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Abstract 

The polymorphic type system of ML can be extended in two ways to make it the appropriate basis 

of a database programming language. The first is an extension to the language of types that captures 

the polymorphic nature of field selection; the second is a technique that generalizes relational operators 

to arbitrary data structures. The combination provides a statically typed language in which relational 

databases may be cleanly represented as typed structures. As in M L  types are inferred, which relieves 

the programmer of making the rather complicated type assertions that may be required to express the 

most general type of a program that involving field selection and generalized relational operators. 

These extensions may also be used to provide static polymorphic typechecking in object-oriented 

languages and databases. A problem that arises with object-oriented databases is the apparent need for 

dynamic typechecking when dealing with queries on heterogeneous collections of objects. An extension of 

the type system needed for generalized relational operations can also be used for manipulating collections 

of dynamically typed values in a statically typed language. A prototype language based on these ideas 

has been implemented. While it lacks a proper treatment of persistent data, it demonstrates that a wide 

variety of database structures can be cleanly represented in a polymorphic programming language. 

1 Introduction 

Expressions such as 3 + "cat" and [Name = "J.  Doe"] .PartNumber contain type errors - applications 

of primitive operations such as "+" or "." (field selection) t o  inappropriate values. T h e  detection of type 

errors in a program before it is executed is, we believe, of great importance in database programming, which 

is characterized by t h e  complexity and size of t he  d a t a  structures involved. For relational query languages 

checking of the  type  correctness of a query such as  

select Name 

from Employee 

where Salary > 100000 
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is a straightforward process that is routinely carried out by the compiler, not only as a partial check on 

the correctness of the program, but also as an essential part of the optimization process However, once we 

add some form of procedural abstraction to the language, typechecking is no longer straightforward. For 
example, how do we check the type correctness of a program containing the function definition 

function Wealthy(S) = select Name 

from S 
where Salary > 100000 

This function is polymorphic in the sense that it should be applicable to any relation S with Name and 

Salary fields of the appropriate type. In database programming languages there have been two general strate- 

gies. One is to follow the approach of Pascal-R [Sch77] and Galileo [AC085] and insist that the parameters 

of procedures are given specific types, e.g. function Wealthy(S:EmployeeReI) . . .. Type checking in both these 

languages is static and the database types are relatively simple and elegant extensions t o  the existing type 

systems of the programming languages on which they are based. However, in these languages it is not possi- 

ble t o  express the kind of polymorphism inherent in a function such as Wealthy. The other approach is used 

in persistent languages such as PS-algol [ABC+83] and some of the more recent object-oriented database 

languages such as Gemstone [CM84], EXODUS [CDJS86] and Trellis-Owl [OBS86] where, if i t  is a t  all pos- 

sible t o  write polymorphic code, some dynamic type-checking is required. Napier [MBCD89] attempts to 

combine parametric polymorphism [Rey74, Gir711 and persistence, but its polymorphism does not extend 

to operations on records and other database structures. The current practice in database programming is t o  

use a query language embedded in a host language. In this arrangement, communication between programs 

in different languages is so low-level that type-checking is effectively non-existent, and programs that violate 

the intended types can have disastrous consequences. See [AB87] for a survey of various approaches to  

type-checking in database programming. 

The language ML [MTHSO] has a type inference system which infers, if it exists, a most general poly- 

morphic type for a program [Mi178, DM821. Because of this, ML enjoys much of the flexibility of untyped 

(or dynamically typed) languages without sacrificing the advantages of static type checking. Unfortunately 

the polymorphism in ML is not general enough to express the generic nature of field selection, which occurs 

in functions such as such as Wealthy and quite generally in database programming. Our goal in this paper 

is t o  show that an extension t o  ML's type system can express the polymorphic nature of the data types and 

operations that are used in relational and object-oriented databases and is therefore an appropriate basis for 

a general-purpose database programming language. These ideas are embodied in Machiavelli [OBBT89], an 

experimental programming language based on ML, developed at University of Pennsylvania. A prototype 

implementation has been developed that demonstrates most of the material presented here with the excep- 

tion of reference types, cyclic data, and persistence. Our hope is that Machiavelli, or some language like it ,  

will provide a framework for dealing uniformly with both relational and object-oriented databases. 

To illustrate a program in Machiavelli, consider the function Wealthy. This function takes a set of records 

(i.e. a relation) with Name and Salary information and returns the set of all Name values that occur in records 
with Salary values over 100K. For example, applied to  the relation 

{[Name = "Joe",  Salary = 223401, 

[Name = "Fred", Salary = 1234561, 

[Name = "Helen", Salary = 1320001) 

which is Machiavelli syntax for a set of records, this function should yield the set {" Fred", "Helen") of 



character strings. This function is written in Machiavelli (whose syntax largely follows that of ML) as 

follows 

fun Wealthy(S) = select x.Name 

from x <- S 

where x.Salary > 100000; 

The select . . . from . . . where . . . form is simple syntactic sugar for more basic Machiavelli program structure 

(see section 2). 

Although no types are mentioned in the code, Machiavelli infers the type information 

Wealthy : {d :: [Name : d', Salary : in t] )  -+ {d') .  

To understand what this means, consider first the type given to the function cons, the function that adds 

an element t o  a list, by ML. I t  is the type expression t * list(t) -+ list(t) in which t is a type variable. This 

represents the polymorphic type Vt.t * list(t) -+ list(t) where t in t * list(t) - list(t) is universally quantified 

over types. This means that the valid types for cons may be obtained by substituting any type for t .  Thus 

int * list(int) -+ list(int), string * list(string) -+ list(string), and list(int) * list(list(int)) -+ list(list(int)) are 

all valid types for cons. Now in the type for Wealthy above d and d' are also type variables, but unlike the 

variable t in the previous example we cannot perform arbitrary substitutions of types for these variables. 

There are two restrictions. The first is indicated by the decora.tion ":: [Name : d', Salary : int]" on the 

type variable d. This allows only certain record types to  be substituted for dl i.e. those with a Salary : int 
field, a Name : S field (where 6 is obtained by substituting some type for dl), and possibly other fields. 

This represents polymorphic type of the form Vdl.Vd :: [[Name : dl, Salary : int].{d) - {d') where the 

type variable d is quantified over only those record types that contain Name and Salary fields of appropriate 

types. Thus 

{[Name : siring, Salary : int]}  - {string) 
{[Name : string, Age : int, Salary : int]} -+ {string) 

{[Name : [First : strin,g, Last : string], Weight : int, Salary : in t] )  
-+ {[First : string, Last : string]} 

are allowable instances of the type of wealthy, while 

{[Name : string]) -+ {string) 
{[Name : string, Age : int, Salary : string]) - {string) 

{ in t )  -+ {string) 

are not allowable instances, for the subst.itutions for d that generate them do not match with the constraints 

imposed by the decoration [Name : dl, Salary : int]. Type variables whose instantiation is controlled by 

such a decoration are called kinded type varia.bles. 

The second constraint we place on the type variables d and d' is that they can only be instantiated with 
description types. Some of the essential operations on databases require computable equality, and this is not 
available on function types and, may be unavailable on certain base types. Description types are those that 

can be constructed from the allowed base types through any type construction other than a function type 

that appears outside the scope of a reference type. Equality is always available on references regardless of 

their associated values. We therefore allow description types to contain function types inside of reference 

type constructor. ML recognizes a similar coiistraint on type variables. 



In order to  display type variables using conventional programming fonts we follow the ML convention 

of displaying ordinary type variables as 'a,  'b, . . .and description type variables as " a ,  " b etc. Thus the 

type {d :: [Name : dl ,  Salary : int]) + {d') will be displayed in examples as {"a::[Name : " b, Salary : int]) 

-> {" b). 

The typing Wealthy: {"a::[Name : " b, Salary : int]} -> {" b) places restrictions on how Wealthy may be 

used. For example, all of the following 

Wealthy({[Name = "Joe"], [Name = " Fred"])) 

Wealthy({[Name = "Joe",  Salary = "nonsense"])) 

sum(Wealthy({[Name = " Fred", Salary = 30000], 
[Name = "Joe", Salary = 200000]})) 

will be rejected by the compiler. In the first application the Salary field is missing; in the second it has the 

wrong type. In neither case can we find a suitable instantiation for the kinded type variable "a::[Narne : " b, 
Salary : int]. In the third case we can find such an instantiation, but this results in the variable " b being 

bound to  string, so that the result of Wealthy is of type {string} - an inappropriate argument for sum. 

There is a close relationship between the polymorphism represented by the kinded type variables the 

generic nature of object-oriented programming. The type scheme {"a::[Name : " b, Salary : int]) can be 

thought of as a class, and functions that are polymorphic with respect to  this, such as Wealthy, can be 

thought of as methods of that class. For the purposes of finding a typed approach t o  object-oriented 

programming, Machiavelli's type system has similar goals to  the systems proposed by Cardelli and Wegner 

[Car$$, CW851. However, there are important technical differences, the most important of which is that in 

Machiavelli database values have unique types, while they have nlultiple types in Cardelli and Wegner's type 

systems. Database types in Machiavelli specify the exact structure of values and this property is needed in 

order to  implement various database operations such as equality and natural jozn. (See [BTB089] for more 

discussion.) Inheritance is thus achieved not by subtyping but by polymorphic instantiation of kinded type 

variables. The most important practical difference is that this polymorphism is inferred, which means that 

the programmer does not have to  declare and explicitly instantiate the rather complicated forms needed in 

the Cardelli and Wegner system to capture precisely the polymorphic nature of functions such as Wealthy. 

Another important extension to  these type systems for objects and inheritance is that Machiavelli uni- 

formly integrates set types and various database operations, including generalized join and projection in 

its polymorphic type system. Sets may be constructed on any description type. Combined with labeled 
records, labeled variants and cyclic definitions, the Machiavelli type system allows us to represent most of 

the structures found in various complex data models [HK87]. Cyclic structures are supported by exploiting 

the properties of regular trees [Cou83]. Join and projection are generalized to  arbitrary, possibly cyclic, 

structures and are polymorphic functions in Machiavelli's type system. "Complex object" or "non-first- 

normal-form" relations are usually taken as relations whose entries are not restricted to  being atomic values, 

but may themselves be relations. The structures we shall describe are more general in that they can also 

include variants and cyclic structures. Thus Machiavelli provides a, natural representation of a generalized 
relational (or complex object) data model within a polymorphic type system of a programming language 

and achieves a natural integration of databases and data. types. 

The attempt to  understand the nature of object-oriented databases has centered more on a discussion of 
features[ABD+89] than on any principled attempt to  provide a formal semantics. However, looking at these 

features, there are some that are not directly captured in a functional language with the relational extensions 



we have described above. First, the class structure of object-oriented languages provides a form of abstraction 

and inheritance that does not immediately fall out of an ML-style type system. Second, object identity is not 

provided in the relational model (though it  is an open issue as t o  whether it  requires more than the addition 

of a reference type, as in ML.) Third, and perhaps most interesting from the standpoint of object-oriented 

databases, there is an implicit requirement that helerogeneous collections should be representable in the 

language. We believe that these issues can be satisfactorily resolved in the context of the type system we are 

advocating. In particular, the heterogeneous collections - which would appear to be inconsistent with static 

type-checking - can be satisfactorily represented using essentially the same apparatus developed to handle 

relational data types. This is discussed in section 5. 

The organization of this paper is as follows. Section 2 introduces the basic data  structures of Machiavelli 

including records, variants and sets, and shows how relational queries can be obtained with the operations 

for these structures. Section 3 contains a definition of the core language itself. I t  defines the syntax of types 

and terms, and describes the type inference system. Section 3 also presents the type inference process in 

some detail for the basic operations required for records, sets and variants. In section 4, the language is 

extended with relational operations - specifically join and projection - that cannot be derived from basic 

set operations, and the type inference system is extended to handle them. In section 5 we discuss how this 

type system can be used to capture an important aspect of object oriented databases, the manipulation of 

heterogeneous collections. Section 6 concludes with a brief discussion of further applications of these ideas 

to  object-oriented languages and databa.ses. 

2 Basic Structures for Data Representation 

As we have just mentioned, the main goal of this st,ucly is t.o develop a polymorphic type system that serves 

as a medium in which to  represent various database structures. In pa.rticular it should be expressive enough 

to represent various forms of complex objects that violate the "first-normal-form assumption" that underlies 

most implemented relational database systems and most of the traditional theory of relational databases. 

For example we want to  be able to  deal with structures such as 

{[Name = [First = " Bridget",  Last = " Ludford"], Children = {" Jeremyw, "Christopher" )I, 
[Name = [First = " Ellen", Last = " Gurman"], Children = { "Adam" ,  " Benjaminw)]) 

which is built up out of records and (uniformly typed) sets. This structure is a non-first-normal-form relation 

in which the Name field contains a record and the Children field contains a set of strings. It is an example 
of a description term, and in this section we shall describe the constructors that enable us to  build up such 

terms from atomic data: records, variants, sets and references. We shall also describe how cyclic structures 

are created. As we describe each constructor, we shall say under what conditions it constructs a description 

term. For example, a record whose fields contain functions can be very useful, but such a value cannot be 

placed directly in a set. This would give rise to a type error. 

We start  with the basic syntactic forms of Machiavelli for va.lue and function definition, which are exactly 

those of ML. Names are bound to  values by the use of val, a,s in 

val  four = 2 + 2 

functions are defined through the use of fun, as in 

fun  f(n) = if eq(n, l)  then 1 else n * f(n-1) 



and there is a function constructor fn x => . . . that is used to  create functions without naming them, as in 

(fn x => x + x) (4) 

which evaluates t o  8. In fact, since a fixed point operator is lambda-definable in Machiavelli (using recursive 

types), recursive function definition can be obtained from value definition and is not essential. It is used 

here for convenience. Finally there is the form let x = el in  e2 end, which evaluates ez in the environment in 

which x is bound to  e l .  Example: 

let x = 4 + 5 in x + x*x end 

which evaluates to  90. In an untyped language, let . . . i n  . . . end is also not essential, but the type inference 

rules are such that  this form is treated specially, and it  is the basis for ML's polymorphism. By implicit or 

explicit use of let, polymorphic functions are bound and used. Polymorphic function definitions such as that 

of our Wealthy example are treated as shorthand for a let binding whose scope is the rest of the program. 

2.1 Labeled Records and Labeled Variants 

The syntax for labeled records is: 

where 11, . . . ,1, stand for labels. A record is a description term if all its fields vl,  . . . , vn are description terms. 
Other than record construction, ([ . . . I), there are two primitives for records. The first, -.I is field selection; 

r.1 selects the 1 field form the record r. The second, modify(-,l,-), is field modification in which rnodify(r,l,e) 

creates a new record identical to r except on the 1 field where its value is e. For example, 

rnodify([Name = " J .  Doe", Age = 211, Age, 22) 

evaluates t o  [Name = " J .  Doe", Age = 221. It is important to  note that modify does not have a side-effect. 

I t  is a function that returns another record. This construct enables us to  modify a record field that is not 

a reference. With the polymorpliic typing of Machiavelli presented later, it achieves added flexibility in 

programming with records. 

We shall make frequent use of the syntax (el,  ez) for pairs. This is simply an abbreviation for the record 

[first = e l ,  second = e2]. Triples and, generally, n-tuples are similarly constructed. 

Variants are used to "tag" values in order to treat them uniformly. For example, the values <Int = 7> 
and <Real = 3.0> could both be treated as numbers, and the tags used to  indicate how the value is to be 

interpreted (e.g. real or integer.) A program may use these tags in deciding what operations to  perform on 

the tagged values (e.g. real or integer arithmetic.) The synt,ax for constructing a variant is: 

The operation for analyzing a variant is a case expression: 

case e of 
<ll=xl> => e l ,  

<1, =x,> => en ,  
else eo 

endcase 



where each x i  in <li=xi> => ei is a variable whose scope is in ei. This operation first evaluates e and if it 

yields a variant <li=v> then binds the variable x i  to the value v and evaluates ei under this binding. If there 

is no matching case then the else clause is selected. The else is optional, and, if omitted, the argument e 

must be evaluated to a variant labeled with one of l l , .  . . , I , .  It is a property of the type system that this 

condition can be statically checked. 

For example, 

case <Consultant = [Name = " J. Doe", Address = " 10 Main St.", 

Phone = " 222-1234"]> 

of 

<Consultant = x> => x.Phone, 

<Employee = y> => y.Extension 

endcase 

yields " 222-1234". 

Note that case . . . o f .  . . endcase is an expression, and returns a value. The possible results el ,  . . . , en, eo 

should all have the same type. A variant <I = v> is a description term if v is a description term. 

2.2 Sets 

Sets in Machiavelli can only contain description terms and sets themselves are always description terms. 

This restriction is essential to generalize database operatlions over structures containing sets. There are four 

basic operations for sets: 

{I empty set, 

{XI singleton set constructor, 
union(sl ,s2) set union, 

hom(f,op,z,s) homomorphic extension 

The syntax {xl, xa, . . . , x,) is syntactic shorthand for union({zl), union({x2), union(. . . ,{xn)))) 

Of these operations, horn requires some explanation. This is a primitive function in Machiavelli, similar 

to the "pump" operation in FAD [BBKV88] and the "fold" or "reduce" of many functional languages. Its 

definition is 

hom(f ,op,z,{)) = 2, 

horn(f ,op,z,{e)) =f (e) 

hom(f ,op,%,union(el ,e2)) = op(hom(f ,op,z,el),hom(f ,opP2,e2)) 

for example, a function to  check if there is at least one element satisfying property P in a set can be defined 

as 

fun exists P S = hom(P, or, false, S) 

and a function that finds the largest member of a set of non-negative integers is 

fun max S = horn( fn x => x, fn (x ,~ )  => i f  x > y then x else y, 0, S) 



In general the result of this operation will depend on the order in which the elements of the set are encoun- 

tered; however if op is an associative, commutative and idempotent operation with identity z and f has no 

side-effects (as is the case in the exists and rnax examples) then the result of horn will be independent of the 

order of this evaluation. Now one would also like to  use horn on operations that are not idempotent, for 

example 

fun sum S = horn(fn x => x, +, 0, S) 

However + is not idempotent, and it is easy to construct programs with ambiguous outcomes if evaluated 

according t o  the rules above and a further rule that says union(s, s) = s. For example1 

Now it is easy enough to  remove such ambiguous outcomes by insisting - as we have done in our implemen- 

tation - that ,  in the representation of sets, we do not have duplicated elements. This is equivalent to  putting 

a condition on the third line of the definition of horn that the expressions el and e2 denote disjoint sets. 

Unfortunately this considerably complicates the operational semantics of the language, and it precludes the 

possibility of lazy evaluation. For a resolution of this issue, see [BTSSl, BTBNSl], which disuss the semantic 

properties of programs with sets and other collection types. In this paper we shall occasionally make use of 

"incorrect" applications of horn; however we are confident that the adoption of an alternative semantics will 
not affect typing issues, which are the main concern here. 

Various useful functions can be defined using correct applications of horn. A function rnap(f, S), which 

applies the function f to  each member of S is: 

fun map(f,S) = horn(fn x => {f x), union, {), S) 

For example rnap(rnax,{{l,2),{3), {6,5,4}}) evaluates to {2,3,6). 

A selection function is defined by 

fun filter(p,S) = horn(fn x => if p(x) then {x) else {), union,{),S) 

filter(p, S) extracts those members of S that satisfy property p; for example filter(even,{l,2,3,4)) evaluates 

to {2,4). 

In addition to  these examples, horn can be used to define set intersection, membership in a set, set 

difference, the n-fold cartesian product (denoted by prod-n below) of sets and the powerset (the set of 

subsets) of a set. Also, the form 

select E 
f rom XI <- S1, 

2 2  <- S 2 ,  

xn <- Sn 
where P 

in which X I ,  22,.  . . , x, may occur free in E and P, is provided in the spirit of relational query languages and 

the list comprehensions of Miranda [Tur85]. This can be implemented as 

We are grateful to Val Tannen for this example and for much of the ensuing discussion. 
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in which map, filter and prodn are the functions we have just described, and ( E , P )  is a pair of values 

(implemented in Machiavelli as records). See [Wadgo] for a related discussion of syntax for programming 

with lists. 

2.3 Cyclic Structures 

In many languages, the ability to  define cyclic structures depends on the ability t o  reassign a pointer. In 

Machiavelli, these two ideas are separated. It is possible to  create a structure with cycles through use of the 

(rec v.e) construct, e.g. 

val Montana = (rec v.[Narne = "Montana", Motto = "Big Sky Country", 
Capital = [Name = "Helena", State = v]]) 

This record behaves like an infinite tree obtained by arbitrary unfolding by substitution for v.  For exam- 

ple, the expressions Montana.Capital, Montana.Capital.State, Montana.Capital.State.Capital, etc. are all valid. 

Moreover, equality and other database operations on des~ript~ion terms generalize to  those cyclic structures. 

This uniform treatment is achieved by treating description terms as regular trees [Cou83]. The syntax (rec 

v.e) denotes the regular tree given as the solution to the equation v = el where e may contain the symbol v 

but not v itself. To ensure that the equation v = e has a proper solution, we place the restriction that if e 

contains a new constructor then the argument of new may not contain x. 

2.4 References 

We believe - though we shall comment more on this in section 6 - that the notion of "object identity" in 

databases is equivalent to that of references as they are implemented in ML. There are three primitives for 

references: 

new(v) reference creation, 

! r  de-referencing, 

r:=v assignment. 

new(v) creates a new reference and assigns the value v to it ,  ! r  returns the value associated with the reference 

r, and r:=v changes the value associated with the reference r to v. In a database context, they correspond 

respectively to creating an object with identity, retrieving the value of an object, and changing the associated 
value of an object without affecting its identity. 

The uniqueness of identity is guaranteed by the uniqueness of each reference. Two references are equal 

only if they are the results of the same invocation of new primitive. For example if we create the following 

two objects (i.e. references t o  records), 

John1 = new([Name=" John", Age= 211); 

John2 = new([Name=" John", Age= 211); 



then J o h n l  = Johnl  and !John1 = !John2 are true but Johnl  = John2 is false even though their associated 

values are the same. Sharing and mutability are captured by references. If we define a department object as 

SalesDept = new([Name = "Sales", Building = 111); 

and from this we define two employee objects as 

John = new([Name=" John", Age =21, Dept  = SalesDept]); 

Mary  = new([Name=" Mary",  Age =31, Dept  = SalesDept]); 

then John and Mary  share the same object SalesDept as the value of Dept  field. Thus, an update to  the 

object SalesDept as seen from John, 

(!John).Dept := modify(!((!John).Dept), Building, 98) 

is reflected in the department as seen from Mary.  After this statement, 

evaluates to  98 .  Unlike many languages references do not have an optional "nil" or "undefined" value. If 
such an option is required it must be explicitly introduced through the use of a variant. 

3 Type Inference and Polymorphism in Machiavelli 

Type inference is a method to infer type information that represents the polymorphic nature of a given 

untyped (or partially typed) program. Hindley [Hi11691 established a complete type inference algorithm for 

untyped lambda expressions. Independently, Milner [Mi1781 developed a complete type inference algorithm 

for a functional programming language including polymorphic definition (using let construct.) Damas and 

Milner [DM821 formulated its type system and showed the completeness of Milner's type inference algorithm. 

This has been successfully used in the ML family of programming languages [Aug84, MTHSO] and also been 

adopted by other functional languages [Tur85, HPJW+92]. Unfortunately this method cannot be used 

directly with some of the data  structures and operations we have described in the previous section. In this 

section we give an account for the extension to the Damas-Milner type system that is used in Machiavelli, 

first through some examples and then through a definition of the "core" language and its type system. 

The extension is a departure from that given in our original outline of Machiavelli [OBBT89] in that the 

notion of kinded types allows us to  obtain a "principal type" result for expressions in a core language. This 

significantly simplifies the presentation of the type inference algorithm. 

For programs which do not involve field selection, variants and database operations, Machiavelli infers 

type information similar to  those of ML. For example, for the identity function 

fun id x = x: 

the type system infers the following type information 

where 'a is a type variable intuitively representing an "arbitrary type". The notation 'a -> 'a is a type 
representing the set of types that can be obtained by substituting its type variables with some types (such 

as int,  boo1 or int  -+ int ) .  This type can be understood as a representation of a polymorphic type of the form 



Vt. t  - t  in the second-order polymorphic lambda calculus [Rey74, Gir711. The most important property of 

the ML type system is that  for any type consistent expression it infers a principal  t y p e .  This is a type such 

that all its instances are types of the expression and conversely any type of the expression is its instance. 
This means that the type system infers a type that exactly represents the set of all possible types of an 

expression. In the example of id above, the set of instances of 'a -> 'a is the set of all types of the form T -+ T 

and is exactly the set of all possible types of id. By this mechanism, ML achieves p o l y m o r p h i s m  without 

explicit type abstraction and type application. 

A more substantial example of type inference is given by the function map of the previous section, which 

has the following type. 

map : ("a -> " b * {"a})  -> {" b) 

Here "a  and " b are also type variables, but in this case they only represent description types. The type 

for map indicates that i t  is a function that takes a function of type 61 -62 and a set of type (61) and 

returns a set of type {S2) where bl, b2 can be any description types. Thus map(max, {{1,2,3),{7},{5,2)))  is 

a legitimate application of map. Again, the type ("a -> " b * {"a))  -> {" b) is principal in that any type for 

map is obtained by substituting description types for the type variables " a  and " b. In the example, ({int} 

-> int * {{int))) -> {int) is the type of map in map(max, {{1,2,3) , .  . .)). 

Similar examples are possible in ML and its relatives. However it is not possible for ML1s type inference 

method t o  infer a type for a program involving field selection, variants or the relational database operations 

that we shall describe later. For example, the simplest function using field selection 

fun name x = x.Name 

cannot be typed by ML. (In Standard ML, this function is written fun name x = (#Name x), which is 

rejected by the compiler unless a complete type is specified for the argument x.) The difficulty is that the 
conventional notion of types in ML is not general enough to represent the relationship between the argument 

type and the result type, which in this case is the inclusion of a field type in a record type. 

Wand attempted [Wan871 to solve this problem (with the operation that extends a record with a field) 

using the notion of row variables, which are variables ranging over finite sets of record fields. His system, 

however, does not share with ML the property of principal typing (see [OB88, Wan881 for the analysis of 

the problem and [JM88, Rem89] for the refinements of the system.) Based on Wand's general observation, 

in [OB88] we developed a type inference method which overconles the difficulty and extends the method to 

database operations. Instead of using row variables, we introduced syntactic conditions t o  control substitu- 

tion of type variables. For records and variants, the necessary conditions can be represented as kinded type 

variables [Oho92], as we have seen in the example of Wealthy in Introduction. For example, the function 
name above is given the following type 

name : 'a::[Name : 'b] -> 'b 

As explained in the introduction, the notation all record types containing the field Name : T where T is any 

instance of 'b. Substitutions are restricted to those t11a.t respect kind restrictions of type variables. The type 
above then represents the exact set of all possible types of the function name and is therefore regarded as 

a principal (kinded) type for name. More examples of type inference for records and variants are shown in 
Figure 1 which shows an interactive session in Machiavelli. Input to  the system is prompted by -> , and 
output is preceded by >> . The top level input is either a value or function binding; i t  is a name for the 



-> val j o e  = [Name=" Joe", Age=21, 

Status=<Consultant = [Address=" Philadelphia", Telephone=2221234]>]; 

>> val j o e  = [Name=" Joe". Age=21, 

Status=<Consultant = [Address=" Philadelphia", Telephone=2221234]>] 

: [Name : str ing, Age : in t ,  Status : 'a::<Consultant : [Address : string,Telephone : int]>] 

-> f u n  phone(x) = case x.Status o f  

endcase 

>> val phone = fn : 'a::[Status : <Employee : 'b::[Extension : 'dl ,  

Consultant : 'c::[Telephone : 'dl>] -> 'd 

-> phone(joe); 

>> val it = 2221234 : i n t  

-> fun increment-age(x) = modify(x, Age, x.Age + 1); 

>> val increment-age = f n  : 'a::[Age : int]  -> 'a::[Age : int]  

-> increment _age([Name=" John" ,Age=21]); 

>> val it = [Name=" John",Age=22] : [Name : str ing,Age : int]  

Figure 1: Some Simple hlachiavelli Examples 

result of evaluation of an expression. The out,put  consist,^ of some description of the value that  has just been 

evaluaked or bound, together with its inferred type. 

We now define a small polyn~orphic funct,ional language by combining the da ta  structures described in 

the previous section with a functional calculus and giving its type system. This will serve as the polymorphic 

"core" of Machiavelli. 

3.1 Expressions 

The  syntax of programs or expressions of the core language is given by 

e ::= c, I () I x I ( fn x => e) I e(e) I let x=e in  e end I 
if e then e else e I eq(e,e) I 
[l=e,. . .,l=e] I e.1 I modify(e,l,e) I 
<l=e> I case e o f  <l=x> => e,. . ., <1=x> => e endcase 1 
case e o f  <I=x> => e,. . ., <l=x> => e else => e endcase I 
{e) ( union(e,e) I hom(e,e,e,e) I 
new(e) I (!e) I e:=e I 
(rec x.e) 

In this, c ,  stands for standard constants i~iclucliiig constai~ts of base types and ordinary primitive functions 

on base types. x stands for the variables of the language. () is t,he single value of type uni t  and is returned 

by expressions such as assignment. Examples of the syntax have already been given in Section 2 and, in 

particular, in Figure 1. The set-valued expression {el.. . . , en}  is shorthand for union({el),union(. . .,{en)). . .). 



The binding val id = e l ;  e:! is syntactic sugar for le t  id = e l  i n  ez end. Recursive function definition with 

multiple argument is also syntactic sugar for expressions constructed from let ,  records, field selection and a 

fixed point combinator, which is already lambda-definable in Machiavelli using recursive types. Evaluation 

rules for those expressions are obtained by ehtending the operational semantics of ML such as the one 

defined in [Toft381 with the rules for eq and the operations on records, sets, variants and the rules for 

recursive expressions. The rule for eq requires delicate treatment in connection with cyclic structures and 

sets and we defer it until we discuss database operations in section 4. We have already informally described 

how operations on records, sets and variants are evaluated, and these can readily be formulated as reduction 

rules. In order to handle recursive expressions, we add the following rules. Let E ( x )  be one of the expressions 

e.1, rnodify(x,l,e), case x o f  -.., union(x,e), union(e,x), or hom(el,ez,ea,x). 

where e[(rec x.e)/x] is the expression obtained form e by substituting (rec x.e) for all free occurrences of x in 

e (with necessary renaming of bound variables.) This rule corresponds to "unfolding" of cyclic definitions. 

3.2 Types and Description Types 

The set of types of Machiavelli, ranged over by r, is the set of regular trees [Cou83] represented by the 

following type expressions : 

T ::= t I un i t  1 b I bd I r+r ( [ i : ~ , .  . .,l:r] ( < l : r , .  . . , l : r>  ( {T)  I re f ( r )  I (rec v . r (v ) )  

t stands for type variables. uni t  is the trivial type whose only value is (). b and bd range respectively over the 

base types and base description types in the language. The other type expressions are: T -+ T for function 

types, [ i : ~ , .  . .,I:T] for record types, <i:r , .  . . , l : r>  for variant types, and {r) for set types. In (rec v.r(v)), r ( v )  

is a type expression, other than v itself, in which the type variable v may occur free, and the entire expression 

denotes the solution to the equation v = r ( v ) ,  which exists as a regular trees. In keeping with our syntax 
for records we shall use the notation rl * r 2  as an abbreviation for the type [f irst : 71, second : r2] Triples 

and, generally, n-tuple types are similarly treated. 

Database examples of Machiavelli types are: a relatioil type, 

{ [PartNum : in t ,  Par tName : str ing, Color : <Red : un i t ,  Green : un i t ,  Blue : unit>]) 

a complex object type, 

{[Name : [First : str ing, Last : string], Children : {string)]) 

and a mutable object type, 

(rec p. ref([ld# : in t ,  Name : str ing, Children : {p)])) 

Note that (rec v . r (v ) )  is not a type constructor but syntax to denote the solution to the equation v = r(v) .  

As a consequence, distinct type expressions may denote the same type. For example, the following type 
expression denotes the same type as the one above: 

2While most of the ideas in this paper related to type-checking can be generalized to work for regular trees, we have not 

always given this generalization. It is often enough to think of the types in Machiavelli as simply the expressions defined by 
this syntax 



(rec p. ref([ld# : int, Name : string, 

Children : {ref([id# : int, Name : string, Children : {p)]))])) 

There is an efficient algorithm [Cou83] to  test whether two type expressions denote the same type (i.e. 

regular tree) or not. We can therefore identify type expressions as the types they denote. Note also that an 

"infinite" (cyclic) type does not necessarily mean that its values are cyclic. In the last example, while the 

type is cyclic, a cyclic value of this type presents some biological difficulties. 

The set of description types, ranged over by 6, is the subset of types represented by the following syntax: 

6 ..- ..- d I unit I bd I 1 [1:6,. . .,[:&I 1 < I : & , .  . . , I :&> 1 (6) I ref(r) I (rec v.&(v)) 

d stands for description type variables, i.e. those type variables whose instances are restricted t o  description 

types. T in ref(r) ranges over the syntax of all types given previously. This syntax forbids the use of a 

function type or a base type which is not a description type in a description type unless within a ref(. . .). 
Thus int -> int is not a description type but, 

ref([x-coord : int, y-coord : int, move-horizontal : int -> ()I) 
is a description type. 

3.3 Type Inference without Records and Variants 

As we have already indicated, the Machiavelli type system is based on type inference. A legal program 

corresponds to  an (untyped) expression associated with a type inferred by the type inference system. As 

such, the definition of this implicit system requires two steps: first we give the typing rules, which determine 

when an untyped expression e is considered to have a type r and is therefore considered as a well typed 

expression; second, we develop a type inference algorithm that infers, for any type consistent expression, a 

principal type. In order to  increase readability, we develop the description of the type system, in two stages: 

in the rest of this subsection and the following subsection, we describe the type system for expressions that 
do not involve records and variants; then, in subsection 3.4 we extend the system to records and variants by 

introducing kinding. 

The typing rules are given as a set of rules to derive typing judgments. Since, in general, an expression e 

contains free variables and the type of e depends on the types assigned to those variables, a typing judgment 

is defined relative to  a type assignment of free variables. M'e let A range over type assignments, which 

are functions from a finite subset of variables to  types. We write d ( x ,  T) for the function A' such that 

domain(A1) = domain(d) U {x), A1(x) = T and A1(y) = A(y) for y # x. A typing judgment is a formula of 

the form: 

A ~ e : r  

expressing the fact that expression e has type r under type assignment A. The typing rules for those 

operations in Machiavelli that do not involve records are shown in Figure 2. Note that in some of them such 
as (UNION), types are restricted to  description types, which is indicated by the use of 6 instead of T. 

In (LET), the notation el[e2/x] denotes the expression obtained from el by substituting ez for all free 

occurrences of x. This rule for polymorphic let differs form that of Damas-Milner system [DM821 in that it 
does not use generic types ( a  type expression of the form Vt .  r )  but instead it uses syntactic substitution 

of expressions. I t  is shown in [Oho89a] that this proof system is equivalent to  that of Damas-Milner. The 



(UNIT) A D () : uni t  

A D e l [ e 2 / x ] : ~  A D e 2 : r 1  
(LET) A D let x = e2 in  e l  end : T 

A ~ e ~ : b o o l  A ~ e ~ : r  A ~ e ~ : r  
(IF) A D if e l  then e2 else es : r 

A t > e : 6  
(SINGLETON) 

A D {e) : (6) 

d D e l  : 6 + r 1  d b e 2  : ( T I * T ~ ) + T ~  A b e g  : r 2  A b e 4  : (6) 
( ~ 0 ~ 1  A D hom(el,e~,eg,e4) : r 2  

A D e l : r e f ( r )  A D e 2 : r  
(ASSIGN) 

d D el:=ea : un i t  

A (v ,6 )  D e(v) : 6 
(REC) A I> (rec v. e(v)) : 6 

Figure 2: Typing Rules for Expressions Without Records and Variants 



advantage of our treatment of let is that it yields simpler proofs of various properties of the type system and 

that the type system can be extended to records, variants and database operations. While it is still possible to 

extend Damas-Milner generic types to records and variants using kinded type abstraction [Oho92], we do not 

know how to  extend them to the conditional typing that we shall require for database operations. However, a 

naive implementation of a type inference algorithm based on this typing rule would require recursive unfolding 

of let definitions. This unfolding process always terminates but would decrease efficiency and prohibit the 

possibility of incremental type-checking. This problem is overcome by adding an extra parameter to  a type 

inference algorithm to maintain principal types for let-bound variables. We will comment on this when we 
describe the type inference algorithm. 

The proof system of Figure 2 determines which expressions are type correct Machiavelli programs (not 

involving operations on records and variants.) Unlike the simple type discipline, this proof system does not 

immediately yield a decision procedure for type checking expressions. The second step of the definition of 

the type system is to give such a decision procedure. 

Following [Hin69, Mi1781, we solve this problem by developing an algorithm that always infers a principal 

type for any type consistlent expressions. A subsliitrtion S is a f~nct~ ion  from type variables to  types. A 
substitution may be extended t o  type expressions, arid we identify a substitution and its extension, i.e. we 

shall write S(T) for the expression obtained by replacing each type variable t in T with S(t).  A typing 
dl D e : 71 is more general than Az D e : rz if doin.ain(Al) C doinain.(A2) and there is some substitution 

S such that 72 = S(r l )  and Az(x) = S(Al(x)) for all x E domain,(A1). A typing A D e : T is principal if it 

is more general than any other derivable typing of e .  

Figure 3 shows an algorithm to compute a principal typing for any untyped expression of Machiavelli 

that does not contain records, variants a.nd database operations. The algorithm consists of a set of functions, 

one for each typing rule, together with the main function Typing. Based on the typing rule (RULE),  P,,,, 
synthesizes a principal typing for an expression e from those of its subexpressions. It generates the equations 

that make the typings of the subexpressions conform to the premises of the rule, solves the equations 

and generates the typing corresponding to the conclusion of the rule. Unify used in these functions is a 

unification algorithm. allpairs((A1, . . . , A,)) denotes the set of pa.irs {(Ai(z), Aj(x))lx E domain(Ai) n 
domain(Aj), i # j } .  The notation ~t~ denotes the restriction of the function F to the set X C domain(F). 

For example, consider the function PA,,, which takes principal typings of el and e2, and synthesizes 

a principal typing of el(e2). It first generates the equations that require the common variables of el and 

and ez to  have the same type assignment, together with the equation that makes the type of e2 to be 

the domain type of the type of el .  They are respectively the set of equations allpairs((A1, Az)) and the 

equation (r1, TZ + t ) .  It  then solves these equations by Unify which always finds a most general solution to 

the equations (if it exists) in the form of a substitution S. Finally, it returns the type assignment S(A1 ud2 )  
and a type S(t) ,  corresponding to the conclusion of the rule APP .  

The main function Typing is presented in the style of [MitSO]. It analyzes the structure of the given 

expression, recursively calls itself on it,s subexpressions to get their principal typings and then calls an 
appropriate function P that corresponds to the outermost constructor of the expression. The extra parameter 

L to  Typing is an environment that records the principal typings of let-bound variables. By maintaining 
this environment, the algorithm avoids repeated computation of a principal type of el in inferring a typing 

of expressions of the form let x=el in  ez end, and it also enables incremental compilation. Renaming type 

variables in the case of x E domain(L) effectively achieves the same effect of computing the principal typing 



of el for each occurrence of x in e2. 

As an example of type inference, let us use the algorithm to compute a principal typing of the function 

insert and of its application: 

val insert = fn x => fn S => union({x), S); 
insert 2 {I; 

Figure 4 shows the sequence of the function calls and their results during the computation. Line 1 is the 

top level call of the algorithm on fn x => fn S => union({x), S). Line 3 is the first recursive call on its only 

subexpression, whose result is shown on line 15. Line 9 and 12 contain a call of Typ ing  on a variable which 

immediately returns a principal typing. In Ps,,,,,,o, on line 10 and 11, type variable t l  is unified with a 

fresh description type variable dl .  In line 13 and 14, PUNION unifies type variable t2  with type { d l )  and takes 

the union of type assignments. Line 17 shows a principal typing of insert. Line 18 - 35 shows an inference 

process for insert 2 I),  which is a shorthand for let insert = fn x => fn S => union({x), S) i n  insert 2 {) end. 

I t  requires some work to show that the algorithm we have described has the desired properties. We have 

also glossed over some important details such as the treatment of description type variables, recursive types 

and references. Before dealing with these issues let us first show how the typing rules and the inference 

system may be extended t o  handle records and variants. 

3.4 Kinded Type Inference for Records and Variants 

To extend the type system to records and variants, we need to introduce kind constraints on type variables. 

The set of kinds in Machiavelli is given by the syntax: 

The idea is that U denotes the set of all types, [l1:r1,. . .,l,l:rn] denotes the set of record types containing the 

set of all fields ll : TI, . . . , in : r,, and ((11 :rl  ,. . .,I,:T,)) denotes the set of variant types containing the set of 

all fields l1 : TI, . . . ,1, : r, . 

In the extended type system, type variables must be kinded by a kind assignment K,  which is a mapping 

from type variables to  kinds. We write {tl :: kl, . . . , t ,  :: h, )  for a kind assignment K that maps ti to ki 
(1 5 i < n). A type T has a kind k under a kind assignnlent K, denoted by K t T :: k ,  if it satisfies the 

conditions shown in Figure 5. For example, the following is a legal kinding: 

{tl :: U,t2 :: [[Name : t l ,  Age : int]} l- t2  :: [Name : t l]  

A typing judgment is now refined to incorpora.te kind constraints on type variables: 

Typing judgments of the form A D e : T described in t.he previous subsection should now be taken as 

judgments of the form Ko,A D e : r where KO is the kind assignment mapping all the type variables 

appearing in A, T to  the universal kind U. The typing rules for records and variants in the extended type 

system are given in Figure 6. The rules for other constructors are the same as before except that they should 
be reinterpreted by adding the universal kinding stated above. Note that the kinding constraints in the rules 



pAw((d1, TI  )1(-42172)) = 
let S = Unify(allpairs((A1, A z } )  U { ( T I ,  7 2  -+ t ) ) )  ( t  fresh) 

in  ( S ( A 1 )  U S ( A 2  ), S ( t ) )  
end 

PABs((d1 X )  = 
if x E dornain(A) then (AT A($) + T )  

else (A l l  t -+ 7 )  ( t  fresh) 

PLET((d1, T I ) ,  ( A z ,  72)) = 
let S = Unify(allpairs({A1, A 2 } ) )  

in ( S ( A 1  U A2), S ( T ~ ) )  
end 

P , , ~ , ~ ~ ~ , ~ ( A ,  T )  = let S = Unify({(r ,  d ) } )  in ( S ( A ) ,  { S ( d ) } )  end (d  fresh) 

PUNION((A1lTl)l (d29 '2))  = 
let S = ~ n i f ~ ( a l l p a i r s ( { d l ,  A 2 ) )  U { ( T I ,  7 2 1 ,  ( T I ,  I t ) ) } )  ( t  fresh) 

in  ( S ( A 1  U A2I1 S ( { t ) ) )  
end 

Typ ing(e ,  L )  = 
case e of: 

CT * ( 0 , 7 )  
x * if x E domain.(L) then L ( x )  wi th  all type variables renamed 

else ( { x  : t } , t ) (t  fresh) 

fn x => e * PABS(T~~ing(e l  L ) ,  x )  

e l (e2)  ==+ PAPP(Typing(e1, L ) ,  Typing(e2,  L ) )  
let x = el in ea * let (d l ,  7 1 )  = Typing(e1,  L )  

L1 = L ( x l  (A1 71) )  

in PLET((A1, T I ) ,  Typin.g(e2, L1) )  

{ e l  * PsIN,LE,o, (Typing(eI  L ) )  
union(e1 ,e2) * P u , , o N ( T ~ ~ i ~ g ( e l ,  L ) ,  T y p i n d e z ,  L ) )  

endcase 

Figure 3: T y p e  Inference Algorithm without Records, Variants 



Typ ing ( l e t  insert = fn x => fn S => union({x) ,S )  in insert 2  {) end,@) 

= PLE,((O, d l  + { d l )  + { d l ) ) ) ,  Typing(insert  2 0 ,  {(insert,  ( 0 ,  d l  + { d l )  -+ { d l ) ) ) ) )  

)Typing(insert  2 {I, {(insert,  ( 0 ,  dl  -+ { d l )  -+ { d l ) ) ) ) )  

) = PAPp(Typing(insert  2 ,  {(insert,  ( 0 ,  d l  -+ { d l )  + { d l ) ) ) ) ) ,  

T y p i n g ( { ) ,  {(insert,  ( 0 ,  d l  + { d l )  - + { d l } ) ) ) ) )  

) )Typing(insert  2 ,  {(insert,  ( 0 ,  dl  + { d l )  + { d l ) ) ) ) )  

) ) = PAPp(Typing( inser t ,  {(insert,  ( 0 ,  dl  -+ { d l )  + { d l ) ) ) ) ) ,  
T y p i n g ( 2 ,  {(insert,  ( 0 ,  dl  + { d l )  + { d l ) ) ) ) ) )  

) ) )Typing(insert ,  {(insert,  ( 0 ,  dl  + { d l }  + { d l ) ) ) ) )  

) ) ) = (01 d2+ { d z ) + { d 2 ) )  
) ) )Typ ing (2 ,  {( insert ,  ( 0 ,  dl  + { d l )  -+ { d l ) ) ) ) )  

) ) ) = ( 0 ,  i n t )  

) ) = PAPP((0, d2 -+ { d 2 )  + {d33) ,  (0, i n , t ) )  
) ) = ( 0 ,  { i n t )  -+ { i n t ) )  

) ) T y p i n g ( { ) ,  {( insert ,  ( 0 ,  d l 4  { d l )  -- { d l ) ) ) ) )  

) ) = (01 ( d 3 ) )  

) = pAPP((0, { int)  + iint 11, ( 0 ,  { ( / 3 ) ) )  

) = ( 0 ,  { i n t ) )  

= PIe,((O, d l  + { d l )  + { d l } ) ,  ( 0 ,  {inti)) 
= ( 0 ,  { i n t ) )  

Figure 4: Computiilg a Principal Typing 



Figure 5: Kinding Rules 

d D e : < l : ~ l , .  . . , n : ~ n >  K , d ( x i ,  ri) I> ei : T (1 5 i 5 n) 
(CASE) 

K , A  D case e of <ll=xl> => e l ,  . . ., <ln=x,> => en endcase : T 

K , A  ~e : TO K , d ( ~ i , T i )  ~ e i  : T (1 ~ i ~ n )  K , d  Deo : T K t  :: ( ( l l : ~ l , . . . , l n : ~ n ) )  
(CASE') 

K , A  D case e of <ll=xl> => e l , .  . ., <ln=x,> => en else => eo endcase : T 

Figure 6: Typing Rules for Records and Variants 

(DOT) and (VARIANT) exactly capture the conditions for the expressions to have a typing. The following is 

an example of legal typing: 

{tl :: U,t2 :: [Name : tl]}, 8 D fn x => x.Name : t 2  + t l  

which says that  the function fn x => x.Name can be applied to any record type t 2  which contains the field 

Name:tl and returns a value of type t l .  

To refine the type inference algorithm, we need to refine an unification algorithm to kinded unification. 

The strategy is to  add a kind assignment to each component in unification and to  check the condition that  

unification respects the constraints specified by kind assignments. A kinded substitution is a pair (K, S )  

consisting of a kind assignment K and a substitut.ion S. Intuitively, the kind assignment K is the kind 
constraints that must be satisfied by the results of applying the substitution S .  We write [tl I+ T I , .  . . , t, I+ 

T,] for the substitution which maps xi to ri (1 < i 5 n).  We say that a kinded substitution (Kl,  S )  respects 
a kind assignment K2 if, for all t E domain(K2), Kl I- S ( t )  :: S(K2(t))  is a legal kinding. For example, a 

kind substitution 

( i t l  :: U), [t:, w [Name : tl,Age : int]]) 



respects the kind constraints {tl :: U,t2 :: [Name : tl]} and can be applied to  type t 2  under this constraint. 

A kinded substitution (Kl ,  S1) is more general than (K2, S2) if S2 = S3 o S1 for some S3 such that (K2, S3) 

respects K1, where S o St is the composition of substitutions S, St defined as S o Si(t) = S(Si(t)).  A kinded 

set of equations is a pair consisting of a kind assignment and a set of pairs of types. A kinded substitution 

(K1, S )  is a unifier of a kinded set of equations (K2, E) if it respects K2 and S ( r l )  = S(r2)  for all (rl, r2) E E. 
We can then obtain the following result, a refinement of Robinson's [Rob651 unification algorithm. 

Theorem 1 There is an algorithm Unify which, given any kinded set of equations, computes a most general 

unifier if one exists and reports failure otherwise. 

We provide here a description of the algorithm; a sketch of its correctness proof is to be found in [Oho92]. 

The algorithm Unify is presented in the style of [GS89] by a set of transformation rules on triples (K, E, S) 
consisting of a kind assignment K, a set E of type equations and a set S of "solved" type equations of the 
form (t, r )  such that t 4 FTV(r ) .  Let (IC, E )  be a given kinded set of equations. The algorithm Unify first 

transforms (K, El 8) to (Xi, Et, St) until no more rules can apply. It then returns (K', St) if Ei is empty; 

otherwise it reports failure. 

Let F range over functions from a finite set of labels t,o types. We write [F] and IF] respectively t o  denote 

the record type identified by F and the record kind identified by F. Figure 7 gives the set of transformation 

rules for record types and function types. The rules for variant types are obtained from those of record types 

by replacing record type constructor [F], record kind constructor [F] with variant type constructor <F>, and 

variant kind constructor ((F)), respectively. Rules I ,  11, v and VI are same as those in ordinary unification. 

Rule I eliminates an equation and is always valid. Rule 11 is the case for variable elimination; if occur-check 

(the condition that  t does not appear in r )  succeeds then it generates one point substitution [t I+ TI, applies it 

to  all the type expressions involved and then moves the equation ( t ,  r) to the solved position. Rules v and VI 

decompose an equation of complex types into a set of equations of the corresponding subcomponents. Rules 

I I I  and I V  are cases for variable elimination similar to  rule 11 except that the variables have non trivial kind 

constraint. In addition to eliminating a type variable as in rule 11 ,  these rules check the consistency of kind 

constraints and, if they are consistent, generates a set of new equations equivalent to  the kind constraints. 

Using this refined unification algorithm, we can now extend the type inference system. First, we refine the 

notion of principal typings. A typing IC1,dl D e : TI is more general than K2, A2 D e : r2  if domain(A1) C 
domain(A2), and there is a substitution S such that the kinded substitution (K2, S )  respects Kl ,  Az(t) = 
S(Al(t)) for all t E domain(A1), and r 2  = S(rl) .  A typing K ,  A D e : T is principal if it is more general 
than all the derivable typings for e. The type inference algorithm is extended by adding the new functions to  

compose a principal type for record and variant operations and to extend the main algorithm by adding the 

cases for records and variants. Figure 8 shows the new coinposition functions corresponding to the typing 

rules for records and variants. The functions we have defined in Figure 3 remain unchanged except that they 

take kinded typings of the form (K, A ,  r) and the appropriate kind assignments must be added as component 

of the the parameter of the unification algorithm and of its result. Figure 9 shows the necessary changes to 

the main algorithm. 

Figure 10 shows the type inference process for the function fn x => (x.Name, x.Sal > 10000), a function 

that is used in the implementation of Wealthy, which was described earlier. In this example, the pairing 
function (-, -) and the product type are respectively shorthand for a standard binary record constructor and 

binary record type. 



11 (K  U { t  I+ U ) ,  E U { ( t ,  T ) ) ,  S )  J ( [ t  I+ T ] ( K ) ,  [t T ] ( E ) ,  { ( t ,  T ) }  u [t I+ r ] ( S ) )  i f  t does not appear in T 

111 (X: u {t l  H [Fi l l t2  I+ [Fz] ) ,  E U  { ( t i , t , ) ) , S )  3 

( [ t i  I+ tzI(K U {t2 I+ IIF])), 
[tl I+ t 2 ] (E  U { ( F l ( l ) ,  F2(1)) 11 E dom,ain(Fl) n dom,ain(F2))),  

{ ( t l ,  t 2 ) )  U [tl ++ t z l ( S ) )  
where F = { ( I ,  q ) l l  E domain(F1) Udomain(F2),  TI = Fl(I)  i f  1 E domain(Fl)  otherwise TI = F2(1)) 
if t l  not appears in F2 and t 2  not appears in Fl .  

Iv (X:u{t lHuFln~,E~{(t l , [F21)~,S)J  

([tl I+ [FzIl(K), 
[tl [Fz]] (E  U  { ( F I ( ~ ) ,  Fz(1))ll E domain(F1) n domain,(FZ))), 

{ ( t l ,  [Fzl)) u [tl I+ [F211(S)) 
if domain(Fl)  domain(F2) and t  @ F T V ( [ F 2 ] )  

Figure 7 :  Some o f  the Transforma.tion Rules for Icinded Unification 



PR,coRD([li = ( K i , A i l r i ) , . . . , ~ n  = ( K n , A n , m ) I )  = 
let ( K ,  S )  = Unify(K1 U . . . U K,, a l lpa i r s ( {A l ,  . . . , A n ) ) )  ( 1  fresh) 

i n  ( K , S ( A 1 ) U . . . ~ S ( A n ) , S ( [ I 1  : T I ,  ..., 1, : rn ] ) )  

end 

PDo-r((x,.A, r ) , l )  = 
let ( K ' ,  S )  = Unify(X: u { t l  :: U, t z  :: [ I  : t l ] } ,  ( ( t 2 , r ) ) )  ( t i ,  t2 fresh) 

i n  (K ' ,  S ( A ) ,  S(t1)) 
end 

P M o D I F y ( ( K 1 , A l ,  T I ) ,  ( K z , A z ,  r2),1) = 
let ( K ,  S )  = Unify(K1 U K 2  u { t l  :: U,t2 :: [l : t i ] } ,  wl lpuir . s ({Al ,A2))  U { ( t z ,  T I ) ,    ti,^^))) ( t i , t z  fresh) 

i n  ( K , S ( d ) , S ( t a ) )  
end 

PYARIAPIT ( ( K ,  A, T ) ,  l )  = 
let ( K t ,  S )  = Unify(K U { t l  :: U ,  t2 :: ( ( I  : t l ) ) ) ,  { ( t l ,  r ) ) )  ( t l ,  t 2  fresh) 

i n  ( K t l  S ( A ) ,  S ( t 2 ) )  
end 

P C A ~ E ~ ( ( K O , A O ~ ~ O ) ~ [ ~ ~  = ( K l , d ~ , ~ i ) , .  . . ,1n = ( K n , A n , r n ) ] )  = 
let ( K , S )  = 

Unify(Ko U . . . U Kn U { t  :: U, t l  :: U,  . . . , t n  :: U ) ,  

a l l a i s ( { A ,  . . . , A } )  U { (  t i  + t )  1 i n }  U { ( o  i : I ,  . . . , n : n ( t ,  t l ,  - . ., t n  fresh) 

i n  ( K ,  S(A1) U . , . U S ( d n ) ,  S ( t ) )  
end 

PcAsE2((Ko,do,  TO) ,  [ / I  = ( K l , d l ,  T I ) ,  . . .,Ira = ( x n l  An, ~ n ) ] ,  (Kn+ll .An+l,  r n + ~ ) )  = 
let ( K ,  S )  = 

Unify(xo  U. .  . U Kn+l U { t  :: U , t l  :: U ,  . . . , tn  :: U, t o  :: ((21 : t l ,  . . . , in  : t , ))} ,  

a l lpa i r s ( {Ao , .  . . , A n } )  U { ( ' f i , t i  + t ) l l  5 i  < n )  U { ( r o , t o ) ,  ( r n + l , t ) } )  ( t ,  t o ,  t i , .  . . , t n  fresh) 

i n  ( K ,  S(A1)  U . . . U S ( A n ) ,  S ( t ) )  
end 

Figure 8: New Functions t o  Synthesize Principal Typings  



T y p i n g ( e ,  L )  = 
case e of 

c7 * ( 0 , 0 ,  T )  

x =$ i f  x E d o m a i n ( L )  t h e n  L ( x )  with all t y p e  variables renamed 

else ( { t  :: U } ,  { x  : t } ,  t )  (t fresh) 

[Il=el ,. . .,ln=en] =$ PRECoRD([1~ = Typ ing (e1 ,  L ) ,  . . . , in = T y p i n g ( e n  L ) ] )  

e.1 a PDo,(Typing(e, L ) ,  1) 

modi fy (e l , l , ez )  * P M O D I F Y ( T ~ ~ i n ~ ( e ~ r  L ) >  TYPing(e2,  L ) ,  
<I=e> =$ PvAlUA,, L ) ,  I )  
case e o f  <ll=xl> => e l , .  . ., <ln=xn> => en endcase 

PcAsm(TyPing(e,  L)1 
[ I1  = PABs(Typin ,g(e l ,  L ) ,  X I ) ,  . . . ,1n = PA,s(Typing(en, L ) ,  x n ) ] )  

case e o f  <ll=xl> => el ,. . ., <ln=xn> => en else eo endcase * 
P c , s m ( T ~ p i n g ( e ,  L ) ,  

[il = P A B s ( T y p i n g ( e l ,  L ) i  x i ) ,  . . . , In = P A B S ( T ~ ~ i n g ( e n  L ) ,  ~ n ) ] ,  

Typ ing (e0  1 L ) )  
endcase 

Figure 9: T h e  Main Algor i thm for T y p e  Inference with Records and Variants  

T y p i n g ( f n  x => (x .Name,  x.Sal > 10000), 6 )  

= P,,,(Typing((x.Name, x.Sal> 1 OOOO) ,  0 ) ,  x )  

)Typing((x.Narne,  x.Sal > 10000), 6 )  

) = PRECoRD((Typing(x .Name,  0 ) ,  Typing(x.Sal  > 10000,0) ) )  

) )Typ ing (x .Name ,  0) 
) ) = P D O T ( T Y P ~ ~ ~ ( ~ ,  011 Name) 

) ) ) T y p i n g ( x ,  0 )  = ( { t l  :: U ) ,  { x  : t ~ ) , t ~ )  

) ) = ( { t z  :: U , t l  :: [[Name : t z ] ) ,  { x  : t l ) , t z )  

) )Typing(x.Sal  > 10000,0)  

) ) = P,(Typing(x.Sal l  a ) ,  Typing(lOOOO, 0 ) )  

) ) )Typing(x .Sa l ,  0 )  = ( i t 3  :: U,t4 :: [SaI : t 3 ] } ,  { x  : t 4 } , t 3 )  

) ) )Typing(1000O1 0 )  = ( @ , a 1  i n t )  

) ) = ( { t ,  :: [Sal : i n t ] ) ,  { x  : 141, bool) 

) = ( { t 2  :: U , t l  :: [Name : t * ,  Sal : i n t ] ) ,  { x  : t l ) ,  ( t z ,  bool)) 

= ( { t z  :: U l t l  :: [Name : t2 ,Sal  : . i n t ] ) , @ , t l  - ( t2 ,bool ) )  

Figure 10: Examples o f  T y p e  Inference with Records 



3.5 Further Refinement and the Correctlless of the Type Inference System 

In the explanation of type inference algorithm so far, we have ignored the constraint that some type variables 

should only denote description types. The necessary extension is to  introduce description kind constructors 
Dl [l : 6, .  . . ,1  : 6]ld and ((1 : 6, .  . . ,1 : ~ 5 ) ) ~  respectively denoting the set of all description types, description 

record types, and description variant types. Although it increases the notational complexity, these extension 

can be easily incorporated with the unification algorithm and the type inference. 

Another simplification we made in the description of the type inference algorithm is our assumption 

that types are all non cyclic. To extend the type inference algorithm to  recursive types, we only need 

to extend the kinded unification algorithm to infinite regular trees. The necessary extension is similar t o  
the one needed t o  extend an ordinary unification algorithm to regular trees [Cou83], which involves: (1) 

defining a data  structure to  represent regular trees. (2) changing the cases for variable elimination (cases of 

11 and IV) by eliminating occur-check and replacing the one point substitution [t I+ T] by the substitution 

[t I+ (rec v.r[v/t])] where (rec v.r[v/t]) is a regular tree that is a solution to v = ~ [ v l t ] ,  and (3) changing 
the cases for decomposition (cases v and V I )  so that they generate the equations for the set of pairs of 

corresponding subtrees of the given regular trees. 

We have also ignored the details of dealing with references. The above type inference method cannot be 

directly extended to references, since the operational semantics for references does not agree with polymorphic 

type discipline for let binding. As pointed out in [Ma&, Tof881, tjhe straightforward application of the type 

inference method of [Mi1781 to references yields unsound type system. The following example is given in 

[Mac88]: 

let 

val f = new(fn x => x) 

in  (f:=(fn x=> x + x), (!f)(true)) 

end 

If the type system treats the primitive new as an ordinary expression constructor then it would infer the 

type unit * boo1 for the above expression but the expression causes a run time type error if the evaluation 

of a pair (record) is left-to-right. Solut,ions have been proposed in [Tof88, Mac881. They differ in details 

treatment but they are both based on the idea that the type system restricts substitution on type variables 

in reference types in such a way that references created by a polyn~orphic functions are monomorphic. Since 

both of these mechanisms can be regarded as a new form of kind constraint on type variables, we believe that 

either of them can safely be incorporated witah our type system. However, for want of a better mechanism, 

we restrict reference constructor to  take only a monoinorphic type 

With these refinements, ML's complete static type inference is extended to records, variants and set data 

types, as stated in the following result: 

Theorem 2 Let e be any raw term of Machiavelli. If Typing(e,(D) = (K,A,  7) then K , A  b e : r is a 
principal typing of e. If Typing(e, 0) r epor t s  fai lure then e Itas n o  typing. 

Just as legal ML programs correspond to principal t,yping schemes with empty type assignment, legal 

Machiavelli programs correspond to principal kinded t>yping schemes with empt,y type assignment, ie. typings 

of the form K, 8 P e : r. Machiavelli prints a typing K ,  0 I, e : T as 



where r' is a type whose type variables are printed together with their kind constraints in X: in the following 

formats: 

type variables t with K(t) = U, . . . 'a,'b,. . . 
description type variables d with K(t) = D, . . . "a," b,. . . 
type variables t with K(t) = 1[11 : 71,. . . , in  : rn], . . . 'a::[ll:rl,. . .,l,,:r,,],. . . 
description type variables d with K(t) = [I1 : TI , .  . ., 1, : T,]~, . . . " a::[ll:rl ,. . .,l,,:r,,],. . . 
type variables t with K(t) = ((11 : T I , .  . . , ln  : T,)), . . . 'a::<l1:rl,. . .,ln:rn>,. . . 
description type variables d with K(t) = ((11 : rl, . . . ,I, : T,))~, . . . "a::<ll:rl,. . .,I,,:r,,>,. . . 

as already seen in examples. Thus the type output in the following example 

-> fun name x = x.Name; 

>> val name = f n  : 'a::[Name : 'b] -> ' b  

is a representation of the following kinded typing scheme: 

{t2 :: U,tl :: [Name : t2]},@ p f n  x=> x.Narne : t l + t 2  

Examples shown in Figure 1 are to be similarly understood. 

To summarize our progress to  this point: we have augmented type schemes of ML with description types 

(which already exist in ML in a limited form) and kinded type variables. This has provided us with a type 

system that not only expresses the generic nature of field selection, but also allows sets to  be uniformly 

treated in the language. However relational databases require more tha.n the operations we have so far 

described, and it is to  these that we now turn. 

4 Operat ions for Generalized Relations 

We are now going to show how we can extend Machiavelli to include the operations of the relational algebra, 

specifically, projection and natural join, which are not covered by the operations for sets and records that 

we have so far developed. Before doing this, there are two important points to  be made. The first is that,  

in order to  achieve a general definition of these operations we are going to put an ordering on values and on 

description types. The ordering on types, although somewhat similar to  that used by Cardelli [Car881 is in 

no sense a part of Machiavelli's polymorphism. This should be apparent from the fact that we have already 

incorporated field selection as a polymorphic operation without having to make use of such an ordering. 

The second point is that the introduction of join complicates the presentation of the type system and 

increases the complexity of the type inference problem. The typing rule for join is associated with a complex 
condition which can no longer be represented by a kind. To give a type scheme for join, we need to extend 

the notion of (kinded) typing schemes to  conditional typing schemes [OB88] by adding syntactic conditions 
on instantiation of type variables. A similar problem was later observed in [Wan891 if one uses a record 

concatenation operation rat,her than join. (See a.lso [CM89, HP91] for polymorphic calculi with record 

concatenation.) Since we are primarily concerned with database operations, our inclination is to examine 

the record joining operation that naturally arises as a result of generalizing the relational algebra. 



Our strategy in this section is first to provide a method for generalizing relational algebra over arbitrary 

description types. We then provide the additional typing rules, which have associated order constraints on 

the types. Next, we show that although there is no longer a principal typing scheme for a term, we can still 

provide a principal condi t ional  typing scheme which represents the exact set of provable typings. Finally, 

we describe the method to check the satisfiability of conditions before the evaluation of the term associated 

with those conditions. In other words, we are still able to guarantee that a typechecked program will not 

cause a runtime type error. 

4.1 Generalizing Relational Algebra 

Our rationale for wanting to generalize relational operations is that, in keeping with the rest of the language, 

we would like them to  be as "polymorphic" as possible. Since equality is essential to  the definition of most 

of these operations, we cannot expect to generalize them to  arbitrary terms of the language. Instead we 

content ourselves with their effect on description terms, which are those terms that can be typed with a 

description type. To this end Machiavelli generalizes the following four operations to arbitrary description 

terms and introduces them as polymorphic functions in its t,ype system: 

eq(e l  ,e2) equality t e s t ,  

join(e1 ,ez)  database jo in ,  

con(e1 ,e2) consis tency check, 
project(e,S) projection o f d  o n t o  the  type 6 

The intuition underlying their generalization is the idea exploited in [BJO91] that database objects are 

partial descr ipt ions  of real-world entities and can be ordered by goodness of  descr ipt ion.  The polymorphic 

type system to  represent these generalized operations has been developed in [Oho90]. In what follows, we 

describe how equality, join and projection are generalized to acyclic description terms. For the treatment of 

cyclic structures as well as the precise ~emant~ics of t,he t,ype system for descriptions, the reader is referred 

to  [Oho90]. 

We first consider join and equality. We claim that join in the relational model is based on the underlying 

operation that computes a join of tuples. By regarding t,uples as partial descriptions of real-world entities, 

we can characterize it as a special case of very general operations on partial descriptions that combanes two 

consistent descriptions. For example, if we consider the following non-flat tuples 

t1 = [ N a m e  = [First = "Joe"]];  

and 

t2  = [ N a m e  = [Last = " D o e " ] ]  

as partial descriptions, then the combinatmion of the two should be 

t = [ N a m e  = [First= " J o e " ,  Last  = "Doe"]]. 

This is characterized by the property that t is the least upper  bound of t l  and t2 under the ordering induced 
by the inclusion of record fields. Denoting the ordering by 5, join is defined as: 



Equality in partial descriptions is an operation which tests the equality on the amount of information and 

is characterized by the equivalence relat,ion induced by the information ordering, i.e. 

e q ( d , d l )  = d C d' and d' d 

This approach also provides a uniform treatment of n u l l  values  [Zan84, Bis811, which are used in databases 

that represent incomplete information. Join and projection extend smoothly to  data containing null values. 

However care must be taken [Lip79, IL84:] to  ensure that use of the algebra with these extended operations 

provides the semantics intended by the programmer. To represent null values, we also extend the syntax of 

Machiavelli terms with: 

null(b) t h e  n u l l  value  of a base type  b 

<> t h e  (po lymorph ic )  nu l l  value of var ian t  t ypes  

Other incomplete values can be built from these using the constructors for description terms. 

The importance of these characterizations is t,ha.t t(l1ey do not depend on any particular data structure 

such as flat records. Once we have defined a (computable) ordering on the set of description terms which 

represents our intuition of the goodness of description, join and equality is generalized to arbi trary  complex 

description terms. To obtain such an ordering, we first define the pre-order 3 on description terms. For 

acyclic descriptions, 5 is given as: 

cb 

null(b) 

null(b) 

[ I l  = d l , .  . .,l, = d,] 

<> 
<> 

<I = d> 

cb for  all  constant  c b o f  t ype  b ,  

cb for  all constant  c b o f  t y p e  b ,  

null(b) f o r  a n y  base t ype  b 

[ I l  = d', ,..., 1, = dk , . . .  ] i f d i  5 dl (1 5 i 5 n ) ,  

0, 

<I = d> for  a n y  descr ipt ion d ,  

<I = dl> i f d d ' ,  

r for  a n y  reference r 

{ d . .  d }  i f  Vd' E {d' , ,  . . . , d;}.  3 d  E { d l , .  . . , d,). d 5 d' 

The last rule for sets is intended to capture the properties of sets in database programming. 3 fails to  be 

anti-symmetric because of this rule. An ordering is obtained by taking induced equivalence relation and 

regarding a description term as a representa.tive of its equivalence class. In what follows, we denote by 

C the ordering induced by the preorder 5. Among representatives, there is a canonical one having the 

property that it does not contain a set term whose members are comparable, i.e. an anti-chain. Since the 

ordering relation and the least upper bound are shown to be computable, our characterization of join and eq 

immediately gives their definitions on general description terms, which computes a canonical representation 

of the denoted equivalence class. The equality (eq) is a generalization of s t ruc tura l  equality to  sets and null 

values. Figure 11 shows an example of a join of complex descriptions. This definition of join is a faithful 

generalization of the join in the relational model. I11 [BJOSl] it is shown that:  

Theorem 3 I f  r l ,  r2 are f i rs t -normal  f o r m  relataons t h e n  j o i n ( r l , r 2 )  i s  t h e  na tura l  j o in  of r l  and  3 i n  t h e  

re lat ional  model .  I 

A useful property ofjoin is that it coincides with intersection when applied to two sets of the same description 

type, such as { i n t } .  



r l  = {[Pname = "Nut"  ,Supplier = { [Sname = "Smith" ,City = "London"], 

[Sname = "Jones" ,City = "Paris"], 

[Sname = " Blake" ,City = " Paris"])], 

[Pname = "Bol t"  ,Supplier = { [Pname = " Blake" ,City = " Paris"], 

[Sname = " Adams" ,City = "Athens"])]) 

r2 = {[Pname = "Nut"  ,Supplier = {[City = " ParisW]),Qty = 1001, 

[Pname = " Bolt" ,Supplier = {[City=" Parisn]),Qty = 2001) 

join(rl,r2) = {[Pname = " Nut" ,Supplier ={[Sname = "Jones" ,City = "Paris"], 

[Sname = " Blake" ,City = " Paris"]), Qty = 1001, 

[Pname = " Bolt" ,Supplier ={[Sname = " Blake" ,City = "Paris"]), Qty = 2001) 

Figure 11: Natural join of higher-order relations 

We now turn to  projection. In the relational model, it is defined as a projection on a set of labels. 

We generalize it  to  an operation which projects a complex description onto some "substructure". In a 

programming language, the structure of data is represented by a type and we define projection as an operation 

specified by its target type. Recall that the syntax of ground description types (i.e. those description types 

that do not contain type variables) is 

5 ::= unit ( bd I [1:6,. . .,1:5] 1 <1:6,. . .,1:6> 1 (6) 1  ref(^) I (rec v.5(v)) 

Projection is therefore an operation indexed by a description type. project(x,S) is the operation which, given 
a description x whose type is "bigger" than 5, returns a description of type 5 by "throwing away" part of its 

information. The following is a simple projection on flat relation: 

project({ [Name = "J .  Doe", Age = 21, Salary = 210001, 

[Name = "S. Jones", Age = 31, Salary = 310001 ), 
{[Name : string, Salary : int])) 

= { [Name = " J. Doe", Salary = 210001, 

[Name = "S. Jones", Salary = 310001 ) 

By using the ordering we have just defined, projection can be specified as: 

which can be shown to be computable for any description type 5. 

4.2 Extended Expressions and Their Evaluation 

The syntax of expressions is extended with the constants null(b) and <> and the term constructors join, con, 

and project we have just described: 



We extend the evaluation rules for expressions described in section 3 with the rules for these new term 

constructors and eq. Note that they are only applicable to  description terms. A description term d denote 

an equivalence class of regular trees induced by the ordering we have just described. We write D ( d )  for the 

equivalence class denoted by d.  The evaluation rules for those term constructors are given as: 

join(dl,d2) ++ d3 i f  d3 i s  a canonical representative of D ( d l )  U D ( d z )  

con(dl ,d2) -+ true if D(d1)  U D ( d 2 )  exis ts  

con(dl ,d2) ++ false i f  D ( d l )  U D ( d 2 )  does no t  exist  

project(dl,6) --t d2 i f  d2 i s  a canonical representative of the  least upper  bound of the se t  

{ D ( d ) l D ( d )  E D ( d l ) ,  d  : 6 )  
eq(d1,dz) ++ true i f  D(d1 )  C D(d2)  and D(d2 )  L D ( d l )  
eq (d l , d z )  ++ false i f  D ( d l )  g D(d2)  o r  D(d2 )  !l- D(d1)  

As we have already mentioned, there a.re generic algorithms to compute these functions 

4.3 Type Inference for Relational Algebra 

join, project and con are polymorphic operations in the sense that they compute join and projection bf various 
types. To represent their exact polymorpliic nature, we define an ordering on ground description types that 

represents the ordering on the structure of descriptions. For the set of acyclic description types, the necessary 

ordering is given by the following inductive definition: 

Using this ordering, types of join, project, and con are given as: 

join : 61 * b2 +S3 such that b3 = 61 UK b2 

project(- ,b2) : 61 + 62 such that 62 << S1 

con : 61 * 62 + boo1 such that 51 UK 62 exsists 

To integrate these operations with the po1,ymorphic core of Machiavelli defined in section 3, we need 

to represent the types of these operations into the type system. For this purpose, we explicitly introduce 
syntactic conditions on substitution of type variables that represent the three forms of constraint: b1 U< 62 

exists, 5 = 61 Ug 62, and 62 << 61. In fact we only need to consider the last two forms of constraint since 

61 U< 62 will exist whenever we can find a type 63 = 61 U K  62. To represent them we introduce the following 

syntactic conditions: 

1. T = j o i n t  y p e ( ~ ,  r ) ,  and 

2. l e s s t h a n ( r ,  r ) .  



C , K , A  b el : 61 C ,  K,A D ez : 62 
(CON) C U { d  = joint ype(Sl , h2)), K,  A D con(el , e2) : boo1 ( d fresh ) 

Figure 12: The Typing Rules for Relational Operations 

Note the difference between b3 = b1 UK S2 and 7-3 = jointype(rl, r2). The former is a property on the 

relationship between three ground description types. On the other hand, the latter is a syntactic formula 

denoting the constraint on substitutions of type variables in TI, r 2 ,  to  ensure that any ground instance 

of the former these satisfies such a property. A similar remark holds for 61 << 62 and lessthan(r1, r2). 

Using these syntactic conditions on type variables, we can extend the type system to incorporate these new 

operations. A typing judgement in the extended system has the form C,  K,A D e : r where the extra 

ingredient C is a set of syntactic conditions we have just introduced. Figure 12 shows the typing rules for 

the new operations. Other rules remain the same as those defined in Figure 2 and 6 except that they are 

now relative to  a given set of conditions. For example, the rule ABS becomes 

In particular, these other rules only propagate the given set of conditions and do not change its contents. 

Since the conditions we introduced involve the ordering that is defined only on ground types, we need to 

interpret a typing judgement in this extended system as a scheme representing the set of all ground typangs 

obtained by substituting its type variables with appropriate ground types. This interpretation is consistent 

with our treatment of let construct (LET rule in Figure 2) and its semantics described in [Oho89a]. A ground 

substitution 6 satisfies a condition c if 

1. if c TI = jointype(r2, 5 )  then 6(r1), B(T~),  6'(r3) are all description types satisfying 6(r1) = O(T~) U< 

0 ( ~ 3 ) ,  

2. if c G ~ e s s t h a n ( ~ ~ ,  r2) then B(rl), 8(r2) are description types satisfying 6(r1) << 6(r2). 

6 satisfies a set C of conditions if it satisfies each member of C.  We say that a ground typing 0,0, A D e : r 
is an instance of C ,  K ,  A' D e : T' if there is a ground substitution 0 that respects K and satisfies C such 
that A ~ ~ ~ " ( ~ ' ) =  B(At) and T = 8(r t) .  As seen in this definition, a typing in the extended system is subject 

t o  a set of conditions associa.ted with it. To emphasize this fact, we call typing judgement in the extended 

type system a conditional typing. A conditional typing scheme C , A  D e : T is principal if any derivable 
ground typing for e is an instance of it. The following result establishes the complete inference of principal 

conditional typing schemes. 



-> fun join3(x,y,z) = join(xjoin(y,z)); 

>> val join3 = fn  : (" a * " b * " c) -> " d 
where { " d  = jointype("a,"e), " e  = jointype("b,"c) ) 

-> Join3([Name = " JoeW],[Age = 2l],[Office = 271); 

>> val it = [Name = "Joe" ,Age = 21,Office = 271 : [Name : string,Age : int,Office : int] 

-> project(it,[Name : string]); 

>> val it = [Name=" Joe"] : [Name : string] 

Figure 13: Some Simple Relational Examples 

Theorem 4 There is an algorithm which, given any raw term e, returns either failure or a tuple (C, K,A,  7) 
such that if it returns (C, K,A,  T) then C,  K , A  b e : r is a principal conditional typing scheme, otherwise 

e has no typing. 1 

A proof of this, which also gives the type inference algorithm for Machiavelli, is based on the technique we 

have developed in [OB88] which established the theorem for a sublanguage of Machiavelli. A complete proof 

and a complete type inference algorithm can be found in [Oho89b]. 

Figure 13 gives two simple examples of the typing schemes t.hat are inferred by Machiavelli. The type 
("a  * " b  * "c )  -> " d  where { " d  = jointype("a,"e), " e  = jointype("b,"c) ) of the three-way join join3 is the 

representation of the principal conditional typing scheme: 

{dl = jointype(dz, ds), d3 = jointype(d4, d5, )}, {dl :: D, d2  :: D, (13 :: D, d4 :: D, d ~ ,  :: D}, 0 

P fn(x,y,z) => join(x,join(y,z)) : (d2 * d4 * d5) + d l  

I t  is therefore tempting to  identify legal Machiavelli programs with principal conditional typing schemes. 

There is however one problem in this approach. As we have mentioned at the beginning of this section, the 

definition of conditional typing schemes does not imply that they have an instance. This happens because 

the set C of conditions in a typing scheme may not be satisfiable. In such case, the term has no typing and 

should therefore be regarded as a term with type error. In order to achieve a complete static type-checking, 

we therefore need to check the satisfiability of a set of conditions. Unfortunately, however, the satisfiability 

checking cannot be made efficient since it is shown that [OB88] that checking these conditions is itself NP- 
complete. A practical solution is to  delay the satisfiability check of a set of conditions until its type variables 

are fully instantiated. Once the types of all type variables in a condition are known, its satisfiability can 

be efficiently checked and it can then be eliminated. Since the reduction associated with join is performed 

only after actual parameters are supplied, this method also detect,~ all run time type errors. We therefore 

identify legal Machiavelli programs with principal conditional typing schemes where the only conditions are 

those that contain type variables. 

This strategy supports arbitrarily complex structures that can be built out of records, variants and sets. It 

allows us t o  define directly in Machiavelli databases supporting complex structures including non-first-normal 

form relations, nested relations and complex objects. Figure 14 shows an example of a database containing 

non-flat records, variants, and nested sets. With the availability of a generalized join and projection, we can 

immediately write programs that manipulate such databases. Figure 15 shows some simple query processing 



-> parts; 

>> val i t  = {[Pnarne=" bolt" ,P#=l,Pinfo=<Base= [Cost=5]>], 

. . . 
[Pnarne=" engine" ,P#=2189, 

Pinfo=< Composite = [SubParts={[P#=l,Qty=189], ...}, 
AssernCost=1000]> 1,. . .) 

: {[Pnarne : string,P# : int, 

Pinfo : < Base : [Cost : int], 

Composite : [Subparts : {[P# : int,Qty : int]),AssemCost : int]> 1) 

-> suppliers; 

>> val it ={[Snarne=" Baker" ,S#=l,City=" Paris"],. . .) 
: {[Sname : string,S# : int,City : string]} 

-> supplied-by; 

>> val i t  = {[P#=1,Suppliers={[S#=l],[S#=12],. . .)I,. . .) 
: {[P# : int,Suppliers : {[S# : int]}]) 

Figure 14: A Part-Supplier Database in Generalized Relational Model 

for the database example in figure 14. Note the use of join and other relational operations on "non-flat" 

relations. 

This approach to defining generalized relational operations co~rrpletely eliminates the problem of "imped- 

ance mismatch" between the operations of the relational data model and the types available in current 

programming languages. Data and operations can be freely mixed with other features of the language 

including recursion, higher-order functions, polymorphism. This allows us to  write powerful programs rel- 

atively easily. The type correctness of programs is then automatically checked at compile time. Moreover, 

the resulting programs are in general polymorphic and can be shared in many applications. Figure 16 shows 

a simple implementation of a polymorphic transitive closure function. By using renaming operation, this 

function can be used to  compute the transitive closure of any binary relation. Figure 17 shows query pro- 

cessing on the example database using polymorphic functions. The function cos t  taking a part record and 

a set of such records as arguments computes the total cost of the part. In the case of a composite part, it 

first generates a set of record consisting of a subpart number and its cost and then accumulates the costs of 

subparts by using horn. In order t,o prevent the set co~~struct~or from collapsing subpart costs which are equal, 

the computed subpart cost is paired with the subpart number. Note that scope of type variables is limited to  

a single type scheme, so that instantiations of "a in the type of cost  have nothing to do with instantiations 
of "a in the type of expensive-parts. Also, the apparent complexity of the type of cos t  could be reduced 

by giving a name to  the large repeated sub-expression. Without proper integration of the data  model and 
programming language, defining such a function and checking type consistency is a rather difficult problem. 

Moreover, the functions cos t  and expensive-parts are both parameterized by the relation (partdb) and 

their polymorphism allows them to  be applied t,o lna,ny different types. This is particularly useful when we 



(+Select all base parts +) 
-> join(parts,{[Pinfo=<Base=o>]}); 

>> val it = {[Pname=" bolt", P#=l,  Pinfo=<Base=[Cost=5]>],. . .) 
: {[Pname : string,P# : int, 

Pinfo : <Base : [Cost : int], 

Composite : [Subparts : {[P# : int,Qty : int]}, Assemcost : int]>]} 

(*List part names supplied by "Baker" +) 
-> select x.Pname 

from x <- join(parts,supplied_by) 

where Join3(x.Suppliers,suppliers,{[Sname=" Baker"])) <> {); 
>> {" bolt" ,. . .) : {string) 

Figure 15: Some Simple Queries 

-> fun Closure R = 
let val r = select [A=x.A,B=y.B] 

from x <- R, y <- R 

where eq(x.B,y.A) andalso n~t(member([A=x.A,B=~.B], R)) 

in if r = { }  then R else Closure(union(R,r)) 

end; 

>> val Closure = fn : {[A : "a,B : "b]) -> {[A : "a,B : " b]) 

Figure 16: A Simple Implementation of Polymorphic Transitive Closure 



have several different parts databases with the same structure of cost information. Even if the individual 

databases differ in the structure of other information, these functions are uniformly applicable. 

5 Heterogeneous sets 

The previous section provided an extension to a polymorphic type system for records that enabled us to  

infer the type-correctness of programs that involve operations of the relational algebra - notably projection 

and join. This extension involved an ordering on types and joins on types.It could be argued that there 
is little point in doing this, because in practical query languages projection and join are not used. As we 

have seen in section 2, we may implement an SQL-like sublanguage using cartesian product together with 

the operations on records (formation and field selection) described in section 3. Apparently the use of an 

ordering on types and joins on types is only of academic interest! 

The authors believe otherwise. Extensions to  the mecha.nisms used in section can be used to  address a 

problem that arises in object-oriented databases, where there is an apparent need for the use of heteroge- 

neous collections. The problem arises from two apparently cont,radictory uses of inheritance that arise in 
programming languages and in databases. In ohject-oriented languages the term describes code sharing: by 

an assertion that Employee inherits from Person we mean that the methods defined for the class Person are 

also applicable to  instances of the class Employee. In databases - notably in data  modeling techniques - we 

associate sets Ext(Person)  and Ext(Emp1oyee) with the entities Person and Employee and the inheritance 

of Employee from Person specifies set inclusion: Ext(Ernp1oyee) C Ext(Person). 

It seems that  these two notions should somehow be coupled, but on the face of it there is a contradiction. 

If members of Ext(Emp1oyee) are instances of Employee, how can they be members of Ext(Person) whose 

members must all be instances of Person? One way out of this is to  relax what we mean by "instance o f '  

and to allow an instance of Employee also to be an insta.nce of Person. We can now take Ext(Person)  as a 

heterogeneous set, some of whose members are also inst,ances of Employee. Type systems, however, can make 

the manipulation of heterogeneous collections difficult or ilnpossible by "losing" information. For example if 

1 has type list(Person) and e has type Employee, the result of insert(e, I )  will still have type list(Person), 

and the first element of this list will only have type Person. By inserting e into 1 the type system has somehow 

"lost" part of the structure of e such as the availability of a Salary field or method. This problem appears 

both in languages with a subsumption rule [Car881 and in statica.11~ type-checked object-oriented languages 

such as C++ [Str87] which claim the ability to represent heterogeneous collections as an important feature. 

In some cases the information is not recoverable; in others it can only be recovered in a rather dangerous 

fashion by asking the programmer to  maintain information about the type of an object and to re-cast those 

objects on the basis of this information. A solut.ion to this problem was described by the authors in [B091]. 

The approach decribed here fits unifornlly with the techniques developed in the preceding sections. 

5.1 Dynamic and partial values 

Before proceeding further, i t  is important to make a distinction concerning type systems which is, roughly, 

the distinction between statically and dynamically typed languages. Our approach to type systems has so far 

been syntactic; we have used types (more specifically type inference) to describe the well-formed expressions 

of our language. For our language there is an extension of a result due to  Milner, that well-formed expressions 



(*a function t o  compute the total cost of  a part *) 
-> fun cost(p,partdb) = 

case p.Pinfo of 

<Base = x> => x.Cost, 

<Composite = x> => 
hom(fn(y)=> y.SubpartsCost,+,x.AssemCost, 

select [SubpartsCost=cost(z,partdb) * w.Qty,P#=w.P#] 

from w <- x.SubParts, z <- partdb 

where eq(z.P#,w.P#)) 

endcase; 

>> val cost = fn 

: ("a::[Pinfo : < Base : "b::[Cost : int], 

Composite : "c::[SubParts : {"d::[P# : "e,Qty : int]), 

Asserncost : int]> , 

P# : " el 

* {"a::[Pinfo : < Base : " b::[Cost : int], 

Composite : "c::[SubParts : {"d::[P# : "e,Qty : int]), 

AssemCost : int]> , 

P# : "el)) 

-> int  

(*select names of "expensive" parts *) 
-> fun e ~ ~ e n s i v e - ~ a r t s ( ~ a r t d b , n )  = select x.Pnarne 

from x <- partdb 

where cost(x,partdb) > n; 

>> val expensive-parts = fn : 

: ({"a::[Pinfo : < Base : " b::[Cost : int], 

Composite : "c::[SubParts : {"d::[P# : int,Qty : int]}, 

AssemCost : int]> , 

P# : " e ,  Pname : " f ] }  

* int) -> {"f} 

-> expen sive-parts(parts, 1000); 

>> val it = {"engine", . . .) : {string) 

Figure 17: Query Processing Using Polymorphic Functions 



do not go "wrong" in that they do not allow an operation to  be applied to  a value of an inappropriate type. 

But this syntactic approach does not immediately tell us whether, or in what form, types should be present 

in the evaluation of an expression. Very little type information is carried in the executable code of an ML 

or Pascal program, while in the implementation of dynamically typed languages such as Lisp or Smalltalk, 

each value carries enough information to  determine its type. Moreover, in dynamically typed languages this 

information is available to  the programmer in the form of expressions such as (INTEGERP X) ,which allow us 

to interrogate the type of a variable. Allowing such expressions negates, in general, any possibility of static 

type-checking. However, by suitably containing the way in which type information is used in the execution 

of a program, one may obtain the many of the benefits of dynamic type checking in a statically-typed 

framework. The idea, due to  Cardelli and Mycroft [Car861 is to use dynamic values. These are values that 

carry their type with them, and can be regarded as a pair consisting of a type and a value of that type. A 
formal system for type systems with dynamic was developed in [ACPPSl]. 

In these proposals there are two operations on dynamic values; at  any type r we have: 

dynamic : T -> dynamic 

coerce(r) : dynamic -> 7 

The function dynamic creates a value of type dynamic out of a value of any type - operationally it pairs 

the value with its type. Conversely coerce(r) takes such a pair and returns the value component pro- 

vided the type component is r. It raises an exception otherwise. A standard use for dynamic values is 

for representing persistent data,  since the type of external data cannot be guaranteed. For example 2 + 
coerce(int)(read(inputstream)) will either add 2 to  the input or raise an exception. The coerce operation can 

be thought of as a localized dynamic type-check, and an exception-handling mechanism is apparently needed 

to deal with the possibility of failure. 

Our approach t o  heterogeneous collections is to  generalize the notion of a dynamic type t o  one in which 

some of the structure is visible. A type ?([Name : s t r i n g ,  Age : i n t l )  denotes dynamic values whose 

actual type 6 is "bigger" than [Name : string, Age : int], i.e. [Name : string, Age  : int ]  << 6 where << is the 

ordering we used to represent types of relational operators. Thus an assertion of the form e:P([Name : string, 

Age : int]) means that e is a dynamic value, but it is known to be a record and that least Name and Age fields 

are available on e .  We shall refer to such partially specified dynamic values as partial values. Note that a 

partial value is like a dynamic value in that it always carries its (complete) type. The new type constructor P 
allows us to  mix those partial values with other term constructors in the language. For example, e' : (P(6)) 

means that e' is a set of objects each of which is a partial value whose complete type is bigger than 6 (under 

the ordering <.) It is this use of the ordering on types in conjunction with a set type that allows us to  

express heterogeneous collections. An assertion of the form e : {P( [Name : string, Age  : int])} means that e is 

a set of records, each of which has at least a Name : s t r ing and Age : i n t  field, and therefore relational queries 

involving only selection of these fields are legitimate. As a special case of partial types, we introduce a 

constant type any denoting dynamic values on which no information is known - it is a (completely) dynamic 
value. 

To show the use of partial types, let us assume that the following names have been given for partial types: 

Person* for P([Name : string, Address : string]) 

Employee* for ?([Name : string, Address : string, Salary : int])  

Customer* for P([Name : string, Address : string, Balance : int]) 



Also suppose that  DB is a set of type {any} so that we initially have no information about the structure of 

members of this set. Here are some examples of how such a database may be manipulated in a type-safe 

language 

1. An operation filter P(6)  (S) can be defined, which selects all the elements of S which have partial type 

?(ti), i.e. filter P(S) (S) : {P(S)}. We may use this in a query such as 

select [Name=x.Name, Address=x. Address] 

f r o m  x <- filter Employee* (DB) 

w h e r e  x.Salary > 10,000 

The result of this query is a set of (complete) records, i.e. a relation. There is some similarity with 

the * form of Postgres [SR86], however we may use filter on arbitrary kinds and heterogeneous sets; we 

are not confined to the extensionally defined relations in the database. 

2. Under our interpretation of partial types, if h1 << 52 then P(S1) is more partial than P(62) and any 

partial value of type ?(62) also has type P(S1). This property can be used to represent the desired 
set inclusion in the type system. I11 particular, Person* is more partial than Employee*. From this, 

the inclusion filter Employee* (S) filter Person* (S) will always hold for any heterogeneous set S, 
in particular for the database DB. Thus the "data model" (inclusion) inheritance is derived from a 

property of type system rather than being something t11a.t must be achieved by the explicit association 

of extents with classes. 

3. We have the ability t o  write functions such as 

fun RichCustomers(S) = select [Name=x.Name, Balance=x.Balance] 

f r o m  x <- intersect(S,filter Customer* (DB)) 

whe re  x.Salary > 30,000 

Type inference allows the application of this function to  any heterogeneous set each members of 

which has a t  least the type ?([Salary : int]). The result. is a uniformly typed set, i.e. a set of type 

{[Name : string, Balance : int]}. Thus the application RichCustomers(filter Employee* (DB)) is valid, but 

the application RichCustomers(filter Customer* (DB)) does not have a type, and this will be statically 

determined by the failure of type inference. 

4. By modifying the technique we used to give a polymorphic type of join, we can define the typing rules for 

unions and intersections of heterogeneous sets. By adding a partial type any, the partialness ordering 

has meet and join operations. The union and intersection of heterogeneous sets have, respectively, the 

join and meet of their partial types. Thus, the type system can infer an appropriate partial type of 

heterogeneous set obtained by va.rious set operations. For exa.mple, the following typings are inferred. 

union(filter Custmer* (DB), filter Employee* (DB)) 
: {P([Name : string, Address : string])) 

intersection(fi1ter Customer* (DB), filter Employee* (DB)) 

: {P([Name : string, Address : string, Salary : int, Balance : int])) 



(intersection is definable in the language) These inferred types automatically allow appropriate poly- 

morphic functions to be applied to .the result of these set operations. For example, since the type of 

an intersection of two heterogeneous sets is the join of the types, polymorphic functions applicable 

to either of the two sets are applicable to the intersection. Thus, we successfully achieve the desired 

coupling of set inclusion and method inheritance. 

In the following subsections we shall describe the basic operations for dealing with sets and partial values. 

We shall then give typing rules to extend Machiavelli to include those partial values. 

5.2 The Basic Operations 

To deal with partial values we introduce four new primitive operations: dynamic, as, coerce and fuse. We 

also extend the meaning of some of the existing primitives, such as union 

dynamic(e). This is used to construct a partial value and has type P(6) where 6 is the type of e. A 
heterogeneous set may be constructed with 

{dynamic([Name = " J o e " ,  Age = lo]) ,  dynamic([Name = "Jane" ,  Balance = 109541)) 

This expression implicitly makes use of union, and as a result of the extended typing rules for union, 

the expression has type {P ( [Name : string])), which is the meet of {?([Name : string, A g e  : int])) and 

{?([Name : string, Balance : int])). 

The remaining three primitives may all fail. Rather than introduce an exception handling mechanism, 

we adopt the strategy that if the operatmion succeeds, we ret,urn the result in a singleton set, and if it fails, 

we return the empty set3. 

as P ( 6 )  (e). This, for any description type 6 ,  "exposes" the properties of e specified by the type 6. This 

returns a singleton set containing the partial value if the coercion is possible and the empty set if it is not. 

For example, if e = as P ( [ N a m e  : string]) (dynamic([Name = "Joe" ,  Balance = 43.21])), e will have partial 

type {?([Name : string])) and an expression such as select x .Name f rom x <- e will type check, while select 

x.Balance f r o m  x <- e will not. 

Using as and h o m  we are now in a position to construct the filter operation, mentioned earlier, which 
ties the inclusion of extents to the ordering on types. Because we do not have type parameters, it cannot be 

defined in the language. However it can be treated as a syntactic abbreviation: 

filter P ( 6 )  (S) hom(fn x => as P ( 6 )  (x),union, S, {)) 

coerce 6 (e). This coerces the partial value denoted by e to a (complete) value of type 6. It will only 

succeed if the type component of e is 6.  Again, if the operation succeeds we return the singleton set, otherwise 

we return the empty set. For example coerce [Name : string] (dynarnic([Name = "Jane" ,  Balance = 109541)) 

will yield the empty set while coerce [Name : string, Balance : int]  (dynamic([Name = "Jane" ,  Balance = 
109541)) will return the set { [Name = "Jane" ,  Balance = 109541) fuse(el, ea). This combines the partial 

3 ~ h i s  mechanism, while it fits naturally with our operations on sets and provides concise implementations of a number of 

useful functions, may, if improperly used, produce results that are open to misinterpretation - "extensional query failures" 
discussed by linguists [I<ap81]. 



values denoted by e l  and e2. I t  will only succeed if the (complete) values of e l  and e2 are equal. If e l  has 

partial type ?(&) and e2 has partial type P(62)  then fuse(e1, ez) will have the partial type P(6i U< 62). If 

e l  =(dynamic([Name = "Jane", Age = 21, Balance = 10954])), 

e2 = as ?([Name : string]) e l ,  

ea = as ?([Age : int]) e l ,  and 
e4 = as ?([Name : string]) dynarnic([Name = "Jane"]), 

then fuse(e2,es) will be a singleton set of type {?([Name : string, Age : int])} while fuse(e2,e4) will return 

an empty set. fuse may be used to  define set intersection as in 

f u n  fusel(x,s) = hom(fn y => fuse(x,y), union, s, {)) 
fun  intersection(sl,s2) = hom(fn y => fusel(y,s2), union, s l ,  {I) 

Note that  in some sense fuse can be regarded as an operation that is more basic than equality for we 
can compute whether the partial values vl and va are equal (as complete values) by empty(fuse(vl, v2)). 

Complete values have nothing to do with "object identity". The combination of partial types with some 

form of reference does not appear to represent any great difficulties, but is not dealt with here. 

5.3 Extension of the Language 

To incorporate these partial values, we extend the definition of the language. The set of types is extended 
to include any and the partial type constructor P(6) :  

T ::= . - - 1 any ( P ( 6 )  

We identify the following subset (ranged over by x) which may contain partial types. 

a ::= d 1 b d  I [l:x,. . .,I:T] 1 < l : r , .  . . , l : r> ( {a) I ref(a) 1 any I P ( 6 )  

The set of terms is extended t o  include operations for partial values. 

e ::= . . .  I dynamic(e) I fuse(e,e) I as P ( 6 )  e I coerce 6 e 

To extend the type system to those new term constructors for partial values, we define an ordering on 

the above subset of types, which represents the partialness of types. We write x 5 T' to denote that a is 

more partial than a'. The rules to  define this ordering are: 

any 5 P ( 6 )  for any 6 

P(61)  5 P(62) i f S l < < 6 2  

bd 5 bd 

[ll:al ,..., ln:rn] 5 [I1:r; ,..., ln :xL]  if ~i 5 xi (1 5 i 5 n)  

<ll:al,. . .,ln:xn> 5 <l l : r i , .  . . , ln : rk> if ~i 5 a: (1 5 i 5 n)  

{T) 5 {x') if T 5 T' 

ref(x) 5 ref(rl) if T 5 x' 



(COERCE) 
C , K , A  D e : P ( 6 )  

C, K ,  A p coerce 6' e : (6') 

C,IC,A D e l  : TI C, K,A D e2 : n 2  
(FUSE) 

C U {d  = j o i n t y p e = ( n l ,  7r2)), K, A D fuse(e1 ,e2) : {d) 

(UNION) 
C,  K,  A D e l  : {TI} C , K , A  P e ~ ,  : ( 7 2 )  

C U {d = meet type= (nl , ~ 2 ) ) ~  K,  A P union(el ,e2) : {d) 

Figure 18: Typing Rules for Partial Values 

The first two of these rules derive the order on partial types directly from the ordering << that we introduced 

in section 4. The remaining rules lift this ordering component-wise to  all description types. The following 

are examples of this ordering. 

?([Name : string, Address : string]) 5 ?([Name : string, Address : str ing, Balance : int]) 

[Acc-No : in t ,  Customer : P( [Name : string, Address : string, Balance : int])] 

5 [Acc-No : in t ,  Customer : P( [Name : str ing, Address : string, Balance : in t ,  Salary : int])] 

Figure 18 gives the typing rules for the new term constructors. The new condition d = j o i n t y p e =  (P(sl), P(d)) 
used in rules (FUSE) denotes the condition on the ground substitutions 6 such that 6(d) = 6(x1) Us B ( T ~ ) ,  

and the condition d = meet type= (TI, s2)  used in the rule (UNION) denot,es the ground substitutions 6 such 

that 6(d) = 6(nl) n, 6(n2). 

Standard elimination operations introduced in Section 2 and database operations we defined in Section 4 
are not available on types containing the partial type constructor P. The only exception is the field selection, 

which requires only partial information on types specified by kinds. From an expression e of type of the 

form P([. . .,l:S,. . .I), the 1 field can be safely extracted. The result of the field selection e.1 is 6 itself if 6 is a 

base type. However, if 6 is a compound type then the actual type of the 1 field of the expression e is some 

6' such that 6 5 6'. In this case, the type of the result of field selection e.1 is the partial type P(6). Recall 

the typing rule for field selection: 

To make this rule to  be applicable to the above two cases for partial values, we only need to define the 
following kinding rule for partial types. 

( [ I  I ,. . n ,  . 1) 1: I , .  . 1 :  where si = ai if Si is a base type otherwise ri = p(4) 

Other rules defined in Figure 5 remain unchanged except that types may contain partial types. A record 
kind now ranges also over partial types and the field selection becomes polymorphic over partial types as 

well as complete types. 



-> DB; 
>> val it = {. . .) : {any) 

-> val employees = filter Employee* DB; 

>> val employees = { - .  .) : {P([Name : string, Address : string, Salary : int])) 

-> val customers = filter Customer* DB;  

>> val customers = {. . .) : {P([Name : string, Address : string Balance : int])) 

-> union(employees,customers); 

>> val it = {. . .) : {P([Name : string,Address : string])) 

-> intersection(employees,customers); 

>> val it = {. . .) : {P([Name : string,Address : string, Balance : int, Salary : int])) 

-> fun RichEmployees S = select x.Name 

from x <- S 

where x.Salary > 30,000 

>> val RichEmployees = fn  : {'a::[Salary : int, Name : 'b]) -> { 'b)  

-> RichEmployees(employees) : { .  . .) : {string) 

-> fun GoodCustomers S = select x.Name 

from x <- S 

where x.Balance > 3,000 

>> val GoodSustomers = f n  : {'a::[Balance : int, Name : 'b]) -> {'b) 

-> fun GoodEmployees S = intersection(GoodCustomers(S),RichEmployees(S)); 

>> val GoodEmployees = f n  : {'a::[Balance : int, Salary : int, Name : 'b]) -> {'b) 

-> GoodEmployees(intersection(employees,customers)); 

>> val it = {. . .) : {string) 

Figure 19: Programming with Heterogeneous Sets 

For this extended language, we can still have a complete type inference algorithm. The necessary tech- 

nique is essentially the same as that for typechecking join operation we have described in the previous section. 

We then have a language that uniformly integrate heterogeneous sets in its type system. For example, the 

function 

wealthy : {'a::[Name : 'b, Salary : int]) -> { 'b )  

we defined in the introduction may also be applied to heterogeneous sets of type such as {P([Name : string, 

Salary : int])} . Figure 19 gives examples involving partial values. 



6 Conclusions 

We have demonstrated an extension to the type system of ML which, using kinded type inference, allows 
record formation and field selection t o  be implemented as polymorphic operations. This together with a 

set type allows us to  represent sets of records - relations - and a number of operations (union, difference, 

selection and projection onto a single attribute) of a generalized (non first-normal-form) relational algebra. 
This has been implemented; in particular a recent technique [Oh0921 for compiling field selection into an 

efficient indexing operation is being combined with the record operations mentioned above in an extension 

to  Standard ML of New Jersey [AM91]. 

A further extension to  this type system using conditional type schemes allows us to provide polymor- 

phic projection and natural join operations, giving a complete implementation of a generalized relational 
algebra. It could be argued that these operations are not important since they are not present in practical 

relation query languages. Instead a product and single-column projection are usually employed. However 

a similar type inference scheme can be used in a technique for statically checking the safety of operations 

on heterogeneous collections, in which each member of a collection of dynamically typed values have some 

common structure. The approach we have described provides, we believe, a satisfactory account of how 

relational database programming, and some aspects of object-oriented programming may be brought into 

the framework of a polymorphically typed programming language, and it may be used as the basis for a 

number of further investigations into the principles of database programming. We briefly review a few here. 

General iz ing relat ional  a lgebra .  The ideas used to provide the generalized relational algebra described 

in sections 2 and 4 originated in a domain-theoretic description of relations in which each tuple is regarded 

as a partial description of - or approximation to  - a real-world object. Operations of this generalized 

algebra are provided by considering how a set of tuples may approximate a set of real-world objects. It is 

debatable whether the whole apparatus of domain theory, used to represent the infinite structures found in 

the semantics of programs, is needed for the finite structures in databases. A constructive characterization 

of relational operations is given in [Oho90] using regular trees, using similar notions of approximation but in 

a domain with simpler underlying properties. It is this characterization that we have used here; in particular 

it has allowed us to describe recursive values and types. 

We believe that this approach to database semantics may bear further fruit, especially in the currently 

topical study of heterogeneous databases. In providing techniques to combine two or more databases, each 

database may be thought of as a partial description to the resulting database, and the understanding of how 

an individual database may approximate the combined database may provide some general-purpose merging 

techniques. 

Abs t r ac t  T y p e s  a n d  Classes. While we have covered some aspects of object-oriented databases, 
we have not dealt with the most important aspect of classes in object-oriented programming: that of ab- 

straction and code sharing. In [OB89] statically typed polymorphic class declarations are described. The 

implementation type of a class is normally a record type, whose fields correspond to the instance variables in 

object-oriented terminology. That methods correctly use the implementation type is done through checking 

the correctness of field selection, as described in this paper, and the same techniques may be carried into 

subclasses to  check that code is properly inherited from the superclass. For example, one can define a class 

Person as: 

class Person = [Name:string, Age:int] 



w i t h  

fun make-person (n,a) = [Name=n, Age=a] : s t r ing * i n t  -> Person 

fun  name p = p.Name : sub -> st r ing 

f u n  age p = p.Age : sub -> i n t  

fun increment-age p = modi fy(~,Age,p.Age + 1) : sub -> sub 

end 

where sub is a special type variable ranging over the set of all subtypes of Person, which are to be defined 

later. Inclusion of the sub variable in the type of methods name, age, and i nc rementdge  reflects the user's 

intention being that these methods should be inherited by the subtypes of Person. From this, the extended 

type system infers the following typing for each method defined in t,his class. 

class Person w i t h  

make-person : s t r ing * i n t  -> Person 

name : ('a < Person) -> str ing 

age : ('a < Person) -> i n t  

increment-age : ('a < Person) -> ('a < Person) 

The notation ('a < Person) is another form of a kinded type variable whose instances are restricted to  the 
set of subtypes of Person. This can be regarded as an integration of the idea of bounded type abstraction 

introduced in [CW85] and data abstraction. As in an object-oriented programming language, one can define 

a subclasses of Person as: 

class Employee = [Narne:string, Age:int, Salary:int] isa Person 

w i t h  

f u n  make-employee (n,a) = [Narne=n, Age=a, Salary=O] : str ing * i n t  -> Employee 

f u n  salary e = e.Salary : sub -> i n t  

f u n  addsalary  (e,s) = modify(e,Salary,e.Salary + s) : sub * i n t  -> sub 

end 

By the declaration of isa Person, this class inherits methods name, age, i n c r e r n e n t ~ g e  from Person. The 

prototype implementation of Machiavelli prints the following t,ype information for this subclass definition. 

class Employee isa Person w i t h  

make-employee : st r ing * i n t  -> Employee 

addsalary  : ('a < Employee) * i n t  -> ('a < Employee) 

salary : ('a < Employee) -> i n t  

inherited methods: 

name : ('a < Person) -> st r ing 

age : ('a < Person) -> i n t  

increment-age : ( 'a < Person) -> ('a < Person) 

The type system can statically check the type consistency of methods that are inherited. I t  is also possible 
t o  define classes that are subclasses of more than one classes, such as ResearchFellow below. 

class Student = [Name:string, Age:int, Grade:real] isa Person 

w i t h  

f u n  makes tuden t  (n,a) = [Narne=n, Age=a, Grade=O.O] : str ing * i n t  -> Employee 

f u n  grade s = s.Grade : sub -> real 



fun set-grade (s,g) = m ~ d i f ~ ( s , S a l a r ~ , ~ )  : sub * real -> sub 

end 

class ResearchFellow = [Narne:string, Age:int, Salary:int, Grade:real] 

isa {Employee, Student} with 

fun make-RF (n,a) = [Narne=n, Age=a, Grade=O.O, Salary = 01 : string * int -> ResearchFellow 

end 

Classes can be parameterized by types and the type inference system we have described can be extended to 

programs involving classes and subclass definitions. 

One possible addition to this idea is the treatment of object identity. Throughout this paper we have 

held to  the view that object identity, as a programming construct, is nothing more than reference, and that 

object creation and update are satisfactorily described by the operations on references given in ML and a 

number of other programming languages. However Abiteboul and Bonner [AB91] have given a catalog of 

operations on objects and classes, not all of which can be described by means of this simple approach to 

object identity. Some of the operations appear to  call for the passing of reference through an abstraction. For 
example one may think of Person object identities as references to instances of a Person class and Employee 

object identitites as references to  instances of a Employee class. But this approach precludes the possibility 

that some of the Person and Student identities may be the same, in fact the latter may be a subset of the 

former. The ability to  ask whether two abstractions are both "views" of the same underlying object appears 

to  call for the ability to  pass a reference through an abstraction. If this can be done, we believe it  is possible 
to  implement most, if not all, the operations suggested by Abiteboul and Bonner. 

Se t s  and other collection types .  Our original description of Machiavelli [OBBT89] attracted some 

attention [IPS911 because of the use of horn as the basic operation for compuation on sets. The reason for 

using horn was simply to  have a small, but adequate collection of operations on sets on which t o  base our type 

system. For the purpose of type inference or type checking, the fewer primitive functions the better. In our 

development, record types and set types are almost independent; there are only a few primitive operations 

that involve both, and these occur in sections 4 and 5. For other purposes we could equally well have used 

record types in conjunction with lists, bags or some other collection type. In fact the use of lists, bags and 

sets is common in object-oriented programming, and some object-oriented databases [Objgl] supply all three 

as primitive types. 

The study of the commonality between these various collection types is a fruitful extension t o  the ideas 

provided here. I t  may provide us with better ways of structuring syntax [Wadgo], with an understanding 

of the commonality between collection types [WT91], and a more general approach t o  query languages and 

optimization for these types [BTBWSl]. 
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