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Abstract 
 

THE GENERATION OF FULLY FUNCTIONAL β-CELLS BY 
PROLIFERATION: LESSONS FROM PREGNANCY AND HNF4α 

 
Sebastian Rieck 

 
Advisor: Dr. Klaus H. Kaestner, Ph.D. 

 
 Diabetes mellitus is an increasingly prevalent metabolic disorder that is estimated 

to affect over 300 million people by 2025. Common to either type 1 or type 2 diabetes is 

a progressive inadequacy of functional β-cell mass. Recent studies have shown that 

during times of prolonged metabolic demand for insulin, the endocrine pancreas can 

respond by increasing β-cell mass, both by an increase in cell size and by changes in the 

balance of β-cell proliferation and apoptosis. Advances that further our knowledge of the 

molecular factors that control both β-cell proliferation and survival will be crucial for 

understanding the homeostasis of β-cell mass during adulthood, and are pivotal for any 

attempt to use instructive cues to induce the proliferation of terminally differentiated fully 

functional insulin-producing β-cells that are suitable for transplantation. However, no 

systematic study that investigates the expression profile of the islet‟s response to 

pregnancy in vivo, a physiological state of insulin resistance, has been reported thus far.  

In the first part of my thesis, I characterized the gene expression signature of 

pancreatic islets during pregnancy by performing large-scale expression profiling of islets 

isolated from 4- to 5-month-old non-pregnant and pregnant female mice at day 14.5 of 

gestation, the peak of β-cell proliferation. I identified a total of 1,907 genes as 
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differentially expressed, and demonstrated the induction of both proliferative and survival 

pathways in the islet during pregnancy. A comparison of our pregnancy gene set with two 

additional models of islet expansion suggests that diverse mechanisms can be recruited to 

expand islet mass. One of the genes that is required for β-cell proliferation during 

pregnancy in mice is the transcription factor HNF4α.  

In an attempt to translate knowledge gained using the pregnancy paradigm, I 

hypothesized that HNF4α is a human β-cell mitogen. To address this question, in the 

second part of my thesis, I employed adenoviral-mediated overexpression of a pancreas-

specific isoform of HNF4α (HNF4α8) in primary human islets. HNF4α8 stimulated β-

cells to enter the cell cycle, and led to a greater than 300-fold increase in the number of β-

cells that entered S-phase, without detectable change in glucose stimulated insulin 

secretion. However, HNF4α8 overexpressing β-cells showed signs of cell cycle arrest, 

caused by activation of the DNA damage response associated with replication stress, 

ultimately resulting in a senescence-like phenotype independent of caspase-dependent 

apoptosis. Overexpression of HNF4α8 together with known β-cell mitogens, also further 

increased cell cycle entry of β-cells, strengthening the argument that HNF4α8 is a 

mitogenic signal in the human β-cell. Additionally, I observed a substantial proportion of 

β-cells stimulated to enter the cell cycle by CDK6 and CYCLIN D3 to also exhibit both 

markers of cell cycle arrest and double stranded DNA damage. In summary, the DNA 

damage response is a barrier to efficient human β-cell proliferation in vitro, and as such I 

suggest its evaluation in future attempts to stimulate β-cell replication.  
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Chapter I: 
 

Introduction 
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Diabetes mellitus as a candidate for cell replacement therapy 
 

Diabetes mellitus is a metabolic disorder characterized by the loss of a single cell 

type, the insulin producing β-cell, which then leads to failed glucose homeostasis. The 

phenotype of chronic elevation of glucose in the bloodstream, shared by all forms of 

diabetes, can lead to severe and life-threatening complications including cardiovascular 

disease, renal disease, and blindness (1). Diabetes mellitus is characterized by either an 

absolute insulin deficiency due to the autoimmune destruction of pancreatic insulin- 

producing β-cells (type 1), or relative insulin deficiency due to diminished insulin 

secretion and/or decreased insulin sensitivity as a result of insulin resistance in peripheral 

tissues (type 2). Both forms of diabetes are caused by complex interactions between 

genetics, environment and lifestyle choices (2), and accepted forms of treatment for 

diabetes reflect two basic mechanisms whereby one can increase insulin secretion; to 

mimic the ability of the β-cell to secrete insulin in response to glucose by injections of 

recombinant insulin and increase β-cell mass in diabetic patients by islet transplantation.  

Since the discovery of insulin in the 1920s by Dr. Frederick Banting and Dr. 

J.J.R. Macleod, tight control of glucose levels by use of an intensive exogenous insulin 

therapy can be achieved. However, while this improves the life of a diabetic patient 

considerably, with side effects including an increasing frequency of hypoglycemic 

episodes and a lack of prevention of long- term complications (1, 3), insulin therapy 

cannot provide the fine-tuned control of glucose homeostasis ensured by an individual‟s 

endogenous β-cell. It has been shown that both individuals with type 1 and type 2 

diabetes show decreases in β-cell mass and increases in β-cell apoptosis (4-6). 

Additionally, studies of obese patients (including non-diabetic, pre-diabetic and diabetic 
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groups) reported an inverse relationship between blood glucose levels and β-cell volume 

below a certain threshold (7), illustrating that another important target in the treatment of 

diabetes mellitus is the correction of β-cell mass deficit.  

Indeed in 1999, the Edmonton protocol, or first successful transplantation of 

cadaveric islets into brittle type 1 diabetic patients using a glucocorticoid-free 

immunosuppressive regimen resulting in temporary insulin independence (8), has caused 

a paradigm shift towards the development of diabetes therapies centered upon improving 

β-cell mass in diabetic patients. While being able to show insulin independence and near 

normal control of blood glucose levels for up to a year post- transplant (8, 9), transplant 

success has proven to be short-lived and accompanied by significant side effects, such as 

impairment of islet function (10), nephrotoxicity (11), and possibly also impairment of β-

cell proliferation (12), all caused from the use of immunosuppressive regimes 

themselves. Furthermore, the application of islet transplantation is limited by the current 

lack of sufficient organ availability and the availability of β-cells from deceased donors 

cannot meet the demand. The use of potential regeneration-compatible 

immunosuppressive drugs for islet transplantations, and alternative methods, such as 

tissue engineering (for example, growth of exogenous islets in an encapsulated coating 

designed to prevent rejection) (13, 14), are being investigated, and great interest into the 

mechanisms of β-cell proliferation has emerged.  

Specifically, significant attention has been focused to the formation of new fully 

functional β-cells. Several methods of β-cell generation have been investigated including 

the replication of pre-existing β-cells (15), transdifferentiation of endoderm-derived cell 

populations (hepatocytes, enteroendocrine cells, α-cells, exocrine cells) (16, 17), 
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differentiation from progenitors (controversially thought to reside in ducts or originating 

during development and maintained into adulthood) (18, 19), and differentiation from 

human embryonic stem cells (hESC) in vitro (20) (Figure 1.1). For type 1 diabetes, being 

able to expand β-cell mass ex vivo, or in vivo after islet transplantation, could both 

increase the number of patients that can be treated with a limited supply of donor islets 

and improve the outcome after transplantation. For type 2 diabetes, the identification of 

targets and pathways that mediate proliferation and/or apoptosis might lead to the 

development of novel drugs that stimulate β-cell growth in the patient and thus allow for 

improved glycemic control. 
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Figure 1.1. The mechanisms by which new fully functional β-cells can be generated. 
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Figure 1.1. The mechanisms by which new fully functional β-cells can be generated. 

Approaches toward generating new β-cells for the treatment of type 2 diabetes or for cell 

replacement therapy for type 1 diabetes include the use of instructive cues to induce the 

replication of terminally differentiated β-cells in vitro or in vivo, the direct 

reprogramming of endoderm-derived cell populations into β-cells by transdifferentiation 

in vitro or in vivo, the differentiation of purified pancreatic progenitor cells in vitro, and 

differentiation of human embryonic stem cells (hESC) in vitro. Green-filled circles 

represent fully functional adult β-cells, blue stars represent terminally differentiated cells 

of endoderm origin, red circles represent pancreatic progenitor cells (potentially residing 

in the pancreatic ducts), and yellow stars represent human embryonic stem cells. 
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Homeostatic control of β-cell mass  
 

The β-cell population is restricted to the endocrine pancreas or islets of 

Langerhans, and is required for insulin production and secretion. The exocrine pancreas 

is composed predominantly of acinar cells which secrete digestive enzymes, and duct 

cells which transport these digestive enzymes out of the pancreas and into the duodenum. 

The endocrine pancreas is highly innervated by blood vessels and apart from endothelial 

cells, nerves and fibroblasts, is primarily composed of five endocrine cell types: the 

glucagon producing α-cell, insulin producing β-cell, somatostatin producing δ-cell, 

pancreatic polypeptide producing pp-cell, and ghrelin producing ε-cell. Together, the 

islets constitute about 1-2% of total pancreas volume, and range in size from just a few 

cells to several thousand cells (21). It should be noted that the three dimensional islet 

structure and relationship between endocrine cells differ between rodent and human 

islets, however, the significance of this concerning the maintenance of β-cell mass is 

unknown (Figure 1.2) (22, 23).  

An organism‟s β-cell mass is determined by the product of the number and size of 

its pancreatic β-cells. In adult mammals, β-cell mass is maintained by the balance 

between cell renewal and growth (cell replication, hypertrophy, neogenesis), and cell loss 

(cell death, atrophy, autophagy) (Figure 1.3A). It is well established that adult pancreatic 

β-cells replicate very slowly after the establishment of β-cell mass during the neonatal 

period (a period of high β-cell replication rates both in rodents and in humans) (24-26). 

The absolute death rate of β-cells is extremely low, and counters the slow rate of β-cell 

replication (27). While the length of the replication refractory period (a period during 

which post-mitotic adult β-cells are prevented from immediately reentering the cell cycle) 
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is a subject of controversy (28, 29), a recent study demonstrates that all β-cells of an islet 

are similarly capable of numerous cell divisions (30), agreeing with gradual β-cell mass 

expansion as rodents age (31, 32). In addition, it is now known that adult β-cells can 

dynamically respond to systemic increases in insulin demand (here defined as an increase 

in metabolic load) by dramatically expanding their functional mass, at least in rodents 

and with limited certainty in humans, as seen during aging (32-34), pregnancy (35-37), 

obesity (38, 39), genetic insulin resistance (40), and even during hyperglycemic 

circumstances in models of β-cell loss (12, 41) and in both short- and long-term type 1 

diabetic patients (an example of autoimmune β-cell loss in humans) (6, 42). 

Current evidence suggests that dysregulation of the balance of β-cell gain 

(proliferation) and loss (cell death) mechanisms is an essential feature in the pathogenesis 

of diabetes mellitus. For example, a subset of obese individuals is unable to compensate 

for insulin resistance, and thus develop type 2 diabetes mellitus. In an attempt to explain 

why this occurs, gene expression studies identified a cell cycle regulatory module in islets 

that distinguishes between diabetes-resistant and diabetes-susceptible strains of leptin-

deficient Ob/Ob mice, and successfully predicts their predisposition to diabetes onset 

(43). In line with this, a recent study comparing obese non-diabetic and type 2 diabetic 

human donors, correlates non-diabetic obesity with an increase in β-cell volume and 

proliferation, and obese individuals with type 2 diabetes with heightened rate of β-cell 

apoptosis without increases in β-cell volume and proliferation (44). Indeed, apoptotic β-

cells are often organized in pairs in pancreatic tissue sections from type 2 diabetics, a 

finding that has been interpreted as β-cell apoptosis following mitosis as a mechanism of 

β-cell death (45). Thus, in this case, a β-cell renewal mechanism is attempted but is 
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overcome by β-cell loss, suggesting that diabetes onset is a result of a failure of β-cell 

expansion rather than a decrease in existing β-cell mass only. 

While the ability of the pancreas to modulate β-cell mass is certain, the source of 

new endocrine cells in response to increased metabolic loads remains unclear and 

controversial. The use of lineage tracing in recent studies has clearly demonstrated the 

origin of newly derived β-cells in many physiological and pathological settings (Figure 

1.3B). For example, evidence of neogenesis (the production of new β-cells arising from 

the differentiation of progenitors) was limited for a long time to the detection of insulin-

positive cells within the ductal epithelium (46). However, a recent genetic lineage tracing 

experiment, showing that cells expressing Cre recombinase under the control of the 

carbonic anhydrase II promoter (a gene expressed at high levels in duct cells), strengthens 

the argument that a portion of β-cells can arise from the ductal compartment after birth 

and after pancreatic injury (18). Furthermore, the fetal differentiation program, as marked 

by Cre recombinase under the control of the bHLH factor Ngn3, can be reactivated in the 

adult mouse by the extreme injury stimulus of pancreatic duct ligation (47), though not in 

response to the milder insult of partial pancreatectomy (48). Similarly, the endoderm-

derived α-cell, as marked by Yellow Fluorescent Protein under the control of glucagon 

expression, can spontaneously transdifferentiate into insulin-producing cells after 

extreme β-cell loss in mice (41). Nevertheless, genetic lineage tracing studies performed 

in the young adult mouse indicate that the great majority of new β-cells throughout 

adulthood and either after partial pancreatectomy or conditional ablation of β-cells are 

derived through the homogenous replication of pre-existing ß-cells and few, if any, newly 

formed β-cells stem from progenitor populations (12, 15, 28, 49). This highlights the 
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importance of proliferation in the normal maintenance of β-cell mass, at least in rodents. 

Of note, while the length of the post-replication quiescence period is prolonged with age, 

it is shortened during times β-cell regeneration, for example, after conditional ablation of 

β-cells (30).  

There remains controversy regarding what β-cell gain mechanisms are dominant 

physiologically in humans, and the ultimate decision of which mechanism is best utilized 

to make new fully functional β-cells is still an unanswered question. In the next sections, 

I will concentrate on the generation of new β-cells through the replication of pre-existing 

β-cells using the pregnancy paradigm as an example, with the ultimate goal of deriving a 

well-defined, step-by-step protocol to drive efficient non-oncogenic expansion of human 

β-cells purified from donor pancreata in vitro. 
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Figure 1.2: Anatomy of the mouse and human islet. 
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Figure 1.2: Anatomy of the mouse and human islet. Mouse islets exhibit a high degree 

of cell segregation, favoring β- and α-cell homologous contacts (C). In striking contrast to 

the „core-mantle‟ organization of mouse islets, human islets display β-cells intermingled 

with α- and δ-cells, with frequent heterologous interactions between β- and α-cells (A). 

Additionally, (D) adult human islets have fewer β-cells, but more α-cells, than mouse 

islets (23). α-cells are colored in green, β-cells in red and δ-cells in blue. 
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Figure 1.3: Homeostatic control of β-cell mass in rodents and humans. 
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Figure 1.3: Homeostatic control of β-cell mass in rodents and humans. (A) Control of 

β-cell mass (the fulcrum of the balance) is based on the relative contribution of processes 

that result in β-cell gain (replication, hypertrophy, neogenesis) and β-cell loss (death, 

atrophy, autophagy). A net increase in β-cell mass occurs when mechanisms involved in 

β-cell gain exceed those of β-cell loss. (B) This section depicts the experimental evidence 

in rodents and humans of β-cell gain mechanisms during adaptive increases in β-cell 

mass (neonatal period, pregnancy, obesity, and β-cell recovery after injury). This 

highlights the plasticity of the β-cell‟s ability to increase its mass during different 

physiological and pathophysiological (hyperglycemic) states and the relatively large 

amount of knowledge that remains to be uncovered, especially with respect to human β-

cell biology. While the rodent evidence for neogenesis during the neonatal period and 

after injury is from work by Dr. Susan Bonner-Weir and colleagues (31, 50), this data is 

under much scrutiny based on recent lineage tracing showing that no β-cells originate 

from the pancreatic ductal epithelium during both instances (51). Dark squares represent 

evidence for β-cell gain mechanism only in rodent models; white squares represent 

evidence found only in human autopsy pancreatic samples; striped squares represent 

evidence both in rodents and humans; and question mark squares denote that there is no 

current evidence. 
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Intracellular glucose metabolism controls β-cell proliferation 
 

β-cells compensate for increased systemic demands for insulin by both an 

increase in insulin secretory capacity, and an increase in β-cell mass. Recent studies 

suggest that these two processes are inherently linked. While the exact mechanisms 

underlying these processes are controversial, there is evidence that an unknown 

circulating factor in insulin resistant animals induces β-cell proliferation in transplanted 

islet grafts (52). Not excluding the importance of insulin signaling with respect to β-cell 

proliferation, glucose is a possible candidate for this factor since it is well established that 

glucose infusion, i.e. food intake, increases β-cell proliferation in mice (53). When 

glucose enters the bloodstream, the workload imposed on a β-cell (the net insulin 

secretion per β-cell as regulated by intracellular glucose metabolism) increases in order to 

maintain euglycemia. Briefly, the catabolism of glucose principally through glucokinase 

(Gck) and glycolysis raises the intracellular ATP concentration, which leads to the 

closing of ATP-dependent potassium channels (KATP), depolarizing the plasma 

membrane and opening voltage-gated calcium channels, allowing calcium to enter the β-

cell, and triggering insulin release by exocytosis. A negative feedback loop indirectly 

restricts insulin release on the same β-cell, as insulin lowers blood glucose by stimulating 

glucose uptake by peripheral tissues. The reduced blood glucose is detected by the β-cell 

as a diminished glycolytic flux, slowing the release of insulin, and holding blood glucose 

nearly constant despite large fluctuations in dietary intake (21, 54).  

Recent studies have demonstrated that β-cell proliferation rates are also controlled 

by the intracellular glucose metabolism (the rate of glycolysis of the β-cell itself) (55). 

Based upon the β-cell workload model, several predictions about β-cell proliferation can 
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be made in response to metabolic load. First, increasing glycolytic flux in the β-cell 

increases β-cell replication. For example, if systemic insulin demand is constant, 

decreasing β-cell mass would increase the workload of the remaining β-cells, increasing 

their compensatory proliferation rates. Conversely, an excess of functional β-cells would 

lead to a reduced glucose metabolism per β-cell and a reduced β-cell proliferation rate. In 

line with this, wildtype mice into which additional wildtype islets have been transplanted 

show decreased endogenous β-cell proliferation (55). Second, if glucose metabolism is 

blocked, as in diabetic patients exhibiting mutations in glucokinase and the KATP channel 

(56, 57), extracellular glucose levels would uncouple from the intracellular metabolic 

flux of the β-cell. Indeed, β-cells lacking glucokinase do not respond to a hyperglycemic 

environment and instead behave as if exposed to hypoglycemia, exhibiting blunted 

glycolytic flux and decreased β-cell proliferation (55). Conversely, a patient with an 

activating mutation in glucokinase exhibits increased β-cell proliferation (57). These data 

show that metabolic demand during adult life is a key determinant of cell cycle re-entry 

of the β-cell. This suggests that adjusting β-cell number is equally as important as 

increasing insulin secretion in successfully maintaining euglycemia during states of 

physiological insulin resistance, as occurs during pregnancy. 
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Reversible β-cell mass expansion during pregnancy 
 

It has been recognized for decades that increased β-cell mass is an adaptation to 

the progressive insulin resistance related to increased fetal burden that develops during 

pregnancy in women (35, 36, 58). The precise mechanism of β-cell mass expansion, i.e. 

proliferation, neogenesis or increase in size, has been elucidated only in part (Figure 1.4) 

(36, 59, 60). However, as with obese individuals, based on rodent studies, when 

compensatory β-cell mass expansion fails during gestation, diabetes results (61). 

Interestingly, long-term follow-up studies show that a significant percentage of women 

who are diabetic during pregnancy develop type 2 diabetes later in life, emphasizing that 

the ability of β-cells to successfully adapt to increases in metabolic load is a common 

theme for preventing both gestational diabetes and type 2 diabetes (62). 

In addition to the increased sensitivity of the β-cell to secrete insulin in response 

to glucose during gestation, studies in rodents found a 2-fold increase in β-cell mass and 

demonstrated that β-cell proliferation also increases dramatically during pregnancy 

(Figure 1.4A-B) (35, 63). The peak of bromodeoxyuridine (BrdU) incorporation, an 

indicator of DNA synthesis during S-phase, occurs about two-thirds of the way through 

the gestational period, with labeling returning to pre-pregnancy levels shortly before 

parturition. Notably, this peak in DNA synthesis coincides with increased placental 

lactogen (PL) levels, suggesting that lactogenic activity is vital for the ability of β-cells to 

enhance proliferation and function in response to pregnancy (Figure 1.4D) (35, 58). 

Furthermore, studies in primary human islets demonstrate that lactogen treatment 

increases insulin secretion and islet cell proliferation (64). Of note, both morphometric 
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and DNA-to-protein ratio methods indicate β-cell hypertrophy in addition to β-cell 

hyperplasia as a mechanism towards β-cell expansion during pregnancy in rodents (65, 

66). Intriguingly, β-cell mass returns to normal levels within ten days after birth through 

increased β-cell apoptosis, decreased proliferation and reduced β-cell size (Figure 1.4C) 

(59, 60). In spite of the small case size considered, β-cell mass has also been shown in a 

recent study to increase by 40% in pregnant women (37). Although the molecular 

mechanisms underlying these processes are not yet known, the pregnancy paradigm is a 

unique example of rapid and reversible β-cell mass expansion, with distinct bursts of both 

β-cell proliferation and β-cell apoptosis occurring in a physiological setting. 

As a proof of principle for direct regulation of β-cell proliferation by placental 

lactogens, overexpression of PL in the β-cell caused a dramatic increase in β-cell 

proliferation and β-cell mass, even resulting in hypoglycemia (67). Similarly, global 

deletion of the prolactin receptor (Prlr), through which placental lactogens signal, 

reduces β-cell mass and mildly impairs insulin secretion in non-pregnant mice (68). The 

requirement of the prolactin receptor for β-cell adaptation during pregnancy was 

demonstrated using pregnant mice heterozygous for the prolactin receptor null mutation. 

These mice exhibited reduced β-cell proliferation, decreased β-cell size and mass, and 

impaired glucose tolerance (66). Interestingly, the maternal genotype had a significant 

effect on the phenotype of female offspring that became pregnant, as assessed by 

heightened serum glucose levels (66), suggesting that in utero exposure to impaired 

glucose homeostasis alters the epigenetic memory of β-cells (69).  

These findings provide a link to the well-known phenomenon that the intrauterine 

milieu affects the glucose homeostasis and the capacity of β-cell mass to expand when 
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facing insulin resistance in the adult (69, 70). Indeed, individuals born to mothers with 

gestational diabetes mellitus have a higher risk of obesity and type 2 diabetes (71). 

Epidemiological studies in humans show very clearly how caloric intake by the mother 

affects the future glycemic health of the child. Intrauterine growth retardation in rodents 

is an experimental approach that has been used to investigate this phenomenon on the 

molecular level. In this model, epigenetic marks at the promoter of the β-cell 

transcription factor Pdx1 were found to be altered in the offspring of dams in which the 

uterine arteries had been ligated, causing intrauterine growth retardation (72). Again, it is 

clear that the metabolic state of the fetus determines the epigenetic fate of the β-cell, and 

highlights the importance of understanding the physiological mechanisms underlying 

maternal β-cell expansion during pregnancy. 

Although activation of multiple signaling pathways (such as Stat5, Mapk and 

classic insulin signaling mediators, such as phosphatidylinositol 3-kinase, Insulin 

response substrate 1/2 and Akt) enhances β-cell compensation downstream of the 

prolactin receptor in vitro (73-75), it is not clear whether placental lactogens stimulate 

these pathways in vivo. In addition, Stat5- dependent downregulation of the tumor 

suppressor gene menin (Men1) and subsequent inhibition of p18 and p27 are crucial 

events in β-cell expansion during pregnancy (76). While substantial progress has been 

made in elucidating the contribution of selected genes to β-cell compensation during 

pregnancy, no systematic study investigating the global expression profile of islets in 

response to pregnancy exists to consider which mechanisms specifically drive β-cell 

replication during pregnancy in vivo. 
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Figure 1.4: β-cell dynamics during pregnancy in the mouse. 
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Figure 1.4: β-cell dynamics during pregnancy in the mouse. (A) β-cell mass is 

increased by (B) β-cell replication during the first two-thirds of gestation. After 

parturition, maternal β-cell mass returns to non-pregnant levels by (C) β-cell apoptosis, 

which increases through the end of pregnancy and is still detected 4-6 days after birth. 

The graphs represent approximate changes in these processes before pregnancy (red, non-

pregnant), over the course of pregnancy (light purple) and post-partum (green), and show 

what is believed to occur during rodent pregnancy based on previous studies. (D) Total 

serum lactogenic hormone levels (such as placental lactogens) during pregnancy in the 

mother are increased from gestational day 10 to 20, pointing to their key role in the 

adaptation of the islet to pregnancy. Specifically, of the two identified rodent placental 

lactogens, levels of PL-I peak at mid-gestation. As such, PL-I is considered to be the first 

trigger to enhance β-cell proliferation and function, while PL-II is initially detectable on 

day 12 of gestation and does not reach peak levels until closer to delivery (35, 77). 

Additionally, it is thought that steroid hormones present at relative high levels at day 19 

of pregnancy, such as progesterone, counteract the stimulatory effects of elevated 

lactogenic activity on β-cell proliferation during the last third of pregnancy (58, 78). 
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Regulation of β-cell proliferation by cell cycle genes  
 

The cell cycle of the adult β-cell is comprised of four phases: (i) The first gap (G1) 

growth phase, (ii) the DNA synthesis (S) phase, (iii) the second gap (G2) phase, and (iv) 

the mitotic (M) phase (Figure 1.5). The expression of regulatory subunits called cyclins 

fluctuates periodically throughout the cell cycle. The association of distinct cyclins with 

specific cyclin-dependent kinases (cdks) activates the catalytic activity of their cdk 

partners, and powers the cell through different phases of the cell cycle. Mitogenic 

stimulation initiates exit from quiescence cells (G0), entry into G1-phase of the cell cycle 

and up-regulation of D-type cyclins. Cyclin D complexes with its catalytic partner Cdk4 

and/or Cdk6 to execute critical regulatory events in G1- phase. E-type cyclin expression is 

up-regulated next, enabling the binding and activation of Cdk2. Together, these active 

Cyclin/Cdk complexes inactivate the retinoblastoma protein (Rb) by 

hyperphosphorylating it and/or both of its functional homologs (p107 and p130). This 

facilitates progression through S-phase by the subsequent release of the E2F family of 

transcription factors and the transcription of their target genes, including A-type cyclins, 

allowing for the formation of the Cyclin A/Cdk2 complex. During G2- and M-phase, both 

A-type and B-type cyclins associate with and activate the kinase activity of Cdk1 that is 

required for progression through mitosis. Inactivation of Cdk1 in late mitosis, by the 

decreasing availability of appropriate cyclins contributes to reset the cell to G1-phase (79, 

80). 

Surveillance mechanisms called checkpoints impose quality control in the cell 

cycle to ensure that a cell has properly completed all the requisite steps of one phase 
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before it is allowed to proceed into the next phase (Figure 1.5). For instance, a cell will 

not be permitted to enter into S-phase until all G1 processes have been properly 

completed, for example the licensing of replication origins to form a pre-replicative 

complex (81). Entry into G2-phase is blocked until a cell‟s entire chromosomal DNA has 

been properly replicated. Furthermore, an activated checkpoint will not allow a cell to 

enter into anaphase, when the paired chromatids are pulled apart, until all of its 

chromosomes are properly assembled on the mitotic spindle during metaphase. In 

addition, a cell is not allowed to advance into S- or M-phase if its DNA has been 

damaged and not yet repaired. Cell cycle arrest is achieved during checkpoint activation 

by two families of inhibitory kinases, the inhibitors of Cdk4 (INK4s) and the cyclin 

inhibitory proteins (CIPs) or kinase inhibitory proteins (KIPs), which physically associate 

with Cyclin/Cdk complexes to block their kinase activities. The INK4s include p15ink4b, 

p16ink4a, p18ink4c and p19ink4d, and specifically inhibit the activity of the Cdk4/6-Cyclin D 

complex present during G1/S-phase. The CIP/ KIP family which includes p21cip1, p27kip1 

and p57kip2 inhibit the activity of Cyclin E/Cdk2, Cyclin A/Cdk2, Cyclin A/Cdk1 and 

Cyclin B/Cdk1 activity present during later stages of the cell cycle. On the other hand, 

sequestration of p21cip1 into Cyclin D/Cdk4 complexes alleviates p21cip1- mediated 

inhibition of Cyclin E/Cdk2 activity and promotes G1/S phase transit. Of note, it is 

thought that once cells have passed the restriction point in late G1-phase, they no longer 

require extracellular mitogenic cues to complete the cell cycle (80).  

There is overwhelming evidence that cell cycle genes controlling the G1/S-phase 

transition in the cell cycle are likely central to the control of β-cell proliferation. While 

the importance of other cell cycle genes regulating other aspects of the cell cycle such as 
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the G2/M-phase transition cannot be understated, unfortunately there is a lack of 

investigation into their predicted role in the β-cell. Indeed, the vast majority of cell cycle 

genes governing G1- and S-phase are expressed in mouse and human islets (82, 83). 

However, it is worth noting that there are important differences in the activity profile of 

cell cycle genes between human and mouse islets. Fiaschi-Taesch and colleagues 

catalogued the G1/S proteome of the human islet and found that Cdk4 and Cdk6 are 

expressed at comparable levels, whereas only Cdk4 was found in the mouse (84). 

Perturbation of G1/S-phase cell cycle regulators in the β-cell by the use of genetic 

mouse models yields either deficiency or unconstrained proliferation (Figure 1.5). While 

many tissues are unaffected by the global deletion of Cdk4 in mice, islets displayed β-cell 

hypoplasia, leading to diabetes (85). This phenotype can be rescued by replacing the 

endogenous Cdk4 locus with a constitutively active form of Cdk4 still under the control 

of its endogenous promoter. Again, this mouse yielded a restricted phenotype, showing 

marked β-cell hyperplasia leading to islet neoplasms (86). Additionally, global ablation 

of both Cyclin D2 alleles in combination with a single allele of Cyclin D1 result in greatly 

reduced β-cell mass and β-cell proliferation after birth, and severe diabetes by 3 months 

of age (87). Conversely, overexpression of Cyclin D1 is frequently seen in human 

pancreatic endocrine tumors (88). Mice with β-cell specific ablation of Rb and global 

deletion of p130 leads to unrestrained cell cycle reentry as well as activation of apoptosis 

(89). Together the aforementioned studies demonstrate that the D-type Cyclin/Cdk4/ 

phospho-Rb pathway is required for β-cell replication during adult growth in the mouse. 

Interestingly, the decreased capacity with age of the β-cell to expand by 

proliferation in response to injury or a high-fat diet correlates with epigenetic changes at 
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the Cdkn2a  locus, which encodes the INK4 members p16ink4a and p19ink4d (34, 90, 91). In 

fact, manipulation of p16ink4a expression in transgenic mice dramatically alters the 

proliferative capacity of β-cells, precisely as would be expected if p16ink4a limits 

proliferation in aging β-cells (92). Furthermore, recent genome-wide association studies 

link both CDKN2A (p16ink4a) and CDKN2B (p15ink4b) to the risk of type 2 diabetes (93), 

illustrating that G1/S-phase cell cycle regulators are not only important in rodent β-cell 

proliferation, but also during the ontogeny of type 2 diabetes.  

Finally, a complete picture encompassing all the signaling pathways that control 

many of the mentioned cell cycle regulators in the β-cell is still not attained (Figure 1.5). 

For example, while it is acknowledged that prolactin (PRL) signaling via the Jak2/Stat5 

pathway increases expression of Cyclin D2, it is not known whether this is the only or 

most important mechanism for cell cycle activation in the β-cell during pregnancy in vivo 

(94). A known upstream regulator of cell cycle genes is the multiple endocrine neoplasia 

(MEN) type 1 syndrome protein, menin. Mice deficient in menin specifically in β-cells 

lead to the development of dramatic β-cell hyperplasia, and islet tumors (95). Increased 

rates of β-cell proliferation are observed, and associated with reduced expression of 

p18ink4c and p27kip1, both downstream targets of menin- dependent histone methylation 

(96). Additionally, the transcription factor p53 is thought, among other functions, to be a 

tumor suppressor, exemplified by its target gene p21Cip1. Unlike parental mice containing 

either Rb-null or p53-null alleles, mice both heterozygous for Rb and null for p53, 

develop frequent insulinomas similar to menin-deficiency (97, 98). These studies 

demonstrate that p53 in addition to Rb is a critical upstream checkpoint of the cell cycle 

of the β-cell. As we continue to learn about the complexity of cell cycle control in the β-
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cell whether extrinsic or intrinsic, the next challenge will be to identify the most feasible 

and appropriate β-cell mitogens for driving cell cycle entry and progression in human β-

cells in vitro. 
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Figure 1.5: Regulation of β-cell proliferation by cell cycle genes. 
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Figure 1.5: Regulation of β-cell proliferation by cell cycle genes. An overview of the 

proteins that control β-cell cycle with emphasis on the G1/S-phase transition. The “P” in 

the yellow circle indicates phosphorylation. The “R” next to the red line indicates the G1/ 

S- and G2/ M-phase checkpoints, respectively. All of the genes are discussed in the body 

of the text. It should be noted, as indicated by the yet unexplained observation that 

embryonic and adult cell division seem to be regulated independently (99, 100), that the 

study of cell cycle control in the β-cell is still incomplete. 
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Attempts to expand functional β-cell mass by proliferation in vitro 

 
Initial efforts to expand functional β-cells by proliferation have not been 

successful. Lineage tracing in purified mouse islets demonstrates that β-cells divide very 

slowly, undergo gradual dedifferentiation to an insulin-, Pdx1-, and Glut2- negative state, 

and are eventually replaced by cells of non-β-cell origin in vitro (101). In spite of this, 

lineage tracing of primary adult human β-cells with a Cre-loxP system demonstrates that 

dedifferentiated human β-cells, but not mouse, can be grown in culture for up to 16 

passages (102). It is clear that spontaneous replication in primary human islets is 

ultimately halted over time by cellular senescence, which is characterized by loss of 

differentiated function (103). However, the redifferentiation of cells derived from adult 

human β-cells expanded in culture could provide a sufficient number of β-cells needed 

for islet transplantation at the current availability of human islet donors (104). 

Understanding the molecular mechanisms involved in β-cell fate in vitro is critical for 

attempts to redifferentiate these cells back into functional glucose-sensing, insulin 

releasing β-cells after expansion (105). 

Because primary β-cells do not proliferate in culture, attempts to bypass the 

senescence program have been made by immortalizing pancreatic β-cells through the 

forced expression of oncogenes such as the human homologue of the retrotranscriptase 

subunit (hTERT), simian virus large T antigen (SV40T), and constitutively activated Ras 

(106). While some attempts to do this still lead to dedifferentiation of human β-cells 

(107), the use of reversible immortalization strategy for expansion of human islets has 

produced a human pancreatic β-cell line that appears functionally equivalent to primary 
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pancreatic β-cells. Although many safeguards were used to eliminate the possibility of 

developing tumorigenesis in this human β-cell line, the large scale cell growth needed to 

meet the amount of cells required for islet transplantation therapy might result in somatic 

mutations leading to increased cancer risk in the patient (108). Indeed, the cell cycle 

regulators one might hope will be sufficient to drive cell cycle progression in the β-cell, 

such as the G1/S-phase mediators described previously, are themselves members of 

oncogenic pathways. Whether forced cell cycle entry by these molecules allows non-

oncogenic and safe progression of the cell cycle in the β-cell remains an important 

unanswered question.  

With the increased understanding of cell cycle regulation in the past five years, it 

has become clear what single or a combination of potential human β-cell mitogens need 

to accomplish to successfully expand functional human β-cell mass by proliferation in 

vitro (Figure 1.6A). First, a β-cell cycle regulator must stimulate entrance into the cell 

cycle (exit from G0- and entry into G1-phase), and ensure that precise duplication of the 

genome is achieved to maintain genomic stability (progression from G1- into and through 

S-phase). Without cell cycle entry, the β-cell would stay in G0-phase. Also, in addition to 

the required high fidelity of DNA polymerases, the cell must be able to distinguish 

between replicated and unreplicated DNA during G1-phase to ensure the precise 

duplication of chromosomal DNA during S-phase of a single cell cycle. If the 

chromosomal DNA is under-replicated as a result of too few active replication origins, 

the chromosome is likely to be broken near the unreplicated region upon sister chromatid 

separation during anaphase. The firing of a replication origin more than once would lead 

to re-replication of the DNA in the vicinity of the over-firing origin, and if initiated 
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sufficiently close together can undergo head-to-tail collision and lead to extruded double 

stranded DNA fragments (109, 110). Of note, an additional level of yet unclear regulation 

exists during S-phase called the „replication timing program‟ in which sequential patterns 

of domains containing discrete foci or factories of DNA synthesis occur during the course 

of S-phase (111).  

The licensing of replication origins by the stable binding of the „pre-replicative 

complex‟ (Pre-RC) only during G1-phase affords the cell the ability to distinguish 

between active and inactive replication origins, defined here as a site on chromosomal 

DNA where a bidirectional pair of replication forks initiate (81, 109). The major 

component of the Pre-RC are the mini-chromosome maintenance 2-7 proteins (Mcm2-7), 

whose binding onto origin DNA is essential for the replication origin to be able to initiate 

a pair of replication forks. Mcm2-7 is thought to function as a DNA helicase traveling 

ahead of the replication fork, as it is subsequently displaced from origin DNA as forks are 

initiated. Therefore the Mcm2-7 complex is never associated with replicated DNA, 

precluding the origin from being fired again during later phases of the cell cycle (81). 

Furthermore, the down-regulation of other components of the Pre-RC complex at the 

G1/S-phase transition such as chromatin licensing and DNA replication factor 1 (Cdt1), 

thought to be the rate-limiting factor responsible for loading of the replicative Mcm-

helicase onto DNA, is critical to preventing re-licensing of replicated origins (110). 

While there is no formal way of distinguishing early G1-phase from G0, the detection of 

Mcm2-7 expression is a potentially powerful way of assessing cell cycle entry of β-cells 

(109).  
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To date, experiments in primary human islets provide the proof of principle that 

human β-cells can be stimulated to enter the cell cycle in vitro, confirming recent human 

cadaver studies which determined that β-cell proliferation occurs neonatally (26) and in 

increased frequency with greater proximity to pancreatic tumors (112). For example, 

overexpression of a D-type Cyclin with its partner Cdk clearly stimulates β-cells to enter 

the cell cycle, as assessed by BrdU incorporation, and Ki67 expression, a thymidine 

analog marker of S-phase and a marker of late G1- to M-phase, respectively (83, 113). In 

addition, overexpression of other regulators of the G1/S-phase transition, such as E2F1 in 

primary rat islets also leads to activation of multiple phases of the cell cycle, as assessed 

by BrdU incorporation, Ki67 expression and phosphorylation of histone H3 (pHH3), a 

phosphorylation event that occurs in M-phase (114). Other examples of factors sufficient 

for induction of multiple phases of the cell cycle in primary human β-cells include 

overexpression of CYCLIN E in combination with CDK2, FOXM1, Nkx6.1, and 

parathyroid hormone- related protein (PTHrP) (115-117). While it is clear that human β-

cells can be forced to enter the cell cycle in vitro, no assessment of genomic stability has 

yet been demonstrated. 

As implied in the previous section, progression through the remaining cell cycle 

phases and subsequent cell cycle exit depend primarily on the successful completion of 

activities during G1- and S-phase, namely the precise duplication of chromosomal DNA 

during S-phase (Figure 1.6A). Conversely, genomic instability resulting from DNA 

breaks generated during DNA replication (defined here as replication stress) can activate 

a G1/S-phase checkpoint, also referred to as the DNA damage response (Figure 1.6B). Of 

the first responders to replication stress, two proteins are activated by phosphorylation; 
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ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related 

protein). These PI3K-like kinases in turn phosphorylate many adaptors and sensors, 

including gamma-H2AX (γH2AX) on serine 139 which recognizes double stranded DNA 

breaks and marks megabase lengths of DNA adjacent to break sites, and checkpoint- 

transducer serine/threonine kinases, Chk1 and 2 (118). Originally thought to obey strict 

phosphorylation dependence, Chk1 on ATR and Chk2 on ATM, crosstalk among these 

kinases have now been documented (119). Activated ATM and ATR, directly 

phosphorylate the p53 transcription factor within its amino-terminal transactivation 

domain, specifically on serine 15. Also, Chk 1 and 2 converge on p53 phosphorylation, 

particularly threonine 18 and serine 20. Serine 15 phosphorylation of p53 inhibits Mdm2 

binding, an ubiquitin ligase that ensures rapid p53 turnover (118). Together these 

modifications lead to the stabilization and subsequent accumulation of p53 protein in 

response to DNA damage.  

Once expressed, p53 functions as an integrator of diverse stress signals into 

different cellular outcomes, including cell cycle arrest, senescence, DNA repair, and 

apoptosis (120) (Figure 1.6B). For example, the transcriptional upregulation of its target 

gene p21Cip1 silences the activation of the Cyclin E/Cdk2 kinase, blocking the 

inactivation of Rb, leading to G1/S-phase cell cycle arrest in an attempt to give time for 

DNA repair mechanisms to repair DNA damage (118). However, the exact response of 

the cell to sustained p53 expression depends on the combination of, among others; cell- 

type, tissue-type, type of stimulus, protein localization, and regulation of target gene 

selection (120). Indeed, in support of the DNA damage response being utilized in the β-

cell, a mouse model deficient in nonhomologous end-joining (NHEJ) and expressing a 
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hypomorphic mutant of p53, defective in apoptosis but not in cell cycle arrest, develops 

diabetes. In these mice, β-cell mass is progressively depleted due to accumulated DNA 

damage (sustained γH2AX expression), promoting a decrease in β-cell proliferation 

through p53/p21-dependent cell cycle arrest (121). In addition, interventions that activate 

the cell cycle in β-cells can also activate cell death pathways. For example, β-cell specific 

overexpression of the oncogene c-Myc in transgenic mice not only increases β-cell 

proliferation, but also increases apoptosis leading to the development of diabetes (122). 

Furthermore, while sufficient to induce progression through one cell cycle, the ultimate 

fate of primary rat β-cells overexpressing E2F1 is apoptosis (114). Multiple demonstrated 

(dedifferentiation, apoptosis, senescence) and potential barriers (DNA damage response) 

to attempted β-cell proliferation exist, and unfortunately, an in vitro protocol for efficient, 

step-wise non-oncogenic stimulation of human β-cell proliferation to completion remains 

elusive.
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Figure 1.6: Challenges that need to be overcome to successfully expand functional β-

cells by proliferation in vitro. 
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Figure 1.6: Challenges that need to be overcome to successfully expand functional β-

cells by proliferation in vitro. (A) To successfully replicate, a sufficiency factor would 

have to (1) enter the cell cycle, and license DNA at each replication origin, (2) properly 

duplicate chromosomal DNA, (3) progress through G2/M- phases, and (4) exit the cell 

cycle. We use this as a model and basis for characterization of potential β-cell mitogens. 

(B) An oversimplified model of the DNA damage response pathway, showing the main 

mediators of the double stranded DNA stimulus to cellular outcome. Briefly, ATM/ATR 

are activated by double stranded DNA damage, and phosphorylate their targets, γH2AX, 

and Chk1/2. Chk1/2 in turn with ATM/ATR stabilizes p53 expression. Depending on 

many variables, p53 can activate diverse processes such as cell cycle arrest, senescence, 

DNA repair and apoptosis. 
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Maturity Onset Diabetes of The Young (MODY) transcription factors 
regulate proliferation and survival in the adult β-cell 
 

Maturity onset diabetes of the young (MODY) is a monogenic form of type 2 

diabetes. The clinical criteria used to characterize MODY include (a) diagnosis before 25 

years of age in at least one family member, (b) autosomal dominant inheritance pattern 

and (c) defects in insulin secretion (123). Mutations in at least six identified genes define 

the molecular genetic etiology of MODY. All encode various transcription factors 

including hepatocyte nuclear factor 4α (HNF4α; MODY1), hepatocyte nuclear factor 1α 

(HNF1α; MODY3), pancreatic and duodenal homeobox 1 (Pdx1; MODY4), hepatocyte 

nuclear factor 1β (HNF1β; MODY5) and neurogenic differentiation factor 1 (NeuroD1; 

MODY6), except for glucokinase (Gck; MODY2), a glycolytic enzyme important for 

glucose sensing (124). The identification of glucokinase as a type 2 diabetes 

susceptibility gene highlights MODY as an attractive model for studying the 

multifactorial polygenic disorder of type 2 diabetes (125). It is now clear that mutations 

in the different MODY genes result in clinical heterogeneity. While the frequency of 

specific MODY gene mutations varies in MODY families from different countries, the 

high percentage of the diabetic phenotype in carriers heterozygous for a MODY mutation 

indicates the high penetrance of all known mutations (126, 127). Since the diabetic 

phenotype of not all MODY families can be explained by the existing MODY genes, 

additional MODY genes have been described such as kruppel-like factor 11 (Klf11; 

MODY 7), carboxyl ester lipase (Cel; MODY8), and paired box 4 (Pax4; MODY9) (126, 

128-130).  
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MODY genes, well known for their role in glucose stimulated insulin secretion, 

have been shown recently to be involved with β-cell mass homeostasis through the 

regulation of proliferation and survival pathways. A recent study indicates that the rate of 

β-cell proliferation is controlled by glycolysis or workload placed on an individual β-cell, 

rather than blood glucose per se, linking together two previously assumed separate 

cellular functions of the β-cell (55). Furthermore, it seems that the modulation of 

glucokinase (MODY2) activity through genetic deletion or pharmacological activation, is 

key to determining the rates of β-cell proliferation during adulthood, high fat diet and 

following β-cell injury (55, 131). However, in line with the known toxicity of high 

concentrations of glucose on β-cells (132), a human patient exhibiting an activating 

mutation in glucokinase exhibits not only enhanced replication but also increased 

apoptosis, although the reason for β-cell death is unknown (57). Indeed, mice 

haploinsufficient for Pdx1 (MODY4) show blunted β-cell mass expansion in response to 

high fat diet through increased endoplasmic reticulum (ER)-stress induced apoptosis 

(133). Also, Pax4 (MODY9) protects adult β-cells from stress-induced apoptosis (134). 

Together these studies of MODY genes demonstrate the importance of further identifying 

molecular players leading to β-cell proliferation and/or β-cell survival during times of 

increased metabolic demand. 
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Hepatocyte Nuclear Factor- 4α: The MODY1 Gene, β-cell function and 
β-cell proliferation 
 

Hepatocyte nuclear factor 4α (HNF4α) is a highly conserved family member of 

the nuclear receptor superfamily of transcription factors. A typical nuclear receptor is 

characterized by a variable amino-terminal transactivation domain (AF-1; A/B region), a 

conserved zinc-finger DNA binding domain (DBD) (C region), a hinge domain (D 

region), a conserved ligand binding domain (LBD) containing a second (AF-2) 

transactivation domain (E region), and an inhibitory carboxy-terminal domain (F region) 

(135). The members of the nuclear hormone superfamily can be categorized based on the 

following criteria: protein dimerization, structure of the cognate DNA binding site, and 

intracellular localization. HNF4α is thought to define a distinctive subclass of nuclear 

receptors, defined by stable homodimerization, predominantly nuclear localization, and a 

binding preference for direct repeats of a hexamer half-site (DR+1 element) (136). While 

the classical model of nuclear receptor transcriptional activation requires ligand binding 

to induce a conformational change in the LBD that recruits co-activator complexes (137), 

questions remain whether HNF4α transcriptional activity is always ligand- dependent. 

The mechanism by which HNF4α is transcriptionally activated is unclear. The 

crystal structure of the hydrophobic ligand binding domain of bacterially expressed 

HNF4α has been solved, and demonstrates the ability of the binding pocket to 

irreversibly hold various fatty acids (138). However, further structural studies on 

bacterially expressed HNF4α show that co-activator binding and not the binding of a 

ligand determines the active confirmation of the α-helix containing the AF-2 domain 

(139). Indeed, HNF4α functionally interacts with the co-activator PGC-1α independent of 



  
 

40 

the addition of exogenous ligand to transcriptionally activate the promoter of the 

gluconeogenic gene PEPCK in vitro (140). Also, tyrosine phosphorylation can affect the 

potential of HNF4α to bind to DNA and its localization within the nucleus (141). The 

recent use of mammalian cell lines and tissues identified linoleic acid (LA), a single 

polyunsaturated fatty acid obtained from the diet, as an endogenous ligand for HNF4α. 

While significant ligand-independent transcriptional activity of HNF4α was observed, 

linoleic acid binding was found to be bound to HNF4α in the livers of fed and not fasted 

mice (142). This demonstrates that its linoleic acid binding is reversible in vivo, 

suggesting that in addition to being a nuclear receptor, HNF4α is a potential drug target. 

While physiological function of linoleic acid is not known, the mechanism of HNF4α 

activation might be dependent on physiological context as described for other pancreatic 

transcription factors, for example FoxA2 (143). 

 Although the mechanism underlying HNF4α transcriptional activity is still 

controversial, its physiological role is clear. HNF4α is expressed primarily in the liver, 

gut, kidney and pancreas (144). At least six isoforms of HNF4α exist and their tissue 

specific expression is accomplished by a proximal promoter (P1) and an alternative 

promoter (P2) located 46kb upstream of P1 (145). Specifically, HNF4α isoforms 7-9 are 

expressed in adult pancreas, and not adult liver via utilization of the P2 promoter (Figure 

1.7) (146). The clinical phenotypes of patients with MODY1 reflect either a pancreas 

defect characterized by progressive loss of insulin secretion in response to a glucose and 

arginine challenge (147) or a liver defect described as impaired lipid homeostasis prior to 

hyperglycemia (148). To investigate whether the loss of insulin secretion might reflect a 

primary defect in MODY1 patients and not a long term consequence of loss of HNF4α in 
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other tissues, a mouse model that specifically ablates HNF4α in the β-cell 

(HNF4αLoxP/LoxP; Insulin.Cre) was utilized. These adult mice were glucose intolerant, and 

exhibited diminished insulin release in response to glucose and sulfonylureas. 

Furthermore, HNF4α was required for the expression for potassium channel subunit 

Kir6.2, clearly demonstrating that HNF4α is required in the pancreatic β-cell for the 

maintenance of glucose homeostasis in vivo. In addition, the lack of overt diabetes in this 

mouse model makes it likely that contributions from other HNF4α-deficient metabolic 

organs are required for the progression to type 2 diabetes in MODY1 patients (149). 

Interestingly, the mild hypoglycemia and elevated tonic insulin secretion seen in these 

mice reflect the clinical phenotypes of children born haploinsufficient for HNF4α, later 

evolving into diabetes due to reduced insulin secretion (150). 

Indeed, in addition to loss-of-function mutations found near the P2 promoter of 

the HNF4α locus in MODY1 families (151), there is evidence that variants in the 

regulatory regions of HNF4α contribute to type 2 diabetes risk in specific human 

populations. For example, single nucleotide polymorphism (SNP) markers were 

genotyped in case and control DNA pools from sibling-pair families in Finland. To 

eliminate cases of type 1 diabetes and MODY, diabetes age-of-onset was constrained to 

greater than 35 years of age. 291 SNPs were discovered at 20q13, the chromosomal 

location of the HNF4α locus, of which ten showed association with diabetes disease 

status (Figure 1.8). The two SNPs that showed the strongest association with diabetes 

status, rs1884613 and rs2144908, flank the β-cell specific P2-promoter. Furthermore, 

analysis of unaffected offspring carrying at least one copy of the rs2144908 risk allele 

exhibited lower acute insulin response to glucose as detected by an oral glucose tolerance 



  
 

42 

test, consistent with known HNF4α function in the β-cell (152). Strikingly, similar 

findings were found in independent and candidate gene studies of Ashkenazi Jewish 

(153), Mexican American (154), and Danish populations (155), suggesting that genetic 

variation near the promoters of HNF4α might predict susceptibility to late onset diabetes.  

A role in β-cell proliferation can also be extended to HNF4α (MODY1). While β-

cell mass is unchanged during normal conditions in the β-cell specific ablation of HNF4α 

(149), there is a defect in β-cell expansion that normally occurs in response to pregnancy 

leading to further glucose intolerance. Specifically, HNF4 is required in β-cells for the 

proliferative response of pregnancy through activation of the Ras/ERK signaling cascade. 

The down regulation of suppression of tumorigenicity 5 (St5), a novel positive regulator 

of ERK signaling in β-cells and a direct transcriptional target of HNF4α, contributes to 

the reduction of ERK activation caused by HNF4α deficiency (156). Its membership in 

the nuclear receptor family, expression of islet-specific isoforms, and its required role in 

β-cell proliferation during pregnancy, makes HNF4α an attractive potential β-cell 

mitogen warranting future investigation. 
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Figure 1.7: HNF4α isoforms and their functional domains. 
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Figure 1.7: HNF4α isoforms and their functional domains. The nuclear receptor 

HNF4α is located on human chromosome 20q13.1-13.2, and has two promoters (P1 and 

P2). At least 6 isoforms of HNF4α are generated by differential use of the promoters and 

varying splicing events specific to the C-terminus. Representative protein structures of 

P1- and P2- derived HNF4α isoforms are shown. Isoforms 1-3 are derived from the P1 

promoter and expressed in the adult liver, kidney, intestine, and colon. Isoforms 7-9 are 

derived from the P2 promoter and expressed in the fetal liver, adult intestine, adult colon 

and adult pancreas. HNF4α contains different protein domains: an amino-terminal 

transactivation domain (AF1; green), a conserved zinc-finger DNA binding domain 

(DBD; blue), and a ligand binding domain (LBD; red) containing a second (AF-2; light 

red) transactivation domain. P2 derived transcripts do not contain the AF1 domain in the 

amino-terminal domain, indicated as dark green. 
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Figure 1.8: Location of SNPs associated with late-onset type 2 diabetes in the 

HNF4α locus. 



  
 

46 

 
Figure 1.8: Location of SNPs associated with late-onset type 2 diabetes in the 

HNF4α locus. This illustration was taken from (157). Shown here are ten SNPs 

associated with late-onset type 2 diabetes in the Finnish and Ashkenazi Jewish 

populations along with their locations relative to the P2 promoter (152, 153). Highlighted 

in the red boxes are two SNPs that are most commonly associated with diabetes disease 

status across various populations, rs2144908 and rs1884613. 

 
Note: This illustration has been published in TRENDS in Molecular Medicine in a 

Review article entitled, 

 
HNF-4alpha: from MODY to late-onset type 2 diabetes.  
 
Gupta, R.K., and Kaestner K.H. 2004. HNF-4alpha: from MODY to late-onset type 2 
diabetes. Trends Mol Med 10:521-524. 
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Summary and Specific Aims 
 
 Generating new β-cells de novo as a cellular therapy is a realistic long term goal 

for treatment for diabetes mellitus. One approach is to use instructive cues to induce 

proliferation of terminally differentiated β-cells. However, a well-defined protocol to 

drive efficient non-oncogenic proliferation of human β-cells in vitro remains elusive. 

Presently, the molecular mechanisms that control the expansion of β-cell mass during 

physiological states of insulin resistance such as occurs during pregnancy are poorly 

understood. I propose that a more complete knowledge of the mechanisms and factors 

that govern physiological β-cell expansion can help translate into an effective and defined 

human protocol for the generation of fully functional β-cells through the replication of 

pre-existing β-cells. 

 The following chapters will describe the results of a microarray experiment 

designed to examine the gene expression signature of the islet during pregnancy in mice, 

and an attempt in evaluating the ability of HNF4α as a human β-cell mitogen. The goal 

of these experiments is to (1) determine what mechanisms are involved in 

controlling islet replication during pregnancy in vivo in mice and (2) assess the 

consequence of the overexpression of a pancreas specific isoform of HNF4α on 

human β-cell proliferation in vitro. These experiments will identify many novel genes 

involved in islet expansion during pregnancy, clarify the mechanisms associated with 

general islet expansion, validate HNF4α‟s role in human β-cell proliferation and uncover 

the DNA damage response as a cell cycle progression inhibitor in human β-cells in vitro. 
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Note: Portions of this chapter have been published in TRENDS in Endocrinology and 

Metabolism as a Review article entitled, 

Expansion of β-cell mass in response to pregnancy. 

Rieck S, Kaestner KH. Trends Endocrinol Metab. 2010 Mar; 21(3):151-8. 
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Abstract  

 The inability of the β-cell to meet the demand for insulin brought about by insulin 

resistance leads to type 2 diabetes. In adults, β-cell replication is one of the mechanisms 

thought to cause the expansion of β-cell mass. Efforts to treat diabetes require knowledge 

of the pathways that drive facultative β-cell proliferation in vivo. A robust physiological 

stimulus of β-cell expansion is pregnancy, and identifying the mechanisms underlying 

this stimulus may provide therapeutic leads for the treatment of type 2 diabetes. The peak 

in β-cell proliferation during pregnancy occurs on day 14.5 of gestation in mice. Using 

advanced genomic approaches, we globally characterize the gene expression signature of 

pancreatic islets on day 14.5 of gestation during pregnancy. We identify a total of 1,907 

genes as differentially expressed in the islet during pregnancy. The islet‟s ability to 

compensate for relative insulin deficiency during metabolic stress is associated with the 

induction of both proliferative and survival pathways. A comparison of the genes induced 

in three different models of islet expansion suggests that diverse mechanisms can be 

recruited to expand islet mass. The identification of many novel genes involved in islet 

expansion during pregnancy provides an important resource for diabetes researchers to 

further investigate how these factors contribute to the maintenance of not only islet mass, 

but ultimately β-cell mass. 
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Introduction 

The onset of type 2 diabetes in both human and rodent models is accompanied by 

a progressive decrease in β-cell mass, resulting from increased β-cell apoptosis (1). Many 

physiological and pathophysiological states such as pregnancy, nondiabetic obesity, 

aging, genetic insulin resistance, and acute illness increase systemic insulin demand (2). 

In order to compensate for relative insulin deficiency, pancreatic β-cells dynamically 

expand their mass. Although insulin resistance arises during metabolic stress, it is the 

inability of the β-cell to meet the demand for insulin that ultimately leads to type 2 

diabetes. 

Whereas the ability of the adult pancreas to modulate β-cell mass has been clearly 

demonstrated, at least in rodents, there is controversy regarding the mechanisms 

underlying the expansion of β-cell mass. These mechanisms include replication of pre-

existing β-cells, differentiation of progenitors within the ductal epithelium, 

transdifferentiation of acinar cells, and differentiation of pancreatic stem cells and/or 

progenitors that are not of β-cell, ductal or acinar origin (3). Recent studies indicate that 

during adulthood the great majority of new β-cells in mice are derived through replication 

or pre-existing β-cells and few, if any, newly formed β-cells stem from progenitor cell 

populations (4). Only under extreme conditions is the fetal differentiation program, 

involving the basic helix loop helix factor Ngn3, reactivated in the adult mouse (5), 

indicating that terminally differentiated rodent β-cells retain a significant capacity to 

proliferate in vivo. 

Adult β-cells undergo very little turnover and are estimated to have an average 

lifespan of approximately 60 days in the mouse (6), with turnover being even rarer in 
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islets of adult humans (7). Therefore, it is often necessary to introduce a metabolic stress 

that increases the demand for insulin in order to expose the effects of mutations affecting 

β-cell expansion. Such an approach has been used to study the role of Pdx1 (8) and 

Hnf4α (9) in the maintenance of β-cell mass.  

One of the most robust physiological stimuli of β-cell expansion is pregnancy. 

Studies in rats demonstrated that β-cell proliferation increases dramatically during 

pregnancy, with a peak occurring about two-thirds of the way through gestation and 

returning to prepartum levels after day 18.5, as assessed through BrdU incorporation into 

DNA (10). This peak in proliferation coincides with the peak of placental lactogen levels. 

However, it remains unclear which mechanisms specifically drive β-cell replication 

during pregnancy in vivo. In this study we systematically uncover pathways and factors 

underlying the islet‟s proliferative response to pregnancy in vivo, because these targets 

might be exploited in the treatment of diabetes. 
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Results 
 
β-cell proliferation and β-cell hypertrophy dramatically increase β-cell mass during 

pregnancy 

To rigorously examine the modulation of β-cell mass in the adult mouse during 

pregnancy, we assessed β-cell mass in both non-pregnant control and pregnant female 

mice specifically at day 14.5 of gestation, corresponding to the peak bromodeoxyuridine 

(BrdU) labeling in the rodent (10). Using morphometric analysis, we found that β-cell 

mass was increased 3.8 times on day 14.5 of pregnancy compared to non-pregnant 

controls (Figure 2.1A). The increase in β-cell mass was strongly correlated with increased 

BrdU incorporation into DNA. On average, non-pregnant controls exhibited 1.14 BrdU-

positive cells per islet crosssection and 1.04% of all islet nuclei were BrdU-positive. 

Conversely, BrdU labeling was increased to 4.02 BrdU-positive cells per islet 

crosssection and 3.58% of cells on day 14.5 of gestation (Figure 2.1B-C). In pregnant 

animals almost all islets contained at least one BrdU-positive cell, but many contained 

five to ten or even more BrdU-positive cells (Figure 2.1D). Insulin and BrdU 

immunostaining confirmed that it was indeed β-cells that were proliferating (Figure 2.2A-

F). Figure 2.2 also illustrates the appearance of doublet BrdU stained nuclei, showing an 

increase of newly formed daughter cells, specifically as a result of β-cell mitosis. Ki67 

antigen detection also confirmed the dramatic increase in β-cell proliferation on day 14.5 

of gestation (Figure 2.2G-H), and closely mirrored a 4.8-fold increase in mKi67 mRNA 

expression (data not shown). In addition, the expression levels of cyclin A2, B1, B2, D3, 

E1, F and Cdk4 were significantly increased, while expression of Cdk6 and Cdk7 was 

significantly decreased as compared to islets from control mice (Figure 2.1G). 
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Concurrently with β-cell proliferation, β-cell hypertrophy occurred (Figure 2.2I-J), as β-

cell size, as measured by volume was increased approximately three times on day 14.5 of 

pregnancy (Figure 2.1E) with an overall shift towards larger β-cells (Figure 2.1F). 
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Figure 2.1: β-Cell proliferation with β-cell hypertrophy dramatically increase β-cell 

mass at day 14.5 of pregnancy in mice. 
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Figure 2.1: β-Cell proliferation with β-cell hypertrophy dramatically increase β-cell 

mass at day 14.5 of pregnancy in mice. (A) β-Cell mass of nonpregnant and pregnant (d 

14.5) mice (n = 3–4/group; *, P < 0.05 vs. nonpregnant control). Quantification of (B) 

BrdU-positive cells per islet (n = 4–5; *, P < 0.03 vs. control), (C) BrdU-positive cells as 

% of total nuclei (n = 4–5; *P < 0.01 vs. control), and (D) percentage of islets with 

certain number of BrdU-positive cells. Determination of (E) β-cell size and (F) 

percentage of islets with certain β-cell size (n = 4–5; *, P < 0.05 vs. control). Gene 

expression changes (G) of cell cycle regulators (n = 4–5; *, P < 0.05 vs. control). AU, 

Arbitrary units; pos., positive. 
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Figure 2.2: Histological analysis of β-cell proliferation, hypertrophy, and mass at 

day 14.5 during pregnancy. 
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Figure 2.2: Histological analysis of β-cell proliferation, hypertrophy, and mass at 

day 14.5 during pregnancy. Insulin staining (A) and BrdU incorporation into β-cells (C) 

of pregnant mice, insulin (B) and BrdU (D) staining of nonpregnant female mice, and 

BrdU staining of pregnant (E) and nonpregnant (F) mice (×20). Ki67 staining of pregnant 

(G), and nonpregnant (H) mice, dual fluorescent staining of cell surface marker E-

cadherin (red) and insulin (green) of pregnant (I) and nonpregnant (J) mice. 
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Identification of differentially expressed genes throughout pregnancy in the islet 

Whereas the dramatic proliferative response of the pancreatic β-cell that occurs 

during pregnancy has been known for some time (10), no systematic study that 

investigates the expression profile of this response has been reported thus far. To 

elucidate additional physiologic factors important for driving β-cell specific expansion 

during pregnancy in vivo, we isolated total RNA samples from islets of 4-5 month-old 

non-pregnant controls and pregnant (at day 14.5 of gestation) females for large-scale 

expression profiling. Quantitative RT-PCR (qPCR) was used to determine the relative 

levels of endocrine (prohormone convertase-2) and exocrine (amylase and 

chymotrypsinogen) gene expression levels in each sample, minimizing differential gene 

expression originating from the islet preparation technique. Using SAM (Significance 

Analysis of Microarrays), we identified nearly 2,000 genes that were differentially 

expressed in islets on day 14.5 of gestation when compared to non-pregnant controls. 

qPCR confirmation of selected significantly differentially expressed genes agreed with 

the great majority of the microarray data (Table 2.3). Many of the genes identified in our 

analysis have not been previously reported to play a role in β-cell expansion, and include 

key enzymes involved in serotonin biosynthesis (Tph1/2), Itk, Gdf3, Tnfrsf11b, Ngfr, 

Bmp1, Cish, Socs2, Ilrn, Pax8, Hopx, Birc5, Nupr1 and the potential cell cycle regulators 

Fbwx15, Fbxl17, Fbxl21, Fbxo27. Factors linked to β-cell neogenesis and islet 

regeneration (Reg3a, Pap) were also significantly upregulated during pregnancy day 14.5 

(11). In addition, not only are these genes differentially expressed concurrently with the 

peak of β-cell proliferation, but, for the 18 genes tested, also at day 10.5 when β-cell 
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replication is thought to initiate (Figure 2.4A-R). The majority of genes are also 

differentially expressed during 18.5 possibly reflecting potential further roles in the islet 

during pregnancy independent from replication. 
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Table 2.3: Most differentially expressed genes during pregnancy day 14.5. 
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Figure 2.4: Temporal gene expression analysis of selected differentially expressed 

genes throughout pregnancy. 
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Figure 2.4: Temporal gene expression analysis of selected differentially expressed 

genes throughout pregnancy. (A–R) Gene expression changes for each respective gene 

during d 10.5, d 14.5, and d 18.5 during pregnancy (n = 4–5 per time point; *, P < 0.05; 

#, P < 0.09). 



  
 

76 

 

Differentially-expressed genes are present in β-cells 

 To investigate whether the expression of differentially expressed genes during 

pregnancy we found in islets are expressed in β-cells, we used Mip-GFP (mouse insulin 

promoter- green fluorescent protein) transgenic mice to enrich for β-cells (12). We 

prepared single-cell suspensions from isolated islets and separated GFP+ β-cells from 

GFP- non-β-cells, by fluorescence-activated cell sorting. Although sorting of GFP+ and 

GFP- fractions was successful (Figure 2.5), significant levels of Insulin and Pdx1 mRNA 

were present in the GFP- fractions, at levels many orders of magnitude higher than RNA 

isolated from wildtype livers (Figure 2.6A-B). This indicates that not all β-cells in Mip-

GFP mice express high enough GFP to allow for sorting. Despite this limitation, we 

observed significantly elevated expression of a panel of genes in GFP+ compared to 

GFP- cells derived from pregnant 14.5 islets for all genes except Gdf3 (Figure 2.6E-O). 

This confirms that the majority of the islet-specific differentially expressed genes 

described above are indeed expressed in β-cells during pregnancy, and is consistent with 

their proposed role in regulating β-cell replication during gestation.  



  
 

77 

 

Figure 2.5: Separation of GFP+ and GFP- populations from Mip-GFP mice. 
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Figure 2.5: Separation of GFP+ and GFP- populations from Mip-GFP mice.  

 (A) SSC (side scatter) is proportional to cell complexity and depends on the number of 

organelles inside the cell. FSC (forward scatter) correlates with cell size. GFP 530/30-A 

measures strength of an individual cell‟s GFP intensity. (A-D) Freshly isolated islets 

from CD1+ female mouse (no GFP expression) were used to calibrate the cell sorter 

before GFP sorting began. (E) Plotting both SSC and FSC shows all cells collected as 

shown by the highlighted gate. (F) Only singlet or non-aggregated cells were used for 

efficient cell sorting. (G-H) Two distinct populations of cells were collected separately 

for further analysis.  



  
 

79 

 

Figure 2.6: Differentially expressed genes identified in the islet are expressed in β-

cells during pregnancy day 14.5. 
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Figure 2.6: Differentially expressed genes identified in the islet are expressed in β-

cells during pregnancy day 14.5. Gene expression changes for insulin (A) and Pdx1 (B) 

in wild-type liver, pregnant d 14.5 GFP− and pregnant day 14.5 GFP+ single-cell 

fractions. (C–O) Gene expression levels of selected genes in pregnant day 14.5 GFP− 

compared with pregnant day 14.5 GFP+ single-cell fractions (n = 3 per fraction; *, P < 

0.05). 
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Although both proliferative and survival signals are required for islet expansion, the 

mechanisms to attain increased islet mass differ between pregnancy, obesity, and β-

cell injury models 

To identify specific pathways and mechanisms that potentially contribute to β-cell 

proliferation observed during day 14.5 of pregnancy, we analyzed our expression data 

with the Database for Annotation, Visualization and Integrated Discovery (DAVID), 

which is specifically designed to systematically extract biological meaning from large 

gene lists (13). Among the biological functions demonstrating significant enrichment 

between the genes differentially expressed in islets during pregnancy, 228 genes are 

involved in processes relating to cellular proliferation, and 60 with apoptosis. 

Interestingly, other functions enriched during pregnancy day 14.5 include antioxidation 

and free radical removal, vesicle mediated transport, ubiquitin cycle, proteolysis, and 

chromatin packaging and remodeling (Table 2.7). Gene Set Enrichment Analysis (GSEA) 

identified gene sets up-regulated during pregnancy involved in both tryptophan 

metabolism and ERK pathway (data not shown) (14).  

Functional characterization of genes differentially expressed during pregnancy 

day 14.5 suggests that the islet‟s ability to compensate during metabolic stress requires 

the simultaneous induction of both proliferative and survival pathways. During 

pregnancy the increase in proliferation specifically in the β-cell is accompanied by a 5-

fold increase in Birc5 gene expression in the islet (Table 2.3). Conditional deletion of 

Birc5, an inhibitor of apoptosis, specifically in the endocrine pancreas showed a severe 

inability to maintain normal postnatal β-cell mass throughout adulthood in vivo (15). We 
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hypothesized that simultaneous induction of Birc5 expression in the islet with β-cell 

proliferation during other models of β-cell expansion is essential for the ability of the islet 

to expand its mass in response to diverse metabolic stressors. To address this issue, we 

assessed mKi67 and Birc5 gene expression in two additional β-cell expansion models: the 

diabetes-resistant B6 leptinob/ob and diabetes-susceptible BTBR leptinob/ob mice (16), and 

the PANIC-ATTAC transgenic mouse model of inducible and reversible β-cell ablation 

(17). Leptin-deficient B6 mice that remain non-diabetic, irrespective of obesity, were able 

to induce the expression of both mKi67 and Birc5 throughout obesity both at 4 and 10 

weeks of age (Figure 2.8A). In contrast, while initially able to significantly induce Birc5 

expression at 4 weeks, the 10 week old BTBR leptinob/ob mice were unable to induce the 

expression of either gene, in part accounting for the onset of severe diabetes that this age 

(16). The expression of Birc5 was significantly greater in the 10 week B6 leptinob/ob 

compared to the 10 week BTBR leptinob/ob mouse (Figure 2.8A).  

β-cell mass is reversibly ablated by activation of caspase-8 mediated apoptosis in 

the PANIC-ATTAC model, and recovers in 30 days to pre-treatment levels even in the 

face of severe hyperglycemia (17). Islet proliferation was assessed by mKi67 gene 

expression, showing a significant increase on day 8, with expression returning back to 

normal levels by day 30. Birc5 expression closely mirrored the proliferative profile 

during the recovery of β-cell mass (Figure 2.8C), suggesting the ability to successfully 

expand islet mass during pregnancy, obesity, or in the setting of injury-induced diabetes 

requires both the induction of both islet proliferation and survival pathways. 

Given the divergent physiologic contexts of pregnancy, obesity and experimental 

β-cell ablation, the molecular mechanisms responsible for both the compensatory 
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increase in islet mass response are probably distinct. To address this issue, using qPCR, 

we compared the expression of selected genes most differentially expressed during 

pregnancy day 14.5 to two other models of β-cell expansion: the 10 week old diabetes-

resistant B6 leptinob/ob mouse and the PANIC-ATTAC transgenic mouse. Whereas the 

expression of some genes such as Tnfrsf11b and Hopx significantly increased, the 

majority of gene expression did not change, declined, or was not detectable during 

obesity (Figure 2.8B). Genes whose temporal gene expression significantly changed 

during β-cell recovery after injury included Itk, Tnfrsf11b, Il1rn, Rasgrp1, and Ngfr with 

the majority of gene changes occurring on day 8, the peak of proliferation (Figure 2.8D-

E). Again, the majority of gene expression profiles did not change or declined in the 

PANIC-ATTAC model (Figure 2.8E). Interestingly, Birc5, and Tnfrsf11b induction is 

connected to all three in vivo models of β-cell mass expansion analyzed. However, the 

dramatic differences in gene induction occurring between pregnancy, obesity-induced β-

cell compensation, and recovery from β-cell ablation suggest that diverse mechanisms 

can be utilized by the β-cell to expand its mass. 
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Table 2.7: Gene Ontology (GO) functions significantly enriched during pregnancy 

day 14.5. 
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Figure 2.8: Gene expression profiles differ between the pregnancy, obesity, and β-

cell injury models of β-cell regeneration. 
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Figure 2.8: Gene expression profiles differ between the pregnancy, obesity, and β-

cell injury models of β-cell regeneration. (A) Strain-dependent comparison of mRNA 

expression of both mKi67 and Birc5 between both 4- and 10-wk-old B6ob/ob and 

BTBRob/ob leptin-deficient mice and lean controls (n = 5–7 per strain; *, P < 0.05 vs. 

respective lean control; #, P = 0.055; $, P = 0.08). (B) Expression of selected 

differentially expressed genes identified in the pregnancy paradigm during obesity at 10 

wk in the B6 strain (n = 5–7 per strain; *, P < 0.05 vs. lean control; &, not detectable). 

(C) Temporal gene expression of mKi67 and Birc5 before (d 0), after (d 30), and during 

(d 8) recovery from chemically induced β-cell ablation. (D and E) Temporal gene 

expression of selected pregnancy-induced genes during recovery from chemically 

induced β-cell ablation in the PANIC-ATTAC model (n = 4–5 per time point; *, P < 0.05 

vs. day 0). 
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Discussion 

The ability for the β-cell to compensate for an increased insulin demand includes 

not only an increase in insulin secretion, but also an expansion of β-cell mass by 

modulating the balance between both β-cell proliferation and apoptosis. Here we 

investigated the global gene expression profile of the expanding islet during pregnancy at 

the peak of β-cell proliferation. We identified nearly 2,000 genes that are differentially 

expressed at this time when compared to non-pregnant controls. Several of the genes 

observed to be differentially expressed during pregnancy are known to function in the 

maintenance of β-cell mass, including not only c-Myc, Cdk4, but both Prl2c5, and Prlr, 

consistent with the known role of placental lactogens during pregnancy-induced β-cell 

mass expansion (18-21). Strikingly, many of the genes identified in our analysis have not 

been previously reported to play a role in islet expansion. 

One of the most significantly regulated genes was the F-box and WD-40 domain 

protein 15 (Fbxw15). F-box proteins have been identified as substrate recognition 

components of the multi-subunit ubiquitin ligase SCF (SKP1-CUL1-F-box protein) and 

contribute to the regulation of cell cycle progression and cell fate via the ubiquitylation 

and consequent degradation of many cell cycle inhibitors such as p27 (22) and Cyclin D1 

(23). Differential expression of other F-box family members (C85627, Fbxw14, Fbxl17, 

Fbxl27, and Fbxo27) also occurs during pregnancy, signifying that tight regulation of 

specific cell cycle proteins by way of proteosomal protein degradation is a crucial process 

in the islet‟s adaptive ability response to metabolic stress. 
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Surprisingly, expression of key serotonin synthesizing enzymes, tryptophan 

hydroxylase 1 and 2 (Tph1/2), were strongly induced during pregnancy. In Drosophila, 

serotonergic neurons in the brain were shown to control body size by regulating the 

Insulin/IGF pathway in peripheral tissues (24). In mice gene ablation studies deletion of 

only the 5-HT2C receptor produces insulin resistance and type 2 diabetes (25), resulting to 

the extensive development of 5-HT2C receptor agonists which improve glucose 

homeostasis in leptin-deficient obese mice (26). Serotonin itself has been shown to 

enhance insulin synthesis and secretion on primary rat islets in vitro (27). However, 

though the relatively elevated presence of serotonin in pancreatic islets has been known 

for years (28), a specific growth related role in β-cells remains to be established. 

We demonstrate by utilizing three different models of β-cell expansion that both 

the islet‟s and β-cell‟s ability to respond to different metabolic stresses is associated with 

both an increase in proliferation and survival mechanisms, supported by increases mKi67 

and Birc5 gene expression. β-cell specific overexpression of c-Myc in mice causes 

increased β-cell proliferation, but also apoptosis leading to the development of diabetes 

(29). Conversely, deletion of Caspase 3 protects the β-cell from c-Myc induced apoptosis 

and diabetes, supporting the notion that the β-cell‟s ability to compensate during 

metabolic stress requires the simultaneous induction of both proliferative and survival 

pathways (30). For example, dysregulation of this homeostatic control of β-cell mass, 

based on the relative contribution of cell proliferation and cell death, is not only a major 

contributor to gestational diabetes, but also the onset of type 2 diabetes, because 70% of 

women who are diabetic during pregnancy develop type 2 diabetes later in life (31). Our 
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pregnancy gene list shows potential signaling factors involved in coordinating both of 

these processes not only in the islet, but potentially in the β-cell itself. 

Both Cish and Socs2, members of the suppressor of cytokine signaling (SOCS) 

family of proteins, have been shown to act as negative regulators of a variety of tyrosine 

kinases and receptors impacting β-cell proliferation in vitro, including Prlr (32) and Igf1r 

(33), via a negative feedback loop and proteosomal degradation mechanisms, inhibiting 

their downstream Janus family of tyrosine kinase 2/signal transducer and activator of 

transcription signaling cascades. Cish and Socs2 are known to decrease activation of 

Stat5 (32, 34), whose gene products induce proliferative (Cyclin D2), anti-apoptotic (Bcl-

xL, Bcl6) (35-37) and functional mechanisms (Gck, Glut2, Insulin) (38, 39). This 

suggests that the high levels of Cish and Socs2 expression observed during pregnancy 

play a critical role in limiting the rate of cell proliferation and promoting survival of β-

cells. Conversely, during obesity the gene expression levels of Cish and Socs2 

significantly decrease in the B6 leptinob/ob mouse at 10 weeks, suggesting an enhancement 

of these properties during a more chronic metabolic stress (Figure 2.8A). Additionally, 

Socs7-deficient mice display enlarged islets and increased insulin function, consistent 

with the notion that this family has a role in regulating β-cell mass in the adult mouse 

(40).  

Additionally, our comparison of the three paradigms of β-cell expansion suggests 

that diverse mechanisms can be utilized by the islet to expand its mass. The majority of 

genes investigated are not similarly induced between models, strongly suggesting that not 

only does the β-cell have the ability to modulate its mass to cope with metabolic demand, 

but can also activate diverse signaling mechanisms depending on the physiological 
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condition. In support of this notion, several surprising mechanisms controlling β-cell 

mass homeostasis through bone-derived signals (41), and transmission of pro-

proliferative signals from the liver via the peripheral and central nervous system to the β-

cell (42) have been described recently. Conversely, Birc5 and Tnfrsf11b are commonly 

induced in all three models of β-cell expansion, suggesting they act as universal 

mediators of β-cell expansion. Recently, Birc5 has been shown to exhibit a β-cell specific 

and bifunctional role important in both attenuation of β-cell proliferation and inhibition of 

apoptosis in vivo (15). We show that Birc5 closely mirrors the proliferative profile 

(mKi67) throughout the β-cell injury time course (Figure 2.8C), providing additional 

evidence to suggest that Birc5 is a critical component of the mechanism for maintaining 

β-cell homeostasis, not only physiologically, but also in the setting of diabetes.  

Tnfrsf11b (Osteoprotegerin) is a secreted and soluble member of the tumor 

necrosis factor (TNF) receptor superfamily (43). Tnfrsf11b has anti-apoptotic properties 

in β-cells (44), and overexpression of this osteoblast-derived factor in islets suggests 

regulation of β-cell expansion by peripheral tissues, a mechanism supported by 

transplantation studies in mice (45). In support of this notion, osteocalcin, a peptide 

secreted by osteoblasts in the bone, affects energy metabolism, by increasing β-cell 

proliferation, insulin secretion, and insulin sensitivity (41). We hypothesize that 

Tnfrsf11b is an additional bone-derived hormone that exhibits a pro-proliferative effect 

on β-cells during pregnancy. In addition, Keller et al. (16) identified genes in insulin 

target tissues, specifically muscle, with expression profiles highly correlated to the islet 

cell cycle regulatory module activated during obesity, including several genes induced in 

islets during pregnancy, Ngf, Bmp1, and Gdf10 (Gdf3 during pregnancy), suggesting 
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these as further candidates for potentially mediating β-cell proliferation. The upregulation 

of TGF-β family members, Bmp1, Alk7 and Gdf3 is consistent with their already known 

role in establishment of β-cell mass (46, 47). 

 In conclusion, we identified a large number of genes correlating with both the 

initiation and peak of β-cell proliferation during pregnancy in the mouse. Additionally, 

we confirmed that many of the genes are expressed in the β-cell, and provide a platform 

for diabetes researchers to further explore their role in the maintenance of β-cell mass. 

 

Note: The data presented in this chapter has been published in Molecular Endocrinology 

as an Original Research Article entitled,  

 
The Transcriptional Response of the Islet to Pregnancy in Mice. 

Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, Gupta RK, Wang ZV, Scherer 
PE, Keller MP, Attie AD, Kaestner KH. Mol Endocrinol. 2009 Oct;23(10):1702-12. 
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Materials and Methods 

β-cell mass, β-cell proliferation, β-cell hypertrophy. For histological assessment, 

pancreata were dissected, fixed in 4% PFA for 24 hr, and then laid flat for paraffin 

sectioning. Sections with the greatest surface area were used in all experiments. β-cell 

mass was determined on 4 month-old non-pregnant and pregnant (at day 14.5 of 

gestation) female mice by point-counting morphometry as previously described (9). 

Sections from each animal were stained with guinea pig anti-insulin antibody (1:1000; 

Linco Research, Inc, St. Charles, MO) diluted in phosphate-buffered saline plus 0.1% 

Tween and incubated overnight at 4°C. The secondary antiserum was a biotinylated anti-

guinea pig antibody (1:200; Vector Laboratories). For color development, horseradish 

peroxidase-conjugated avidin-biotin complex reagent was used with 3,3‟-

diaminobenzidine as a substrate (Vector Laboratories, Burlingame, CA). Images covering 

the entire section were used from which the percentage of β-cell area was measured and 

calculated using MetaMorph Imaging Software (Universal Imaging Corp., West Chester, 

PA). β-cell mass was derived from total pancreas weight multiplied by percentage of β-

cell area (9). For β-cell proliferation measurements, mice were injected with 10µL of 

Zymed BrdU Solution (3mg/mL; Zymed Laboratories, Inc., South San Francisco, CA) 

per gram body weight 24 hr before they were euthanized. BrdU staining was assessed 

using a BrdU-specific sheep monoclonal antibody (1:1000; United States Biochemical 

Corp., Cleveland, OH) as described (9). In addition, Ki67 antigen detection using a Ki67-

specific rabbit monoclonal (1:2000; Vector Laboratories) antibody was employed to 

confirm β-cell proliferation assessment. For β-cell size determination, the same slides 

used for BrdU incorporation were used to determine the volume and number of nuclei for 
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each islet via ImageJ Software (Image Processing and Analysis in Java; National 

Institutes of Health). At least 20 islets per pancreas from at least four mice per 

experimental group were analyzed for determining β-cell size and proliferation. 

RNA isolation and qPCR. Adult islets for all experiments were prepared using the 

standard collagenase procedure, as previously described (9). Total RNA was isolated 

using the RNeasy Mini Kit (QIAGEN, Chatsworth, CA) and eluted in water. 200ng of 

total RNA of each sample were amplified using the MessageAmp aRNA Kit (Ambion, 

Inc., Austin, TX) (9). The RNA 6000 Nano Lab Chip Kit with a 2100 Bioanalyzer 

(Agilent Technologies, Palo Alto, CA) was used to ensure samples of high RNA quality 

(48). cDNA was synthesized from approximately 500ng amplified islet RNA using 1µg 

of Oligo(dT) primer, SuperScript II Reverse Transcriptase, and accompanying reagents 

(Invitrogen). PCR reaction mixes were assembled using SYBR Green Quantitative PCR 

Master Mix (Stratagene, La Jolla, CA). Reactions were performed using the SYBR Green 

program on the Mx4000 Multiplex Quantitative PCR System (Stratagene). All reactions 

were performed in duplicate on at least four biological replicates with Rox reference dye 

normalization. Hprt, Gapdh, and Ubc were tested for suitability as housekeeping genes 

using the GeNorm analysis package. Median CT values were used for analysis and 

normalized to the expression of two housekeeping genes; Hprt, and Gapdh. Primer 

sequences are available at http://www.med.upenn.edu/kaestnerlab/. 

Microarray expression profiling and data analysis.  

Non-pregnant controls vs. pregnant at day 14.5: To allow hybridization of samples that 

were well-matched for purity in terms of the amount of exocrine contamination, qPCR 

was used to determine the relative levels of endocrine (Prohormone convertase-2) and 
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exocrine (Amylase and chymotrypsinogen B1) gene expression in each sample. As a 

result, differential gene expression originating from varying islet purity was minimized. 

Total RNA (50 ng) from each sample was used for labeling and hybridization. Amplified 

cDNA was prepared using the WT-Ovation Pico Amplification System (NuGEN 

Technologies, San Carlos, CA). Amplified cDNA (2μg) was directly labeled using the 

BioPrime Array CGH Genomic Labeling System (Invitrogen) with Cy3- and Cy5-labeled 

nucleotides (GE Amersham Biosciences, Piscataway, NJ). Of the four biological 

replicates, two were labeled with Cy3 (Test) and the other with Cy5 (Control) and the 

other two with Cy5 (Test) and Cy3 (Control), eliminating variations introduced by dye 

bias. Labeled samples were hybridized overnight to the Agilent 4X44 Whole Mouse 

Genome Array. Arrays were washed and then scanned with the Agilent DNA microarray 

Scanner, Model G2565B (Agilent Technologies). Median intensities of each element on 

the array were captured with Agilent Feature Extraction version 9.53 (Agilent 

Technologies). Quality control diagnostic plots were prepared for each array, and those 

failing to exhibit high-quality hybridizations were excluded from further analysis, 

resulting in the final dataset containing four biological replicates for each condition. 

The data were normalized by the print tip loess method using the LIMMA (Linear 

models for microarray data) package in R as described (49). For statistical analysis, genes 

were called differentially expressed using the Significance Analysis of Microarrays 

(SAM) one class response package with a false discovery rate (FDR) of 20% (50). Genes 

marked as absent, i.e. with expression levels near background, were omitted. 

Differentially expressed genes were confirmed using real-time qRT-PCR as described 
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above. All expression data were deposited into Arrayexpress (Accession no. E-MTAB-

120). 

Mip-GFP sorting. Freshly isolated islets from Mip-GFP mice (12) were placed in 1.0 

mL of prewarmed Trypsin at 37C in an eppendorf tube for 12 minutes mixing every three 

minutes until no clumps were visible. Dissociation into a single-cell suspension was 

stopped with the addition of 1mL of heat inactivated FBS. The cells were then transferred 

to a 15mL Falcon tube through a 40-µm nylon mesh cell strainer cap (BD Biosciences, 

Palo Alto, CA), washed 3 times in PBS containing 2% FBS, and placed immediately on 

ice ready for sorting. GFP+ and GFP- cells were sorted by the University of Pennsylvania 

Flow Cytometry and Cell Sorting Resource Laboratory using the FACSVantage SE (BD 

Biosciences). Cells were gated for non-aggregates to achieve a high-purity sort. Both 

GFP+ and GFP- cells were separated and collected directly into a 1.5 mL eppendorf tubes 

containing 0.5 mL of Trizol and the samples were snap frozen in liquid nitrogen and 

stored at -80C. Depending on yield some samples were pooled to obtain 20,000 cells per 

sample. 

Obesity, and reversible β-cell injury model. Islet RNA isolated from both 10 week old 

B6ob/ob and BTBRob/ob leptin-deficient mice was used as an animal model representing 

obesity.  The PANIC-ATTAC mouse was used as an animal model of inducible and 

reversible β-cell ablation (17). Islet RNA was isolated on day 0, 8, and 30 after 

administration of dimerizer AP20187 and cDNA synthesized using the Ovation RNA 

Amplification System V2 (P/N 3100; NuGEN Technologies). At least four biological 

replicates per time point were used for real-time qPCR analysis. 
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Statistical analysis. Statistical analysis between two groups was done were analyzed 

using one-tailed Student t test. Values are considered significant when P < 0.05. 
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Addendum 

 Following publication of the data presented in Chapter 2, several studies were 

published confirming a role in β-cell proliferation of a number of genes I identified as 

highly differentially expressed in the islet during pregnancy. Of transcriptional mediators, 

FoxM1 has been shown to directly activate the transcription of Birc5, the anti-apoptotic 

gene during pregnancy discussed previously, Cyclin B1, and prevent the nuclear 

expression of p27Kip1 (51). Both Birc5 and Cyclin B1 is shown by our gene expression 

analysis to increase in expression (Figure 2.9), and protein levels of p27Kip1 have been 

proven to decrease in the islet during pregnancy (52). Other known FoxM1 targets such 

as Skp2 have already been implicated in β-cell compensation in response to diet-induced 

obesity (22), and indeed, the proliferative response of the β-cell to pregnancy in mice is 

dependent on FoxM1 itself (52). 

 Two genes with the most dramatic fold change in steady state mRNA levels in 

islets during pregnancy were tryptophan hydroxylase 1 and 2 (Tph1 and Tph2) (Figure 

2.9). Although it has been known for a long time that serotonin (5-hydroxytryptamine; 5-

HT) is synthesized within β-cells and stored together with insulin in secretory granules 

(53, 54), the physiological role of this synthesis and storage was unknown until very 

recently. Just this year, mice deficient for Tph1 exhibit impaired insulin secretion. They 

further showed that 5-HT is coupled via the action of transglutaminases to two small 

GTPases, rendering the latter constitutively active and promoting insulin secretion (55). It 

is tempting to speculate that dramatic increase of Tph1/2 expression in the islet during 

pregnancy increases the insulin secretory response of the β-cell. 
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 Furthermore, a recent study demonstrated that Tph1 expression is downstream of 

lactogenic signaling, and found that local serotonin signaling drives β-cell proliferation 

leading to β-cell mass expansion in pregnant mice (Figure 2.9). Specifically, expression 

of the Gαq- linked serotonin receptor 5-hydroxytryptamine receptor-2b (Htr2b) is closely 

correlated with the increase of β-cell proliferation during rodent pregnancy, blocking of 

which leads to decreased β-cell expansion and glucose intolerance. Interestingly, Tph1 

protein expression in islets is also increased in response to pregnancy in humans (56). 

Thus, serotonin signaling can be major determinant in regulating both β-cell expansion 

and heightened insulin secretion occurring during physiological insulin resistant states. 

Of note, investigation into the role of the suppressor of cytokine signaling protein 

Cish in β-cell proliferation by genetic ablation specifically in β-cells is a future aim of 

this thesis (Chapter 4).  
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Figure 2.9: Known mechanisms responsible for β-cell gain during pregnancy. 
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Figure 2.9: Known mechanisms responsible for β-cell gain during pregnancy. (A) 

Activation of PRL receptors upon binding of lactogens (Prolactin or placental lactogen) 

plays a pivotal role in the adaptation of the β-cell to pregnancy. Downstream signaling 

pathways of the prolactin receptor include Stat5, phosphatidylinositol 3-kinase (PI3K) 

and Mapk pathways, targets of which have been implicated to lead to increased β-cell 

proliferation, survival and size. For example, transgenic overexpression of Akt1, 

upregulated in the islet during pregnancy, leads to dramatic increase in β-cell size (57). 

(B) Known transcription factors (listed with their target genes) that regulate the increase 

in β-cell mass during pregnancy. A red arrow indicates an increase in expression of genes 

in the islet during pregnancy day 14.5 as assessed by our gene expression analysis. (C) 

Possible prolactin receptor independent mechanisms leading to β-cell gain mechanisms. 

For example, increased Hgf levels in the islet endothelium correlates with increased β-

cell proliferation in pregnant rats (58). Much is still to be discovered, as evidenced by the 

recent finding that upregulation of the developmental transcription factor MafB in β-cells 

during pregnancy (59).  

 

Note: Portions of this addendum have been published in TRENDS in Endocrinology and 

Metabolism as a Review article entitled, 

 
Expansion of β-cell mass in response to pregnancy. 

Rieck S, Kaestner KH. Trends Endocrinol Metab. 2010 Mar; 21(3):151-8. 
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Chapter III: 
 

Overexpression of Hepatocyte Nuclear Factor- 4α 

initiates cell cycle entry, but is not sufficient to promote 

β-cell expansion in human islets 
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Abstract 
 
 

One approach toward generating new β-cells for the treatment of type 2 diabetes 

or for cell replacement therapy for type 1 diabetes is to use instructive cues to induce 

proliferation of terminally differentiated β-cells. The transcription factor HNF4α 

(Hepatocyte nuclear factor- 4α) is required for the increase in β-cell proliferation during 

metabolic stress. We hypothesized that HNF4α might be able to induce proliferation of 

human β-cells. To address this question, we employed adenoviral-mediated 

overexpression of a pancreas-specific isoform of HNF4α (HNF4α8) alone, or in 

combination with CDK6 and CYCLIN D3, in primary human islets. HNF4α8 alone 

stimulated β-cells to enter the cell cycle, and led to a greater than 300-fold increase in the 

number of β-cells that entered S-phase, without detectable loss of glucose stimulated 

insulin secretion. However, HNF4αHigh BrdU+ β-cells showed signs of cell cycle arrest, 

such as the expression of cell cycle checkpoint markers, and lacked expression of both 

CYCLIN A and KI67. We observed activation of the DNA damage response associated 

with the dysregulated DNA synthesis, ultimately resulting in a senescence-like phenotype 

independent of caspase-dependent apoptosis. When we overexpressed HNF4α8 together 

with CDK6 and CYCLIN D3, we further increased β-cell cycle entry. However, we 

observed a substantial proportion of β-cells stimulated to enter the cell cycle by CDK6 

and CYCLIN D3 to also exhibit a DNA damage response. In sum, HNF4α8 alone is a 

mitogenic signal in the human β-cell but is not sufficient for completion of the cell cycle. 

In addition we find that the DNA damage response is a barrier to efficient β-cell 
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proliferation in vitro, and suggest its evaluation in all attempts to stimulate β-cell 

replication.  
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Introduction 

 Since the first successful transplantation of cadaveric islets into brittle type 1 

diabetic patients using a glucocorticoid-free immunosuppressive regiment resulted in 

temporary insulin independence (1), there has been much interest into the basic 

mechanisms and factors required to obtain β-cells in vitro, because the supply of islets 

from organ donors is far exceeded by the demand for transplants.  Approaches toward 

this therapeutic goal include human embryonic stem cell (hESC) directed differentiation 

(2), transdifferentiation of related cell types such as hepatocytes or acinar cells to β-cells 

by the forced expression of transcription factors (3-6), and the replication of pre-existing 

β-cells (7).  However, while progress has been made towards the differentiation of human 

ES cells to pancreatic endoderm (2), a well-defined protocol to drive efficient non-

oncogenic proliferation of human β-cells in vitro remains elusive. 

Because the vast majority of human β-cells reside in G0-phase, especially after the 

first 30 years of life (8), the promotion of β-cell proliferation needs to accomplish (a) 

entry into the cell cycle and licensing of DNA at replication origins (G1- phase), (b) 

initiation of DNA replication at licensed origins resulting in duplication of the genome 

(S-phase), and (c) progression through the remaining cell cycle phases (G2- and M-

phase). Thus far, only overexpression of the winged helix transcription factor FOXM1 

(9), or combinations of a G1/S-phase specific CDK with its D-type cyclin partner have 

shown evidence for induction of multiple phases of the cell cycle in adult human β-cells, 

with CDK6-overexpression translating to continued β-cell replication in the face of 

hyperglycemia in vivo (10). In addition, even if a factor is sufficient to induce progression 
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through one complete cell cycle, as shown by overexpression of E2F1- alone (11), 

protection of the newly formed β-cells from their vulnerability to apoptosis must also be 

achieved (12). 

One potential sufficiency factor is hepatocyte nuclear factor (HNF) 4α (MODY1), 

as it was shown previously by its conditional gene ablation to be required for the 

physiological increase of β-cell replication during pregnancy (13). Both its membership 

in the nuclear hormone receptor family and the presence of isoforms uniquely expressed 

in the islet suggest HNF4α as being a potential drug target (14, 15). In the current study, 

we overexpress a pancreas-specific isoform of HNF4α8 specifically in human β-cells and 

demonstrate that HNF4α-overexpression alone and in combination with other mitogenic 

factors is sufficient for entry into the cell cycle. We further uncover that analysis of the 

DNA damage response is critical for the evaluation of mitogenic signals in human β-

cells.  
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Results 

Adenoviral overexpression of HNF4α8 in human β-cells 

To examine the effect of HNF4α on β-cell replication in primary human islets, we 

overexpressed HNF4α8, an islet-specific isoform (15, 16), using an adenovirus 

containing the rat insulin promoter (RIP). Bright nuclear immunofluorescence staining 

for HNF4α8 (designated as HNF4αHigh) was observed predominantly in β-cells (Figure 

3.1A-D). Approximately 35% of either PDX1+ or insulin+ cells overexpressed HNF4α 72 

hours after transduction (Figure 3.1E). HNF4αHigh expression was only rarely seen in α-

cells (glucagon+) or δ-cells (somatostatin+) cells (Figure 3.1C-D). A replication-

competent adenovirus, encoding E1A, can lead to misleading results when assessing β-

cell proliferation (17). Importantly, no E1A mRNA was found in either AdCMV-eGFP or 

AdRIP-hHNF4α8 treated islets 72 hours after transduction (Figure 3.1F). These results 

demonstrate successful and sustained overexpression of HNF4α8 in human β-cells using 

AdRIP-hHNF4α8. 
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Figure 3.1: Adenoviral overexpression of HNF4α8 in human β-cells. 

 



  
 

113 

Figure 3.1: Adenoviral overexpression of HNF4α8 in human β-cells. Human islets 

were transduced with Ad-RIP-hHNF4α8 and incubated for 72 hours before embedding 

and processing for immunofluorescence staining. Dual immunofluorescence staining of 

(A-D) HNF4α (red) and DAPI (blue) with (A) PDX1 (green), (B) Insulin (green), (C) 

Somatostatin (green) and (D) Glucagon (green).  White arrows show examples of PDX1+ 

and Insulin+ HNF4αHigh cells and the scale bar in (D) indicates 25 μm. (E) Quantification 

of the percentage of hormone-expressing cells that are HNF4αHigh (n=3). (F) Gene 

expression of HNF4α and E1A in AdCMV-eGFP and AdRIP-hHNF4α8 treated islets 

(n=5-6; *, P<0.001 versus CMV-eGFP condition).  
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HNF4αHigh β-cells incorporate BrdU in a punctate, not diffuse, manner 

To answer if HNF4α8 overexpression leads to increased β-cell proliferation and to 

detect all de novo proliferation events, we added BrdU continuously for 72 hours after 

adenoviral transduction. Of note, human islets were exposed to BrdU label continuously 

for the entire post-transduction period unless otherwise stated. No appreciable BrdU 

incorporation occurred into the PDX1+ population in both untransduced and AdCMV-

eGFP transduced islets (Figure 3.2A-B), consistent with the very low rate of β-cell 

replication measured upon receipt of donation (only 0.05%±0.04 of PDX1+ cells were 

KI67+) (Supplemental Figure 3.3A-C). However, overexpression of HNF4α8 caused a 

dramatic increase in BrdU incorporation, with 4.71%±1.36 of PDX1+ cells colocalizing 

with BrdU 72 hours after transduction (Figure 3.2C, M). The majority (81.5%±7.3) of 

BrdU incorporation colocalized with HNF4αHigh staining (Figure 3.2D-F). Surprisingly, 

BrdU incorporation occurred in distinct punctate domains overlapping regions with 

reduced DAPI signal (Figure 3.2C, F). This effect occurred specifically in insulin+ cells, 

but not glucagon+, or somatostatin+ cells (Figure 3.2J-L, O). In contrast, diffuse BrdU 

incorporation throughout the nucleus was present in non-endocrine cells (Figure 3.2E 

insert, G-I), as described previously (10). Of the entire HNF4αHigh population 

12.0%±2.99 incorporated BrdU, and this was similar in islets isolated from type 2 

diabetic donors (9.29%±2.9) (Figure 3.2N). These data indicate that a significant fraction 

of β-cells overexpressing HNF4α8 enter S-phase. Interestingly, this fraction was similar 
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to that reported for other genes known to be sufficient for β-cell proliferation, such as 

CYCLIN D1, CYCLIN D2, and CDK6 (10, 18). 
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Figure 3.2: HNF4αHigh β-cells incorporate BrdU in a punctate, not diffuse, manner. 
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Figure 3.2: HNF4αHigh β-cells incorporate BrdU in a punctate, not diffuse, manner. 

Immunofluorescence staining of PDX1 (green), BrdU (red), and DAPI (blue) in primary 

human islets (A) not transduced with adenovirus, (B) transduced with AdCMV-eGFP, 

and (C) transduced with AdRIP-hHNF4α8. Similarly, detection of HNF4α (green), BrdU 

(red), and DAPI (blue) in primary human islets (D) not transduced with adenovirus, (E) 

transduced with AdCMV-eGFP, and (F) transduced with AdRIP-hHNF4α8. The inserts 

in (E) show diffuse BrdU incorporation overlapping with DAPI, and in (F) punctate BrdU 

incorporation overlapping with DAPI-diminished regions in the nucleus. Dual 

immunofluorescence staining of (G-L) BrdU incorporation (red) and (G-L) DAPI (blue) 

with (G, J) Insulin (green), (H, K) Glucagon (green), and (I,L) Somatostatin (green) cells 

in primary human islets overexpressing HNF4α8. Quantification of the (M) percentage of 

PDX1+ cells that are BrdU+ in all three conditions at 72 hours after transduction (n=3-4; 

*, P<0.02; versus both untransduced and CMV-eGFP conditions). Quantification of the 

(N) percentage of HNF4αHigh cells that are BrdU+ at 72 hours after transduction both in 

non-diabetic and type 2 diabetic donors (n=3-4). Quantification of the (O) percentage of 

Insulin+, Glucagon+, and Somatostatin+ cells that are BrdU+,Diffuse or BrdU+,Punctate (n=3-4; 

*, P<0.01 versus all conditions). All primary human islets were harvested 72 hours after 

transduction. The scale bar in (L) indicates 25 μm. 
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Figure 3.3: The rate of proliferation of PDX1+ cells upon receipt of human islet 

donations is extremely low. 
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Figure 3.3: The rate of proliferation of PDX1+ cells upon receipt of human islet 

donations is extremely low. Immunolocalization of KI67 (green), DAPI (blue), (A) 

PDX1 (red) and (B) Insulin (red) of untransduced primary human islets before 

transduction. (C) Quantification of the percentage of PDX1+ that are KI67+ (n=3). The 

scale bar in (B) indicates 25 μm. 
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HNF4αHigh β-cells do not progress through the cell cycle 

To investigate if HNF4α8 overexpression is sufficient for cell cycle progression in 

β-cells, we next turned to additional cell cycle markers such as, KI67, a marker of all 

phases of the cell cycle. Surprisingly 72 hours post-transduction, HNF4αHigh PDX1+ cells 

were not KI67+ (0.06% ± 0.03 of PDX1+ cells were KI67+) similar to untransduced or 

AdCMV-eGFP treated controls (Figure 3.7A-C).  

Next, we considered the possibility that HNF4α8-induced proliferation was 

completed before the 72 hour time point analyzed. We collected HNF4α8 overexpressing 

islets exposed to continuous BrdU at various time-points after transduction (24, 30, 36, 

42, 48 hours).  The BrdU incorporation rate into HNF4AαHigh β-cells was negligible until 

36 hours post-transduction, and increased until 48 hours, with no significant difference 

compared to 72 hours, suggesting that entry into S-phase occurred between 36 and before 

48 hours (Figure 3.4A-D). The majority of cells that incorporated BrdU diffusely 

expressed KI67 at 24, 30, 36 and 42 hours, but not at 48 and 72 hours, indicating exit 

from the cell cycle. Strikingly, cells that incorporate BrdU in a punctate manner never 

expressed KI67 (Figure 3.4E-H). The rare cells exhibiting both BrdU+,punctate and KI67 

expression do not show large BrdU domains but small BrdU points, and their pattern of 

BrdU incorporation reflects incomplete S-phase progression at the time of islet harvest 

(19). Also, HNF4AαHigh β-cells do not express KI67 at any time-point (Figure 3.4I-L). 

Furthermore, HNF4α8 overexpression does not induce the expression of CYCLIN A, a 

marker of S-phase, G2-phase and early M-phase (20), while BrdU+,diffuse cells are 

CYCLIN A positive (Figure 3.4N-P). Using a highly proliferative tissue as a positive 

control, we show CYCLIN A antibody specificity in that CYCLIN A+ cells comprise a 
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subset of KI67+ cells (Figure 3.4M). Together, these data suggest that BrdU+,punctate cells 

do not progress through the cell cycle after having entered S-phase. 

To confirm whether HNF4AαHigh β-cells enter the cell cycle, and to investigate if 

they activate a cell cycle checkpoint, we utilized MCM7, and phospho-CHK2(Thr68) and 

phospho-P53(Ser15) staining, respectively. MCM7 functions as a DNA replication 

licensing factor whose expression is activated in early G1-phase, when KI67 not yet 

expressed (21). Thus, in human tonsil MCM7 protein is not restricted to KI67+ cells, and, 

conversely, KI67+ cells do not always express MCM7 (Figure 3.4Q). Interestingly, an 

appreciable number (52.0% ± 6.3) of BrdU+,punctate singlets expressed MCM7 at 42 hours 

after transduction (Figure 3.4R-T), confirming that HNF4AαHigh β-cells had indeed 

entered the cell cycle. Expression of both checkpoint markers phospho-CHK2(Thr68) 

and phospho-P53(Ser15) was seen predominantly in BrdU+,punctate cells (73.4% ± 2.2 and 

78.7% ± 7.5, respectively), but not in BrdU+,diffuse cells 48 hours after transduction 

(Figure 3.4U-Y). These data suggest that while HNF4α8 is sufficient to stimulate β-cells 

to enter the cell cycle, it also activates the checkpoint response, indicating cell cycle 

arrest. 
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Figure 3.4: HNF4αHigh β-cells arrest in the cell cycle. 
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Figure 3.4: HNF4αHigh β-cells arrest in the cell cycle. Immunolocalization of HNF4α 

(green), BrdU (red) and DAPI (blue) in primary human islets (A) 24 hours, (B) 42 hours, 

and (C) 72 hours after transduction with HNF4α8 adenovirus. (D) Quantification of the 

percentage of HNF4αHigh cells that are BrdU+ (n=3-5; *, P<0.03; versus 24hr). Analysis 

of KI67 (green), BrdU (red), and DAPI (blue) cells in primary human islets at (E) 24 

hours, (F) 42 hours, and (G) 72 hours after transduction with HNF4α8. (H) Quantification 

of the percentage of BrdU+,Diffuse or BrdU+,Punctate that are KI67+ (n=3-5). Assessment of 

KI67 (green), HNF4α (red), and DAPI (blue) colocalization in primary human islets (I) 

24 hours, (J) 42 hours, and (K) 72 hours after transduction with HNF4α8. (L) 

Quantification of percentage of HNF4AHigh cells that are KI67+ (n=3-4). Immunostaining 

of (M) CYCLIN A (red), KI67 (green) in human tonsil as a positive control, and (N-O) 

CYCLIN A (green) with BrdU (red) in human islets 42 hours after transduction with 

HNF4α8. Quantification (P) of the percentage of BrdU+,Diffuse or BrdU+,Punctate that are 

CYCLIN A+ (n=3). Immunostaining of (Q) MCM7 (red), KI67 (green) in human tonsil as 

a positive control, and (R-S) MCM7 (green) with BrdU (red) in human islets 42 hours 

after transduction with HNF4α8. Quantification (T) of the percentage of BrdU+,Diffuse or 

BrdU+,Punctate that are MCM7+ (n=3). Immunostaining of (U-V) phospho-P53(ser15) 

(green) and BrdU (red), and (W-X) phospho-CHK2 (green) and BrdU (red) in human 

islets 48 hours after transduction with HNF4α8. Quantification (Y) of the percentage of 

BrdU+,Diffuse or BrdU+,Punctate that are either phospho-P53(Ser15)+ or phospho-CHK2+ 

(n=3; *, P<0.001 versus BrdU+,Diffuse condition). White arrows indicate either diffuse (d) 

or punctate (p) BrdU incorporation. The scale bars in (K, Q, S, and X) indicate 25 μm. 
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Overexpression of HNF4α8 leads to activation of the DNA damage response 

associated with replication stress 

Phosphorylation of CHK2 on threonine 68 and p53 on serine 15 are downstream 

substrates of ATR and ATM, key mediators of the DNA damage checkpoint pathway 

(22). Furthermore, the punctate BrdU incorporation pattern is reminiscent of DNA 

replication foci during S-phase (19). We hypothesized that overexpression of HNF4α8 

caused repeated licensing of DNA replication from single origins (or re-replication), 

resulting in enlarged punctate foci, DNA breaks, and induction of the DNA damage 

response. To test this possibility, we first assessed the effects of HNF4α8 overexpression 

on phosphorylation of histone H2AX (γH2AX), an indicator of DNA double-stranded 

breaks (23). Indeed, overexpression of HNF4α8 caused a dramatic increase in γH2AX+ 

PDX1+ cells, with 4.4%±1.4 of PDX1+ cells colocalizing with γH2AX 72 hours after 

transduction, while less than 0.5% of PDX1+ cells stained for γH2AX in untransduced or 

CMV-eGFP treated controls (Figure 3.5A-D). In AdCMV-eGFP transduced islets, 

γH2AX staining colocalized with cells positive for GFP reflecting rare toxicity of this 

adenovirus to islet cells (Figure 3.5B insert). The accumulation of γH2AX+ in PDX1+ 

cells exactly mirrors the accrual of BrdU+,punctate in PDX1+ cells, demonstrating that the 

DNA damage response is restricted to this cell population (Figure 3.5D). γH2AX 

expression was present in 9.50%±1.97 HNF4αHigh cells and 88.1%±5.6 of BrdU+,punctate 

cells at 72 hours after transduction, and was sustained at the same level up to 120 hours 

(Figure 3.5E-J). Many HNF4αHigh BrdU+,punctate cells show enlarged, dysmorphic nuclei 

which are not  present in control islets (Figure 3.5G inlet), suggesting a model wherein 
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HNF4α8-overexpression in β-cells stimulates DNA damage that is not repaired over time, 

leading to a sustained DNA damage checkpoint response. 

To assess if DNA damage is associated with re-replication, we pulse-labeled 

HNF4α8 transduced islets between 36 and 48 hours, the established time of thymidine 

incorporation (Figure 3.4A-D), sequentially with BrdU and with EdU. We confirmed no 

cross-reactivity between the two thymidine analogs by labeling HNF4α8 transduced islets 

with either BrdU-only or with EdU-only continuously between 36 and 48 hours, and 

using detection methods for both thymidine analogs simultaneously (Figure 3.5K-L).  To 

demonstrate occurrence of re-replication throughout the 12 hour time period, we varied 

the non-labeling times between pulses (1 hour, 3 hours, and 6 hours). Re-replication is 

defined here as the incorporation of both BrdU and EdU into the same locus in the 

nucleus. Several possible patterns of thymidine analogue incorporation can occur. In 

HNF4α8 transduced islets with a 1 hour non-labeling interval, thymidine+ cells 

incorporated a single analog in a diffuse manner (possibility #1), undergoing S-phase 

during the first or second labeling period (Figure 3.5M). Thymidine+ cells also 

incorporated both analogs in mutually exclusive areas of the same nucleus in a diffuse 

manner (possibility #2), representing a cell undergoing S-phase during both labeling 

periods (Figure 3.5N). The percentages of cells with diffuse thymidine analogue 

incorporation integrating only one analog increased with increased non-labeling interval, 

as expected (data not shown). Strikingly, in the thymidine+,punctate domains, we saw 

overlapping incorporation of both EdU and BrdU in distinct foci, regardless of the length 

of the non-labeling interval (possibility #3), demonstrating that re-replication occurred in 

HNF4αHigh cells (Figure 3.5O-Q). Specifically, 84.1% ± 7.6, 78.2% ± 9.6, and 78.3% ± 
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8.5 of all thymidine+,punctate cells showed the re-replication phenotype with a 1 hour, 3 

hour, and 6 hour pulse, respectively (Figure 3.5R). We saw only a low percentage of 

thymidine+,punctate cells with either non-overlapping or single incorporation of EdU and 

BrdU in distinct foci in all non-labeling intervals (possibility #4). These data suggest that 

the DNA damage and checkpoint response exhibited in HNF4αHigh BrdU+,punctate β-cells 

occurs as a consequence of replication stress. 
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Figure 3.5: Overexpression of HNF4α8 leads to activation of the DNA 

damage response associated with replication stress. 
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Figure 3.5: Overexpression of HNF4α8 leads to activation of the DNA damage 

response associated with replication stress. Immunodetection of γH2AX (green), 

PDX1 (red), and DAPI (blue) in (A) untransduced, (B) GFP-, and (C) HNF4α8-

overexpressing primary human islets at 72 hours after transduction. The insert in (B) 

shows GFP (red), γH2AX (green), and DAPI (blue) colocalization. (D) Quantification of 

the percentage of PDX1+ cells that are γH2AX+ (n=3; P<0.03 versus both untransduced 

and CMV-eGFP conditions). Immunolocalization of γH2AX (green), and both (E-F) 

HNF4α (red) and (G-H) BrdU in HNF4α8-tranduced primary human islets at (E,G) 72 

hours and (F, H) 120 hours after transduction. Quantification of the percentage of (I) 

HNF4αHigh and (J) BrdU+ cells that are γH2AX+ at 72 hours and 120 hours (n=3-4; *, 

p<0.001 versus BrdU+,Diffuse condition). Immunodetection of BrdU (green), EdU (red), 

and DAPI (blue) in (K) HNF4α8-transduced primary human islets exposed to (K) EdU-

only, and BrdU-only. Individual red channel (K‟-L‟), and green channel (K‟‟-L‟‟) is 

shown. Simultaneous immunodetection of EdU (red) and BrdU (green) in HNF4α8 

transduced islets of (M) single thymidine-analogue labeled diffuse nucleus with 1 hour 

non-labeling time, (N) dual labeled non-colocalizing diffuse nucleus with 1 hour labeling 

time, (O) dual-labeled colocalizing punctate nucleus with (O) one hour, (P) three hour, 

and (Q) six hour non-labeling times. Individual red channels (M‟-Q‟), and green channels 

(M‟‟-Q‟‟) are shown. Quantification (R) of the percentage of thymidine+,punctate #3 (#3 

indicates a nucleus exhibiting overlapping incorporation of both EdU and BrdU in 

distinct foci within its thymidine punctate domain) over total thymidine+,punctate  in 

HNF4α8 transduced islets dual labeled with one hour, three hour, and six hour non-
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labeling times (n=3). The scale bars in (C, H, and L) indicate 25 μm and in (Q) indicate 5 

μm. 
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A senescence-like phenotype, independent of caspase-mediated cell death, is the 

predominant fate of β-cells overexpressing HNF4α8 

Sustained mitogenic signaling in the β-cell has been reported to cause cell death 

and loss of function (24-26). We used the TUNEL assay to determine if HNF4αHigh 

BrdU+,punctate β-cells undergo apoptosis. PDX1+ cells rarely exhibit TUNEL staining in 

untransduced, eGFP-, and even HNF4α8-overexpressing islets 72 hours after transduction 

(Figure 3.6A-D). The percentage of HNF4αHigh cells that are TUNEL+ was only 

1.2%±0.4 at 72 hours, and 1.1%±0.1 at 120 hours after transduction (Figure 3.6E-F, I). 

While there was a very low level of BrdU+,diffuse cells that are Tunel+, the percentage of 

BrdU+,punctate cells that were TUNEL+ was only 9.8%±5.0, and 12.7%±9.9 at 72 and 120 

hours after transduction, respectively (Figure 3.6G-H, J), demonstrating that caspase-

dependent apoptosis is not the predominant fate of HNF4αHigh BrdU+,punctate β-cells.  

The inability of the β-cell to repair DNA damage over time can lead to cellular 

senescence (27). In response to a mitogenic insult, multiple senescence-promoting 

signals, such as DNA damage, replicative stress, reactive oxygen species, and 

heterochromatin formation converge on the tumor suppressor P53 (28). Indeed, P53 was 

activated in HNF4αHigh and BrdU+,punctate cells at both 48 and 72 hours after transduction, 

with 78.2%±6.6 and 73.3%±5.1 staining positive, respectively (Figure 3.6L-N). The 

detection of nuclear expression of P53 was confirmed in human colon adenocarcinoma 

samples (Figure 3.6K). Together with cell cycle arrest, checkpoint activation, a sustained 

DNA damage response, and lack of caspase-dependent apoptosis, these data suggest that 
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HNF4αHigh BrdU+,punctate β-cells exhibit a senescence-like phenotype, impeding further 

cell cycle progression (28). 

To assess the effect of HNF4α- overexpression on β-cell function, we performed 

static glucose stimulated insulin assays (GSIS). The absolute amount of insulin released 

upon glucose stimulus by AdRIP-HNF4α8 treated islets was not statistically different 

from untransduced, AdCMV-eGFP treated islets, and untransduced islets at receipt of 

donation (Figure 3.6O). Also, there were no statistical differences in insulin content in 

any of the aforementioned groups 72 hours after transduction (data not shown), 

suggesting no loss of β-cell function or dedifferentiation in β-cells overexpressing 

HNF4α8 (25, 26). However, it was not possible to assess the function of the small 

HNF4αHigh BrdU+,punctate β-cell population separate from the remainder of the islet; thus, 

loss of function in these cells remains a possibility. 
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Figure 3.6: A senescence-like phenotype is the predominant fate of β-cells 

overexpressing HNF4α8. 
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Figure 3.6: A senescence-like phenotype is the predominant fate of β-cells 

overexpressing HNF4α8. Immunofluorescence detection of PDX1 (green), TUNEL 

(red) and DAPI (blue) in (A) untransduced, (B) eGFP-, and (C) HNF4α8-transduced 

primary human islets at 72 hours with (D) quantification of the percentage of PDX1+ 

cells that are TUNEL+ (n=3-4). Analysis of TUNEL (red) positive cells that are (E-F) 

HNF4αHigh (green) and (G-H) BrdU+ (green) at (E,G) 72 hours and (F,H) 120 hours. 

Quantification of the percentage of (I) HNF4αHigh  and (J) BrdU+ cells that are TUNEL+ 

at 72 hours and 120 hours (n=3-5). Immunostaining of P53 (green), BrdU (red) and DAPI 

(blue) in (K) human colon carcinoma, and HNF4α8 transduced islets at (H) 48 hours and 

(M) 72 hours after transduction. Quantification of the (N) percentage of BrdU+,punctate 

cells that are P53+ (n=3). (O) Static glucose-stimulated insulin secretion assay (GSIS) of 

untransduced, eGFP-, and HNF4α8- overexpressing primary human islets 72 hours after 

transduction treated with 3mM and 16.7mM glucose. GSIS was also performed on 

untransduced primary human islets upon receipt (0 hours) (n=3-6; *, p<0.05 versus 3mM 

glucose condition). The scale bars in (C, G, L and M) indicate 25 μm. 
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HNF4α8 synergizes with known factors sufficient for promoting cell cycle entry in 

the human β-cell 

The combination of the G1/ S-phase cell cycle regulators CDK6 and a D-cyclin 

partner, for example CYCLIN D3, has been shown to dramatically accelerate the rate of 

β-cell proliferation in human β-cells in vitro (10, 18). While HNF4α8 is not sufficient to 

promote full β-cell replication alone, we hypothesized that overexpression of HNF4α8 

might augment human β-cell proliferation stimulated by CDK6 and CYCLIN D3 (10). 

While KI67+ PDX1+ cells were very rare in untransduced, CMV-eGFP, and RIP-

hHNF4α8- treated human islets, the overexpression of CDK6 and CYCLIN D3 caused a 

significant increase in the number of PDX1+ cells that also expressed KI67 (3.14%±0.75). 

Strikingly, when we applied HNF4α8, CDK6, and CYCLIN D3 adenoviruses together, 

we saw a further increase in the number of PDX1+ cells that were in the cell cycle 72 

hours after transduction (7.97%±2.2) (Figure 3.7A-F). This finding suggests that 

HNF4α8 overexpression not only alone, but in combination with known cell cycle 

regulators, is a mitogenic signal sufficient for initiation of the cell cycle in human β-cells.  

To confirm this conclusion and assess the fate of the additional KI67+ PDX1+ 

cells, we analyzed the HNF4αHigh β-cell population when overexpressing HNF4α8, 

CDK6, and CYCLIN D3 with aforementioned markers for cell cycle progression, DNA 

damage, and caspase-dependent apoptosis. Indeed, 22.6%±6.0 and 3.17%±0.82 of 

HNF4α8 overexpressing cells were KI67+ and CYCLIN A+, respectively, 72 hours after 

transduction (Figure 3.7G-J). CYCLIN A+ cells not colocalizing with HNF4αHigh cells 

could reflect cells transduced with either CDK6 and/or CYCLIN D3 only, as their 
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overexpression is based on a CMV-promoter (Figure 3.7I). However, while this was an 

improvement relative to the lack of cell cycle progression seen when overexpressing 

HNF4α8 alone, at this time point, the HNF4αHigh cell population was positive for both 

γH2AX (37.6%±6.4) and TUNEL (44.6%±3.4) at similar levels (Figure 3.7K-N). 

Additionally, these cells morphologically exhibited nuclear blebbing surrounding a 

central region of reduced DAPI staining (Figure 3.7M insert). The slightly higher 

percentage of the HNF4αHigh cells exhibiting γH2AX and TUNEL compared to KI67 

expression suggests that DNA damage induced caspase-dependent apoptosis is the 

predominant fate of the KI67+ PDX1+ cell population over time.  
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Figure 3.7: HNF4α8 synergizes with factors known to be sufficient for promoting 

cell cycle entry in human β-cells. 
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Figure 3.7: HNF4α8 synergizes with factors known to be sufficient for promoting 

cell cycle entry in human β-cells. Immunofluorescence detection of KI67 (green), PDX1 

(red) and DAPI (blue) in (A) untransduced, (B) eGFP-, (C) HNF4α8-, (D) CYCLIN D3 

and CDK6-, (E) HNF4α, CYCLIN D3, CDK6- transduced primary human islets at 72 

hours with (F) quantification of the percentage of PDX1+ cells that are KI67+ (n=4-6; *, 

p<0.04; **, p<0.01). Immunofluorescent detection of HNF4α (red), DAPI (blue) and (G) 

KI67, (I) CYCLIN A, (K) γH2AX, and (M) TUNEL in HNF4α8, CYCLIN D3, CDK6- 

transduced primary human islets at 72 hours with quantification of the percentage of 

HNF4αHigh cells that are (H) KI67+, (J) CYCLIN A+, (L) γH2AX+, and (N) TUNEL+ 

(n=3). The insert in (M) shows representative DAPI staining of HNF4AHigh TUNEL+ 

cells. The scale bars in (E, G) indicate 25 μm and in insert of M indicates 5 μm. 

Abbreviation n = normal, and i = irregular. 
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Overexpression of CYCLIN D3 and CDK6 also activates the DNA damage response 

in human β-cells 

We also investigated whether β-cells induced to proliferate by overexpression of 

CDK6 and CYCLIN D3 alone exhibit expression of γH2AX. Strikingly, 9.86%±2.3 and 

9.10%±1.8 of PDX1+ and insulin+ cells, respectively, were positive for γH2AX 72 hours 

after transduction (Figure 3.8A-C), suggesting that over time a substantial proportion of 

PDX1+ cells stimulated to progress through the cell cycle by CDK6 and CYCLIN D3 

accumulate DNA damage. To assess if γH2AX accumulation is specific to cells having 

engaged the cell cycle sometime during the 72 hour time period, we evaluated the 

percentage of γH2AX+ cells that incorporated BrdU, applied continuously to culture after 

transduction. While not all BrdU+ cells were γH2AX+ (Figure 3.8D insert), a significant 

percentage of cells having progressed through S-phase expressed γH2AX (60.6%±11.5 of 

BrdU+,total are γH2AX+) (Figure 3.8D, F). Interestingly, while the BrdU+ γH2AX+ cells 

exhibited punctate-like BrdU incorporation (82.3%±7.5 of γH2AX+ are BrdU+,punctate) 

similar to what was seen in β-cells when overexpressing HNF4α8 alone,  BrdU+ γH2AX- 

cells exhibited diffuse BrdU incorporation (5.23%±2.2 of γH2AX+ are BrdU+,diffuse) 

(Figure 3.8D, G). In addition, the irregular manner of KI67 staining observed in PDX1+ 

cells transduced with CDK6, CYCLIN D3, and HNF4α8 was unlike the diffuse KI67 

staining observed in cycling non-endocrine cells (Figure 3.7E). As with punctate-like 

BrdU incorporation, the irregular KI67 staining was also observed in human islets 

transduced with CDK6 and CYCLIN D3, and almost always colocalized with γH2AX 

expression (91.2%±2.1 KI67irregular cells were γH2AX+) 72 hours after transduction 
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(Figure 3.8E-F). Furthermore, the percentage of γH2AX+ cells that incorporated BrdU in 

a punctate-like manner was much higher than the percentage which expressed KI67irregular 

(13.9%±1.0 γH2AX+ were KI67irregular) at 72 hours (Figure 3.8E, G). Based on cell cycle 

arrest seen in β-cells overexpressing HNF4α8 alone and the fate of HNF4αHigh cells in the 

triple-transduced condition this suggests, a delay of the cell cycle in the proportion of β-

cells accumulating double-stranded DNA damage, ultimately resulting in caspase-

dependent apoptosis. However, as with diffuse BrdU incorporation, the majority of 

KI67normal cells do not exhibit γH2AX (10.9%±2.1 of KI67normal cells were γH2AX+) 

(Figure 3.8E, F), suggesting that, in line with the overall ability of Cdk6 in combination 

with a D-cyclin partner to improve human islet function in vivo, a fraction of functional 

β-cells do arise by CDK6 and CYCLIN D3 stimulated proliferation (10, 29). Indeed, only 

cells incorporating BrdU in a punctate-like manner were positive for the checkpoint 

marker, phospho-P53 on serine 15 (99.0%±0.7 of BrdU+,punctate were phospho-

P53(Ser15)+), while of cells incorporating BrdU in a diffuse manner only 5.48%±1.38 of 

BrdU+ were phospho-P53(Ser15)+ (Figure 3.8H-I). Also, γH2AX+, BrdU+,punctate cells 

morphologically exhibit nuclear blebbing, indicating caspase-dependent apoptosis 

(Figure 3.8E insert). Together, these findings demonstrate that while human β-cells can 

be stimulated to enter in and progress through the cell cycle by overexpression of CDK6, 

CYCLIN D3, and further with the addition of HNF4α8, the activation of the DNA 

damage response in both cases highlights the importance of using multiple experimental 

criteria to adequately assess human β-cell expansion. 
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Figure 3.8: Overexpression of CYCLIN D3 and CDK6 also activates the DNA 

damage response in human β-cells. 
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Figure 3.8: Overexpression of CYCLIN D3 and CDK6 also activates the DNA 

damage response in human β-cells. Dual immunostaining for γH2AX (green), DAPI 

(blue) and (A) PDX1 (red), (B) Insulin (red), (D) BrdU (red) and (E) KI67 (red) in 

CYCLIN D3 and CDK6 transduced human islets. Quantification of (C) the percentage of 

either PDX1+, or Insulin+ cells that are γH2AX+ in primary human islets transduced with 

both CDK6 and CYCLIN D3 (n=3-4). Quantification of (F) the percentage of either 

BrdU+,total, KI67+,normal or KI67+, irregular cells that are γH2AX+ in primary human islets 

transduced with both CDK6 and CYCLIN D3 (n=3-4). Quantification of (G) the 

percentage of γH2AX+ cells that are either BrdU+,diffuse , BrdU+,punctate, KI67+,normal or 

KI67+, irregular (n=3-4; *, p<0.001 BrdU+,punctate versus KI67+,irregular conditions). Dual 

immunostaining for (H) phospho-P53 on serine 15 (Green), DAPI (blue) and BrdU (red) 

in CYCLIN D3 and CDK6 transduced human islets. The quantification of (I) the 

percentage of either BrdU+,diffuse or BrdU+,punctate that are phospho-P53 (serine 15)+ (n=4; 

*, p<0.001 versus BrdU+,diffuse condition). The white arrows indicate colocalization and 

yellow arrows indicate non-colocalization between two markers. All human islets were 

incubated for 72 hours post-transduction. The scale bars in (A, H) indicate 25 μm and in 

the insert of E, H indicates 5 μm. Abbreviation p = punctate, d = diffuse, n = normal, and 

i = irregular. 
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Discussion 

It is well appreciated that human β-cell turnover occurs very slowly after early 

childhood (30, 31). Evaluating whether β-cells proliferate in states of physiological 

insulin resistance is difficult, because of differences in populations studied and the 

limited number of cases considered (32). However, in spite of this, evidence for β-cell 

regeneration in humans has arisen in the fetal pancreas during the perinatal period (33, 

34), and the context of obesity (35). Furthermore, the presence of a significant number of 

paired apoptotic β-cells in pancreas sections of type 2 diabetic patients, interpreted as 

post-mitotic apoptosis, suggests that diabetes onset is a result of a failure of β-cell 

expansion rather than a decrease in existing β-cell mass only (36). The occurrence of 

proliferating β-cells even in the resected pancreas from an 89-year old type 1 diabetic 

suggests that β-cell replication can be stimulated in vitro (37). In this study we 

investigated if a pancreatic specific isoform of the MODY1 transcription factor HNF4α is 

sufficient to promote proliferation in primary human β-cells, based on its requirement for 

β-cell expansion in response to physiological insulin resistance during pregnancy (13).  

The data represented here demonstrate that overexpression of HNF4α8 is 

sufficient to initiate cell cycle entry, license DNA at replication origins, and attempt S-

phase in human β-cells, both on its own and in combination with known factors sufficient 

for β-cell proliferation. The punctate manner of BrdU incorporation into HNF4αHigh β-

cells is reminiscent of the patterns of DNA replication seen during S-phase in mammalian 

nuclei (19). To ensure that chromosomal DNA is precisely duplicated during S-phase, the 

cell must be able to distinguish between replicated and unreplicated DNA. The licensing 
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of replication origins  by the binding to DNA of mini-chromosome maintenance 2-7 

proteins (MCM2-7) and their subsequent removal after initiation of DNA replication 

ensures regulated initiation of DNA replication only once per locus (38). While HNF4α8 

overexpressing cells are able to license their DNA for replication, as demonstrated by 

increased MCM7 expression at the time of BrdU incorporation (Figure 3.4D, S), the 

appearance of large punctate domains points to misregulation of the licensing system, 

allowing cells to inappropriately re-license their already replicated DNA. Consistent with 

this model, we detected re-replication as distinct overlapping foci within thymidine+ 

punctate domains by utilizing two thymidine analogs during the time when the majority 

of HNF4αHigh β-cells were progressing through S-phase (Figure 3.5M-R). Although the 

thymidine+ cells are not synchronized, the high percentage of thymidine+ cells that 

exhibit the re-replication phenotype even with a 6 hour non-labeling time suggests an 

elongation of S-phase (39). Similarly, overexpression of Cdt1, a rate-limiting licensing 

factor responsible for loading of the replicative Mcm-helicase onto DNA, in the G2-phase 

of the cell cycle induced re-replication of DNA, activated checkpoint pathways, and 

blocked further cell cycle progression in Xenopus egg extracts (40). Intriguingly, not only 

was the checkpoint activation a direct result of multiple rounds of DNA re-replication, 

but it coincided with the appearance of significant double stranded DNA fragments, 

consistent with a model of head-to-tail replication fork collision (41). Also, increased 

expression of CDT1 and subsequent re-replication occurs in human cancer-derived cell 

lines upon accumulation of constitutively active mutant of CYCLIN D1 (42). In line with 

this, both activation of the DNA damage checkpoint markers p-CHK2 (Thr68) and p-P53 

(Ser15), and expression of γH2AX, a marker for double stranded DNA breaks, occurred 
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in HNF4αHigh BrdU+,punctate β-cells (Figure 3.4V, X; 3.5A-J). Activation of the DNA 

damage response did not cease over time, suggesting that the DNA damage is too great to 

repair.  

Surprisingly, activation of the DNA damage response is not a phenotype specific 

to HNF4α8 overexpression. Strikingly, a significant proportion of β-cells stimulated to 

progress through the cell cycle by overexpression of CDK6 and CYCLIN D3 alone also 

exhibited activation of γH2AX expression, and a cell cycle checkpoint (see Figure 3.8). 

We conclude that human β-cells are sensitive to accumulating DNA damage in response 

to forced cell cycle entry. In support of this, a mouse model deficient in nonhomologous 

end-joining (NHEJ) and expressing a hypomorphic mutant of p53, defective in apoptosis 

but not in cell cycle arrest, develops diabetes. In these mice, β-cell mass is progressively 

depleted due to accumulated DNA damage (sustained γH2AX expression), promoting a 

decrease in β-cell proliferation through p53-dependent cell cycle arrest (27). Strikingly, 

HNF4αHigh BrdU+,punctate β-cells exhibited activation of P53 expression, but did not 

undergo caspase-dependent apoptosis (Figure 3.5I-M). Rather, HNF4α8-overexpressing 

cells attempting cell cycle progression display hallmarks of a senescence phenotype, such 

as DNA damage, tumor suppressor activation, and cell cycle arrest (28). It is clear that 

spontaneous replication in untransduced primary human islets is ultimately halted over 

time by cellular senescence, which is characterized by loss of differentiated function (43). 

These phenotypes in the β-cell are consistent with the ability of oncogenes such as 

Ras, Mos, Cyclin E, E2F1, Cdc25A, Cdc6, and Myc to promote senescence by 

stimulating the DNA damage response through re-replication (44-46), for which 

pathways encompassing key downstream tumor suppressors p53 and Rb are necessary 
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(47). The mitogen-activated protein kinase (Mapk) pathway, dependent on HNF4α during 

pregnancy in the murine β-cell, can also induce cell cycle arrest and subsequent 

senescence via the increase of both p53 and p21 expression and blocks in hyper-

phosphorylation of Rb (48). It is therefore tempting to conclude that HNF4α8-

overexpression in the β-cell acts similarly to oncogenes such as Ras and Mos that also 

activate this signaling pathway (49). Indeed, rat (INS1, RINm5F) and mouse (MIN6, 

BTC3) insulinoma cell lines show not only increases in many cyclins and cdks, but also 

increases in many cell cycle inhibitors (p16, p18, p21, p57, p53) when compared to 

primary untransduced mouse and rat islets (50). We take this as evidence that substantial 

increases in β-cell cycle inhibitors are typical of rapidly dividing β-cells, and that 

increases in cell cycle inhibitors is not incompatible with increases in overall β-cell 

number, which clearly occur in insulinoma cell lines in vitro (50). Conversely, double-

ablation of Rb and p130 in β-cells does not lead to a net change in β-cell mass despite 

dramatically increasing β-cell proliferation in vivo (51). Instead, increases in β-cell 

proliferation are associated with matched increases in β-cell death, and attempts at cell 

cycle arrest, as indicated by increased phosphorylation of p53 on serine 15 and increased 

p21 protein levels (51). Also, primary human β-cells transduced with CDK4 and 

CYCLIN D1 display increased P21 protein levels (52), placing into question whether 

overexpression of these proteins always lead to increases in β-cell number. Regardless of 

whether the overexpression of genes promoting proliferation of the β-cell stimulates a 

senescence-like fate, as with overexpression of HNF4α8-alone, or apoptotic fate, as with 

the combined overexpression of CDK6, CYCLIN D3, and HNF4α8, we propose that the 

accumulation of DNA damage resulting from replication stress is a barrier to efficient 
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human β-cell proliferation in vitro as also seen in precancerous lesions of the bladder, 

breast, colon and lung in vivo (46).  

As a cautionary note, the criteria when demonstrating sufficiency of a factor to 

promote β-cell proliferation should be extended to include a detailed analysis of cell 

cycle entry, the fidelity of duplication of the genome during S-phase, progression through 

multiple cell cycle phases, and cell cycle exit. Furthermore, in addition to the already 

known undesirable fates of newly formed β-cells through proliferation, i.e. 

dedifferentiation, and apoptosis, activation of the DNA damage response should be 

assessed in attempts to faithfully mimic β-cell proliferation in vitro. 

 

Note: Data presented in this chapter have been submitted to Diabetes as an original 

article entitled, 

Overexpression of Hepatocyte Nuclear Factor- 4α initiates cell cycle entry, but is not 
sufficient to promote β-cell expansion in human islets. 
 
Sebastian Rieck, Zhaoyu Li, Chengyang Liu, Ali Naji, Karen K. Takane, Nathalie M. 
Fiaschi-Taesch, Andrew F. Stewart, Jake A. Kushner, Klaus H. Kaestner. 
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Materials and Methods 

Adenovirus production: The original cDNA plasmid, pcDNA3.hHNF4α8 

(NM_175914.3), was constructed by Dr. Jerome Eeckhoute (53) and is a kind gift of Dr. 

Frances M. Sladek. The islet-specific human HNF4α8 cDNA immediately downstream of 

the rat insulin promoter (RIP) was subcloned into pShuttle (Clontech, Mountain View, 

CA). The Adeno-X Expression System 1 (Clontech, Mountain View, CA) was used for 

construction of the AdRIP-hHNF4α8 adenovirus. The resulting adenovirus was amplified 

in HEK293 cells, purified, and its infectious titer determined. Additionally, quality 

control tests throughout this process, such as genome structure analysis using restriction 

endonuclease digests, replication-competent adenovirus assay, and endotoxin assay were 

successfully performed. The AdCMV-eGFP was received from Dr. Arbansjit Sandhu 

(University of Pennsylvania, Philadelphia, PA). 

Culturing, transduction and harvest of human cadaveric islets: Human islets were 

supplied by the islet cell biology core of the DERC of the University of Pennsylvania, the 

NIH-supported National Disease Research Interchange (NDRI) 

(http://www.ndriresource.org), and the Methodist Hospital Research Institute 

(http://www.methodisthealth.com/default.cfm). The mean (± standard error) age of the all 

donors was 44.7 ± 11.2 years, the purity of the preparations 86.2% ± 5.5, the viability 

90.2% ± 6.6, and the BMI 29.5 ± 8.9. Upon arrival, human islets were incubated in 

CMRL 1066 medium (Mediatech, Manassas, VA) containing 5.5mM D-glucose, 0.5% 

Human Albumin (Talecris Biotherapeutics, Research Triangle Park, NC), 10U/ml 

Heparin (Sagent Pharmaceuticals, Schaumberg, IL), 100 μg/ml Penicillin/Streptomycin 

(Mediatech, Manassas, VA), and 2mM L-glutamine (Invitrogen, Carlsbad, CA). Intact 

http://www.ndriresource.org/
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islets were transduced with adenoviruses for 24 hours in non-tissue culture coated dishes, 

after which the adenovirus was washed out of culture by successive medium changes. 

Then the islets were cultured in the continued presence of a 1:100 dilution of the 

Bromodeoxyuridine (BrdU) reagent (Invitrogen, Carlsbad, CA) during the length of 

incubation after transduction. In all experiments, 5X106 infectious particles per islet of 

either AdRIP-HNF4α8 or AdCMV-eGFP were used. 5X105 infectious particles per islet 

of both AdCMV-CYCLIN D3 and AdCMV-CDK6 were used as described (10). Islets 

were fixed in 4% paraformaldehyde (Fisher Scientific, Pittsburgh, PA) for 1 hour at 4°C, 

the islet pellet suspended in 2% molten agarose, processed, and embedded in paraffin. 

5μm sections were used for immunofluorescence analysis. All data are from non-diabetic 

donors, unless stated otherwise. 

mRNA isolation and RT-PCR: Total RNA was isolated using the RNeasy Mini Kit 

(QIAGEN, Chatsworth, CA), and eluted in water. cDNA was synthesized and 

quantitative PCR reactions performed as described previously (54). PCR primers 

sequences used for E1A are forward, TATGCCAAACCTTGTACCGGAGGT and 

reverse, CCGGGGTGCTCCACATAATCT, as designed in (17); HNF4α forward, 

TGCCTACCTCAAAGCCATCAT and reverse, GCGGTCGTTGATGTAGTCCTC. 

Immunofluorescence analysis: Paraffin-embedded sections were dewaxed, and heat-

induced antigen retrieval performed by pressure cooker heating (Prestige Medical, 

Northridge, CA) using citrate buffer (pH 6.0). Non-specific binding was blocked for 10 

minutes with CAS-Block (Invitrogen, Carlsbad, CA). Sections were then incubated with 

primary antibodies overnight at 4°C. Antibodies used were: guinea pig anti-Pdx1 (gift 

from Dr. Christopher Wright), guinea pig anti-Insulin (Linco Research, St. Charles, MO), 
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mouse anti- HNF4α (R&D Systems, Minneapolis, MN), rabbit anti- HNF4α (Santa Cruz, 

Santa Cruz, CA), rat anti-BrdU (Accurate Chemical, Westbury, NY), rabbit anti-

Glucagon (Invitrogen, Carlsbad, CA), rabbit anti-Somatostatin (Invitrogen, Carlsbad, 

CA), rabbit anti-Ki67 (Vector Laboratories, Burlingame, CA), mouse anti-Cyclin A 

(Thermo Scientific, Fremont, CA), mouse anti-Mcm7 (Thermo Scientific, Fremont, CA), 

rabbit anti-γH2AX (Cell Signaling, Danvers, MA), mouse anti-p53 (Santa Cruz, Santa 

Cruz, CA), rabbit anti-phospho-Chk2 (Cell Signaling, Danvers, MA), rabbit anti-

phospho-p53(Ser15) (Cell Signaling, Danvers, MA) and goat anti-GFP (Abcam, 

Cambridge, UK). Sections were incubated with Cy3-, Cy5-, or Cy2-conjugated donkey 

anti-rabbit, anti-mouse, anti-goat, anti-guinea pig, anti-rat IgGs (Jackson 

ImmunoResearch, West Grove, PA) for 2 hours at room temperature, and nuclei stained 

with 4',6-diamidino-2-phenylindole (DAPI). Quantification was performed on a Nikon 

E600 microscope, and a Q-Imaging Fast CCD camera (Q-Imaging Surrey, BC Canada) in 

conjunction with IVision software (Biovision, Exton, PA). High-resolution images were 

taken on a Yokagawa CSU-10 spinning disk mounted on a Nikon Ti-U inverted 

microscope, and a Hamamatsu Photonics „Orca‟ CCD Camera (Hamamatsu, 

Bridgewater, NJ). All images except for ones including Tunel staining were constructed 

to a single‐image in-focus view of a stack of frames acquired at different positions along 

the Z‐axis. Image J software (NIH, Bethesda, MD) was used to count percentages of 

colocalization between two antibodies. 

Re-replication assay: To determine repeated licensing of origins in human islets, 36 

hours after adenoviral transduction BrdU (Invitrogen, Carlsbad, CA; 1:100 dilution) was 

added to the islet culture for 5.5 hours, unless otherwise indicated. BrdU was removed by 
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washing the islets 3 times with PBS. Islets were placed back into fresh medium without 

thymidine analog for 1 hour to ensure depletion of BrdU. Then EdU (Invitrogen, 

Carlsbad, CA) at a concentration of 100μM was added for an additional 5.5 hours after 

which islets were harvested, fixed, and sectioned for immunofluorescence analysis. Non-

labeling intervals of 3 hours and 6 hours were also used. After antigen retrieval, EdU-

incorporation was detected with the Click-iT EdU Alexa Fluor 555 imaging Kit per 

manufacturer‟s instructions (Invitrogen, Carlsbad, CA). After the Click-iT reaction, BrdU 

was detected as described above. 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL): To assess 

apoptosis, TUNEL assays were performed using the Tunel Label Mix and Tunel TdT 

Enzyme (Roche Applied Science, Indianapolis, IN), and AlexaFluor 647-dUTP 

secondary antisera (Invitrogen, Carlsbad, CA). Paraffin-embedded sections were re-

hydrated, washed in 0.2% Triton-X to permeablize the nuclear membrane, microwaved in 

citrate buffer (pH 6.0) for 16 minutes, followed by 2 hours of cooling. Sections were 

digested in 0.0025% Trypsin-EDTA for 12 minutes at 37°C, and incubated with TUNEL 

reaction mixture for 45 minutes at 37°C. The sections were then incubated with primary 

and Cy3-conjugated secondary antibodies and imaged as described above. 

Glucose stimulated insulin secretion in vitro: Glucose-stimulated insulin secretion (GSIS) 

was performed under static conditions. Briefly, insulin release was measured from 

isolated human islets at time of receipt and 72 hours after transduction with adenovirus. 

Islets were pre-incubated in Krebs bicarbonate buffer (120mM NaCl, 1.8mM CaCl2, 

5mM KCl, 10mM HEPES, 1.2mM KH2PO4, 25mM NaHCO3, 0.2% BSA) with 3mM 

glucose for 1 hour to achieve baseline insulin release. Three groups of 70 islets each were 
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sequentially exposed to 3mM glucose for 1 hour, the medium collected, and then shifted 

to 16.7mM glucose for 1 hour. The medium was again collected and islet protein 

extracted.  Insulin release into the medium, and insulin content of islets was determined 

using a radioimmune assay specific for human insulin (University of Pennsylvania 

Diabetes and Endocrinology Research Center – Radioimmunoassay and Biomarkers 

Core). 

Statistics: Statistical analysis between two groups was done using a one-tailed Student‟s 

t-test.  Values are considered significant when P < 0.05. Variation measurements are 

given as standard error of the mean unless stated otherwise. 
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Conclusions 
 

Normally in healthy conditions, pancreatic β-cells have a long life span, 

exhibiting a low rate of replication. In response to the increased systemic demand for 

insulin as occurs during pregnancy, obesity and β-cell recovery after injury, the β-cell 

population as a whole is able to dramatically increase its rate of replication, at least in 

rodents. It is thought that cell replacement therapy is well suited for diabetic patients 

whose endogenous β-cell number is below the threshold to successfully alleviate 

hyperglycemia chronically. One possible treatment to correct this β-cell deficit in both 

type 1 and type 2 diabetic patients is through the transplantation of isolated islets from 

cadavers. However, a recent report indicates a disproportionately low number islet 

infusions are performed annually compared to the total amount of diabetic patients, 

exemplifying the paucity of donor tissue (1). A promising approach to improve this 

statistic depends on developing an unlimited in vitro supply of fully functional β-cells 

through the proliferation of pre-existing terminally differentiated adult β-cells. To this 

day, a well-defined protocol to drive efficient non-oncogenic proliferation of human β-

cells in vitro remains elusive. 

My research attempted to succeed against this challenge by identifying the 

mechanisms and molecular players responsible for β-cell proliferation during 

physiological expansion of β-cell mass and attempting to mimic human β-cell 

proliferation in vitro through the forced expression of known rodent β-cell mitogens. In 

the first part of my thesis, I used gene expression analysis to determine what mechanisms 

are involved in controlling islet replication during pregnancy in mice. In the second part 
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of my thesis I utilized an adenovirus, primary human islet donations, and 

immunofluorescence techniques to assess the consequence of the overexpression of a 

pancreas specific isoform of HNF4α, a known transcription factor required for murine β-

cell proliferation during pregnancy (2), on human β-cell proliferation in vitro.  

This dissertation makes several contributions to the field of β-cell regeneration. 

First, I provide the first systematic in vivo study investigating the expression profile of 

the proliferating islet during pregnancy in the mouse. I identify many differentially 

expressed genes that at the time of the study have not been previously reported to play a 

role in islet expansion. I compare three different mouse models of β-cell expansion and 

provide evidence that although both proliferative and survival mechanisms are required 

for universal islet expansion, the mechanisms to attain increased islet mass differ between 

pregnancy, obesity, and β-cell injury. In addition, I demonstrate that HNF4α8 is an 

initiator of cell cycle entry in primary human β-cells. While several groups have 

attempted to mimic human β-cell proliferation in vitro, I am the first to show that the 

DNA damage response resulting from replication stress is a barrier to the successful 

completion of the cell cycle by the overexpression of known cell cycle regulators.  

Both proliferative and survival signals are required for islet expansion in vivo  
 

By combining gene expression profiling data and gene ontology functional 

analysis I found a cluster of categories with genes involved in cellular proliferation and 

cell death that were overrepresented in the list of differentially expressed genes from 

pregnant day 14.5 islets as compared to non-pregnant age matched controls (Table 2.7). 

Thus, I hypothesized that the islet‟s ability to compensate during metabolic stress 

requires the simultaneous induction of both proliferative and survival pathways. Birc5 
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(Survivin), a member of the inhibitor of apoptosis (IAP) gene family, is a gene of 

particular interest as endocrine pancreas specific Birc5-deficient animals progressively 

lose β-cell mass after 2 weeks of age, and Birc5-deficient islet cells exhibit dysmorphic 

nuclei, consistent with defective cell division (3). I found that Birc5 expression in the 

islet closely mirrored the proliferative profile, reflected by mRNA levels of Ki67, 

throughout pregnancy, obesity and β-cell injury (Figure 2.4, 2.8), implicating Birc5 as a 

crucial and universal factor that ensures the survival of proliferating β-cells through and 

after mitosis in various settings during increased metabolic loads later in adulthood 

(Figure 4.1). Indeed, I demonstrate that significantly reduced expression of both Ki67 and 

Birc5 in part explains for the onset of severe diabetes in 10 week old BTBR leptinob/ob 

mice as compared to age matched diabetes resistant B6 leptinob/ob mice (4). Consistent 

with the observations I made in comparing different models of β-cell expansion, Birc5‟s 

cytoprotective qualities might be of therapeutic value as demonstrated by transplantation 

of a suboptimal number of β-cell specific Birc5 transgenic islets into diabetic recipient 

mice resulting in long-term engraftment, and stable correction of hyperglycemia in part 

through the intrinsic inhibition of β-cell apoptosis without inducing new rounds of β-cell 

proliferation (5). Together these experiments indicate that the ideal strategy to derive 

fully functional human β-cells through proliferation whether endogenously in a patient or 

ex vivo should consider the utility of „survival‟ genes ensuring protection from the 

consequences of flawed cell division and/or yet unidentified deficiencies, to limit 

undesired fates such as apoptosis induced by genotoxic stress. 

The transcriptional mechanisms to attain increased islet mass differ between 

pregnancy, obesity and a β-cell injury model  
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Using qPCR I compared the expression of selected genes most differentially 

expressed during pregnancy day 14.5 to two other models of β-cell expansion caused by 

an induction of β-cell proliferation: the 10 week old diabetes resistant B6 leptinob/ob 

mouse and the PANIC-ATTAC transgenic mouse. I demonstrated dramatic differences in 

the induction of gene expression occurring between pregnancy, obesity-induced β-cell 

compensation, and recovery from β-cell ablation (Figure 2.8), and suggest that diverse 

mechanisms can be used by the islet to expand its mass at least on a transcriptional level. 

Given the divergent physiological contexts of pregnancy, obesity, and experimental β-cell 

ablation, it makes intuitive sense that the molecular mechanisms responsible for the 

compensatory increase in islet mass in each case are probably distinct. A hypothesis one 

can extend from this is that these divergent mechanisms converge upon the cell cycle 

genes of the adult β-cell. This is exciting as there might be many potential therapeutic 

interventions one can pursue to elicit β-cell proliferation; the challenge being which are 

most feasible as an effective treatment for diabetes mellitus.  

Overexpression of HNF4α8 initiates cell cycle entry in human β-cells in vitro 

 

The transcription factor HNF4α is required for the increase in β-cell proliferation 

during pregnancy, and is one therapeutic avenue for further investigation. To address the 

ability of HNF4α as a human β-cell mitogen, I employed adenoviral-mediated 

overexpression of a pancreas-specific isoform of HNF4α (HNF4α8). Through the use of 

immunofluorescence markers distinguishing between the distinct phases of the cell cycle, 

I demonstrated that HNF4α8 overexpression alone stimulated β-cells to enter the cell 

cycle, and led to a greater than 300-fold increase in the number of β-cells that entered S-

phase without detectable loss of function (Figure 3.2, 3.6). In addition, when I 
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overexpressed HNF4α8 together with known factors sufficient for promoting cell cycle 

entry in the human β-cell (CDK6 and CYCLIN D3), I further increased the number of β-

cells entering the cell cycle (Figure 3.7). This data extends the role of HNF4α in murine 

β-cell proliferation during pregnancy to a cell cycle regulator in human β-cells in vitro. 

The DNA damage response resulting from replication stress limits cell cycle 
progression in primary human β-cells overexpressing cell cycle regulators  
 

I further investigated β-cells stimulated to enter the cell cycle by overexpression 

of HNF4α8 for (i) active cell cycle progression through cell cycle phases, and (ii) proper 

duplication of the genome. Using immunofluorescence markers I demonstrate that this 

population of β-cells undergoes dysregulated DNA replication at one origin leading to 

activation of the DNA damage checkpoint, and cell cycle arrest ultimately leading to a 

senescence-like fate (Figure 3.4, 3.5, 3.6). DNA damage induced cell cycle arrest is not 

limited to overexpression of HNF4α8, but is also present in a substantial proportion of β-

cells induced to enter the cell cycle by the combined overexpression of CYCLIN D3 and 

CDK6 (Figure 3.8), the previous gold standard for the induction of human β-cell 

proliferation in vitro (6). In addition, I show that this fraction of islet cells that have 

entered the cell cycle upon CYCLIN D3/CDK6 overexpression show morphological 

signs of cell death (Figure 3.8), which was not previously appreciated (6). While entry 

into the cell cycle is not being debated, these results put into doubt whether complete cell 

cycle progression and exit is achieved with previously published β-cell sufficiency 

factors transcriptionally modulated through overexpression. Rather it suggests 

uncoupling of the mechanisms that control the timing and execution of each cell cycle 

phase in primary human β-cells through excessive transcriptional activation.  
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These results also suggest that the expression levels of cell cycle regulators are 

important to consider when attempting to elicit β-cell proliferation in vitro. For example, 

the reintroduction of supraphysiological protein levels of HNF1α back into HNF1α- null 

mice is deleterious, as demonstrated by a severe reduction of β-cell proliferation, 

increased apoptosis, and subsequent β-cell depletion (7). Indeed, the tissue specific 

expression of HNF4α as determined by its dual promoters is dysregulated in certain 

human cancers (8). Also, it is important to realize that the DNA damage response is a 

barrier to tumorgenesis in early human bladder, lung, colon and breast cancers. 

Overexpression of already mentioned genes such as Cyclin E, E2F1 and c-Myc 

stimulates the DNA damage machinery through DNA hyper-replication (9-11), 

abrogation of which leads to transformation and tumor formation in both in vitro and in 

vivo models (11, 12). This sets an undesired but very much potential precedence that 

overexpression cell cycle regulators can generate genomic instability, leading to 

spontaneous mutations of key DNA damage response mediators such as p53, and 

consequent unchecked proliferation. Numerous P53 mutations and splice mutations of 

CHK2, including loss of heterozygosity of the CHK2 protein, accumulate with worsening 

grade of bladder cancers, indicating progressive defects in the DNA damage response 

pathway (10). While the manipulations performed in my experiments did not lead to a 

diminishing DNA damage response over time (Figure 3.5, 3.6), the wide appreciation and 

analysis of the DNA damage response pathway, including p53, until now did not exist in 

the context of the β-cell, and more importantly in a human β-cell that has been stimulated 

to enter the cell cycle via overexpression of a β-cell mitogen. My findings not only 

demonstrate that the DNA damage response is a barrier to efficient β-cell proliferation in 
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vitro, but also suggest genomic stability as an additional determinant of successful β-cell 

proliferation and expansion in vivo (Figure 4.1).  
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Figure 4.1: A model for β-cell expansion in response to metabolic loads. 



  
 

166 

 
Figure 4.1: A model for β-cell expansion in response to metabolic loads. This is a 

model based on the conclusions of this thesis and the literature. (A) Normally, β-cells in 

the mouse undergo very little turnover, exhibiting a low basal rate of replication. 

Pregnancy, obesity and β-cell recovery after injury are examples in which the systematic 

demand for insulin increases. (B) To successfully compensate for the relative insulin 

deficiency that occurs in each case, both proliferative and survival pathways are activated 

in β-cells, protecting against the onset of diabetes. An increase in β-cell size also 

accompanies β-cell expansion during pregnancy and obesity. (C) If the expanding β-cell 

mass remains predisposed to β-cell apoptosis resulting from an increased vulnerability 

during cell cycle progression, for example the lack of expression of „survival‟ factors 

(represented here as Birc5) and/or increased genomic instability, β-cell compensation 

fails. If β-cell apoptosis overcomes β-cell renewal mechanisms and persists for a 

prolonged amount of time, diabetes might ensue.  

 

Note: This figure has been published in TRENDS in Endocrinology and Metabolism as a 

Review article entitled, 

 
Expansion of β-cell mass in response to pregnancy. 

Rieck S, Kaestner KH. Trends Endocrinol Metab. 2010 Mar; 21(3):151-8. 
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Future Directions 
 
Investigation of the role of Cish in reversible β-cell expansion during pregnancy 
 
 It is now appreciated that a great multitude of cell cycle inhibitory proteins or 

molecular brakes are expressed in the β-cell postnatally, dramatically slowing the rate of 

β-cell proliferation during adulthood (13). Instead of looking for the therapeutic 

molecular accelerator that drives cell cycle progression, the converse question I can ask is 

which molecular brakes must be removed to allow spontaneous β-cell proliferation. The 

identification of differentially expressed genes associated with β-cell expansion during 

pregnancy (see Chapter 2) offers hints to which brakes might help generate new β-cells in 

a cell replacement therapy for treating diabetes mellitus.  

One such gene whose expression is highly induced in the islet during pregnancy is 

Cish, a member of the suppressor of cytokine signaling (SOCS) family (Table 2.3). The 

SOCS family is characterized as a family of proteins capable of inhibiting Jak2/Stat 

signaling in various tissues, acting via a classical negative feedback loop (14). Since it is 

known that lactogenic hormones signal through Jak2/Stat5, and induce proliferation by 

upregulation of Cyclin D2 in the β-cell in vitro (15), a molecular regulator of this 

pathway is of particular interest. Specifically, Cish can utilize two mechanisms to 

downregulate lactogen- induced Jak2/Stat signaling. First via its SH2 domain, it can bind 

to phosphorylated tyrosine residues on the prolactin receptor, a tyrosine kinase receptor, 

thereby masking potential docking sites for downstream signaling such as Stat5. Also, via 

its SOCS box domain, Cish may target its bound signaling molecule to ubiquitination and 

proteosomal degradation by recruitment of an E3 ligase complex (14).  
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Thus, I propose the induction of Cish expression by lactogen signaling through 

Jak2/Stat5 negatively regulates growth in the β-cell during pregnancy. Indeed, I have 

preliminarily demonstrated that suppression of Cish induction augments phosphorylation 

of Stat5 by recombinant prolactin in MIN6 cells (data not shown). However, the role of 

Cish in reversible β-cell expansion during pregnancy in vivo is not known. I hypothesize 

that ablation of Cish will enhance β-cell proliferation during pregnancy in the mouse. To 

answer this question, I derived a conditional null allele for Cish utilizing genetic 

recombination and subcloning protocols (Figure 4.2A-B). I will utilize a transgenic 

mouse expressing Cre recombinase under the control of the mouse insulin promoter 

(MIP) to specifically ablate Cish in β-cells (Figure 4.2C), because the MIP-Cre/ERT 

transgenic mouse does not have Cre recombinase activity in the brain and tamoxifen is 

incompatible with pregnancy studies (16). I will use the CishLoxP/LoxP; MIP-Cre mouse 

model to assess if Cish ablation is enough to cause a normally quiescent adult β-cell to 

spontaneously proliferate. In addition, using the pregnancy β-cell expansion paradigm I 

will be able to assess if Cish ablation can augment the proliferation rate and/or survival of 

β-cells in response to physiological insulin resistance in the mouse. Gene expression 

profiles will give me mechanistic information of what potential pro-proliferative and pro-

survival genes are transcriptionally upregulated upon Cish deletion, and if Cish acts as a 

negative regulator of the Jak2/Stat5 pathway and potentially any other signaling 

pathways downstream of the prolactin receptor during pregnancy such as the insulin 

signaling pathway (17). If there is a role for Cish in β-cell proliferation during pregnancy, 

combining the CishLoxP/LoxP; MIP-Cre mouse model with other models of β-cell expansion 

such as obesity (high fat diet) and β-cell recovery after ablation (PANIC-ATTAC) will 
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give me information about if Cish‟s role in β-cell proliferation is restricted to only the 

pregnancy. If these experiments employing this mouse model are successful, experiments 

can then be carried further into the primary human islet system to ask if the RNA 

interference mediated suppression of CISH expression upon lactogen stimulation has a 

stimulatory effect on human β-cell proliferation.  
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Figure 4.2: Derivation of a loxP allele for the conditional ablation of Cish in the 
mouse. 
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Figure 4.2: Derivation of a loxP allele for the conditional ablation of Cish in the 

mouse. (A) The homologous recombination strategy chosen to derive the CishLoxP allele 

with (i) wild type Cish locus on chromosome 9, (ii) the target vector, and (iii) the 

resulting homologous recombination product between the target vector and wildtype Cish 

locus. Notice the additional EcoR1 site introduced by the 3‟ loxP site. (B) A southern blot 

showing successful recombination of the target vector into the Cish locus as detected by 

two different DNA products after EcoR1 restriction enzyme digestion. (C) A cross 

between a mouse homozygous for the CishLoxP allele and MIP-Cre transgene mouse 

ablates Cish only in β-cells. 
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Define HNF4α dependent pathways responsible for β-cell proliferation during states 
of increased metabolic loads 
 

It has been shown that HNF4α is not only required for β-cell proliferation during 

pregnancy (2), but its overexpression can also be utilized to stimulate primary human β-

cells to enter the cell cycle (see Chapter 3). While one mechanism through which this is 

accomplished could be the Ras/Mapk signaling pathway (2), it is unclear as to how 

HNF4α regulates the cell cycle and if other known mechanisms leading to proliferation of 

β-cells are dependent on HNF4α. Based on my human β-cell work, I hypothesize that 

HNF4α transcriptionally regulates genes responsible for triggering cell cycle entry. While 

it was not possible to assess the small population of HNF4α8- overexpressing human β-

cells that entered the cell cycle separate from the remainder of the islet by gene 

expression analysis, I can begin to validate this hypothesis by utilizing a transgenic 

mouse model that has inducible overexpression of HNF4α8 in a higher percentage of β-

cells by using the RIP-RTTA (reversible tetracycline transactivator protein); TRE-

HNF4α8 (tetracycline response element) system. In addition, β-cell specific deletion of 

HNF4α, by using the HNF4αloxP/loxP; Ins.Cre mouse model provides an experimental 

platform with which to identify physiological pathways involved in β-cell proliferation 

dependent on HNF4α not only during pregnancy, but also other models of β-cell 

expansion (18). Expression profiling of pregnant control and pregnant HNF4αloxP/loxP; 

Ins.Cre mice can provide other pathways transcriptionally dependent on HNF4α during 

pregnancy. Placing HNF4αloxP/loxP; Ins.Cre mice on a high fat diet or crossing with leptin 

deficient Ob/Ob mice can address if β-cell proliferation is dependent on HNF4α during 

obesity. Together I can compare the gene expression profiles between these three 
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contexts (HNF4α8 overexpression, pregnancy, obesity) to assess if the differential 

expression of genes differs between a proliferating β-cell during two different states of 

physiological insulin resistance, and a β-cell stimulated to enter the cell cycle by 

overexpression.  

Another potential mechanism for HNF4α dependent β-cell proliferation reflects a 

very recent but provocative idea that glucose driven glycolysis is a key mitogenic trigger 

for β-cells. Specifically, β-cell proliferation depends on a signaling pathway involving 

glucokinase and membrane depolarization (19). HNF4α directly regulates a key factor in 

this pathway, the potassium channel (KATP) subunit Kir6.2, through regulation of mRNA 

and protein expression in vivo and transcriptional activation of Kir6.2 in vitro (18). It is 

possible that reduced levels of Kir6.2 protein levels uncouples HNF4α- deficient β-cells 

from the increased glycolytic flux present during pregnancy, leading to a reduction in 

proliferation rate of these cells (19). Although the direct mechanism downstream of 

Kir6.2 to cell cycle genes is not clear, the HNF4αloxP/loxP; Ins.Cre mouse in combination 

with the pregnancy β-cell expansion paradigm gives an experimental platform from 

which to test this hypothesis. While Kir6.2 is only a subunit of the KATP channel, 

mutations in it alone are able to cause impaired insulin secretion in pancreatic β-cells in 

vivo (20). Indeed, the HNF4αloxP/loxP; Ins.Cre mouse during pregnancy is glucose 

intolerant as measured by glucose tolerance tests (2). In addition, if an increase in the 

random blood glucose and decrease in the insulin levels in the plasma of these mice 

during pregnancy occurs, opposite of what normally happens (21), it would suggest an 

uncoupling of the HNF4α- deficient β-cell to its surrounding glycolytic environment. An 

interesting experiment would be to attempt to rescue the β-cell proliferation defect by 
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molecules that modulate the activity of the KATP channel of the β-cell. Diazoxide 

decreases insulin secretion by opening the KATP channel and sulfonylureas like glyburide 

increase insulin secretion by closing the KATP channel (19). I hypothesize that 

hyperpolarization of the β-cell membrane by administration of diazoxide will not 

improve the β-cell proliferation defect. Conversely, depolarization of the β-cell 

membrane by administration of the glyburide would rescue the proliferation of β-cells 

normally reduced in the HNF4αloxP/loxP; Ins.Cre mouse during pregnancy. This is 

supported by the fact that forced membrane depolarization upon injection of glyburide in 

the presence of increased glycolytic flux by β-ablation can further stimulate β-cell 

proliferation (19). An alternative rescue experiment is to reintroduce Kir6.2 protein 

expression back into the HNF4α-deficient β-cell by the use of a β-cell specific Kir6.2 

overexpression mouse, with the expectation that this would couple the HNF4α-deficient 

β-cell back to an environment of increased glycolytic flux restoring β-cell proliferation. 

These experiments would begin to clarify whether glycolytic flux has a role in β-cell 

expansion during pregnancy, and if HNF4α regulates this process.  

Examination of methods which potentially stimulate β-cell proliferation without 
activation of the DNA damage response 
 

My findings demonstrate that overexpression of cell cycle regulators can generate 

replication stress in human β-cells, characterized by cell cycle arrest due to the activation 

of the DNA damage response (see Chapter 3). I propose that future studies attempting to 

understand the DNA damage response in the β-cell can help avoid undesired 

consequences when attempting to stimulate β-cell proliferation. While re-replication 

occurs in HNF4α8 overexpressing cells that enter the cell cycle and attempt S-phase, 

what is the nature of this DNA damage response in β-cells overexpressing other cell cycle 
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regulators such as the combination of CYCLIN D3 and CDK6? It is true that re-

replication occurs in response to the overexpression of various oncogenes in cell lines 

(11), but other pathways may induce genomic instability by dysregulation of chromatin- 

remodelers, or by directly influencing chromatin structure such as in the telomere and 

centromere regions (22). In addition, is the DNA damage response generic or specific to 

the β-cell, and if so, why does one face this challenge only in β-cells? It is curious that 

out of the endocrine pancreas only the β-cell is susceptible to Birc5-deficiency (3). An 

extension of this line of thought is indicated by the yet unexplained observation that 

embryonic and adult cell division seems to be regulated independently (23, 24); the study 

of cell cycle control in the β-cell not only in various contexts, but also with respect to 

other cell types is still incomplete. There is a need for identification of the mechanisms 

cell cycle entry and progression employed by the β-cell prenatally. These mechanisms 

should be compared to β-cell expansion models already discussed such as during 

pregnancy, obesity, and β-cell recovery after injury. For example, is some degree of the 

DNA damage response physiological or always pathological? One way to examine that 

question would be to look at the only clearly proven type of human β-cell replication, 

which occurs during prenatal period of the fetus (25). If no DNA damage response is 

present in these proliferating β-cells, what are the proliferative and survival mechanisms 

employed that protect the β-cell against this during the prenatal period? The challenge 

becomes to identify ways in which β-cell proliferation can be stimulated while avoiding 

activation of the DNA damage response. 

The utility of cell permeable small molecules would be an alternative to the 

overexpression of cell cycle regulators to stimulate β-cell proliferation. Small molecules 
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would allow for greater regulation of both the amount and duration of potential β-cell 

mitogen activation needed to drive efficient and non-oncogenic cell cycle progression. I 

propose that small molecules identified by a screen using a quiescent β-cell line can be 

confirmed by the primary human islets in vitro system. Known molecules stimulating β-

cell proliferation include, hepatocyte growth factor (Hgf) (26), and Exendin-4 (27). Other 

potential molecules include ones that trigger an increase in the rate of glycolysis in the β-

cell, since glucose driven glycolysis is a physiological mitogenic trigger for β-cells (19). 

A recent study demonstrated that a major regulator of Cyclin D2 levels is glucose acting 

via glycolysis and calcium channels in the β-cell (28). Indeed, a high throughput, high 

content screening of a growth arrested immortalized mouse β-cell line has identified 

agonists of calcium channels that can stimulate primary human β-cells into the cell cycle 

(29). It would be interesting to see if glucokinase activators, upcoming drugs aimed at 

improving the control of blood glucose in type 2 diabetics, could have a stimulatory 

effect on human β-cell proliferation (19). Other potential small molecules include ones 

that increase the activation of known genes regulating proliferation and potentially in 

combination with known genes regulating survival in the β-cell. For example, 

identification of small molecules that modulate the activity of pancreas specific HNF4α 

could be more beneficial than its overexpression with respect to its role as a 

„proliferation‟ gene. Also, small molecules activating the FoxM1 transcription factor with 

„survival‟ gene products such as Birc5 could ensure unflawed cell cycle progression. 

Eventual assessment of small molecules on β-cell mass in diabetic patients is needed to 

validate this therapeutic avenue. 
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