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Dear Dr. Lazzara, Dr. Seider, and Professor Fabiano:

We are pleased to present our completed Senior Design report: The OptiFilt Approach to
Biopharmaceutical Filter Testing: Scale-up for Tangential Flow Filtration with Fouling. This
project solves a problem commonly seen by present-day biopharmaceutical companies. As
explained in our Abstract, it is crucial that companies effectively optimize operating conditions
for industrial filter cartridges.

However, currently in industry, there is a disconnect between instruments used for testing
and the industrial filters used in scaled-up bioprocesses. Generally, industrial filters have
tangential flow filtration, complex geometries, and membrane fouling. In contrast, available test
rigs generally assume normal flow filtration; simple, dead-end geometries; and minimal
membrane fouling. For these reasons, test rigs do not appropriately represent industrial filter
behavior.

Our project provides a more thorough approach to filter testing by using two models of
filter behavior: a simple, dead-end flow model in MATLAB and a more complex tangential flow
model in COMSOL. For a client-supplied test ultrafiltration (UF) filter, a modified test-rig
instrument will be used to collect real-time concentration data in the retentate and in the filtrate.
These data will be imported to our MATLAB model. Using this model, MATLAB will compute
the particular hindered convective and diffusive coefficients describing the test filters. These
parameters will then be supplied to the COMSOL model, which will predict filtration results in
an industrial filter. More accurate predictions will allow clients to optimize operating
conditions—such as applied transmembrane pressure or fluid flow rate—in order to cut filtration

time and increase throughput.



The OptiFilt service is unlike any analysis available to biotechnology companies today.
We are confident that the Company will attract clients by providing superior analyses and
helping clients increase throughput and profitability. Additionally, although this project focuses
on UF, the concept is applicable to viral, sterile, and depth filtration processes as well—all
potential targets for OptiFilt. Financial analyses confirm that even in worst-case scenarios, our
business model is relatively low-risk, and in all except a few worst-case scenarios, OptiFilt stock

issuances offer a very lucrative investment opportunity.

Sincerely,

Elizabeth Blake

Jennielle Jobson

Nikhil Shankar
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Abstract

Ultrafiltration (UF) membranes are required in the biopharmaceutical industry to
concentrate or purify the final biologic product, thereby ensuring patient safety and fulfilling
regulatory requirements. It is crucial that biotechnology clients select the optimal operating
parameters for each filtration step. Unsuccessful filtrations might fail to purify a near-finished
drug product, thereby wasting product and incurring financial loss. In less extreme cases, failure
to optimize filtration steps will lead to slowed filtration steps, potentially causing bottlenecks and
reduced throughput. Overall, efficient, effective filtration is crucial to the financial success of
biopharmaceutical companies.

Generally, these companies pre-test filtration processes using commercially available
filter test rigs. Although commonly used, these filters are geometrically and mechanically
simplistic and therefore provide an incomplete picture of filter behavior. Results from these
simple filters do not appropriately represent the behavior of complex industrial filters. As a
consequence, filtration tests are inherently flawed and industrial processes are not optimized.

OptiFilt will solve this problem by providing more accurate filtration analysis services to
biotechnology client companies. Using proprietary computational models and experimental
analysis, OptiFilt will determine unknown hindered convective and diffusive coefficients of
client-supplied test UF material. OptiFilt scientists will determine the unknown properties by
fitting the parameters to a MATLAB model for dead-end flow with fouling. The results from this
MATLAB model will be supplied to a tangential flow filtration COMSOL model which more
appropriately describes industrial filter behavior. Overall, this process will provide more accurate
predictions of filter behavior, thereby allowing our clients to more effectively optimize their
filter operating parameters.

We project that OptiFilt filtration analysis services will help our clients reduce filtration
time and increase throughput by 50%. As a result, clients will enjoy increased profitability.
OptiFilt, then, will provide biotechnology clients with a crucial advantage in these competitive
times.

OptiFilt will function as a start-up company, beginning its R&D stage in 2012 and
seeking investments in 2012 and 2013. Financial analyses have confirmed that this is a profitable
and relatively secure venture, even in the case of events which could adversely affect the

business.



Chapter 1:
Introduction




. Filtration and Bioprocesses

Membranes and filters play a key role in the production of small-molecule drugs and
biologics.! The U.S. Food and Drug Administration (FDA), along with its international
counterparts, strictly regulates what quantities and types of impurities are permissible in final
drugs and biologic products (the Code of Federal Regulations governing drug impurities are
included in the Appendix). The filtration process itself is also tightly controlled. All
manufacturing processes must be pre-approved to maximize quality and minimize risks and
hazards; any deviations from pre-approved processes, including the re-filtering of impure or
poorly separated materials is dangerous and often illegal. As such, the ability to predict filtration
conditions is an important step in any biopharmaceutical process. Given the context of this
project, this section will focus on the production of biologic drugs rather than small organic
molecules.

A representative process flow diagram for biologics manufacturing is shown in Figure 1-
1. Filtration is used at several points in downstream biopharmaceutical manufacturing” to remove
impurities from the final protein product. The type of filter used depends not only on the product,
but also on the impurity of interest. As Figurel-1shows, soon after drugs are produced (via
fermentation or other biochemical steps), they undergo centrifugation to remove the largest
process impurities. Centrifugation is followed by the first filtration step, depth filtration
(sometimes called pre-filtration). Depth filtration consists of several filters in series in which
most biomass and cellular debris is removed. Removing these larger particles prior to finer

filtration steps prevents unnecessary damage to finer filters further in the downstream process.

! Biologic drugs are those with large, generally protein, active ingredients which are derived from biochemical or
biological processes. In contrast, small molecule drugs are derived purely from chemical processes.

? In pharmaceutics, a ‘downstream’ process refers to that portion of the larger manufacturing process which occurs
after the drug (or biologic) is produced (the ‘upstream’ process) biochemically. ‘Downstream’ goals include
separation, purification, and packaging of the final drug product.
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Figure 1 - 1 Representative biologic production process [1-1].

Following depth filtration, undesired proteins are removed from the stream via
chromatography. The product stream is sent through a polish filter to remove any bacteria
introduced to the process during chromatography. A second series of depth filters follows polish
filtration. In this case, the depth filters’ pore size is small enough to restrict the flow of the
protein product through the membrane; the goal in this step is to remove impurities which are
smaller than the drug product (media components from fermentation, acetic acid, buffers, etc.).
The next steps in this representative process include virus inactivation and ion chromatography.
The latter, like filtration, helps to remove impurities from the process stream.

Chromatography is followed by sterile filtration. As the name implies, sterile filtration

ensures the sterility of the final protein product by removing any remaining bacteria. This
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representative protein product stream undergoes multiple rounds of sterile filtration, which can
be separated by holding periods depending on the product, its impurities, and the scheduling
requirements. Viral filtration is subsequently performed to remove any remaining viruses from
the product stream. Again, multiple rounds of viral filtrations often take place.

Ultrafiltration (UF) is used throughout the process to concentrate the product stream and
further isolate the protein product. For example, this representative process employs UF between
sterile and viral filtration steps to increase the efficiency of steps further downstream. This type
of filtration is also used in the final purification and isolation steps; the goal in these final steps is
to achieve as pure and concentrated a protein product as possible.

In UF steps, an applied pressure forces the product stream against a semipermeable
membrane, thereby removing water and small molecules and concentrating the larger protein

molecules. This type of filtration is the focus of this project.

1. Types of Filters and Filtration

Even a single chemical process, such as the representative bioprocess shown in Figure 1-
2, contains variety of filters and filtration types. When describing a filtration process, a key
defining characteristic is the type of flow involved. The simplest flow set up is normal or dead-
end flow, in which fluid flows perpendicular to the membrane surface. Because all fluid is
flowing normal to the membrane, dead-end flow is the most likely to cause a buildup of solute
caking on the membrane surface.

In contrast, in cross-flow filtration, fluid flows parallel to the membrane surface. In this
case, parallel-flowing fluid is able to wash away a portion of the solute cake as it builds; in this

way, cross-flow filtration results in significantly less solute caking than does dead-end flow. The



caking of solute or impurities on the membrane surface almost always leads to reduced
throughput through the membrane, in addition to premature filter wear. Therefore, cross-flow
filtration is often favorable in industry because is lessens the effects of caking on the filtration
process.

This project primarily concerns UF membranes, although the basic framework is
applicable to a wide range of viral, sterile, and depth filters as well. Generally, for UF
membranes, target solutes range in diameter from 0.001 to 0.1 pm, or have molecular weight cut-
offs® (MWCO) on the order of 1,000 to 10,000 Da. In an UF process such as the ones studied in
this project, the membrane pores are small enough so that the target protein product cannot pass
through the membrane. As solvent and smaller impurities pass into the filtrate, the target protein
is concentrated on the retentate side of the membrane.

In industrial-scale bioprocesses, UF steps usually take place after sterile, viral, and
microfiltration steps take place. The earlier steps in the process help remove large impurities
which would lead to premature fouling if introduced to an UF process. As explained previously,
sterile and viral filters remove bacteria and viruses, respectively, from the product process
stream. As opposed to UF processes, in which the product to be purified remains on the retentate
side of the membrane, sterile and viral filters contain pores which are large enough to allow the
target product to pass through the membrane. Instead, large impurities (bacteria and biomass for
sterile filters, or viruses for viral filters) are held on the retentate side.

Microfiltration functions similarly. In microfiltration processes, pores are large enough to
allow the target product to pass through the membrane. However, these pores are small enough
to prevent the passage of larger particles such as fat globules, cell debris, and colloids. Here, the

size cutoff ranges from 0.04 to 10 pum, significantly larger than that for UF. Again, a

* The MWCO of a filter is the largest possible molecular weight which can pass through that filter.
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microfiltration step is generally included prior to UF steps in order to prevent premature fouling

and wear of UF membranes.

lll.  Relevant Industrial Applications

In the biopharmaceutical industry, UF devices come in a variety of geometries and
materials. Generally, for the aforementioned reasons, these devices employ a cross-flow
configuration rather than normal flow, and their geometries are designed such that the filter
maximizes filter surface area, and therefore process throughput, without requiring an
unreasonably large total filter volume. In other words, industrial filters’ geometries pack a large
membrane surface area into a relatively small total volume. As a consequence, geometries are
complex and difficult to model with normal-flow assumptions. Typical UF devices used in the
biopharmaceutical industry are illustrated in Figure 8-2.
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Figure 1 - 2 Typical UF devices used in the biopharmaceutical industry [1-2].

IV.  Key Parameters and Equations

Figure 1-3 shows a typical normal-flow UF process in cross-section. Although this image

shows fluid flowing from left to right, of course, vertical and other orientations are common as



well. Here, an applied transmembrane pressure APty forces solvent, which contains the orange
solute molecules shown, through the membrane of thickness o. In this case, the molecular weight
cutoff (MWCO) of the membrane is large enough to allow the passage of solute molecules into

the filtrate side of the membrane.

AP/& 5

i

RETENTATE FILTRATE

Figure 1 - 3 Pseudo-steady state concentration profile for a normal-flow UF process.

As solute particles flow to the filtrate side, the solute concentration in the filtrate (Cy),
begins to build. The solute concentration in the retentate changes as is dictated by a) the mass
transfer out of the retentate side, and b) the loss of solvent volume on the retentate side, V,. Note
that we have two possible solute concentration values on this side of the membrane. As flow runs
against the membrane surface, a portion of solute particles flow through the membrane, while
others are retained at the membrane surface. These retained solute particles lead to a buildup of
solute close to the membrane. As a result, the concentration on the retentate side of the

membrane is higher closer to the membrane surface. Although there is an experimentally



measurable or apparent C, there is a higher concentration at the upstream surface of the
memrane, the upstream or intrinsic C,,, This phenomenon is referred to as concentration
polarization.

The dimensionless sieving coefficients describe membrane behavior by comparing the
concentrations on either side of the membrane. Because retentate-side concentration has two
possible values, there are two possible values for the sieving coefficient. First, the measurable or
apparent sieving coefficient is an experimentally-determinable value which compares Cr to C;.

The apparent sieving coefficient is given
Y, _
o' =g (1-1)

In contrast, the intrinsic sieving coefficient compares C¢ to C.,, and therefore cannot be

determined directly from experimental data. The sieving coefficient is given

— & , (1_2)

Cru

0

Because 6 cannot be determined experimentally, we must compute it from

experimentally-determined 6’ values. To relate these two variables, we use the equation

—_ 6’ -
o= (1-6")(e"r/*¢) o’ (1-3)

where veand k. are the fluid velocity through the membrane and the mass transfer
coefficient of the system, respectively. The mass transfer coefficient is computed as
k. = 2.33u%/D/3,(1-4)
where p and D are the viscosity of the solvent and the diffusivity of the solute,
respectively. In contrast, in our models, v¢ changes with time and is described by

vy = L,(AP — 0An), (1-5)



where L, is the hydraulic permeability constant; o is the osmotic reflective coefficient,
and Am is the osmotic pressure across the membrane. The hydraulic permeability constant is
essentially a measure of how able solvent is to pass through the membrane. In our simplest
models, we have assumed that L is constant; however, as the membrane cakes, this actually
decrease for the composite membrane.

The osmotic pressure drop changes with time with or without membrane caking. As C¢
builds relative to C;, the osmotic pressure builds in the direction opposite that of the applied
pressure (toward the retentate), in an ‘attempt’ to reestablish equal concentrations of solute on
either side of the membrane. Experimental data have shown numerous relations between Am, Cy,
and C, these relations are specific to the solute and solvents used. In our models, we have

assumed
(1
At = 23.487 exp (0.0116Cr6 (3- 1)) . (1-6)

to accurately determine osmotic pressure.
OptiFilt relies on a few other relationships to describe the behavior of UF membranes.

First, an overall material balance restricts C¢ C;, and V, such that

dCr 1 14 dVI‘
i = () (0'Cveac — ¢ ) a7
By the same idea, the total rate of volume change in the retentate is determined by the

fluid velocity through the membrane, such that

dvy
E = —ACVf , (1—8)
Finally, the structure of the Company’s filtration analysis service requires that we
determine 0 and 8’ mathematically as well as experimentally. To this end, we compute 6 from

known physical properties of the membrane, using the relation
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_ DK,
0= 1-(1-®Kc)exp (-Pe) (1-9)

where @ is the partition coefficient across the membrane, K. is the convective coefficient

of the membrane, and Pe is a dimensionless number described by

_ (CI)KC)VfS

Pe = & (1-10)

where Ky is the diffusive coefficient of the membrane studied.

IV.  Membrane Fouling

Previously described models assume no membrane caking or fouling; that is, they assume
that any buildup of solute particles on the membrane surface have a negligible impact on fluid
velocity and hydraulic permeability. In reality, this is never the case. As filtration proceeds,
solute builds up either on the membrane surface or within the membrane pores. These
phenomena effectively reduce the pore size of the membrane, thereby slowing fluid flow and the
filtration process.

A variety of models describe the membrane fouling. As is discussed in further detail in
Chapter 5, the cake-adsorption model was selected in this project because it most appropriately
describes fouling in biopharmaceutical filters. Mathematically, this model uses experimental data
to fit a relation between the hydraulic permeability and time. The changing hydraulic
permeability slows fluid flow and, when introduced to the existing models, provides a more
accurate picture of membrane behavior in real systems. The equations and parameters used for

this model are detailed in Chapter 4.
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Chapter 2:
The OptiFilt Approach




. Market Analysis

Therapeutic monoclonal antibodies command a market of more than $30 billion annually. Much
research has been invested in the development of therapeutic monoclonal antibodies for the treatment of
various cancers, autoimmune diseases, inflammatory conditions, and infectious diseases that are
characterized by elevated expression of a target protein at a cell surface. The proven safety of and efficacy
of mAbs as a drug class has driven faster developmental and regulatory timelines and the search for more
efficient pipeline of the drugs from their discovery to the market [3-1]. Within the past twenty years, the
United States Food and Drug Administration has approved numerous monoclonal antibodies for
therapeutic use (as shown in Figure 3-1) and hundreds are currently undergoing clinical trials [3-2]. Thus,
on an industrial scale, there is a large market for the efficient production of therapeutic mAbs that can
meet the level of purity required by FDA regulations. The high demand for mAbs has focused attention
on the need for advanced purification techniques and systems to increase the speed, robustness, and
scalabilty of the downstream processes required for mAb manufacturing. The driving force behind mAb
process technology development is improved productivity — achieved by enhancing the ease of operation,
reproducibility, quality control, and process validation.

Therapeutic mAbs are also among the most expensive drugs to produce. Due to a large potential
market consisting of over 500,000 patients, expensive large-scale production capacity is required in order
to produce 10-100 kg/year of each mAb. The high cost of manufacture is further reflected in the cost of
treatment; the annual cost per patient can reach $35,000 for antibodies treating cancer conditions due to
their use for chronic conditions and their relatively low potency resulting in the need for high doses
(grams per patient per year rather than milligrams) [3-3]. The large financial burden associated with the
manufacture of mAbs negatively affects the ability of pharmaceutical companies to manufacture mAbs at

the necessary scale to meet the demand. This problem came to
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Antibody Trade Name Company Target Type Year Approved Therape utic Indication
Muromonab — CD3 | Orthoclone OKT3| Centocor (Johnson & Johnson) CD3 Murine 1989 Transplant Rejection
Abciximab ReoPro Centocor (Johnson & Johnson) | GPIIb/IIIa | Chimeric 1994 High Risk Angioplasty
Non-Hodgkin’s Lymphoma
Rituximab Rituxan Genentech CD20 Chimeric 1997 Chronic lymphocytic Leukemia
Rheumatoid Arthritis
Daclizumab Zenapax Roche CD25 Humanized 1997 Transplant Rejection
Breast Cancer
Trastuzumab Herceptin Genentech HER-2 | Humanized 1998 Metastatic Gastrie OT
Gastroesophagel Junction
Adenocarcinoma
Infliximab remicade Centocor (Johnson & Johnson) TNFa Chimeric 1998 Transplant Rejection
Basiliximab Simulect Novartis CD25 Chimeric 1998 Transplant Rejection
RSVF
Palivizumab Synagis Medimmune protein Humanized 1998 Respiratory Syncytial Virus
B-cell chroni hocyti
Alemtuzumab Campath Genzyme CD52 Humanized 2001 cef chronie ly'mp oeytie
leukemia
Rheumatoid Arthritis
Juvenile Idiopathic Arthritis
. . Psoriatic Arthritis
Adalimumab Humira Abbot TNFo Human 2002 R .
Ankylosing Spondylitis
Crohn's Disease
Plaque Psoriasis
ITbritumomab . . -
Tiuxetan Zevalin Biogen Idec CD20 2002 Non-Hodgkin’s Lymphoma
Tositumomab and
Osio dilf:lla?a 1 an Bexxar Corixa, GlaxoSmithKline CD20 Murine 2003 Non-Hodgkin’s Lymphoma
Omalizumab Xolair Genentech, Novartis IgE Humanized 2003 Asthma
Metastatic Colorectal Cancer
Bevacizumab Avastin Genentech VEGF Humanized 2003 Non-Small' Cell Lung Cancer
Metastatic Breast Cancer
Metatastic Renal Cell Carcinoma
Cetuximab Erbitux Imclone, Merck EGFR Chimeric 2004 LeLER AN S G A
Colorectal Cancer
Natalizumab Tysabri Biogen Idec VLA-4 | Humanized 2004 Multiple Sc.lerosm
Crohn's Disease
Humanized
. . N lar Age-Related
Ranibizumab Lucentis Genentech VEGF-A | Antibody 2006 S e' ¢
Macular Degeneration
Fragment
Panitumumab Vectibix Amgen EGFR Human 2006 Metastatic Colorectal Carcinoma
Eculizumab Soliris Alexion Pharmaceuticals Complement Humanized 2007 Paroxysmal Nmmal
C5 Hemoglobinuria
Humanized Chrohn's Disease
Certolizumab Cimzia UCB TNFa Antibody 2008 Rheumatoid Arthritis
Fragment
Ofatumumab Arzerra Genmab, GlaxoSmithKline CD20 Human 2009 Chronic lymphocytic Leukemia
- : Periodi
CanaKinumab Ilaris Novartis IL- 1B Human 2009 Cryopyrin-associated Periodic
Syndromes
Rheumatoid Arthritis
Golimumab Simponi Centocor (Johnson & Johnson) TNFa Human 2009 Psoriatic Arthritis
Ankylosing Spondylitis
Ustekinumab Stelara Centocor (Johnson & Johnson) ii - ; Human 2009 Plaque Psoriasis
Tocilizumab Actemra Roche IL-6 Humanized 2010 Rheumatoid Arthritis
Denosumab Prolia Amgen RANKL Human 2010 Postmenopau.sal Osteoporosis
Xgeva Prevention of SREs

Figure 3-1: Therapeutic monoclonal antibodies approved by the FDA. [3-2]
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mainstream attention in 2000 when demand for the antibody Enbrel® exceeded capacity because its
manufacturer, Immunex, did not have the money to build a large enough scale facility to manufacture the
drug in sufficiently large quantities [3-4]. These concerns have increased the pressure to drive down
manufacturing costs of mAbs by an order of magnitude from $1000’s per grams to $100’s per gram [3-3].

The pharmaceutical industry is volatile and high-risk as companies invest billions of dollars into
finding the next billion-dollar drug. Most FDA-approved mAbs are produced in a batch/fed batch culture
of mammalian cells followed by purification steps using chromatography with intermediate sterile, viral,
and ultrafiltration steps in order to remove cell debris, bacteria, viruses, and other contaminants [3-3].
One way to decrease the financial burden of mAb manufacturing is to optimize these filtration steps in
order to conserve the antibodies, increase throughput, lower pressure drops, and decrease operation time
and its associated energy and labor costs. However, the high cost of manufacturing monoclonal antibodies
prevents the use of industrial scale equipment to optimize the filtration process [3-5]. Thus, it is necessary
to develop small scale filtration processes which can reliably predict manufacturing scale performance,
requiring the use of smaller quantities of mAbs and thereby reducing the cost of production and process
characterization [3-6].

Consequently, OptiFilt has a great opportunity to provide in-house testing of filtration processes.
Although such testing services already exist, OptiFilt would be the first to provide important features such
as high throughput, parallel testing, real-time data collection, and information on the fouling mechanism
of the membrane all within the same system. It is this abundance of features and the resulting convenience
that make our testing services more attractive. Our potential clients include smaller manufacturers of
mAbs which may not have employed a filtration scientist, but wish to optimize their filtration process to
reduce their operating costs. Furthermore, these clients may not currently employ a person with
experience using software to model membrane filtration processes. The cost to hire someone with such

expertise or to train a current employee may be too much for a small manufacturer.
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Il. Competitive Analysis

a. Scilog

SciLog manufactures and sells the FilterTec Plus 3-Filter Testing Station, which provides parallel
testing, real-time monitoring, and an automated software interface to perform filterability studies on up to
three filters simultaneously. As shown in Figure 3-7, the sample solution being studied is pumped through
a test filter at constant pressure, typically between 10-20 psi. Using an electronic scale, the cumulative
solution weight (or volume) exiting the dead-end filtration device is recorded as a function of time [3-8].

A single run typically takes about ten minutes [3-9].

Test
Filter

P PIE 01T
1 A sensonm ’

) ! | Electronic
Sample Solution L\ 143332 ) Scale

Figure 3-2: Sci Log Filter Tec Plus 3-Filter testing Station [3-8] [3-9]




Assuming a fouling mechanism of a gradual “pore plugging” model, a linear plot of the time
divided by the cumulative solution weight versus the time is obtained. The inverse of the slope of this line
is Vmax, the maximum amount of fluid that will pass through the filter before it is completely plugged [3-
7]. The system also monitors the pressure, feed rate, and collection rate of the operation of the filters,
allowing the user to determine the optimal parameters to give the highest Vmax value for a given filter
and mAb solution.The solution is distributed through the system using the FilterTec Smart Pump, which
maintains the selected backpressure at a constant value by modulating the pump output. Built —in alarms
can also be programmed for each run, allowing walk-away operation and thereby increasig productivity.
TheFilterTec Plus is compatible with a wide variety of 47mm disk test filters. Its operation also offers
much flexibilty — the system can be run at constant pressure or pump rate, in serial or parallel
configuration, or with a programmable continuous changing of pump rate or pressure with time [3-10].
Sci Log also provides an automated software interface with the test rig, Sci Doc, which is implemented
within Microsoft Excel and allows real-time process analysis with graphing of data and documentation of

process parameters (see Figure 3-2).
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Figure 3-3: SciDoc, the software asscociated with the FilterTec Plus Multi-filter Capacity testing System [3-9]

Easily fit on a laboratory bench, the FilterTec Plus testing station costs $16, 795 and requires no

other purchases besides test filters.
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b. Millipore

Millipore Corporation provides Vmax Filtration System Optimization, a client service that
performs Vmax testing for the design and optimization of filtration systems used in the production of
pharmaceutical fluid (Figure 3-4). Requiring only small volume of process fluid, the Vmax test can be
performed in about an hour and meaningful results can be gained after only 10 minutes , ensuring its

cost-effectiveness while maintaining its accuracy for scale-up to the industrial level.

Test Filter
Graduate
ar
Regulated Balance
Pressure
Source

Figure 3-4: Millipore Vmax Testing setup [2-7]

The versatility of the service is an important factor — Millipore Validation Specialists are
trained to analyze entire filter trains using this technology. As previously explained, the cumulative
volume is recorded as a function of time at a specified differential pressure (usually 5-10 psi) and
used to calculate the value of Vmax by assuming fouling on the membrane occurs through the gradual
pore blocking mechanism typically exhibited during the filtration of biological fluids [3-11]. Vmax
testing can accurately predict throughput for dead-end filters in less than ten minutes (Figure 3-5).
Millipore will evaluate filters of various media compositions and pore sizes with a wide range of

process fluids
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Vmax Test Results for Bedford Tap Water
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Figure 3-5: Vmax Filtration System Optimization offered by Millipore. Notice the time saved by Millipore’s proprietary
technique. [3-12]

Millipore has also developed Pmax, a sizing

g;ﬁe; technique for filters operated at a constant flux (see Figure
L}
Frassure
)

- 4 membrane as a function of throughput — is plotted versus the

3-6). The filter resistance to flow - the pressure across the

throughput of the filter. From this function, the filter sizing
Pump Filtar
is then calculated within the Pmax sizing spreadsheet. This
method is independent of the fouling model. However, it

requires longer testing times and larger sample volumes than

Vmax testing [3-11].

Figure 3-6: Millipore Pmax testing Setup [3-12]
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To collect and analyze the results of Vmax and Pmax testing, Millipore has developed
proprietary Vmax software (Figure 3-7). This software enables the validation specialists to
recommended filter sizing, filter configuration, and operating conditions for optimization of the entire

filter train.

Figure 3-7: Software associated with millipore’s optimization package. [3-12]

For new processes, Millipore offers its validation and optimization services free of charge for the
first time. For the optimization of validation testing of existing processes, the prices vary depending on
the size of the process, the cost of travel to the site, the time required to optimize the service, and the level
of service need. This typically costs $1,000 to $1,500 per day depending on the level of service needs. For
example, consultation or training could be less costly than troubleshooting and programming. At a large
scale, 3-5 days would be needed depending on the complexity of the system, for a site test, adding up to

about $7,500 to optimize an entire filtration process.

c. OptiFilt — Overview of Science and Software

As previously mentioned, OptiFilt will provide filtration testing services using laboratory scale dead-end

filters to client companies and recommend optimal operating conditions for scale-up to other filter
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geometries used at the industrial scale. For the purposes of illustration, this report will focus on scale up
to a tangential flow ultrafiltration membrane module. Using the FilterTec Plus Multi-capacity Testing
Station as a base, the testing rig will monitor conditions such as pressure, filtrate and permeate volume,
filtrate and permeate velocity as a function of time. Refractometers will measure the index of refraction
of the filtrate and permeate, which can then be used to calculate the bulk concentration of the filtrate and
permeate of each filter as a function of time. In order to determine the operating parameters for optimal
performance of the filter, parameters such as the pH, solute concentration, and applied pressure will be
varied and tested in parallel to conserve sample. Chapter 7 includes a more detailed explanation of this
instrumentation. The data collected will then be imported and analyzed using a one-dimensional model of

the mass transfer involved in dead-end membrane filtration which is implemented in MATLAB.

i. MATLAB Model

Briefly, parameters such as the initial sample volume, initial sample concentration, mass transfer
coefficient, initial hydraulic permeability, and the cross-sectional area of the membrane will be inputted
into the model. The model with then solve a differential-algebraic system of equations describing the
mass transfer across the dead-end filter , and produce plots showing how the concentration and volume of
the filtrate and volume, the osmotic pressure across the membrane, and other parameters change as a
function of time. Chapter 3 will discuss the mass transfer equations for the normal flow filter in more
detail. Most importantly, the MATLAB model utilizes simulated annealing, which fits an estimate of the
unknown intrinsic properties of the membrane to the data. Chapter 5 will discuss the MATLAB model
and simulated annealing in further depth. The determined values for the intrinsic properties will then be

used to model the industrial crossflow filter in COMSOL.
ii. COMSOL Model
A finite element solver, COMSOL Multiphysics was used to simulate the mass transfer and fluid

mechanics with the industrial filter. A simplified two-dimensional model of tangential flow filtration was

drawn within its interface. The Navier-Stokes Equation modeled the flow of the mAb solution within the
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channel of the filter, the Brinkman Equations modeled its flow within the membrane, and a species
balance modeled the convection and diffusion of the mAbs within both the channel and membrane. The
appropriate boundary conditions were then set — operation by a constant applied pressure was assumed
and the flux through the membrane was calculated using the intrinsic properties of the membrane

determined using MATLAB. Chapter 6 will further discuss the COMSOL model.

d. Pricing Analysis

As Chapter 8 will further explain, OptiFilt plans to charge $150,000 to perform filterability trials
for client biotechnology companies. This price is much more expensive than the cost of purchasing a
FilterTec Plus 3-Filter Testing Station directly from Sci Log or utilizing Millipore’s testing services.
Although each utilizex Vmax testing, the service provided by OptiFilt is superior to that of Millipore and
Sci Log for several different reasons. Our testing rig is able to test membranes in parallel, allowing us to
provide our clients with results more quickly. Furthermore, our testing rig includes refractometers to
provide information on the concentrations of the filtrate and permeate during filtration. Vmax testing, on
the other hand, only predicts the total throughput of the filter. Furthermore, the MATLAB model will take
in account numerous modes of membrane fouling, while Vmax testing is only applicable when fouling
occurs according to the gradual pore-plugging model. In addtion, although Millipore and Sci Log offer
their product and serives for much cheaper, the service provided by Optifilt is more useful because it is
able to scale up to any geometry. Whereas a company that utilizes different filtration processes would
have to buy multiple test rigs from Sci Log or utilize Millipore’s service multiple times for different
geometries, the MATLAB model can be easily scaled up to the chosen geometry drawn within the
COMSOL interface. In addition, many industrial filters are operate at flows within the transitional
regime. The COMSOL model is able to accurately model complex flow characteristics both at steady-

state and transiently.
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Our decision to provide testing services rather than to sell the testing rig has two main advantages
for the survival of our company and the convenience of our client. For our company’s benefit, providing a
service ensures us a stream of recurring revenue as biotechnology companies will have to request and pay
for our service when developing a new process or streamlining an older one. If we chose to sell the test
rigs, demand could decrease as the market becomes saturated with our equipment. From the perspective
of our prospective clients, although they would be paying more money by using our service multiple
times rather than purchasing the filter station for themselves, they would access the expertise of a
company that focuses completely on membrane filtration. Furthermore, because a biotechnology
company would likely work to optimize a process a few times per year, they avoid having the filter

station taking up space within their facility and remaining unused for most of the year.
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Chapter 3:
Concept Stage




. The OptiFilt Approach

OptiFilt aims to deliver high-throughput testing of membrane filtration conditions in parallel in
order to improve the ability to identify optimal operating parameters for the ultrafiltration of mAb
solutions at a laboratory scale for use in increasing the efficiency of the production of mAbs at the
industrial scale. This project consists of four main goals: designing the instrumentation and physical
specifications of the testing rigs and determining its cost, developing software that can accurately model
mass transfer properties of the normal flow filtration setup within MATLAB, modeling the mass transfer
and fluid mechanics of the filtration with the tangential flow setup, and providing a feasible plan for a
start-up company which receives samples of mAb solutions from clients and identifies conditions for

efficient filtration.
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a. Project Charter

Project Name

Project Champion

The OptiFilt Approach

Dr. Matthew Lazzara

Project Leaders

Elizabeth Blake, Jennielle Jobson, Nikhil Shankar

Specific Goals

Design a high-throughput dead-end ultrafiltration
system and the software necessary to test filtration
conditions in parallel to identify optimal operating
parameters for the tangential flow filtration of

mADbs

Project Scope

In Scope:

Design of the test rig and its equipment
Develop analytic models to characterize
laboratory-scale dead-end filtration in
MATLAB and industrial-scale cross-flow
ultrafiltration in COMSOL

Provide in-house testing of filtration
processes using protein solutions and
membranes provided by clients
Develop a working business model

Test rig must utilize parallel testing of
membrane in real time

Out of Scope:

Expansion of testing to sterile and viral
filtration membranes

Detailed instrumentation of the test rig
Integration of the filtration process into
manufacturing process of mAbs

Deliverables

Market assessment and competition
analysis

Technical feasibility assessment
Financial and sensitivity analyses over the
course of 8 years

Manufacturing capability assessment
Product life-cycle assessment

Timeline

Construction of the test rig, process
development, and implementation of the
analytical models within 12 months
Scale-up operations within 2 years

Full scale production in years 4-7
Continue with the company, liquidate
assets, or sell the company after the
conclusion of the eight year

Table 2.1 OptiFilt’s Project Charter
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Chapter 4:
Dynamic, Dead-End Flow

Test Rig Models
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. Assumptions of the Test Rig Model

The test rig is intended to improve UF performance on an industrial scale, and to lessen
the chance of UF failure and associated financial burden. As such, the model needs to emulate
reality as closely as possible to be generally applicable, while still remaining highly customizable
to the demands of the company.

A set of interdependent differential and algebraic equations were derived to define the
time-dependent behavior of flux, 8, and 8’. These were solved simultaneously in MATLAB
R2010a both in the complete absence of fouling and the presence of cake-adsorption fouling.
While the standard (pore-plugging) model is generally sufficiently accurate [4-2], the cake-
adsorption model is considered the most relevant for to mAb filtration fouling [4-1] and is
therefore used in this model. Should a company prefer another type of fouling evolution, the
modifications are quite simple. However, some other fouling models result in decreasing pore
radius, or increasing membrane thickness, and the model operator should take care to consider
that these values are now variable. In the cake-adsorption fouling model for mAb, resistance
builds up because of topical cake formation of (relatively) small thicknesses, compared to the
filter [4-8]. When cake fouling appreciably affects membrane thickness, flux decreases
markedly, the membrane rapidly approaches capacity, and the filter is washed. Therefore,
membrane thickness is assumed constant during the span of functional operation. Nevertheless, it
would technically be an improvement to this model if membrane thickness were recorded as
variable. The cake-adsorption model also assumes that caked foulants are incompressible, though
this is not always true. In the case of mAb deposition, however, and for most other proteins, this

is a safe assumption [4-1].
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It was decided that the UF model would run under constant trans-membrane pressure
(pressure), rather than constant flow rate (flux), as the former is the most common type of
laboratory filtration performed today [4-3]. If filtration is indeed desired at constant flux, the
model can be adjusted to accommodate the change by replacing the flux relationship with one of
pressure and by changing the empirical equations for fouling into their new constant-flux form.
The most recently developed fouling models were designed to be able to predict the membrane
capacity in one mode of operation when data from the other mode was fit to the correlation [4-8].
This has not always been the case; the two modes of operation have long been considered vastly
different, and only in 2006 were hybrid fouling models created. Today, fortunately, changing
from constant flux to constant pressure operation, upon request by the company, is
straightforward.

The extent of CP is reflected in the model by the difference between 6 and 6. The model
equations used as correlations for 6 and 8’ are standard in membrane science; the true sieving
coefficient is a function of the products ®K, and ®K4, and apparent sieving coefficient is a
function of the true one. These algebraic relationships are always true [4-7].

The sieving coefficients are also dependent on k.. Many different theoretical equations
and correlations exist for the specific k. of various materials and flows. Thus, an appropriate
estimation for k. should be obtained and entered into the model prior to simulation. This model
uses the k. correlation for the general case of a CSTR that provides ideal mixing, or constant C.,
and whose base is replaced by a standard UF membrane [4-7]. This approximation vastly
simplifies calculation. This k. equation (a function of p and D) is generally valid for most

solutions but it would be ideal to use a more specific correlation if one is known.
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Electrostatic effects are highly dependent on solution composition, and are not the
dominant contribution to flux decay in membrane dynamics [4-10]. Most solutions do have
charged species, but if molar concentrations are high, these effects are overwhelmed. It is
possible, of course, that a certain protein (e.g. albumin) or membrane polymer possesses enough
charge at particular solution conditions to significantly affect fouling beyond that predicted by
classic pore or thickness adsorption. In this case, repulsion or attraction yields decay in flux that,
nevertheless, may still be properly fit to a K. and K4 pair. If electrostatic effects are suspected,
either upon inspection of the protein to separate or because of optimization failure, the technician
may utilize an available approximation to the Poisson-Boltzmann equation, or other available
theoretical model [4-10], to consider them in this model [4-11].

Am always acts in opposition to the driving pressure applied to the UF system, and
increasingly slows filtration over time. While Ar is a colligative property, equations that properly
predict its magnitude vary significantly based on the type of protein in the system, temperature,
charge, and other properties. For a specific solution to be filtered, the natural osmotic pressure
across a semipermeable membrane should be determined by experiment (or extracted from
literature), fit to equation, and entered into the model. For this model, the An correlation was
found experimentally for constant solution pH and substance charge [4-9] and the resulting
equation was used to model osmotic effects in the simulation. It is never desirable to use the
Morse correlation for dilute solutions to approximate Am, as the osmotic effects in relevant
concentration regimes are not linear.

The remaining variables (viscosity, diffusivity, membrane length and cross-sectional
area, applied pressure, osmotic reflection coefficient, starting permeability, initial volumes and

concentrations) are case-dependent and can freely be adjusted based on a company’s
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specifications. These are all held constant. The model operator should find accurate values
(usually readily tabulated in literature) to eliminate constants as any potential source of error. A
restriction with this model is its limitation to only one dominant solute in the sample. The model
will accommodate as many solutes as desired, as long as there are no solute-solute interactions,
and as long as any solute beyond the first contributes negligibly to the gel-based CP at the
membrane boundary.

Once the general model successfully predicted results for a sample set of mAb filtration
data, the code was overhauled to function as an optimization algorithm. The new model accepts
empirical results (which should be collected from a bench-scale experiment) detailing the
behavior of 6 and 0’ over time. Then, using a simulated annealing (SA) algorithm, the model
performs a two-parameter fit, selecting the optimal @K, and ®K4 that yield results that minimize
the sum of squares of the residuals (SSR) between data and simulation. In trial runs, this method
of optimization took between 3 seconds and 7 minutes on an Intel Core i5 CPU, depending on
the proximity of the initial guess to the true global minimum. Thus, this method, while
potentially fairly lengthy, is quite exhaustive and thorough. If no global minimum is found, or if
the minimum is too large, the model operator should try other suspected fouling models to see if
fit can be improved. ®K. and ®K, are strong decaying exponential functions of membrane
radius, so a fouling model that assumes material deposition within pores would not fit a constant
@K, and PK4. Rather, the SA algorithm would fit constants in a generic function @K, = exp(Ar)
and ®Ky = exp(Br), where r is pore radius and A and B are presumably negative [4-7]. If all
suspected fouling models also fail, the technician should consider electrostatic effects, or
consider introducing a minute time delay to account for this model’s intrinsic assumption of

instant reaction to filtrate conditions at the retentate-membrane boundary.
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SA relies on several variables which must be carefully selected by the technician,
specifically: the lower and upper bound of search space, maximum error tolerance, and
temperature (step size) profile. In recent years, adaptive simulated annealing (ASA) has gained
popularity as an algorithm which self-modifies these parameters as optimization progresses. In
this manner, ASA allows far more leniency in parameter selection. However, these parameters
can quite easily be determined by the technician prior to running a simulation for a company.
Additionally, while ASA is a more automated process, it results in longer processing times.
There is therefore no particular need to modify the model to use ASA instead of SA. Both
algorithms always require that the technician provide an initial starting point.

UF is a highly scalable process, but the geometry of flow is extraordinarily different
between the testing-rig and industrial-rig scale. A given UF membrane is fully defined by K. and
K4, the particular hindered convective and diffusive coefficients of that filter [4-6]. (Models for
® are readily available, and once the products ®K, and ®Ky are found by SA, K, and Ky can
easily be extracted.) However, the MATLAB model functions over the breadth of very simple,
dead-end flow, and a basic square membrane. In an industrial setting, companies typically prefer
crossflow over dead-end flow, as less fouling occurs and the membrane can easily be washed
after use [4-5], and utilize more complicated geometry, such as cylindrical tubes. Crossflow and
more complex geometries create more difficult flow conditions, introducing internal eddies, dead
flow, and position-dependent Reynolds number regimes. Therefore, for the purpose of accurate
scalability, the optimal K. and K4 from the MATLAB model are imported into COMSOL, where
the desired flow geometry is emulated. In COMSOL, boundary conditions of the UF membranes
are well-defined by these fit parameters. Time- and space- dependent flow and concentration

patterns can then be extracted from the simulation results, and analyzed by a technician. If the
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profiles are undesirable, or fouling is extensive, filtration variables (e.g. pressure, membrane

MWCO) and/or geometry can be freely adjusted, and new results obtained.

1. Model without fouling

The first model was designed under the highly simplified assumption of no fouling. This
model is defined by a differential algebraic equation (DAE) system, consisting of two ODEs and
five algebraic relationships, which were derived, drawn from literature, or fit from experimental

data. The equations are described below.

avy

pra —A.vs for V. >0, (1-8)

dcy
dt

1 av
= () (O'CrveAc — C,Z) for C,> 0, (4-1)
Vy dt
In these equations, V; is retentate volume, A, is cross-sectional area, v is filtration
velocity, C; is retentate concentration, and 8’ is the apparent sieving coefficient. Recall that
Equation 1-8 implies that loss of volume in the retentate side of the testing rig is based solely on

filtrate flux, which is a realistic statement. Equation 4-1 is a mass balance.
V¢ = Ly (APry — 0Am) for ve> 0, (1-5)

Here, L, is the hydraulic permeability, APry is pressure, o is the osmotic reflection
coefficient, and At is the osmotic pressure. Pressure is the driving force for membrane filtration,
and flux is directly proportional to the net pressure [4-12], where the constant of proportionality

is L. Because of the tendency for C,, to increase over time (due to CP), the trans-membrane
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concentration gradient and osmotic pressure will increase over the course of filtration. This
opposes flow. o is a factor that corrects for real-world deviation from the ideal semi-permeable
membrane. Though assumed constant in this model, o may be variable, in which case it is
exclusively a function of 8 (which is itself a function of C, ;) because such boundary
concentration buildup has the potential to alter the membrane’s ability to effectively exclude
solute. One reference uses 6 = 1 — 0, which can be inserted into the model with fouling for
trials where 0 is on the order of 10 or greater [4-7].
Pe = % for Pe > 0, (1-10)

® is the partition coefficient, § is membrane thickness, D is diffusivity, and K, and K4
are, respectively, defining convective and diffusive coefficients of the membrane. The Peclét
number, Pe, is the dimensionless ratio of the convective elements of flow to the diffusive
elements of flow. It is an integral aspect of CP and general membrane dynamics. No sufficiently
accurate models exist for the products ®K. and ®K4 for most membrane materials (though there
are models for straight-pore membranes) [4-7], which necessitates the optimization-based nature

of this model.

_ DK,
" 1-(1-®Kc)exp (—Pe)’

for0<0<1,(1-9)
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Bexp (Vf/kc)
1-0+0exp (Vf/kc)

4

for0<0’'<1, (4-2)

Equations 1-9 and 4-2 define 6 and 0’ according to accepted models [4-7].

At = 23.487 exp (0.0116@9' (3- 1))

24 mm Hg< Am <3840 mm Hg (1-6)

The osmotic pressure equation above is empirically defined as a best-fit equation to
experimental pressure measurements from [4-9].

This model utilizes a simultaneous equation solver to produce time-dependent results.
MATLAB offers a multistep solver function called ode15s, designed for stiff ODE solutions
and general DAEs, which uses the numerical differentiation formulae as algorithms. DAE
solvers, ode15s included, require both initial conditions for the ODEs and good guesses for the
algebraic equations. If these guesses are inadequate, or mathematically inconsistent, the solver
simply terminates. A consistent set of initial guesses can be approximated by the model
technician, or the function fmincon can be used. fmincon minimizes the normalized sum of

the five algebraic equations above given filtration conditions set by the company.

a. Results

Model results for a standard run (with realistic values for all relevant constants, provided
below) are shown below in Figure 4-1(a) through (g). Hydraulic permeability values were

identified from Biomax UF membrane product sheets as approximately 3 LMH/psi, or 1.612 x
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10® m/s mm Hg [4-13]; remaining constants are from Millipore product sheets detailing

appropriate usage of the company’s UF membranes [4-14].

Volume of retentate (m)

Coneentration of retentate (g/n)

Filtration velocity (m/s)
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The results from the no-fouling model can be
divided into two regimes: where osmotic effects are

negligible, and where they are significant.

Figure 4-1(a) shows how the volume of 5 mL
filtrate decreases linearly for the first part of the
simulation, which, upon inspection of Equation 1-8,
must be caused by a constant or near-constant
filtration flux. As Figure 4-1(c) shows, this is indeed
the case, up until approximately 120 seconds.
Therefore, 0 <t <~120 sec is mostly pressure-
dependent, in that mainly the applied trans-membrane
pressure affects results. During this time span, An
increases to 30 mm Hg, but while the applied APy
during this trial was 100 mm Hg, trans-membrane
pressure still dominates. Figures 4-1(d) and (e) show
how 6 and 0’ increase relatively slowly in this first
regime. In the absence of osmotic effects and fouling,
the membrane is functionally a much more permeable
membrane, both to solute and solvent. While solute

flows through the membrane at a steady pace, solvent
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« 107 MAb mass (retentate) vs t implying the presence of CP in the model. As flux is

4 ] lessened, filtrate volume decreases more gradually,
? z tending to zero asymptotically. In the presence of
=

1 ] very limited volume, the remaining mAb mass

% 50 TindSU[S} 150 200 becomes very highly concentrated (as shown in

Figure 4-1(b)). Figure 4-1(g) shows, however, that the

(2
Fig 4-1: Membrane and flow dynamics in remaining mass of mAb on the retentate side of the
the fouling-free model. MATLAB stops
the trial at 158 seconds. membrane is decreasing, as expected. Figure 4-1(g)

o also shows that mass is filtered at a faster rate when
Constants used as real-world approximations

u=10cP APty =100 mm Hg

Ly ~1O1xIOE-SmsmmHg o =1 = filtration becomes concentration-dependent, which is
D =10E-8 m’/s A.=5cm

PK=0.01 DPKg=0.02 . . . . . .
L=1mm due primarily to the very high C,, associated with this

regime. Therefore, although solvent flow decreases, solute transfer increases and the majority of
filtration occurs near the end of the trial. As OptiFilt trials aim for minimal transfer of product
mass through the UF membrane, significant undesired activity occurs in the concentration-
dependent regime in this idealized, fouling-free model. If this behavior was actually observed in
real experimental runs, companies would run UF purification only to the second regime, and then
cease trials to prevent product loss.

Filtration nears completion when osmotic pressure approaches applied pressure, as all
filtration activity stops as flux nears zero. There is consistently a minute amount of mass

remaining on the retentate side after the simulation stops.
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b. Limiting cases

To ensure that the model predicted trends that agreed closely with reality, the limiting
cases of 0 and 0 = 0 (complete impermeability to solute) and 6 and 8’ = 1 (complete
permeability to solute) were tested. It is important to recall that constant sieving coefficients do
not imply constant concentrations, only constant concentration ratios.

For 6 =0.01 and 6’ = 0.02, one expects that because of the minimally permeable
membrane, mAb proteins will filter through the membrane only until the osmotic pressure equals
the applied pressure, at which point filtration (but not transport) will stop. One also expects that
overall mass transfer will be small. This bounded model is fundamentally different from the
previous model because it restricts the behavior of C,,, and limits the degree of CP that can exist.
In limiting C,,,, osmotic pressure increases proportionally to the degree of filtration, and only
gradually approaches applied pressure. As discussed earlier, C,, increases exponentially in the
normal model because of increasing C; and ever-flowing forward filtration rate. These conditions
create a type of feedback loop which leads to the unexpected result of faster mass filtration at
longer times. As C,,, is not permitted this exponential growth when so bounded by 6 and 6’, the
behavior of osmotic pressure should be much more controlled, and exponential increases in
concentration should not be seen at long times. Rather, all concentrations are expected constant

prior to model termination.
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Fig 4-2: Membrane and flow dynamics in the fouling-free model under the constraints of 8 = 0.01 and 8’ = 0.02,

otherwise same constants as above. Notice the presence of a third regime where filtration slows down again,
becinning at t = 145 s.

Figures 4-2(a) through (d) show the results of a simulation under these constraints.
Beyond the prior two regimes discussed in the unconstrained model, there now exists a final
third regime in which filtration slows and the feedback loop is broken by 6 and 6’ constraints. As
expected, overall mass transfer is small, with only 1.7 pg passing through the membrane.
Because volume is non-zero at long times (since slowing effects of the third regime stop the
feedback before V, = 0), final retentate concentration increases from 10 g/m’ to 64 g/m’, instead
of tending to infinity as before. Finally, of special note is the behavior of osmotic pressure and
velocity, which more clearly support the existence of a third regime. While flux and An

approached final values quickly in Figures 4-1(c) and (f), their graphs here have a point of
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inflexion where function slope begins to tend gradually to zero as the variables tend toward zero
flux and 100 mm Hg, respectively. Therefore, the results for an impermeable membrane seem to
agree with expected membrane behavior under this condition.

For 6 = 0.98 and 6’ = 0.99, the maximally permeable membrane, solute and solvent
particles flow freely through the membrane at all times and at all filtrate and retentate
concentrations. Since particles flow through the pores so quickly, slower flux on the retentate
side (causing CP) is minimal. Thus, the membrane is scarcely an impediment to mass transfer at
all. As C,, never increases to critically large values, simulation results under this constraint

should solely emulate the behavior of the pressure-dependent first regime.
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Fig 4-3: Membrane and flow dynamics in the fouling-free model under the constraints of 8 = 0.98 and 6’ = 0.99,
otherwise same constants as above. Functional response is constant throughout; one regime only.

Figures 4-3(a) through (d) show the simulation results under these conditions. Figure 4-
3(d) shows the expected constant rate of decrease of retentate mass, in agreement with the
constant rate of decrease of retentate volume (not shown). Note from Figure 4-3(b) and (c) that
filtrate velocity and osmotic pressure are functionally constant throughout the entire trial, as
observed in the pressure-dependent region of the normal model. Figure 4-3(a) shows a small
increase in concentration, from 10 g/m’ to 10.58 g/m’, because the membrane was modeled as
nearly perfectly permeable, with 0 # 1. (This was done to avoid computational discontinuities
associated with extreme values.) All of the results from this scenario fundamentally emulate the
responses of the variables in the first regime of the unbounded model, as predicted, and it can be
said with some certainty that the model without fouling is successful at predicting fouling-free

membrane dynamics.

lll.  Model with fouling

To add fouling, the foregoing equations were reused, and Equation 4-3, defined below,
was added to the model. Fouling models define the dimensionless ratio of current flux to
maximum (initial) flux in constant-pressure operation, or alternatively, define the ratio of current
pressure to initial pressure in constant-flow operation. For either type of operation, the fouling
equations can be manipulated to express fouling as a ratio of current L, to initial L,. This can
then be inserted into the model quite easily. Fouling will always lead to decreasing hydraulic
permeability over time, though this rate of decrease is a function of many variables, and the type

of fouling model chosen has significant effects on the model results [4-8].
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L. =
P (1-Kat)~4+KcveVe) (APrM —0AT)’

L, >0 (4-3)

For 1.0 kg/m® BSA trials, varying pressure to 2, 5, 10, and 20 psi, through 0.2 pm track-etched polycarbonate
membrane, K, and K, were selected at 5.03 x 10® s/m* and 3.36 x 10™ s'l, respectively. Analogous values for K,
and K, in the case of mADb filtration were not available in literature, and so were tentatively approximated as
above in the design of this model. [4-8]

In Equation 4-3, L, o is initial hydraulic permeability, At is initial osmotic pressure, and
t is time. Equation 4-3 is for the cake-adsorption model, with K, and K, fit to the type of solution
being filtered. To properly utilize any fouling model, a technician must first find acceptable
values for these parameters. Doing so is straightforward. While holding all other variables
constant, the technician should record four or five time-dependent profiles of flux (taken over a
range of pressures) from experimental trials. Osmotic contributions to each case should be
predicted by Equation 1-6 or similar correlation, to isolate the effect of decreasing permeability
on flux. Then, using simulated annealing in a manner not unlike how the algorithm is used to

extract @K, and ®Ky, K, and K should be selected as the pair that minimizes the SSR between

equation (]l = f(APtn), as above) and reality [4-8]. Other fouling models like intermediate-
0

adsorption or complete-adsorption have at most two fit parameters, with some having only one
[4-8]. Following determination of constants, Equation 4-3 may be inserted into the model with
fouling, which is then capable of predicting membrane behavior of any variable at any provided
trans-membrane pressure.

The late-stage increased rate of filtration found in the first model was valid for a non-
fouling, ideal case, and is therefore unlikely in actual filtration systems. However, under certain
conditions and assumptions of fouling, the simulation terminates before system variables are

equilibrated due to V; = 0. In early termination, it is possible for fouling to not sufficiently
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impede the natural C,, buildup, in which case the idealized filtration behavior may occur. In
normal cases, fouling plays too great a role in flux decay for the aforementioned feedback loop
to occur, and late-stage filtration is slow, not fast. Knowledge of the filtration conditions that
cause either behavior and/or allow equilibration of concentrations is, of course, valuable to the

customer company.
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e. Results using identical conditions as in the fouling-free model

To run the simulation and obtain results, a similar ode15s and fmincon solution was
used. To ensure that the effects of fouling on all variables could be readily identified, all
simulation conditions were kept identical to the non-fouling model (though this resulted in the
model terminating before equilibration, i.e., zero flux). No other changes were made, for the

purpose of obtaining comparable results.
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Additionally, overall mass transfer was greatly

decreased, with only 2 pug of mAb successfully

passing through to filtrate (compared with nearly 48 pg in the fouling-free model). Furthermore,
0 and 0’ are significantly smaller than they were in the absence of fouling, suggesting that only
minor filtration has occurred.

Osmotic pressure increases at long times to approach applied pressure, but the simulation
ends before A = APty, as shown in Figure 5-4(f). Both 6 and 8’ increase as the simulation
progresses, implying the presence of increasing amounts of mAb mass in the filtrate as time goes
on. These trends are entirely expected [5-6]. Companies must provide a threshold for acceptable
amount of product loss in the filtrate, and a guideline as to what degree of concentration they

desire in retentate product.

f. Results using conditions that permit equilibration

To obtain a more complete analysis of the membrane, conditions were varied so that the
simulation would terminate only after reaching equilibrium (i.e., after satisfying the vecriterion
for completion, such that net flow is nearly zero). These trial results are not directly analogous to
the results from the fouling-free model, but they are more realistic, in that they are expected to be

observed in practice.
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Fig 4-5: Membrane and flow dynamics in
the complete model, with lower
permeability than in Fig 4-4.

Constants used as real-world approximations

p=10cP APty =100 mm Hg
o=1 D =1.12E-8 m’/s
A.=5cm? DK.=0.01
DKy=0.02 L=1mm

L, =4.48E-10m/s mm Hg

conditions lead to much longer simulation time scales,
of about 45 min. In this case, the simulation ends
because of v approaching zero, not V; doing so as in
Figure 4-4. V, now terminates at about 88% of its
initial value.

Non-zero steady-state V, is expected (and
required) in real filtration since solutes of greater
molecular weight than the MWCO will remain on the
retentate side [4-3] and because cross-flow filtration,
which is preferred over dead-end flow, physically
requires the presence of some volume for flow. For

these reasons, zero V; is simply nonphysical.

One also notes that over the scope of this trial, © and 6’

are generally larger than they were in Figure 4-4. This

tremendous improvement in apparent membrane
permeability when shifting L, in a direction that should

lead to poorer throughput clearly suggests that the

previous trial terminated before the system reached equilibrium. Since permeability never

reaches zero (only approaches it), there is consistently an available avenue for equilibrating

concentrations. It therefore seems appropriate to redefine “completion” as the time for v to
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decrease to 0.5% of its initial value, where systems that exhibit the V, condition are nonphysical,
and modified to exclusively satisfy the vycriterion.

In further support of this constraint for the model, Figure 4-5(d) shows the rate of mass
transfer. Instead of faster filtration at longer times, mAb transfers quickly early on and more
slowly as fouling increases and permeability decays. This behavior is observed in physical

models and indicates promising model results.

g. Limiting cases

The limiting cases of near-zero and near-unity 6 and 6’ were analyzed in the model with
fouling as well. The results again suggest internal consistency.

For 8 and 6’ = 0, plots for V,, v, and L, should be comparable to those of Figure 4-5. In
the case of no fouling, this limit resulted in large values of An which eventually approached
APty and stopped flux. However, for these parameters, and with fouling, the minimally
permeable membrane no longer relies on osmotic pressure to implicitly define the time span of a
trial. For both free and restricted 6 and 6’, the system still undergoes the same degree of fouling,
and in the latter case, this fouling replaces osmotic pressure as the principal retarding force of the
model. Therefore, the plot of Ax is expected to vary only slightly from initial values, reflecting

slight CP. Finally, mAb filtrate mass should be minimal, since the membrane is nearly

impermeable.
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Fig 4-6: Membrane and flow dynamics in the complete model under the constraints of 6 = 0.01 and 8' =
0.02, otherwise same constants as above.

Figure 4-6(a) through (d) show this predicted behavior. V, is unaffected by this change,
as is vy, osmotic pressure increases only minimally, and a mere 0.12 pg of mAb is filtered.

At the other extreme, 6 and 0’ near unity, predicted trends again vary from those
expected for the fouling-free model; and once again, this is because L, is unaffected by 6 and 6’.
Since osmotic pressure does not change in the perfectly permeable membrane (see Figure 4-
3(c)), only hydraulic permeability affects the decrease in flux. Therefore, V. and v¢ should be the
same as before, osmotic pressure should remain constant, and the decrease in retentate mass

should be larger than in the unconstrained case.
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Fig 4-7: Membrane and flow dynamics in the complete model under the constraints of = 0.98 and 6’ =
0.99, otherwise same constants as above. Results as expected.

Potentially useful for a customer is the knowledge of theoretical minimum and maximum
filtrate mass. Given conditions set by the company or determined by the model technician, 6 and
0’ can be set to a very small value, and then a very large one, to determine the range of possible
extents of filtration (with the lower bound typically being zero, if 6 and 0’ are sufficiently small).
For instance, under these conditions, the impermeable membrane, unconstrained membrane, and
fully permeable membrane predict 0.12 pg, 0.8 pg, and 5.2 pg of mAb filtrate, respectively. If
the minimum of 0.12 pg (Figure 4-7(d)) is an unacceptable loss of product, optimization for
those conditions can be skipped, and a new set of conditions chosen, to save time and effort.

The results from these limiting-cases tests confirm that the model with fouling appears to

be a fully functional extension of the previous, valid, fouling-free model.

lll.  Simulated Annealing

In the previous results, approximations were made for @K, and ®Ky, in which K, and Ky
are fundamental properties of a membrane that do not change with flow geometry or
composition, or membrane size or orientation [4-6]. A key element of scalability, in addition to

determining the scale-up factor, is identifying these parameters for the specific membrane in use.
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Membranes are imperfect, in that pores may be of slightly varying radii or that pores may be
unevenly distributed throughout the membrane. UF membranes are rated on their capacity and
MWCO, not on their degree of physical ideality. Therefore, determining K. and Ky is
extraordinarily difficult from first principles, as any equation would need incorporate factors that
account for uneven pore radii, etc. Alternatively, it is simpler to collect real experimental data,
insert the conditions of that trial into a model, and have the model vary the terms ®K, and ®K4
until a suitable fit is achieved, whereupon these products can be divided by ® which is
determined from models [4-6]. SA is an excellent optimizing algorithm for this purpose, and
more time-effective than exhaustive brute-force, though the latter method may be used if the
absolute best solution is desired. Using SA, the previous model with fouling was reversed in
function, such that it now accepts data and outputs parameters, rather than the other way around.

0 and 6’ are used because they encapsulate the important experimental results. 8 and 6’
describe fundamental information about CP, membrane capacity, and the time-dependent Cr and
C; profiles. In addition, the sieving coefficients are dimensionless, so results are widely
applicable to a variety of feed concentrations. Knowing 0’ behavior for a given membrane and
solution, and knowing Cyg, allows predictions of concentration in the retentate and filtrate. For
flow conditions, notice from Equations 4-5 and 4-6 that only ®K, and ®K, are undefined and
unknown. Once @K, and ®K, are found, then, 6 and 8’ can be predicted.

SA was coded in this model to simultaneously optimize 6 and 6’, with SSR deviations for

both functions weighted equally in calculating overall fit-experiment discrepancy.
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Fig 4-8: Optimization using SA. Notice that as SSR sum decreases, fit between curves becomes closer,
simply from observation. SA was arbitrarily set to terminate when SSR < 10", though ®K. and ®Kj fits
reasonably well at SSR on the order of 10~

Figure 4-8 shows the results from a test run. The experimental sieving coefficient data
was pulled from the complete model with fouling, with ®K. = 0.01 and ®K4 = 0.02, and this
data was simply imported into the SA model to test code fidelity. A search space was defined
with lower bound of [0, 0], with no higher bound, though the model technician must provide an
initial guess of appropriate magnitude, and if optimization fails, modify the temperature (step-

size) schedule to that smaller magnitude.
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Fig 4-9: Optimization using SA. Process run time was 330 seconds.

Figure 4-9 shows the process of simulated annealing. Optimization was manually stopped
after about 5 minutes to show the progress of the algorithm; it self-terminates with SSR < 10™°
after a much longer length of time, on the order of hours. Figure 4-9 details the same kind of test
fit shown in Figure 4-8, in that the correct @K, and ®K are 0.01 and 0.02. SA iteratively solves
the DAE system to find ®K. = 0.0103 (variable #1 above) and ®K4 =0.0191 (variable #2) after
this length of time, and finds ®K. and ®K, to a much higher degree of accuracy if allowed to
self-terminate.

The SA model should be used to fit variables to experimental data, not to simulated data
as done above. In addition to this (successful) test of code fidelity, physical trials should be
performed to confirm the accuracy of this model. This model should only be used commercially

if and when it is successful in performing experimental fit.
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a. Optimal control code

SA ultimately finds K. and K4 that fit experimental data. The alternative, which is
arguably much more powerful, is to provide desired 8 and 6’ profiles and have the model
optimize all filtration conditions — membrane length and cross-sectional area, trans-membrane
pressure, initial conditions, choice of solvent, flow geometry, and type of fouling — to find the
cheapest and/or fastest conditions that still, within tolerance, satisfy the 6 and 6’ goals. All
optimized variables will be subject to practical constraints and other constraints provided by the
customer. Models that perform such multivariable optimization contain “optimal control code”,
and can be highly complex. Such control code would require a dynamic transfer of information
between MATLAB and COMSOL, and could be mediated by specifically designed packages
like MUSCOD-II [4-4] which would employ optimization techniques beyond SA, if necessary.
In such optimal control code, error to minimize is still the SSR between fit and goal for 6 and 8’,
but sources contributing to that error cannot be equally weighted, and the search space and
temperature profiles are markedly different among all variables.

OptiFilt aims to produce 8 and 0’ profiles for provided conditions, and reliably predict
membrane behavior on an industrial scale. OptiFilt has not yet developed optimal control code
for companies with more freedom in membrane design, and less in the degree of product
filtration, though this may be feasible in the future. Though this is potentially more
computationally intensive, optimal control code is not inherently more difficult to code, merely

more time-consuming.

V. Conclusions

The model described and developed in this section was shown to provide results (see

Figures 4-1, 2, 3, 5, 6, 7) which agreed with behavior that would be expected from an
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experimental system. This does not definitively prove the accuracy of the model, but acts in
strong support of its general applicability. This complete model with fouling should be able to
predict 8 and 8 profiles for any conditions with a single dominant solute, and without significant
electrostatic dipoles.

Use of the model requires several steps prior to SA optimization, in which parameters are
determined by independent experiment. To begin, the technician must empirically derive a
correlation for the osmotic pressure of the protein to filter. The technician then selects the most
appropriate fouling model based on literature. If not available, he should obtain flux profiles at
different pressures to test each of the four hybrid models (cake-adsorption, intermediate-
adsorption, complete-adsorption and adsorption) detailed in [4-8]. Controlling for osmotic effects
by using the Am correlation, the technician should then attempt to fit each fouling model to the
flux results to find the minimum possible SSR among all models. If this SSR is also acceptably
small, the technician should select this fouling model and the associated fit parameters; if SSR is
still large, electrostatic effects may be present, in which case approximate solutions to the
Poisson-Boltzmann equation should be used. Remaining system conditions should be specified
by the company or chosen by the technician. The model can now be used. 6 and 0’ profiles
should be recorded for a wide range of pressures, and for each case, the technician should record
fit values of @K, and ®Ky (or of constants in the radius-dependent exponential decay of K. or
®Ky). d is then determined by appropriate model [4-6] and K. and Ky determined for each trial.
If standard deviation is relatively small among obtained values, K. and K4 should then be
definitively taken as an arithmetic average of all trials. These values are imported into COMSOL

where various permutations of geometry and flow conditions can be tested for the company.
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This process is lengthy, but the potential payoff is in most cases excellent, as detailed in
the economic analysis of Chapter 7. The technician can complete his report by providing
information on the effect of various variables on membrane performance. This effect, after all,
cannot be deduced from simple inspection of the system. DAE systems are remarkably sensitive
to perturbations of initial conditions or associated constants. Small changes may lead to an
unexpectedly large system response. This model should be very helpful in predicting these
effects, for the purpose of optimizing overall membrane performance according to company

constraints.
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Chapter 5:
Industrial Filter Model

Finite Element Method




. Invalid Assumptions from Test Rig Model

On the industrial scale, companies typically use tangential flow rather than normal flow
filters to minimize fouling. Due to the use of tangential flow, several of the assumptions made
when modeling the laboratory scale filter are no longer applicable to the model of the industrial
filter. Because fluid flows through the channel in a direction tangential to that of the flow
through the membrane, the model of the industrial filter must account for at least two
dimensions. In addition, industrial filters typically utilize complicated geometry, such as hollow
fiber and spiral wound membrane modules, introducing the possibility of turbulent flow.
Consequently, an overall mass balance over the filter is no longer sufficient to model the UF
membrane. Due to this complexity, COMSOL Multiphysics, a finite element solver and

simulation package, was used to model the industrial UF membrane.

Il. Rationale for Using COMSOL

The finite element method (FEM) approach implemented in COMSOL Multiphysics was used to
model simplified two-dimensional tangential flow filter. FEMs are a numerical technique designed to find
approximate solutions general partial differential equations (PDE) as well as of integral equations [5-1].
The FEM approach works to either eliminate the differential equation completely for steady state
problems or render the PDE into an approximating system of ordinary differential equations, which are
then numerically integrated using standard techniques such as Euler's method or the Runge-Kutta
methods. FEMs are useful for complex geometries or varying domains because they rely on “mesh
discretization” of a continuous domain into a set of discrete subdomains of a simple sample. Called
elements, these subdomains are typically triangles for 2D geometries and tetrahedrons for 3D geometries.

Because modeling the tangential flow filter involves the coupling of four PDEs (Navier-Stokes,
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Brinkman, and two convection-diffusion equations), arriving at an analytical solution is not feasible.

Consequently, the finite element method was used to simulate the filter instead.

1. Equations and Assumptions

As explained in Chapter 4, the Navier-Stokes, Brinkman, and Convection-Diffusion equations are
coupled together within COMSOL to calculate the velocity, pressure, and concentration field throughout
the entire filter. It was assumed that the filter was infinite in the z-direction and that the gradients of the
pressure, velocity, and concentration of the protein were negligible in that direction. With these
assumptions, the geometry of a tangential flow filter was simplified to two dimensions. This geometry
was approximated to be equivalent to that of parallel plates, with the bottom plate semi-permeable to fluid
flow. The problem was also assumed to be at steady state, bringing the times derivatives in all the
equation to zero.

Within industry, TFF processes are typically operated at pressures high enough to bring the flow
within the filter to the translational regime. This creates unpredictable flow patterns, such as eddies,
which work to decrease fouling and concentration polarization at the membrane by inducing greater
mixing within the filter. However, for simplification, flow through the channel was assumed to be
laminar. The following equations were used to calculate the maximum velocity and Reynolds number for

flow between parallel plates:

1 dP
Umax = EE(_hZ) (5-D

Re = % (5-2)

where h is half of the distance between the plates.

Industrial filters are typically operated at a pressure drop of 10 psi between the inlet and outlet.

For this pressure drop, Equations 5-1 and 5-2 were solved simultaneously to find the length of the filter
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that would ensure that the Reynolds number remains below 2000 to keep the flow from entering the
transitional regime. It could then be assumed that the Navier-Stokes equation could adequately describe
the flow within a channel of the calculated dimensions. Furthermore, we assumed that the mAb solution
was dilute enough to be incompressible and that its density was equal to that of water. The viscosity of
mADb solutions has been found to increase as the concentration of the solution increases [5-2]. However,
for the purposes of simplification, the viscosity of the fluid within the filter is assumed to be independent
of its concentration. The body force on the fluid was also considered to be zero. With these
simplifications, the Navier-Stoke s equations become:

V- [-n(Vu+ (V") +pI] = —p(u- Vu (5-3)

V-u=0 (54

In addition to the same assumptions made for the Navier-Stokes equations, the dilatational
viscosity and source term were also considered to be zero. The Brinkman equations could then be
simplified to:

B+ V- [-1(Vu+ (VW) +pl| = —Tu (55)
V-u=0 (5-6)
The diffusion coefficient in the convection-diffusion equation was assumed to be isot