D case e of <ll=xl> => e l , . . ., <ln=x,> => en else => eo endcase : T

Figure 6: Typing Rules for Records and Variants

(DOT) and (VARIANT) exactly capture the conditions for the expressions to have a typing. The following is

an example of legal typing:

{tl :: U,t2 :: [Name : tl]}, 8 D fn x => x.Name : t 2 + t l

which says that the function fn x => x.Name can be applied to any record type t 2 which contains the field

Name:tl and returns a value of type t l .

To refine the type inference algorithm, we need to refine an unification algorithm to kinded unification.

The strategy is to add a kind assignment to each component in unification and to check the condition that

unification respects the constraints specified by kind assignments. A kinded substitution is a pair (K, S)

consisting of a kind assignment K and a substitut.ion S. Intuitively, the kind assignment K is the kind
constraints that must be satisfied by the results of applying the substitution S . We write [tl I+ T I , . . . , t, I+

T,] for the substitution which maps xi to ri (1 < i 5 n). We say that a kinded substitution (Kl, S) respects
a kind assignment K2 if, for all t E domain(K2), Kl I- S (t) :: S(K2(t)) is a legal kinding. For example, a

kind substitution

(i t l :: U), [t:, w [Name : tl,Age : int]])

respects the kind constraints {tl :: U,t2 :: [Name : tl]} and can be applied to type t 2 under this constraint.

A kinded substitution (Kl , S1) is more general than (K2, S2) if S2 = S3 o S1 for some S3 such that (K2, S3)

respects K1, where S o St is the composition of substitutions S, St defined as S o Si(t) = S(Si(t)). A kinded

set of equations is a pair consisting of a kind assignment and a set of pairs of types. A kinded substitution

(K1, S) is a unifier of a kinded set of equations (K2, E) if it respects K2 and S (r l) = S(r2) for all (rl, r2) E E.
We can then obtain the following result, a refinement of Robinson's [Rob651 unification algorithm.

Theorem 1 There is an algorithm Unify which, given any kinded set of equations, computes a most general

unifier if one exists and reports failure otherwise.

We provide here a description of the algorithm; a sketch of its correctness proof is to be found in [Oho92].

The algorithm Unify is presented in the style of [GS89] by a set of transformation rules on triples (K, E, S)
consisting of a kind assignment K, a set E of type equations and a set S of "solved" type equations of the
form (t, r) such that t 4 FTV(r) . Let (IC, E) be a given kinded set of equations. The algorithm Unify first

transforms (K, El 8) to (Xi, Et, St) until no more rules can apply. It then returns (K', St) if Ei is empty;

otherwise it reports failure.

Let F range over functions from a finite set of labels t,o types. We write [F] and IF] respectively t o denote

the record type identified by F and the record kind identified by F. Figure 7 gives the set of transformation

rules for record types and function types. The rules for variant types are obtained from those of record types

by replacing record type constructor [F], record kind constructor [F] with variant type constructor <F>, and

variant kind constructor ((F)), respectively. Rules I , 11, v and VI are same as those in ordinary unification.

Rule I eliminates an equation and is always valid. Rule 11 is the case for variable elimination; if occur-check

(the condition that t does not appear in r) succeeds then it generates one point substitution [t I+ TI, applies it

to all the type expressions involved and then moves the equation (t , r) to the solved position. Rules v and VI

decompose an equation of complex types into a set of equations of the corresponding subcomponents. Rules

I I I and I V are cases for variable elimination similar to rule 11 except that the variables have non trivial kind

constraint. In addition to eliminating a type variable as in rule 11 , these rules check the consistency of kind

constraints and, if they are consistent, generates a set of new equations equivalent to the kind constraints.

Using this refined unification algorithm, we can now extend the type inference system. First, we refine the

notion of principal typings. A typing IC1,dl D e : TI is more general than K2, A2 D e : r2 if domain(A1) C
domain(A2), and there is a substitution S such that the kinded substitution (K2, S) respects Kl , Az(t) =
S(Al(t)) for all t E domain(A1), and r 2 = S(rl) . A typing K , A D e : T is principal if it is more general
than all the derivable typings for e. The type inference algorithm is extended by adding the new functions to

compose a principal type for record and variant operations and to extend the main algorithm by adding the

cases for records and variants. Figure 8 shows the new coinposition functions corresponding to the typing

rules for records and variants. The functions we have defined in Figure 3 remain unchanged except that they

take kinded typings of the form (K, A , r) and the appropriate kind assignments must be added as component

of the the parameter of the unification algorithm and of its result. Figure 9 shows the necessary changes to

the main algorithm.

Figure 10 shows the type inference process for the function fn x => (x.Name, x.Sal > 10000), a function

that is used in the implementation of Wealthy, which was described earlier. In this example, the pairing
function (-, -) and the product type are respectively shorthand for a standard binary record constructor and

binary record type.

11 (K U { t I+ U) , E U { (t , T)) , S) J ([t I+ T] (K) , [t T] (E) , { (t , T) } u [t I+ r] (S)) i f t does not appear in T

111 (X: u {t l H [Fi l l t2 I+ [Fz]) , E U { (t i , t ,)) , S) 3

([t i I+ tzI(K U {t2 I+ IIF])),
[tl I+ t 2] (E U { (F l (l) , F2(1)) 11 E dom,ain(Fl) n dom,ain(F2))),

{ (t l , t 2)) U [tl ++ t z l (S))
where F = { (I , q) l l E domain(F1) Udomain(F2), TI = Fl(I) i f 1 E domain(Fl) otherwise TI = F2(1))
if t l not appears in F2 and t 2 not appears in Fl .

Iv (X:u{t lHuFln~,E~{(t l , [F21)~,S)J

([tl I+ [FzIl(K),
[tl [Fz]] (E U { (F I (~) , Fz(1))ll E domain(F1) n domain,(FZ))),

{ (t l , [Fzl)) u [tl I+ [F211(S))
if domain(Fl) domain(F2) and t @ F T V ([F 2])

Figure 7 : Some o f the Transforma.tion Rules for Icinded Unification

PR,coRD([li = (K i , A i l r i) , . . . , ~ n = (K n , A n , m) I) =
let (K , S) = Unify(K1 U . . . U K,, a l lpa i r s ({A l , . . . , A n))) (1 fresh)

i n (K , S (A 1) U . . . ~ S (A n) , S ([I 1 : T I , ..., 1, : rn]))

end

PDo-r((x,.A, r) , l) =
let (K ' , S) = Unify(X: u { t l :: U, t z :: [I : t l] } , ((t 2 , r))) (t i , t2 fresh)

i n (K ' , S (A) , S(t1))
end

P M o D I F y ((K 1 , A l , T I) , (K z , A z , r2),1) =
let (K , S) = Unify(K1 U K 2 u { t l :: U,t2 :: [l : t i] } , wl lpuir . s ({Al ,A2)) U { (t z , T I) , ti,^^))) (t i , t z fresh)

i n (K , S (d) , S (t a))
end

PYARIAPIT ((K , A, T) , l) =
let (K t , S) = Unify(K U { t l :: U , t2 :: ((I : t l))) , { (t l , r))) (t l , t 2 fresh)

i n (K t l S (A) , S (t 2))
end

P C A ~ E ~ ((K O , A O ~ ~ O) ~ [~ ~ = (K l , d ~ , ~ i) , . . . ,1n = (K n , A n , r n)]) =
let (K , S) =

Unify(Ko U . . . U Kn U { t :: U, t l :: U, . . . , t n :: U) ,

a l l a i s ({ A , . . . , A }) U { (t i + t) 1 i n } U { (o i : I , . . . , n : n (t , t l , - . ., t n fresh)

i n (K , S(A1) U . , . U S (d n) , S (t))
end

PcAsE2((Ko,do, TO) , [/ I = (K l , d l , T I) , . . .,Ira = (x n l An, ~ n)] , (Kn+ll .An+l, r n + ~)) =
let (K , S) =

Unify(xo U. . . U Kn+l U { t :: U , t l :: U , . . . , tn :: U, t o :: ((21 : t l , . . . , in : t ,))} ,

a l lpa i r s ({Ao , . . . , A n }) U { (' f i , t i + t) l l 5 i < n) U { (r o , t o) , (r n + l , t) }) (t , t o , t i , . . . , t n fresh)

i n (K , S(A1) U . . . U S (A n) , S (t))
end

Figure 8: New Functions t o Synthesize Principal Typings

T y p i n g (e , L) =
case e of

c7 * (0 , 0 , T)

x =$ i f x E d o m a i n (L) t h e n L (x) with all t y p e variables renamed

else ({ t :: U } , { x : t } , t) (t fresh)

[Il=el ,. . .,ln=en] =$ PRECoRD([1~ = Typ ing (e1 , L) , . . . , in = T y p i n g (e n L)])

e.1 a PDo,(Typing(e, L) , 1)

modi fy (e l , l , ez) * P M O D I F Y (T ~ ~ i n ~ (e ~ r L) > TYPing(e2, L) ,
<I=e> =$ PvAlUA,, L) , I)
case e o f <ll=xl> => e l , . . ., <ln=xn> => en endcase

PcAsm(TyPing(e, L)1
[I1 = PABs(Typin ,g(e l , L) , X I) , . . . ,1n = PA,s(Typing(en, L) , x n)])

case e o f <ll=xl> => el ,. . ., <ln=xn> => en else eo endcase *
P c , s m (T ~ p i n g (e , L) ,

[il = P A B s (T y p i n g (e l , L) i x i) , . . . , In = P A B S (T ~ ~ i n g (e n L) , ~ n)] ,

Typ ing (e0 1 L))
endcase

Figure 9: T h e Main Algor i thm for T y p e Inference with Records and Variants

T y p i n g (f n x => (x .Name, x.Sal > 10000), 6)

= P,,,(Typing((x.Name, x.Sal> 1 OOOO) , 0) , x)

)Typing((x.Narne, x.Sal > 10000), 6)

) = PRECoRD((Typing(x .Name, 0) , Typing(x.Sal > 10000,0)))

))Typ ing (x .Name , 0)
)) = P D O T (T Y P ~ ~ ~ (~ , 011 Name)

))) T y p i n g (x , 0) = ({ t l :: U) , { x : t ~) , t ~)

)) = ({ t z :: U , t l :: [[Name : t z]) , { x : t l) , t z)

))Typing(x.Sal > 10000,0)

)) = P,(Typing(x.Sal l a) , Typing(lOOOO, 0))

)))Typing(x .Sa l , 0) = (i t 3 :: U,t4 :: [SaI : t 3] } , { x : t 4 } , t 3)

)))Typing(1000O1 0) = (@ , a 1 i n t)

)) = ({ t , :: [Sal : i n t]) , { x : 141, bool)

) = ({ t 2 :: U , t l :: [Name : t * , Sal : i n t]) , { x : t l) , (t z , bool))

= ({ t z :: U l t l :: [Name : t2 ,Sal : . i n t]) , @ , t l - (t2 ,bool))

Figure 10: Examples o f T y p e Inference with Records

3.5 Further Refinement and the Correctlless of the Type Inference System

In the explanation of type inference algorithm so far, we have ignored the constraint that some type variables

should only denote description types. The necessary extension is to introduce description kind constructors
Dl [l : 6, . . . ,1 : 6]ld and ((1 : 6, . . . ,1 : ~ 5)) ~ respectively denoting the set of all description types, description

record types, and description variant types. Although it increases the notational complexity, these extension

can be easily incorporated with the unification algorithm and the type inference.

Another simplification we made in the description of the type inference algorithm is our assumption

that types are all non cyclic. To extend the type inference algorithm to recursive types, we only need

to extend the kinded unification algorithm to infinite regular trees. The necessary extension is similar t o
the one needed t o extend an ordinary unification algorithm to regular trees [Cou83], which involves: (1)

defining a data structure to represent regular trees. (2) changing the cases for variable elimination (cases of

11 and IV) by eliminating occur-check and replacing the one point substitution [t I+ T] by the substitution

[t I+ (rec v.r[v/t])] where (rec v.r[v/t]) is a regular tree that is a solution to v = ~ [v l t] , and (3) changing
the cases for decomposition (cases v and V I) so that they generate the equations for the set of pairs of

corresponding subtrees of the given regular trees.

We have also ignored the details of dealing with references. The above type inference method cannot be

directly extended to references, since the operational semantics for references does not agree with polymorphic

type discipline for let binding. As pointed out in [Ma&, Tof881, tjhe straightforward application of the type

inference method of [Mi1781 to references yields unsound type system. The following example is given in

[Mac88]:

let

val f = new(fn x => x)

in (f:=(fn x=> x + x), (!f)(true))

end

If the type system treats the primitive new as an ordinary expression constructor then it would infer the

type unit * boo1 for the above expression but the expression causes a run time type error if the evaluation

of a pair (record) is left-to-right. Solut,ions have been proposed in [Tof88, Mac881. They differ in details

treatment but they are both based on the idea that the type system restricts substitution on type variables

in reference types in such a way that references created by a polyn~orphic functions are monomorphic. Since

both of these mechanisms can be regarded as a new form of kind constraint on type variables, we believe that

either of them can safely be incorporated witah our type system. However, for want of a better mechanism,

we restrict reference constructor to take only a monoinorphic type

With these refinements, ML's complete static type inference is extended to records, variants and set data

types, as stated in the following result:

Theorem 2 Let e be any raw term of Machiavelli. If Typing(e,(D) = (K,A, 7) then K , A b e : r is a
principal typing of e. If Typing(e, 0) r epor t s fai lure then e Itas n o typing.

Just as legal ML programs correspond to principal t,yping schemes with empty type assignment, legal

Machiavelli programs correspond to principal kinded t>yping schemes with empt,y type assignment, ie. typings

of the form K, 8 P e : r. Machiavelli prints a typing K , 0 I, e : T as

where r' is a type whose type variables are printed together with their kind constraints in X: in the following

formats:

type variables t with K(t) = U, . . . 'a,'b,. . .
description type variables d with K(t) = D, . . . "a," b,. . .
type variables t with K(t) = 1[11 : 71,. . . , in : rn], . . . 'a::[ll:rl,. . .,l,,:r,,],. . .
description type variables d with K(t) = [I1 : TI , . . ., 1, : T,]~, . . . " a::[ll:rl ,. . .,l,,:r,,],. . .
type variables t with K(t) = ((11 : T I , . . . , ln : T,)), . . . 'a::<l1:rl,. . .,ln:rn>,. . .
description type variables d with K(t) = ((11 : rl, . . . ,I, : T,))~, . . . "a::<ll:rl,. . .,I,,:r,,>,. . .

as already seen in examples. Thus the type output in the following example

-> fun name x = x.Name;

>> val name = f n : 'a::[Name : 'b] -> ' b

is a representation of the following kinded typing scheme:

{t2 :: U,tl :: [Name : t2]},@ p f n x=> x.Narne : t l + t 2

Examples shown in Figure 1 are to be similarly understood.

To summarize our progress to this point: we have augmented type schemes of ML with description types

(which already exist in ML in a limited form) and kinded type variables. This has provided us with a type

system that not only expresses the generic nature of field selection, but also allows sets to be uniformly

treated in the language. However relational databases require more tha.n the operations we have so far

described, and it is to these that we now turn.

4 Operat ions for Generalized Relations

We are now going to show how we can extend Machiavelli to include the operations of the relational algebra,

specifically, projection and natural join, which are not covered by the operations for sets and records that

we have so far developed. Before doing this, there are two important points to be made. The first is that,

in order to achieve a general definition of these operations we are going to put an ordering on values and on

description types. The ordering on types, although somewhat similar to that used by Cardelli [Car881 is in

no sense a part of Machiavelli's polymorphism. This should be apparent from the fact that we have already

incorporated field selection as a polymorphic operation without having to make use of such an ordering.

The second point is that the introduction of join complicates the presentation of the type system and

increases the complexity of the type inference problem. The typing rule for join is associated with a complex
condition which can no longer be represented by a kind. To give a type scheme for join, we need to extend

the notion of (kinded) typing schemes to conditional typing schemes [OB88] by adding syntactic conditions
on instantiation of type variables. A similar problem was later observed in [Wan891 if one uses a record

concatenation operation rat,her than join. (See a.lso [CM89, HP91] for polymorphic calculi with record

concatenation.) Since we are primarily concerned with database operations, our inclination is to examine

the record joining operation that naturally arises as a result of generalizing the relational algebra.

Our strategy in this section is first to provide a method for generalizing relational algebra over arbitrary

description types. We then provide the additional typing rules, which have associated order constraints on

the types. Next, we show that although there is no longer a principal typing scheme for a term, we can still

provide a principal condi t ional typing scheme which represents the exact set of provable typings. Finally,

we describe the method to check the satisfiability of conditions before the evaluation of the term associated

with those conditions. In other words, we are still able to guarantee that a typechecked program will not

cause a runtime type error.

4.1 Generalizing Relational Algebra

Our rationale for wanting to generalize relational operations is that, in keeping with the rest of the language,

we would like them to be as "polymorphic" as possible. Since equality is essential to the definition of most

of these operations, we cannot expect to generalize them to arbitrary terms of the language. Instead we

content ourselves with their effect on description terms, which are those terms that can be typed with a

description type. To this end Machiavelli generalizes the following four operations to arbitrary description

terms and introduces them as polymorphic functions in its t,ype system:

eq(e l ,e2) equality t e s t ,

join(e1 ,ez) database jo in ,

con(e1 ,e2) consis tency check,
project(e,S) projection o f d o n t o the type 6

The intuition underlying their generalization is the idea exploited in [BJO91] that database objects are

partial descr ipt ions of real-world entities and can be ordered by goodness of descr ipt ion. The polymorphic

type system to represent these generalized operations has been developed in [Oho90]. In what follows, we

describe how equality, join and projection are generalized to acyclic description terms. For the treatment of

cyclic structures as well as the precise ~emant~ics of t,he t,ype system for descriptions, the reader is referred

to [Oho90].

We first consider join and equality. We claim that join in the relational model is based on the underlying

operation that computes a join of tuples. By regarding t,uples as partial descriptions of real-world entities,

we can characterize it as a special case of very general operations on partial descriptions that combanes two

consistent descriptions. For example, if we consider the following non-flat tuples

t1 = [N a m e = [First = "Joe"]];

and

t2 = [N a m e = [Last = " D o e "]]

as partial descriptions, then the combinatmion of the two should be

t = [N a m e = [First= " J o e " , Last = "Doe"]].

This is characterized by the property that t is the least upper bound of t l and t2 under the ordering induced
by the inclusion of record fields. Denoting the ordering by 5, join is defined as:

Equality in partial descriptions is an operation which tests the equality on the amount of information and

is characterized by the equivalence relat,ion induced by the information ordering, i.e.

e q (d , d l) = d C d' and d' d

This approach also provides a uniform treatment of n u l l values [Zan84, Bis811, which are used in databases

that represent incomplete information. Join and projection extend smoothly to data containing null values.

However care must be taken [Lip79, IL84:] to ensure that use of the algebra with these extended operations

provides the semantics intended by the programmer. To represent null values, we also extend the syntax of

Machiavelli terms with:

null(b) t h e n u l l value of a base type b

<> t h e (po lymorph ic) nu l l value of var ian t t ypes

Other incomplete values can be built from these using the constructors for description terms.

The importance of these characterizations is t,ha.t t(l1ey do not depend on any particular data structure

such as flat records. Once we have defined a (computable) ordering on the set of description terms which

represents our intuition of the goodness of description, join and equality is generalized to arbi trary complex

description terms. To obtain such an ordering, we first define the pre-order 3 on description terms. For

acyclic descriptions, 5 is given as:

cb

null(b)

null(b)

[I l = d l , . . .,l, = d,]

<>
<>

<I = d>

cb for all constant c b o f t ype b ,

cb for all constant c b o f t y p e b ,

null(b) f o r a n y base t ype b

[I l = d', ,..., 1, = dk , . . .] i f d i 5 dl (1 5 i 5 n) ,

0,

<I = d> for a n y descr ipt ion d ,

<I = dl> i f d d ' ,

r for a n y reference r

{ d . . d } i f Vd' E {d' , , . . . , d;}. 3 d E { d l , . . . , d,). d 5 d'

The last rule for sets is intended to capture the properties of sets in database programming. 3 fails to be

anti-symmetric because of this rule. An ordering is obtained by taking induced equivalence relation and

regarding a description term as a representa.tive of its equivalence class. In what follows, we denote by

C the ordering induced by the preorder 5. Among representatives, there is a canonical one having the

property that it does not contain a set term whose members are comparable, i.e. an anti-chain. Since the

ordering relation and the least upper bound are shown to be computable, our characterization of join and eq

immediately gives their definitions on general description terms, which computes a canonical representation

of the denoted equivalence class. The equality (eq) is a generalization of s t ruc tura l equality to sets and null

values. Figure 11 shows an example of a join of complex descriptions. This definition of join is a faithful

generalization of the join in the relational model. I11 [BJOSl] it is shown that:

Theorem 3 I f r l , r2 are f i rs t -normal f o r m relataons t h e n j o i n (r l , r 2) i s t h e na tura l j o in of r l and 3 i n t h e

re lat ional model . I

A useful property ofjoin is that it coincides with intersection when applied to two sets of the same description

type, such as { i n t } .

r l = {[Pname = "Nut" ,Supplier = { [Sname = "Smith" ,City = "London"],

[Sname = "Jones" ,City = "Paris"],

[Sname = " Blake" ,City = " Paris"])],

[Pname = "Bol t" ,Supplier = { [Pname = " Blake" ,City = " Paris"],

[Sname = " Adams" ,City = "Athens"])])

r2 = {[Pname = "Nut" ,Supplier = {[City = " ParisW]),Qty = 1001,

[Pname = " Bolt" ,Supplier = {[City=" Parisn]),Qty = 2001)

join(rl,r2) = {[Pname = " Nut" ,Supplier ={[Sname = "Jones" ,City = "Paris"],

[Sname = " Blake" ,City = " Paris"]), Qty = 1001,

[Pname = " Bolt" ,Supplier ={[Sname = " Blake" ,City = "Paris"]), Qty = 2001)

Figure 11: Natural join of higher-order relations

We now turn to projection. In the relational model, it is defined as a projection on a set of labels.

We generalize it to an operation which projects a complex description onto some "substructure". In a

programming language, the structure of data is represented by a type and we define projection as an operation

specified by its target type. Recall that the syntax of ground description types (i.e. those description types

that do not contain type variables) is

5 ::= unit (bd I [1:6,. . .,1:5] 1 <1:6,. . .,1:6> 1 (6) 1 ref(^) I (rec v.5(v))

Projection is therefore an operation indexed by a description type. project(x,S) is the operation which, given
a description x whose type is "bigger" than 5, returns a description of type 5 by "throwing away" part of its

information. The following is a simple projection on flat relation:

project({ [Name = "J . Doe", Age = 21, Salary = 210001,

[Name = "S. Jones", Age = 31, Salary = 310001),
{[Name : string, Salary : int]))

= { [Name = " J. Doe", Salary = 210001,

[Name = "S. Jones", Salary = 310001)

By using the ordering we have just defined, projection can be specified as:

which can be shown to be computable for any description type 5.

4.2 Extended Expressions and Their Evaluation

The syntax of expressions is extended with the constants null(b) and <> and the term constructors join, con,

and project we have just described:

We extend the evaluation rules for expressions described in section 3 with the rules for these new term

constructors and eq. Note that they are only applicable to description terms. A description term d denote

an equivalence class of regular trees induced by the ordering we have just described. We write D (d) for the

equivalence class denoted by d. The evaluation rules for those term constructors are given as:

join(dl,d2) ++ d3 i f d3 i s a canonical representative of D (d l) U D (d z)

con(dl ,d2) -+ true if D(d1) U D (d 2) exis ts

con(dl ,d2) ++ false i f D (d l) U D (d 2) does no t exist

project(dl,6) --t d2 i f d2 i s a canonical representative of the least upper bound of the se t

{ D (d) l D (d) E D (d l) , d : 6)
eq(d1,dz) ++ true i f D(d1) C D(d2) and D(d2) L D (d l)
eq (d l , d z) ++ false i f D (d l) g D(d2) o r D(d2) !l- D(d1)

As we have already mentioned, there a.re generic algorithms to compute these functions

4.3 Type Inference for Relational Algebra

join, project and con are polymorphic operations in the sense that they compute join and projection bf various
types. To represent their exact polymorpliic nature, we define an ordering on ground description types that

represents the ordering on the structure of descriptions. For the set of acyclic description types, the necessary

ordering is given by the following inductive definition:

Using this ordering, types of join, project, and con are given as:

join : 61 * b2 +S3 such that b3 = 61 UK b2

project(- ,b2) : 61 + 62 such that 62 << S1

con : 61 * 62 + boo1 such that 51 UK 62 exsists

To integrate these operations with the po1,ymorphic core of Machiavelli defined in section 3, we need

to represent the types of these operations into the type system. For this purpose, we explicitly introduce
syntactic conditions on substitution of type variables that represent the three forms of constraint: b1 U< 62

exists, 5 = 61 Ug 62, and 62 << 61. In fact we only need to consider the last two forms of constraint since

61 U< 62 will exist whenever we can find a type 63 = 61 U K 62. To represent them we introduce the following

syntactic conditions:

1. T = j o i n t y p e (~ , r) , and

2. l e s s t h a n (r , r) .

C , K , A b el : 61 C , K,A D ez : 62
(CON) C U { d = joint ype(Sl , h2)), K, A D con(el , e2) : boo1 (d fresh)

Figure 12: The Typing Rules for Relational Operations

Note the difference between b3 = b1 UK S2 and 7-3 = jointype(rl, r2). The former is a property on the

relationship between three ground description types. On the other hand, the latter is a syntactic formula

denoting the constraint on substitutions of type variables in TI, r 2 , to ensure that any ground instance

of the former these satisfies such a property. A similar remark holds for 61 << 62 and lessthan(r1, r2).

Using these syntactic conditions on type variables, we can extend the type system to incorporate these new

operations. A typing judgement in the extended system has the form C, K,A D e : r where the extra

ingredient C is a set of syntactic conditions we have just introduced. Figure 12 shows the typing rules for

the new operations. Other rules remain the same as those defined in Figure 2 and 6 except that they are

now relative to a given set of conditions. For example, the rule ABS becomes

In particular, these other rules only propagate the given set of conditions and do not change its contents.

Since the conditions we introduced involve the ordering that is defined only on ground types, we need to

interpret a typing judgement in this extended system as a scheme representing the set of all ground typangs

obtained by substituting its type variables with appropriate ground types. This interpretation is consistent

with our treatment of let construct (LET rule in Figure 2) and its semantics described in [Oho89a]. A ground

substitution 6 satisfies a condition c if

1. if c TI = jointype(r2, 5) then 6(r1), B(T~), 6'(r3) are all description types satisfying 6(r1) = O(T~) U<

0 (~ 3) ,

2. if c G ~ e s s t h a n (~ ~ , r2) then B(rl), 8(r2) are description types satisfying 6(r1) << 6(r2).

6 satisfies a set C of conditions if it satisfies each member of C. We say that a ground typing 0,0, A D e : r
is an instance of C , K , A' D e : T' if there is a ground substitution 0 that respects K and satisfies C such
that A ~ ~ ~ " (~ ') = B(At) and T = 8(r t) . As seen in this definition, a typing in the extended system is subject

t o a set of conditions associa.ted with it. To emphasize this fact, we call typing judgement in the extended

type system a conditional typing. A conditional typing scheme C , A D e : T is principal if any derivable
ground typing for e is an instance of it. The following result establishes the complete inference of principal

conditional typing schemes.

-> fun join3(x,y,z) = join(xjoin(y,z));

>> val join3 = fn : (" a * " b * " c) -> " d
where { " d = jointype("a,"e), " e = jointype("b,"c))

-> Join3([Name = " JoeW],[Age = 2l],[Office = 271);

>> val it = [Name = "Joe" ,Age = 21,Office = 271 : [Name : string,Age : int,Office : int]

-> project(it,[Name : string]);

>> val it = [Name=" Joe"] : [Name : string]

Figure 13: Some Simple Relational Examples

Theorem 4 There is an algorithm which, given any raw term e, returns either failure or a tuple (C, K,A, 7)
such that if it returns (C, K,A, T) then C, K , A b e : r is a principal conditional typing scheme, otherwise

e has no typing. 1

A proof of this, which also gives the type inference algorithm for Machiavelli, is based on the technique we

have developed in [OB88] which established the theorem for a sublanguage of Machiavelli. A complete proof

and a complete type inference algorithm can be found in [Oho89b].

Figure 13 gives two simple examples of the typing schemes t.hat are inferred by Machiavelli. The type
("a * " b * "c) -> " d where { " d = jointype("a,"e), " e = jointype("b,"c)) of the three-way join join3 is the

representation of the principal conditional typing scheme:

{dl = jointype(dz, ds), d3 = jointype(d4, d5,)}, {dl :: D, d2 :: D, (13 :: D, d4 :: D, d ~ , :: D}, 0

P fn(x,y,z) => join(x,join(y,z)) : (d2 * d4 * d5) + d l

I t is therefore tempting to identify legal Machiavelli programs with principal conditional typing schemes.

There is however one problem in this approach. As we have mentioned at the beginning of this section, the

definition of conditional typing schemes does not imply that they have an instance. This happens because

the set C of conditions in a typing scheme may not be satisfiable. In such case, the term has no typing and

should therefore be regarded as a term with type error. In order to achieve a complete static type-checking,

we therefore need to check the satisfiability of a set of conditions. Unfortunately, however, the satisfiability

checking cannot be made efficient since it is shown that [OB88] that checking these conditions is itself NP-
complete. A practical solution is to delay the satisfiability check of a set of conditions until its type variables

are fully instantiated. Once the types of all type variables in a condition are known, its satisfiability can

be efficiently checked and it can then be eliminated. Since the reduction associated with join is performed

only after actual parameters are supplied, this method also detect,~ all run time type errors. We therefore

identify legal Machiavelli programs with principal conditional typing schemes where the only conditions are

those that contain type variables.

This strategy supports arbitrarily complex structures that can be built out of records, variants and sets. It

allows us t o define directly in Machiavelli databases supporting complex structures including non-first-normal

form relations, nested relations and complex objects. Figure 14 shows an example of a database containing

non-flat records, variants, and nested sets. With the availability of a generalized join and projection, we can

immediately write programs that manipulate such databases. Figure 15 shows some simple query processing

-> parts;

>> val i t = {[Pnarne=" bolt" ,P#=l,Pinfo=<Base= [Cost=5]>],

. . .
[Pnarne=" engine" ,P#=2189,

Pinfo=< Composite = [SubParts={[P#=l,Qty=189], ...},
AssernCost=1000]> 1,. . .)

: {[Pnarne : string,P# : int,

Pinfo : < Base : [Cost : int],

Composite : [Subparts : {[P# : int,Qty : int]),AssemCost : int]> 1)

-> suppliers;

>> val it ={[Snarne=" Baker" ,S#=l,City=" Paris"],. . .)
: {[Sname : string,S# : int,City : string]}

-> supplied-by;

>> val i t = {[P#=1,Suppliers={[S#=l],[S#=12],. . .)I,. . .)
: {[P# : int,Suppliers : {[S# : int]}])

Figure 14: A Part-Supplier Database in Generalized Relational Model

for the database example in figure 14. Note the use of join and other relational operations on "non-flat"

relations.

This approach to defining generalized relational operations co~rrpletely eliminates the problem of "imped-

ance mismatch" between the operations of the relational data model and the types available in current

programming languages. Data and operations can be freely mixed with other features of the language

including recursion, higher-order functions, polymorphism. This allows us to write powerful programs rel-

atively easily. The type correctness of programs is then automatically checked at compile time. Moreover,

the resulting programs are in general polymorphic and can be shared in many applications. Figure 16 shows

a simple implementation of a polymorphic transitive closure function. By using renaming operation, this

function can be used to compute the transitive closure of any binary relation. Figure 17 shows query pro-

cessing on the example database using polymorphic functions. The function cos t taking a part record and

a set of such records as arguments computes the total cost of the part. In the case of a composite part, it

first generates a set of record consisting of a subpart number and its cost and then accumulates the costs of

subparts by using horn. In order t,o prevent the set co~~struct~or from collapsing subpart costs which are equal,

the computed subpart cost is paired with the subpart number. Note that scope of type variables is limited to

a single type scheme, so that instantiations of "a in the type of cost have nothing to do with instantiations
of "a in the type of expensive-parts. Also, the apparent complexity of the type of cos t could be reduced

by giving a name to the large repeated sub-expression. Without proper integration of the data model and
programming language, defining such a function and checking type consistency is a rather difficult problem.

Moreover, the functions cos t and expensive-parts are both parameterized by the relation (partdb) and

their polymorphism allows them to be applied t,o lna,ny different types. This is particularly useful when we

(+Select all base parts +)
-> join(parts,{[Pinfo=<Base=o>]});

>> val it = {[Pname=" bolt", P#=l, Pinfo=<Base=[Cost=5]>],. . .)
: {[Pname : string,P# : int,

Pinfo : <Base : [Cost : int],

Composite : [Subparts : {[P# : int,Qty : int]}, Assemcost : int]>]}

(*List part names supplied by "Baker" +)
-> select x.Pname

from x <- join(parts,supplied_by)

where Join3(x.Suppliers,suppliers,{[Sname=" Baker"])) <> {);
>> {" bolt" ,. . .) : {string)

Figure 15: Some Simple Queries

-> fun Closure R =
let val r = select [A=x.A,B=y.B]

from x <- R, y <- R

where eq(x.B,y.A) andalso n~t(member([A=x.A,B=~.B], R))

in if r = { } then R else Closure(union(R,r))

end;

>> val Closure = fn : {[A : "a,B : "b]) -> {[A : "a,B : " b])

Figure 16: A Simple Implementation of Polymorphic Transitive Closure

have several different parts databases with the same structure of cost information. Even if the individual

databases differ in the structure of other information, these functions are uniformly applicable.

5 Heterogeneous sets

The previous section provided an extension to a polymorphic type system for records that enabled us to

infer the type-correctness of programs that involve operations of the relational algebra - notably projection

and join. This extension involved an ordering on types and joins on types.It could be argued that there
is little point in doing this, because in practical query languages projection and join are not used. As we

have seen in section 2, we may implement an SQL-like sublanguage using cartesian product together with

the operations on records (formation and field selection) described in section 3. Apparently the use of an

ordering on types and joins on types is only of academic interest!

The authors believe otherwise. Extensions to the mecha.nisms used in section can be used to address a

problem that arises in object-oriented databases, where there is an apparent need for the use of heteroge-

neous collections. The problem arises from two apparently cont,radictory uses of inheritance that arise in
programming languages and in databases. In ohject-oriented languages the term describes code sharing: by

an assertion that Employee inherits from Person we mean that the methods defined for the class Person are

also applicable to instances of the class Employee. In databases - notably in data modeling techniques - we

associate sets Ext(Person) and Ext(Emp1oyee) with the entities Person and Employee and the inheritance

of Employee from Person specifies set inclusion: Ext(Ernp1oyee) C Ext(Person).

It seems that these two notions should somehow be coupled, but on the face of it there is a contradiction.

If members of Ext(Emp1oyee) are instances of Employee, how can they be members of Ext(Person) whose

members must all be instances of Person? One way out of this is to relax what we mean by "instance o f '

and to allow an instance of Employee also to be an insta.nce of Person. We can now take Ext(Person) as a

heterogeneous set, some of whose members are also inst,ances of Employee. Type systems, however, can make

the manipulation of heterogeneous collections difficult or ilnpossible by "losing" information. For example if

1 has type list(Person) and e has type Employee, the result of insert(e, I) will still have type list(Person),

and the first element of this list will only have type Person. By inserting e into 1 the type system has somehow

"lost" part of the structure of e such as the availability of a Salary field or method. This problem appears

both in languages with a subsumption rule [Car881 and in statica.11~ type-checked object-oriented languages

such as C++ [Str87] which claim the ability to represent heterogeneous collections as an important feature.

In some cases the information is not recoverable; in others it can only be recovered in a rather dangerous

fashion by asking the programmer to maintain information about the type of an object and to re-cast those

objects on the basis of this information. A solut.ion to this problem was described by the authors in [B091].

The approach decribed here fits unifornlly with the techniques developed in the preceding sections.

5.1 Dynamic and partial values

Before proceeding further, i t is important to make a distinction concerning type systems which is, roughly,

the distinction between statically and dynamically typed languages. Our approach to type systems has so far

been syntactic; we have used types (more specifically type inference) to describe the well-formed expressions

of our language. For our language there is an extension of a result due to Milner, that well-formed expressions

(*a function t o compute the total cost of a part *)
-> fun cost(p,partdb) =

case p.Pinfo of

<Base = x> => x.Cost,

<Composite = x> =>
hom(fn(y)=> y.SubpartsCost,+,x.AssemCost,

select [SubpartsCost=cost(z,partdb) * w.Qty,P#=w.P#]

from w <- x.SubParts, z <- partdb

where eq(z.P#,w.P#))

endcase;

>> val cost = fn

: ("a::[Pinfo : < Base : "b::[Cost : int],

Composite : "c::[SubParts : {"d::[P# : "e,Qty : int]),

Asserncost : int]> ,

P# : " el

* {"a::[Pinfo : < Base : " b::[Cost : int],

Composite : "c::[SubParts : {"d::[P# : "e,Qty : int]),

AssemCost : int]> ,

P# : "el))

-> int

(*select names of "expensive" parts *)
-> fun e ~ ~ e n s i v e - ~ a r t s (~ a r t d b , n) = select x.Pnarne

from x <- partdb

where cost(x,partdb) > n;

>> val expensive-parts = fn :

: ({"a::[Pinfo : < Base : " b::[Cost : int],

Composite : "c::[SubParts : {"d::[P# : int,Qty : int]},

AssemCost : int]> ,

P# : " e , Pname : " f] }

* int) -> {"f}

-> expen sive-parts(parts, 1000);

>> val it = {"engine", . . .) : {string)

Figure 17: Query Processing Using Polymorphic Functions

do not go "wrong" in that they do not allow an operation to be applied to a value of an inappropriate type.

But this syntactic approach does not immediately tell us whether, or in what form, types should be present

in the evaluation of an expression. Very little type information is carried in the executable code of an ML

or Pascal program, while in the implementation of dynamically typed languages such as Lisp or Smalltalk,

each value carries enough information to determine its type. Moreover, in dynamically typed languages this

information is available to the programmer in the form of expressions such as (INTEGERP X) ,which allow us

to interrogate the type of a variable. Allowing such expressions negates, in general, any possibility of static

type-checking. However, by suitably containing the way in which type information is used in the execution

of a program, one may obtain the many of the benefits of dynamic type checking in a statically-typed

framework. The idea, due to Cardelli and Mycroft [Car861 is to use dynamic values. These are values that

carry their type with them, and can be regarded as a pair consisting of a type and a value of that type. A
formal system for type systems with dynamic was developed in [ACPPSl].

In these proposals there are two operations on dynamic values; at any type r we have:

dynamic : T -> dynamic

coerce(r) : dynamic -> 7

The function dynamic creates a value of type dynamic out of a value of any type - operationally it pairs

the value with its type. Conversely coerce(r) takes such a pair and returns the value component pro-

vided the type component is r. It raises an exception otherwise. A standard use for dynamic values is

for representing persistent data, since the type of external data cannot be guaranteed. For example 2 +
coerce(int)(read(inputstream)) will either add 2 to the input or raise an exception. The coerce operation can

be thought of as a localized dynamic type-check, and an exception-handling mechanism is apparently needed

to deal with the possibility of failure.

Our approach t o heterogeneous collections is to generalize the notion of a dynamic type t o one in which

some of the structure is visible. A type ?([Name : s t r i n g , Age : i n t l) denotes dynamic values whose

actual type 6 is "bigger" than [Name : string, Age : int], i.e. [Name : string, Age : int] << 6 where << is the

ordering we used to represent types of relational operators. Thus an assertion of the form e:P([Name : string,

Age : int]) means that e is a dynamic value, but it is known to be a record and that least Name and Age fields

are available on e . We shall refer to such partially specified dynamic values as partial values. Note that a

partial value is like a dynamic value in that it always carries its (complete) type. The new type constructor P
allows us to mix those partial values with other term constructors in the language. For example, e' : (P(6))

means that e' is a set of objects each of which is a partial value whose complete type is bigger than 6 (under

the ordering <.) It is this use of the ordering on types in conjunction with a set type that allows us to

express heterogeneous collections. An assertion of the form e : {P([Name : string, Age : int])} means that e is

a set of records, each of which has at least a Name : s t r ing and Age : i n t field, and therefore relational queries

involving only selection of these fields are legitimate. As a special case of partial types, we introduce a

constant type any denoting dynamic values on which no information is known - it is a (completely) dynamic
value.

To show the use of partial types, let us assume that the following names have been given for partial types:

Person* for P([Name : string, Address : string])

Employee* for ?([Name : string, Address : string, Salary : int])

Customer* for P([Name : string, Address : string, Balance : int])

Also suppose that DB is a set of type {any} so that we initially have no information about the structure of

members of this set. Here are some examples of how such a database may be manipulated in a type-safe

language

1. An operation filter P(6) (S) can be defined, which selects all the elements of S which have partial type

?(ti), i.e. filter P(S) (S) : {P(S)}. We may use this in a query such as

select [Name=x.Name, Address=x. Address]

f r o m x <- filter Employee* (DB)

w h e r e x.Salary > 10,000

The result of this query is a set of (complete) records, i.e. a relation. There is some similarity with

the * form of Postgres [SR86], however we may use filter on arbitrary kinds and heterogeneous sets; we

are not confined to the extensionally defined relations in the database.

2. Under our interpretation of partial types, if h1 << 52 then P(S1) is more partial than P(62) and any

partial value of type ?(62) also has type P(S1). This property can be used to represent the desired
set inclusion in the type system. I11 particular, Person* is more partial than Employee*. From this,

the inclusion filter Employee* (S) filter Person* (S) will always hold for any heterogeneous set S,
in particular for the database DB. Thus the "data model" (inclusion) inheritance is derived from a

property of type system rather than being something t11a.t must be achieved by the explicit association

of extents with classes.

3. We have the ability t o write functions such as

fun RichCustomers(S) = select [Name=x.Name, Balance=x.Balance]

f r o m x <- intersect(S,filter Customer* (DB))

whe re x.Salary > 30,000

Type inference allows the application of this function to any heterogeneous set each members of

which has a t least the type ?([Salary : int]). The result. is a uniformly typed set, i.e. a set of type

{[Name : string, Balance : int]}. Thus the application RichCustomers(filter Employee* (DB)) is valid, but

the application RichCustomers(filter Customer* (DB)) does not have a type, and this will be statically

determined by the failure of type inference.

4. By modifying the technique we used to give a polymorphic type of join, we can define the typing rules for

unions and intersections of heterogeneous sets. By adding a partial type any, the partialness ordering

has meet and join operations. The union and intersection of heterogeneous sets have, respectively, the

join and meet of their partial types. Thus, the type system can infer an appropriate partial type of

heterogeneous set obtained by va.rious set operations. For exa.mple, the following typings are inferred.

union(filter Custmer* (DB), filter Employee* (DB))
: {P([Name : string, Address : string]))

intersection(fi1ter Customer* (DB), filter Employee* (DB))

: {P([Name : string, Address : string, Salary : int, Balance : int]))

(intersection is definable in the language) These inferred types automatically allow appropriate poly-

morphic functions to be applied to .the result of these set operations. For example, since the type of

an intersection of two heterogeneous sets is the join of the types, polymorphic functions applicable

to either of the two sets are applicable to the intersection. Thus, we successfully achieve the desired

coupling of set inclusion and method inheritance.

In the following subsections we shall describe the basic operations for dealing with sets and partial values.

We shall then give typing rules to extend Machiavelli to include those partial values.

5.2 The Basic Operations

To deal with partial values we introduce four new primitive operations: dynamic, as, coerce and fuse. We

also extend the meaning of some of the existing primitives, such as union

dynamic(e). This is used to construct a partial value and has type P(6) where 6 is the type of e. A
heterogeneous set may be constructed with

{dynamic([Name = " J o e " , Age = lo]) , dynamic([Name = "Jane" , Balance = 109541))

This expression implicitly makes use of union, and as a result of the extended typing rules for union,

the expression has type {P ([Name : string])), which is the meet of {?([Name : string, A g e : int])) and

{?([Name : string, Balance : int])).

The remaining three primitives may all fail. Rather than introduce an exception handling mechanism,

we adopt the strategy that if the operatmion succeeds, we ret,urn the result in a singleton set, and if it fails,

we return the empty set3.

as P (6) (e). This, for any description type 6 , "exposes" the properties of e specified by the type 6. This

returns a singleton set containing the partial value if the coercion is possible and the empty set if it is not.

For example, if e = as P ([N a m e : string]) (dynamic([Name = "Joe" , Balance = 43.21])), e will have partial

type {?([Name : string])) and an expression such as select x .Name f rom x <- e will type check, while select

x.Balance f r o m x <- e will not.

Using as and h o m we are now in a position to construct the filter operation, mentioned earlier, which
ties the inclusion of extents to the ordering on types. Because we do not have type parameters, it cannot be

defined in the language. However it can be treated as a syntactic abbreviation:

filter P (6) (S) hom(fn x => as P (6) (x),union, S, {))

coerce 6 (e). This coerces the partial value denoted by e to a (complete) value of type 6. It will only

succeed if the type component of e is 6. Again, if the operation succeeds we return the singleton set, otherwise

we return the empty set. For example coerce [Name : string] (dynarnic([Name = "Jane" , Balance = 109541))

will yield the empty set while coerce [Name : string, Balance : int] (dynamic([Name = "Jane" , Balance =
109541)) will return the set { [Name = "Jane" , Balance = 109541) fuse(el, ea). This combines the partial

3 ~ h i s mechanism, while it fits naturally with our operations on sets and provides concise implementations of a number of

useful functions, may, if improperly used, produce results that are open to misinterpretation - "extensional query failures"
discussed by linguists [I<ap81].

values denoted by e l and e2. I t will only succeed if the (complete) values of e l and e2 are equal. If e l has

partial type ?(&) and e2 has partial type P(62) then fuse(e1, ez) will have the partial type P(6i U< 62). If

e l =(dynamic([Name = "Jane", Age = 21, Balance = 10954])),

e2 = as ?([Name : string]) e l ,

ea = as ?([Age : int]) e l , and
e4 = as ?([Name : string]) dynarnic([Name = "Jane"]),

then fuse(e2,es) will be a singleton set of type {?([Name : string, Age : int])} while fuse(e2,e4) will return

an empty set. fuse may be used to define set intersection as in

f u n fusel(x,s) = hom(fn y => fuse(x,y), union, s, {))
fun intersection(sl,s2) = hom(fn y => fusel(y,s2), union, s l , {I)

Note that in some sense fuse can be regarded as an operation that is more basic than equality for we
can compute whether the partial values vl and va are equal (as complete values) by empty(fuse(vl, v2)).

Complete values have nothing to do with "object identity". The combination of partial types with some

form of reference does not appear to represent any great difficulties, but is not dealt with here.

5.3 Extension of the Language

To incorporate these partial values, we extend the definition of the language. The set of types is extended
to include any and the partial type constructor P(6) :

T ::= . - - 1 any (P (6)

We identify the following subset (ranged over by x) which may contain partial types.

a ::= d 1 b d I [l:x,. . .,I:T] 1 < l : r , . . . , l : r> ({a) I ref(a) 1 any I P (6)

The set of terms is extended t o include operations for partial values.

e ::= . . . I dynamic(e) I fuse(e,e) I as P (6) e I coerce 6 e

To extend the type system to those new term constructors for partial values, we define an ordering on

the above subset of types, which represents the partialness of types. We write x 5 T' to denote that a is

more partial than a'. The rules to define this ordering are:

any 5 P (6) for any 6

P(61) 5 P(62) i f S l < < 6 2

bd 5 bd

[ll:al ,..., ln:rn] 5 [I1:r; ,..., ln :xL] if ~i 5 xi (1 5 i 5 n)

<ll:al,. . .,ln:xn> 5 <l l : r i , . . . , ln : rk> if ~i 5 a: (1 5 i 5 n)

{T) 5 {x') if T 5 T'

ref(x) 5 ref(rl) if T 5 x'

(COERCE)
C , K , A D e : P (6)

C, K , A p coerce 6' e : (6')

C,IC,A D e l : TI C, K,A D e2 : n 2
(FUSE)

C U {d = j o i n t y p e = (n l , 7r2)), K, A D fuse(e1 ,e2) : {d)

(UNION)
C, K, A D e l : {TI} C , K , A P e ~ , : (7 2)

C U {d = meet type= (nl , ~ 2)) ~ K, A P union(el ,e2) : {d)

Figure 18: Typing Rules for Partial Values

The first two of these rules derive the order on partial types directly from the ordering << that we introduced

in section 4. The remaining rules lift this ordering component-wise to all description types. The following

are examples of this ordering.

?([Name : string, Address : string]) 5 ?([Name : string, Address : str ing, Balance : int])

[Acc-No : in t , Customer : P([Name : string, Address : string, Balance : int])]

5 [Acc-No : in t , Customer : P([Name : str ing, Address : string, Balance : in t , Salary : int])]

Figure 18 gives the typing rules for the new term constructors. The new condition d = j o i n t y p e = (P(sl), P(d))
used in rules (FUSE) denotes the condition on the ground substitutions 6 such that 6(d) = 6(x1) Us B (T ~) ,

and the condition d = meet type= (TI, s2) used in the rule (UNION) denot,es the ground substitutions 6 such

that 6(d) = 6(nl) n, 6(n2).

Standard elimination operations introduced in Section 2 and database operations we defined in Section 4
are not available on types containing the partial type constructor P. The only exception is the field selection,

which requires only partial information on types specified by kinds. From an expression e of type of the

form P([. . .,l:S,. . .I), the 1 field can be safely extracted. The result of the field selection e.1 is 6 itself if 6 is a

base type. However, if 6 is a compound type then the actual type of the 1 field of the expression e is some

6' such that 6 5 6'. In this case, the type of the result of field selection e.1 is the partial type P(6). Recall

the typing rule for field selection:

To make this rule to be applicable to the above two cases for partial values, we only need to define the
following kinding rule for partial types.

([I I ,. . n , . 1) 1: I , . . 1 : where si = ai if Si is a base type otherwise ri = p(4)

Other rules defined in Figure 5 remain unchanged except that types may contain partial types. A record
kind now ranges also over partial types and the field selection becomes polymorphic over partial types as

well as complete types.

-> DB;
>> val it = {. . .) : {any)

-> val employees = filter Employee* DB;

>> val employees = { - . .) : {P([Name : string, Address : string, Salary : int]))

-> val customers = filter Customer* DB;

>> val customers = {. . .) : {P([Name : string, Address : string Balance : int]))

-> union(employees,customers);

>> val it = {. . .) : {P([Name : string,Address : string]))

-> intersection(employees,customers);

>> val it = {. . .) : {P([Name : string,Address : string, Balance : int, Salary : int]))

-> fun RichEmployees S = select x.Name

from x <- S

where x.Salary > 30,000

>> val RichEmployees = fn : {'a::[Salary : int, Name : 'b]) -> { 'b)

-> RichEmployees(employees) : { . . .) : {string)

-> fun GoodCustomers S = select x.Name

from x <- S

where x.Balance > 3,000

>> val GoodSustomers = f n : {'a::[Balance : int, Name : 'b]) -> {'b)

-> fun GoodEmployees S = intersection(GoodCustomers(S),RichEmployees(S));

>> val GoodEmployees = f n : {'a::[Balance : int, Salary : int, Name : 'b]) -> {'b)

-> GoodEmployees(intersection(employees,customers));

>> val it = {. . .) : {string)

Figure 19: Programming with Heterogeneous Sets

For this extended language, we can still have a complete type inference algorithm. The necessary tech-

nique is essentially the same as that for typechecking join operation we have described in the previous section.

We then have a language that uniformly integrate heterogeneous sets in its type system. For example, the

function

wealthy : {'a::[Name : 'b, Salary : int]) -> { 'b)

we defined in the introduction may also be applied to heterogeneous sets of type such as {P([Name : string,

Salary : int])} . Figure 19 gives examples involving partial values.

6 Conclusions

We have demonstrated an extension to the type system of ML which, using kinded type inference, allows
record formation and field selection t o be implemented as polymorphic operations. This together with a

set type allows us to represent sets of records - relations - and a number of operations (union, difference,

selection and projection onto a single attribute) of a generalized (non first-normal-form) relational algebra.
This has been implemented; in particular a recent technique [Oh0921 for compiling field selection into an

efficient indexing operation is being combined with the record operations mentioned above in an extension

to Standard ML of New Jersey [AM91].

A further extension to this type system using conditional type schemes allows us to provide polymor-

phic projection and natural join operations, giving a complete implementation of a generalized relational
algebra. It could be argued that these operations are not important since they are not present in practical

relation query languages. Instead a product and single-column projection are usually employed. However

a similar type inference scheme can be used in a technique for statically checking the safety of operations

on heterogeneous collections, in which each member of a collection of dynamically typed values have some

common structure. The approach we have described provides, we believe, a satisfactory account of how

relational database programming, and some aspects of object-oriented programming may be brought into

the framework of a polymorphically typed programming language, and it may be used as the basis for a

number of further investigations into the principles of database programming. We briefly review a few here.

General iz ing relat ional a lgebra . The ideas used to provide the generalized relational algebra described

in sections 2 and 4 originated in a domain-theoretic description of relations in which each tuple is regarded

as a partial description of - or approximation to - a real-world object. Operations of this generalized

algebra are provided by considering how a set of tuples may approximate a set of real-world objects. It is

debatable whether the whole apparatus of domain theory, used to represent the infinite structures found in

the semantics of programs, is needed for the finite structures in databases. A constructive characterization

of relational operations is given in [Oho90] using regular trees, using similar notions of approximation but in

a domain with simpler underlying properties. It is this characterization that we have used here; in particular

it has allowed us to describe recursive values and types.

We believe that this approach to database semantics may bear further fruit, especially in the currently

topical study of heterogeneous databases. In providing techniques to combine two or more databases, each

database may be thought of as a partial description to the resulting database, and the understanding of how

an individual database may approximate the combined database may provide some general-purpose merging

techniques.

Abs t r ac t T y p e s a n d Classes. While we have covered some aspects of object-oriented databases,
we have not dealt with the most important aspect of classes in object-oriented programming: that of ab-

straction and code sharing. In [OB89] statically typed polymorphic class declarations are described. The

implementation type of a class is normally a record type, whose fields correspond to the instance variables in

object-oriented terminology. That methods correctly use the implementation type is done through checking

the correctness of field selection, as described in this paper, and the same techniques may be carried into

subclasses to check that code is properly inherited from the superclass. For example, one can define a class

Person as:

class Person = [Name:string, Age:int]

w i t h

fun make-person (n,a) = [Name=n, Age=a] : s t r ing * i n t -> Person

fun name p = p.Name : sub -> st r ing

f u n age p = p.Age : sub -> i n t

fun increment-age p = modi fy(~,Age,p.Age + 1) : sub -> sub

end

where sub is a special type variable ranging over the set of all subtypes of Person, which are to be defined

later. Inclusion of the sub variable in the type of methods name, age, and i nc rementdge reflects the user's

intention being that these methods should be inherited by the subtypes of Person. From this, the extended

type system infers the following typing for each method defined in t,his class.

class Person w i t h

make-person : s t r ing * i n t -> Person

name : ('a < Person) -> str ing

age : ('a < Person) -> i n t

increment-age : ('a < Person) -> ('a < Person)

The notation ('a < Person) is another form of a kinded type variable whose instances are restricted to the
set of subtypes of Person. This can be regarded as an integration of the idea of bounded type abstraction

introduced in [CW85] and data abstraction. As in an object-oriented programming language, one can define

a subclasses of Person as:

class Employee = [Narne:string, Age:int, Salary:int] isa Person

w i t h

f u n make-employee (n,a) = [Narne=n, Age=a, Salary=O] : str ing * i n t -> Employee

f u n salary e = e.Salary : sub -> i n t

f u n addsalary (e,s) = modify(e,Salary,e.Salary + s) : sub * i n t -> sub

end

By the declaration of isa Person, this class inherits methods name, age, i n c r e r n e n t ~ g e from Person. The

prototype implementation of Machiavelli prints the following t,ype information for this subclass definition.

class Employee isa Person w i t h

make-employee : st r ing * i n t -> Employee

addsalary : ('a < Employee) * i n t -> ('a < Employee)

salary : ('a < Employee) -> i n t

inherited methods:

name : ('a < Person) -> st r ing

age : ('a < Person) -> i n t

increment-age : ('a < Person) -> ('a < Person)

The type system can statically check the type consistency of methods that are inherited. I t is also possible
t o define classes that are subclasses of more than one classes, such as ResearchFellow below.

class Student = [Name:string, Age:int, Grade:real] isa Person

w i t h

f u n makes tuden t (n,a) = [Narne=n, Age=a, Grade=O.O] : str ing * i n t -> Employee

f u n grade s = s.Grade : sub -> real

fun set-grade (s,g) = m ~ d i f ~ (s , S a l a r ~ , ~) : sub * real -> sub

end

class ResearchFellow = [Narne:string, Age:int, Salary:int, Grade:real]

isa {Employee, Student} with

fun make-RF (n,a) = [Narne=n, Age=a, Grade=O.O, Salary = 01 : string * int -> ResearchFellow

end

Classes can be parameterized by types and the type inference system we have described can be extended to

programs involving classes and subclass definitions.

One possible addition to this idea is the treatment of object identity. Throughout this paper we have

held to the view that object identity, as a programming construct, is nothing more than reference, and that

object creation and update are satisfactorily described by the operations on references given in ML and a

number of other programming languages. However Abiteboul and Bonner [AB91] have given a catalog of

operations on objects and classes, not all of which can be described by means of this simple approach to

object identity. Some of the operations appear to call for the passing of reference through an abstraction. For
example one may think of Person object identities as references to instances of a Person class and Employee

object identitites as references to instances of a Employee class. But this approach precludes the possibility

that some of the Person and Student identities may be the same, in fact the latter may be a subset of the

former. The ability to ask whether two abstractions are both "views" of the same underlying object appears

to call for the ability to pass a reference through an abstraction. If this can be done, we believe it is possible
to implement most, if not all, the operations suggested by Abiteboul and Bonner.

Se t s and other collection types . Our original description of Machiavelli [OBBT89] attracted some

attention [IPS911 because of the use of horn as the basic operation for compuation on sets. The reason for

using horn was simply to have a small, but adequate collection of operations on sets on which t o base our type

system. For the purpose of type inference or type checking, the fewer primitive functions the better. In our

development, record types and set types are almost independent; there are only a few primitive operations

that involve both, and these occur in sections 4 and 5. For other purposes we could equally well have used

record types in conjunction with lists, bags or some other collection type. In fact the use of lists, bags and

sets is common in object-oriented programming, and some object-oriented databases [Objgl] supply all three

as primitive types.

The study of the commonality between these various collection types is a fruitful extension t o the ideas

provided here. I t may provide us with better ways of structuring syntax [Wadgo], with an understanding

of the commonality between collection types [WT91], and a more general approach t o query languages and

optimization for these types [BTBWSl].

7 Acknowledgements

Val Breazu-Tannen deserves our special thanks. He has contributed to many of the ideas in this paper and

has greatly helped us in our understanding of type systems. We thank the referees for their careful reading;

we are also grateful for helpful conversations with Serge Abiteboul, Malcolm Atkinson, Luca Cardelli, John

Mitchell, Rick Hull and Aaron Watters.

References

M.P. Atkinson and O.P. Buneman. Types and persistence in database programming languages.
ACM Computing Surveys, June 1987.

S. Abiteboul and A. Bonner. Objects and views. I11 Proceeding of ACM SIGMOD Conference,

pages 238-247, 1991.

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Morrison. An approach t o

persistent programming. Computer Journal, 26(4), November 1983.

M.P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrick, D. Maier, and S. Zdonik. The object-

oriented database system manifesto. In Proceedings of the First Deductive and Object-Oriented

Database Conference, Kyoto, Japan, December 1989.

A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual lan-

guage. ACM Transactions on Database Systems, 10(2):230-260, 1985.

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynaillic typing in a statically-typed language.

ACM Transactions on Programming Languages and Systems, 13(2):237-268,1991.

A. W. Appel and D. B. MacQueen. Standard ml of new jersey. In Proceedings of Third Inter-

national Symposium on Programming Languages a71d Logic Programming, pages 1-13, 1991.

L. Augustsson. A compiler for lazy ML. I11 Symposium on LISP and Functional Programming,

pages 218-227. ACM, 1984.

F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple database

language. In Proc. Intl. Conf. on Very Large Data Bases, pages 97-105, 1988.

J . Biskup. A formal approach to null values in database relations. In Advan,ces in Data Base

Theory Vol 1. Prenum Press, New York, 1981.

P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize relational databases.

Theoretical Computer Science, 91(1):23-56, 1991.

P. Buneman and A. Ohori. A Type System that Reconciles Classes and Extents. In Proc.
yd International Workshop on Database Programming Languages, pages 191-202, Nafplion,

Greece, August 1991. Morgan Kaufinanii Publishers.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language In

Proc. yd International Workshop on Database Programming Languages, pages 9-19, Nafplion,

Greece, August 1991. Morgan Kaufmann Publishers.

V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally Embedded Query Languages In Proc.

International Conference on Database Theory, Berlin, October 1992. Springer LNCS.

V. Breazu-Tannen, P. Buneman, and A. Ohori. Can object-oriented databases be statically
typed? In Proc. 2nd International Workshop on Database Programming Languages, pages 226

- 237, Gleneden Beach, Oregon, June 1989. Morgan Kaufmann Publishers.

[BTS91] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Program-

ming with Sets/Bags/Lists, Proceedings of the 18th International Colloquium on Automata,

Languages, and Programming, Madrid (Spain), July 1991, Springer LNCS 510, pp. 60-75.

[Car861 L. Cardelli. Amber. In Combinators and Functional Programming, Lecture Notes in Computer

Science 242, pages 21-47. Springer-Verlag, 1986.

[Car881 L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,

1988. (Special issue devoted to Symposium on Semantics of Data Types, Sophia-Antipolis,

France, 1984).

[CDJS86] M. Carey, D. DeWitt, Richardson J . , and E Sheikta. Object and file management in the

EXODUS extensible database system. In International conference on Very Large Data Bases,

August 1986.

[CM84] G. Copeland and D. Maier. Making smalltalk a database system. In Proceedings of the ACM

SIGMOD conference, pages 316-325. ACM, June 1984.

[CM89] L. Cardelli and J . Mitchell. Operations on records. In Proceedings of Mathematical Foundation

of Programming Semantics, Lecture Notes in Computer Science 442, pages 22-52, 1989.

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95-169,

1983.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.

Computing Surveys, 17(4):471-522, December 1085.

[DM821 L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings of

ACM Symposium on Principles of Programming Languages, pages 207-212, 1982.

[Gir71] J.-Y. Girard. Une extension de I'int*erpret,at,ion de godel a l'analyse, et son application B
l76limination des coupures dans l'analyse et thgorie des types. In Second Scandinavian Logic

Symposium. North-Holland, 197 1.

[GS89] J . Gallier and W. Snyder. Complete sets of transformations for general E-unification. Theoretical

Computer Science, 67(2):203-260, 1989.

[Hi11691 R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. American

Mathematical Society, 146:29-60, December 1969.

[HK87] R. Hull and R. King. Semantic database modeling: Survey, applications and research issues.

Computing Surveys, 19(3), September 1987.

[HP91] R. Harper and B. Pierce. A record calculus based on symmetric concatenation. In Proceedings
of ACM Symposium on Principles of Programming Languages, 1991.

[HPJW+92] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J . Fairbairn, J . Fasel, M. Guzman, K. Ham-
mond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J . Perterson. Report on
programming language Haskel a non-strict, purely functional language version 1.2. SIGPLAN

Notices, Haskel special issne, 27(5), 1992.

[IL84] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM,
31(4):761-791, October 1984.

Neil Immerman, Sushant Patnaik, and David Stemple. The Expressiveness of a Family of Finite

Set Languages. In Proceedings of 10th ACM Symposium on Principles of Database Systems,

pages 37-52, 1991.

L. A. Jategaonkar and J.C. Mitchell. ML with extended pattern matching and subtypes. In

Proc. ACM Conference on LISP and Functional Programming, pages 198-211, Snowbird, Utah,

July 1988.

S.J. Kaplan Appropriate responses to inappropriate questions. Elements of Discourse Under-

standing (A.K. Joshi, B.L. Webber and I. Sag, eds.) Cambridge 1981.

W. Lipski. On semantic issues connected with incomplete information databases. ACM Trans-

actions on Database Systems, 4(3):262-296, September 1979.

D. MacQueen. References and weak polymorphism. Note in Standard ML of New Jersey

Distribution Package, 1988.

R. Morrison, A.L. Brown, R.C.H. Connor, and A. Dearle. Napier88 reference manual. Technical

report, Department of Computational Science, University of St Andrews, 1989.

R. Milner. A theory of type polymorphism in progra.mming. Journal of Computer and System

Sciences, 17:348-375, 1978.

J.C. Mitchell. Type systems for programming languages. In J . van Leeuwen, editor, Handbook

of Theoretical Computer Science, chapter chapter 8, pages 365-458. MIT Press/Elsevier , 1990.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

A. Ohori and P. Buneman. Type inference in a database programming language. In Proc. ACM

Conference on LISP and Functional Programming, pages 174-183, Snowbird, Utah, July 1988.

A. Ohori and P. Buneman. Static type inference for parametric classes. In Proceedings of ACM

OOPSLA Conference, pages 445-456, New Orleans, Louisiana, October 1989.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database Programming in Machiavelli: a Poly-

morphic Language with Static Type Inference. In Proceedings of ACM-SIGMOD International

Conference on Management of Data, pages 46-57, Port,land, Oregon, June 1989.

Objectstore Reference Manual. Object Design Inc., Burlington, MA. !991.

P O'Brien, B Bullis, and C. Schaffert. Persistent and shared objects in Trellis/Owl. In Proc.

of 1986 IEEE International Workshop on Object-Oriented Database Systems., 1986.

A. Ohori. A simple semantics for ML polymorphism. In Proceedings of ACM/IFIP Conference

on Functional Programming Languages and Computer Architecture, pages 281-292, London,

England, September 1989.

A. Ohori. A Study of Types, Semantics and Languages for Databases and Object-oriented
Programming. PhD thesis, University of Pennsylvania, 1989.

A. Ohori. Semantics of types for database objects. Theoretical Computer Science, 76:53-91,
1990.

A Ohori. A compilation method for ML-style polymorphic record calculi. In Proceedings of

A C M Symposium on Principles of Programming Languages, pages 154-165, 1992.

D. Remy. Typechecking records and variants in a natural extension of ML. In Proceedings of
A C M Symposium on Principles of Programming Languages, pages 242-249, 1989.

J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on Programming, pages

408-425. Springer-Verlag, 1974.

J . A. Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal of the

A C M , 12:23-41, March 1965.

J.W. Schmidt. Some High Level Language Constructs for Data of Type Relation. A C M Trans-
actions on Database Systems, 5 (2) , 1977.

B. Stroustrup. The C++ programming language. Addison- Wesley, 1987.

M. Stonebraker and L. Rowe, The Design of Postgres In Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data, Washington, DC, May 1986.

M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Department of

Computer Science, University of Edinburgh, 1988.

D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Functional
Programming Languages and Computer Architecture, Lecture Notes in Computer Science 201,

pages 1-16. Springer-Verlag, 1985.

P. Wadler. Comprehending Monads ACM Conference on Lisp and Functional Programming,

Nice, June 1991.

M. Wand. Complete type inference for simple objects. In Proceedings of the Second Annual
Symposium on Logic in Computer Science, pages 37-44, Ithaca, New York, June 1987.

M. Wand. Corrigendum : Complete type inference for simple object. In Proceedings of the

Third Symposium on Logic in Computer Science, 1988.

M. Wand. Type inference for records concatenation and simple objects. In Proceedings of 4th
I E E E Symposium on Logic i n Computer Science, pages 92-97, 1989.

David A. Watt and Phil Trinder. Towards a Theory of Bulk Types. Fide Technical Report

91/26, Glasgow University, Glasgow G12 8QQ, Scotland, July 1991.

C. Zaniolo. Database relation with null values. Journal of Computer and System Sciences,
28(1):142-166, 1984.

