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Abstract 
We consider the use of linear splines with variable 

knots for the approximation of unknown functions from 
data ,  motivated by control and estimation problems aris- 
ing in color systems management. Unlike most popular 
nonlinear-in-parameters representations, piecewise linear 
(PL) functions can be simply inverted in closed form. For 
the one-dimensional case, we present a study comparing 
P L  and neural network (NN) approximations for several 
function families. Preliminary results suggest that  PL, in 
addition to  their analytical benefits, are a t  least competi- 
tive with N N  in terms of sum square error, computational 
effort, and training time. 

1. Introduction 
When a computer sends a color document to  a laser 

printer, the color of each pixel is represented as a vector in 
a standard color space, such as Lab, a space based on the 
psychophysics of the eye. The printer transforms the vec- 
tor into a device-dependent space, CMY, which specifies 
the quantity of each pigment the printer must lay down 
in order t o  reproduce the desired color. This transforma- 
tion is nonlinear and,  approximate first principles models 
notwithstanding, must be computed in practice from em- 
pirical da t a  [l]. When collecting data ,  each experiment 
consists of specifying a CMY vector to  the printer and  
measuring the output  in Lab coordinates. Thus,  the em- 
pirical d a t a  is gathered using the inverse of the desired 
transformation. Color science also indicates that  the m a p  
will be injective, so it may be inverted, a t  least over i ts  
range. In current industry practice, the color transfor- 
mation is performed by interpolation on a lookup table 
with approximately one to two thousand entries. Indus- 
try goals are to  reduce the number of parameters required 
to  perform the color transformation, thereby reducing the 
cost of calibration as well as hopefully yielding a functional 
representation which may be amenable to online updating 
methods as the function drifts and more calibration d a t a  
is collected. 

Beyond interpolation on a uniform grid, one of the 
most sophisticated techniques for approximating color 
space transformations currently in use in the color indus- 
try is sequential linear interpolation [a ] .  This approach 
applies asymptotic analysis from information theory to  

find the optimal (nonuniform) grid point placement. 
Much attention has been given to various parameter- 

izations of the space of approximations, especially non- 
linear parameterizations such as Neural Networks (NN) 
and Radial Basis Function Networks (RBFN). In higher 
dimensions, the convergence per parameter rates for such 
nonlinear families can potentially be better than linear- 
in-parameter function families [ 3 ] .  Unfortunately, popu- 
lar nonlinear families like N N  and RBFN generally do not 
admit  the “leveraging”eof additional domain knowledge 
about the function, such as invertibility. In our applica- 
tion setting, NNs and RBFNs require either i.) that  a 
second network be trained in order to construct the func- 
tion inverse or ii.) that  some further numerical procedure 
be applied to  generate the inverse. But in the color space 
transformation problem, the inverse map is just as impor- 
tant as the forward map .  The  printer physically realizes 
the inverse map and the application of control methodol- 
ogy seems most reasonable when working with the func- 
tion most closely related to  the physical system. 

A novel approximation method suggested by Atkeson 
and Schaal [4] uses a population of local “experts.” Each 
“expert” is associated with an affine map and a Gaussian 
confidence. T h e  “experts” vote on an output computed 
as the confidence weighted average of their affine compo- 
nents. Since the Gaussian bump has unbounded support ,  
each expert has global influence. 

Piecewise polynomial representations (splines) can 
also be applied to  function approximation problems. 
Qualitatively, these may be thought of as local “experts” 
which have partitioned the domain. Analytical results are 
available for the one dimensional case for certain func- 
tioq families [5]. Algorithms exist for one dimension [6] 
as well as for higher dimensions [7], although analytical 
results hold only for the one-dimensional case. Stone et 
al. present a statistical theory for the rate of Lz conver- 
gence [SI. 

2. Piecewise linear approximation 
Piecewise linear approximations (PL),  also known as 

linear splines with variable knots, comprise a function 
family in which the invertibility condition can be enforced, 
and the inverse can be calculated directly in closed form as 
well. In one dimension, the characterization of the piece- 
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performance per parameter. 

3.1. Choice of function classes studied 
Five different function families from the class of home- 

omorphisms on [O! 11 were explored. That  is, all functions 
mapped [0, I] to [ O ,  11 and were continuous and invertible 
(i.e. monotonic). The five families fall into three groups: 
sigmoidal, piecewise linear and polynomial, chosen to “fa- 
vor,” respectively, NW, PL or neither. Examples of typical 
€unctions from these families are presented in Figure 2.  

The  sigmoidal group contains superpositions of hyper- 
bolic tangents, of the form 

m 

f ( z )  = k1 ai tanh (6i (z - ci)) + k? (1) 
i = l  

where ai and ci are distributed uniformly on [0, 11 and bi 
is exponentially distributed with mean 30. Then k1 and 
k? are chosen such that f (0 )  = 0 and f(1) = 1. The 
first family from the sigmoidal group has m = 5, so all 
functions in this family lie within the parameter space 
of the NN which was trained. Notice that this family is 
chosen t o  favor PIN, since for m=5 there exists a vector 
of NN parameter values which would give zero error. The 
second family has m = 15, so, while presumably favored, 
the neural network is underparameterized. 

The piecewise linear group contains functions with m 
line segments, characterized by the points { (z;, g;)}Lo 
with O=z0<21< ... <z,_1<2,=1 and O = y ~ < y l <  ... < 
yn-l < yn = 1. The  points z; and y; are chosen uniformly 
from [O, l] for i = 1, ..., n-1. The first family in the piece- 
wise linear group has 10 line segments (m= 10): so, again 
all functions in this family lie within the parameter space 
of the P L  approximation. The second family has 30 line 
segments (m= 3 0 ) ,  so the PL is underparameterized. 

The  polynomial group consists of compositions of 
quadratic polynomials which satisfy f(0) = 0 and f(1) = 
1 and are monotonically increasing. i.e. f’(x) 2 0 for 
z E [0,1]. Quadratic polynomials satisfying these con- 
straints can be parameterized as 

- 

f , ( . ) = ( l - a ) z ? + a z  (2) 

for a E [0,2]. Then the polynomial f = fa, o fa, o ... o 
fa, is indeed a homeomorphism of [0,1], since it is the 
composition of homeomorphic functions, and it has degree 
2“. ;The  polynomial family presented here used m = 7 and 
the parameters CY; were distributed uniformly over [0,1]. 

3.2. Training methods 
T h e  PL algorithm employed here minimizes square 

error via gradient descent. Specifically, given a data  set 
{(xi, y i ) } c l ,  the algorithm minimizes 

0 0.2 0.4 0.6 0.8 
domain 

Figure I: A PL with four line segments ( n  = 4) 

wise linear approximation is straightforward. Consider a 
PL with n line segments on the domain [0, 11 The PL is 
characterized by two vectors: cl E R n f l  the vector of do- 
main values, or knots, where 0 = do < d l  < ... < d,-l < 
d, = 1, and c E R n f l  the vector of codomain values. This 
gives PL 2n free parameters. Figure 1 shows a PL with 
four line segments. 

Analytical results exist for the one-dimensional func- 
tion approximation problem. In approximation, a com- 
pletely known function is given and the objective is to 
find a PL which minimizes some norm, typically L z ,  of 
the error. Barrow et al. [5] provide some generalized con- 
vexity conditions which imply the exist,ence of a unique 
best L z  fit from the class of piecewise linear approxima- 
tions. Gayle and Wolfe [6] provide similar results for ap- 
proximation using higher order splines. Their proof uses 
an algorithm to  calculate the best approximation over the 
domain of all knot vectors, for which global, unique con- 
vergence is shown via application of the contraction map- 
ping theorem. 

In higher dimensions .the domain is partitioned into 
simplices: triangles in two dimensions, tetrahedra in three 
dimensions, and so on. Tourigny and Baines [7] present an 
algorithm for the two-dimensional function approximation 
problem, which can be generalized to higher dimensions. 
There are no corresponding analytical results. In order 
to  produce an output for a given domain point in higher 
dimensions, the partition in which the domain point lies 
must first be identified. Since the partitions are nonuni- 
form, this step rapidly increases in complexity with di- 
mension. This points out a fundamenti!  tradeoff between 
the complexity of the approximant (e.g. linear, quadratic, 
neural) and the complexity of the partition. (e.g. none, 
uniform, nonuniform) 

3 .  Numerical studies 
This section presents a numerical study designed to 

compare the relative approximation power of PL and NN 
approximations. The PL and NN were given the same 
number of free parameters in order to study the relative ( 3 )  
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where I3 = [d3 ~ dj+l]  and f is the piecewise linear approx- 

(4) 
Family 

tanh PL 
m=3  NN 
tanh PLH 
m=15 NN 

PL 
m=10 NN 
Pl PL 
m=30 NN 
polynom. PL 

Pl 

m = /  luiJ 

The partial derivatives are 

= -Ri-l i- R; - Si 
d E  
ac, 
- 

min/ave/max (log,,) ave 

-5.388 / -4.670 / -3.354 
-4.538 / -3.236 / -2.423 

3026 
12000 

-5.562 / -4.639 / -3.758 3216 

-7.419 / -5.304 -3.218 2783 
-4.213 / -3.430 / -2.685 12000 
-4.749 / -4.257 / -3.721 3566 
-4 024 / -3 571 / -2.869 12000 
-5.985 / -5.405 1-4.410 2243 

-4.427 / -:3.556 / -2.834 12000 

-5.517 / -4.276 / -3.526 12000 

where 

The  update law is then 

J 

where the superscript is the iteration number and p is the 
step size or “learning rate.” 

T h e  PL algorithm takes advantage of the fact that  i t  
is approximating a function from the class of homeomor- 
phisms on [0, 11 by fixing CO = 0 and c, = 1, in addition 
to  do = 0 and d, = 1. This  reduces the number of free pa- 
rameters for a P L  with n line segments from 2n to  2 ( n - l ) .  
Allowing a neural network to  use this information would 
require significant modification of the backpropagation al- 
gorithm. The  P L  in the following experiments uses 10 line 
segments, giving a total of 18 free parameters. The P L  
gradient descent algorithm was implemented in Matlab. 

The  neural network was also implemented in Matlab 
using the Neural Network Toolbox. The  network has six 
hyperbolic tangent neurons situated in a single hidden 
layer, providing a total  of 18 free parameters for the NN. 
The  standard backpropagation rule, which minimizes the 
square error via gradient descent, was used to train the 
network. 

3.3. Design of study 
One hundred functions were randomly chosen from 

each function family discussed above. The algorithms re- 
ceived two da ta  sets generated from each function. The  
training set contains 136 input/output pairs evenly spaced 
over the domain, while the validation set has 68 pairs in- 
terspersed between the test data ,  following the heuristic 

Table 1: Mean Square Error and Iteration Results 
I Function I MSE (Validation Data) I Iter. 1 

t ha t  approximately 2/3 of the da t a  should be used for 
training and the remaining third should be used for vali- 
dation. 

First the PL was trained on each function until a stop- 
ping condition based on the magnitude of the gradient was 
achieved or the maximum number of iterations (4000) was 
exceeded. T h e  NN was trained on the same data,  given the 
goal of attaining 1/4 the sum square error of the PL. The  
NN stopped when this goal was achieved or after the max- 
imum number of iterations, or “epochs,” was exceeded. 
The  maximum number of epochs for the NN was set a t  
12000. 

3.4. Results 

{ ( E , ,  y i )}z l  is defined as 
The  mean square error (PISE) on a data  set 

where p(z) is the approximation given by N N  or PL. Be- 
cause MSE takes on a wide range of values, ~ O ~ , ~ M S E  
is presented here. Table 1 shows the minimum, average, 
and maximum of log,, M S E  for PL and NN on each fam- 
ily, as well as the average number of iterations on that 
family. For simplicity, 10a”e(’ogl~ ’ I S E )  will be referred to 
hereafter as the mean MSE. Figure 3 shows the MSE for 
PL and NN on every function for each of the families. The 
solid line shows the ratio MSEpr, /il.ISE,v,v. 

Notice that  P L  regularly achieves a smaller MSE than 
NN, with only a handfuI of exceptions, on all function 
families. This  is true even for the two families which 
“favor” NN, superpositions of hyperbolic tangents. For 
the sigmoidal family with m = 5, it would be possi- 
ble for NN to represent the functions exactly, but still 
the mean is 10-3.236, which is an order of magnitude 
worse than the PL. This  is well illustrated by the ratios, 
hfSEp~ /i\/lSE,v,v. The  results for the sigmoidal family 
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w i t h  m = 15 are similar. Surprisingly, the mean hISE 
is not significant,ly different from tha t  of the family with 
m=. j .  In fact, NN actually does better on average, even 
though it is “underparameterized.” 

PL is capable of exactly representing the piecewise 
linear function family with m= 10. On  some of the func- 
tions, PL performs approximately the same as it does on 
the other function families, but in many cases PL comes 
very close to the actual parameterizat#ion of the target 
function, with MSEpr, as small as There are 
a total of 26 functions with M S E p t  less t ha t  and 
hence these points do not fall in the range of the plot. 
The minimum and maximum for MSEpr .  are separated 
by over 4 orders of magnitude, giving M S E ~ L  a high vari- 
ance over the family. Comparatively, NN performed con- 
sistently around the mean of 10-3.430, with its minimum 
and maximum being less than 2 orders of magnitude apart .  
The performances of PL and NN are m.ost similar on the 
fam-ily of piecewise linear functions with m=30. For both 
PL and N N ,  the MSEs cluster closely around the algo- 
rithms’ family means, and,  unlike the other families, the 
mean of MSE” is within an order of magnitude of mean 
i b l S E p ~ .  

The neutral family, the polynomials, shows similar re- 
sults. Once again the mean for MSEpL is more than an 
order of magnitude below the mean M!jEi~,v ,  and fits for 
PL and NN cluster tightly around their respective means, 
similar to the piecewise linear family with m=30. In this 
family, however, there is typically a greater space between 
t,he two clusters. Note that  this is the only family on 
which NN outperforms PL on a function, as seen by the 
spot where the ratio MSEpr./i\’lSElvAv goes above 1. The 
average of hfSEp~ and ~LISEN,~ is lower on this family 
than on the others, indicating tha t  these polynomials are 
in some way easier to approximate than the other families. 

Notice in the table that  PL also had a lower number 
of iterations than NN. In general, NN timed out while try- 
ing to achieve the sum square error goad based on the PL 
performance. The lower number of iterations is also sig- 
nificant, since NN also uses more flops per iteration than 
PL. Thus PL could potentially have significantly shorter 
training times, a t  least over families such as these. 

4. Conclusion 
The color space transformation problem requires a 

function to be fit to data .  T h e  problem also presents the 
engineer with additional information about the underly- 
ing function. I t  is invertible. Piecewise linear algorithms 
afford the ability to  check and enforce this invertibility. 

In order to make the fit amenable to online updating, 
we desire a parsimonious functional representation. PL 
representations appear promising in this regard as well. 
The numerical results show tha t  when the PL takes ad- 
vantage of the fact that  it is approximating a homeomor- 
phism, it is able to achieve on average an order of magni- 

tude lower mean square error on the tested function classes 
t,han a neural network with an equal number of parame- 
ters. 

These results could in part  be an artifact of the descent 
technique, since only simple gradient descent was used. 
Also, we did not investigate the change in the ratio of 
M S E p L  /MSE,viv as the number of parameters given to 
PL and ,” vary. Both the descent technique and the 
variation of MSE with parameters would be  interesting 
followup work to  this study. 

Our future work will focus on higher dimensional algo- 
rithms for application in the color problem, and the inves- 
tigation of new descent techniques, including non-gradient 
methods. 
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Figure 2: Typical members of the function families 
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Figure 3: The mean square error attained by NN and PL on 
each function, as well as the ratio of their MSE, 
is plotted above. IMSEPL o i\lSE,vN ?I 
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