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ABSTRACT

A HETEROGENEOUS AND MULTISCALE MODELING FRAMEWORK TO

DEVELOP PATIENT-SPECIFIC PHARMACODYNAMIC SYSTEMS MODELS IN

CANCER

Alok Ghosh

Ravi Radhakrishnan

Systems models of key signaling pathways in cancer have been extensively used to under-

stand and explore the mechanisms of action of drugs and growth factors on cancer cell

signaling. In general, such models predict the effect of environmental stimuli (both chemi-

cal such as for e.g., growth factor and drugs as well as mechanical such as matrix stiffness)

in terms of activities of proteins such as ERK or AKT which are important regulators of cell

fate decisions. Although such models have helped uncover important emergent properties

of signaling networks such as ultrasensitivity, bistability, and oscillations, they miss many

key features that would make them useful in a clinical setting. 1) The predictions of activity

of proteins such as ERK or AKT cannot be directly translated into a clinically useful pa-

rameter such as cell kill rate. 2) They don’t work as well when there are multiple biological

processes operating under different time and length scales such as receptor-based signaling

(4-6 hours) and cell cycle (24-48 hours). 3) The parameter space of such models often ex-

hibits sloppy/stiff character which affects the accuracy of predictions and the robustness of

these models. Apart from single-cell systems models of signaling, pharmacokinetic and cell

population-based pharmacodynamic models are also extensively used to predict the efficacy

of a particular therapy in a clinical setting. However, there are no direct or consistent ways

of incorporating patient-specific gene/protein expression data in these models. This thesis

describes the development and applications of a multiscale and multiparadigm framework

for signaling and pharmacodynamic models that helps us address some of the above short-

comings. First two single scale systems models are described which introduces methods of

v



exploration of parameter space and their effect on model predictions. Then the multiscale

framework is described and it is applied to two different cancers - Prostate Adenocarcinoma

and Nephroblastoma (Wilm’s Tumor). Special mathematical techniques were used to de-

velop algorithms that can integrate models of disparate time scales and time resolutions

(continuous vs. discrete-time). Such multiscale modeling frameworks have great potential

in the field of personalized medicine and in understanding the physics of cancer taking into

account the biology of the cells.
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CHAPTER 1 : INTRODUCTION

Cancer is driven by a complex interplay of processes that operate at multiple length and

time scales from molecular, cellular, tissue to organ level. Processes operating at shorter

time and length scales such as molecular and cellular regime can influence tissue/organ level

behavior and vice versa (1). Cancer initiation, progression, and treatment outcome depend

on both intertumoral and intratumoral heterogeneity. Intertumoral heterogeneity, which is

the heterogeneity between patients who have tumors of the same histological types, arises

from both germline and somatic mutations as well as environmental factors. It is distinct

from intratumoral heterogeneity, which is the heterogeneity in a single tumor within a

patient which can manifest itself both in space and time. These heterogeneities cause

differences in the genetic makeup of the cells in a tumor and hence a difference in the

activities of the underlying signaling pathways and eventually cell fate, response to drugs and

development of resistance (2). Many cancers have multiple molecular subtypes characterized

by specific molecular markers that determine the progression and outcome of the disease.

For most cancers, the success of different treatment strategies is highly dependent on patient-

specific gene/protein expression signatures (presence of mutations, overexpression of a gene,

etc.) that alters the underlying cellular signaling pathways and the cell fate outcome. Due

to this, the current strategy for cancer therapy has shifted from a generic one size fits all

approach to a more personalized one based on patient-specific biomarkers or gene expression

signatures obtained from tumor samples using technologies such as RNA-seq (3). Databases

like The Cancer Genome Atlas (TCGA) are valuable sources of such patient gene/protein

expression data and also clinical data such as tumor grades, treatment information, etc.

However, present experimental analysis techniques are not suited to deal with such large

volumes of data.

Mathematical modeling is emerging as a powerful and flexible tool to extract clinically

relevant information from this data and predict treatment outcomes in a patient-specific

way. Both statistical data-driven models which analyze clinical data from patients and
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predict probabilistic scenarios of recurrence as well as mechanistic models of cell signaling

and tumor growth have been employed. Apart from these types of models, pharmacoki-

netic/pharmacodynamic (PK/PD) models which determine optimum drug dosage/schedule

for specific patients have been employed (4). Most of the modeling efforts to date have been

disparate and restricted to a specific length or time scale, which is inadequate given the

multiscale nature of cancer described above. Mechanistic models at the tissue scale consider

a population of different cell types such as cancer cells and healthy cells. Cancer cells are

considered as either sensitive to a drug treatment or resistant to it. Such models predict the

response to different therapies in terms of change in tumor volumes (5). Mechanistic models

of signaling pathways at a single-cell level have also been published for pathways such as

Ras-MAPK, PI3K-AKT, which are frequently altered in different cancer types (6; 7). These

models contain a large number of nonlinear ordinary differential equations describing the

rate of change in expression levels of different proteins as a function of their interactions

with other proteins. These equations can be numerically solved to obtain both the transient

and steady-state activities of these proteins that characterize the state of the system. How-

ever, these steady-state activities of the proteins cannot be used in a straightforward way

to determine cellular outcome such as proliferation or apoptosis. However, it is known from

literature that the both the steady-state and transient activities of proteins such as ERK or

AKT which are activated by Ras-MAPK and PI3K-AKT pathways, are strong regulators

of cellular outcomes (8; 9). Cell fate is determined by pathways regulating the cell cycle

and operates at a much larger time scale of 24 h to 48 h compared to 4 h to 6 h time scale of

receptor-mediated signaling pathways. Also, limited quantitative data is available for these

pathways, which makes it impossible to model these using a detailed ODE-based model.

Discrete logic-based systems models such as Boolean models which only considers discrete

activities of the proteins (on or off) have been more successful here (10).

What has been missing from these modeling efforts is a consistent way to integrate these

models operating at different length and time scales and modeled using different techniques

(continuous vs discrete models). Such integration is a non-trivial task not only from a
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theoretical perspective (no general theory exists that is applicable to all cases) but also

challenging computationally because most numerical solvers are not designed to handle such

differences in time scales. However, in those cases where such models can be constructed,

they are exceedingly valuable not only because they extend the scope of the individual

models but they also allow us to incorporate patient-specific gene expression data in one

model and predict its effect on another model operating at a different scale.

The objective of my Ph.D. research is to create such an integrated modeling framework that

can couple models operating at different time scales. In the future chapters, I’ll present my

efforts towards this goal and the novel outcomes from the work in different areas of appli-

cation. First I will describe some of the challenges in multiscale systems modeling as well

as some shortcomings of the existing models. Then the existing methods will be described

in more detail with some important results from the literature. This will be followed by the

very important topic of the effect of parameter spaces in these nonlinear systems models

and some related ideas on model sensitivity, robustness, and evolvability. I will apply these

simple ideas to two projects with comparatively simple, ’single-scale’ models. It will be

shown that even in these simple models, considerable insight can be gained by analyzing

parameter space sensitivity to assess robustness of the model predictions. After this, I will

introduce the hybrid multiscale modeling framework and show its applications in cancers

of prostate and nephroblastoma. Finally, I will show how this modeling framework can

be extended and applied to different areas such as mechanotransduction by incorporating

mechanical interaction of a cell with its environment. Another future area of interest is to

incorporate these single-cell models to tissue level pharmacodynamic and pharmacokinetic

models, make direct patient-specific predictions of treatment outcome and design optimum

combination therapies to overcome drug resistance.
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CHAPTER 2 : CHALLENGES IN SYSTEMS MODELING

In the past decade, there have been massive advances in the fields of sequencing technolo-

gies, microscopy and biological imaging. These advances have enabled the accumulation of

vast amounts of data at all levels of biological organization. At the molecular and cellular

levels, the various genome, proteome, metabolome, and transcriptome projects have pro-

vided detailed descriptions of the basic parts of living organisms in unprecedented detail.

Although these data provide us access to detailed information about the building blocks of

biological systems, experimental complexities still limit the observations to very restricted

spatial and/or temporal scales. To be able to use this data and understand how they de-

termine the function of living organisms we need an integrated or systems approach to

biology. The main challenge is relating these high dimensional datasets to higher-level phe-

notypic characteristics which can only be done if we can integrate all relevant information

at multiple levels of organizations and recreate the dynamics of the system. This cannot be

accomplished just using experimental observations and we need mathematical models that

can operate at these levels of organization (11; 12)

2.1. Biological Organization Across Multiple Scales

Biological processes span over multiple orders of magnitude in both length and time. The

magnitude of this span varies from organism to organism. For e.g. in humans, these

processes range from length scales of single proteins (1 nm to 10 nm) to that of whole body

(1 m) spanning over 10 orders of magnitude, while in time it can span from events such as

receptor activation, ion channel gating (1 µs to 100 µs) to human lifetimes (in the order of

1× 109 s) (13). So in the context of modeling biological systems, a natural way to define

a scale is to split processes up according to their position in the biological hierarchy i.e.

whether they represent interactions between proteins inside a cell, between cells, tissues,

organs, etc. Although we can specify the location of a biological process in this hierarchy

what is more difficult is to give specific values of the lengths at which transitions from one

5



Figure 1: Levels of biological organization across multiple length and time scales spanning
from molecular, cellular, tissue to organ and population level (14)

level to the next occurs. As shown in the Fig 1 these levels span from molecular, sub-cellular,

cellular, tissue to organism levels (14).

The above scheme of organizing biological processes is not the only one possible. In many

areas, an alternative classification scheme is more suitable, for e.g., in a model of tumor

which is influenced by the information encoded in the DNA and presence of mutations. This

encoded genetic information cannot be put in the above classification scheme and we may

need a modified scheme such as genetic, proteomic, transcriptomic and cell and tumor level

processes. So the particular classification scheme to be chosen is dependent on the nature

of the system and not based on any rigid strategy.

2.2. Multiscale Model Challenges

A mathematical model, in its essence, is an approximate representation of a system in a

mathematical form that usually contains a system of equations describing the governing

laws and a description of the system geometry/domain where they are applied. For most
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complex biological processes these systems of equations are too complex to be solved an-

alytically and need numerical methods of solution. The common approach is to identify

the basic constituents of the system (such as the cellular compartments, species like genes

and proteins) and model their activities as system variables and the governing equations

as algorithms/rules and then run the model to obtain its evolution over time and space. A

multi-scale model would consist of biological processes that belong to two or more levels of

organization mentioned above, for e.g., a model of tumor growth that considers subcellular

signaling and gene regulatory networks with a model of cell proliferation and apoptosis at

the level of a population of cells in the tissue. Apart from multi-scale models, we can also

have models consisting of different physical processes for e.g., a model of tumor growth

and its mechanical interaction with the extracellular medium. These models are called

multi-physics models (11). The challenges that arise in these multiscale and multiphysics

models are many and arise at different stages of modeling. Firstly, the component “single”

scale models often represent the same phenomenon but different levels of description. The

challenge lies in how the components were put together and how the variables were linked.

For e.g., in the case of the multiphysics model of tumor growth and its interaction with

ECM the challenge lies in linking the growth rate of the tumor with the force exerted on the

ECM and vice versa. Secondly, a characteristic feature of biological processes is that they

are influenced by processes operating at both lower and higher scales. For e.g., activation

of receptors such as EGFR by ligand EGF happens at time scales of seconds characteristic

of molecular interactions but the particular dynamics of this activation (transient or sus-

tained) influences events like cell cycle progression operating at 24 h to 48 h time scales.

Hence a model that consists of these processes must take into account these interactions

that propagate across scales. There are also challenges that arise from the computational

perspective. At the subcellular scales, the number of particles in a particular domain (such

as on membrane surface or cytoplasm) is sufficiently large so that we can treat the sys-

tem as a continuum and apply a deterministic model. However, in many instances (such

as lipid domains on the membrane or in smaller compartments) the number of molecules
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of the interacting species becomes too low and the continuum assumption breaks down. A

stochastic model is necessary in these cases which is not only more involved computationally

but is difficult to parametrize and validate experimentally. Even for deterministic models,

when multiple models at different scales are simply coupled together the resulting system of

nonlinear equations has a stiff character which is challenging to solve numerically especially

for large systems. Last but not least, is the problem of available experimental data on these

processes that are necessary to validate the models. As mentioned before, experimental

measurements, in spite of recent advances, are limited and for many of these complex bio-

logical processes, there is often very little quantitative data. This severely limits the type

of models we can create. As an example, continuous-time ordinary differential equations

can be used when we have detailed time-course measurements for the participating species

and their reaction kinetics. In the absence of this, we need to use a different strategy such

as discretizing both the time and activity of the species. The number of free parameters in

the model also profoundly influences how reliable a model is i.e. how tightly constrained

are the model predictions. The larger the number of free parameters more uncertain is the

model predictions. Fortunately, as we will see in Chapter 4, because of the sloppy nature of

these systems models in many cases we can get away with higher uncertainties in specific

combinations of system parameters.

2.3. Application in Clinic

Apart from the challenges related to bridging differences in length and time scales, there are

additional areas that have been relatively unexplored although they are vital for mathemat-

ical systems models to be clinically useful. The first is related to modeling the effect of drug

treatment and drug resistance particularly in diseases like cancer. The objective here is to

predict the effect of a single or a combination of drugs on patients. Traditionally, modeling

the effect of drugs has been done through pharmacokinetic/pharmacodynamic (PK/PD)

models (15; 3) Most of these models are done without any multiscale considerations and

are mostly phenomenological in nature. These models often relate drug type, dosages and
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duration of treatment to a macroscopic parameter such as tumor volume reduction and

are parameterized using experimental data coming from sources such as MRI. These pa-

rameters often have no direct correlation to any physiologically relevant parameters in the

patients and cannot say anything about the underlying mechanism. The other quite related

area is that of patient-specificity. Diseases like cancer have widely varying progression and

treatment outcomes that depend on patient-specific factors such as the presence of specific

mutations (such as K-Ras mutations in lung cancer), age and demographic factors. Many

of these factors are captured in the specific gene/protein expression profiles obtained from

bulk or single-cell sequencing of cells obtained from patient tumor samples. As of now,

there has been no systematic approach for integrating this data in multiscale mechanistic

models. This is mainly due to the difficulty of mapping patient-specific mRNA or miRNA

expression into activities of proteins in a signaling network. Such integrations are the key

for these models to be clinically useful and enabling personalized therapies that have been

the “Holy Grail” of cancer systems biology.
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CHAPTER 3 : CONTINUOUS AND DISCRETE SYSTEM SOLVERS

Before describing the heterogeneous and multi-scale modeling framework developed in this

work for coupling models operating at multiple scales, we will describe two main math-

ematical formalisms widely used in the field of systems biology. These are not the only

formalisms that exist or even appropriate for all situations, but they have surprisingly wide

applicability and are very good systems to apply multi-scale modeling strategies such as we

have done here. However, this by no means is an exhaustive discussion on the subject. The

reader is referred to the many of the cited references for more elaborate discussions.

As mentioned in Section 2.2, one of the key factors, that dictates the type of model we can

choose, is the availability and nature of experimental data. Many cellular pathways which

are often altered in cancer such as those mediated by Epidermal Receptor Growth Factor

(EGFR) family like Ras-MAPK and PI3K/AKT pathways have been explored in-depth

using high throughput measurements of time-course changes in the expression of different

proteins, the kinetics of activation of receptors by ligands, etc. Due to the availability

of such detailed data particularly time course measurements and reaction kinetics, it is

possible to use detailed methods such as deterministic continuous-time ordinary differential

equations, also called reaction rate equations (RRE). On the other hand, pathways such

as tumor suppressor p53 mediated DNA damage pathway and cell cycle progression and

apoptotic pathways are incompletely known with little quantitative data. Consequently,

we need a more coarse-grained approach to model these networks such as discrete-time

logic-based modeling. In other problems, one needs to consider the spatial distribution of

the network components and how those affect other components of the network. These

require us to consider additional dimensions in space and hence we need systems of partial

differential equations that consider both reaction and transport of the species in the domain

of interest. We will briefly mention this formalism which we use in one of the problems we

were interested in — spatial regulation of Rab-GTPases on tubular recycling compartments.

Other possibilities include cases where deterministic assumption no longer holds because
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of higher levels of fluctuations in the system which requires stochastic models. These are

described elsewhere (16).

3.1. Systems of Ordinary Differential Equations

Ordinary Differential Equations (ODE) are the most well-known formalism in mathematical

modeling which has seen widespread adoption in systems biology. ODEs have been used

in many areas from simple models consisting of a few components to understand emergent

properties such as bistability and oscillations (17; 18) to large scale gene regulatory and

protein interaction networks consisting of hundreds of species and reactions to determine

the effect of growth factor and targeted therapy on signaling outcomes (19; 7).

The main advantages of using ODE in computational systems model are:

• Their success in representing the dynamics of real networks.

• Vast literature on both analytical and numerical methods for solving ODEs.

• The wide applicability of the ODE models and ease of integration of different cellular

processes.

• Comparatively easier to validate experimentally and at the same time easily provide

a mechanistic interpretation of data.

In this formalism, the concentrations of the constituent species such as RNAs, proteins,

genes, etc. of a network are modeled as time-dependent variables. Various regulatory

interactions are expressed as functional and differential relations between the variables.

The analysis starts with the topology of the underlying network. Let us suppose that, we

have such a network of n species and m reactions which is most succinctly captured using

the m×n stoichiometric matrix ¯̄N (20). Each row of the matrix corresponds to a particular

molecular species and each column corresponds to a reaction.

Each element j of a row i (representing species i) indicates the role of species i in the jth
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reaction. If this element is zero it means that the species i does not participate in reaction

j. If this is non-zero, then the magnitude and the sign determine the relative quantity of the

species that take part in the reaction and whether it is a reactant or a product respectively.

It is to be noted that this matrix considers only those species whose concentrations change

through the system dynamics and not any source/sink species that are needed to sustain a

steady state.

The second factor needed to set up the system of ODEs is the kinetics of the j reactions.

This is incorporated in the system of ODEs below that relate the m×1 concentration vector

S̄ to the n× 1 rate vector ν̄ as below

dS̄

dt
= ¯̄Nν̄ (3.1)

In models of real systems, species are constrained by mass conservation relations. The total

amount of a particular species is invariant in time and is determined only by the initial

conditions of the system. These conserved quantities appear as linearly dependent rows

of the stoichiometry matrix ¯̄N . This allows us to partition the stoichiometry matrix into

dependent and independent sets like below ( ¯̄NR is the independent and ¯̄N0 is the dependent

component).

¯̄N =

 ¯̄NR

¯̄N0

 (3.2)

Defining a link zero matrix ¯̄L0 which satisfies ¯̄N0 = ¯̄L0
¯̄NR. Hence we can rewrite Eq 3.1 as

 ¯̄I

¯̄L0

 ¯̄NRν̄ =
d ¯̄S

dt
=

 d ¯̄Si
dt

d ¯̄Sd
dt

 (3.3)
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In 3.3 the terms d ¯̄Si
dt and d ¯̄St

dt refer to the independent and dependent rates of change.

The relationship between the dependent and independent species can be shown to be given

by

¯̄Sd(t)− ¯̄Sd(0) = ¯̄L0( ¯̄Si(t)− ¯̄Si(0) (3.4)

The equation 3.1 describes the time evolution of the system typically characterized by a

steady state where net mass flow at the boundary and no concentration changes in time.

This steady state equation is obtaied by setting Eq 3.1 to zero or ¯̄Nν̄ = 0 In general the

rate vector ¯̄ν is a nonlinear function.

As an example, in the gene regulatory network the particular form of the equation would

be as below for the species i (21):

dSi
dt

= κi,i−1f(Si−1)− γiSi, Si ≥ 0, 1 < i ≤ n (3.5)

In Eq 3.5 the rate of change of concentration of a species is made up of two terms. The

first term is the rate of production where the parameters κ1n, κ21, · · ·κn,n−1 > 0 are the

production constants and γ1, γ2, · · · γn > 0 are degradation constants.

The production term includes a nonlinear regulation function f that represents the effect of

the other species in the network on species i. In this case, the synthesis of i only depends on

the species i− 1. This function is often linear or quadratic depending on how many input

species contribute to the synthesis. Another common regulation function is the so-called

Hill curve

h+(Sj , θij ,m) =
Smj

Smj + θmij
(3.6)
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The function represents the influence of species j on i. The parameter θij > 0 is the

threshold and m > 0 is a steepness parameter. The function increases monotonically from

0 to 1 which expresses the fact that j is an activator for species i. If j is a repressor then

the regulation function is replaced by h−(Sj , θij ,m) = 1 − h+(Sj , θij ,m). The Hill curve

has a characteristic sigmoidal shape for m > 1.

3.2. Piecewise-Linear Differential Equations

When detailed knowledge about reaction mechanisms are not available, as mentioned be-

fore, we need appropriate coarse-graining strategies. One such coarse-grained method that

directly arises from the ODE formalism in 3.5 is piecewise linear differential equations

(PLDE). The governing equation of PLDE is as shown below (21):

dSi
dt

= gi(S̄)− γiSi, Si ≥ 0, 1 ≤ i ≤ n (3.7)

In Eq 3.7 all parameters other than gi(S) has similar interpretation as Eq 3.5. For each

gene i that is regulated by a set of regulating genes J , gi is a sum consisting of terms like

κiJ
∏
j∈J r(Sj) where r(Sj) is the regulation function and κiJ is the maximum expression

of i under the influence of J .

When the regulation function r(Sj) is a Hill function, one can simplify the analysis consid-

erably by discretizing the Hill function into a step function.

s+(Sj , θij) =

 1, Sj > θij

0, Sj < θij

, s−(Cj , θij) = 1− s+(Cj , θij) (3.8)

These eliminate the nonlinearities in gi. This approximation of a continuous sigmoid by a

discrete step function is well-established in literature and it is something we use extensively

in our hybrid multiscale framework.
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As a result of this approximation, the resulting piecewise linear differential equation sim-

plifies to:

dSi
dt

= bi(
¯̄S)− γiSi, Si ≥ 0, 1 ≤ i ≤ n (3.9)

In the above bi(
¯̄S) is a piecewise-constant function which is the weighted sum of products

of the step functions. Using the threshold values θij the domain of the variables Si can be

divided into volumes at planes Si = θij .

The piecewise-linear differential equations have two types of steady states (22) — regular

steady states that lie inside the volume of the n-box or singular steady states that lie on

the threshold planes.

An important consideration in PLDE is how much information is lost on coarse-graining the

nonlinear ODEs. It has been shown that for most systems there is no qualitative difference

in the solutions of these systems (23; 24). When the step functions are relaxed to moderately

steep sigmoids the steady-state predicted from PLDE was preserved.

3.3. Boolean Models

A further level of coarse-graining from the nonlinear ODE system and the piecewise-linear

differential equation system is obtained by reducing the state of a network component into

a boolean variable. When it is on or has a value of 1 then that component is considered to

be active and when it is off or has a value of 0 then that component is inactive. Also, the

interaction between elements is represented by Boolean functions of the activities of other

genes that interact with that element. Let the state of the Boolean model is represented by

the variable
¯̂
S so that the individual activities Ŝi are determined through a set of boolean

functions b̂i. For a network of n components, each component can be on or off and so the

state space of the system consists of 2n states. The state of the system at time point t+ 1

is calculated by using the functions b̂i of a subset k of the n elements at the previous time
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point t. This can be seen from the equation below

Ŝi(t+ 1) = b̂i(Ŝi1, Ŝi2, · · · Ŝik) (3.10)

In the above equation, the update mode is synchronous which means all the variables are

updated simultaneously and hence this model is deterministic. The boolean function Ŝi

performs logical operations AND, OR, NOT on the k binary inputs.

One can represent the possible trajectories in the state space of the system using state

transition diagrams. These types of models eventually reach a steady-state (fixed point)

or a set of recurring states. These steady states are called attractors and the set of initial

states that leads to a specific attractor is called the basin of attraction.

16



CHAPTER 4 : PARAMETER SPACE SENSITIVITY, SLOPPYNESS AND

ROBUSTNESS

4.1. Global Sensitivity Analysis

Real biological pathways are nonlinear and various parameters such as initial species ex-

pression, kinetic rate constants, etc. can undergo large deviations. Sensitivity analysis

techniques are useful to understand how perturbations in these parameters influence the

model outputs. Because these systems have a high degree of nonlinearity, simple local sen-

sitivity analysis where each parameter is altered one at a time keeping the others fixed is

not sufficient (25). Hence, we use a global sensitivity analysis for this model – more specifi-

cally the Sobol Sensitivity Analysis which is based on the analysis of variances in the model

parameters and output.

4.1.1. Sobol Sensitivity Analysis

Sobol sensitivity analysis is a variance-based technique and is uniquely well suited for com-

plex nonlinear systems of moderate size. Here we give a very brief description of the method

that is relevant to the sensitivity analysis done in this paper. A detailed description can be

found in references (26; 27). We use many of the notations from (27) below.

Suppose we have a model with k parameters X1, X2, . . . , Xk which are assumed to be inde-

pendent random variables. The model output Y is related to these parameters through the

relation Y = f(X1, X2, . . . , Xk) where f is a general nonlinear function. In a variance-based

sensitivity analysis, we want to understand how variances in the individual and combination

of parameters X1, X2, . . . , Xk factor into the variances in Y . To determine this, we can first

fix a parameter Xi to a value (say Vi) and then determine the model output averaged over

all remaining parameters Xj , i 6= j (which is denoted with a condensed notation X̄∼i).

This average is EX̄∼i(Y |Xi = Vi) which will be different for different Vj . The variance of

this average over all possible Vi which is VXi(EX̄∼i(Y |Xi = Vi)) will give us the net first
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order effect of variation in Xi on the variation in Y . The first order sensitivity Si associated

with parameter Xi is defined as:

Si =
VXi(EX̄∼i(Y |Xi = Vi))

V (Y )
(4.1)

In 4.1 V (Y ) is the overall variance in Y .

The other sensitivity parameter of interest is the total effect sensitivity STi which represents

the first and all higher order effects of the parameter Xi on the model output. To determine

this, we can start with determining the first-order effect of all parameters except Xi which

is denoted by X̄∼i. Again, we first find the value of Y averaged over all Xi keeping all other

parameters X̄∼i fixed which is EXi(Y |X̄∼i = V̄∼i. We then find the variance of this quantity

over all possible X̄∼i or VX̄∼i(EXi(Y |X̄∼i = V̄∼i). Then V (Y ) − VX̄∼i(EXi(Y |X̄∼i = V̄∼i)

must represent the contribution of all terms where Xi appears. Dividing this by V (Y ) we

get the total effect sensitivity:

STi =
V (Y )− VX̄∼i(EXi(Y |X̄∼i = V̄∼i)

V (Y )
= 1−

VX̄∼i(EXi(Y |X̄∼i = V̄∼i)

V (Y )
(4.2)

This variance-based sensitivity analysis framework is based on a functional decomposition

scheme where a square-integrable function X1, X2, . . . , Xk defined over Ω, the k-dimensional

unit hypercube, can be expressed as follows

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + · · ·+ f12...k (4.3)

The normalization condition here is

∫ i

0
fi1...is(xi1 , xi2 , . . . , xis) dxw = 0 (4.4)
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In the 4.4 we have w = i1, . . . , is. Using this the various terms are calculated as

f0 =

∫
f(x) dx = E(Y )

fi(xi) =

∫
f(x)

∏
w 6=i

dxw − f0 = EX̄∼i(Y |Xi)− E(Y )

fij(xi, xj) =

∫
f(x)

∏
w 6=i,j

dxw − f0 − fi(xi)− fj(xj)

= EX̄∼ij (Y |Xi, Xj)− EX̄∼i(Y |Xi)− EX̄∼j (Y |Xj)− E(Y ) (4.5)

Taking the variances of both sides of these equations give us

Vi = V (fi) = VXi(EX̄∼i(Y |Xi))

Vij = V (fij) = VXiXj (EX̄∼ij (Y |Xi, Xj))− VXi(EX̄∼i(Y |Xi)− VXj (EX̄∼j (Y |Xj) (4.6)

All these variances are linked by:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V12...k (4.7)

Dividing the above by V (Y ) we get

∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+ S12...k = 1 (4.8)
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Since the sensitivity coefficients above are multidimensional integrals, the standard way

of computing them is by using Monte Carlo type sampling. In Monte Carlo sampling an

integral I[f ] =
∫
f(x) dx is computed by generating a sequence of uniformly distributed

random numbers and computing their expectation IN [f ] = 1
N

∑N
i=1 f(xi). In this case, we

have a k-dimensional function Y = f(X1, X2, . . . , Xk). Hence, we need to sample N times

for each of these k parameters. These samples can be represented by a N × k matrix.

For the calculation of the above sensitivities, the standard procedure is to start with two

independent N × k sampling matrices ¯̄A and ¯̄B. We can compute matrices ¯̄AiB which is

obtained by taking ¯̄A and replacing the ith column (for parameter Xi) by the corresponding

column from ¯̄B. Similarly, we can define ¯̄Bi
A. It can be shown that (27) the variances in

the equations for Si and ST i can be estimated using:

VXi(EX̄∼i(Y |Xi = Vi)) =
1

N

N∑
j=1

f( ¯̄A)jf( ¯̄Bi
A)j − f2

0

VX̄∼i(EXi(Y |X̄∼i = V̄∼i)) =
1

N

N∑
j=1

f( ¯̄A)jf( ¯̄AiB)j − f2
0 (4.9)

The above equations form the basis of the computation of the sensitivity coefficients for the

model.

4.1.2. Quasi-random sequences

Monte Carlo method using a sequence of random or pseudorandom numbers is extensively

used to compute multidimensional integrals like above. The Central Limit Theorem of

probability shows that the error in the Monte Carlo estimate is equal to the product of the

standard deviation of the function and N
1
2 where N is the number of samples. Hence the

convergence of this method is O(N
1
2 ) which can be very slow (28). This method of sampling

using pseudorandom numbers also suffers from a related problem of clumping where the

sample points often tend to clump together and leaves empty spaces in between which is

20



magnified in higher dimensions. One alternative to obtaining a more uniform distribution of

points is by using a stratified sampling method like Latin Hypercube Sampling which divides

the intervals into equally spaced points. However, this only works when the dimensionality

is low. For integrations in higher dimensions, an alternative sampling technique is applied

called quasi-random sampling. A quantitative measure of uniformity of a sequence is a factor

termed “discrepancy”. Lower the discrepancy, more uniform is the sequence. Suppose we

have a sequence of N points {xN} in the k dimensional unit cube Ik. For any subset J ∈ Ik

one can define the error in Monte Carlo estimate of the volume of J as (28):

RN (J) =
1

N
#{xN ∈ J} −m(J) (4.10)

The discrepancy is then defined as some norm of RN (J). Formally, if J is restricted to

rectangular set and E is all possible such sets then the discrepancy DN is defined as

DN = sup
J∈E
|RN (J)| (4.11)

The Koksma-Hlawka inequality provides an upper bound for a Monte Carlo integration error

as a product of the variance of the function and the discrepancy of the sequence. Hence, if

one can generate a sequence of points in such a way as to minimize the discrepancy, then

it can be used to obtain an improved estimate of the integral. Such sequences are called

quasi-random sequences. These are not random at all but are generated deterministically to

minimize discrepancy. Since they are not random, quasi-random sequences are more limited

in scope than pseudorandom numbers. However, it can be shown that for integration the

convergence rate of quasi-random sequences is O(N−1(logN)k) where k is any number which

is considerably faster than the O(N
1
2 ) convergence of the standard Monte-Carlo method

using pseudorandom sequences. There are various techniques for determining quasi random

sequences. We use Sobol sequences (29) using a method suggested by Saltelli (27). The
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software package SALib (30) was used for the computation of the Sobol coefficients along

with custom python scripts and Matplotlib (31) for plotting.

4.2. Parameter Space Sloppiness and Robustness

Models in systems biology are approximate and often are poorly parametrized because the

necessary rate constants have not been measured and/or the absolute cellular concentration

of the species is not typically known. Also, these networks are almost always incompletely

known as many components and interactions that play a role in determining the final

outcome have not been yet identified. Because of this, the predictability of these models

is poor in general. Even when we have a model that can explain the experimental data

for particular situations it is not sufficient to answer some of the key questions biologists

are interested in. These have to do with the concepts of robustness and evolvability. For

example:

• If the model is perturbed due to mutations or internal fluctuations, is it robust enough

to maintain its functions?

• If there is a change in the environmental conditions or if the system is subjected to

external stress/stimuli, can the system adapt itself to cope with the changes?

In this section, we will define these concepts more carefully, give some mathematical inter-

pretations.

4.2.1. Definitions

Sloppyness

As mentioned in the previous section, systems biology models are ill-conditioned and the

collective behavior cannot be in general used to infer the underlying parameters (32). How-

ever, most important models in systems biology have been shown to be sloppy (33) in the

sense that the feasible parameter space of the model is highly anisotropic with few stiff and
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Figure 2: Parameter space spectra and sloppyness of systems models

many soft directions. What this means is that useful model predictions can be made even

when a large set of parameters are unknown or known with a high degree of uncertainty.

However, in the face of such parameter uncertainties, an attempt to find a single best model

that explains the experimental observation is a futile endeavor. What will be more useful

is to obtain an ensemble of models which are constrained by experimental data. Such an

ensemble makes a model more falsifiable because any new experimental measurement can

be compared with the ensemble deviation. The model will be considered defective if new

data falls outside this deviation. This is shown in Fig 2 where the idea of an anisotropic

parameter space is presented (33)
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Robustness

There has been much debate over the correct definition of robustness in biology and a true

definition has not yet been found. But most agree with the basic notion of robustness. We

describe the idea of robustness following the pioneering work of Kitano (34) and Wagner

(35). While describing robustness we must keep in mind that it is distinct from related

concepts of homeostasis and stability. The key difference is that in the face of perturbations

and uncertainties, homeostasis or stability tries to maintain the state of the system whereas

robustness tries to maintain function. Thus a robust system can (and actually does) move

itself to a different stable state or promote instability in the face of external stress or

change in environmental conditions to maintain system functions. For e.g., , certain types

of bacteria undergo a phenotypic switch in the face of harsh external conditions. Cancer cells

in tumors survive chemotherapy by promoting instability — giving rise to a heterogeneous

population. The key questions regarding the robustness of a biological system are:

• Is it conserved?

• What trade-offs exist in the biological system between robustness and fragility?

The concept of robustness is illustrated in Fig 3 along with the stability of a dynamical

system (34)

Since the mathematical model mimics a biological process that is known to be robust, there

should be ways to ascertain the robustness of the model that is consistent with the idea of

biological robustness.

4.2.2. Calculation of Sloppyness and Robustness

Kinetic ensemble method and sloppiness

The basic principle of the ensemble method (36) is to generate an experimentally constrained

random sample of the vector Θ̄, which is the set of all parameters and species concentrations
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Figure 3: Robustness of dynamical systems

that specifies a model. The degree of consistency of the model with the experimental

data can be quantified by calculating a certain figure of merit or a cost function. Let

Ȳ := (Y1, ..., YD) is the D-tuple of all experimental observables. D = MS × MT × ME

where:

• ME different realization of an experiment is performed. Each realization is distin-

guished by various conditions like external growth factor concentrations.

• ME different realization of an experiment is performed. Each realization is distin-

guished by various conditions like external growth factor concentrations.

• MS distinct species are present whose concentrations are being measured as a function

of time.

• Concentrations are recorded for MT different time points

Now let F (Θ̄) be the vector of values corresponding to Y predicted from the model. Con-
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sidering the experimental data is distributed normally (not essential) the probability distri-

bution of the vector of observables Ȳ given the mean µ̄

P (Ȳ |µ̄) ∝ exp[−
∑
l

(Yi − µi)2

2σ2
l

] (4.12)

Our quantity of interest here the probability distribution Q(Θ̄) of the parameters. Consid-

ering the experimental data we want to calculate the conditional probability Q(Θ̄|Ȳ ) which

we can write using a Bayesian interpretation as

(Θ̄|Ȳ ) =
p(Θ̄)P (Ȳ |F (Θ̄))∫
p(Θ̄)P (Ȳ |F (Θ̄))

(4.13)

If we choose a flat prior the above equation can be modified as

Q(Θ̄|Ȳ ) =
P (Ȳ |F (Θ̄))∫
P (Ȳ |F (Θ̄))

=
P (Ȳ |F (Θ̄))

Ω
(4.14)

The probability P (Ȳ |F (Θ̄)) can be written as

P (Ȳ |F (Θ̄)) ∝ exp[−
D∑
l=1

(Yi − Fi(Θ̄))2

2σ2
l

] (4.15)

(33) defines the factor inside the exponential as the cost function with a slightly modified

expression as below

C(Θ̄) = [

D∑
l=1

(Yi −BkFi(Θ̄))2

2σ2
l

] + f(F (Θ̄)) (4.16)

Here the factors Bk consists of undetermined multiplicative constants that restrict the

interpretation of experimental data and nonlinear function f allows us to enter some fuzzy
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data like inequalities.

Hence we can write the expression for conditional probability Q(Θ|Y ) is proportional to

Q(Θ|Y ) ∝ exp[−βC(Θ̄)] (4.17)

Hence using this ensemble we can set up a Monte Carlo scheme and perform moves in the

parameter space Θ̄ and accept those that decrease the cost function and accept with a

probability those that increase the cost function. Hence for any observable O like a time-

dependent chemical concentration we can calculate the average and the standard deviation

as below

< O >=
1

NE

D∑
j=1

Oj (4.18)

σO =
√
< O2 > − < O >2 (4.19)

From the definition of cost functions, we can identify the stiff and soft directions as below

by computing the Hessian matrix defined below

Hij(θ
∗) =

∂2C

∂θi∂θj
(4.20)

Alternatively in the spirit of the ensemble method, one can construct a covariance matrix

using the ensemble data as below.

Θ =< (θ− < θ >)(θ− < θ >)T > (4.21)

Eigenvalue decomposition of the matrix will also give us the stiff and soft directions.
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Calculation of Robustness

Kitano (34) defines robustness taking into account his definition - which is the ability of a

system to maintain its functions in the face of perturbations. So the robustness RsaP of a

system s with regard to its function can be defined as

RsaP =

∫
P
ψ(P )Ds

a,pdp (4.22)

Here P is the space of all perturbations and ψ(P ) is the probability of a perturbation p.

If all perturbations are equally likely this should be unity. Ds
a,p is an evaluation function

which gives the viability of the system under a perturbation. This is defined as

Ds
a,p =

 0 p ∈ A ⊂ P
fa(p)
fa(0) p ∈ P −A

(4.23)

In the above definition, the evaluation function is zero if p is in a set A which failed

to maintain functions and it is given by a viability function when it is able to maintain

function. The choice of the viability function is somewhat empirical and system dependent.

Using this definition we can compare two different systems S1 and S2 and define one S1 as

more robust than the S2 when we have

RSap1 > RSap2 (4.24)

The above comparison holds for a small perturbation space. When we consider a broad

enough perturbation space then there will be trade-offs between robustness and fragility

and the net contribution to the integral will vanish.
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∆RS1,S2
aP =

∫
P
ψ(P )(Ds

a,p1−Ds
a,p2)dp = 0 (4.25)

which means that RSaP 1 = RSaP 1
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Part II

Single-Scale Models
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CHAPTER 5 : SPATIAL REGULATION AND SIGNALING OF RAB11 AND

RAB8 GTPASES IN TUBULAR RECYCLING PATHWAY

Adapted from (37)

The first system we studied using the ideas described in the preceding chapters is trafficking

and signaling of Rab-GTPases. This model is considered to be a “single-scale” model in the

sense that time-scales of the underlying diffusion and reaction processes are similar to one

another. However, it is still a suitable system to apply the sensitivity analysis techniques and

identify important model parameters that influence both transport and signaling activities

of the Rab proteins.

5.1. Introduction

Membrane trafficking in eukaryotic cells needs to be precisely regulated to ensure accurate

delivery of cargo from one organelle to another. Rab-GTPases have emerged as the key

regulators of this process which maintain membrane specificity by physically associating

themselves with each organelle as well as their transport vesicles. These Rab proteins

function as molecular switches by cycling between the GTP and GDP-bound states. The

switch to the GTP-bound state is regulated by guanine nucleotide exchange factors (GEF)

and is coupled to Rab activation and membrane association, whereas the switch to the

GDP-bound state is regulated by GTPase activation proteins (GAP) and is coupled to

Rab inactivation and membrane dissociation (38; 39; 40; 41). The Rabs localize to distinct

organelles and mediate the flow of cargo by recruiting the GEFs and GAPs which causes

segregation and eventual transition of the organelle from an upstream Rab to a downstream

Rab. This is facilitated by a countercurrent cascade operation where a downstream Rab is

recruited and activated and an upstream Rab is inactivated and removed. For example, on

the exocytotic route, it was shown that the GEFs of the downstream Rabs are recruited by

the upstream Rabs along the membrane trafficking pathways (42; 43; 44). In addition to the

GEF cascade, it was reported that, in yeast Golgi trafficking, the downstream Rabs recruit
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the GAPs of the upstream Rabs to terminate their function at specific Golgi compartment

(45; 46; 47), suggesting a negative feedback regulation. In mammalian cells, Rab11 regulates

recycling endosome (RE) trafficking from the perinuclear endocytic recycling compartments

(ERC) to the plasma membrane (48; 49). The active GTP bound form of Rab11 has been

shown to bind and recruit the effector Rabin8 which localizes on Rab11-positive vesicles

(44). Rabin8 has specific GEF activity towards Rab8 which indicates that a Rab GEF

cascade (analogous to Ypt32-Sec2-Sec4 cascade in yeast) is operational. To facilitate the

conversion of a Rab11-positive vesicle to Rab8-positive one a countercurrent cascade needs

to be operational. This means another as yet unknown effector of Rab8 must be recruited

on these tubules to act as a GAP for Rab11 by facilitating its conversion to the GDP bound

form and subsequent removal from the tubules. The protein Ecotropic viral integration site

5 protein homolog (Evi5) (50; 51) has been previously identified as a GAP for Rab11. Here

we identify Evi5 as a direct downstream effector of Rab8 which provides strong evidence

of the existence of such a countercurrent cascade and establish an important role of Rab11

and Rab8 in trafficking from late endosomal compartments. Evi5 was found to be recruited

by Rab8 to the tubular-vesicular carriers (TVCs) where it inactivates Rab11 to complete

the Rab conversion on TVCs. To establish the role of Evi5 as a GAP and to show that

it promotes depletion of Rab11 from these vesicles where Rab8 is recruited, one needs to

measure the spatial distribution of these proteins on these tubules. Unfortunately, this

is beyond the scope of existing experimental techniques. Mathematical modeling is often

useful under such circumstances. However, since accurate quantitative data is unavailable,

in these scenarios the purpose of such models is to obtain qualitative insights into the

mechanisms using simple and sound physical principles, generate testable predictions using

different alternative hypothesis and guide further experiments. With these goals in mind,

we have constructed a spatial reaction-diffusion model of Rab8-Rab11 cascade on the TVCs

that incorporates both known and proposed interactions between Rab11, Rab8 and their

effectors. We use the model to obtain both local and global behavior of the system and

validate it against experimental results (performed globally), identify plausible mechanisms
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to guide future experiments. Models that explore the recruitment and transport of Rab

proteins and their roles in the budding and fusion of vesicles have been reported (52; 53; 54).

However, placing different Rab proteins as part of a regulatory cascade in a spatiotemporal

context has not been modeled. On the other hand, such reaction cascades with feedback

have been modeled for systems such as the MAP kinase cascades, where the presence of

nonlinear feedback profoundly influences the temporal and spatial activity of these proteins

(6; 55). Our combined experimental and modeling study strongly suggests the existence of

a Rab11-Rab8 cascade and the important role of Evi5 which is recruited by Rab8 on the

TVCs. Evi5 was found to deactivate Rab11 and cause a depletion of Rab11 from Rab8

positive vesicles. The spatial model also suggested that assisted diffusion of Rab11-GTP

through its interaction with motor proteins which have been reported in literature plays a

key role in causing Rab11 depletion along with GDI mediated removal of the inactive form

of Rab11.

5.2. Methods: Reaction-Diffusion Model of Rab Cascade

The transport of the different Rab proteins and their effectors take place on the TVCs

whose longitudinal dimensions ( 1 µm) exceeds the lateral dimension (10 nm to 20 nm) by

many orders of magnitude. Hence the domain of our model is a one-dimensional region of

1 µm length which is bounded on two sides by TGN/RE and the plasma membrane which

are represented as compartments that hold constant (buffered) concentrations of different

species. The general form of the reaction-diffusion equation that governs the concentration

of a species i in this one-dimensional domain is as shown below:

∂ci(x, t)

∂t
= Di

∂2ci(x, t)

∂x2
− Vi

∂ci(x, t)

∂x
−
∑
µ

Rµ (5.1)

Equation 5.1 is a simple mass balance relation that represents the net accumulation of

a species i as a combination of diffusive and reactive transport of the species. The first

two terms on the right-hand side represent transport due to random and directed diffusion
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respectively where Di is the random diffusivity of species i and Vi is the velocity of directed

diffusion. The last term represents the net flux from all the reactions species i is part of,

including those where it is generated or consumed. Since no quantitative measurements

exist (to the best of our knowledge) for the reaction rates and diffusion coefficients of these

Rab proteins we used corresponding values for Ras superfamily of GTPases as baselines.

This is sufficient for our needs, as mentioned before the goal of this modeling effort is

not to produce quantitatively accurate predictions of distribution of these Rab proteins

(which would be impossible without detailed measurements of the spatial distribution of

these proteins) but rather as a tool to explore our basic hypothesis of a countercurrent

Rab11-Rab8 cascade. For this purpose, we only need to make sure that these parameters

are constrained within biologically relevant ranges. The effect of the parameter space is

explored in detail by creating an ensemble of models by sampling over these parameter

ranges and calculating the error bounds for all the model predictions. We also perform

a global sensitivity analysis to understand how sensitive are the model predictions with

respect to the model parameters. We believe such analyses provide more value in these

types of situations where quantitative data is lacking and/or experimental measurements

are limited in scope because they help us find global behavior of the models that are robust

to perturbations in parameters and environmental conditions. A detailed description of the

boundary conditions, reaction kinetics, reaction rate and diffusion constants used in the

model can be found in the Supplementary Materials of (37). Fig 5.2 shows a schematic

diagram of the Rab cascade and the mechanism of diffusion

34



Rab11-Rab8 Spatial Domain

𝜕𝑅 𝑥, 𝑡

𝜕𝑡
=
𝐷ோ𝜕

ଶ𝑅 𝑥, 𝑡

𝜕𝑥ଶ
−
𝑉ோ𝜕𝑅 𝑥, 𝑡

𝜕𝑡
−෍𝑅ఓ

ఓ

Recycling Tubule
Diameter ~ 20 nm
Length ~ 1 µm

Random 
Diffusion

Drift Diffusion 
Velocity Reaction

Rate

One dimensional reaction-diffusion equation

One-state lattice hopping model of motor protein 
mediated Rab-GTP transport

Phillips, Rob, et 
al. Garland Science, 2012.

𝑎

𝑎

𝑉ோ = 𝑎 𝑘ା 𝐹 − 𝑘ି 𝐹

𝑘ା 𝐹 Δt

𝑘ି 𝐹 Δt

1 − 𝑘ା 𝐹 − 𝑘ି 𝐹 Δt

Figure 4: Rab11-Rab8 one dimensional reaction diffusion model with assisted transport: A tubular

membrane extends from the compartment TGN/RE to the plasma membrane. Rab11 diffuses in

the tubule from TGN/RE and Rab8 is delivered to the tubule by its GDI where it is activated by

Rabin8 a downstream effector of Rab11. Evi5 is then recruited by activated Rab8 which deactivates

Rab11 and causes its removal from the tubule. On the right we have the basic form of the PDE used

for the model and a simple one-step lattice hopping model to simulate interaction of Rab11-GTP

and Rab8-GTP with motor proteins which assist their diffusion along the tubules.

This system of reaction-diffusion equations is solved in a custom simulation platform con-

sisting of Matlab (Matlab 9.0 The MathWorks, Inc., Natick, Massachusetts, United States)

and python (Python Software Foundation. Python Language Reference, version 2.7 http:

//www.python.org). The scripts and instructions to run the scripts are available as part

of the supplementary materials in (37).
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5.3. Results

5.3.1. Evi5 is localized to the TVC

TVCs are linear tubular membrane structures generated from ERC that carry cargos such

as integrins and MHC-I back to the plasma membrane (48; 56; 57; 58). Rab8 is localized

to TVCs, and functions together with EHD1 and MICAL-L1 for endosomal recycling (59;

60; 61). We localized Rab11 to perinuclear ERC, but not to TVCs marked by MICAL-L1

(Fig. 5A). The result is consistent with the previous observation (61). Evi5 was thought to

be a GAP for Rab11 that negatively regulates the activity of Rab11 (50; 51; 62; 63).

Evi5 co-localizes with MICAL-L1 and Rab8 on the TVCs, as well as perinuclear ERC (Fig.

5B and C) (59). On the other hand, Evi5 was more enriched in the tubules proximal to the

perinuclear region, whereas the MICAL-L1 staining extends from perinuclear ERC towards

the plasma membrane (Fig. 5B). This observation suggests that the localization of Evi5 to

TVCs is independent of Rab11.

5.3.2. Rab8 mediates the recruitment of Evi5 to the TVC

Since Evi5 is enriched on the tubules marked by Rab8, we investigated whether Rab8 is

involved in Evi5 recruitment to the TVCs. Using immunoprecipitation, we found that Evi5

interacts with Rab11 and Rab8, but not with Rab27, the Rab GTPase that functions in

lysosomal trafficking (38) (Fig. 6A).

To test if Rab8 and Evi5 interact directly, we used recombinant proteins purified from bacte-

ria to perform the binding assay. Rab8 bound to GST-tagged Evi5, but not to GST-tagged

BBS3 or Sec8, which are of similar molecular weights (Fig. 6B). Conversely, GFP-tagged

Rab8 bound to Evi5. The constitutively active mutant, Rab8Q67L, showed preferential

binding to Evi5 relative to the wild type Rab8 or the dominant-negative mutant, Rab8T22N

(Fig. 6C). To map the region of Evi5 that binds to Rab8, we constructed serial C-terminal

truncations of Evi5 based on its domain structures (Fig. 6D). Deletion of a.a.714-810 at
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Figure 5: Evi5 is localized to tubular vesicular carriers (A) Evi5 localized to tubular vesicular
carriers marked by MICAL-L1. Antibodies against the endogenous Evi5 and MICAL-L1 were used
in the immunofluorescence staining. Scale bare=10µm. (B) Rab11 is mostly localized to peri-
nuclear endosomes. Antibodies against the endogenous Rab11 and MICAL-L1 were used in the
immunofluorescence staining. Scale bare=10µm. (C) Evi5 co-localized with Rab8 on endosomal
tubules. Higher-magnification views of the boxed areas are shown in each image. Scale bare=10µm.
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Figure 6: (A) HaloTag-Evi5 co-immunoprecipitated with GFP tagged Rab8, Rab11, and Rab27. Immunoprecip-
itates (“IP”) and total cell lysate (“WCL”) were immunoblotted with anti-HaloTag and anti-GFP antibodies. (B)
Interaction of Evi5 and Rab8 in vitro. Purified Rab8 interacts with GST-Evi5, but not GST or GST-tagged BBS3
or C. elegan Sec8 (“cSec8”). Ponceau S. staining shows the inputs of GST fusion proteins. Rab8 was detected by
western blotting. (C) Co-immunoprecipitation of HaloTag-Evi5 and GFP tagged Rab8 proteins with an anti-GFP
antibody. Immunoprecipitates (IP) and total cell lysate (WCL) were analyzed with anti-HaloTag and anti-GFP anti-
bodies. (D) Schematic representation of domains of Evi5 and Evi5 deletion constructs. Full-length Evi5 (“Evi5FL”)
contains a TBC domain and a coiled-coil region. (E) Co-immunoprecipitation of GFP-tagged Evi5 truncates with
Flag-Rab8. Immunoprecipitates and total cell lysate were immunoblotted with anti-GFP and anti-Flag antibodies.
(F) mCherry (CH)-tagged Evi5(396-714), but not Evi5(1-402) co-localized with GFP-Rab8. Scale bare=10µm. (G)
Immunoblotting of Rab8 in HeLa cells treated with Scramble or Rab8 shRNA. Actin served as the loading control.
(H) Immunostaining of Evi5 and MICAL-L1 in HeLa cells treated with Rab8 or Scramble shRNA. Evi5 localization
to TVC was reduced in cells treated with Rab8 shRNA. Scale bare=10µm. (I) The percentage of cells containing Evi5
tubules. 100 cells were scored in each of 3 independent experiments. ∗p < 0.001.
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the C-terminus did not affect the binding, but further deletion of the coiled-coil domain

(a.a.404-714) abolished the interaction (Fig. 6E). Fluorescence microscopy experiments

showed that the coiled-coil domain of Evi5 alone was sufficient to associate with TVCs

marked by Rab8, while Evi5(a.a.1-402) containing the N-terminus and TBC domain did

not (Fig. 6F). We also examined the binding of Evi5 with Rab11. In contrast to its inter-

action with Rab8, the N-terminus of Evi5 (a.a.1-160) was sufficient to interact with Rab11

(Supplemental Fig 1A in (37)). These results suggest that Evi5 interacts with Rab8 via its

coiled-coil domain, while its interaction with Rab11 is mediated via its N-terminal region

(Supplemental Fig. 1B in (37)). To test whether Rab8 mediates Evi5 localization to the

TVC, we knocked down Rab8 by shRNA (Fig. 6G). The number of Evi5-positive tubules

decreased significantly, while tubular staining of MICAL-L1 remained mostly unaffected

(Fig. 6H and I). The binding assays and the localization studies suggest that Rab8 recruits

Evi5 to the TVC.

5.3.3. Spatiotemporal model of the Rab cascade simulated the regulation of Evi5 on the

distribution of Rab11

The results from the previous section suggest that Rab8, through its recruitment of Evi5 may

play a role in the removal of Rab11 from the TVCs. If confirmed, this would establish the

vital role of dual Rab11-Rab8 cascade in the trafficking processes from ERC to the plasma

membrane along the TVCs. To investigate the operation and the effects of the proposed

Rab11-Rab8 cascade we next constructed a spatial reaction-diffusion model. The model-

specific details such as the main assumptions, component species/reactions, and values of

the parameters can be found in Section 5.2 and Supplementary sections of (37).

For the TVCs, longitudinal dimensions (1 µm) are much larger than the lateral dimension

(10 nm to 20 nm) which allows us to restrict the model in one dimension, simplifying the

analysis and reducing the complexity of the model considerably. The first thing we want

the model to tell us is the effect of Evi5 recruitment on both the amount and distribution

of Rab11 (GTP, GDP bound forms and total). To determine this, we performed in-silico
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Figure 7: Steady State Rab11-GTP profiles for Evi5 knockdown (A) Model predicted steady-state concentration
(nM) of Rab11-GDP, Rab11-GTP and total Rab11 averaged over the tubule length vs Evi5 (nM). This value gives
an estimate of average amount of a species on the tubule and can be compared with corresponding experimental
measurement. The black lines show the significance levels between different groups with significance level set to 0.01.
* implies p < .01, each additional * indicates a p-value one order of magnitude lower. (B) Model predicted steady-state
concentration profile of Rab11-GTP (nM) over the tubule for different Evi5 levels (nM). This plot shows how the
spatial distribution of Rab11-GTP varies over the tubule as the amount of Evi5 levels on the tubule changes. (D)
Immunoblotting of Evi5 in HeLa cells treated with Scramble or Evi5 siRNA. Actin served as the loading control. (E)
Representative images of Rab11 and MICAL-L1 in HeLa cells transfected with Scramble or Evi5 siRNA. Endogenous
Rab11 and MICAL-L1 were stained by antibodies. Scale bare=10µm. (F) The percentage of cells with Rab11 tubules.
200 cells were scored in each of 3 independent experiments. ∗p < 0.01.
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Evi5 knockdown by running the model for a different rate of Evi5 recruitment and plotted

the corresponding steady-state Rab11 levels. In Fig 7A and C we plot the steady-state

concentrations of Rab11-GTP, Rab11-GDP and total Rab11 integrated over the tubule as

Bar and Hill plots.

These quantities tell us about the net accumulation of these species on the tubule for

different rates of Evi5 recruitment. The bar plots show us that the GTP bound form of

Rab11 and total Rab11 increases with Evi5 knockdown at the expense of the GDP bound

form. The Hill plots show the slopes (rates) of the corresponding changes and show a

characteristic nonlinear slope which is frequently observed in these cascades with negative

feedback. Fig 7 shows the steady-state distribution of Rab11-GTP over the tubule for three

different Evi5 levels Higher rates of Evi5 recruitment causes localization of Rab11 near the

left boundary. Supplementary Fig 3A and 3B in (37) show the profiles for total Rab8 and

Evi5 level which shows that Rab11 is effectively ”pushed” towards the TGN/RE boundary

due to an increase in the Rab8 and Evi5 levels on the tubule. One possible mechanism for

the increase in total Rab11 when Evi5 is knocked down comes from the assisted diffusion

of the GTP bound form of Rab11 through its interaction with motor proteins which has

been documented before (38). To test the model prediction of a decrease in total Rab11

levels with Evi5 knockdown, we performed RNA interference of Evi5 and examined the

distribution of Rab11. Rab11 showed tubular localization only in a very small number of

cells (Fig. 7E and 7F) under normal Evi5 levels. However, when Evi5 was knocked down

by siRNA, the number of cells with Rab11 tubules increased significantly (Fig. 7D and E).

This result is consistent with the model predictions in Fig 7A and C which plots the Rab11

levels integrated over the tubule for an ensemble of models (indicated by the error bars). In

cells with Evi5 knockdown, Rab11 was partially localized to the MICAL-L1 tubules and was

concentrated on the tubules close to the ERC (Fig. 7E), connecting ERC and MICAL-L1

tubules, which was consistent with the distribution of Evi5 (Fig. 5A). This is consistent

with the spatial profile of Rab11-GTP predicted by the model in Figure 7B which also

shows localization of Rab11 near the TGN/RE boundary.
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5.3.4. Simulated and experimental knockdown of Rab8 show that Rab8 spatial distribution

regulates Evi5 and Rab11 distribution on TVCs

The Evi5 knockdown results from the previous section establish a necessary condition for an

operational Rab11-Rab8 countercurrent cascade by showing that on being recruited, Evi5

can cause depletion of Rab11 from the tubules. This alone is not sufficient and we need

to show that such a depletion is caused by Rab8-GTP recruiting Evi5 on the tubule. As

mentioned before, activation of Rab8-GDP to Rab8-GTP is catalyzed by Rabin8, which

is a downstream effector of Rab11-GTP. We carried out in-silico Rab8 knockdown in a

similar fashion as the Evi5 knockdown studies in the section 5.3.3 and again plotted the

corresponding steady-state Rab11 levels in Figures 8A and B.

These plots show a similar dependence of Rab11-GTP levels on Rab8 we saw before with

Evi5 although with different rates. Taken together with the plots in Figures 7 and 8 confirm

that a countercurrent cascade with Rab11 and Rab8 with Evi5 acting as an effector of Rab8-

GTP and a GAP for Rab11 can cause a depletion of Rab11 from these TVCs. We next

performed Rab11-GTP pulldown to verify the model prediction. Rab11FIP1 is an effector

of Rab11, and its Rab-binding domain (RBD) specifically interacts with Rab11 in its GTP-

bound form. We purified GST tagged RBD domain of Rab11FIP1 from bacteria to pull

down Rab11-GTP from HeLa cell lysates. A higher level of Rab11-GTP was pulled down

by GST-RBD from HeLa cells treated with Rab8 shRNA (Fig. 8D and E). This result

was consistent with the simulation result and taken together, they confirmed the negative

regulation of Rab11 by Rab8 through the GAP Evi5 providing support to the dual Rab8-

Rab11 cascade hypothesis.

5.4. Discussion

In this work, using fluorescence imaging, biochemistry, and mathematical modeling, we

have identified a regulatory loop that spatially controls Rab11 inactivation through Evi5

during endosomal recycling to the plasma membrane. Immunoprecipitation and fluorescence
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Figure 8: Effect of Rab8 knockdown on Rab11-GTP (A) Model-predicted steady-state concentration (nM) of
Rab11-GTP averaged over entire tubule vs. the Rab8 levels (nM). This value gives an estimate of average amount of
a species on the tubule and can be compared with corresponding experimental measurement. The black lines show
the significance levels between different groups with significance level set to 0.01. * implies p < .01, each additional
* indicates a p-value one order of magnitude lower. (B) Model-predicted steady-state Hill plot of Rab11-GTP vs.
Rab8 concentration (nM) on the tubule highlighting the nonlinear dependence of Rab11-GTP on Rab8 levels. (C)
Model predicted steady-state Hill plot of Rab11-GTP (averaged) vs Rab8 level (nM) showing the nonlinear variation
of Rab11 with Rab8 knockdown. (D) Immunoblotting of Rab11-GTP in HeLa cells treated with Rab8 or scramble
shRNA. The cell lysates were incubated with purified GST-FIP1 RBD fusion protein. GTP-Rab11 that bound to
GST-FIP1 RBD fusion protein or in cell lysates were detected with the anti-Rab11 antibody. (E) Quantification of
the levels of GTP-Rab11 in (D). The amounts of GTP-Rab11 were normalized to the level of shScramble (n=4).
The intensity of the bands was quantified by ImageJ and analyzed using Student’s t-test. Values are presented as
mean±SD. ∗p < 0.05.
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microscopy studies showed that Evi5 directly interacts with Rab11 through its N-terminal

region, and interacts with Rab8 through its coiled-coil domain. Evi5 was also found to

rely on Rab8 for its localization on the TVC. To obtain a mechanistic understanding of

these observations we constructed a reaction-diffusion model of the Rab8-Rab11 cascade.

Simulating Evi5 and Rab8 knockdown on the TVC lead to two important predictions:

1. Evi5 depletion on tubules results in an increase in total Rab11.

2. Rab8 depletion on tubules leads to a depletion of Evi5 and a corresponding increase

of Rab11-GTP.

Thus, the model suggested an important connection between Rab8 and Rab11 activities on

their spatial distribution possibly mediated by their interaction with Evi5. By performing

Evi5 and Rab8 siRNA knockdown experiments, we observed an expansion of Rab11 on the

tubules and increased the level of GTP-loading, confirming the mathematical predictions.

This Rab cascade model is similar to models of Rab systems (52; 53) as well Ras-MAPK

systems (55). However, this is one of the first (as far as the authors are aware) to model com-

plete Rab cascade with negative feedback regulation in both space and time. For our model

the transient dynamics were short-lived, and the system quickly settled to a steady-state

and hence we presented the steady-state results. However, the nature of this steady-state

is a very important aspect of these models. Previous studies on Ras-MAPK cascades have

shown the emergence of bistable and oscillatory behavior at steady-state (6; 7). We did not

observe this in our spatial model, but we are currently exploring this in a non-spatial con-

text. Since the tubule length can influence the diffusion times and we ran out simulations

for different lengths of tubules. We found that above 1 µm length there is no significant

change in the effect of Evi5 knockdown on Rab11 although the spatial profiles and nature

of dependence (slope) changes (Figures 8-9). One major limitation of this kind of model

is the multiple free parameters with large uncertainties in their values. It is important

to show that such model predictions are robust under perturbations of the parameters.

Using Global Sensitivity Analysis (Supplementary Fig. 10 and Supplementary Materials)
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we confirmed this and also identified a particular combination of parameters which were

important determinants of model outcome like Rab11-GTP deactivation by Evi5. The ef-

fect of this reaction was separately explored (Supplementary Fig. 7), where it showed a

large influence on the distribution of both Rab11-GTP and Rab11-GDP. Sensitivity analysis

also showed a high degree of nonlinearity interaction between the sensitive parameters to

determine the model outcome. Membrane traffic in eukaryotic cells is regulated by signal-

ing pathways. The Rab8/Rab11 network is regulated by a number of kinases in response

to growth factor signaling (64; 65; 66). Notably, the extracellular signal-regulated kinase

(ERK) directly phosphorylates Rabin8 and promotes its GEF activity on Rab8, thereby

regulating exocytic trafficking (67). The identification of the Rab11-Rab8 regulatory loop

and the establishment of a mathematical framework will allow future studies to be per-

formed to elucidate the molecular mechanisms of compartmental specificity and regulation

of membrane trafficking. This study also has important implications for fields such as can-

cer research. For example, ERK is a downstream target of the Ras-MAPK pathway which

is frequently dysregulated in many cancers. The important role of trafficking events such

as receptor internalization and recycling on these signaling pathways have been highlighted

in previous reviews (68; 69). Through their influence on these trafficking processes, the

Rab proteins can determine signaling outcome, cellular fate and consequently the efficacy

of different treatment strategies.
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CHAPTER 6 : TIME-DEPENDENT ANTAGONIST-AGONIST SWITCHING IN

RECEPTOR TYROSINE KINASE-MEDIATED SIGNALING

Adapted from (70)

6.1. Introduction

ErbB4/HER4 belongs to the ErbB receptor tyrosine kinase family (consisting of EGFR,

ErbB2, ErbB3, and ErbB4). These receptors regulate several critical signaling pathways

that are frequently altered in cancers of lung, breast, prostate, etc. When activated by

specific growth factors, they initiate multiple signaling cascades leading to the transcription

of genes responsible for the determination of cell fate such as proliferation, differentiation

or apoptosis (71). Overexpression of these receptors or the development of domain-specific

mutations that allow them to be constitutively activated, causes them to promote various

important pathways that drive the cell towards a program of proliferation and suppresses

those that lead to apoptosis (cell death) or growth arrest through cell senescence. Com-

pared to the other members of the ErbB family, the role of HER4 is incompletely understood

(72). In part, this has to do with the fact that this receptor has several unique features

compared to other members of the family. It has four structurally and functionally dif-

ferent isoforms generated by mRNA splicing. Some of these isoforms undergo shedding of

their ectodomain by proteolytic cleavage reaction mediated by Tumor Necrosis Factor-alpha

converting enzyme (TACE). The remaining 80 kDa fragment is further cleaved by enzyme

γ-secretase which separates from the transmembrane part and transported to the nucleus

and other parts of the cell thereby taking part in critical cellular reactions that affect cell

fate (73). Unlike the other members of the ErbB family, HER4 has an anti-proliferative

role through its activation of the JAK2-STAT5 pathway. Ligand Neuregulin (NRG), which

is one of the ten natural ErbB family ligands and is often expressed in human tumors, can

bind to and activate HER4. Upon activation and binding with JAK2, activated HER4 s80

domain can activate Signal Transducer and Activator of Transcription 5 (STAT5) causing

it to translocate to the nucleus and initiate transcription of genes that promote differen-
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tiation (72; 73) Hence it is essential to gain a mechanistic understanding of this pathway,

particularly its dynamical behavior in response to NRG. Constructing and solving sys-

tems of nonlinear ordinary differential equations is a typical approach of modeling these

pathways. The models are constructed based on experimental measurements of protein

activities and rate constants and are used to predict the time-dependent dynamics of tar-

get gene/protein expression for different ligand stimulations. The predictions are validated

through experimental measurements of the time-dependent protein activity through West-

ern Blots or Immunoprecipitation studies (7). Such an approach has been used for HER4

mediated JAK-STAT pathway before (74; 75). However, these models failed to reproduce

some interesting recent observations from experiments conducted in HC11 mouse mammary

epithelial cell lines which prompted this computational study. In the experiments, it was

observed that HER4 mediated transcription of anti-proliferative genes like β-casein milk

genes follows a time-dependent switching behavior that cannot be explained by the pre-

viously published models. Here we propose an improved model of the HER4-JAK-STAT

pathway that incorporates additional interactions that have been previously reported in

the literature but were not part of the original models. Some of these reactions include

competitive heterodimerization of HER4 receptors with other members of the ErbB family

and JAK2 independent activation of HER4. The latter phenomenon of signaling through

parallel pathways has some similarities with signaling pathways driven by constitutively

activated mutant forms of EGFR (76). Identification of such pathways can be critical to

gain a better understanding of the HER4 induced JAK/STAT pathway and leverage its

anticancer role by designing an appropriate treatment strategy to treat cancers in cell lines

where this receptor is significantly expressed.

6.2. Materials and Methods

6.2.1. Pathway Description

The HER4-JAK-STAT system was modeled as a deterministic reaction network using mass

action kinetic equations modeled by ordinary differential equations. The system was mod-
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eled as a two-compartment system (for cytoplasm and nucleus) with NRG in the extra-

cellular medium. The species were assumed to be in sufficiently large amounts so that

the deterministic approximation applies. The model builds on the canonical JAK-STAT

pathway model in the literature (74; 75). In this pathway, the receptor-JAK2 complex is

activated by the ligand. This activated receptor complex, in turn, activates cytoplasmic

STAT5 which then dimerizes and translocates to the nucleus. The STAT5 dimer in the

nucleus initiates transcription of various genes of which the SOCS mRNA which translates

to SOCS protein and exerts negative feedback on the circuit by deactivating the activated

receptor-JAK2 complex is of interest. The other gene of interest for the current HC11

system is, of course, β-casein, which on transcription is transported outside the nucleus.

This cytoplasmic β-casein is reported in the experiments. To explain the experimental

findings which showed that the canonical pathway is inadequate to explain things like a

time-dependent switch in β-casein mRNA levels we incorporated two main modifications of

the canonical pathway based on recent literature findings:

a) HER4 can form both homo and heterodimers with other members of the ErbB family on

activation by NRG. These reactions compete with the dimerization and activation reac-

tions of HER4- JAK2 complex. Such competition for ligand has been shown to induce

an inverse ligand dependence (signaling activity decreases with increasing ligand stim-

ulation) in these pathways which is also observed in the experiments. These additional

homodimerization and heterodimerization steps were modeled using three reactions.

b) The requirement of JAK2 for tyrosine phosphorylation of STAT5 was only demonstrated

in HB-EGF and Prolactin stimulated pathways (73). There are other shreds of evidence

in the literature that suggest STAT5A can directly interact with HER4 s80 when stim-

ulated by HRG/NRG. Hence in the present work, we incorporated this possibility by

introducing a JAK2 independent pathway which allows a direct interaction and acti-

vation of the s80/4ICD domain of HER4 with STAT5a. The most important effect of

adding this pathway is that being JAK independent, this complex will not be negatively
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regulated by SOCS to the extent when JAK is present (77) which can increase the over-

all β-casein gene expression in a time-dependent manner. The rate constants of the

activation reactions for this JAK2 independent pathway were taken as smaller than that

of the JAK2-dependent pathway since we expect the active kinase domain of JAK2 to

catalyze the phosphorylation of STAT5.

The rate constants were taken from published models (74; 75; 19) for the reactions which

were common to the current model. For the new reactions, we estimated the rate constants

by starting with similar values as the related reactions for which the parameters are known,

and then doing sensitivity analysis and comparing with experimental results. Bounds for

the rate constants were also confirmed independently using values/estimates of the diffusion

coefficient. The model was solved using COPASI (78). A full description of the model

along with the initial expressions and rate constants are provided in the SBML http:

//sbml.org/Documents/Specifications format in Additional file 2 in (70). We used

Latin Hypercube sampling (79) to sample the parameter space and to create an ensemble

of models. Then for each member of the ensemble, we calculate and plot the time-integrated

value of β-casein mRNA and average them over the ensemble. This task ensures that the

uncertainties in the model parameters are reflected in the predictions to a certain degree

and that the model is robust to small perturbations in the model parameters.

6.3. Results

6.3.1. HER4 signaling through JAK-dependent pathway

The computational study was motivated by some intriguing results from experiments con-

ducted on HC11 mouse mammary epithelial cells (80) stimulated with different ligands in-

cluding NRG. In these studies, HC11 cells were grown and maintained at 5 % CO2 medium

(RPMI 1640, 10 % FBS, 2 mM L-glutamine, 100 µg/ml penicillin, 100 µg/ml streptomycin,

1 µg/ml hydrocortisone, 10 ng/ml murine EGF and 5 µg/ml insulin). Cells were seeded

in 6-well plates at a density of 2× 104 cells/cm2 and allowed to grow to 100 % confluence
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to induce differentiation. The cells were maintained at confluence for 2 days in serum-

free/EGF-free medium to induce competence. The competent cells were then stimulated

with NRG to induce differentiation. Three stages of the differentiation process were iden-

tified: Stage 1 refers to growing the cells to confluence, Stage 2 refers to maintaining the

cells at confluence for 48 hours to induce a state of competence, and Stage 3 refers to cell

stimulation with HER4 ligand. RT-PCR and ELISA based Transcription Factor activation

assay were performed in differentiating HC11 cells to characterize the signaling dynamics

in the HER4-mediated JAK/STAT pathway. Specifically, the following read-outs of HC11

mammary differentiation were assayed:

• Levels of activated STAT5A and glucocorticoid receptor (GR) in the nucleus.

• Expression of the β-casein milk gene mRNA.

STAT5 and GR are the two key transcription factors which are both activated during HC11

cell differentiation and synergize on the β-casein gene promoter (81). In the experimental

studies, the steroid hydrocortisone (HC), which signals through GR was included in the

medium. It was shown that in cells stimulated with NRG in the absence of HC in the

medium, no β-casein was expressed. However, upon addition of HC, HER4 induced robust

expression of β-casein. HC was required in Stage 2 of the differentiation process as well as

Stage 3. Hence the β-casein expressions obtained by varying NRG levels were normalized

by the control case of only HC present in the medium.

In tracking the response of the HC11 cells to HER4 stimulation by NRG in the presence

of HC at various time points, it was observed (Fig. 9) that at early time points post-

stimulation, NRG does not exhibit any effect on β-casein expression.

However, at 12 h post-stimulation, it was found that increased stimulation with NRG de-

creased levels of β-casein, relative to the control (HC). At 24 h to 48 h post-stimulation,

NRG began to increase β-casein expression levels at sufficiently high ligand concentrations.

This result has not been discovered previously, as the few studies examining the HER4-
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Figure 9: Experimental data from HC-11 murine mammary epithelial cell lines (reproduced with
permission from (80)). (A) shows the RT-PCR results of the expression of the differentiation marker
β-casein gene at three different time intervals (0-12, 12-24 and 24-48 hours) for different levels of
ligand NRG stimulation. The results were compared with β-casein expression with Hydrocortisone
(HC) as control. (B) shows the ELISA TF activation assays of the transcription factors STAT5 and
Glucocorticoid Receptor (GR) at the nucleus at different time points post ligand stimulation.
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STAT5A pathway focused mostly on gene expression at earlier time points post stimulation

(81; 82). As a first step towards understanding the mechanism of this time-dependent

switching behavior observed in the experiments, we used mathematical models of JAK-

STAT pathways reported before in literature (74; 75). In these models, HER4 is activated

in a JAK2-dependent fashion, and the HER4-JAK2 dimer activates cytoplasmic STAT5

which dimerizes and translocates to the nucleus. This model was run with increasing levels

of ligand (NRG) stimulation in the same range as used in the experiments (80). Although

these models were developed for shorter time ranges of 0 h to 12 h we wanted to see to what

extent this model can capture the early time behavior observed in experiments. In Fig. 10a

and b, we plot the time-integrated β-casein gene expression as a function of ligand NRG

stimulation and instantaneous time profile of β-casein gene.

To show how model parameter uncertainties influence its predictions we sampled the param-

eter space using Latin Hypercube Sampling (see Methods) after setting biologically proper

bounds on each parameter. This sampling was used to generate an ensemble of model pa-

rameter values which were used to run the model and obtain a set of output values. The

average value of this set is reported, and the average dispersion is shown in the form of error

bars. All the time-integrated plots in this chapter are are generated using this procedure.

We also calculated the statistical significance of a increase/decrease in the β-casein expres-

sion for different NRG stimulations. These are indicated by horizontal black lines between

two bars (for two different NRG stimulations).

The plots corresponding to the literature model show little sensitivity towards NRG in

terms of β-casein expression at all three time intervals (the difference in β-casein expres-

sion between successive NRG stimulations are not statistically significant). The literature

model has several negative regulators including two cytoplasmic phosphatases for JAK2 and

STAT5, one nuclear phosphatase for STAT5 and negative feedback through SOCS protein

deactivating HER4-JAK complex. SOCS is another product of STAT5 mediated transcrip-

tion apart from β-casein. The latter is expected to limit the response and prevent any

52



B

D

A

C

Figure 10: β-casein expressions predicted by the literature model and a modified version with
competitive HER4 heterodimerization. Panels A and B show the time integrated β-casein values
(obtained by integrating the solutions of the nonlinear system of ODE at different time points over
different time intervals - 12,24 and 48 hours in three separate subpanels) and the instantaneous
values (obtained by solving the nonlinear systems of ODEs at different time points) respectively as
predicted by the literature models of JAK-STAT pathway for different levels of NRG stimulations.
The black bars represent the control condition with only Hydrocortisone (which is implicitly assumed
to be always present in the model). The black lines show the statistical significance of a one-tailed
t-test (greater than) between different groups with significance level set to 0.05. * implies p < .05,
each additional * indicates a p-value one order of magnitude lower. In these case no significant
difference was observed for different NRG stimulations. This shows a statistically significant decrease
in β-casein expressions with increasing NRG. Panels C and D show the same time integrated and
instantaneous levels of β-casein when a competitive HER4 heterodimerization is included in the
model. The time integrated plot contains three subpanels showing the expression at three different
time points (12, 24 and 48 hours). The error bars are obtained by generating an ensemble of models
by sampling over parameter space. The instantaneous plots are for 0-48 hour range at 5 different
NRG stimulations.
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increase in transcription due to higher ligand stimulation. However, the insensitivity of

β-casein towards NRG is inconsistent with the observations from the experiments. In the

0 h to 12 h interval, the experiments show a decrease in the β-casein gene expression with

increasing ligand stimulation. This observation suggested that there are additional mecha-

nisms which are not considered in the canonical JAK-STAT pathways published earlier in

the literature.

6.3.2. Competitive heterodimerization involving HER4 upon ligand binding

It has been previously reported in the literature that competitive heterodimerization of

HER4 with other members of ErbB family can result in a decrease in HER4 activity for a

particular reaction pathway with increasing ligand stimulation (so-called partial agonists)

(83; 84; 85; 86). To explore this effect, we introduced additional heterodimerization reactions

of HER4 with HER3.

Introduction of such reactions resulted in a decrease in the β-casein activity with increasing

NRG stimulation consistent with experimental observations. The reduction is evident from

Fig. 10c and d where we have again plotted both integrated and instantaneous β-casein

mRNA concentrations. Since there are several competing reactions possible for a fixed

number of free HER4 receptors at the cell surface, increasing ligand stimulation promotes

the more favorable (heterodimerization) reaction at the expense of the less favorable (HER4-

JAK dimerization). Addition of competitive heterodimerization, however, does not increase

β-casein activity in the 24 h to 48 h interval as observed in the experiments. This observation

suggests additional reactions are at play during this late period contributing to an increase

in the β-casein gene expression.

6.3.3. Combined model with JAK-dependent and JAK-independent HER4 signaling

It has been reported before in the literature (87; 77) that HER4 can activate STAT5 indepen-

dent of JAK2 although with lower rates compared to the canonical JAK-dependent pathway.

We hypothesized that such a slower JAK-independent pathway might likely become active
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in the later stages (24 h to 48 h) where it can contribute to an increase in β-casein expression

with increasing NRG stimulation after the faster and more favorable heterodimerization re-

actions have equilibrated. Also, this pathway is not affected by negative feedback through

SOCS, which can only act on the JAK-bound complex. We incorporated such a pathway

in our model to explore late time behavior (see the method section for more details). The

combined pathway is shown in the schematic diagram in Fig. 11 where the JAK-dependent

and JAK-independent pathways are highlighted.

When this combined pathway was stimulated with increasing NRG stimulations (plotted

in Fig. 12), we were able to reproduce the time-dependent switching behavior seen in the

experiments: that is, in the 0 h to 24 h period the β-casein activity decreases with ligand

stimulation, and it increases in the later stages (24 h to 48 h).

From the β-casein mRNA time profiles, we see that after the 24 h mark there is a transition

from negative to positive dependence of β-casein mRNA towards ligand stimulation. In

this regime, the β-casein levels continue to increase.

6.3.4. Time delay in β-casein mRNA transcription

In the HC11 cell line experiments mentioned above additional ELISA-based transcription

factor (TF) activation assays were also performed to measure the activity of STAT5A and

Glucocorticoid receptor (GR) which are the two transcription factors necessary for tran-

scription of β-casein mRNA. It was observed that even though STAT5A and GR activity

was highest in the nucleus 15 min to 30 min post ligand stimulation, a significant activity

of these transcription factors persisted even 24 h post stimulation. These findings were

consistent with previous ChIP-Seq studies (88; 89) which assayed for binding of various

TFs (including STAT5A and GR) to the β-casein gene promoter at different time points

following stimulation with prolactin (PRL). These studies showed that although several of

the TFs assemble on the promoter at early time points, the RNA polymerase does not

bind and commence transcription until 24 h post-stimulation. To incorporate this delay in
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Figure 11: Schematic diagram of the HER4-JAK2-STAT5 pathway modeled in this paper.
This is based on the canonical HER4-JAK-STAT pathway with two additional modules
proposed in this work. First one involves competitive heterodimerization of HER4 with
HER3 at the plasma membrane. The other module is the JAK-independent activation of
STAT5 by HER4. We introduced cytoplasmic and nuclear compartments and transport
reactions between the compartments as indicated. The heterodimerization reactions are
indicated with a side branch from HER4 and not shown explicitly. More details are available
in the Methods section.
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Figure 12: β-casein expressions for model with competitive heterodimerization and parallel JAK-
independent activation of STAT5. Panels A and B show the time integrated and instantaneous
levels of β-casein for this model. The time integrated plot contains three subpanels showing the
expression at three different time points (12, 24 and 48 hours). The black bars represent the control
condition with only Hydrocortisone (which is implicitly assumed to be always present in the model).
The error bars are obtained by generating an ensemble of models by sampling over parameter space.
The instantaneous plots are for 0-48 hour range at 5 different NRG stimulations. The black lines
show the statistical significance of a one-tailed t-test (greater than) between different groups with
significance level set to 0.05. * implies p < .05, each additional * indicates a p-value one order
of magnitude lower. This shows a statistically significant decrease in β-casein expressions with
increasing NRG in the 0-12 hour and 12-24 hour intervals but an increase in β-casein expression in
the 24-48 hour interval.
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the transcription and detection of β-casein mRNA, we introduced two significant transport

rates in our model – nuclear import of activated STAT5 dimer and nuclear export of β-

casein mRNA. The plots of instantaneous β-casein mRNA and activated STAT5 dimer at

the nucleus between 0 and 12 h time points for two different mRNA transport rates show

that with low rates of mRNA export we get a significant delay in the mRNA peak activity.

These results are consistent with previous experimental and modeling studies (74; 77) which

identified these transport rates as essential determinants of the signaling activity of this

pathway. Also, such delay in transcription did not affect the time-dependent switching

behavior (Fig. 13e and f) in the β-casein expression which occurs over a much longer time

scale. These results complement the findings from the Global Sensitivity Analysis (next

section).

6.3.5. Global sensitivity analysis

To systematically explore the effect of model parameters on various output quantities of

interest (such as β-casein expression, time-dependent switch in β-casein expression, β-casein

transcription time delay, etc.), we performed sensitivity analysis. The HER4-JAK-STAT

signaling network is a highly nonlinear system, and most of the parameters can vary over

a wide range in the corresponding biological system. Hence, a Global Sensitivity Analysis

(GSA) which considers the combined effect of the model parameters rather than one at a

time is a more appropriate method here (25). We use a particular type of global sensitivity

analysis called Sobol Sensitivity Analysis (26) method for this study (details in the Methods

section). The analysis procedure involves:

• Sampling over the space of model parameters to create an ensemble of models.

• Running the simulations for each member of the ensemble.

• Calculating the output quantity of interest from the results for each member of the

ensemble.
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Figure 13: Effect of the mRNA transport rates on the transcription time delay. Figure 5A and
5B shows the β-casein mRNA expression time profiles at low and baseline values of the rate of
mRNA export. Figures 5C and 5D shows the corresponding nuclear STAT5 levels. By decreasing
the transport rate 10 fold we are able to see almost 3 hours delay between STAT5 and β-casein
mRNA peaks, showing that these rates contribute to a large extent towards the observed time
delay in experiments. Figures 5E and 5F shows the integrated β-casein levels at the three time
points which shows that the temporal switch is preserved at low mRNA transport rates. The error
bars are obtained by generating an ensemble of models by sampling over parameter space. Again
the horizontal lines indicate a statistical significance of a one-tailed t-test (greater than) between
successive NRG stimulations. ∗p < 0.05
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• Determining the effect of the model parameter variation on the variation in the output

quantity using Sobol Sensitivity Analysis.

The input parameters here are the initial concentrations of all the species and the kinetic

rate constants of the reactions. Three main output quantities were calculated from the

results obtained by running the ensemble of models, and the Sobol sensitivity coefficients

were calculated for each of these three quantities. These are:

Integrated β-casein levels

β-casein mRNA levels integrated over the whole time interval (0 h to 48 h) is a direct output

of the model which we have used to present the results in the previous section. This quantity

is an automatic choice for the sensitivity analysis.

Time-dependent switch in the β-casein expression

We consider the relative contributions to the time-integrated β-casein levels of the JAK-

dependent and the JAK-independent parts of the pathway. Since we know from the above

results that the JAK-dependent pathway is operational in the earlier part (0 h to 12 h)

while the JAK-independent pathway in the later part (24 h to 48 h) we can calculate the

integrated mRNA levels separately for these time intervals and calculate their ratio. When

this ratio is near unity, it indicates equal contributions of both these pathways to the net

β-casein expression. On the other hand, a significant value of this ratio will indicate that

the main contribution comes from JAK-dependent pathway and the model does not show

a time-dependent switch. A similar interpretation can be made when the ratio is small.

Transcription time delay

We get the delay between the times when activated STAT5 dimer reaches the nucleus and

when β-casein mRNA transcription starts by getting the difference between the peak times

of nuclear STAT5 dimer and cytoplasmic β-casein mRNA. The previous results also showed
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that the dynamical behavior of the combined pathway is much dependent on the level of

ligand NRG stimulation. So, we decided to conduct the global sensitivity analysis at three

different NRG stimulation – low (10 nM), medium (20 nM) and high (50 nM).

6.3.6. Time-integrated β-casein levels

We performed the global sensitivity analysis concerning the total integrated β-casein mRNA

levels in the cytoplasm. The results are presented separately for the initial amounts of

species and the kinetic rate constants (Fig. 14a and b).

The plots show both the first order (S1) and the total effect sensitivities (ST ) of the top 10

most sensitive species and parameters of the model. Table ?? below (left column) shows

the names of the parameters and the reactions they belong to. From the results, we see the

β-casein mRNA expression is sensitive to initial numbers of Her4 and Her2 receptors. It

is also sensitive concerning the phosphatases SHP and PPX and JAK which are expected.

As for the reactions the sensitivity is high for the transcription parameter (including the

Hill coefficient), suggesting that the β-casein expression is sensitive to the mechanism of

the transcription reaction. We want to find if the same holds when we consider our main

output quantities of interests – time-dependent switch and transcription delay. Among

other reaction parameters, we see that the rates of JAK-independent activation of STAT

also features among the top sensitive parameters. The sensitivity plots also show that the

total effect sensitivity ST ≈ S1 here for all the sensitive parameters which suggests that

there is not much higher order effect of parameters on the absolute β-casein levels.

6.3.7. Time-dependent switch in β-casein expression

The next output parameter we considered is the ratio of β-casein mRNA expression during

the JAK-dependent pathway (0 h to 12 h) to that of JAK-independent pathway (12 h to

48 h). As explained previously, this quantity can be an indicator of whether and to what

extent there is a time-dependent switch in β-casein mRNA expression. This output quantity

was found (Fig. 14c and d) to be particularly sensitive to HER4 heterodimerization and
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Figure 14: First order (S1) and total effect (ST) Sobol Sensitivity Coefficients for the
most sensitive species and kinetic rate constants for different model outputs. See Methods
section for the definition of these sensitivity coefficients. A and B shows the sensitivities with
respect to the species and parameters for absolute β-casein levels as output. C and D shows
sensitivities with respect to ratio of contributions to β-casein transcription by the JAK-
dependent and JAK-independent parts of the pathway. E and F shows the sensitivities with
respect to the time delay between STAT5 import into nucleus and β-casein transcription.
A sensitivity coefficient ST >> S1 indicates significant higher order contributions to the
sensitivity.
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Table 1: Table summarizes the top 10 most sensitive system parameters for the global sensitivity
analysis concerning integrated β-casein (left), transcription time delay (middle) and time-dependent
switch (right). For each output parameter, some of the hypothesized mechanisms are highlighted.
For example, for transcription time delay the mRNA and STAT transport rates are in bold.

Casein Delay Ratio

Parameter Name Parameter Name Parameter Name

ntransc
Transcription Hill

Coefficient
kR45

mRNA Nuclear
Export Casein

kfR41
HER4

Heterodimerization

Vtrasnc
Transcription

Half-Maximum
kR25 Translation kR39

STATc
Phosphorylation

kR46
mRNA degradation

rate
kR20

Nuclear STAT dimer
dephosphorylation

kfR36 IFNR(s80) formation

kR20
Nuclear STAT dimer
dephosphorylation

kR46
mRNA degradation

rate
kfR01 HER4-JAK Binding

kfR41
HER4

Heterodimerization
kR24

mRNA Nuclear
Export

kfR42

HER4
Heterodimerization

Constitutive

kfR36
IFNR (HER4 s80)

Formation
kfR29

Binding of
STATc-SOCS complex

kfR43
HER4 Heterodimer

Ligand Binding

kR37
Nuclear STAT-dimer

PPN Binding
kfR19

Nuclear STAT dimer
PPN binding

kR25 Translation

homodimerization reactions (both ligand-dependent and constitutive) as well as the JAK-

independent HER4 activation. The results confirm our hypothesis that both these additions

to the literature JAK-dependent pathway are sufficient for producing a time-dependent

switch. Interestingly the transcription reaction parameters which influenced the absolute

time integrated mRNA levels to a high degree (from the previous section) did not appear

in the list of top parameters for the time-dependent switch. These insights highlight the

importance of selecting a proper output quantity of interest in Global Sensitivity Analysis

as the results can vary depending on the choice of the output parameter. Among the species

we see HER4, and HER2 numbers are again significant, along with JAK and cytoplasmic

JAK phosphatase SHP2. Here also we see that the total effect sensitivity ST ≈ S1 here

for all the sensitive parameters which suggests that there is not much higher order effect of

parameters on the time-dependent switch.
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6.3.8. Delay in STAT nuclear translocation and β-casein transcription

The next output parameter of interest is the time delay between STAT5 nuclear transloca-

tion and β-casein transcription and transport outside the nucleus. Here we make several

interesting observations (Fig. 14e and f ). The various transport rates in the model es-

pecially the rate of activated STAT5 dimer nuclear import and rate of β-casein mRNA

nuclear export were prominent in the list of sensitive parameters. The effect of these trans-

port rates on the pathway activity has been reported before in literature (74; 90) and is

expected from the model. The SOCS mediated negative feedback rate also features on the

sensitive parameters list. The negative feedback does not directly influence the β-casein

mRNA levels but has a more indirect effect. The result shows that in a nonlinear system

like HER4-JAK-STAT pathway parallel/side reactions can influence the dynamic behavior

and can be exploited as therapeutic targets. In contrast to the absolute β-casein sensitivity

we see here that ST >> S1 which suggests that there is a high degree of nonlinear effect of

the sensitive parameters to the overall sensitivity of transcription time delay.

6.4. Discussion

Epidermal growth factor family of receptors plays a crucial role in different cancers by

activating critical signaling pathways that control cell fate decisions. HER4, a member of

this family has received attention due to its several distinctive properties. Some isoforms of

this receptor can undergo enzyme-mediated cleavage reactions resulting in shedding of its

ectodomain and cytoplasmic domain leaving an 80 kDa transmembrane domain which can

translocate to the nucleus and promote transcription of various genes. On activation by

ligand NRG, it can activate the anti-proliferative JAK2-STAT5A pathway which results in

activation, dimerization and nuclear localization of the transcription factor STAT5A which

promotes transcription of genes mediating differentiation in particular breast cancer cell

lines. This study was motivated by experimental work conducted on mouse HC11 mammary

epithelial cell lines stimulated by various ligands including NRG using RT-PCR to measure

the expression of the important differentiation marker gene β-casein. One of the intriguing
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results from the study was that the response of these cells to the NRG stimulation (agonistic

versus antagonistic) is time-dependent. It was observed that whereas NRG suppressed the

transcription of β-casein at early time points (0 h to 12 h), at later time points (24 h to 48 h),

it promoted transcription. Using ELISA based TF activation assays of STAT5A and GR two

transcription factors required for transcription of β-casein, the same study also found that

the activity of these transcription factors persisted even 24 h after NRG stimulation. These

observations mirrored similar findings in the literature from ChIP-seq studies that showed

there is a significant time delay between the STAT5A entry to the nucleus and transcription

of the β-casein gene. To obtain a mechanistic understanding of these observations we turned

to mathematical modeling. Although the JAK-STAT pathway has been extensively modeled

before, the literature models failed to reproduce these experimental findings particularly the

time-dependent switch in β-casein gene transcription. The failure of the existing models led

us to develop a new model for the HER4-JAK2-STAT5 system that retains the core reactions

of the literature models but adds two essential components which have been reported before

in the literature but have not been included in the models. These are:

• Competitive binding and heterodimerization of HER4 receptor with other members

of the ErbB family like HER3.

• A HER4 mediated JAK-independent activation of STAT5 which proceeds at a lower

rate than the canonical JAK-dependent activation.

Including these reactions in our model, we were able to reproduce the experimental findings.

By systematically turning these reactions on and off we showed how the signaling dynamics

shifted to the pattern seen in the experiments at late time points. We performed extensive

parameter sweep studies to understand how different individual components of the model

influenced the signaling dynamics. We also conducted global sensitivity analysis to test the

robustness of model predictions and to obtain the most sensitive parameters of the model

for different output dynamical quantities. These studies show that the competitive HER4

heterodimerization reactions have a profound impact on the sensitivity of the pathway to
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NRG stimulation at earlier time points. This reaction is a necessary condition for the

observed suppression of transcription by NRG.

Along with this competitive heterodimerization, the addition of a slower JAK-independent

mechanism of activation of HER4 was sufficient to reproduce the time-dependent switch

in the transcription of the β-casein gene observed in the experiments. We also found that

the various transport rates in the model such as STAT5 dimer nuclear import and β-casein

mRNA export influences the time delays associated with transcription. The Global sen-

sitivity analysis results confirm these model findings by showing that the parameters of

the above reactions are most sensitive to the corresponding model output such as delay.

This study highlights the effect of competitive and parallel reaction pathways on both short

and long-term dynamics of receptor-mediated signaling. Such time-dependent alterations

in the signaling behavior of these pathways are highly consequential in cancer and are one

of the main ways tumor cells develop resistance to targeted inhibitors. Identification of such

time-dependent changes in signaling dynamics can also help in designing optimal treatment

strategies with different dose interval and durations (91; 9). By obtaining a deeper under-

standing of the dynamics of such pathways, we will be able to design more efficient drug

dosing regimens that can target and exploit the differential dynamics. However, because

of the uncertainties inherent in these mechanistic models, there may be alternative mecha-

nisms that might explain the observed data. In those cases, a data-driven clustering based

approach [25, 26] which has received attention recently can be used to perform system

identification and map dynamical behavior the observed data.

6.5. Appendix: A model for β-casein transcription

Our simple ODE model of HER4 mediated JAK/STAT signalling pathway successfully re-

produced many key experimental observations for HC11 mammary epithelial cells including

a temporal switching of β-casein gene expression.

However the model did not show the significant delay observed between the time activated
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STAT5 dimer translocated to the nucleus and the time when significant expression of β-

casein gene was observed. The ODE model uses a simple Hill type kinetics used in the

previous attempts at modeling the JAK-STAT pathway (75) Here the transcription rate is

a Hill function of STAT5 concentration with a Hill coefficient of unity. Recent ChIP stud-

ies have shown (89) that β-casein transcription mechanism is very elaborate and requires

the assembly of a complex transcriptional machinery and structural modification of DNA

like an open chromatin structure through histone acetylation and DNA looping. Here we

perform some simple calculations based on ideas from equilibrium statistical mechanics to

estimate the probability of such assembly process. This is by no means meant to serve

as an accurate model for such transcription processes, rather to show that such elaborate

assembly processes can account for the delays observed in experiments.

We use a simplified version of the β-casein transcription model presented in (89) to calculate

the probability of the events leading to transcription. As described in (89) the STAT5A

and GR mediated transcription of β-casein gene requires binding of three transcription

factors — phosphorylated dimer of STAT5A, GR and C/EBPβ. Two of these binding sites

(one each for STAT5A and GR) are located in β-casein promoter region and the other one

(STAT5A) in the enhancer region which is approximately 6 kb downstream of the promoter

site.
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Figure 15: A model to explain the sequential formation of complexes leading to the activa-

tion of β-casein gene expression following hormonal stimulation (89)

To build the simplest possible transcription model we only consider binding of STAT5A and

GR as the necessary event for transcription to begin. In order for these transcription factors

to bind to their respective binding sites, these sites must first be released by unwinding of

the DNA from the histone octamer core which has a free energy cost that we can calculate.

After the occupation of all three binding sites the transcription factors recruits p300 which

facilitates histone acetylation and modifies the chromatin organization. It eventually leads

to formation of STAT5A tetramer through looping of the intervening DNA segment and

the subsequent assembly of the transcription complex which then recruits RNA-Polymerase

II and this initiates transcription. Some key experimental findings from (89) which are of

relevance to the current model are:

• Both transcription factors are seen to accumulate rapidly near their respective DNA

binding sites, within 15 min of ligand stimulation

• For cells treated with both PRL and HC (which activates GR) the gene expression
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was appreciable within 3-4 hours and was very high by about 24 hours

• The assembled machinery recruits RNA pol II and it was observed that the accumu-

lation of pol II occurred in both promoter and enhancer region within about 4 hours

post stimulation. This suggests that DNA looping is rate limiting and this is what

delays the transcription start event from 15 mins to about 4 hours.

To estimate the transcription rate, we first calculate the probability of event(s) leading to

RNA-Polymerase II recruitment — binding of both transcription factors and looping of

intervening DNA. This event can be broken into several sub-events as below:

• Unwinding of DNA from the histone octamer core to release the three binding sites -

two at the promoter region and one at enhancer.

• Binding of the three vacant sites by the TFs STAT5A and GR from the adjacent

medium

• Recruitment of p300 and subsequent looping of the DNA to assemble the transcription

complex (Modeled as a single event)

We also assume that PRL is present in the medium at sufficient amount necessary to initiate

transcription even though it is not explicitly included in the model.

To be able to write down the probability of the transcription assembly process using equi-

librium statistical mechanics we first need to write down the partition function. Choosing

a grand canonical ensemble, we write the expression for the partition function which is a

sum over all possible microstates. For this model the various states are listed below with

corresponding mathematical expressions.
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Table 2: Table of various biophysical parameters in transcription model

Name Formula

Unbound eβN∆γa

1−e−β∆γa

STAT1 binding CSTAT
CSTAT0

eβ(εSTAT−∆γax)

GR binding CGR
CGR0

eβ(εGR−∆γay)

STAT2 binding CSTAT
CSTAT0

eβ(εSTAT−∆γax)

STAT1-GR binding CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR−∆γay)

STAT1-STAT2 binding
C2
STAT

C2
STAT0

eβ(2εSTAT−2∆γax)

GR-STAT2 binding CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR−∆γax−∆γay)

TF binding
C2
STATCGR

C2
STAT0CGR0

eβ(2εSTAT+εGR−2∆γax−∆γay)

TF binding and Looping
C2
STATCGR

C2
STAT0CGR0

eβ(2εSTAT+εGR−∆Floop−∆γax−∆γay)

Summing up the above terms the total partition function can be written as:

Z = Z(0) +
CSTAT
CSTAT0

eβεSTATZ(x) +
CGR
CGR0

eβεGRZ(y)

+
CSTAT
CSTAT0

eβεSTATZ(x) +
CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR)Z(y)

+
C2
STAT

C2
STAT0

e2βεSTATZ(x)2 +
CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR)Z(x)Z(y)

+
C2
STATCGR

C2
STAT0CGR0

eβ(2εSTAT+εGR)(1 + e−β∆Floop)Z(x)Z(y)

(6.1)

CSTAT and CGR are the nuclear concentration of STAT5A and GR. The other parameters

are described in Table 3.

In the above equation Z(x) is the partition function of DNA unwrapping where we have x

contacts broken. This is defined as below:
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Z(x) =
N∑
j=x

eβ(N−j)∆γa = eβ(N−x)∆γa 1− e−β(N−x+1)∆γa

1− e−β∆γa
(6.2)

Separating the x independent part we get

Z(x) =
eβN∆γa

1− e−β∆γa
(e−βx∆γa − e−β(N+1)∆γa) (6.3)

If N is large compared to x the second term within parentheses can be neglected compared

to the first term. We can also take out the x independent term which is common to all the

terms of the partition factor and hence will eventually get cancelled in the expression of

probability.

Z(x) ∝ e−βx∆γa (6.4)

The partition function thus can be simplified to:

Z ∝ 1 +
CSTAT
CSTAT0

eβ(εSTAT−∆γax) +
CGR
CGR0

eβ(εGR−∆γay) +
CSTAT
CSTAT0

eβ(εSTAT−∆γax)

+
CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR−∆γay) +
C2
STAT

C2
STAT0

eβ(2εSTAT−2∆γax)

+
CSTATCGR
CSTAT0CGR0

eβ(εSTAT+εGR−∆γax−∆γay)

+
C2
STATCGR

C2
STAT0CGR0

eβ(2εSTAT+εGR−2∆γax−∆γay)(1 + e−β∆Floop)

(6.5)

We want to evaluate the probability of the last event when all TF are bound and the

intervening DNA segment has formed a loop. This probability is given by:
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ptrans =

C2
STATCGR

C2
STAT0CGR0

eβ(2εSTAT+εGR+∆Floop−∆γaz)

Z
(6.6)

Estimation of free energy of looping of unwrapped DNA

The DNA looping free energy can also be estimated by assuming a simple circular loop

model (92). We assume that the DNA is completely unbound from all the intervening

histone octamers. The energy required the bend the DNA into a circular loop is given by:

∆Eloop =
2π2

Nbp
(
ξp
a

) (6.7)

In the above equation Nbp is the number of base pairs along the circumference of the loop

and ξp is the persistence length of DNA. Assuming a semi-stiff DNA take the persistence

length as approximately 50 nm (93) and the length per base pair a is approximately 0.34

nm. Using these values the energy of looping can be rewritten as:

∆Eloop =
3000

Nbp
(6.8)

The entropic contribution to the total free energy can be estimated by considering a simple

random walk model of the polymer where the probability of loop formation p0 ∝ N
3
2
bp. This

gives us the entropy as:

∆Sloop = −kB
3

2
ln(Nbp) (6.9)

The free energy ∆F as we know is a sum of the energy and entropic contribution:

∆F = ∆E − T∆S (6.10)
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For this system the number of base pairs Nbp between the promoter and enhancer region

is approximately 6 kb which is what we use to estimate the looping free energy. Using

Nbp = 6000 the free energy of looping is calculated to be about 13.55 kBT .

Estimation of free energy of looping of partially wrapped DNA

Now we consider the DNA architecture where in order to form a loop we only need a partial

unwinding of DNA, limited to the particular histone octamer at respective promoter and

enhancer site.

Again in the spirit of keeping things uncomplicated we consider a circular loop of DNA

with N histone octamer cores arranged in the form of a regular polygon and the intervening

linkers bent in the form of a circular arc (see 16). The free energy of looping for such a

structure can be calculated by considering the bending energy for each individual linker

which is in the form of a circular arc. The histone octamer is assumed to be rigid. Because

the length of a linker is typically small (on the order of about 50 bp) we can neglect the

entropic contribution to the free energy of bending.

Each linker is a circular arc which subtends an angle given by 2 ∗ Pi/Noct where Noct is

the number of intervening histone octamers (and also linkers). If Nbp is the total number

of base pairs between the the promoter and enhancer site and d is the diameter of each

histone octamer then the length of each linker segment is given by:

Llink =
Nbpa− πNoctd

Noct
(6.11)

The bending energy of a circular arc of radius R and angle 2π
N at the center with persistence

length ψp is given by

Ebend =
ξpπ

R

2π

Noct
(6.12)
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Figure 16: Cartoon model of DNA looping

The radius of curvature is given by

R =
Llink

2π
Noct

(6.13)

Substituting the expression for Llink and substituting R in the energy expression we get

Ebend =
ξpπ

Nbpa−πNoctd
Noct
2π
Noct

2π

Noct
(6.14)

This is simplified to:

Ebend =
ξpπ

Nbpa− πNoctd

4π2

Noct
(6.15)
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If we know the number of histone octamers between the promoter and the enhancer Nbp and

the diameter d of a typical octamer core then we can calculate the energy of bending using

the expression above. The values for length per base pair a and persistence length ξp can be

same as before. Using typical numbers of 147 bp per histone and 50 bp per linker (92) the

number of octamers can be estimated as below. The diameter of each octamer is roughly

7 nm. Using these estimates the bending energy can be calculated, we simultaneously

multiply the energy by the number of octamers which gets canceled out. This gives us

a binding free energy of about 5.44 kBT which is substantially less compared to the free

energy of looping of the unwrapped DNA.

Estimation of transcription rate and time

Using the value of probability of transcription factor binding ptrans we can calculate the rate

of transcription and the time necessary for transcription as below. In the HER4 network

model we assume a Hill-type dependence of transcription rate on the STAT5A concentration

as in (6.16)

rtrans = Vmax ∗
CSTAT

KD + CSTAT
(6.16)

In the above equation Vmax is the maximal rate of transcription and the remaining term

is the probability of STAT5A binding. Here CSTAT refers to the activated STAT5 dimer

concentration in the nucleus. Using our results from the transcription model we can replace

the STAT5 binding probability with the probability ptrans as calculated above. Hence the

new transcription rate is as below where ptrans is given by (6.6):

rtrans = Vmax ∗ ptrans (6.17)

The time necessary to transcribe detectable levels of mRNA (> 1.0 nM) is calculated

simply by dividing the concentration with the rate and converting it to hours.
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The values of the different parameters in the above equation are given in Table 3:

Table 3: Table of various biophysical parameters in transcription model

Symbol Description Value Units

β Temperature 1 kBT

εSTAT STAT binding energy 15 kBT

εGR GR binding energy 12 kBT

∆γ DNA unwinding parameter 1.2 kBT

x STAT binding site 1 distance from reference 3 kb

y GR binding site 1 distance from reference 5 kb

z STAT binding site 2 distance from reference 20 kb

a Length of base pair 0.3 nm

∆FLoop Looping Free Energy 1.6 kBT

Results:

To assess the model predictions we first conducted a scan over two different ranges of

concentrations of the transcription factors STAT5A and GR at the nucleus.

Scan over transcription factor concentrations - Part 1

To understand the effect of transcription factor concentration on the bound probability and

various other terms of the partition function, we performed an order of magnitude scan

over the concentration of the transcription factors. Although, many of these concentrations

are not physically relevant, they give us insight on the contribution of the various terms on

the partition function and the overall transcription rate and helps us in performing sanity

checks of our model.
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Figure 17: a: Transcription probability vs. STAT5A concentration with GR concentra-

tion as parameter; b: Transcription Rate and Time vs STAT5A Concentration with GR

concentration as parameter

As Fig 17 shows, physiologically relevant the calculated transcription rates are observed at

significantly high concentrations of transcription factors. This suggests our initial parameter

set must be off. So we want to investigate the region of the parameter set that gives us

physiologically relevant results.

To investigate the effect of the various terms in the partition function on the overall value

we also separately plotted them for different transcription factor concentration.

Scan over transcription factor concentrations - Part 2

Using the insight obtained from the order of magnitude parameter sweep, we now focus on

STAT5A and GR concentration ranges which are physiologically relevant - about 1-100 nM

of each. The results are as shown below:
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Bound probability vs STAT concentration (GR concentration as parameters)

To evaluate the functional dependence of the bound probability on the STAT5A concentra-

tion we plotted pbound as a function of STAT5A concentration (nM) for different values of

GR concentrations (nM). This is shown below (y axis is in logarithmic scale)
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Figure 18: a: Transcription probability vs. STAT5A concentration with GR concentra-

tion as parameter; b: Transcription Rate and Time vs STAT5A Concentration with GR

concentration as parameter

The plots above essentially offers us a magnified view of the behavior observed from the

larger concentration scan above. Here we are zooming in at a physiologically relevant range

of concentrations. The transcription probability follows a typical trend observed in the

binding behavior with a rapid initial rise followed by saturation. We also see that in this

range the GR concentration has an almost linear influence on the transcription probabil-

ity - an order of magnitude increase in the GR concentration increases the transcription

probability by the same amount.

The following plot shows the relative effect of various terms in the partition function
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Figure 19: Breakdown of various terms in the partition function to illustrate the contribution

of each in the overall partition function

The experimental results (89) on β-casein gene expression showed that the rate limiting

step in the transcription is the DNA looping event. The plots in Figure (19) confirms this

by showing that at this range of STAT5A and GR concentration the contribution of the

looping event is the lowest. An increase in the GR concentration (second figure on the

right) increases this somewhat which results in the elevated probabilities we saw earlier.

Scan over other parameters of the model

Next we performed a sweep over various key parameters of the model like the binding

energies of each transcription factor and the DNA looping energy. The results are shown

below:

Binding Energies εSTAT , εGR

We first varied the STAT5A binding energy while keeping the other parameters including

the GR binding energy as constant. Such variations in binding energy can occur due to

mutations and also between different STAT isoforms and various low affinity binding sites

have been shown (94) to have different binding affinities owards these isoforms.

In the physiologically relevent range of concentration for STAT5 it is observed that a higher

binding affinity increases the probability of transcriptional assembly and correspondingly

decreases the transcription time. However as we found earlier, the DNA looping step is rate

limiting. This is reflected in the probability curves approaching an upper limit as binding

energy is increased. The same trends are observed when we repeat the steps with GR

binding energy.
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Figure 20: a: Transcription probability vs. STAT5A concentration with STAT binding

energy as parameter; b: Transcription Rate and Time vs STAT5A Concentration with

STAT binding energy concentration as parameter
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Figure 21: a: Transcription probability vs. STAT5A concentration with GR binding energy

as parameter; b: Transcription Rate and Time vs STAT5A Concentration with GR binding

energy concentration as parameter

DNA Looping Energy ∆Floop

In a previous section we obtained a very rough estimate of the looping energy considering a

circular loop with known number of base pairs separating the promoter and enhancer site
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of the DNA. A better model has to take into account various looped configurations of the

DNA and also the entropic contribution to the total free energy which we neglected here.

We can get a preview of such differences through a parameter scan over the looping free

energy which is shown below.

The first thing we notice is that the bound probability and the transcription time is not

bounded like binding eneergy scans before in this concentration range. We expect this

because we know that the DNA looping is rate limiting so it is expected to have a very

pronounced effect on the probability of transcription and overall transcription time.
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Figure 22: a: Transcription probability vs. STAT5A concentration with DNA looping

energy as parameter; b: Transcription Rate and Time vs STAT5A Concentration with

DNA looping energy concentration as parameter
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Part III

Multi-Scale Models
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CHAPTER 7 : HYBRID MULTISCALE MODELING FRAMEWORK

7.1. Bridging the gap: Strategies for integrating multiscale models

When combining two or more models operating at different scales, one is often tempted to

simply put the models together by combining the code. However, there are several pitfalls

associated with this approach.

• Each individual model have their own uncertainties/errors in their variables. Simply

combining the models will result in errors from one model affecting the other in

unpredictable ways.

• When the processes in a model have different time scales, it results in a stiff system

of equations that is difficult to compute. Implicit methods are needed to guarantee

stable solutions, but they are often impractical for large systems. Hence one needs

to combine implicit and explicit methods which makes the computation significantly

more complex.

When the models to be combined are widely separated in time/length scales, it is possible

to simplify the calculations using some approximations. We can consider the process with a

shorter time/length scale to be fast from the perspective of the other process with a longer

time/length scale. So for the fast process we only need to consider the steady-state values

thereby eliminating the corresponding differential equation. In such cases where there is a

separation between the scales, it is also possible to use the results of the faster process as a

boundary or initial condition of the slower process (11).

The above ideas form the basis of most multiscale modeling techniques in the literature.

Two complementary approaches, Heterogeneous Multiscale Method (95) and Equation free

method (96) provide a rigorous formal description. The basic concept is that in complex

systems, macroscopic coherent behaviors emerge from the interaction of microscopic com-

ponents. So one can deduce the macroscopic rules from the microscopic ones by making
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appropriately initialized calls to the microscopic simulator for short times (97). Hence if

we can identify the interfaces between the models then these can be used to transfer data

between the models. The degree of coupling can be weak on one extreme where one pro-

cess is simulated over a long time frame and the results are used as inputs to the second

process, or tight where both models are solved simultaneously. There are also approaches

that are intermediate in that the models are run separately but the information transfer is

bidirectional meaning there is feedback from the longer time scale process to the shorter

one. We use this latter approach in our framework.

7.2. Description of the framework

7.2.1. Basic principles

Models of biological pathways exist in different forms and used in different contexts. A

modeling framework that aims to incorporate these existing models and possibly combining

them with new ones, should have few specific requirements that enable such integration.

It is to be noted that this integration applies not only to the core equations defining the

model but also their input and output information such as initial and boundary conditions.

These requirements are described below:

1. The framework should be able to incorporate two or more systems models that operate

at different scales and run them together, passing information in a way that is both

mathematically and biologically consistent.

2. The framework should allow incorporating input data from various sources such as

tumor sequencing data for cancer patients, treatment information (such as drug dosage

and schedule) and incorporate them into the component models.

3. The framework should have simple and clearly defined interfaces so that individual

models can be added, modified or deleted without affecting other models in the as-

sembly.
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4. One should be able to test the effect of parameter space (for e.g., through sensitiv-

ity analysis) and variabilities in external inputs (for e.g., variation in growth factor

concentration for a model of receptor-based signaling pathway).

5. The framework should allow extracting output data from individual models and model

combinations and also allow calculation of biologically and clinically relevant parame-

ters such as cell fates or production rate of a specific biomarker that is the end product

of the signaling pathway.

6. The framework should be able to use models in standard formats such as SBML (98),

JSON and allow the modeler to use different solvers for individual models.

7.2.2. Model setup and algorithm

There are two basic principles we use in our framework in order to integrate models operating

at different scales.

• When two processes are well-separated in their characteristic time scales, then from

the perspective of the slower process the faster process is at a steady state. This

observation allows us to couple dynamics of these processes by evolving the slower

process using steady-state information from the faster process.

• When two processes are modeled by different mathematical representations for e.g.,

continuous-time ordinary differential equations and discrete-time logical equations, a

meaningful coupling of the models can be achieved by identifying a set of species

which are common to both and modifying the governing equations and initial state of

one model by using information obtained by running the other model for a specified

amount of time.

In the Heterogeneous Multi-Scale Model formalism (95; 96), the model which has a greater

characteristic time scale than the other is called a macroscopic the other is called micro-

scopic. We use observation (1) from above to pass steady-state concentrations of interface
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species between the two models. Let us say we have two models A and B which have NA

and NB species respectively. The characteristic time scales of these models are τA and τB

and τB >> τA so model B is macroscopic and A is microscopic. Model A is governed by

the following system of ODEs and initial conditions as described in Section 3.1

dCAi
dt

= f(CAi1 , C
A
i2 , · · ·C

A
iki

; p̄), 1 ≤ i ≤ NA (7.1)

In Eq 7.1 the right hand side is a nonlinear function of species i1, i2, · · · iki which are the

k species that interact with species i including itself and p̄ is the set of parameters such

as rate constants. Each of these species satisfies an initial condition of the following form

(where Ci0 is the initial expression of species i)

CAi (t = 0) = CAi0, C
A
i0 ≥ 0 (7.2)

The set of initial conditions C̄0 and p̄ represent the information that is necessary for the

model to be solved and predict its states at future times t > 0.

The model B can be governed by a similar system of ODEs as above in which case it will

have a similar form as Eq 7.1. However, to illustrate our full integration strategy let us

consider that this is instead governed by a system of discrete equations as given below in

the form of piecewise-linear equations described in section 3.2

dCBi
dt

= bi(
¯̄
CB)− γiCBi , CBi ≥ 0, 1 ≤ i ≤ n (7.3)

In above the function bi is a piecewise linear function that is made up of weighted products

of step functions which have the following form
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s+(CBj , θij) =

 1, CBj > θBij

0, CBj < θBij

, s−(CBj , θij) = 1− s+(CBj , θij) (7.4)

The initial conditions for the models are as below

CBi (t = 0) = CBi0 , C
B
i0 ≥ 0 (7.5)

For a boolean model which is a special case of piecewise-linear differential equations, the gov-

erning equation 7.3 simply reduces to a rule based expression Ĉi(t+1) = b̂i(Ĉi1, Ĉi2, · · · Ĉik)

where the concentration Ĉ can only assume values 0 and 1.

With these two governing equations, the integration strategy is the following

• Find the set of species AB which are common to both models. Let there are NAB

such species.

• Run model A for its characteristic equilibration times τA and record the steady-state

concentrations of these NAB species Ci∞ where 0 < i ≤ NAB.

• If the model B is governed by PLDE then we use these concentrations directly to

initialize B. If it is boolean then we use the following strategy (for step n)

ĈBi0(n) =


0 if CAi∞(n) < θi,l

1 if CAi∞(n) > θi,u

ĈBi (n− 1) if θi,l < CAi∞(n) < θi,u

(7.6)

In the above θi,l and θi,u are the lower and upper thresholds for the species i which

are obtained from literature.

• Run model B by modifying above initial conditions for the NAB species and record

the steady state concentrations (or on/off status for Boolean model).
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• Use these steady-state concentrations to initialize the concentrations of model A de-

pending on whether the model retains the memory of the previous iteration or not

(more on this later). If we have a Boolean model then these discrete ON/OFF states

are converted to continuous using the inverse of transformation 7.6

CAi0(n) =


θi,l if ĈBi (n) = 0 and ĈBi (n− 1) 6= ĈBi (n)

θi,u if ĈBi (n) = 1 and ĈBi (n− 1) 6= ĈBi (n)

CAi∞(n− 1) if ĈBi (n− 1) = ĈBi (n)

(7.7)

• Both the models are run until the final results converge or till a maximum number of

steps are exceeded.

The above algorithm is illustrated in the flowchart 23.

7.2.3. Model Input and Output

The type of input and output is dependent on the type of model. To show the flexibility of

the framework we will again use the example of a microscopic ODE model and a macroscopic

boolean model as in the previous section. The ODE models we have used in this work have

been models of cell surface receptor-mediated signaling pathways such as EGFR mediated

Ras-MAPK or PI3K/AKT pathway. The input to these models is the initial expressions of

all the species in the pathway and the rate constants of the modeled interactions. These are

obtained from values published in the literature. The boolean model we have used is a model

of DNA damage repair and cell cycle driven by tumor suppressor p53. This model has two

different initial configurations depending on whether a drug (or radiation) is being dosed or

not which triggers a DNA damage response. The species thresholds, that determine their

on/off status as explained in the previous section, are obtained from the literature. The

model that is initialized with literature values is our control or base model. To make our

predictions patient-specific, we get the miRNA, mRNA and protein expression data. The

type and availability of this data are variable and can come from sources such as TCGA or
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Figure 2

Figure 23: Flowchart showing the algorithm of the hybrid simulator. The yellow boxes rep-
resent the macroscopic models and the blue boxes represent the microscopic models. Each
model has their own characteristic time scales ∆t1 and ∆t2 and here ∆t1 << ∆t2. Each
model can have a common set of input condition such as patient specific mRNA/protein
expressions. We can also incorporate other inputs such as growth factors and chemothera-
peutic drug induced DNA damage. The green box represents the message passing interface
that uses the common interface species to pass the information between these models. Each
model is evolved in this way until they settle to a common steady state
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directly from a clinician. These data are preprocessed separately and the top genes which

are over or under-expressed with respect to control (patients without disease) are obtained.

Through network analysis, the downstream targets of these species that are present in our

model are found and their initial expression is adjusted by a similar proportion as their

difference from control data. For a boolean model where only two states are possible, we

constrain the target nodes to an ON/OFF state (depending on whether the gene is over or

under-expressed with respect to control) for all members of the initial state space (explained

in the next section). Thus we get two instances of the model initialized with two different

gene and protein expression signatures which can be run to obtain the predictions for the

patient and compare it with control.

The model output is also dependent on the type of model. When we have one or more

pathways such as EGFR mediated Ras-MAPK pathway the output is typically the steady-

state expression of the species in the pathway such as ERK. For a boolean model of the

cell cycle, the output is steady-state status (on/off) of the proteins which can be both a

fixed point (a single value that does not change over subsequent steps) or limit cycle (a set

of states that repeat over time). For the p53 driven DNA damage and cell cycle pathway,

these steady states have been correlated with specific cellular fates like cell death (apoptosis)

or cell proliferation/growth (10). We calculate probabilities of three cell fates (cell death,

growth, and senescence) by running our hybrid model for different combinations of initial

states of the boolean model nodes which are not constrained by initial expression or drug

dosage. This combination of initial states obtained from the unconstrained nodes form the

initial state space of the model. The cell fate probability can be used to calculate clinically

relevant parameters such as cell kill rate of a specific drug or production rate of a particular

biomarker such as Prostate Specific Antigen (PSA). These will be shown in the next two

chapters.
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7.2.4. Effect of parameter space and environment

There are two important sources of variability in models of biological pathways like the

ones described in the previous section. The first source of variability is from the set of free

parameters (initial expression and kinetic rate constants for ODE models and threshold val-

ues for the Boolean model). As explained in Chapter 4 the characteristics of the parameter

space have profound consequences for the model output. Because of the hybrid nature of

the models, the traditional sensitivity and sloppiness/robustness analysis techniques men-

tioned in the previous sections do not apply. We use a simpler strategy to account for

these variabilities. First, we identify biologically relevant thresholds for these parameters

from the literature. Then using techniques such as Latin Hypercube Sampling or Quasi

Random sampling (Section 4.1.2) we create an ensemble of parameters (and hence model).

The model is run for each member of this ensemble and the ensemble output is presented

along with average and dispersion measures. To highlight the differences from the base set

of model parameters one can calculate a parameter called Normalized Deviation of cell fate

(for example cell growth) for the ith member of the ensemble as below.

P̄ r
i
(growth) =

Pri(growth)− Prbase(growth)

Prbase(growth)
(7.8)

The second source of variability comes from the external environment. For a model of a

receptor-mediated signaling pathway, some examples of variabilities in the external envi-

ronment would be variations in growth factors, drugs, etc in the extracellular medium. For

a cell cycle model, the cell cycle time could also vary which is related to the memory of the

cell. In the context of our model, memory means whether the model remembers its state at

the end of step n−1 when we start the simulation for step n. We consider both possibilities

of the model remembering or forgetting its previous state and include these values as part

of our predictions.
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CHAPTER 8 : HETEROGENEOUS, MULTISCALE MODEL FOR PROSTATE

ADENOCARCINOMA AND EFFECT OF PTEN DELETION ON

ANDROGEN DEPRIVATION THERAPY

Adapted from (99)

8.1. Introduction

In this work, we have created a heterogeneous and multiscale modeling framework that

allows one to combine two or more models of cellular pathways operating under different

time scales and time descriptions. We have shown the utility of this framework by applying

it to Prostate Cancer (PCa), currently the third most lethal form of cancer (100). There

are multiple molecular subtypes and the treatment outcome is highly patient and tumor-

specific (101). The disease progresses through multiple stages starting from benign prostatic

intraepithelial neoplasia which progresses to Localized prostate cancer depending on the

presence of specific mutations (102). Localized prostate cancer (PCa) is commonly treated

with radical prostatectomy (RP). About 20 % to 25 % of patients undergoing RP experiences

biochemical recurrence within 5 years as indicated by significant (≥ 0.2 ng/mL) levels of

Prostate Specific Antigen (PSA) in serum which is expected to be absent after primary

tumor resection. PCa is driven by androgen receptor (AR) signaling, which is dependent

on androgens like testosterone and dihydrotestosterone (DHT). Hence, one treatment option

for biochemically recurrent PCa is Androgen Deprivation Therapy (ADT). Various pre- and

post-treatment prognostic factors such as absolute baseline PSA, tumor stage and pathologic

findings such as Gleason Score allow physicians to risk stratify a particular patient and in

high-risk cases, ADT is administrated to prevent a recurrence, in the so-called adjuvant

setting (103). These therapies have a temporary benefit manifested by decreased tumor cell

proliferation and reduced PSA levels. However, due to aberrant AR signaling, genomic and

epigenetic instabilities, PCa cells are thought to become resistant and grow independent of

androgen. Multiple AR specific factors such as point mutations, overexpression, splicing,
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etc. and alterations in the AR signaling pathway have been identified as factors that can

lead to resistance. Another key mechanism of resistance to ADT is the cross-talk of AR

pathway with other proliferative pathways like PI3K/AKT which do not explicitly depend

on androgens (104). Loss of PTEN (phosphatase and tensin homolog) which negatively

regulates AKT has been shown to be sufficient to induce tumors in mouse models (105).

Tumors with PTEN protein loss has been found to be more likely to be upgraded at radical

prostatectomy with respect to the previous biopsy than those without it (106).

We have used our multiscale modeling framework to combine the AR signaling pathway

with Ras-MAPK, PI3K-AKT and tumor suppressor p53 mediated DNA damage repair and

cell cycle pathways. The model predicted cell fate outcomes were validated by converting

them into serum PSA values using an exponential tumor growth model and comparing

them with actual patient postoperative PSA levels during ADT. The model was used to

analyze the outcome of ADT for a population of PCa patients in TCGA who were clas-

sified based on the presence or absence of PTEN deletion mutation and their response to

ADT by incorporating the differences in gene/protein expression data between these groups.

Heterogeneities in tumor microenvironment and effect of perturbations in the model param-

eters were also considered. The model showed several intriguing and non-intuitive results

for these patient groups. In particular, it showed how heterogeneity can be an important

means that tumors can exploit to evade treatments like ADT. We believe such a multiscale

framework is invaluable both as a clinical tool and for designing/interpreting experiments

that can enhance our understanding of the progression of cancer, response to therapies and

development of resistance.

8.2. Materials and Methods

8.2.1. Population Description

Tumor sequencing and clinical information for prostate cancer patients were obtained from

The Cancer Genomic Atlas (TCGA) http://cancergenome.nih.gov/ and GDC Data Por-
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tal http://cancergenome.nih.gov/. They were classified based on molecular and clinical

parameters such as biochemical recurrence (occurrence and timing), adjuvant ADT therapy,

PTEN deletion status, pathological Gleason Score, positive margins, tumor status evaluated

by biopsy and imaging.

From the initial set of 501 patients, we first excluded patients who had adjuvant and neo-

adjuvant radiotherapy since the effect of radiation is not included in our model. A final

cohort of 250 patients was selected based on their Gleason Grade (> 7), presence/absence

of PTEN deletion mutation and their response to ADT. Patients who responded to ADT

(no recurrence) were put in the Control (CNT) group, the patients who showed biochemical

recurrence (BR) based on serum PSA measurements and the patients who showed tumor

recurrence (TR) based on biopsy were put in two other groups with the same name.

The selected cohort was further categorized first based on the presence of PTEN deletion

mutation. Figure 24 shows the classification scheme, including the size of the combined

groups) and response to ADT. Differential gene expression analysis was performed between

the latter subgroups (CNT, BR and TR) using the R2 genomics platform http://r2.amc.

nl to obtain a list of genes that are differentially expressed in the groups with recurrence

compared to control (no recurrence).

8.3. Molecular Model Description

8.3.1. Biological Pathways

Our modeling framework (as described in Chapter 7) can combine two or more biological

pathways relevant to a particular disease type taking into account the differences in their

time scales and time descriptions. For PCa, apart from the Androgen Receptor pathway,

many other pathways have been identified to play a role in disease progression and devel-

opment of resistance to ADT. In this work, we mainly focus on the cross-talks of the AR

pathway with Ras-MAPK, PI3K-AKT pathways and p53 driven DNA damage repair and

cell cycle pathway. These cross-talks have been identified as one of the key mechanisms of
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Figure 24: Flow chart of the cohort selection. From the initial 501 patient samples we first
removed patients who underwent adjuvant radiotherapy. This cohort of patient was further
classified into two groups based on whether or not PTEN deletion mutation was present.
Each of these groups were further classified as control or patients with no recurrence (CNT),
patients with biochemical recurrence (BR) based on PSA values and patients with tumor
recurrence (TR).
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development of resistance to ADT and progression to Androgen-independent Prostate Can-

cer. The protein PTEN, which is an important component of the PI3K/AKT pathway has

been found to be particularly important in these interactions between the three pathways.

We constructed a simple continuous-time ODE based model of the Androgen Receptor

pathway based on literature which has a characteristic time scale of about 6-8 hours. The

different components of the model, the reactions and the parameter values are described in

the Supplementary section of (99). Continuous-time ODE based model of Ras-MAPK and

PI3K/AKT pathways have already been published in the literature which has been adapted

in this work (7). This pathway has a characteristic time scale of about 4-6 hours. In order

to predict cell fates, we need a model for cell cycle driven by tumor suppressor proteins such

as p53. Unfortunately, detailed continuous-time ODE based models of these pathways are

not available due to lack of quantitative data and highly complex nature of these pathways.

A logic-based discrete modeling approach has been employed with some degree of success.

We have adapted such a discrete model of cell cycle driven by p53 from literature which

has been shown to generate three distinct outcomes corresponding to cell cycle progression

(proliferation), cell death (apoptosis) and cell senescence (growth arrest) (10). We have

chosen this pathway because both the AR signaling pathway and PI3K/AKT pathway have

been known to interact with p53 and its effectors to alter cell fate decisions particularly

during the progression of the disease into Androgen Independent form (104). The first step

to combine these models with different time scales and time descriptions (continuous vs.

discrete) is to identify interface proteins which are common to two or more pathways. These

interface proteins were identified by performing a literature search (107; 108; 109; 110). The

androgen receptor signaling pathway used in this work is shown in Figure 25

In our model, these three pathways interact through certain interfaces that are well-known

in the literature. Some of these interactions are shown in the Figure 26.

We used all these interactions to design model interfaces through which the individual

models communicated with each other based on the protocol we established in Chapter 7.
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Figure 25: The androgen receptor signaling pathway based on the description in (104). The
androgen receptors are activated by either testosterone or dihydrotestosterone. Activated
AR dimerizes and translocates to the nucleus to initiate transcription of many proliferative
genes including PSA.

97



AR

ErbB1/2 AKT

CDK2 p21

p53

Bax

PTEN

PIP3 p53

AKT MDM2

p53

MAPKWIP1

A

B C

Figure 26: The interactions between the key proteins in the pathways considered in the
model.
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8.3.2. Differential Gene Expression Analysis and Model Initialization

As described in the first section our selected TCGA cohort was classified into two main

groups depending on the presence or absence of PTEN deletion mutation. Each of these

groups (referred here by PTEN del and PTEN normal) were further classified into three

groups based on their response to ADT:

1. A control group (CNT) with no recurrence events.

2. A group with biochemical recurrence (BR) based on PSA levels in the serum.

3. A group with tumor recurrence (TR) measured with a biopsy.

The way we replicate this classification in our model population is as follows:

1. We run two instances of our model with high and low initial PTEN numbers.

2. For each of the above instances, we generate three different instances by performing a

differential gene expression analysis of the above groups in R2 genomics platform for

the TCGA dataset and find which mRNA and proteins are differentially expressed in

the BR and TR groups compared to CNT.

3. We modify the initial expression of the target of these mRNA and proteins in our

network and create the three model sub instances.

8.3.3. Effect of ADT and Tumor Microenvironment Heterogeneity

To simulate ADT we ran our model for different levels of androgen (Testosterone) stimu-

lations. The resting testosterone concentration in untreated subjects was reported in the

range of 1-20 nM in previous studies (111) and we have chosen the testosterone levels in the

same range for subjects under ADT. To consider variations due to heterogeneity in the tu-

mor microenvironment (in a crude fashion) we create four sub instances where we consider

two different levels of a growth factor (EGF) and two different memory conditions. Mem-
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Table 4: Table showing the main simulation conditions. There were two main classifi-
cation schemes, initial PTEN expression and Testosterone levels. We selected 5 different
testosterone levels from 1 nM to 20 nM and two different PTEN expressions.

Case Testosterone (nM) PTEN (#)

1 20 56000
2 15 56000
3 10 56000
4 5 56000
5 1 56000
6 20 5600
7 15 5600
8 10 5600
9 5 5600
10 1 5600

Condition Value

EGF 0.1 nM
EGF 100 nM

Memory Yes
Memory No

ory here indicates to what extent the model remembers its previous state. We consider two

extremes - with memory where the model remembers its previous state and without mem-

ory where the model does not remember its previous state. These memory conditions are

representative of cell cycle time variations. So for each class of patient (CNT, BR or TR),

we have two different PTEN expressions, five different testosterone levels and four different

heterogeneity conditions giving a total of 40 different instances of the base model. These

conditions and their corresponding labels are summarized in Table 4 (left). In addition, the

effect of intra-tumoral heterogeneity is factored by running each case in Table 4 for four

conditions summarized in Table 4 (right).

8.3.4. Calculation of Cell Fate and PSA

The main predictions of a specific instance of the model are probabilities of cell fates -

proliferation/growth, apoptosis/death, and senescence/arrest. These probabilities represent

the likelihood that a cell will commit itself to a specific fate based on the activities of the

constituent pathways. However, for clinical use, the parameters of interest are tumor growth

rates or PSA values. These probabilities can be converted very simply to growth rates using

an exponential or Gompertzian growth model.
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We use a simple population model of tumor growth. Since we are considering PSA values

in the early stages (12-14 months post-surgery), it is assumed that the tumor is in an initial

phase where it grows with an exponential law,

dS

dt
= rS(t) (8.1)

In 8.1 equation, S is the number of tumor cells after time t and r is the growth rate. The

growth rate r is typically testosterone dependent and has a linear relation with testosterone

concentration T

r = r0 + pT (8.2)

Since during ADT the testosterone levels are low we can assume that the second term is

much smaller than the first so that r ≈ r0.

The predicted net cell growth probability NCG is directly related to r0 as r0 = k.NCG

where k is some proportionality constant. Integrating the above differential equation with

respect to time and using the above approximations we get

S = S0e
kNCGt (8.3)

The PSA values are directly proportional to the number of tumor cells and so the final

expression relating PSA to NCG is as below

PSA(t) = ScoeffS0e
kNCGt (8.4)

The value of k can be obtained from literature estimates of r0 and Scoeff can also be
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obtained from the literature (112). We used the NCG values averaged over the different

tumor heterogeneity conditions and the average deviations to compute an upper and lower

bound of the PSA vs. time curves.

8.3.5. Effect of Parameter Variations

A common method of checking the sensitivity and robustness of non-linear systems models

in Global Sensitivity Analysis. These techniques are (25) helpful in understanding what

parameter or set of parameters influence the model outcome and how uncertainties in these

parameters manifest themselves as uncertainties in the model output. Common variance-

based global sensitivity analysis techniques determine a sensitivity coefficient for each model

parameter. This coefficient quantifies the contribution of the uncertainties/variations in

the corresponding parameter to the uncertainties/variation in the model outcome. For a

multiscale and heterogeneous model like ours, a single sensitivity coefficient is not very

meaningful as the model coarse grains the output of the microscopic ODE based models

when passing it to the macroscopic model. So we used a different and simpler strategy

to investigate the effect of parameter variations. We generated an ensemble of models by

sampling the parameter space. Since the model has many parameters we need efficient

means of sampling from a space of such high dimensions. One such method that is effective

for parameter spaces of large dimensions is Latin Hypercube Sampling (25). If we have N

parameters of the system and we want to draw M number of samples then first we divide

the range of each of N parameters into M equally spaced intervals. Then from a particular

parameter i we randomly select a value from each interval. Each of these values is paired

randomly with the M values of all other N−i samples. We run the model for each of the M

resultant samples to generate M NCG values. Then we calculate the normalized deviation

from the base values. For the ith sample, this can be defined as

NDi =
NCGi −NCGbase

NCGbase
(8.5)
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This enables us to compare the net cell growth for different samples under different condi-

tions of tumor heterogeneity. Further, the sign of ND tells us whether the sample shows

higher or lower proliferative potential compared to the base.

8.4. Results

8.4.1. Model Validation

The molecular model was validated using the EUREKA 1 (113) data collection which con-

tains a subset of prostatectomized patients considered high risk based on their Gleason

Scores (≥ 8) and positive surgical margins. Three patients were selected from this group

who underwent adjuvant ADT and for whom at least three post-operative serum PSA val-

ues were available. Of these three patients, two had an increase in their serum PSA levels

above the baseline value of 0.2 ng/mL over a time period of 14 months following prostate-

ctomy. For the third patient, the PSA levels stayed below baseline in this period and we

selected this patient as control. Then we used the molecular model, initialized it based on

the mRNA and protein expression profile for each of these patients and ran the model to

obtain predicted net cell growth probabilities. Using a simple exponential tumor growth

model (described in methods) we converted these net cell growth probabilities into PSA

values and compared them with the observed values. The PSA levels (ng/mL) vs. time in

months for the control patient and the patients with tumor recurrence are plotted in Figure

27 along with the molecular model predictions.

As explained in methods, the model-predicted net cell growth probabilities are averaged

over different conditions that mimic tumor heterogeneity. Hence, we included both the

upper and lower bounds of predicted PSA vs. time curves using the average deviations due

to tumor heterogeneity. The plots in Figure 27 demonstrate that the molecular model can

distinguish the different genetic signatures of control patients and patients with recurrence

and the corresponding predictions of net cell growth and PSA values qualitatively match

the changes in the observed PSA values.
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Figure 27: Validation of molecular model by comparing model predicted PSA time profiles
with the actual post-operative PSA values in control (no recurrence) and patient with
tumor recurrence from EUREKA 1 database. The PSA time profile was obtained using a
simple one parameter exponential tumor growth model (SI) which used to predict net cell
growth probabilities as input. To highlight the uncertainties in model output due to tumor
heterogeneity upper and lower bounds of these curves were also included.
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8.4.2. Predicting the Effect of ADT on TCGA Prostate Cancer Patients with and without

PTEN Deletion

The results in the previous section showed that the molecular model can distinguish two

sets of patients - control group with no tumor recurrence vs. those with recurrence based

on their gene and protein expression data. Our next objective was to apply this model to a

larger cohort of patients and systematically explore the effect of ADT on different subgroups

of this cohort. We used the TCGA database where we selected a dataset for 501 prostate

cancer patients. This population of the patient was classified based on different markers such

as presence or absence of PTEN deletion and their response to ADT (detailed in Methods).

Unlike the dataset used for model validation in the previous section, here we do not have

postoperative PSA values at different time points. We only have records of whether a patient

showed no recurrence, biochemical (through PSA values) recurrence or tumor (through

biopsies) recurrence. Hence instead of predicting PSA values here, we focus mainly on the

differences in predicted cell fate values between the control, biochemical and tumor recurred

groups for both PTEN deleted and PTEN normal patients for different levels of androgen

(testosterone) stimulations. Using differential gene expression analysis we obtained the

specific mRNA/proteins in the three pathways which are differentially expressed in the

groups of patients with biochemical and tumor recurrence with respect to the control group

with no recurrence. Based on the differential gene expression analysis, the initial expressions

of these target mRNA/proteins were adjusted in the models. We want to see how the

model predictions of net cell growth probability, which is an indicator of the proliferative

potential of the cell, changes between these groups for different PTEN expression and

different androgen stimulation (effect of ADT) and whether these are consistent with what

is known in the literature.

The box plots in Figure 28 show the model predicted cell kill, cell growth and net cell growth

probabilities (NCG) which is the difference between cell growth and cell death probability

for the control (non-relapsed) patients. The labels on the horizontal axis correspond to
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the simulation conditions shown in Table 4 (left) whereas each point in a particular box

represents conditions in Table 4 (right). Each plot has two sub-regions. Labels 1-5 show the

probabilities for PTEN normal patients whereas labels 6-10 show the probabilities for PTEN

deleted patients. The androgen stimulation decreases from 20 nM to 1 nM for each group

of PTEN normal (1-5) and PTEN deleted (6-10). For patients with no PTEN deletion,

the plots show that cell growth and net cell growth probabilities decrease as androgen

levels are decreased, suggesting that these patients will respond to ADT. However, for the

PTEN deleted group we see little dependence on androgen levels and the average net cell

growth probability is higher compared to the PTEN normal group which suggests that

these patients will respond poorly to ADT. For the Net Cell Growth (NCG) values we used

linear regression to calculate the coefficient of determination R2 for each group of patient

and plotted the trendlines (corresponding equations and values are given in the caption of

Figure 28). These trendlines and R2 values confirm the better response of PTEN normal

patients compared to PTEN deleted patients. To confirm the difference in the mean NCG

between PTEN normal and PTEN deleted patients we also calculated the p-values between

these groups. These are shown in Table 5 which shows that the PTEN normal patients have

a lower average NCG compared to PTEN deleted patients within a significance threshold of

0.05. This is consistent with the literature and also the fact that there is a higher percentage

of patients with recurrence (52 % to 23.9 %) for the PTEN deleted group compared to PTEN

normal group in the TCGA dataset. Apart from the differences in the average values of

net cell growth, we also observed differences in the spread (variance) of the net cell growth

for different tumor heterogeneity conditions (growth factor levels and memory conditions,

explained in the Method section) between the PTEN deleted and PTEN normal patients.

For PTEN normal group we see a higher spread compared to PTEN deleted group. This

difference in variability between the PTEN deleted and PTEN normal groups can have

important consequences so far as the effect of ADT is concerned. Higher variability implies

that a part of the tumor population will survive the treatment (as shown by higher net cell

growth) due to tumor microenvironment heterogeneity. This is also something that has been
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Table 5: Comparison between PTEN deleted and PTEN normal groups for different pa-
tients. Significant values are shown in bold ∗p < 0.05. The up and down arrows indicate
the type of test (greater or less). So a downward arrow for the CNT patient indicates mean
PTEN normal net cell growth is lower than mean PTEN deleted net cell growth.

Patients p-value (PTEN Norm vs. PTEN Del)

CNT 2.012e-04↓
BR 1.174e-04↓
TR 0.038↓

Table 6: Comparison of p-values between different groups of patients. Significant values
are highlighted. Significant values are shown in bold ∗p < 0.05. The up and down arrows
indicate the type of test (greater or less). So an upward arrow for the CNT patient and TR
patient (first row third column) for the table at the right (PTEN deleted group) indicates
the mean net cell growth of control patients is higher than the tumor recurred patients

PTEN Norm Control BR TR

Control 1 0.9165 0.7888
BR 0.9165 1 0.7243
TR 0.7888 0.7243 1

PTEN Del Control BR TR

Control 1 0.5904 0.0343↑
BR 0.5904 1 0.016↑
TR 0.0343↓ 0.016↓ 1

reported in the literature for different cancers including PCa. As we will see, the nature of

this variability differs between control patients and patients with tumor recurrence. This

variability due to tumor heterogeneity is also distinct from those induced by perturbations

in the mRNA/protein expression levels and reaction rates.

Next, we ran our model for the patients with biochemical recurrence and compared the net

cell growth probabilities with the control (no recurrence) group from the previous section.

The results are shown in Figure 29 where we plot the same three probabilities (cell death,

cell growth, and net cell growth) under the simulation conditions in Table 4. In Table 5 and

6 we give a summary of the comparison between the different patients and PTEN groups

in terms of p-values.

From these plots, we see that apart from minor differences in the variabilities of net cell

growth there are no significant differences in the changes of average net cell growth prob-

ability compared to the control group. This observation is confirmed from the p-values
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Figure 28: Calculations of cell kill, cell growth and net cell growth probabilities for control
(non-relapsed patients). The ten conditions (1 to 10) are the conditions summarized in
Table 4 (left). The four data points for each condition are the four states summarized
in Table 4 (right). The boxes 1–5 indicate the net cell growth probabilities without
PTEN deletion for decreasing testosterone stimulations 20 nM to 1 nM respectively. The
boxes 6–10 indicate net cell growth probabilities with PTEN deletion for decreasing
testosterone stimulations 20 nM to 1 nM respectively. The lower panel which shows the Net
Cell Growth probabilities also includes a trendline drawn between the means to indicate
their change with ADT (decreasing testosterone levels). For the PTEN normal patient the
trendline is NCG = 0.008838CT + −0.1419 where CT is the testosterone concentration.
The least square fit parameter is R2 = 0.628. For the PTEN deleted group the trendline is
NCG = 0.00766CT + 0.2016 and R2 = 0.556.
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Figure 29: Calculations of cell kill, cell growth and net cell growth probabilities for patients with
biochemical recurrence (PSA values). The ten conditions (1 to 10) are the conditions summarized
in Table 4 (left). The four data points for each condition are the four states summarized in Table
4 (right). The boxes 1–5 indicate the net cell growth probabilities without PTEN deletion for
decreasing testosterone stimulations 20 nM to 1 nM respectively. The boxes 6–10 indicate net
cell growth probabilities with PTEN deletion for decreasing testosterone stimulations 20 nM
to 1 nM respectively. The lower panel which shows the Net Cell Growth probabilities also includes
a trendline drawn between the means to indicate their change with ADT (decreasing testosterone
levels). For the PTEN normal patient the trendline is NCG = 0.01143CT + −0.1624 where CT is
the testosterone concentration. The least square fit parameter is R2 = 0.948. For the PTEN deleted
group the trendline is NCG = 0.006863CT + 0.236 and R2 = 0.563.
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calculated for the differences in the mean net cell growth between the control and BR pa-

tients as shown in Table 6. The p-values between Control and BR patients are greater

than the significance threshold for both PTEN normal and PTEN deleted groups. This

suggests that the differentially expressed genes between control patients and patients with

biochemical recurrence did not produce significant differences in the activities of the sig-

naling networks to produce a different cell fate outcome. Literature studies on different

PCa patients have suggested that isolated PSA values are not a good indicator of PCa

recurrence or effect of ADT. Our results which distinguished these groups based on their

gene/protein expression signatures, are consistent with these results and at the same time

provides a mechanistic basis based on the interactions of the AR pathway with Ras-MAPK

and PI3K-AKT pathway and the cell cycle pathway.

Finally, we ran the simulations for the third group of patients who showed tumor relapse as

measured through biopsies. The results are shown in Figure 30 where we plot the same three

probabilities (cell death, cell growth and net cell growth) under the simulation conditions

in Table 4.

The bar plots show that for this group of patients there are significant differences in the

predicted net cell growth probabilities compared with control, particularly among those

patients who have PTEN deletion mutation. For the PTEN deleted group we observe a

bimodal distribution of cell fate values where a population of patients show consistently low

net cell growth. This is again confirmed from the calculated p-values for the difference in

the mean net cell growth between Control and TR patients shown in Table 6 which shows

a statistically significant difference in the mean values based on a significance threshold of

0.05. This suggests that the patients in this category may respond to androgen deprivation

initially, but the tumor can recur at lower androgen concentrations due to the emergence

of heterogeneous populations of cell types in the tumor microenvironment.

Overall, the results from all three groups indicate that PTEN deletion generally leads to

elevated net cell proliferation and an escape from androgen dependence. We are aware that
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Figure 30: Calculations of cell kill, cell growth and net cell growth probabilities for patients with
tumor recurrence. The ten conditions (1 to 10) are the conditions summarized in Table 4 (left). The
four data points for each condition are the four states summarized in Table 4 (right). The boxes 1–5
indicate the net cell growth probabilities without PTEN deletion for decreasing testosterone
stimulations 20 nM to 1 nM respectively. The boxes 6–10 indicate net cell growth probabilities with
PTEN deletion for decreasing testosterone stimulations 20 nM to 1 nM respectively. The lower
panel which shows the Net Cell Growth probabilities also includes a trendline drawn between the
means to indicate their change with ADT (decreasing testosterone levels). For the PTEN normal
patient the trendline is NCG = 0.01104CT + −0.1817 where CT is the testosterone concentration.
The least square fit parameter is R2 = 0.574. For the PTEN deleted group the trendline is NCG =
0.01236CT +−0.0118 and R2 = 0.587.
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these results are still preliminary and would require more detailed experimental validation

through in-vitro and in-vivo studies to confirm these predictions. However we want to

highlight the strength of such an integrated multiscale modeling framework through this

example showing that not only it can detect changes in different gene/protein expression

profiles between different patients and predict different outcomes, but it also allows us to

capture the effect of tumor heterogeneity in a systematic way and give novel results which

are worth exploring in more detail.

8.4.3. Effect of Perturbations in the Model Parameters on its predictions

In the previous section, we saw that heterogeneities in the tumor environment resulted

in higher deviations from the mean values of the cell fate probabilities, in particular the

net cell growth probability, in patients without PTEN deletion compared to patients with

PTEN deletion. We now want to explore how perturbations in model parameters like

kinetic rate constants (for e.g. through mutations) can influence this deviation in the net

cell growth and whether these are distinct from those due to tumor heterogeneity. To this

end, we generated an ensemble of models by using Latin Hypercube Sampling to sample the

parameter values from biologically relevant ranges. Then we ran the simulations for each

member of the ensemble and calculated the normalized deviation (described in Methods)

of the NCG for each member of the ensemble with respect to the base. This normalized

deviation is plotted in Figure 31 for both control patients and patients with recurrence for

different PTEN initial expressions, EGF and testosterone levels.

Two important observations we can immediately make are:

1. The average deviation is higher at normal PTEN for both groups of patients.

2. The average deviation is higher for patients with tumor recurrence than the control

group.

Both these observations were made for the base set of parameters as well (Figures 28, 29 and
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PTEN Normal PTEN Deleted

Low EGF High EGF Low EGF High EGF

Low EGF High EGF Low EGF High EGF

Testosterone Depletion Testosterone Depletion Testosterone Depletion Testosterone Depletion

Testosterone Depletion Testosterone Depletion Testosterone Depletion Testosterone Depletion

Figure 31: The normalized deviation (ND) of net cell growth probability in control patients
and patients with tumor recurrence for different PTEN, androgen (testosterone) and growth
factor (EGF) levels. The line through zero deviation represents the base set of parameters.
ND > 0 indicates a higher NCG in the sample and ND < 0 indicates lower NCG in the
sample compared to base.
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30) This tells us that these variations are attributable to differences in expressions of PTEN

and other genes/proteins which differentiate the control group from patients with recurrence.

We also see some differences under high and low growth factors for both groups of patients

and a testosterone dependent increase in the deviations. These observations suggest that

one of the ways tumor cells can evade androgen deprivation is by controlling the variations

due to heterogeneities in the tumor microenvironment through random perturbations in

parameters such as kinetic rate constants which could be altered due to mutations from

genomic instabilities when a tumor cell is subjected to external stress. If there are higher

fluctuations in cell cycle activity at low androgen conditions that means a part of the tumor

population can evade therapy and persist which can eventually lead to recurrence.

8.5. Discussion

In this work, we have introduced a heterogeneous and multiscale modeling framework to

combine two or more systems models taking into account the differences in their time scales

and time descriptions. This framework allows us to combine a receptor-based cell signaling

pathway modeled by ordinary differential equations with a cell cycle pathway modeled by

boolean/piecewise-linear differential equations and predict the combined outcome as a cell

fate probability. This framework can couple multiple models together by defining interfaces

containing common proteins of the component networks and takes advantage of:

a) Large separation in the time scales which results in the model with a larger time scale

(macroscopic model) detect only changes in the steady-state concentrations of the model

with a shorter time scale (microscopic model).

b) Sigmoidal activity of the interface proteins which allows us to convert a continuous

concentration-time profile into discrete one and vice-versa.

A key advantage of such an integrated framework is that it can incorporate patient-specific

mRNA/protein expression data and tumor microenvironment heterogeneities and deter-

mine their effect on cell fate decisions. We demonstrated the utility of such a framework
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by applying it to prostate cancer patient data and predicting the effect of Androgen Depri-

vation Therapy (ADT). This model was built by combining Ras-MAPK and PI3K/AKT

pathway, Androgen Receptor signaling pathway with p53 driven cell cycle pathway. Our

model combination was able to successfully distinguish patients with cancer recurrence from

the control patients. We applied this to a population of prostate cancer patient data from

TCGA where we first classified the patients into groups based on the presence or absence of

PTEN deletion mutation and response to androgen deprivation therapy. The model showed

that PTEN deleted patients show poor response to ADT as reflected in higher average

net cell growth probability which is consistent with the literature. A novel prediction of

the model was about the variability induced due to tumor microenvironment heterogeneity

which was incorporated into the model by varying the growth factor levels and memory

conditions to mimic cell cycle time variations. The model could not distinguish between a

control group of patients and patients showing biochemical recurrence (BR) based on PSA

values. The fact that BR may not reflect the effective level of the disease leads to some

speculations. Namely, since BR is determined by measuring serum PSA levels, the devel-

opment of less PSA producing tumor clones would escape detection. As a matter of fact,

castration-resistant PCa (CRPC), which may develop also in consequence of testosterone

depletion, shows a complex PSA dynamics not adequately monitored by BR (114). As

already pointed out in (115) the timing of the BR, in addition to its occurrence, may be

useful to improve the prediction of PCa recurrence. The model also predicted a difference

in the variabilities in the NCG of patients who had tumor recurrence (measured through

biopsies) from the control group. In particular, it showed a bimodality in the NCG values

where a population of cells had a consistently high value compared to others. This difference

was traced to a difference in the dynamics of AKT which is an important component in all

three signaling pathways. Lastly, we also investigated how variations in model parameters

such as kinetic rate constants of the reactions affected the model outcome by generating an

ensemble of models and calculating Normalized Deviation of Net Cell Growth (NCG). This

showed similar changes in the variability suggesting a possible strategy that cancer cells
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may adopt by producing fluctuations in these rate constants through mutations induced by

genetic instability and thereby producing variabilities in outcomes where a part of the pop-

ulation will escape the effect of therapy and can lead to recurrence. Although these results

are preliminary and need more validation through experiments (both in-vivo and in-vitro),

they give us some interesting insights on how tumor microenvironment heterogeneity can

influence the response of different patients. This also addresses an important shortcoming

of the existing systems models where the differences in time scales, effect of tumor microen-

vironment heterogeneity and variations in the model parameters are not considered thereby

significantly limiting the scope of the model predictions. Our framework provides a pow-

erful way to a couple of different models and allows one to perform a more integrated and

patient-specific exploration of the effect of treatments and designing an optimum treatment

strategy.
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CHAPTER 9 : HETEROGENEOUS, MULTISCALE MODEL FOR

NEPHROBLASTOMA

9.1. Introduction

Nephroblastoma is currently the most common childhood renal cancer and the fifth most

common pediatric malignancy, representing approximately 6 % of all pediatric cancer (116).

Treatment protocols vary by geographical location but are usually a combination of surgery

and chemotherapy with radiation therapy also used for high-risk patients. This cancer is

also a success story for modern medicine as substantial progress has been made by refining

the risk stratification and using the existing chemotherapy schedule which has improved the

overall survival from 30 % to greater than 90 % for localized disease and 75 % for metastatic

disease (117; 118). There are two major groups that have studied the optimal management

of nephroblastoma which is Children’s Oncology Group (COG) and International Society

of Paediatric Oncology (SIOP). The main difference between the approach of treatment for

these groups is that COG recommends surgery before any adjuvant therapy whereas SIOP

favors preoperative chemotherapy for all cases except very young infants (119). In the SIOP

classification (which is relevant for this study) the tumors are classified and risk-stratified

based on a percentage of blastemal cells (in a population of blastemal, epithelial and stro-

mal cells) which are distinguished only histologically from the remaining cell population.

Survival of a high proportion of blastemal cells and/or presence of diffuse anaplasia are

considered high risk. The risk stratification and treatment are entirely based on imaging

and no biopsies are done. So there is an urgent need to identify molecular biomarkers

and the mechanisms that regulate the disease in high-risk variants and better optimize the

treatment to prevent toxicity for the low-risk group.

MicroRNAs have been identified as important molecular markers in many diseases (120).

MicroRNAs are small non-coding RNAs that negatively regulate gene expression at the

post-transcriptional level. They play a significant role in many biological processes and their

117



aberrant expression has been found to play a key role in cancers of the lung, breast and

gastric (121; 122). An increasing number of recent studies have identified miRNA playing

an important part in nephroblastoma. One recent study (123) found fourteen miRNAs that

were differentially expressed in nephroblastoma compared to control and two of them were

present independent of subtypes or amount of sample.

Apart from miRNAs, mutations other proteins such as tumor suppressor p53 have been

shown to have a significant correlation with diffuse anaplasia and survival suggesting its

role as a prognostic biomarker for poor outcome and unfavorable histology (124; 125). The

main tumor suppressor protein that has been linked to the etiology of nephroblastoma is

WT1 Wilm’s Tumor suppressor. It has been shown that the hormones IGF-1 regulate the

transcription of WT1 through the MAPK pathway and reduced level of WT1 facilitates

IGF-1 mediated cell cycle progression (126).

In the light of these findings, it has become clear that we need a detailed mechanistic

understanding of nephroblastoma, which signaling pathways are dysregulated and how they

impact cell cycle. Another important question is how the particular miRNA, mRNA and

protein expression profiles of a particular patient determine the outcome of chemotherapy

and radiotherapy. Addressing these questions will not only help us find optimized therapies

for the subset of high-risk patients but also would help us identify biomarkers that can

improve the risk stratification providing benefits to a large group of patients.

This is certainly an ideal scenario to use our hybrid multiscale modeling framework that

can not only incorporate patient-specific expression data but can simulate the effect of a

single or a combination of drugs on the patient. We have built a multiscale model for

nephroblastoma in this work and used it with patient miRNA expression data, prescribed

drug dosages and predicted the response.
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9.2. Description of Biological Pathways

As mentioned in the introduction some of the key pathways that are frequently altered in

the more aggressive forms of nephroblastoma are p53 driven pathway and MAPK pathway.

To illustrate the interaction between such pathways we chose two models for our hybrid

simulator. The first one is a continuous-time ODE model of receptor drive Ras-MAPK

pathway and PI3K/AKT and the other is a boolean model of p53 driven DNA damage

repair and cell cycle pathways. These models were adapted from the published model in

the literature (7; 10). Unlike the prostate hypermodel in the previous chapter, here we are

mainly focusing on the p53 driven cell cycle pathway. Our objective is mainly to understand

whether and how a receptor-mediated cell signaling pathway which typically operates at

much faster time scales, can influence the cell fate decisions of this pathway in the presence

and absence of drugs. The exact components of the faster pathway (the type of receptor,

MAPK etc) is not important as we mainly want to ascertain how the evolution of a slower

cell cycle model to a specific steady state (which is indicative of a particular cellular fate)

is changed due to events that happen at much faster scale. For e.g., we want to find how

events such as receptor activation, internalization/recycling and even steady-state activities

of proteins like ERK or AKT which have time scales between few minutes to 4 h to 6 h can

affect events like G1-S transition or apoptosis through activation of caspases which happen

at time scales of 24 h to 48 h. Since this slower pathway can only sense steady-state changes

in the faster pathway and so it smooths out a lot of transient behavior, we do not need the

faster pathway to be very specific or with tightly constrained parameters. With this in mind,

we integrate these two models in exactly the same manner described in the previous section.

The input to the model comes from the miRNA expression data for different patients and

drug dosage information. In the next sections, we describe how these are incorporated into

the model.

119



9.3. Using miRNA expression data

As was mentioned in 9.1, micro-RNAs are short non-coding RNAs that regulate gene ex-

pression post-transcriptionally by either inhibiting translation by binding to the 3’ UTR

of target genes or by promoting mRNA degradation. Tumor-derived miRNA circulating in

the serum or plasma has significant prognostic value because of multiple reasons (127)

1. miRNA expression is frequently dysregulated in cancer

2. Expression patterns of miRNA are tissue-specific

3. They are bound to protein species in the serum/plasma or are transported in exo-

somes/microvesicles which makes them very stable.

It has been shown recently (123) miRNAs are significantly overexpressed in nephroblastoma.

For this work, we obtained pre and post-operative serum and tissue miRNA levels from

patients of nephroblastoma. We were able to utilize this expression data by identifying the

specific targets of the top 20 miRNAs which were overexpressed relative to control using

miRTarBase (128). For those mRNAs which are present in our network, we decreased the

initial expression level by a set amount before each model run. For the ODE model, this

corresponded to a decrease in the initial concentrations of the target species while for the

Boolean these constrained the target nodes as explained in section 7.2.3.

Since each model was thus “personalized” using specific expression data of the patient, the

predictions were specific to those groups of patients who shared similar initial expression

profiles. The molecular hypermodel takes as an input, the miRNA profiles of a given patient

from the CHIC data repository and then uses a database mapping (miRTarBase) to map

the enriched miRNA in either tissue or serum of a patient to the corresponding mRNA.
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9.4. Effect of Treatment

9.4.1. Chemotherapy

In the SIOP protocol (129), the standard pre-operative treatment for localized tumor is

4 weeks of Vincristine + Actinomycin and for metastatic tumor 6 weeks of Vincristine +

Actinomycin + Doxorubicin. Additional dosages are prescribed post-surgery depending on

the risk stratification. For each of these drugs there exist literature published cell kill rates

that are uniformly applied for all patients. Our aim is to calculate an adjusted cell kill

rate that takes into consideration the probability of cell kill predicted by our hybrid model

initialized with patient-specific expression data.

To do this we assume that the effect of the drug on cell survival follows a Poisson distribution

so that the fraction of cells killed R is given by R = 1 − e−kt where k is the rate constant

and is proportional to the cell kill probability. Using subscripts lit and adj for literature

and adjusted cell kill rates we get

Radj = 1− e−kadjt

Rlit = 1− e−klitt (9.1)

Then the cell kill rates Radj and Rlit a related through the following equation:

kadj
klit

=
ln (1−Radj)
ln (1−Rlit)

(9.2)

The ratio kadj/klit is obtained from simulation for a patient and control where control

indicates no miRNA based initialization of the model.

For a combination of drugs, we assume additivity of rate constants (probabilities) instead

of additivities in cell kill rates which is commonly used in literature.

121



So if R1 and R2 are the cell kill rates for two different drugs additivity of rate constants

give us the following relation

ln (1−R1) + ln (1−R2) = −(k1 + k2)t = ln (1−R1+2) (9.3)

From this, we see that the survival fraction of the two-drug combination is the product of

the individual.

9.5. Results

For each patient selected we had the following data

• miRNA expression.

• Prescribed chemotherapeutic drug dosage and schedule.

• Tumor volume pre and post-therapy.

For each patient, we ran the hybrid model after initializing the model using patient miRNA

expression data using the procedure mentioned in the previous section. We do not use only

the base model for our calculations. We create an ensemble of models by choosing different

members of the initial state space of the Boolean model (p53 driven cell cycle model). If the

Boolean model has N nodes and of them M < N nodes are constrained (which means their

activities are set by the effect of drugs, miRNA or interaction with the other model) then

the initial state space is generated from the N −M nodes. For a boolean model with two

possible states for every node, there are 2N−M possible states which form the initial state

space. In general, this number is too large for our boolean model which has more than 25

nodes with about 10-15 unconstrained nodes. So we select a subset of this initial state space

by randomly sampling K initial states out of N −M . To take into consideration the effect

of tumor heterogeneity, we follow a similar approach as in prostate cancer in the previous

chapter. We select two different growth factor concentrations and memory conditions (with
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and without memory). This creates an ensemble of size 4 × 2K . Cell fate is reported at

every step of the model run and there are a total of Nstep. So the final cell fate probabilities

are calculated over 4×2k×Nstep different simulations. The result is presented as a box plot

showing the average and distribution of the points around mean. This allows us to make a

meaningful comparison between the groups.

We ran our simulation for a control patient and three different nephroblastoma patients

(with pseudo-anonymized ids as indicated in the figures) Based on the SIOP protocol of

treatment the simulations were run with drugs a) Vincristine + Actinomycin b) Doxorubicin

and c) All three together.

In Fig 32 and Fig 33 the model predicted cell growth (proliferation), cell death (apoptosis)

and net cell growth which is the difference between cell growth and cell death probability

is plotted for a control patient (no cancer) and three other nephroblastoma patient (with

pseudo-anonymized ids 4L3YB6, 5XIHQG and 6Z34IQ).

In Fig 32 looking at the mean cell fate probabilities (black lines) we see there is a clear

correlation with drug dosage. Both the control group and nephroblastoma patient 4L3YB6

has a similar proliferation rate in the absence of the drugs. However, they show a different

response to chemotherapeutic drugs and the nephroblastoma patient shows a more pro-

nounced response to the combination of Vincristine+Actinomycin and Doxorubicin than

either one alone. The mean cell fate probabilities are however incomplete to understand the

effect of these drugs. Tumor cells in-vivo are subjected to a wide variety of conditions due

to changes in the extracellular environment and factors like cell cycle time. We mentioned

how we incorporate this in a very simplistic fashion by considering two different growth

factor (EGF) concentration and cell memory conditions. Even in this limited set, we see

considerable differences in the variability of the cell fates both for a single patient under

different drug combinations and across different patients. To see the effect of the same

drug combination on other patients of nephroblastoma we ran the simulations for two other

patients (5XIHQG and 6Z34IQ). These patients again show a very different response to
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Figure 32: Model predicted cell fate probabilities: (A) Left panel shows the predicted cell
death, growth and net cell growth probabilities of control patient (with no cancer) and
B) Right panel shows the same parameters for a nephroblastoma patient (anonymized id
4L3YB6)
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Figure 33: Model predicted cell fate probabilities: Left panel shows the predicted cell death,
growth and net cell growth probabilities of patient with anonymized id 5XIHQG and the
right panel shows the same parameters for another patient with id 6Z34IQ

these drug combinations in terms of both the mean cell fate values and the variability in

cell fate values. Since as far as the model is concerned the only difference between these

four patients comes in the miRNA and gene expression data which was used to initialize

the model, these drug responses can be thought to capture the effect of these gene/miRNA

expression profiles on the cellular response. This is shown in Figure 33

Finally, we wanted to find out how our predicted cell fate probabilities compared with

the measured tumor volumes. For this, we plot the net cell growth parameters with the

tumor volume measurement pre and post-treatment. The cell fate predictions pre and post-

treatment were approximated by running the simulation for a patient with and without the

drug. It is to be noted that this will not always correspond to the actual treatment the
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Table 7: The patient ids, pre and post operative tumor volumes and the drugs they were
given

Patient ID Treatment Stage Tumor Vol (ml) Drugs Given

5XIHQG pre 78.55 Vincristine (1 mg/m2) and
post 7.32 Actinomycin (650 µg/kg)

6Z34IQ pre 754.75 Dox (34 mg m−2), Vincristine (1 mg/m2)
post 147.68 Actinomycin (650 µg/kg)

4L3YB6 pre 287.2 Dox (34 mg m−2), Vincristine (1 mg/m2)
post 37.48 Actinomycin (650 µg/kg)

patients received which is normally starting with Vincristine and Actinomycin and then

following up with Doxorubicin or combination at different dosage intervals (from days to

weeks). Handling such general cases is beyond the scope of this simple model. Instead,

we calculate the predicted reduction in net cell growth probability for different drugs and

compare them with the actual tumor volume measurements. So individually these may

not represent a real drug dosing schedule but together they can help us understand how a

particular patient will respond to individual or combination and can give us a starting point

to designing optimum combination therapies. The table below shows the tumor volumes

and the net cell growth for the patient pre and post-treatment

Using Table 7 we calculate the reduction in tumor volume for each patient and then plot it

against the corresponding decrease in net cell growth probability predicted for the patient.

This is shown in Figure 34.

The Figure 34 shows that we get a monotonic and almost quadratically increasing correlation

between the predicted change in net cell growth and a corresponding change in tumor

volume. This gives us some confidence in the model predictions particularly since it was

able to differentiate the patient which showed a maximum response to the drug.

We also predicted the net cell growth change for other drug combinations for each patient

and compared them with those in SIOP protocol. These are summarized in Table 8.

The table shows that for the patient 5XIHQG using Dox can significantly improve the reduce
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Figure 34: The figure shows the changes in predicted net cell growth for the three patient
vs their observed change in tumor volumes. These change quantities are calculated between
pre and post treatment values so a positive value indicates a reduction in these quantities
and hence a positive outcome of treatment

the net cell cell growth. It also shows that the combination of all three drugs produces only

a slight improvement over Dox alone.

It has to be mentioned that tumor volume data for only three patients is not sufficient for

making any specific conclusions. The purpose of this was to show how our mechanistic

model can incorporate the effect of the different drugs alone or in combination and compare

them with clinical data. As a future extension of this project, this model will be applied to

a larger population of patients to make more definitive predictions.

9.6. Discussion

The present work we describe an integrated cellular framework to model key cell-signaling

pathways operating at different time scales — a well-recognized challenge in the field. Here
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Table 8: The predicted changes in net cell growth for the three patients for different drug
combinations. A positive value indicates that there was a net reduction in net cell growth
after drug treatment.

Patient Vincristine Dox Dox, Vincristine
& Actinomycin & Actinomycin

5XIHQG 0.36 (±0.13) 1.17 (±0.19) 1.23 (±0.18)
4L3YB6 0.40 (±0.205) 0.83 (±0.245) 0.99 (±0.205)
6Z34IQ 0.34 (±0.125) 1.24 (±0.19) 1.35 (±0.17)

we model the ErbB receptor-mediated Ras-MAPK and PI3K/AKT pathway and integrate

it with p53 mediated DNA damage response pathway to obtain a cell kill rate under specific

drug dosing and patient-specific miRNA expression levels. The obtained cell kill rate was

directly used as an input to phenomenological tumor growth models. The aim of such an

integrated molecular model is to provide a mechanistic foundation to the more empirical

models used in the field to obtain cell kill and growth rates under particular dosage condi-

tions. The integration of the models was accomplished by identifying model interfaces and

passing information between runs of the two models. This framework has been tested for

the lung cancer and the nephroblastoma scenarios and the future work will be focused on

performing a detailed sensitivity analysis to simulate the inherent tumor heterogeneity and

also the effect of various mutations and subject the framework to clinical validation.
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Part IV

Conclusion and Future Work
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CHAPTER 10 : FUTURE WORK

Cell Mechanics and Exosomes in Systems Models

Hepatocellular carcinoma is one of the leading cause of cancer related deaths in the world.

Extracellular matrix stiffness has been strongly correlated to proliferative outcomes (130).

The extracellular matrix is increasingly recognized to be a key regulator of the hallmarks of

cancer (131). One of the main ways cells can sense changes in stiffness of the extracellular

matrix is through proteins like Integrins which serve as mechano-chemical signal converters

and thus couple mechanical and biochemical signaling networks.

Recent experimental results point to two distinct (and possibly complementary) mechanisms

of mechanotransduction in HCC. Signaling outcome of receptors like EGFR are strongly

dependent on the stability of the dimer (less stable dimers elicits a sustained response)

(132). ECM stiffness can influence this stability.

It has been also been observed that increased stiffness in HCC cells promotes secretion of

exosomes (133). Exosomes are 30-100 nm extracellular vesicles produced by intraluminal

budding of multivesicular bodies (MVB) and fusion of MVB and plasma membrane. They

have been implicated in promoting tumor growth by changing the microenvironment in dif-

ferent cancers (134). In Huh7 cells, increased stiffness have been found to increase exosome

secretion through AKT. This increased exosome secretion is hypothesized to change the

ligand composition of the ECM to affect cellular outcomes.

There may be multiple connections between the two proposed method.

a) Recent work (135) in Cornell in breast cancer cell lines show that Sirt1 a member of

Sirtuin family of NAD dependent deacetylases and deacylases, plays an important role in

lysosomal degradation of ubiquitinated EGFR. Decreased Sirt1 activity may inhibit EGFR

degradation leading to more recycling and increased time at the cell surface

b) Significant cross-talk between Integrin and EGFR signaling pathways have been identified
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in literature both downstream and more recently upstream through Src family kinases (136)

Based on the above literature evidence here are the main questions we want to answer:

• How does stiffness dependent activation and stabilization of cell surface receptors like

Integrins influence Akt activation?

• How does the positive feedback through Akt mediated exosome secretion and change

in ligand composition influence the AKT-Rabin8-Rab8 pathway?

• How does AKT-Rabin8-Rab8 mediated exosome secretion and resultant inhibition of

receptor degradation affected signaling through RTKs like EGFR?

• Can EGFR-Integrin interaction influence exosome secretion?

Integrin mediated mechanotransduction typically occurs in multiple steps. These are listed

below

a) Receptor activation: Mechanical forces first cause a change in Integrin conformation from

inactive to active. The forward and backward rate constants kf and kr are proportional

to the corresponding probabilities and the ratio of these probabilities are given by (ET is

energy of barrier and Ei is the energy of inactive configuration

kf
kr

= e
ET−Ei
kBT = e

− Eac
kBT (10.1)

Using a linear approximation of the elastic behavior of the substrate the activation energy

can be shown to be is force required to switch conformation and k is the effective stiffness

(137)

Eac =
f2
b

2k
(10.2)
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The effective stiffness k is related to substrate stiffness ks and the receptor stiffness kr as be-

low. These individual stiffnesses can be calculated from mechanical properties like Young’s

modulus and Poisson’s ratio and also obtained from molecular dynamics simulations.

1/kf = 1/kr + 1/ks (10.3)

b) Ligand Receptor Binding: The next step is binding of activated receptor with ligand on

the substrate. The off and rebinding rates can both be substrate dependent. For slip bonds

the dissociation rate increases with force according to the following relation

koff = k∗offe
−f/fβ (10.4)

Here fβ = kBT/xβ is the intrinsic force scale where xβ is the displacement to dissociate the

bond.

The overall model schematic is shown in Figure 35. Here the receptors (Integrins) are acti-

vated and bound to ligands in a stiffness dependent manner. On activation and clustering

with other receptors it can activate AKT through a downstream signaling pathway directly

or indirectly through EGFR (138). AKT then increases secretion of exosomes through

Rabin8-Rab8 pathway. We will consider both cases where:

1. Through release of exosomes the extracellular ligand concentration is altered.

2. Through increases receptor recycling and less degradation the net number of cell

surface receptors are increased.

The AKT activation and increased exosome secretion will be expressed as a function of

substrate stiffness.
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