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Dear Dr. Warren Seider and Prof. Bruce Vrana, 
 

Our team set out to design a process where algae would be grown to convert carbon dioxide from                  

flue gas into valuable biomass. The design would operate at a pilot scale and would be required to convert                   

a large fraction of the carbon dioxide from an incoming concentrated flue gas stream. Little more was                 

specified; creativity would be valued in this design, as algae cultivation for carbon conversion is a                

relatively new field and represents an industry in its infancy. 

Algae production is a complex process with no shortage of technical challenges. Setting out with               

an ambitious carbon sequestration goal consistent with current industry targets, and the desire to create an                

innovative process that demonstrates significant technical capacity, we were met with many challenges             

along the way. The open-ended nature of the project requirements created space for applying unique and                

novel  solutions to these challenges. 

We began with a First Principles assessment of the overarching purpose of algae cultivation. How               

best can algae be a vehicle for rapidly closing the carbon cycle on earth? Given that fossil fuel use is                    

expected to remain high for decades to come, increasing the need for commercially attractive carbon               

conversion technologies, how can algae play a role in moving our system of energy generation and use                 

towards carbon neutrality? What else can the highly carbon-dense and nutrient-dense material that is              

algae biomass be put to use for besides as a source of biofuel?  

Our goals were clear: focus on overcoming the significant biological and engineering challenges             

associated with developing an algae-based process that operates in the direction of carbon neutrality.              

Profitability was a desire, but not an expectation. Pilot scale facilities are are rarely profitable in any                 

process, and the algae industry remains largely in a stage highly reliant on ongoing R&D, expectant                

technological leaps, strong public and private investment, and regulatory support for algae-based            

ventures. Given this, profitability was originally tepidly approached.  

However, after many re-designs, we landed on a successful process design that met the most               

ambitious technical target we set for ourselves, and from there, the potential for profitability began to                

emerge. A final profitability analysis presents a 9-15% ROI over a 4-5 year period. We are excited to                  

present what we believe is a novel and unique bioreactor design that provides a high level of flexibility,                  
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tailorability, and capacity to harness the biosynthetic potential of microalgae for sustainable carbon             

emissions reduction and value-added product creation.  

Thank you for your time, guidance, and reviewal of our work. Your contributions have been               

indispensable to the development of our project. 

Regards, 

_________________________  _________________________  _________________________ 

Casey Barkan  Kyle DeLuca  Mikaela Preston 
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1 Abstract

Carbon conversion processes (where carbon dioxide is not only captured and stored, but converted to

commercially-valuable products) have high barriers to sustained and large-scale commercial viability.

Mass algae production as a means to carbon emissions reductions is considered to have great commercial

potential, but the viability of deployment is going to rely on technological leaps supported by strong public

and private investment. Presented in this Design Report is a novel pilot-scale microalgae cultivation

system that successfully converts over 50% of the carbon dioxide (CO2) present in a stream of flue gas

from a coal-fired power plant into valuable biomass. The process operates at a carbon dioxide input

rate of 200 kilograms per day from a 10% carbon dioxide by volume flue gas stream. A 9-15% Return

on Investment over a 4-5 year period is reported. The project met a set of highly ambitious carbon

conversion goals, and contributes to a positive outlook for the future of algae production for sustainable

carbon emissions reduction and value-added product creation.

This presented design should encourage investment into pilot-scale and demonstration facilities in

a move towards large-scale operation. The presented process can be used to convert high volumes of

CO2 to valuable biomass that can be sold for many applications ranging from feed to nutraceuticals to

biofuels. The innovative ”Hybrid Petal Reactor” design incorporates a central gas exchange column with

a horizontal tubular photobioreactor system that harnesses sunlight during the day, and an internally-

illuminated nighttime tank that involves innovative use of optics. The outdoor system was designed to

scale with a series of tubes that branch out like “petals” from the central gas exchange column. The

tube design is optimized for high productivity and low costs. An emphasis was placed on designing a

process highly considerate of biological constraints. The presented final design offers great flexibility and

opportunity for scale-up.
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2 Introduction

2.1 Background

As atmospheric CO2 levels continue to rise, it becomes increasingly important to find methods to effi-

ciently and economically sequester large amounts of CO2, and either store it (carbon capture and storage

technologies), or convert it to value-added products (carbon conversion technologies). Combating climate

change will be heavily dependent on the ability to not only reduce emissions but to bring processes like

energy generation closer to carbon neutrality. Carbon sequestration, the process by which carbon dioxide

is naturally or artificially removed from the atmosphere and stored in solid or liquid form, will play a

large role in meeting global carbon goals in the coming decades (Williamson, 2016).

Algae, photosynthetic organisms that are found in both fresh and marine water, have the potential to

contribute greatly to the carbon sequestration industry. Algae consume CO2 and convert it into highly

valuable biomass and lipids. The biomass has many applications such as nutraceuticals (Matos et al.,

2017), and the lipids can be converted to a range of biofuels (Ghadiryanfar et al., 2017). Algae produce

more fuel per area than any other biofuel; they are 12 times more productive than corn ethanol and over

70 times more productive than soybean biodiesel. As well, unlike deriving fuel from corn or ethanol,

algae fuels do not compete with important staple food sources (WorldWatch). Furthermore, algae can

utilize non-arable land and waste products, such as waste flue gas, to grow and produce these products.

There is massive potential for industrial flue gases to be used as a source of CO2 for large scale algae

sequestration operations (Huang et al., 2015).

Flue gases from power and industry sectors account for over 60% of global CO2 emissions (Gale et al.,

2005). Not only could algae significantly contribute to keeping atmospheric CO2 levels below currently

dangerous (and rising) levels, but the value-added bioproducts containing sequestered carbon would have

many profitable applications. However, there are challenges associated with flue gas usage that currently

limit large scale success (Zhu et al., 2016). Most algae grow optimally with an input CO2 concentration

of around 5%, but flue gases can contain much higher concentrations of CO2 that can inhibit growth,

mainly due to the resulting drop in pH of the algae slurry (most algae maintain high growth in pH’s

between 6 and 9). Achieving adequate dissolution of CO2 in solution is also a challenge, especially at

the high input velocities of the flue gas, due to the low mass transfer rate between the gas and liquid

solutions (Sadeghizadeh et al., 2017). High temperatures of flue gases also inhibit CO2 dissolution and

algae growth; algae grow optimally around 25-30C, but flue gases can reach much higher temperatures,

often leading to the need to cool the gas before entry into the algae volume, or the need to cool the

algae volume itself. Finally, the presence of NOx and SOx in flue gases can also cause a drop in pH and

further inhibit grow. Successful commercialization of large scale algae carbon conversion operations will
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require the use of flue gas as directly and efficiently as possible by overcoming these constraints in an

economically viable manner.

2.2 Motivations and Goals

The design of this process was based off of carbon conversion goals that are biologically, technologically,

and economically ambitious. The carbon sequestration industry as a whole struggles with creating pro-

cesses that not only have the capacity for not only high volume throughput but are also able to utilize

a high fraction of any input carbon dioxide. Furthermore, when designing a process that harnesses

biological methods of carbon sequestration, the various complexities and constraints of the living sys-

tem employed must be closely attended to. The presented design places an emphasis on adherence to

reasonable biological boundaries, while simultaneously aiming to maximize the biosynthetic potential of

the algae for carbon sequestration. This project aimed to tackle the sequestration fraction challenge by

designing a pilot-scale complete flue gas-to-algae conversion facility that would utilize a stream of flue

gas (10% CO2 v/v) containing 200 kilograms of CO2 per day. The baseline goal was to convert at least

30% of the input CO2 to biomass, but the ideal goal was to convert over 50%. This goal was inspired

by the currently ongoing $20 million NRG COSIA Carbon XPRIZE, the high-profile international com-

petition that aims to find and accelerate the development of the world’s most innovative CO2 capture

technologies. The competition is currently in Round 2 as of spring 2018, where leading businesses and

engineers from a wide range of fields are competing to build pilot-scale demonstrations of various carbon

conversion processes. According to the Competition Guidelines, the competitors’ pilot operations must

operate continuously 24 hours a day, taking in 200 kilograms per day of CO2 from a simulated flue

gas stream. To avoid immediate elimination from the competition, at least 30% of the CO2 must be

converted to product. To receive points after that, over 50% must be converted. Points are also awarded

for the value and marketability of the carbon-based product. These requirements were chosen by the

XPRIZE designers after a rigorous assessment of the carbon conversion landscape and market. They

represent an aggressive step towards successful deployment of carbon conversion technologies. Basing the

goals of this design project off of the Carbon XPRIZE criteria presented a technically and biologically

challenging problem. If the project was successful, it would be on par with current high-reaching targets

of the carbon conversion industry. Presented in this report is a novel highly versatile microalgae pho-

tobioreactor, the “Hybrid Petal Reactor”, that uses primarily sunlight to convert over 50% of the CO2

contained in a stream of flue gas from a coal-fired power plant. At the pilot-scale, over 200 kilograms

of CO2 per day is processed, and valuable biomass that can be sold for a wide range of applications

is produced. Equipment and systems that were designed include a horizontal tubular outdoor reactor

system, a closed internally-illuminated nighttime tank system, a CO2/O2 gas exchange column, tempera-
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ture and pH balancing systems, nutrient delivery systems, and post-processing systems for the harvested

biomass, including flocculation and drying. This design successfully overcomes key technical challenges

while working under the limitations of biological constraints. In a push to improve the overall viability

and attractiveness of the design, a profitability optimization was carried out to determine the optimal

set of specific design parameters for the process. Finally, an overall economic analysis was performed to

assess the long-term viability of the pilot process as well as the potential for scale-up.

2.3 Objective-Time Chart

Figure 2.1 shows the Objective-Time Chart under which the project timeline was carried out.

Figure 2.1: Objective-Time Chart for this project timeline.
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3 Market Analysis

3.1 Competitive Assessment

According to the 2016 market assessment report on the global algae industry from Transparency Market

Research, the global algae market, valued at US$608.0 Million in 2015, is expected to continue growing

at a compound annual growth rate of 7.39% into the next decade. The expected value in 2024 is over

US$1.1 Billion at a volume of almost 30,000 of tons of biomass per year. This number could be even

greater with a series of key technological advancements outlined below, with the aid of initial investment

support, both public and private.

3.1.1 Carbon Conversion Technologies Landscape

In order for the global temperature rise to remain below the limits set by the Paris Climate Agreements –

beyond which climate catastrophe is essentially inevitable – carbon dioxide levels in the atmosphere must

be reigned in. This will occur not only by emissions reductions technologies, but by global adoption of an

advanced profile of carbon conversion technologies. Carbon emissions from power plants are increasingly

being recognized for their asset value, rather than simply as a harmful waste product. Carbon can

be converted into many value-added products that have many industrial and day-to-day applications

(Figure 3.1, obtained from the the XPRIZE Carbon Market Analysis). Unfortunately, the pace of

carbon conversion technology is slow, due to technical and market challenges. While many carbon

capture technologies (where captured CO2 is merely stored) are near deployment readiness, carbon

conversion technologies (where value-added products are created from the CO2) are far behind. Current

efforts to accelerate the research, development, and implementation of carbon conversion technologies

are exceedingly important.

Figure 3.1: Various products that can be made from carbon dioxide through carbon conversion technolo-
gies. Obtained from the Carbon XPRIZE Market Analysis.
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This project aimed to explore and overcome some of the technical and economic challenges associated

with carbon conversion, and demonstrate the impressive potential of value-added microalgal production

to contribute to the global carbon product market. The goals of this project were therefore in part

motivated by the NRG Cosia Carbon XPRIZE, the ongoing $20 million international competition that

aims to find and accelerate the development of the world’s most innovative CO2 conversion technologies.

XPRIZEs are respected internationally for legitimizing highly important fields and providing visibility

for creative and high-potential solutions to the world’s most challenging problems. The foundational

technological and market assessment for carbon conversion technologies that formed the Carbon XPRIZE

criteria was therefore considered a legitimate assessment of the landscape and was used to provide

perspective for this project.

Despite a move towards alternative sources of power generation, the International Energy Agency

(IEA) anticipates that fossil fuels’ share of the global power sector will only drop to 57% in 2035, from

the 2011 level of 68%. This highlights the need for effective carbon conversion technologies. Carbon

conversion technologies fall under three main categories: biological (organisms use processes like photo-

synthesis to absorb CO2 and create a product), chemical (catalysts reconfigure carbon molecules from

CO2 with various substrates to form a product), and mineral (CO2 is incorporated by way of solid car-

bonates into other products). Technologies under these classes are currently at a “Technology Readiness

Level” (TRL) of approximately 1-4, meaning they are largely at the stage of initial conceptual research

or laboratory-scale proof of concept. The timeline below (Figure 3.2), obtained from the the XPRIZE

Carbon Market Analysis, depicts the path towards full commercial scale deployment. The presented

timeline is an ideal schedule of research, development, and deployment. Carbon conversion technologies

are only now breaking into pilot-scale operation.
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Figure 3.2: Timeline of the path to commercial viability of carbon conversion technologies, delineated
by the “Technology Readiness Level”. Carbon conversion technologies are currently generally at a TRL
of 1-4. Obtained from the Carbon XPRIZE Market Analysis.

Another challenge in the path to viability is the need for conversion processes to be able to use a

wide range of CO2 sources. Currently, many concepts are being tested using pure CO2 streams – the

easiest source to utilize, as there are no other variables to account for. Eventually, conversion processes

must be able to use industrial flue gas outputs that have a range of CO2 concentrations, as well as other

challenging properties such as physical characteristics like high temperatures, or changing compositions

and presence of potentially harmful contaminants. On the other hand, another goal is to sequester large

amount of CO2 directly from air, where the challenge is instead achieving high and profitable volumes

of product creation with the very small CO2 concentration of air. Technologies are not currently at the

point where highly variable gas streams can be utilized effectively.

3.1.2 Market Challenges of CO2 Conversion Technologies

Some key challenges in bringing carbon conversion to market are considered to have played a prohibitive

role in the realization of the full technological and economic potential of carbon conversion technologies

such as algae production. The following section outlines some of these.

First, the range of products that can be created from CO2 as a main building block is vast, and

therefore hard to quantify, classify, and understand, which makes assessing the scale of potential impacts,

the specific economic repercussions, and of course, the environmental benefits of all the possible processes

complex. Furthermore, there is no standard method of life cycle analysis for carbon technologies. Since
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the overarching goal is removing carbon from the atmosphere by closing the carbon cycle through carbon-

neutral processes, it is important to standardize the way that carbon inputs and outputs of a process are

measured and assessed. The large number of variables at play in a single process makes this very tricky.

This makes measuring technological and economic progress difficult and obscure.

Second, industrial emissions reductions investment has been directed towards the simpler of carbon

technologies: carbon capture and storage (CCS) technology. This leaves less funding for conversion R&D.

Some CCS technologies have benefited from the investment; there are 12 commercial-scale projects around

the world (XPRIZE Market Assessment). Unfortunately though, these processes actually force energy

costs up, as CCS is a waste treatment process more-so than a value creation process. Third, conversion

technologies must also compete with existing mature technologies that create the same products for

much cheaper. For example, though algae can be used to produce valuable diesel, diesel production is

performed on a large scale already, after decades of investment in the technology and its deployment.

Finally, navigating confounding and risk-averse rules and regulations embedded in the energy industry

makes working with industrial emissions producers to test technologies at various scales difficult. Initial

costs associated with deployment of new technology is a significant barrier to demonstrating potential

for large scale viability. Of course, this is not aided by the fact that CO2 emissions are heavily under-

regulated in most of the world. Creating positive incentive for the widespread adoption of value-added

carbon conversion technologies is crucial to their eventual success.

3.1.3 State of Algae Carbon Conversion Market

There is no shortage of reasons why algae is an attractive contender for large scale CO2 capture and

conversion into valuable products. With productivities orders of magnitude higher than other highly

photosynthetically active plants such as soybean or sugarcane, and a biomass composition of 50% fixed

carbon, microalgae is one of the fastest ways possible that CO2 can be incorporated into a more carbon-

dense material. However, large scale controlled and reliable microalgae production is difficult do to many

technological and economic challenges. The technology for flue gas utilisation shows a lot of promise, but

its long term economic viability as a profitable process depends on significant R&D investment in the

present. Understanding how to harness the full biosynthetic potential of microalgae photosynthesis to

be able to grow robustly under a wide range of conditions and high volumes of highly concentrated flue

gas is crucial. From an economic perspective, unleashing the full potential of the algae biomass product

market by boosting its expansion with positive incentives for industrial CO2 emitters to use algae to offset

emissions is going to be key. With increases in carbon regulation programs, there is growing interest

in using algae to offset emissions in a number of industries. These include not only fossil-fuel power

generation plants, but cement, iron, and steel plants, mining operations, petrochemical processes, and
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many more. Programs like carbon crediting essentially adds a revenue stream for industrial producers

utilizing algae as a carbon emissions mitigation method. Other government regulations could come in

the form of subsidies based on amount of carbon emissions reduction, or tax reduction on algae products,

or other initial cost offset such as land support. Many countries are actively interested in microalgae

technology, including Brazil, where this project was designed for pilot deployment in.

Biological Understanding and Manipulation

Microalgae systems are complex. Though the knowledge landscape is large and rapidly expanding,

much of the intricacies of algae growth and ecology remain largely unexplored or not understood. Ap-

plication of advanced gene sequencing and engineering technologies to improve our understanding and

control over microalgal carbon fixation will greatly improve yields. One of the major limitations of algae

commerciability is the low productivity of algae under high lipid-producing conditions. Lipids can be

extracted and converted to biofuels – one of the most commercially valuable products of algae – but for

high lipid accumulation, algae must be grown under nitrogen starvation, which lowers growth rates over-

all. In the summer of 2017, Exxon Mobil and Synthetic Genomics released a breakthrough paper that

reported the use of genetic engineering to double to lipid composition of Chlorella without sacrificing any

biomass productivity (Dlouhy, 2017). Advancements of this significance are expected to rise in frequency

in the coming years. This will be of particular importance in improving microalgae growth rates when fed

a stream of gas with fractions of CO2 as high as those in coal plant flue gas and higher. Improvements

to the ability of microalgae to take advantage of other waste streams, such as using wastewater as a

nutrient source instead of freshwater-based expensive nutrient medium, to create value and lower costs

and overall footprint will also be important on large scales, and will make algae production facilities even

more attractive for public and private investment.

Harvesting and Drying efficiency

Currently, harvesting, post-processing, and refining of algae cultivation volume is expensive and

energy-intensive. In many cases, post-processing such as drying can represent the majority of production

costs, and in some cases have been projected to be too high to even allow for implementation of a design

(Slade, 2013). Improvements to heat integration and recycling within the water removal process will be

particularly important. Microalgae refining is a relatively new field of research and engineering; there is

a wide horizon for the invention of new and diverse methods for exploiting the most value possible from

microalgae.

Carbon dioxide and oxygen concentration and mass transfer, temperature, pH, light availability,

and nutrient availability all must be highly controlled when growing algae, especially if the desired

productivity is high. Controlling these elements becomes significantly more complex when flue gas serves
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as the main carbon source, and makes the above discussed improvements even more important. Mass

transfer is a particularly pertinent issue when it comes to reactor design, as the surface area to volume

ratio of a tank for good mass transfer may be much lower than what is required for good light transmission.

Furthermore, balancing these factors often results in a large increase in cost. A further discussion on

current methods of algae growth techniques can be found in Section 4.

The algae carbon conversion industry is still in its infancy, and so there are few examples of sustain-

able large-scale algae production operations. However, lab-scale demonstrations and some large-scale

operations have shown promise. Importantly, life-cycle analyses even suggest that with the above dis-

cussed improvements, met with strong carbon legislature and investment support, the production cost of

algae may even be on par with petroleum-based fuels in the the near future (Schenk et al. 2008, Lardon

et al. 2009, Stephens et al. 2010).

3.2 Customer Requirements

The following subsections describe the ideal process and product specifications presented at the outlook

for the presented design. They were informed by the above discussed Carbon XPRIZE technology and

market assessments for moving towards an advanced pilot-scale carbon conversion facility, as well as

reviews of algae carbon conversion technologies and industry challenges and prospects.

3.2.1 Process Specifications

This design is a pilot-scale direct flue gas-to-algae conversion process. A stream of 10% CO2 v/v flue

gas from a coal-fired power plant is sent to the algae reactor at a carbon dioxide input rate of 200 kg

per 24 hours. Over the course of a 24-hour period, at least 30%, but ideally 50% of the incoming CO2

must be converted to algae biomass through photosynthesis. This process should be designed to take

advantage of renewable sources of power as much as possible in order to bring the process closer to

carbon neutrality. Depending on the climatic profile of the chosen operating region, solar energy may be

adequate to maintain higher growth rates during eight peak daylight hours, but there will also be a need

for some level of growth maintenance overnight. Artificial lighting could be used to maintain growth

during nighttime or less than ideal sunlight conditions, but a majority of the total daily CO2 conversion

goal should be met using solar energy in order to stay true to the goal of accelerating carbon neutral

technologies for a cleaner future.

3.2.2 Product Specifications

The algae should be continuously harvested at a rate matching its specific growth rate (to maintain

constant cell density and cultivation volume). It should then be sent to post-processing where the water
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content is reduced to result in a product with less than 10% moisture content. This product can be

sold to a variety of users for direct use in applications such as livestock and aquaculture feed, or sold to

refineries to extract further product value by way of many processes such as lipid extraction, combustion

for power generation, or nutraceutical compound extraction.

3.3 Presented Innovative Edge

The presented design provides an optimistic outlook for large-scale algae production. There are many

ways in which the design is innovative and may have an edge in the algae industry. The design is

highly flexible and tailorable to meet specific consumer needs. Currently, it operates at over 50% carbon

conversion of a 200 kg CO2 input rate from a 10% CO2 v/v flue gas input.

Perhaps most importantly, this design functions on a scale-able modular base, where the entire system

provides economies of scale and low cost of transitioning to larger scales. The design revolves around a

series of “petals”, horizontal tubing branches that extend from a central gas exchange column. These

petals are optimized for high productivity and profitability. Scale up is simply a matter of adding more

petals and increasing the size of the gas exchange column, up to a maximum capacity, after which total

units are multiplied. The unit space requirements are also optimized to be very low while still providing

a practical layout for operation and maintenance, and keeping added friction loss from bends and turns

in the piping under reasonable limits.

Because the system is a closed system that also involves an internally-illuminated tank, the system

could be operated in a range of conditions that may not be as ideal as the location selected for this

project (Ceara, Brazil). The enclosed tank offers protection against particularly unfavourable weather or

emergency conditions, opening up the potential for operation in a wider range of climatic profiles. Refer

to Section 12 for a further discussion of the benefits of the tank.

The sales projections for the pilot process are small, but would rise with scale. Overall return on

investment is also expected to rise. Furthermore, at a larger scale, there would be the ability to include

further biorefinery treatment that would allow the products to be sold at higher cost, perhaps even orders

of magnitude higher. Overall, this proposed design offers key improvements to typical algae production

facilities, providing a high level of flexibility, capacity, conversion efficiency, and support for a wide range

of growth conditions.
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4 Preliminary Process Synthesis

4.1 Process Overview

This design project aimed to tackle some of the biological, technological, and economic challenges asso-

ciated with using microalgae to sequester a high fraction of the CO2 present in flue gas from a coal-fired

power plant. A pilot-scale complete flue gas-to-algae conversion facility was designed that successfully

met the ambitious target of converting over 50% of input CO2 into biomass. Following requirements, the

process utilizes a stream of flue gas (10% CO2v/v) containing 200 kg of CO2 per day. These specifications

are on par with technical goals of the flue gas CO2 conversion sector.

The open-endedness of the requirements left much room for challenging problem-solving and creative

decision-making and resulted in a novel reactor design, dubbed the “Hybrid Petal Reactor”. The following

sections outline the design considerations and methods of decision-making for key aspects of the design

including product type, species type, lighting source, location, nutrient formula and delivery, pH control,

reactor configuration, and harvesting and post-processing. Also discussed are biological constraints of

algae systems and information on how these limits were taken into account in the final design.

4.2 Design Considerations

4.2.1 Product Selection

Algae have many applications in a wide range of industries. The major applications include biofuels

and power generation (from extracted lipids or from biomass), feed material (human or fish/livestock),

health (nutraceuticals and well-known products such omega-3’s) and green materials such as biomass-

based plastics. Though unrefined algae biomass can be utilized as-is in a wide range of products, it is

often further refined to take advantage of the potential for more specific or valuable products (for example

lipid extraction and transesterification to diesel fuel) or to meet regulatory standards for food and drug

applications. The product type is also specific to the species of algae. Some algae species produce highly

specific (and valuable) products, such as the Astaxanthin-producing Haematococcus Pluvialis. Other

species are more diverse in their eventual end use. Often though, the more tailored the species is to a

certain product, the more specific and highly controlled the growth conditions must be, such as in the

case of H. pluvialis. This is often more expensive and subject to failure. It was therefore determined that

a product that could be further refined in a large range of ways was desirable. Biomass that contains

about 20% lipids would be adequate for use as-is in many applications, but is also a high enough fraction

to make lipid extraction (and use of leftover biomass) worth it. The dried biomass exiting this process will

be sold to buyers that may include farmers/aquaculturers or other refineries such as bioethanol/biodiesel

producers or pharmaceutical producers. Dried biomass can also be burned directly to generate power,
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as it has a similar heating value to coal.

4.2.2 Species Selection

Though the designed system is capable of cultivating many typical algae species without modification, the

design was based on the growth properties of a single chosen species. This provided a set of requirements

of which to base design decisions off. It also allowed productivity to be accurately modelled and predicted

under the chosen cultivation conditions. Chlorella Vulgaris was chosen to be the model species for the

following reasons:

• The dried biomass can be used for a wide range of applications both as-is or following a variety of

further refinery processes

• It is highly studied; there is a wealth of information available on its behaviour under various growth

conditions

• It does not require highly demanding or controlled growth conditions, such as very high tempera-

tures

• It is used commonly in larger scale algae cultivation operations

• It is robust under changing conditions

• It is not particularly subject to being out-competed by potential contaminants

• Biomass productivity is among the highest of well-known species

• Lipid content under normal nitrogen conditions (good for growth) is adequate at approximately

20%.

• The nutrient profile is excellent for many human health applications as well as livestock and fish

feed supplements

• It can be grown on standard Bold’s Basal Medium which has readily available components

• It can still grow well on 10% CO2 v/v flue gas (many species require much lower concentrations of

CO2)

Use of a species that can grow on saltwater rather than freshwater was considered, in order to lower

to freshwater requirements of the process. However, the advantages of using C. Vulgaris, a freshwater

species, ultimately out-weighed the disadvantage of freshwater requirement.
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Growth Model for Chlorella Vulgaris It was necessary to understand the growth properties of C.

Vulgaris in order to help inform later decisions in the development of the design.

Algae growth is a complex and widely studied subject. Algae require nutrients, CO2, H2O, and

light to photosynthesize and grow, but they also exhibit growth inhibition in certain conditions. In

many cases this inhibition is not well understood. In this process design, a growth model was developed

by compounding information from several studies on C. Vulgaris. The growth model is not a perfect

description of algae growth, but it accounts for the primary resource requirements and causes of inhibition

as accurately as is practical.

The rate of algae growth is proportional to algae concentration, so growth is described by an equation

of the form:

(4.1)
dX

dt
= µgX

where the specific growth rate µ is a function that depends on the degree of resource limitations and

growth inhibition. In the remainder of this section, a quantitative function for µg (as a function of

resource availability) is developed that is used in the process simulation described in Section 8.

First, resource requirements are modelled for CO2 and light using Monod models. Nutrients will be

provided in excess so that they will not be a limiting factor to growth, and therefore did not need to be

considered in the growth model. Similarly, the algae will be kept at dilute concentrations in water during

the entire growth process, so H2O will not be a limiting resource (in fact, inhibition due to overcrowding

of algae in solution would occur well before photosynthesis becomes limited due to lack of water). Thus,

the resource-constrained growth rate µRes is of the form:

(4.2)µRes(I, CCO2) = µmax
I

KI + I

CCO2

KC + CCO2

where I is the intensity of light incident on the algae, and CCO2 is the dissolved CO2 concentration.

KI , KC , and µmax are constants, the values of which were found from published studies on C. Vulgaris

growth. These values are shown in Table 4.1.

Table 4.1: Growth Model Parameters

KC 0.000167 mol/m3 (Han et. al., 2015)
KI 18.7 W/m2 (Han et. al., 2015)
µmax 0.27 hr−1 (Blanken et. al., 2015)

Note that this equation for µRes applies to a volume element of algae solution in which light intensity

I can be considered constant. In solution of any substantial depth, light intensity decays exponentially

with depth due to light absorption by algae. This dependence of intensity on depth is accounted for

separately using Beer’s law, as discussed in Section 8.1.2.
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A major cause of growth inhibition that must be accounted for is high O2 concentrations. Published

data (Shelp and Canvin, 1979) was found that reported the degree of O2 inhibition at three concen-

trations, shown in Figure 4.1. In order to obtain a continuous function that models O2 inhibition, a

quadratic fit (indicated by the dotted line in the figure) was applied to this data.

Figure 4.1: Percent growth inhibition as a function of O2 percent saturation. Percent growth inhibition
is the percent by which the growth rate decreases due to dissolved O2, relative to the growth rate in
atmospheric conditions. Note that the percent inhibition is negative for conditions with lower O2 levels
than in atmospheric conditions.

In Figure 4.1, percent inhibition is the percent by which the growth rate decreases due to dissolved

O2, relative to the growth rate in atmospheric conditions. Note that the percent inhibition is negative

for conditions with lower O2 levels than in atmospheric conditions. O2 percent saturation is equal to

CO2

HO2
P .

The quadratic fit to this data is given by

(4.3)fInhib(CO2
) = −0.0011

( CO2

HO2
P

)2

+ 0.403
CO2

HO2
P

− 5.40

The full function for µg is then given by

(4.4)µg = µRes(I, CCO2
)
(

1 − fInhib(CO2
)

100

)
An additional cause of inhibition is extended periods with no exposure to light. When algae are not

exposed to sufficient light, they enter a stagnation phase in which they do not grow. Before beginning

to grow again, algae must be exposed to light for a substantial period of time. Thus, it is essential that

sufficient light is provided so that the algae do not enter this phase. The exact conditions that cause

algae to enter this phase are not fully understood, but the following requirement was maintained: in any

given several-minute interval, the algae must spend at least 1 second exposed to light for every 9 seconds

in darkness. The ratio of time in light to time in darkness is referred to as the Light/Dark Ratio (LDR).

Thus, this additional requirement is the following:

(4.5)LDR > 1/9

The amount of light needed to qualify as ‘exposed to light’ is an amount sufficient to maintain growth,

which was approximated as an amount sufficient to ensure µg > 0.01µmax, as determined with Eq. 4.4.
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4.2.3 Algae Cultivation Methods: Open vs Closed Reactors

One of the first steps in the design synthesis was to determine whether or not the system would be

“open” or “closed” to the surroundings. This would then inform succeeding decisions such as location

and illumination supply. There are a multitude of reactor setups available for cultivation of algae. They

range from the most basic pond setups, where algae are grown in large shallow ponds, often in a raceway

shape (Figure 4.2), to highly controlled tank photobioreactors with advanced illumination and CO2 input

systems (Figure 4.3).

Figure 4.2: Algae raceway ponds in Southern California, courtesy of Pacific Northwest National Labo-
ratory (Mark, 2011).

Figure 4.3: Pond Technologies’ internally illuminated 1000L tank photobioreactors.

All methods of cultivation can be classified as either “open” or “closed” systems. Table 4.2 below

(selected rows obtained from Table 1 of Design of Closed Photobioreactors for Algal Cultivation (Koller,

2015)) describes some of the important criteria considered when deciding between an open or closed

photobioreactor system.
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Table 4.2: Criteria for Considering Open vs. Closed Algae Photobioreactors.

Considering the rigorous carbon sequestration goals of this project, it was decided that a closed

system would be more likely to provide the adequate conditions for both the higher rates of CO2 input

and the higher biomass productivities required to achieve the goals.

4.2.4 Light Sources: Natural vs Artificial

After having decided that a closed system was desirable, the next step in the design synthesis was selecting

a source of illumination. Closed systems can be designed to support the utilisation of either solar energy

(by way of flat panel or tubular reactors) or artificial illumination (often employed in bubble column

or tank reactors). Two main factors were considered when deciding on the lighting method: electricity

consumption, and tailorability of the process for optimal growth conditions.

It is desirable for the algae growth reactor to be designed for continuous operation for multiple

reasons. First, a power plant emits flue gas continuously, so a sequestration facility should also operation

continuously. Second, though sunlight can be utilized for some hours of the day, it is only adequate

for algae growth for about eight hours. Without an adequate source of light energy, CO2 is not being
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consumed in photosynthesis, and high levels of CO2 can even become harmful to the algae. A drop in

cell density during the night, or during suboptimal weather conditions was not desirable.

Artificial lighting offers the ability to reach the biosynthetic potential of the algae, which can be much

higher than is achieved using only natural sunlight. The wavelengths of provided light can be optimized

to be in the right range of the photosynthetically active radiation spectrum, the light/dark duty cycle

can be manipulated to achieve the highest productivity, and the algae can be provided with just enough

light to be most photosynthetically productive while not running into the issue of either photoinhibition

(too much light and not enough CO2) or oxygen inhibition (too little light and too much oxygen), both of

which can irreversibly harm a culture. However, artificial lighting configurations can reach prohibitively

high operating costs quickly.

Perhaps most important when considering the purpose of carbon conversion systems in the first place,

using artificial lighting can result in high carbon emissions throughout the lifecycle. If artificial light is

relied on for cell growth, it is probable that the carbon emissions from lighting alone would greatly exceed

the carbon sequestered by the algae. This is, of course, undesirable. Solar energy is freely available, and

by using it to grow algae and sequester carbon, the process is brought closer to carbon neutrality. For

this reason, it was decided that solar energy should be used to perform almost all of the required carbon

conversion.

Of course, sunlight is only adequate for reasonable growth rates for at most 8 hours of a day, given ideal

weather conditions. A drop in population during the 16 hours of night when biomass is not accumulating,

or during less than optimal weather conditions, is undesirable for a continuously operating process. It

was determined that a hybrid system should be designed, where solar energy is harnessed during hours

of highest sunlight intensity, and artificial lighting is employed to prevent cell density drops at night or

during sub-optimal conditions.

4.2.5 Conceptualizing the Novel “Hybrid Petal Reactor”

At this point in the synthesis it had been decided that the designed reactor would be closed, and would

utilize a combination of both solar and artificial lighting. The exact configuration had to be chosen to

optimize light use, land use, and method of gas transfer. Table 4.3 below (selected rows obtained from

Table 2 of Design of Closed Photobioreactors for Algal Cultivation (Koller, 2015)) describes some of the

important criteria considered when deciding between types of closed reactor configurations.
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Table 4.3: Criteria for Considering Bubble Column vs. Horizontal Tubular Algae Photobioreactors.

Light Use

Typically, flat panel or horizontal tubular reactors are the closed system of choice when designing a

system for sunlight usage (Figure 4.4).

Figure 4.4: Transparent horizontal tubes are used for growing algae, often outdoors, to take advantage
of sunlight (Climate Tech Wiki).

However, these layouts are not ideal for efficient artificial lighting, as the surface area-to-volume ratio

is far too high to be cost effective or energy efficient. It was thus decided that a hybrid reactor that
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combined an outdoor horizontal tubular reactor (to be used during adequate sunlight hours) and an

internally-illuminated tank (to be used at night or during bad weather, maintenance, or unexpected

population drops, etc.) should form the base of the design.

Gas Transfer

Adequate gas transfer is easily possible in a closed tank setup via sparging throughout the larger

volume. Mass transfer coefficients are typically higher in these tank setups. However, the designed

system must also be able to support gas transfer during the day time, when the algae will be cultivated

in horizontal tubes. It was determined that in-line sparging and O22 degassing throughout the tubes

would be prohibitively expensive and unlikely to be able to support the high rates of mass transfer

required to meet the CO2 sequestration goals. Therefore, it was decided that there must be a central gas

exchange column, where the cultivation volume would be cycled through continuously to receive fresh

CO2 and be degassed of built-up oxygen. This column would have to be as small as possible, to ensure

that the algae are spending negligible time in the column, as the column volume would not be receiving

adequate sunlight.

Pulling together all of the above criteria, the “Hybrid Petal Reactor” was conceptualized. During

eight peak sunlight hours of the day, the algae will be grown in an outdoor tubular system that allows

for adequate sunlight distribution to the cultivation volume. A small central gas exchange will be used

for CO2 transfer into the volume and O2 transfer out. Almost all of the total daily carbon sequestration

goal will be met during these eight hours. During the sixteen nighttime hours, the algae will be grown in

a closed tank with an artificial LED/optical fibre lighting configuration that supports the baseline level

of biomass increase necessary to sustain population densities at daytime operating levels. This results

in the majority of the carbon sequestration being performed using solar energy. The light setup could,

in theory, be easily configured to support a significantly higher growth rate, but this would come at a

high dollar and emissions cost. To bring the process even closer to carbon neutrality, electricity for any

artificial lighting could be obtained from renewable sources, or eventually, on-site solar collection and

storage. See Section 7 for a detailed description of the reactor setup, and Sections 8 and 9 for a discussion

of the simulation and optimization of the setup.

Other Important Biological Constraints

Algae are complex organisms, and the exact design of the growth system must take into account a

number of biological requirements. The most pertinent are listed below:

• The presence of oxygen in the cultivation volume can inhibit growth, so the oxygen concentration

throughout the tube length should be monitored and the effect on growth rate calculated and

considered in the calculation of average growth rate.
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• The algae volume should not be circulated at velocities higher than 30cm/sec in order to avoid cell

damage due to shear stress.

• The residence time spent in the dark while receiving high levels of CO2 should not exceed approx-

imately 10-20 continuous minutes, as irreversible damage to the cells can occur after this point.

• The light:dark ratio should be high enough to support a reasonable average specific growth rate.

The volume should also be well mixed as to ensure that statistically, a cell does not spend inhibitory

amounts of time in darker zones. The flow through the tubular sections should be turbulent to

promote uniform cell density.

• The cell density of the volume should be reasonable (approximately 2g/L) in order to mitigate the

issue of light attenuation due to self-shading.

• The temperature should be maintained as close as possible to 30C and should not rise above 35C.

4.2.6 Location Selection

Given that the design would operate outdoors, relying in some part on sunlight availability and weather

conditions, location choice was of particular importance. This process was designed to be located in the

state of Ceará in Northeast Brazil, as highlighted in red in Figure 4.5. The algae growth system could

be retrofitted to Porto de Pecém, a 1085 MW coal-fired power station. The following section describes

how this location was chosen.

Figure 4.5: The state of Ceara, Brazil, where the Porto Do Pecem Power Station is located. This power
station would be a suitable contender to retrofit the Hybrid Petal Reactor to (Wikipedia: Ceara, Brazil).

Choice of location is a function of many factors; not only were geographical and physical properties

considered, but political and economic situations were assessed when determining where to locate this
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pilot-plant. The first step was determining a set of criteria to base location selection off of. The ideal

location would meet the following criteria:

• There must be a coal-fired power plant available for retrofitting the algae system

• There is adequate sunlight year-round, allowing for maximum daylight hours year-round

• There are not large temperature swings (during days or seasons)

• There are not periods of intense weather (monsoons, etc.) that would inhibit growth or present

significant risk of damage to the equipment

• Non-arable land is available without significant habitat loss

• There is the potential for scale-up in the region

• There is reliable access to freshwater (if growing a freshwater species)

• There is reliable access to power

• Land should be cheap

• Utilities should be cheap

• There must be a market for the products

• There is political/social/economic investment in sustainability and renewable energy

• Bonus: there are existing flue gas regulations, carbon credit systems, or other sequestration and

emissions reductions programs that will support the algae industry

For the geographic criteria, data on sunlight intensity, microalgae productivity, agricultural land

usage, and temperature and climate profiles was compiled from major reviews including the “Global

evaluation of biofuel potential from microalgae” (Moody et al, 2014), and mapping and imaging resources

such as the NREL System Advisor Model and National Solar Radiation Database. Figure 4.6, sourced

from Moody et al shows predicted biomass productivities around the globe.

Figure 4.6: World map of average predicted biomass productivity of algae (Moody, 2014).
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Based on the above criteria and data, a shortlist of five countries was compiled after which the final

choice was made based on process of elimination. The shortlist consisted of the United States, India,

Australia, Kenya, and Brazil. Figure 4.7 depicts the average lipid productivity predicted by Moody et.

al. for India, China, Brazil, and Australia.

Figure 4.7: Average lipid productivity predicted by Moody et al for India, China, Brazil, and Australia.

US: The US receives a reasonable level of sunlight in the south but low non-arable land availability

and the higher cost of land and utilities were disadvantages. Though there is interest in algae biofuels

and biomass products, enthusiasm is lacking (especially in coal power generation regions) and share of

energy consumption from renewable sources is low.

India: Though India has some very favourable characteristics such as warm temperatures year

round, a high fraction of non-arable land suitable for algae production, low/no transportation costs due

to proximous power plants, and adequate sources of nutrients and water, India was ultimately eliminated

due to the risk posed by natural disasters during the rainy/monsoon season. Low light during this time

as well as threats such as mud slides were too risky.

Australia: Areas in the North West and East of Queensland were determined to be suitable for

algae production due to low land value, availability of non-arable land, and proper climatic condition.

Furthermore, industrial activity in the Western regions provide supporting infrastructure and sources of

CO2, as well as a potential market for the products. Unfortunately, Australia has one of the highest

utility costs among the countries on the shortlist, and freshwater was not as readily available as would

have been optimal.

Kenya: Kenya exhibits optimal climatic zones with some of the most suitable sunlight and tempera-
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ture profiles on the globe. Almost half the land in Kenya is non-arable land that would not compete with

food crop land. Not only is Kenya attractive for microalgae cultivation, but Kenya is actively seeking

methods to fulfil the “Kenya Vision 2030” goals for sustainable development. Furthermore, the health

and economic benefits that a growing algae industry would bring would be extremely beneficial to local

communities. Unfortunately, freshwater and power are not as available, and are high in cost. As well, the

political and economic situation in Kenya would present too great of challenges to be worth establishing

a pilot plant with limited guidance. Kenya would have been the second choice and could be a great

location for expansion of operations.

Brazil: Brazil was chosen due in part to its optimal climatic profile. There is intense sunlight and

high median temperatures with little fluctuation during the seasons. In the considered regions, seasonal

natural disasters are not a significant threat. There is adequate water availability (and significant interest

in future potential to develop algae wastewater treatment), and readily available power, both of which are

not expensive. Apart from the physical advantages, Brazil stood out in the political and economic sphere.

Brazil is pioneering renewable energy generation (over 85% of domestically produced electricity comes

from renewables) and is rigorously pursuing further R&D into new clean energy generation processes–

algae included. Investment into algae production is expected to grow in Brazil. Furthermore, Brazil

already has much of the refinery infrastructure needed to transform harvested algae biomass into a

diverse set of refined products. Using power plant mapping tools, the Porto do Pecém power station was

located in the Northeast region. This location is near a source of freshwater and has land available for

future scale-up.

4.2.7 Nutrient Delivery System

The algae are grown autotrophically (photosynthetically, with the sole carbon source being CO2). After

a literature review on appropriate nutrient formulas for autotrophic growth of Chlorella vulgaris, it

was determined that Bold’s Basal Medium (BBM) would result in the highest biomass productivity.

Standard BBM and modified versions of it are the most commonly used nutrient formula for this algae.

As recommended by the Canadian Phycological Culture Center, the BBM formula from the Handbook

of Phycological Methods (Stein, 1973) was chosen, as it has been shown to support high levels of C.

Vulgaris growth. The formula was then modified to support the biomass productivity goals of the design

in the most economic manner possible. Refer to the Appendix for the formula. Nutrients will be stored

on site and highly concentrated fresh stock solutions will be made up manually on a frequent basis. The

stock solutions will be continuously injected into a freshwater stream that will then be delivered to the

reactor. Refer to Section 7 for the process diagram and description.
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4.2.8 pH Control

The transfer of NO, NO2, SO2, and CO2 from the flue gas into the algae solution can cause pH to drop

to toxic levels if not properly controlled. To maintain a neutral pH in the photobioreactor, NaOH is

added to the nutrient stream before it enters the gas exchange column. The rate of NaOH addition will

manipulated by a control system to maintain a neutral pH at all time. This method is very low cost

relative to other pH control methods such as upstream removal of NO, NO2, SO2 from the flue gas.

Dissolved NO, NO2, SO2, and the salts they form upon reaction with NaOH, are nontoxic to C. Vulgaris

(Lee et. al., 2002). Therefore the presence of these species is not a concern so long as pH is properly

controlled.

4.2.9 Harvesting and Post-Treatment

Collection and dewatering of the algal biomass is often described as one of the obstructions to efficient

production of fuels and other value-added products from algae. For the biomass to be of value for biofuels

production, it is agreed upon that the moisture content of the water should be less than ten percent by

mass wet basis (w.b.). Dewatering of the produced biomass is energy intensive, inflicting high operational

costs on the overall process. In an effort to reduce these costs, a three-step process is proposed, consisting

of flocculation, flotation, and drying.

In general, after the algal biomass is grown, a flocculation step is desired to aggregate the individual

clusters of algae cells dispersed throughout the medium. For the disruption of these suspensions to occur,

the surface charges of the particles must be negated, so that van der Waals attractions will bring the

cells together. C. Vulgaris cells have a negative surface charge for pH of solution at or above about

5 due to carboxyl and amine groups on their surface (Vandamme, 2013). To induce the aggregation,

a compound with some form of positive charge is needed in the solution with the algae. After some

consideration, it was decided that MgSO4 would be used in a pH-induced flocculation process. Once

exiting the harvesting port of the reactor, NaOH would be added to the harvested volume to increase the

pH to approximately 11. Flocculation will then be induced via addition of Mg2+ (Vandamme, 2011).

Other aluminum and polysaccharide-based flocculants such as alum and chitosan were considered, but

the concentration of magnesium flocculant required is much lower while producing trace precipitate in

the harvested biomass (Zhang, 2016).

Flocculation must always be accompanied by a second harvesting step to remove the biomass from

the bulk of the aqueous growth medium. This can be accomplished by any number of processes, such as

sedimentation, flotation, filtration, or centrifugation. Having a continuous process means sedimentation

is not an option, as the time scale required for the flocs to settle is much too long. Selection of C.

Vulgaris as the microalgae for cultivation ruled out most types of filtration, as the cells are too small
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for traditional filtration and could lead to caking problems in a microfiltration process. Centrifugation

is commonly used for biomass harvesting; however, it can be cost-prohibitive for a pilot-scale process

due to significant required energy input. As a result, dissolved air flotation (DAF) was selected for

the separation. In DAF, water saturated with air passes through a pressure release valve, causing air to

come out of solution. When performed on flocculated algae, the less-dense cells adhere to the air bubbled

through and rise to the top of the medium, where they can be effectively skimmed to remove the bulk

of the moisture. However, as the size of the algal production process increases, the costs associated with

dewatering should be reconsidered.

Although the bulk of the water has been removed, a drying process is still needed to remove the

remaining moisture from the algal cake. The maximum amount of mass transfer allowed is dictated by

the equilibrium moisture content (EMC) of the system, or the lowest moisture content possible in the

cake. This EMC can be determined directly from the Guggenheim, Anderson, de Boer (GAB) equation

using constants for algae predicted by Mohamed et.al (Mohamed, 2005). The equation is reproduced

below:

(4.6)EMC =
ABC(RHeq)

(1 −B(RHeq))(1 −B(RHeq) +BC(RHeq))

in which RHeq is the equilibrium relative humidity.

A belt drying process utilizing the input flue gas was initially considered, although the flue gas was

already near saturated with water, and the low-grade heat provided by the flue was not adequate for

evaporation of the water. Instead, it was decided that the algal cake would be sent to a rotary steam tube

dryer in which the remaining water is evaporated, producing a dry algae product with approximately

ten percent moisture content w.b. Indirect heat transfer is necessary for this process to maintain a low

equilibrium moisture content. A detailed description of this process can be found in Section 7.5.

4.2.10 Hours of Operation and Biomass Productivity

As described above, the system will operate at two different modes of steady state over the course of a

24-hour period: “Daytime mode” and “Nighttime mode.” Essentially all of the total carbon conversion

will occur during daytime operation. A very small amount of CO2 by way of air sparging will be input at

night to maintain daytime operation cell density. The expected biomass productivity calculations were

performed with the intent of meeting an ideal carbon sequestration fraction of over 50% of the input

stream– the ideal and most ambitious scenario – resulting in a total amount of 100kg of CO2 sequestered

in a 24-hour cycle. The fraction of total daily CO2 that is converted to biomass in the daytime set-up

versus the nighttime setup could be optimized against costs of setup, operation, scale, and the effect

of operating in range of geographic and economic scenarios outside the scope of this project. For this

design, to bring the process as close to carbon neutrality as possible, the majority of sequestration is to
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be performed using solar energy. Summary of biomass production during daylight:

Length of Daytime operation: 8hr

Total amount of CO2 sequestered during Daytime = 100kg CO2

Rate of CO2 sequestration during Daytime = 100kg CO2/8hr = 12.5kg CO2 removed/hr

Rate of carbon assimilation = (12g C/mol / 44g CO2/mol) * 12.5kg CO2/hr = 3.4kg carbon fixed/hr

Fraction of algae biomass that is fixed carbon = 0.5

Rate of biomass output during Daytime = (3.4kg carbon/hr)/(0.5kg carbon fixed/kg biomass)

= 6.8kg biomass/hr
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5 Database

The following tables list all physical and biological constants used in the following sections. The source

for each value is provided in the third column of the tables. The section in which the values are used is

provided the table caption.

Table 5.1: Gas Transfer constants: used in Section 8.1.1

HCO2 34 mol/m3 atm (Sander, 1999)
HO2

1.3 mol/m3 atm (Sander, 1999)
HNO 1.9 mol/m3 atm (Sander, 1999)
HNO2

24 mol/m3 atm (Sander, 1999)
HSO2

1200 mol/m3 atm (Sander, 1999)
kL,CO2a 0.26 s−1 (Talbot et. al, 1990)
kL,O2a 0.77 s−1 (Talbot et. al, 1990)

Table 5.2: Growth Kinetics: used in Section 8.1.2

KC 0.000167 mol/m3 (Han et. al., 2015)
KI 18.7 W/m2 (Han et. al., 2015)
µmax 0.27 hr−1 (Blanken et. al., 2015)
YCO2/X 41.63 mol/kg (Hu et. al., 2011)
YO2/X 41.63 mol/kg (Hu et. al., 2011)

Ĥalg 15,000 kJ/kg (Orosz and Forney, 2008)
B 187 m2/kg (Blanken et. al., 2015)

Table 5.3: Flue Gas Properties: used in Section 8.1.1

vol% CO2 10% Problem Statement
vol% O2 10% (Xu et. al., 2003)

vol% NO+NO2 420 ppm (Xu et. al., 2003)
vol% SO2 420 ppm (Xu et. al., 2003)

Flue Gas Temp from Power Plant 200oC Estimation by Consultants

Table 5.4: Physical Properties used in Section 8

Heat capacity of water at 30oC 4178 kJ/kg K (Incropera, 2003)
Density of water at 30oC 999 kg/m3 (Incropera, 2003)

Dynamic viscosity of water at 30oC 769 ×10−6 N s/m2 (Incropera, 2003)
Kinematic viscosity of water at 30oC 0.8007 ×10−6 m2/s (Incropera, 2003)
Kinematic viscosity of air at 30oC 0.00001349 m2/s (Incropera, 2003)

Table 5.5: Environmental Properties at plant location: used throughout report

Daytime Sunlight Intensity 917 W/m2 (Alves and Schmid, 2014)
Underground Temperature 26oC (Alves and Schmid, 2014)

Average Daytime Temperature 27oC (Alves and Schmid, 2014)
Maximum Daytime Temperature 33oC (Alves and Schmid, 2014)
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6 Process Model

6.1 Block Flow Diagram

Figure 6.1: The Block Flow Diagram for this process. The algae growth reactors are supplied with
nutrients and freshwater, as well as flue gas. They are grown during eight peak sunlight hours in the
daytime outdoor horizontal tubular “Petal Reactor” setup and transferred to the night tank for cell
density maintenance during the sixteen hours of night. During the day, the algae are continuously
harvested and sent for post-processing to remove water.

6.2 Overall Process Flow Diagrams

Process flow diagrams for both the daytime and nighttime processes are shown on the following pages.
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Figure 6.4: The process shown above depicts the entirety of the daytime algae growth process. Flue
gas from the connected power plant flows through a multi-stage blower (E-1) to increase pressure for
both transport from the plant and bubbling through the gas exchange column (E-2). The buildup of
temperature in the system due to incident sunlight is mitigated by a cooling coil run through the tank
(E-3). The CO2-saturated growth media flows out the top of the tank, through the main circulation
pump (E-4), to one of thirteen petals in direct sunlight (a fourteenth petal will be out of operation for
cleaning at any given time). These petals run back to the base of the gas exchange column. Just prior to
reentry of the column, the contents of the petals are combined, and a small portion is harvested for algae
removal (stream P-8). The harvested slurry is sent to a holding tank (E-8), which accumulates volume
during the day to be depleted overnight. This is required because the harvesting operation is continuous
over the course of 24 hours, but the grown algae is only harvested during daytime hours. Flow from this
tank is metered into the flotation unit (E-6), where the additions of NaOH and MgSO4 occur. Recycled
growth media is saturated with pressurized air (E-8) and sent through a pressure release valve (V-4) to
facilitate the bubbling required for flotation. Algae cake is skimmed from the top of the flotation unit
and sent to the rotary steam tube dryer (E-10) flowing opposite low pressure steam (P-18) to bring the
biomass to the required moisture content
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6.2.1 Nighttime Tank Process Flow Diagram

Figure 6.5: Process flow diagram for the nighttime tank.

Table 6.1: Stream properties for the nighttime tank process.
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7 Process Descriptions

The following sections detail the individual elements of the process, including the hybrid reactor set-up,

the nutrient storage and delivery system, the harvesting and post-treatment system, and the nighttime

lighting configuration. Detailed process diagrams and narrative descriptions are presented. Refer to

Section 8 for simulation calculations, Section 9 for optimization algorithms, and Section 10 for equipment

specification information.

7.1 Hybrid Petal Reactor

Figure 7.1 presents a schematic of the Hybrid Petal Reactor in which the algae are continuously cultivated.

During the daytime operation (eight peak sunlight hours in a 24-hour period), the cultivation volume is

circulated between the central Gas Exchange Column (GEC) and external “Petals”. A Petal is a length

of horizontally inclined acrylic tubing that branches out from the GEC, carrying the algae cultivation

volume through the tubing, before returning into the GEC. The Petals are designed to receive incident

sunlight as a source of lighting. To achieve the specified carbon sequestration goals of this project, 13

Petals of length 304m and inner area 0.02303m2, extending from the GEC, are required.

In the GEC, both CO2 transfer into the volume and O2 transfer out of the volume occurs by way

of compressed flue gas sparging at the base of the column. The sparging action also serves to mix the

cultivation volume in the column. Exhaust gas leaves from a mesh-protected exit port at the top of the

column. A central pump is employed that draws liquid from the top of the column through a central

distribution line for distribution into and through the Petals. Before re-entry into the GEC, a fraction

of the total flow is taken off for harvesting. Lost fluid to harvesting is replaced continuously with fresh

nutrient broth. The harvesting rate (dilution rate) is set to match the average specific growth rate of

the algae, in order to maintain constant cell density and constant volume in the system. The harvested

volume is collected from the section of the Petal tubing right before re-entry into the GEC to ensure

that the algae have had the most time possible to consume CO2 and accumulate biomass before being

harvested. Throughout the Petal tubing are small bubble release vents; though oxygen transfer occurs in

the GEC, oxygen bubbles build up in the tube once the liquid reaches saturation, therefore necessitating

these release vents. CO2 loss from the cultivation volume into the air through these oxygen bubbles was

determined to be negligible, as described in Section 8.1.2.

After the eight hours of daylight operation, the total cultivation volume is collected and drained

into the underground nighttime tank, where sparged air with a small amount CO2 required for cell

density maintenance provides mixing in the tank. LEDs and fibre optic light pipes are used to internally

light the tank (see next section). After nighttime operation, the central pumping line is used to draw

the cultivation volume above ground and back into circulation between the GEC and the Petals. The
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nighttime tank is cooled to near 27C due to heat conduction to the ground, and no additional cooling of

the nighttime tank is required. Refer to Sections 8 and 9 for detailed design parameters, and Section 10

for equipment specifications.

Figure 7.1: Diagram of the Hybrid Petal Reactor setup (not to scale). Only one petal input/output
branching port is depicted here, for clarity. All petals will branch outward from the central distribution
pumping line, labelled here, and return into the bottom of the bubbler.

7.2 Plant layout

The system is designed to be retrofit to a power station, potentially the Porto do Pecém power station,

allowing for easy access to the flue gas from the power plant. There is adequate land available for the

pilot plant, as well as opportunity for further expansion. There are also adequate transportation routes

in and out of the area. Figure 7.2 shows satellite images of the Porto do Pecém power station and

surrounding region.
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Figure 7.2: Satellite images of the Porto Do Pecem Power Station in Ceara, Brazil. Obtained using
Google Maps.

This scale of the Hybrid Petal Reactor consists of one central gas exchange column with the ability

to attach up to 16 petal branches of length 304m each. Though only 13 are required to meet the goals

of this design, the option to rotate out petals for maintenance, add more petals, or configure the specific

petal configuration to suit customer space needs is desirable. The total area of the 16-petal lay out is

1615m2. The layout of the petals was designed to minimize space requirements give the following set of

practical and cost restraints:

• All tubes must leave the bubbler and return after 304m of length.

• Pipe fittings and number of pipe fittings should be chosen to keep added equivalent length of fittings

below 20% of the total tube length.

• There should be negligible overlapping of tubes in order to mitigate shading.

• Adjacent pipe lengths should be a minimum of 10cm apart.

• There should be space for periodic walkways for access by operators.

• Tube sections should not be unreasonably small or large.

Figure 7.3 depicts the chosen spacing and elbow configurations.
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Figure 7.3: Spacing for 90 degree pipe fittings for reversing the tube direction. Most loops adopt a 10cm
gap, except for some loops that have a 50cm gap to allow for space to walk through the tubes.

The 16-petal layout (Figure 7.4) involves 4 quadrants containing 4 petals of slightly different dimen-

sions each, depicted below respectively as quadrants “I” through “IV” and petals “A” through “D”.

The gas exchange column is located at the origin between the quadrants. Table 7.1 lists the specific

dimensions referred to in Figure 7.5. In the individual petal figures, the GEC is pictured at the bottom

left.

Figure 7.4: The petals will be laid out in 4 quadrants each containing 4 petals of slightly different
dimensions, depicted as quadrants “I” through “IV” and petals “A” through “D”.
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Table 7.1: Dimensions of the Petals corresponding to quadrant location shown in Figure “16-Petal”.

Figure 7.5: Specific dimensions of each petal type.

Figure 7.6 below shows an example of how 14 petals (one additional petal is added so that it can

be used to rotate out petals that require maintenance) could be configured. Other process equipment

such as gas and water input tubing, controls systems, harvesting holding tanks, or entry port into the

underground night tank would be placed in the empty space.
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Figure 7.6: A sample layout of 14 petals (13 required for this scale of carbon intake, plus one extra for
rotation during maintenance). Other process equipment or service facilities could be placed in the space
not being taken up by petals.

7.3 Nighttime Lighting Configuration

The Nighttime tank will be illuminated using LEDs mounted to thin cylindrical optical light guides

arranged in an array through the tank. High intensity red and blue LEDs within the photosynthetically

active radiation region will be mounted to the base of light pipes, which are designed to distribute light

evenly along the pipe length. These light pipes will be arranged in a hexagonal array emerging from the

base of the tank, in order to provide even lighting throughout the tank volume. This configuration is

shown in Fig. 7.7. The intensity of the LEDs, size and spacing of the light guides was chosen in order to

provide the most economical setup to meet the specific growth rate required for the night time biomass

productivity goals.

Figure 7.7: Nighttime tank setup with optical light guides spaced throughout tank to provide even light
distribution.

Optical light guides allow for a more efficient use of light than conventional lighting methods, and are
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less harmful to algae. Using conventional lighting, the required light intensity to provide enough photons

necessary for growth would create a large “kill zone” surrounding the source where the intensity is too

bright and the temperature too high for the algae cells to withstand. Furthermore, the use of specially

designed light guides where light diffuses uniformly through the tube tank allows for more of the tank

volume to receive light of intensity within the optimal range. This allows for a reasonable desired growth

rate to be met given good mixing of the volume.

In this design, it was desired to provide the algae with sufficient light to maintain healthy cultures and

daytime level cell densities throughout the night, while using as little electricity as possible. The daytime

photobioreactor is designed to meet the entire daily growth requirements during the eight daytime hours,

and so only as much light as is necessary to avoid a drop in cell density overnight is provided in the

night tank. This biological requirement dictates that the algae must spend at least 10% of their time

exposed to light (light/dark ratio > 1/9). The minimum light intensity for a portion of algae solution

to be considered ’exposed to light’ is an amount high enough for algae to carry out growth. This value

is approximated as the light intensity needed to achieve a growth rate of at least 1% of µmax. An

optimization procedure (described in Section 9) was used to choose the diameter and spacing of light

guides, and the number of LEDs mounted to each guide, in order to minimize the annual cost of the the

nighttime tank and lighting system under the given biological constraints. The results of this optimization

are shown in Table 7.2, and the detailed method used for the optimization is described in Section 9. This

design ensures that greater than 10% of the tank volume is exposed to light, given adequate mixing. Air

is sparged through the tank at a low rate to ensure adequate mixing.

Table 7.2: Nighttime Tank size and Lighting Setup. Empty volume refers to the tank volume minus the
volume occupied by the light guides.

Tank Volume 107 m3

Tank Height 2.45 m
Tank Diameter 7.46 m
Empty Volume 91 m3

Light Guide Spacing 17.9 cm
Number of Guides 1476
LEDs per Guide 2

Note that the Empty Volume listed in Table 7.2 is the volume of the tank that is not occupied by

the light guides. Additionally, although 2 LED mounts will be installed on each guide, only 55% power

will be supplied to the mounts during typical operation. This lower power setting is sufficient to provide

enough light to meet the light/dark ratio requirement, but the supplied power can be increased if higher

growth rates are desired.

Figure 7.8 below depicts the LED mount setup on the base of the light pipe. The LEDs will be blue

and red in color, optimized for the Photosynthetically Active Radiation range that is considered to be
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the most efficient use of energy for microalgal growth. If higher growth rates are desired, many more

LED mounts could be added to the light pipes.

Figure 7.8: LED mounting setup on end of light guide.

7.3.1 Design and Manufacture of Light Guides

The light guides are manufactured from a Poly methyl methacrylate (PMMA) core surrounded by a

Polytetrafluoroethylene (PTFE) cladding. PTFE and PMMA have indices of refraction of 1.36 and

1.489, respectively. The inner surface of the PTFE will be roughened to extract light from the core to

be dispersed outside of the pipe. The surface will be roughened in a particular non-uniform way that

causes light to evenly distribute along the length of the guides; the specifics of this process are described

in a 1998 patent [3M, 1998]

Figure 7.9: Cross-section of light guide showing layered structure.

Roughening will be performed by securing the hollow PTFE pipe to a mount and inserting a rotating

wire brush through the tube, slowing the velocity of travel through tube by a set amount as length

increases, in order to create more roughening.
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Figure 7.10: Illustration of the degree of roughening to achieve uniform light distribution

7.4 Nutrient Storage and Delivery

Bulk chemicals will be restocked monthly. The chemical storage unit was designed to be large enough

to store monthly chemical requirements for the BBM formula. It will be enclosed and sectioned off from

sources of contamination. Fresh concentrated stock solutions will be made up for each component once

every two days, so as to mitigate the risk of contamination in the stock solutions. Standard sterilization

procedures will be employed for all equipment involving nutrient storage, preparation, and delivery.

Peristaltic pumps will be used to inject stock solution into the freshwater supply stream, as shown in

Figure 7.11. Mixing of the stock solution into the freshwater will occur by turbulent flow before reaching

the reactor input. This broth-water supply enters the reactor continuously at a flow rate equal to the

harvest rate of the algae (which is in turn equal to the growth rate), in order to maintain constant cell

density and volume. Refer to Section 10 for detailed equipment specifications.

Figure 7.11: The nutrient stock solutions are injected into a turbulent input stream of freshwater before
being sent to the reactor.
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7.5 pH Control

Dissolved NO, NO2, SO2, and CO2 in the algae solution react with water to form acids that can lower

pH to harmful levels if not properly controlled. In order to maintain a neutral pH in the photobioreactor,

NaOH is added to the fresh water input (stream 3) at a rate determined by a control system, with a

set-point pH of 6.5.

The quantity of NaOH needed to neutralize the CO2 can be calculated as follows:

(7.1)
[H+][HCO−

3 ]

[CO2]
= Ka

where Ka = 4.45 × 10−7 and square brackets “[ ]” denote concentration. The CO2 concentration in the

bubbler with no pH control would be 3.36×10−2 mol/l, therefore the CO2 concentration with pH control

is given by
(7.2)[CO2] = 3.36 × 10−2mol/l − [H+] − [NaOH]

because 1 mole of NaOH neutralizes 1 mol of carbonic acid, which forms from 1 mol of CO2. Similarly,

(7.3)[HCO−
3 ] = [H+] + [NaOH]

Inserting Eqs. 7.2 and 7.3, Eq. 7.1 and solving for [NaOH], and neglecting the negligible term [H+]2

yields

(7.4)[NaOH] =
1.49 × 10−7mol/l

[H+] + 4.45 × 10−7mol/l

With a target [H+] of 10−6.5, the required [NaOH] input to neutralize the CO2 is 11.1mol/hr.

Due to the complex chemistry of NO, NO2, and SO2 in water, a precise calculation of required

NaOH input was not feasible. Instead, an upper-bound on the NaOH requirement to neutralize these

components was estimated. If it is assumed that all NO, NO2, and SO2 react with water to form acid,

and that the acidic H+ dissociates completely for each species, the required rate of NaOH input is equal

to sum of the rates of mass transfer into solution for NO, NO2, and SO2. This quantity is given by

the process simulation (described in Section 8) to be 0.73mol/hr. Thus, the total NaOH requirement is

11.8mol/hr.

7.6 Harvesting and Post-Processing

Figure 7.12 depicts the three process steps required to dewater and dry the wet algae to produce a viable

biomass product. The first of these, flocculation, focuses on the clumping of the microalgal cells dispersed

through the medium. Algae cells in medium have a negative surface potential, causing them to repel

each other naturally when in solvent. Chemical flocculation seeks to mitigate the repulsive effects of

these charges in such a way that the cells prefer to aggregate in the liquid. For the proposed process,

pH-induced chemical flocculation with magnesium will be used. Once the biomass has left the reactor
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via the harvesting port, epsom salts (MgSO4) will be added to reach a dissolved Mg2+ concentration

of 1.5mM. Immediately after, enough sodium hydroxide is added to raise the medium to a pH of 11.

At this higher pH, magnesium precipitates, occasionally as cationic particles (Vandamme, 2011). These

positively charged particles form a double layer about the surface of the algal cells, reducing the repulsive

forces until they are on the order of the van der Waals attractions between the cells. DLVO (Derjaguin,

Landau, Verwey, and Overbeek) Theory states that these forces are superimposed, causing the cells to

aggregate at a distance apart at which the repulsive and van der Waals forces are balanced and potential

energy between the cells is at a minimum (Derjaguin, Landau, 1941); (Verwey, Overbeek, 1948).

Once the cells have aggregated, the second process step, dissolved air flotation (DAF), brings the

flocs to the surface for skimming. During DAF, water saturated with air is sent into the algal medium,

with a pressure release valve causing air to be released as it enters. The flocs adhere to the bubbles and

are pushed to the to surface, where they remain due to their relatively low density. The flocs can then be

easily skimmed, while a portion of the wastewater is recirculated to a pressure vessel to be resaturated

with compressed air. Flocculation alone is typically attributed to approximately 85 percent biomass

recovery (Zhang, 2016); however, with a second dewatering step yields are improved significantly, in

some cases as high as 95 to 98 percent (Sim, 1988).

To remove the remaining water from the biomass, more rigorous separations must be used. The

proposed rotary steam tube dryer makes use of the high latent heat of steam as it condenses to efficiently

transfer heat to the algal paste to evaporate the remaining water. Low pressure steam at 1.5 bar and

160 degrees Celsius will be run through a bundle of inner tubes 15 feet long and six inches in diameter.

The algal paste will enter the shell and run countercurrent to the steam. Both the shell and tube will

be rotated to encourage evaporation as well as move the algae along the dryer, as its pitch will allow the

algae to exit via gravitational forces. A schematic is shown below in Figure 7.12. The drying process was

modeled as a heat exchanger using Aspen Plus; a description of the setup and results are presented in

Section 8.2, and detailed information about the simulation is included in Section A.3 of the Appendix.
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Figure 7.12: Downstream algae biomass dewatering and drying process.
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8 Design Calculations and Process Simulation

8.1 Simulation of Photobioreactor

The daytime photobioreactor has two primary process elements: the bubbler, in which CO2 is transferred

from rising flue gas bubbles to the algae solution, and the petals, which are transparent tubes in which

algae are exposed to sunlight. This setup is shown in Figure 8.1. In the liquid leaving the bubbler

(stream 5), the CO2 concentration is high and the algae concentration is at a set-point level maintained

by control of streams 3 and 8. As the liquid from stream 5 moves through the tubes, the algae use energy

from sunlight to photosynthesize, converting CO2 into O2, H2O, and biomass. By the end of the petal

tube (streams 7 and 8), the algae concentration has risen and CO2 has fallen. A portion of this flow is

redirected to the flocculation process for post treatment (stream 8). The flow rate of stream 8 is set such

that the algae flow rate (kg/s) out of the bubbler through stream 5 is equal to flow rate into the bubbler

through stream 7. The flow rate of stream 3 is set equal to the flow rate of stream 8 to replenish the

removed liquid and to bring fresh nutrients into the system.

Figure 8.1: Schematic of the daytime photobioreactor. The two process elements, bubbler and petal tube,
are outlined with dotted lines. The pilot plant has 13 identical petal tubes and one central bubbler.

In the first two sections that follow, the design of each process element is described independently.

For each process element, the input streams are treated as given. Of course, the two process elements are

coupled in that the output of one is an input to the other; thus, self-consistent mass balances are required

in which the calculated output of one is equal to the expected input to the other. In the section 8.1.3, an

iterative procedure to find such a self-consistent solution is described. The result is a procedure, which

has been automated in Matlab, to calculate all stream properties given 4 input parameters: the cross

sectional area of the petal tubes (A), the length of each petal tube (L), the algae concentration in the

bubbler (X), and the flue gas flow rate through the bubbler per petal tube (F2). It is desirable to have

high flue gas flow rates to maximize the concentration of dissolved CO2 for algae to consume. However,

our prescribed CO2 sequestration rate of 50% puts an effective upper bound on F2 because excessively
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high flue gas flow rates lead to high CO2 concentrations in the liquid which lead to an insufficient driving

force for CO2 transfer into the liquid. Thus, F2 is set to ensure a CO2 sequestration rate of 52%± 1%,

given values for L, A, and X. The method for selecting F2 to meet this constraint is then described.

The result is a procedure, again automated in Matlab, for the complete process simulation that meets

all production and sequestration requirements, given the input parameters L, A, and X. In section 9, an

optimization method is developed to select the values for L, A, and X that maximize profits per tube.

The Matlab code that conducts the procedures described in this section is given in Appendix A.1.

In the following sections, the notation Fn and Ci, n is used to refer to the volumetric flow rate of

stream n and concentration of component i in stream n for streams 2 through 8 depicted in Fig. 8.1 and

components CO2 and O2.

8.1.1 Bubbler Design

In this section, a model for the mass transfer of CO2, O2, NO, NO2, and SO2 from the flue gas into the

algae solution is described. This model is then used for a mass and energy balance on the system. A

more detailed diagram of the bubbler is shown in Figure 8.2.

Figure 8.2: Schematic of the bubbler. In the inset depicting mass transfer, i ∈ {CO2, O2, NO, NO2,
SO2}. The direction of mass transfer is from gas phase to liquid phase for CO2, NO, NO2, and SO2, and
is from liquid phase to gas phase for O2.

Note that CO2, NO, NO2, and SO2 are transferred from the flue gas into the liquid. O2, however, is

transferred from them liquid to the flue gas due to the high O2 concentration in the liquid that results

from photosynthesis.

Bubbler Mass Balance Several assumptions are made in the mass transfer model. First, CBulk, the

CO2 concentration in the liquid, is assumed to be constant everywhere in the bubbler. This is likely

a good assumption because the liquid will be well-mixed. Second, mass transfer of CO2 from the gas

bulk to the bubble interface is assumed to be fast relative to CO2 transfer from the interface to the bulk

liquid. Thus, mass transfer from the liquid side of the bubble interface into the liquid bulk is treated as
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the rate limiting step of mass transfer.

Under these assumptions, the rate of mass transfer is given by

(8.1)
kL,ia(CI,i − CBulk,i) = kL,ia(HiPyi − CBulk,i)

= − P

RT

dyi
dt

.

where CI , the dissolved-gas concentration on the liquid side of the bubble interface, is given by Henry’s

law (with Henry’s Law constant Hi), and CBulk,i is the concentration of component i in the bulk liquid.

The bubbler pressure P is 1 atm and bubbler temperature T is maintained at 30oC with a heat exchanger.

The gas transfer coefficients kL,ia are estimated on the following page. This differential equation has the

solution

(8.2)yi(t) =
CBulk,i
HiP

+ (yi|t=0 −
CBulk,i
HiP

) exp(−RTkL,iaHit) .

where t is the contact time between the bubble and liquid, and yi|t=0 is the mole fraction of component

i in the flue gas. The contact time when the bubbles exit the bubbler, texit, is estimated from Stokes

Law:

(8.3)v =
2(ρH2O − ρfluegas)gR2

9µ

where R is bubble radius and µ is fluid dynamic viscosity.

These equations are used to perform a mass balance on the bubbler for CO2 and O2. The small

amount of NO, NO2, and SO2 that transfers into solution is partially converted to aqueous NaSO3,

NaNO2, and NaNO3 by adding NaOH to stream 3 (NaOH is added for pH control, as described in

section 7.5). The NaOH reacts with the acids that form due to reaction of NO, NO2, and SO2 with

water. These dissolved gases, and the sodium salts, are harmless to algae (Lee et. al., 2002), therefore it

is not necessary to perform complete mass balances on these components.

The mass balances for CO2 and O2 are given by

(8.4)(yCO2
|t=0 − yCO2

|texit
)
PF2

RT
+ CCO2,7F7 = CCO2,5F5 ,

and

(8.5)CO2,7F7 = CO2,5F5 + (yO2
|texit

− yO2
|t=0)

PF2

RT
.

Note that in equations 8.4 and 8.5, F2 is used as bubble volumetric flow rate for the entire bubbler,

which implicitly assumes that bubble volume is constant in spite of the mass transfer. However, the

volume of transferred gas is a small fraction (less than 5%) of the total flue gas volume, so this is a quite

good approximation.

In equations 8.4 and 8.5, yCO2 |texit and yO2 |texit are substituted with Eq. 8.2 evaluated at texit. The

resulting equations can then be solved for the bubbler outlet concentrations CCO2,5 and CO2,5, which

yields
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(8.6)CCO2,5 =
(yCO2 |t=0)(exp(−KCO2texit)− 1)− CCO2,7F7

RTbub

PF2

exp(−KCO2
texit)−1

HCO2
P − RTbub

PF2
F5

where KCO2
= PHCO2

kL,CO2
aRTbub, and

(8.7)CO2,5 =
(yO2
|t=0)(1− exp(−KO2

texit)) + CO2,7F7
RTbub

PF2

1−exp(−KCO2
texit)

HO2
P + RTbub

PF2
F5

where KO2
= PHO2

kL,O2
aRTbub.

In equations 8.6 and 8.7, F5 is given by
(8.8)F5 = Av

where v is the fluid velocity in the petal tubes and A is the tube cross-sectional area. All other variables

are input parameters into the bubbler model.

Equations 8.6, 8.7, and 8.8 give the stream flow rate and composition of stream 5, the bubbler output,

as a function of the input stream properties and the model parameter A.

With this model, the fraction of input CO2 that is sequestered can also be calculated. A requirement

of the pilot plant is that at least 50% of input CO2 be sequestered, so it is essential that the process

simulation calculate this value. The CO2 sequestration fraction is calculated with the following equation.

(8.9)% Sequest. =
(CCO2,5 − CCO2,7)F5

F2yin/RTbub

where yin = 0.10 is the volume fraction of CO2 in the input flue gas and R is the gas constant.

Sparger Design and Estimation of Mass Transfer Coefficients It is essential that high CO2

transfer rates are attained in the bubbler to provide the algae with sufficient CO2 and to meet the 50%

CO2 sequestration goal.

Published data for mass transfer coefficients for CO2 bubbles rising from a perforated-plate sparger

in water at 30oC was obtained (Talbot, 1990). According to this data, bubbles of diameter dB > 9.5mm

have a mass transfer coefficient of kL,CO2
= 5.32×10−4 m/s. To obtain the kL,CO2

a value, a is estimated

by assuming spherical bubbles, for which a = 6/dB . For bubbles of diameter dB = 12.2mm (which is the

expected diameter, as described in the sparger design section below), this gives a kL,CO2
a value of 0.26

s−1.

The sparger is designed from tubing with 1mm diameter pores from which the flue gas escapes into

the bubbler. The sparger contains a total of 1,200 pores, distributed evenly over the sparger surface.

In our pilot-scale design described in Section 7, flue gas enters the bubbler at a rate of 63.2 L/s, thus

the gas flow rate per pore, 4Fpore, is 53mL/s. Eq. 8.10 can be used to estimate the dB based on these

parameters (Cao et. al., 2009).

(8.10)dB = 0.19d0.48P

(4Fporeρgas
πdPµgas

)0.32
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where dP is pore diameter (m), Fpore is the gas flow rate through each pore (m3/s), ρgas is the flue

gas density (kg/m3), and µgas is the pore dynamic viscosity (kg/m s). With this correlation, dB was

estimated as 12.2mm, as expected in the previous paragraph.

Bubbler Energy Balance The bubbler temperature is controlled with a heat exchanger connected to

a refrigeration unit in order to maintain a temperature of 30oC, the ideal temperature for algae growth.

The temperature of the input streams (streams 2, 3, and 7) are all very near this temperature, but

fluctuate due to variations in ambient air temperature. As a result, the required rate of heat removal

is low, but the percent change in rate of heat removal with weather fluctuations can be high. Here, an

energy balance is performed using unusually high ambient air temperature in order to put an upper-

bound to the required rate of heat removal. 306K is used as the ambient air temperature, which is equal

to the record monthly highs for most summer months (though due to the plants proximity to the equator,

temperatures are fairly constant throughout the year.)

The total rate of heat removal is equal to the amount of heat that must be removed (or added) from

streams 2, 3, and 7 to bring them to 30oC.

(8.11)QBub = F2ρ2Cp,2∆T2 + F3ρ3Cp,3∆T3 + F7ρ7Cp,7∆T7

The fresh water flow rate (stream 3) is assumed to be an average of 30oC, but a conservative estimate of

306K (the ambient air temperature) is made here. The entering algae solution from stream 7, calculated

using the petal tube model described below, is 32oC. The entering flue gas temperature (stream 2) is

equal to the ambient air temperature of 306K. The flue gas exits the power plant at 200oC and flows

100m to the bubbler through a 10cm diameter pipe. If plug flow is assumed, the heat transferred from

a differential plug in a time dt can be related to the differential change in flue gas temperature dT as

follows:
(8.12)dQ = hA(T − Tair)dt = F2ρCpdT

where ρ and Cp are the flue gas density and specific heat capacity. The thermal resistance of the thin

metal duct carrying the flue gas is neglected, and uniform flue gas temperature is assumed due to the

turbulent flow (Re = 6 × 105). Thus, T represents both the pipe surface temperature and the flue gas

temperature. The heat transfer coefficient h is given by

(8.13)h =
Nuk

dL

and Nu can be estimated with the following correlation for flow over a cylinder (Incropera et. al., 2003):

(8.14)Nu = 0.3 +
0.62Re

1/2
D Pr1/3

[1 + (0.4/Pr)2/3]1/4

[
1 +

( ReD
282, 000

)5/8]4/5
where

(8.15)ReD =
vwindD

ν
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Thus, wind speed vwind has a significant effect on heat transfer rate. Eq. 8.12 can be integrate from

t = 0 to the pipe residence time t = V ol/F2 to determine the temperature of the flue gas exiting the

pipe. For a wind speed of 1m/s (well below the average wind speed of 3.3m/s for the region), then flue

gas is cooled to a temperature equivalent, up to at least 4 significant figures, to that of the ambient air.

Even with negligible wind, the flue gas is cooled to a temperature only 0.76oC above the ambient air

temperature.

With the estimated temperatures of 33oC, 33oC, and 32oC, for streams 2, 3, and 7, respectively, the

∆T values in Eq. 8.11 become 3oC, 3oC, and 2oC, respectively. Inserting these values into Eq. 8.11

yields an upper-bound an cooling requirements of 1.3kW. The heat exchanger used in the bubbler was

chosen in order to have sufficient capacity to meet this requirement.

For very low ambient air temperatures, the bubbler temperature is allowed to drop to as low as

288K without harming the algae. However, this temperature is lower than the lowest temperature every

recorded in Fortaleza, Brazil. Thus, heating of the bubbler liquid is not expected to ever be required.

On an average day (average daytime mean temperature is 27oC), virtually no cooling is required. Eq.

8.11 predicts that only 0.49kW must be removed from the bubbler. The coefficient of performance for the

heat exchange process is estimated to be 3.4, a typical value for small refrigeration units (Commercial

Refrigeration). Thus, the energy requirements of running the refrigeration unit on an average day is

0.49kW/3.4=0.15kW. This value is used in our Utilities costing.

8.1.2 Petal Tube Design

To model the petal tubes, plug flow is assumed, and the tubes are divided into differential cross-sections

(plugs) on which a mass and energy balance is performed. The model for each differential plug is described

below, and this model is used to integrate the mass and energy balances over the length of the tubes to

obtain balances on the full system.

Figure 8.3 depicts a generic differential plug in a petal tube.
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Figure 8.3: Differential plug in a petal tube. X is algae concentration, Ci dissolved gas concentration
(i ∈ {CO2, O2}, T is liquid temperature. Heat enters the plug liquid due to sunlight (Qsun) and frictional
heating (Qfric), and exits the plug liquid due to algae growth (ĤalgdX). The direction of convective
heat transfer (Qconv) is from the petal tube to the ambient air, except in unusually hot weather, when
the direction is reversed.

Differential Mass Balances Performing mass balances on the differential plug for CCO2 and CO2

yields the following equations.
(8.16)dX = µplugX

(8.17)dCCO2
= (−YCO2/X)dX

(8.18)dCO2
= (YO2/X)dX

In equation 8.16, µplug is an average of the specific growth rate µg through the plug volume. µg is a

function of light intensity, which varies substantially throughout the plug due to light attenuation in the

algae solution. µg is also a function of CCO2
and CO2

which vary substantially along the length of the

tube due to CO2 consumption and O2 generation, but the concentrations are treated as constant within

each differential plug. The calculation of µplug is described in the following paragraph. In equations 8.17

and 8.18, YCO2/X and YO2/X are the amount of dissolved gas (moles) sequestered (for CO2) or released

(for O2) by the algae per kg algae growth.

Calculation of µplug and Light/Dark Ratio As discussed in section 4.2.2, the specific growth rate

at a given point in the differential plug is given by

(8.19)µg(I, CCO2 , CO2) = µmax
I

KI + I

CCO2

KC + CCO2

(
1− fInhib(CO2

)

100

)
where

(8.20)fInhib(CO2) = −0.0011
( CO2

HO2
P

)2
+ 0.403

CO2

HO2
P
− 5.40

The intensity I at a depth D and concentration X in the tube is estimated with the Beer-Lambert

relation as follows:
(8.21)I(D) = I0e

−BXD

where the attenuation constant B is 187m2/kg for Chlorella algae in water (Blanken et. al., 2016).

Figure 8.4 shows the light intensity at each point in a cross-section of the petal tube. As expected from
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Eq. 8.21, the intensity is highest along the surfaces of the tube facing the sun, and intensity decreases

exponentially along paths moving away from the sunlit surface.

To determine the amount of algae growth dX in the plug, an average growth rate over the entire tube

cross-section, µplug, must be calculated. This calculation is done using Eq. 8.22.

(8.22)

µplug =
1

A

∫
A

µg(I, CCO2
, CO2

)dA

=
2

A

∫ R

0

∫ 2
√
2Rr−r2

0

µg(I(D), CCO2
, CO2

)dD dr

where R is the tube radius.

In addition, the biological constraint that the light dark ratio (LDR) be at least 1/9 must be consid-

ered. The petal tube model calculates the LDR in the following way, in order to check that the process

does not break this constraint. First, because the flow in the petal tubes is turbulent, the fraction of time

that an algae spends in a given region of the tube is approximately equal to fraction of the tube’s volume

that the region occupies. With this observation, the LDR requirement reduces to the requirement that

at least 10% (i.e. 100% × 1
1+9 ) of the area of the tube cross-section has sufficient light intensity that

µg > 0.01µmax. This calculation is performed by the process simulation code, and the value of LDR is

reported.

Figure 8.4: Cross-section of petal tube depicting penetration of light into algae liquid. Color indicates
log-base 10 of light intensity (W/m2) at each point in the tube (see colorbar). The dashed line indicates
the boundary between light (µ > 0.01µmax) and dark (µ < 0.01µmax).

Differential Energy Balances Performing an energy balance on the differential plug yields

(8.23)dT =
1

CpρdV
(dQsun + dQfric + dQconv − ĤalgdX)

where T is the liquid temperature in the differential plug, dV is the volume of the differential plug, and

Cp is the specific heat capacity (J/m3K) of the algae solution. Cp is assumed to be equal to the specific

heat capacity of water, which is a good approximation because the algae solution is over 98wt% water.

dQsun, dQfric, and dQconv are the amount of heat transferred into the plug due to sunlight, frictional
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heating, and convective heat transfer with the ambient air, in the differential residence time dt = dV/F6.

dQsun and dQfric are both greater than 0, and the sign of dQconv depends on ambient air temperature.

Ĥalg is the specific enthalpy of algae biomass (J/kg), relative to the photosynthetic reactants CO2 and

O2 (i.e. it is effectively the heat of combustion of algae biomass). Ĥalg is estimated to be 15,000kJ/kg

(Orosz and Forney, 2008). This figure captures both the enthalpy of reaction of photosynthesis and of all

other metabolic processes in the algae. This approach to the energy balance avoids the need to estimate

what portion of sunlight energy is used for photosynthesis and what portion goes to heating the algae

solution, which greatly simplifies the task.

Heat input from sunlight is estimated as

(8.24)dQsun = ID dLdt

where I is the intensity of light incident on the petal tube, D is the tube diameter, dL is the length of

the differential plug, and dt is the differential residence time.

(8.25)Qfric = dP dV

where dP is the pressure drop across the differential plug due to friction. dP is estimated using the

Darcy-Weisbach equation,

(8.26)dP = dLfD
ρv2

2D

where ρ is the liquid density, v is liquid velocity, D is tube diameter, and fD is the Darcy friction factor.

fD is estimated using the following correlation for smooth pipes in turbulent flow:

(8.27)
1√
fD

= −1.93 log
1.90

Re
√
fD

The Reynolds number is given by Re = vD
ν where ν is the kinematic viscosity of the liquid. For tube

diameter used in the final design, Re = 6.4× 104, so the flow is in the turbulent regime. Turbulent flow

is important to the design of the petal tubes because it ensure turnover of algae in the lit region of the

tube, so that no cells spend extended periods in darkness. ν was approximated as the kinematic viscosity

of water, which is a good approximation because the liquid is over 98wt% water. The fD that solves

equation 8.27 was estimated using the fzero function in Matlab.

Convective heat transfer to the ambient air is estimated with

(8.28)dQconv = h(Tair − T )πD dLdt

where T is the temperature of the algae liquid, Tair is the temperature of ambient air, and h is the

convective heat transfer coefficient. Not that Eq. 8.28 makes the assumption that the temperature of the

tube surface is equal to the temperature of the the algae solution. This approximation can be justified

by the fact that turbulent flow in the tube keeps the liquid temperature nearly uniform, and the tube

walls are quite thin (0.5 cm). The convective heat transfer coefficient h is given by

(8.29)h =
Nuk

dL
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where k is the thermal conductivity of air and the Nusselt number is estimated using Eqs. 8.14 and

8.15. Typical wind speeds vwind at the plant location are 2 to 4 m/s, and a correlation for the kinematic

viscosity of the ambient air as a function of time νair = νair(Tair) was developed by fitting a quadratic

function to tabulated data. A correlation for the Prandtl number Pr = Pr(Tair) was also developed by

fitting a quadratic function to tabulated data.

Integration of Differential Balances Equations 8.16 through 8.23 can now be integrated over the

length of the petal tube to yield complete mass and energy balances for the petal tubes. Algorithm

1 displays the procedure for numerical integration of the mass and energy balances. As shown in the

algorithm, the petal tube was partitioned into 500 differential plugs. The numerical integral was tested

with convergence with respect to this partitioning, and the outputs of the algorithm were found to be

well converged.

Algorithm 1: Numerical Integration of Petal Tube Differential Mass and Energy Balance. The inte-
gration was found to be very well converged using by partitioning the tubes into 500 differential plugs.
dV ol is the volume of a differential plug.

input : X, CCO2
, CO2

, and T at the tube entrance
output: X, CCO2 , CO2 , and T at the tube exit
O2,vented ←− 0
for step ←− (1,2,...,500) do

X ←− X + dX
CCO2

←− CCO2
+ dCCO2

if CO2
< HO2

P then
CO2

←− CO2
+ dCO2

else
O2,vented ←− O2,vented + (dCO2

)(dV ol)
end
T ←− T + dT

end

In Algorithm 1, the differential changes in concentrations and temperature are given by Eqs. 8.16,

8.17, 8.18, and 8.23. Note that the O2 balance in Algorithm 1 accounts for the possibility that the algae

solution becomes saturated with O2. In this case, the O2 produced by the algae bubbles out of solution

and is released through vents placed every 3 meters along the tubes (no vents are placed in the first

95m of each tube because the liquid is not yet saturated in O2, as discussed in the following paragraph.

Algorithm 1 tracks the total amount of vented O2 through the O2,vented variable. As the bubbles form,

some CO2 enters the gas phase as well and exits through the vents. This process is described in the

following subsection.

The result of Algorithm 1 is a procedure which calculates the properties of the tube output (stream

7) from the properties of the tube input (stream 5), and the model parameters L and A.
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O2 and CO2 Venting As O2 bubbles form in the petal tubes, some dissolved CO2 will enter the gas

phase bubbles as well. This CO2 is then vented from the system along with the O2. It is essential that

only a small portion of the CO2 that enters the petal tubes is vented, in order to keep growth rates and

sequestration fraction high. The rate at which O2 is vented from each vent, calculated by tracking the

O2,vented variable in Algorithm 1, is shown in Figure 8.5.

Figure 8.5: Rate of O2 venting at each vent along length of petal tubes. Vents are not placed for the first
95m, where no O2 bubbles form because O2 concentration is lower than the saturation concentration.

The total rate of O2 venting for an entire petal tube is 10.5mmol/s. The rate at which CO2 is vented

is lower than the rate at which O2 is vented by a factor of HO2
/HCO2

= 0.038, thus CO2 is vented at

a rate of 0.40mmol/s. This rate is 1.7% of the rate at which dissolved CO2 enters the petal tube, thus

CO2 loss through the O2 vents is not a significant concern.

8.1.3 Iterative Approach to Self-Consistent Mass and Energy Balances

Section 8.1.1 describes the procedure to calculate stream 5 properties using stream 7 properties and other

model parameters. Section 8.1.2 describes the procedure to calculate stream 7 properties using stream

7 properties and other model parameters. There exists a set of properties for the two streams for which

each procedure outputs the stream properties that the other procedure takes as an input; this set of

properties is the self-consistent solution to the mass and energy balances on the photobioreactor.

Algorithm 2 describes an iterative procedure that converges to the self-consistent solution.

Algorithm 2: Iterative procedure to find the self-consistent mass and energy balances for the photo-
bioreactor.

input : L, A, X, and F2

output: Stream Properties for streams 5, 7, and 8
CCO2,5 ←− HCO2

P
CO2,5 ←− HO2

P
while Change in concentrations from previous iteration are sufficiently large do

CCO2,7, CO2,7, F7 ←− TubeModel(CO2,5,CCO2,5)
CCO2,5, CO2,5 ←− BubblerModel(CO2,7,CCO2,7,F7)

end

In Algorithm 2, the functions TubeModel(CO2,5,CCO2,5) and BubblerModel(CO2,7,CCO2,7,F7) do the
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procedures described in sections 8.1.1 and 8.1.2, respectively. All parameters in Algorithm 2, including

those within the TubeModel and BubblerModel functions, have set values, except for the parameters L,

A, X, and F2. Thus, a complete process simulation has been developed for the photobioreactor that

takes these four parameters as inputs.

Now that a full model for each petal tube has been developed, it remains to be determined how many

petals to use in the pilot-scale design. A requirement of the pilot-scale design is that it sequester 100kg

of CO2 each day, thus the number of tubes is chosen to meet this requirement. For the pilot-scale design

presented in this report, 13 tubes were required to achieve this sequestration goal.

Sequestration constraint Although the process can be simulated effectively for any given values of

L, A, X, and F2, the process only achieves the carbon sequestration goal of 50% for F2 values below

some threshold. It is desirable to set F2 as high as possible without passing this threshold in order to

provide the algae with high CO2 concentrations. Thus, F2 should be set right at the threshold necessary

to achieve the sequestration requirement. For a given set of values of L, A, and X, the threshold F2

value can be found by minimizing the objective function

(8.30)f(F2) =
(

SeqFrac(F2, L,A,X)− 0.52
)2

where SeqFrac(F2, L, A, X) is a function that returns the fraction of input CO2 sequestered, as cal-

culated with the BubblerModel code using the self-consistent balances. The function is minimized at

a sequestration fraction of 0.52, which provides a margin of error so that the pilot plant achieves the

sequestration target even if the process simulation is not perfectly accurate. Minimizing f(F2) is a simple

one-variable minimization problem, and it is achieved efficiently using the fminbnd function in Matlab.

A procedure that runs this minimization and reports the self-consistent mass and energy balance

results at the minimizing F2 was automated in Matlab. This procedure takes values for L, A, and X as

inputs and returns all stream properties from the process simulation. The values of L, A, and X used in

the pilot plant are chosen to optimize estimated profits per tube, as described in section 9.

8.2 Design of Rotary Steam Tube Heat Exchanger Using Aspen Plus

To model the evaporation of the remaining water after skimming the flocculated algae, Aspen Plus

was used. In the process, Chlorella was modeled as a nonconventional solid by specifying its elemental

composition (Mandalam, Palsson, 1998). Detailed information about the specifications can be found

in Section A.3 of the Appendix. The dryer was modeled using the HEATX block; the algal paste was

assumed to enter the dryer at ambient temperature, while the low pressure steam entered at 150C and

1.5 bar gauge. The conditions for the low pressure steam were determined based on a constraint requiring
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that 90 percent of the steam condensed as it passed through the exchanger in order to make good use of

the latent heat.

The HEATX block was specified to model the dryer as a single-pass shell-in-tube heat exchanger with

no baffles. This is a close approximation, as the heat exchange between the two fluids occurs primarily

at the outer surface of the tube carrying the steam, and the rotary drum will only rotate at the speed

necessary to move the biomass (approximately 7.5rpm).

Stream information from the simulation is reproduced from Section 6.2 below.

Table 8.1: Stream Results from Aspen Plus Simulation

From the table, one can see that algal paste entering the dryer, stream 16, has a wet basis moisture

content of over 93 percent. The content of this stream is obtained based on the 98 percent removal of

water attributed to the magnesium-based flocculation and flotation process with nearly total biomass

recovery [Garćıa-Perez et. al 2013]. In order to produce a valuable biomass product, the moisture

content of the exiting algal paste must be at or below ten percent. In order to accomplish this goal, it

was determined that 44.9 kg/h of low pressure steam would be required.
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9 Process Optimization

9.1 Photobioreactor Optimization

The process simulation created in Matlab performs mass and energy balances on the process, given the

PBR tube dimensions (length and cross-sectional area) and algae concentration in the bubbler. An

optimization procedure was used to find the values of the parameters that maximize estimated profits

per tube. The method of profit estimation, which is described in detail below, is intended to reflect the

profits per tube in a hypothetical full-scale plant, not the profits in the pilot-scale plant proposed in

this report. The rationale for this approach is that the pilot-scale plant is intended to demonstrate the

features of a full-scale plant and provide data to aid the design of the full-scale plant. Thus, the PBR

tubes used in the pilot scale plant should be identical to those that would be used in a full scale design.

The formal problem statement of the optimization and a description of the optimization methods are

provided in the following sections.

9.1.1 Optimization Problem Statement

Define ~x = (L,A,X) where L is tube length (m), A (m2) is tube cross-sectional area, and X is biomass

concentration (kg/m3). It was desired to find the ~x that maximizes profits (or minimizes losses), under

the constraints that L, A, and X are positive and that reactor temperature and depth of light penetration

remain at ideal levels for algae health. Specifically, the temperature change ∆T between the tube entrance

and exit must be below 20oC, and the light/dark ratio LDR must be greater than 0.10. The problem is

stated formally below.

(9.1)

min
~x

fo(~x)

s.t. xi > 0 for i = 1, 2, 3

∆T (~x) < 20oC

LDR(~x) > 0.10

The function fo(~x) to be minimized is given by fo(~x) = Costs−Revenue, and a formal definition is

given below.

(9.2)fo(~x) = Ccooling + Cpumping + Cnutrient + Cacrylic + Cland − (Productivity) ∗ (Price)

In Eq. 9.2, Ci is the cost per unit time of input i, per tube. Productivity is the biomass output per unit

time, per tube. Price, the selling price of the output biomass, is taken as constant, but all other terms

in Eq. 9.2 are functions of ~x. Productivity is given directly by the Matlab process simulation code, and

Eqs. 9.3 through 9.7 define how costs are estimated for each input.

(9.3)Ccooling = Q(
1

COP
)pelec
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where Q is required rate of heat removal, COP is estimated coefficient of performance of the refrigeration

unit, and pelec is the price of electricity.

(9.4)Cpumping = (∆P )F
1

εpump
pelec

where ∆P is pressure drop from the tube entrance to exit, F is volumetric flow rate through tube, εpump

is pump efficiency, and pelec is the price of electricity.

(9.5)Cnutrient = (Nutrient Consumption Rate)(pnutr)

where pnutr is nutrient price.

(9.6)Cacrylic = (Mass of Acrylic)
( 1

Tube Lifetime

)
(pacryl)

where pnutr is price of acrylic.
(9.7)Cland = (land cost)(interest rate)

where the cost of land ownership Cland is estimated as the foregone interest that would be earned if the

land were sold. In Eqs. 9.3 through 9.7, pelec, pnutr, pelec, εpump, and COP are constants, and all other

variables depend on ~x and are obtained from the process simulation code.

It was decided that a gradient descent method would be used to minimize fo under the inequal-

ity constraints described above. To account for these constraint, the problem is reformulated into an

unconstrained minimization problem, as described in the following section.

9.1.2 Reformulated Problem

To reformulate the constrained optimization problem into an unconstrained optimization problem, a

penalty is added to the objective function when one of the constraint parameters pi ∈ (L,A,X,∆T, LDR)

is near to its constraint Ci. The penalty approaches infinity as pi approaches Ci. This penalty causes

gradient-based minimization methods to avoid breaking the constraint.

Formally, the reformulated problem is:
(9.8)min

~x
f1(~x)

where
(9.9)f1(~x) = f0(~x) +

∑
i

bi(pi(~x))

Here, bi(pi(~x)) is the penalty for the ith constraint (described below), and the sum is over the 5 inequality

constraints. The values pi(~x) are calculated with the process simulation code described in Section 8.

It is desired that the penalty bi is 0 for pi far from the constraint, that the penalty smoothly takes

effect at a point near the constraint, and that the penalty approaches infinity as pi −→ Ci. The value

of pi at which the penalty takes effect is denoted as Ci,soft (the soft constraint) and the value at which

66



the penalty reaches infinity is denoted as Ci,hard (the hard constraint). These requirements are satisfied

with the following function:

(9.10)bi(Ei) =


∞ Ei < 0

Ei − lnEi − 1 0 ≤ Ei < 1

0 Ei ≥ 1

where

(9.11)Ei =
pi(~x)− Ci,hard
Ci,soft − Ci,hard

Note that dbi
dpi

= 0 at pi = Ci,soft, so that the objective function remains differentiable at all ~x that obey

the constraints. Table 9.1.2 shows the hard and soft constraints used for the PBR optimization.

Table 9.1: Hard and Soft Constraints used in f1(~x)

i pi Ci,soft Ci,hard

1 L 1.0 0 m
2 A 10−5 0 m2

3 X 0.01 0 kg/m3

4 ∆T 18 20 oC
5 LDR 0.12 0.10

It is now possible to minimize f1(~x) using a standard gradient descents algorithm like that shown in

Algorithm 1.

Algorithm 1: Gradient Descents.

input : An initial guess ~x0
output: The vector ~x that locally minimizes f1(~x0)
while ∇f1 > ε do
∇f1 ←− Gradient(~x)
α ←− LineSearch(~x,∇f1)
~x ←− ~x− α∇f1

end

In Algorithm 1, the Gradient(~x) function calculates the gradient of f1 at point ~x, and the LineSearch(~x,∇f1)

function finds the minimum value of f1 along a line through ~x in the ∇f1 direction. The algorithms for

both functions are provided below.

This simple implementation is ill-suited for cases in which the components of ∇f1 significantly differ

in magnitude. In the case of f1(~x), the tube length x1 is on the order of 102 whereas cross-sectional area

is on the order of 10−2, and the magnitudes of f1’s derivatives with respect to each variable differ on a

similar scale. Panel A in Figure 9.1 illustrates the consequence of this feature, which is that a highly

indirect zig-zag path is taken towards the minimum, leading to very slow convergence.

To mitigate this problem, the components of ~x can be re-scaled (effectively a unit-conversion) so

that their numerical values are on a similar scale. Alternatively, the direction of the line search can be
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modified to imitate this scaling effect while retaining physically-meaningful coordinates in convenient

units. The specific modification that is needed is developed as follows.

First, the notation ~a. ∗ ~b (or ~a./~b) will be used to denote element-wise multiplication (or division)

of vectors ~a and ~b (as is used in Matlab). Define a function g(~x) such that g(~x. ∗ ~w) = f1(~x) where

~w is a vector of weights that achieve the desired scaling of components (the choice of ~w is discussed

below). Now, consider the parallel problems of conducting a line search of f1 beginning at point ~xo

and conducting a line search of g beginning at point ~xo. ∗ ~w. For the line search of g, the direction ∇g

is a good choice of minimization direction, as the components of ~x are properly scaled such that the

traditional Gradient Descent algorithm converges efficiently. As described previously and as shown in

Panel A of Figure 9.1, ∇f1 is not a good choice for the direction of the line search of f1, and the direction

∇g./~w, which is the desired direction for g re-scaled for the function f1, is chosen instead. Note that

∇g = ∇f1./~w, so the desired direction for the line search of f1 is ∇f1./(~w. ∗ ~w). The scaling factor ~w

should be chosen so that the components of ~x0. ∗ ~w are on a similar scale, in order to avoid a zig-zag

path. It was chosen to set ~w = 1./~x so that ~x0.∗ ~w = (1, 1, 1). Thus, the direction of the line search of f1

becomes ∇f1.∗ (~x0.∗~x0). This modified algorithm is outlined formally in Algorithm 2 below. (Note that

a similar approach is used in the common Conjugate Gradient (CG) algorithm. The main difference is

that CG makes a more nuanced choice of ~w).

Figure 9.1 illustrates the increase in performance of this modified Gradient Descent algorithm (Alg.

2) relative to the basic Gradient Descent algorithm (Alg. 1).

Figure 9.1: Comparison of Algorithm 1 (Panel A) to Algorithm 2 (Panel B). The objective function in
this figure is f(x, y) = (x/23)2 + y2, and smooth colored lines indicate level sets of this function. As can
be seen, Algorithm 2 converges in much fewer iterations than Algorithm 1.

The Gradient(~x) and LineSearch(~x, ~dir) functions used in Algorithms 1 and 2 are outlined in Algo-

rithms 3 and 4 below.
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Algorithm 2: Modified Gradient Descents

input : An initial guess ~x0
output: ~x that minimizes f1(~x0)
while ∇f1 > ε do

~dir ←− Gradient(~x).*~x.*~x
// Note: .* denotes element-wise multiplication

α ←− LineSearch(~x, ~dir)

~x ←− ~x− α ~dir
end

Algorithm 3: Gradient

input : A vector ~x at which the gradient will be evaluated.
A vector ~dx defining the desired differential steps for derivative
calculations.

output: a vector ∇f1 whose ith component is ∂f1
∂xi

.

for i ←− (1,2,3) do
~dxi ←− ~dx.*(δ1i, δ2i, δ3i)
// Note: δji denotes the Kronecker delta

∇f1i ←−
f1(~x+ ~dxi)−f1(~x)

| ~dxi|
end

Algorithm 4: LineSearch

input : A vector ~x at which the line search is to begin.
A vector ~dir specifying the direction of the line search.

output: A number α specifying the distance in the ~dir from ~x at which a local minimum occurs,
measured in multiples of ~dir.

αLow ←− 0
α ←− α0

L0 ←− f1(~x)

L1 ←− f1(~x− α ~dir)
while L1 < L0 do

αLow ←− α
α ←− 2α
L0 ←− L1

L1 ←− f1(~x− α ~dir)
end
αHigh ←− α
αLow ←− αLow/2
α ←− BisectionSearch(αLow,αHigh)

The BisectionSearch(αLow,αHigh) function used in Algorithm 4 performs a bisection search minimiza-

tion of h(α) = f1(~x−α ~dir) on the interval (αLow,αHigh) within which it is known that a local minimum

exists and on which it is assumed that dh
dα is monotonically increasing (i.e. it is assumed that there is

only one minimum in the interval).

9.1.3 Results of PBR Tube Optimization

The optimization procedure was run with an initial guess of L = 100m, A = 0.005m2, and X = 2.0kg/m3.

At this initial guess, f1 = −3.76 × 10−5. The optimization converged after 4 iterations to the values
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L = 304.03m, A = 0.002303m2, and X = 1.663kg/m3, and the objective function was reduced to

f1 = −19.7 × 10−5. These values are the parameters used in the pilot-scale design presented in this

paper. Note that the objective function is negative, which indicates negative losses (i.e. positive profits)

per tube.

9.2 Nighttime Tank Lighting Optimization

The lighting configuration in the nighttime tank was optimized in order to find the lowest-cost method of

providing adequate lighting to the algae. Adequate lighting was defined as a light/dark ratio of 10%. It

was determined that the light guides would be arranged in a hexagonal array, as described in Section 7.3,

however the light guide radius, spacing (distance between guides), and LED intensity were parameters

that could be adjusted to minimize costs. Formally, the problem is

(9.12)
min
~x

fo(~x)

s.t. LDR > 0.10

Here, ~x = (r, d, P ) where r is light guide radius, d is guide spacing, and PLED is LED power per guide.

LDR is the light/dark ratio. The objective function fo(~x) is an estimate of the annual cost of the tank.

It is defined as follows.

(9.13)fo(~x) =
( Cguide

Guide Lifetime
+ (PLED)(pelec)

)
Nguides +

Ctank
Tank Lifetime

Where the cost of one guide Cguide is estimated to be $4.71 based an material and manufacturing costs.

Guide Lifetime is estimated to be 20 years. pelec is the price of electricity, which is $0.16/kWh. Ctank

was estimated to be ($30/m2)(VTank), where VTank is tank volume, and Tank Lifetime was estimated

to be 10 years. Nguides, the number of light guides in the tank, and VTank, are implicitly functions of r

and d. Nguides is determined by finding the number of rods (light guides) of radius r and arranged in a

hexagonal grid with spacing d that are needed to fill a space with empty volume of 91m3. VTank is then

the volume of these rods plus the empty volume of 91m3. Equations for VTank and Nguides in terms of

r and d are given below.

(9.14)Nguides =
121.8

πd2(2.45− 8.33r2/d2)

(9.15)VTank = Nguides(7.98r2) + 91

where units for r and d are meters and units for VTank are m3.

In order to ensure that the constraint on LDR is met with the minimal electricity costs, PLED was

fixed at the value that guarantees LDR = 0.10, for a given r and d. This removes one degree of freedom

from the problem and removes the constraint. The result is a new minimization problem

(9.16)min
{r,d}

f1(r, d)
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where the new objective function f1

(9.17)f1(r, d) = f0(r, d, ELED,min(r, d))

where ELED,min(r, d) is a function that returns the value of ELED that achieves an LDR of 0.10, for

given r and d. f1(r, d) was minimized using the same technique described for the PBR optimization to

determine the optimal values of light guide radius and spacing.

9.2.1 Results of Nighttime Tank Lighting Optimization

The optimization procedure was run with an initial guess of r = 0.5cm and d = 10cm. At this initial

guess, f1 = 8.42 × 103. The optimization converged after 5 iterations to the values r = 0.0375cm and

d = 17.89cm, and the objective function was reduced to f1 = 3.64×103. These values are the parameters

used in the pilot-scale design presented in this paper.
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10 Descriptions of Equipment

This section provides specification and cost information for all process equipment used in the pilot-scale

plant. Due to the pilot-scale and custom nature of the design, most of the equipment costs were estimated

by searching B2B-provided listings. An example provider is cited for each of the equipment items that

reflects what was found to be a typical cost for a given item. Prices for each item are reported in USD,

but were estimated with the aim of reflecting a cost closer to what may be found in Brazil, rather than

American suppliers.

72



EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Plastic Gas Exchange Column Tank

PFD Ref. No. E2

No./Amt. Req. 1

Function: Central tank for gas exchange (CO2 transfer in and O2 transfer out)

Operation: 8 hours/day

Example supplier: Zhangjiagang Sanofi Machinery Co., Ltd.

Supplier unit name: 3000L PE Food Grade Plastic Water Storage Tank

Cost per unit ($): 100

Specifications: Property Value

Volume 3000L

Material PE

Height 3m

Grade Food grade

Other notes: Transition area of interior wall on tank adopts arc to ensure no dead corner

Insect resistant sanitary breathing cover

Input and output pipes at bottom and top as nessecary
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Acrylic Tubing

PFD Ref. No. A

No./Amt. Req. 14259kg

Function: Acrylic tubes for horizontal tubular bioraector petals. See Section 7 for tubing layout. 

Operation: 8 hours/day

Example supplier: Wuxi Ludery International Trading Co., Ltd.

Supplier unit name: Custom LDR Acrylic Tubing

Cost per unit ($): 1$/kg

Specifications: Property Value

Material Acrylic

Thickness 5mm

Inner Diameter 17.12cm

Length Custom
Color Transparent

Other notes: Dimensions are custom to order
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Multi-stage Blower

PFD Ref. No. E-1

No./Amt. Req. 1

Function: Gas transport to reactor (through spargers at base of column/tank)

Operation: 24hr/day

Example supplier: HIS

Supplier unit name: Model 31

Cost per unit ($): 2700

Specifications: Property Value

Stages 1-11

Operating speed 3550 RPM (dierct drive), 5075 RPM (belt drive)

Shaft Power
9hp

Power Rating 7kW
Flow rate 0-500m3/hr

Pressure Ratio 3.5PSIG

75



EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Water Chiller

PFD Ref. No. E-3

No./Amt. Req. 1

Function: Internal coil HX for cooling algae volume in the central gas exchange column

Operation: 8hr/day

Example supplier:  Shanghai Wenheng Electric Equipment Co., Ltd.

Supplier unit name: CW-5200

Cost per unit ($): 380

Specifications: Property Value

Certification CE, CE, ISO

Cooling agent R134a

Dimenison 72 X 44 X 62 cm

Max heat duty: 1400W
Avg. op. heat duty: 150W

Other notes: Alarm function: can use state real-time monitoring

Easy installation (small, light weight)
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Main Centrifugal Circulation Pump

PFD Ref. No. E-4

No./Amt. Req. 1

Function: Circulating algae cultivation volume

Operation: 24hr/day

Example supplier: Hebei Yuandong Pumps Manufacturing Co., Ltd.

Supplier unit name: BYD, 100CYZ-40

Cost per unit ($): 2933

Specifications: Property Value

Type Centrifugal, self-priming

Power Electric

Pressure 12-75m

Flow capacity 610m3/hr
Speed 2900r/min

Certificate ISO9001:2000

Temperature -20 to 80C

Head 75m

Other notes: Simple structure, convenient operation and maintenance
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Night Tank

PFD Ref. No. E-11

No./Amt. Req. 1

Function: Underground 

water tank for 

night/other 
Operation: 16 hours/day

Example supplier:  Shijiazhuang Zhengzhong Technology Co., Ltd.

Supplier unit name: Center Enamel Water Storage Tank, ZZKJ-0010

Cost per unit ($): 5000

Specifications: Property Value

Volume >100m3

Material Titanium dioxide enhanced double enamel steel 

Fill Height 2.45m

Roof custom for purpose
Service life >30 years

Permeability Gas/liquid impermeable

Cleanability Easy: smooth, glossy, inert, and non-adhesive

Corrosion 

resistance High

Other notes: Dimensions are custom to order
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item High Intensity Blue and Red LEDs

PFD Ref. No. B

No./Amt. Req. 2952

Function: Fixture to fibre optical light guides for artificial illumination

Operation: 16 hours/day

Example supplier: Shenzhen Dpower Optoelectronic Co., Ltd.

Supplier unit name: DPT-XT3535B

Cost per unit ($): 0.16

Specifications: Property Value

Wattage 1W

Working current 350mA

Blue wavelength 450-500nm

Red wavelength 610-730nm
Lifespan 50,000hrs

Mount width 3.45mm

Mount length 3.45mm
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item PMMA Granules

PFD Ref. No. C

No./Amt. Req. 13608kg

Function: Melted down to form inner core of optical light pipes

Operation: 16 hours/day

Example supplier: Inner Mongolia Zhishe Industry Trade Corporation

Supplier unit name: ZSSY, PMA-AAA

Cost per unit ($): 0.35/kg

Specifications: Property Value

Form Granules

Grade High quality virgin pure PMMA

Color Transparent

Certification SGS,BV,ISO9001:2000
Refractive index 1.489

Other notes: High tensile strength, corrosion resistance

Easy to process and mold into custom shape

Used for optical applications
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item PTFE Granules

PFD Ref. No. D

No./Amt. Req. 3650kg

Function: Melted down to form outter cladding of optical light pipes

Operation: 16 hours/day

Example supplier: Dalian Huanruntongshi Imp & Exp Co., Ltd.

Supplier unit name: HRTS, PTFE Resin

Cost per unit ($): 0.6/kg

Specifications: Property Value

Form Granules, powder

Grade High quality virgin pure PTFE

Color Transparent

Refractive index 1.36

Other notes: High tensile strength, corrosion resistance

Easy to process and mold into custom shape, esp. tubing

Used for optical applications
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Chemical Storage Units

PFD Ref. No. -

No./Amt. Req. 44 (variable sizes)

Function: Storage of nutrient chemicals, stock solutions. 

Operation: 24hr/day

Example supplier: Plastic Container Suppliers

Supplier unit name: Sealable Airtight Chemical Storage Drum

Cost per unit ($): Large (200L): 26, Medium (10L): 4.50, Small (1L): 0.52

Specifications: Property Value

Material Chemical Storage Plastic

Seal Airtight

Dimensions Variable: 200L, 10L, 1L

Other notes: Purchased by size requirements
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Peristaltic Pump

PFD Ref. No. -

No./Amt. Req. 1

Function: Nutrient Delivery

Operation: 8hr/day

Example supplier: Jining Luheng Machinery Equipment Co., Ltd.

Supplier unit name: LH GM1.6-2.1/50

Cost per unit ($): 150

Specifications: Property Value

Power Electric

Capacity 2.1LPH

Max Pressure 500bar

kW 0.55

Other notes: Will be operated at half capacity
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Rotary Drum Dryer

PFD Ref. No. E-10

No./Amt. Req. 1

Function: Rotary drying drum for post-processing drying of algae

Operation: 24hr/day

Cost per unit ($): 2809

Specifications: Property Value

Material Carbon Steel

Length 15ft
Shell Inner 

Diameter 2ftTube Outter 

Diamter 6in
Rotation velocity 7.5rpm

Max Op. Temp. 150C

Motor Power 3hp

Installed Capacity 178kg evaporated water/hr
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Gas Blower

PFD Ref. No. E-7

No./Amt. Req. 1

Function: Gas transport for post-processing

Operation: 24hr/day

Example supplier: Home Depot

Supplier unit name: PowerPro Technology, 2 Gal. Portable Electric Air Compressor

Cost per unit ($): 60

Specifications: Property Value

Max Pressure 100psi

Op. Pressure 40psi

Op. Flow Rate 1.5CFM

Motor power 1/3hp
Compressor Type Light Duty
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Pressure Vessel

PFD Ref. No. E-8

No./Amt. Req. 1

Function: Pressurized saturation of water with air

Operation: 24hr/day

Example supplier: OEM

Supplier unit name: Commercial Tank

Cost per unit ($): 100

Specifications: Property Value

Diameter 24in

Material PE Liner, FRP Filament winding

Pressure rating 150psi
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Flotation Tank

PFD Ref. No. E-6

No./Amt. Req. 1

Function: Post-processing flocculation and flotation 

Operation: 24hr/day

Example supplier: Dezhou Huili Environmental Technology Co., Ltd.

Cost per unit ($): 208

Specifications: Property Value

Modular pieces 1x1m, 0.5x1m, 0.5x0.5m

Dimensions 6mx0.5mx0.5m

Material Galvanized steel
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EQUIPMENT/MATERIALS  SPECIFICATIONS

Identification: Item Holding Tank

PFD Ref. No. E-5

No./Amt. Req. 1

Function: Holding harvested algae for post-treatment

Operation: 24hr/day

Example supplier: Chongqing Dianfeng Plastic Containers Co., Ltd.

Supplier unit name: Dianfeng M-4000L

Cost per unit ($): 136

Specifications: Property Value

Material LLDPE

Volume 4000L

Diameter 2m

Grade Food grade
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11 Economic Analysis

The following sections provide a break down of the economic analysis of the presented process, including

a profitability assessment of the overall system. Bare module costs were estimated, from which total

capital investment was derived. Production costs and annual sales were calculated. Then, profitability

was assessed in terms of Return on Investment (ROI), Payback Period (PB), Venture Profit (VP), and

Annualized Cost (AC).

The analyses were performed on two different bases to reflect the unique nature of this venture.

The first method involved assuming that all equipment was purchased at the full cost up-front, and

without taking into account the lifespan of certain equipment. This method is denoted as the “Up-

front” column in the following tables. However, a longer lifespan means that for much of the high-cost

equipment, the up-front cost does not accurately reflect the long-term capital needs of the pilot plant

once in operation. For example, the rotary dryer only needs to be purchased once every 30 years, so costs

could hypothetically be distributed over a longer time period. To take this into account, a second method

of economic analysis was therefore employed, where lifespan of the equipment was used to determine an

overall ”10 Year cost”, from which all analyses were also performed based on. This method is presented

in the “10 Year” columns in the following tables. This second method was built assuming that with the

aid of government support and loans (common for projects of this nature in Brazil), that some of the

initial investment costs could be paid back over a longer period of time. This effect was estimated by

obtaining lifespans for equipment and fabricated units and calculating a 10-year projected cost, allowing

for equipment to be paid back over the period of its expected lifespan. For example, if a compressor

costing $2700 up-front has a lifespan of 20 years and a bare module factor of 2.15, the first method

would assume $5805 to be the Bare Module Cost, while the second method would assume it to be half

of that (10years/20year lifespan), at $2903. This calculation also worked in the reverse, where if a unit

had a lifespan under 10 years, the 10 year cost was raised to reflect the need to purchase new equipment

in this time period. The Total Capital Investment profile, as well as ROI, PBP, VP, and AC, were all

calculated using both of these methods. The 10 Year method is not meant to produce an exact financing

scenario, but rather, provide an alternative perspective that is believed to be a closer reflection of a

realistic financing scheme for this pilot plant under a start-up business scenario.

11.1 Fixed Capital Investment Summary

Table 11.1 presents an item-by-item list of the equipment costs associated with the process, split up

by reactor costs, nutrient delivery costs, and harvesting and post-treatment costs. Due to the pilot-

scale and custom nature of the process, most of the equipment costs were estimated by searching B2B-

provided listings. Specifications can be found in Section 10. Bare Module Factors specific to each
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piece of equipment were obtained from Product and Process Design Principles: Synthesis, Analysis, and

Evaluation (Seider et al, 2016), or where appropriate, estimated by calculating expected values of indirect

costs associated with purchase, manufacturing, and installation. A summary of how each Bare Module

Factor was estimated is given in Section A.2 of the Appendix. Given the small scale of the operation,

and the start-up nature of the management, costs associated with contracting were lumped into the bare

module costs. It should be noted that the installed cost of the rotary steam tube dryer is based on a rule

of thumb given for algae drying based on the total mass of water evaporated (Amos, 1998).

Table 11.1: Equipment Cost Summary

The fixed capital investment summary given in Table 11.2 quantifies the Total Capital Investment

(TCI) required for the project, including estimates of the Total Bare Module Investment (CTBM),

the Total Direct Permanent Investment (CDPI), the Total Depreciable Capital (CTDC), and the Total
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Permanent Investment (CTPI).

The CTBM is a sum of the bare module costs of fabricated equipment and process machinery (tab-

ulated above), and cost of spare equipment. Cost for spare equipment was considered zero, as the cost

of halting operation for some number of days in order to repair a piece of process machinery is orders

of magnitude lower than the cost of purchasing a second piece of equipment. Furthermore, the hybrid

reactor setup of this process offers the ability to use either the day or night time setup as a “spare” for

continued operation during maintenance of the other. If harvesting repairs need to be made, the night

tank also offers the ability to be used as a temporary holding tank. This is further discussed in Section 12.

At larger scales, spare equipment would be required. The CDPI required for the facility is a summation

of the CTBM and costs associated with site preparation, service facilities, and utility production. Here,

allocated costs for utilities are assumed to be zero as they are already available onsite at the Porto do

Pecem power station to which our process is being retrofit. Site preparation was estimated by methods

cited for standard agricultural land levelling (Salassi, 2001, and Land Levelling, 2013) The cost for service

facilities was estimated by calculating space required to set up a tent warehouse for indoor nutrient stor-

age and preparation space, harvesting and post-treatment equipment space, as well as space for an office

cubicle. A 15% factor for contingencies was applied to the CTDC the give the CTPI (overall profitability

analyses are also reported in Table 11.7 for contingency factors of 25% and 50% though). To give the

CTPI, the amount of required depreciable capital was added to the non-depreciable investments.This

included cost of land and production startup costs. Start-up costs included inoculation culture purchase,

and the equipment and operation costs for small inoculation and start-up cultures (further discussed in

Section 12).

To obtain a final value for the CTCI, it was necessary to estimate the on-hand working capital needed.

This was assumed to be 30 days of cash reserves for operating costs, stores of necessary operating materials

(like feedstock) to account for any delays in shipping, the value of 7 days of product inventory to account

for weekly product shipments, minus 30 days of accounts payable.
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Table 11.2: Fixed Capital Investment Summary

11.2 Operating Costs

This section tabulates the costs associated with the day-to-day operation of the plant. The operating

costs are broken into variable and fixed costs; the former are affected by the production level of the plant,

while the latter do not change, regardless of the operational status of the plant. These costs are reported

in Table 11.3 below. Table 11.4 lists the annual costs of each type of utility.

92



Table 11.3: Variable Costs of Biomass Production

Table 11.4: Annual Utilities Costs

Table 11.5 presents a breakdown of how each expense contributes overall to the production. As

expected, harvesting and post-processing is the most significant cost. It will be important to lower this

cost at a larger scale. The fixed costs fraction is higher than normal perhaps, due to the pilot scale. The

nighttime operation currently may be high considering the growth rate is minimal under the current CO2

day:night split, however the added benefit of the night tank is qualitatively large. Further discussion of

this can be found in Section 12.
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Table 11.5: Breakdown of the contribution of type of expense to biomass production listed by total
annual cost, and fraction of total annual cost.

11.3 Return on Investment Analysis

Dried biomass will be sold at a rate of $1.23USD/kg. At a production rate of 21,668kg/yr, this is a total

annual sales revenue is $26,651. Income tax in Brazil for this income bracket is 15% on gross income

(annual sales minus production costs). Table 11.6 tabulates the Annual Sales (S), Annual Production

Costs (C), Income Tax, Total Depreciable Capital (CTDC), Depreciation (D), and a Reasonable desired

ROI, chosen as 5%. This would be reasonable for a plant of such new technology. Reported are an ROI,

PBP, VP, and AC, for both the Up-front method of analysis and the 10 Year method. By both methods,

this process will be profitable with up to a 15% Return on Investment.
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Table 11.6: Assessment of profitability for both the Up-front method and the 10 Year method described
above in the introduction to Section 11.

This profitability analysis shows that this process would be on par with the highly ambitious goals

depicted in the “Paths to Commercial Viability” discussed in Section 3. Of course, because this tech-

nology is in its early stages, challenges will inevitably arise. The above reported values were calculated

with a 15% contingency factor, given that this plant is small. However, higher contingency factors may

be more reasonable. Table 11.7 presents a comparison of Profitability Measures calculated when 15%,

25%, and 50% contingency factors were applied. The process remains profitable.

Table 11.7: A comparison of Profitability Measures calculated when 15%, 25%, and 50% contingency
factors were applied.

11.4 Scalability

The pilot scale plant designed in this report is intended to demonstrate the potential of algae growth as

an economical method for carbon conversion. The pilot-scale design is predicted to be profitable, with
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an ROI of up to 15%, but a larger scale plant is expected to be much more profitable due to economies

of scale. The process element where the greatest economies of scale are expected are the post-processing

process, and the flue gas exchange column. In addition, process equipment such as pumps and control

systems have high relative costs for pilot scale plants, but will have relative costs that will decrease for

larger systems. Opportunities for heat integration and recycling of nutrient-rich process water also grow

for larger plants, leading to economies of scale. The photobioreactor tubes are designed at the optimal

size for a full-scale plant, therefore there are not economies of scale for this process element. However,

this makes the cost of transitioning to larger scales low, as it is a matter of adding more petals to a gas

exchange column, up to a certain maximum unit size. Similarly, the lighting design in the nighttime tank

was optimized and is not expected to change in a full-scale plant, but could be optimized for a range of

desired growth goals, if need be.

Certain biological factors can affect the ability to scale algae growth processes, and the biological

principles governing these factors are still in the relatively early stages of research. The large scale

emergent properties are not well understood. For example, algae growth can be very sensitive to tank

size and environmental factors. This presents an inherent risk to scale-up. A major advantage of the

pilot scale design, and one that sets it apart from the field, is that the petal tubes in which the algae grow

are identical to the tubes that would be used in a full scale plant, as they are optimized for profitable

growth under the given conditions. This means that measurements of growth rates on the pilot scale

plant can be used to make accurate predictions of growth rates for a full-scale plant, minimizing the risk

of inhibition due to unexpected biological phenomena.

There is ongoing research in genetic engineering of microalgae in order to address these biological

factors and to increase growth rates. Engineered algae strains may, in the future, have much higher growth

rates than the growth rates estimated in this design, which would greatly increase the profitability of a

full scale plant.

A further consideration to scale up is the set of regulations that influence fossil fuel and renewable

energy use in the location of a full-scale plant. There is growing support for regulatory limits on CO2

emissions, and many regions already have laws that limit or tax CO2 output. These regulations increase

the cost and/or decrease the supply of fossil fuel products, thereby increasing the competitiveness of

fossil fuel alternatives such as microalgae. In addition, some regions have created subsidies for fossil

fuel alternatives which directly improve profitability. In Brazil, the government uses an auction system

to award funding to renewable energy projects, and a full-scale algae growth plant would likely be

competitive for such funding. The decision of when and where to build a full-scale plant based on this

pilot-scale design should take careful consideration of the regulatory outlook of the plant location.
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11.5 Evaluation of Existing Carbon Credits and Subsidies

One of the deciding criteria in the selection of Brazil as the location of the pilot-scale production facility

was the climate surrounding incentives for renewables, particularly in the biofuels sector. The initiatives

put in place and overall level of monetary investment over the last ten years have provided a more stable

environment than those of other countries for experimental ventures such as algal biomass production

(Josling et. al, 2010). Perhaps most notably, the Brazilian Climate Change Plan, introduced in late

2008, has allocated funds for the development of processes that aim to reduce greenhouse gas emissions

approximately 36 to 39 percent within the country by 2020 (GlobalData, 2017). Two of the plan’s

main focuses are categories which this proposed process falls under: Renewable Power, and Biofuels. In

addition, in 2010, the Brazilian government enacted the 2010-2019 Decennial Plan for Energy Expansion,

the aim of which was to end new fossil fuel power plant construction and replace the energy production

capacity with renewables. Although the majority of this initiative was dedicated to hydroelectric power,

biomass was the second largest focus, with the goal to increase installed capacities by 3.1 GW over

the ten year period. The government placed a high priority on these goals, backing the plan with $236

billion, due to an estimated 52 percent increase in domestic electricity consumption over the course of the

decade. Within each of these two programs, additional funds are allocated for R&D processes, which this

proposed process would qualify for due to its pilot-scale nature. Finally, Brazil has taken keen interest in

algae processes, particularly in integration with existing biorefinery processes. It is expected that there

would be significant support for specifically algae-based R&D that the proposed process would be able

to take advantage of.
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12 Additional Considerations

12.1 Startup operation

The process will be continuous once in full operation mode. There will be two steady-state operation

modes: daytime and nighttime, with constant volume and cell density maintained. The operating volume

for over 50% CO2 sequestration of 200kg of CO2/day (13 petals) is 91m3. Reaching the steady state of

operation where the full volume is in use will require a series of start-up cultures where cell density and

cultivation volume is steadily increased. A series of primary start-up cultures will be maintained in basic

bench-scale reactors at all times (Figure 12.1), as well as a well stocked and healthy culture collection.

After this step, the cultivation volume can be maintained in either the nighttime tank at below-capacity

volume or a number of petals while cell density increases. The culture can then be continuously diluted

at a rate lower than the growth rate until the operating volume and operating cell density is reached.

At this point, the harvesting operation begins and the volume is diluted at the rate of growth. This is

at-capacity steady state operation.

Figure 12.1: Small scale flask reactors for bench-scale startup cultures and culture line maintenance.

12.2 Environment, Safety, and Health

12.2.1 Wastewater

The volume of wastewater produced in this process is nearly identical to the volume of medium removed

through the harvest port. After the flocculation and removal of biomass, the remaining water is at a

basic pH and contains residual biomass as well as magnesium precipitate. To make the water suitable for

disposal, the volume will first be chlorine bleached to kill the remaining algae, as per standard protocol. A

small portion of the volume containing the magnesium precipitate will be removed and stored separately

to be sent to the wastewater treatment facility used by the power plant. The remaining volume will be

sent to sewage disposal.

For a larger algae production process, the likelihood is high that it would be cost-effective to remove

biomass and growth metabolites from the wastewater and send it back to the photobioreactor rather
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than use fresh water. In some cases, the presence of such metabolites increases the biomass productivity,

mostly due to the extracellular polysaccharides providing an additional carbon source for the algae.

This effect can persist for as many as 63 days before the metabolites significantly impact growth (Hadj-

Romdhane et. al), although it should be noted that recycling water without treatment greatly increases

the chances of bacterial contamination in the culture (Slade, 2013).

12.2.2 Disposal of algae

In the event that algae volume needs to be disposed of without harvesting (such as in the case of high

contamination), the volume will be drained to a holding tank where it will be treated and killed using

bleach before being sent to waste. This is standard protocol for disposal of algae.

12.2.3 Safety during operation

Consideration should be given to safe operation of the photobioreactor and downstream drying processes.

Especially during the initial culture scale-up and when handling chemicals to mix the BBM medium,

safe laboratory procedures must be followed according to MSDS information. Additionally, all Brazilian

Regulatory Standards (NR) outlined in the Consolidation of Labor Laws (CLT) must be followed both

on and off site. Special care should be taken around large process equipment such as the rotary dryer,

or any process vessels and piping with high temperatures or pressures.

12.3 Process control

12.3.1 Transfer Between Day and Night Operation

Switching between day and night operation is a matter of draining the daytime system into the night

tank. This is done by opening the drainage port at the bottom of the gas exchange column and utilizing

the central pump line to feed the volume in the petals through the gas column into the night tank. To

switch back to daytime operation, the drainage port is closed and the central line pump draws liquid

back into circulation in the daytime system. The exact hour at which the switch occurs is determined by

the hourly sunlight intensity profile in Northeast Brazil at any given point in the year so that the eight

day operation hours are at peak intensity hours.

12.3.2 Manual vs. Dynamic control for steady-state operation

This pilot scale operation is controlled manually to operate at a steady state in both the day time and

night time. This assumes constant cell density and growth rates throughout the periods of operation as

well as a constant flow rate of flue gas with constant composition and properties, and constant growth

conditions (outdoor temperature, sunlight during day hours, etc.). These are valid assumptions for a
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process of this scale. If need be, operating conditions such as dilution rates and pH can be adjusted

manually. For a larger scale operation though, dynamic control would need to be implemented. This

would increase economy of scale. An ideal control system would constantly monitor cell density (and

perhaps even other cell properties such as size of cells) and adjust parameters such as dilution rate or

flue gas input rate in order to maintain constant and healthy cell growth. A thorough control system

would also be able to alert operators if conditions fluctuate outside acceptable range (for example, if it is

particularly hot one day and temperatures in the tubes rise significantly), or if a contaminant is present

in the cultivation volume that presents significant threat to the health of the culture. Involving dynamic

control in larger scale operations would allow for a more robust and tailorable process that could support

a wider range of conditions and products. As well, it would reduce the need for on-site operators.

12.3.3 Maintenance and Emergency Control Procedures

The acrylic tubing will periodically require cleaning in order to remove build-up of dirt on the outside

and/or biofouling on the insides. If the tubes are not operating at close to their optimal transmissivity,

light access to the algae cells will be reduced and growth rates will slow. Therefore, periodic emptying

of the tubular system will be required. While this occurs (likely during night hours), the volume will be

maintained in the night tank to prevent halting operation.

Aside from maintenance, there may be events that fall significantly outside the expected range of

operating conditions that result in the need for emergency action. These events include particularly

drastic weather changes such as very high or very low temperatures, or extended storms, as well as

sudden population drops or unacceptable levels of contamination. Depending on the circumstance, the

algae volume may be able to be maintained in the night tank, which can provide a higher level of control

and could be used to quickly boost population density. In the event of contamination, the cultivation

volume will need to be drained to a holding tank where it will be treated and killed using bleach (standard

protocol) before being sent to waste.
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13 Conclusions and Recommendations

The novel Hybrid Petal Reactor for microalgae cultivation successfully converts over 50% of the carbon

dioxide present in a stream of flue gas from a coal fired power plant. The process operates at a carbon

dioxide input rate of 200 kilograms per day from a 10 vol% carbon dioxide flue gas stream. The project

met a set of highly ambitious carbon conversion goals, and contributes to a positive outlook for the future

of algae production for sustainable carbon emissions reduction and value-added product creation.

The innovative design incorporates a central gas exchange column with a horizontal tubular photo-

bioreactor system that harnesses sunlight during the day, and an internally-illuminated nighttime tank

that involves innovative use of optics. The outdoor system was designed to scale with a series of tubes

that branch out like “petals” from the central gas exchange column. The tube design is optimized for

high productivity and low costs. An emphasis was placed on designing a process highly considerate of

biological constraints. The final design offers great flexibility and opportunity for scale-up.

A 9-15% Return on Investment is reported. This is an exciting result, as pilot plants rarely project

profitability. Furthermore, this result stands out against a relatively unforgiving market landscape for

carbon conversion technologies. This result is encouraging for the path to viability for high-capacity

carbon conversion processes that utilise flue gases from fossil fuel power generation plants.

It is therefore recommended that a pilot-scale facility is built to test the design and collect empirical

data in order to further optimize the process. This design is easily transitioned to larger scales, and

economies of scale are expected. A move to larger scales would be encouraged. It is recommended

that at larger scales, an emphasis be placed on decreasing power and water consumption through water

recycling, heat integration, and the application of scale-able energy-saving post-processing methods. A

carbon neutral process at all scales should be the goal. Not only could this process contribute to building

and accelerating the development of the global carbon conversion market, but significant reductions in

emissions could be achieved.

The global algae biomass market is currently projected to be valued at over $1.1 Billion at a volume

of almost 30,000 tons per year by 2024. At the current scale, one pilot-plant of this design would produce

enough biomass to support nearly 0.1% of projected volume. If ten operations with ten times the carbon

conversion capacity were installed, this technology could support nearly 10% of the projected global

algae biomass market volume for 2024. This is a promising prospect. It is expected that investment

into technologies such as the Hybrid Petal Reactor presented in this report will catalyze a thriving algae

carbon conversion industry, where carbon-neutral, value-added algae processes play a key role in the

global effort towards a sustainable future.
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A Appendix

A .1 Matlab Code

A .1.1 Code for Optimization

GradDescent.m

%Script that runs the optimization procedure.

global ObjFuncTrack

ObjFuncTrack = [];

%Guesses: (Guess are for Daytime reactor)

L = 304;

A = 0.02315;

X = 1.689;

%Should include T_bubbler because the cooling will affect costs

x = [L A X];

diffs = [0.1, 0.00005, 0.01];

N = length(x);

xold = 999999*(1:N);

maxit = 1000;

iter = 0;

dx = inf*(1:N); %Just to get loop started

xTrack = [x,ObjFunc(x)];

alphaTrack = [];

while sum((abs(x-xold)./(x+xold))>0.000000001)>0 && iter<maxit %adjust these conditions

iter = iter + 1;

dx = -1*Grad(x,diffs);

alpha = lineSearch(x,dx,@(x)ObjFunc(x));

xold = x;

x = x + alpha*dx;

xTrack = [xTrack;x,ObjFunc(x)];

alphaTrack = [alphaTrack,alpha];

end

if iter==maxit

disp(’Loop did not converge before reaching maxit’)

return

end

lineSearch.m

function alpha = lineSearch(x,dx,func)

%Function that returns the number alpha that minimizes func(x-alpha*dx)

%func is a function handle for the objective function

alpha = 0.1/norm(dx);

alphaIncr = 2; %Factor by which alpha gets increased

vOld = func(x);

if vOld==inf

abc=123;

end

vNew = func(x + alpha*dx);

steps = 0;

if vNew < vOld
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Case = 1;

while vNew < vOld

steps = steps + 1;

alpha = alpha*alphaIncr;

vOld = vNew;

vNew = func(x + alpha*dx);

end

else

Case = 2;

while vNew > vOld

steps = steps + 1;

alpha = alpha/alphaIncr;

vNew = func(x + alpha*dx);

if alpha < 0.00000000000000001

alpha = 0;

return

end

end

end

phiInv = 0.61803398875;

if Case==1

aH = alpha;

if steps >= 2 %Just incase 0 should be lower bound

aL = alpha/alphaIncr^2;

else

aL = 0;

end

elseif Case==2

aL = 0;

aH = alpha*alphaIncr;

end

amH = aL + (aH - aL)*phiInv;

amL = aH - (aH - aL)*phiInv;

vH = func(x + aH*dx);

vL = func(x + aL*dx);

vmH = func(x + amH*dx);

vmL = func(x + amL*dx);

if Case==2 && min([vL,vmL,vmH,vH])>vOld

epsilon = 10e-7;

else

epsilon = 10e-5;

end

while abs((vmH-vmL)/(vmH+vmL))>epsilon || vmH==inf || vmL==inf

if vmH > vmL

aH = amH;

vH = vmH;

amH = amL;

vmH = vmL;

amL = aH - (aH - aL)*phiInv;

vmL = func(x + amL*dx);

elseif vmH <= vmL

aL = amL;

vL = vmL;

amL = amH;

vmL = vmH;
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amH = aL + (aH - aL)*phiInv;

vmH = func(x + amH*dx);

elseif vmH==inf && vmL==inf %Both are past the barrier stops

aH = amL;

amH = aL + (aH - aL)*phiInv;

amL = aH - (aH - aL)*phiInv;

vmH = func(x + amH*dx);

vmL = func(x + amL*dx);

end

end

alpha = (amL + amH)/2;

Grad.m

function dx = Grad(x,diffs)

%returns scaled-gradient of ObjFunc at point x

N = length(x);

dx = 1:N;

I = eye(N);

v0 = ObjFunc(x);

for i = 1:N

dx_i = diffs.*I(i,:); %selects ith component of diffs

v1 = ObjFunc(x+dx_i);

dx(i) = (v1 - v0)/diffs(i);

end

dx = dx.*(x.*x);

if sum(isfinite(dx)) < N

bads = ~isfinite(dx);

dx = 0*(1:N);

for i = 1:N

if bads(i)

dx(i) = 10;

end

end

end

A .1.2 Code for Photobioreactor Process Simulation and Optimization

mainModelFunc.m

function [Prod,TotalPdrop,Qout,Ecool,deltaT,seqFrac,LDR] = ...

mainModelFunc(Ltest,Atest,Xtest,Qgas)

%Function that runs Photobioreactor process simulation, as a function of L,

%A X, and F_2

global Yco2 Yo2 I A L Tbubbler Tair diameter Ks Ke H_O2 umax Nu ...

HeatCond dPdx density

%Define Constants

H_CO2 = 34; %(mol/m3*atm)

H_O2 = 1.3; %(mol/m3*atm)

H_NO = 34; %(mol/m3*atm)
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H_NO2 = 1.3; %(mol/m3*atm)

H_SO2 = 1.3; %(mol/m3*atm)

kla_CO2 = 0.26; %(m/s) * (m2/m3)

%kla_CO2 = 0.11; %(m/s) * (m2/m3)

kla_O2 = 0.26; %(m/s) * (m2/m3)

kla_NO = 0.26; %(m/s) * (m2/m3)

kla_NO2 = 0.26; %(m/s) * (m2/m3)

kla_SO2 = 0.26; %(m/s) * (m2/m3)

R = 0.000082057; %m3*atm/mol*K

Ks = 0.000167; %mol/m3,

Ke = 18.7;

umax = 0.27/3600; %1/s

density = 1000; %kg/m3

Yco2 = 41.63; %mol CO2 sequestered per kg algae grown

Yo2 = 41.63; %mol O2 released per kg algae grown

%Define system parameters

L = Ltest; %tube length (m)

A = Atest; %tube cross sectional area (m2)

Qout = .3*A; %m3/s

P = 1; %atm

y_in = 0.1; %mol fraction CO2 in input flue gas, dimensionless

gamma_in = 0.1; %mol fraction O2 in input flue gas, dimensionless

NO_in = .1;

NO2_in = .1;

SO2_in = .1;

I = 825; %Intensity W/m2

Tbubbler = 303; %K , Bubbler temp held fixed by HX

h = 3; %Bubbler height (m)

Radius = 0.001; %Bubble radius (m)

rhoDiff = 998; %density difference between bubble and liquid (kg/m3)

mu = 0.00089; %Dynamic Viscosity of liquid (kg/m*2)

%Qgas = .1; %Flow rate of flue gas through bubbler per reactor tube (m3/s)

Tair = 290; %Ambient air temperature in (K)

Vwind = 3.3; % Wind speed around tubes (m/s)

%Calculated parameters

K1_CO2 = H_CO2*kla_CO2*R*Tbubbler;

K1_O2 = R*Tbubbler*H_O2*kla_O2;

K1_NO = H_NO*kla_NO*R*Tbubbler;

K1_NO2 = H_NO2*kla_NO2*R*Tbubbler;

K1_SO2 = H_SO2*kla_SO2*R*Tbubbler;

texit = h*9*mu/(2*rhoDiff*Radius^2); % (s) residence time of bubbles in bubbler

diameter = 2*sqrt(A/3.14159);

velocity = Qout/A;

%Parameters for P drop and heat transfer calculations

Pr = 0.786-0.000397*Tair+0.000000448*Tair^2; %Pr of ambient air

KinVisc = -0.00000318+0.0000000335*Tair+9.82E-11*Tair^2; % Kinematic viscosity of ambient air

Re = Vwind*diameter/KinVisc;

Nu = 0.3+0.62*Re^0.5*Pr^0.333*(1+(Re/282000)^0.625)^0.8 ...

/(1+(0.4/Pr)^0.667)^0.25; %Incropera Eqn 7.54

HeatCond = 0.0000727*Tair+0.00454;

ReD = velocity*diameter/0.8e-6;

fdfind = @(fd) 1/sqrt(fd)+1.93*log10(1.9/(ReD*sqrt(fd)));
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if ~(-999999<fdfind(0.03) && fdfind(0.03)<999999) && imag(fdfind(0.03))~=0

abc = 1;

end

try

fd = fzero(fdfind,0.03);

catch

fd=0.03;

end

if isnan(fd)

fd = 0.03;

end

dPdx = fd*density*velocity^2/(2*diameter);

TotalPdrop = dPdx*L; %Pa, pressure drop through tubes

%Set desired Xout

Xout = Xtest; %kg/m3

%Guess values of calculated parameters (using Henry’s law)

CO2out = H_CO2*P*y_in; %Concentration of CO2 in Bubbler, mol/m3

O2out = H_O2*P*gamma_in; %Concentration of O2 in Bubbler, mol/m3

CO2out_old = inf;

O2out_old = inf;

iterations = 0;

expelledO2 = 0;

maxit = 200; %maximum number of iterations

while abs(CO2out_old-CO2out)>0.01 && abs(O2out_old-O2out)>0.01 && iterations<maxit

%’here’

CO2out_old = CO2out;

O2out_old = CO2out;

iterations = iterations + 1;

%Run horizTubeModel to get tube outputs (the ins) given guesses

[Xin,CO2in,O2in,Tin,uTrack,LDRTrack] = horizTubeModel(O2out,CO2out,Xout,Qout);

if O2in > H_O2*P

expelledO2 = expelledO2 + O2in-H_O2*P;

O2in =H_O2*P;

end

%Determine Harvest rate and rate of liquid into bubbler

Qharvest = (Xin*Qout-Xout*Qout)/Xin;

Qin = Qout - Qharvest; %Qin is flow into bubbler from tube. It’s not fresh feed!

%Use mass transfer equations to update guesses

CO2out = (y_in*(exp(-K1_CO2*texit)-1)-CO2in*Qin*R*Tbubbler/(P*Qgas))/ ...

(exp(-K1_CO2*texit)/(P*H_CO2)-1/(P*H_CO2)-R*Tbubbler*Qout/(P*Qgas));

O2out = (Qin*O2in*R*Tbubbler/(P*Qgas)+gamma_in-gamma_in*exp(-K1_O2*texit)) / ...

(Qout*R*Tbubbler/(P*Qgas)-exp(-K1_O2*texit)/(P*H_O2)+1/(P*H_O2));

end

if iterations==maxit

disp(strcat(’Error: balances did not converge in’,{’ ’},string(maxit), ...

’ iterations. Consider increasing maxit.’) )

Prod = 0;

TotalPdrop = 10000;

Ecool = 1;

deltaT = 25;

seqFrac = .4;
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LDR = .04;

return %Exit script

end

%Cooling required

Cp = 4185.5; %Heat capacity of liquid (assume it’s independent of X), J/kg*K

Ecool = Qin*Cp*(Tin-Tbubbler);

%Determine NOx and SOx for pH calcs

NO = NO_in*(exp(-K1_NO*texit)-1)/ ...

(exp(-K1_NO*texit)/(P*H_NO)-1/(P*H_NO)-R*Tbubbler*Qout/(P*Qgas));

NO2 = NO2_in*(exp(-K1_NO2*texit)-1)/ ...

(exp(-K1_NO2*texit)/(P*H_NO2)-1/(P*H_NO2)-R*Tbubbler*Qout/(P*Qgas));

SO2 = NO_in*(exp(-K1_SO2*texit)-1)/ ...

(exp(-K1_SO2*texit)/(P*H_SO2)-1/(P*H_SO2)-R*Tbubbler*Qout/(P*Qgas));

Qout*(NO+NO2+SO2);

%Back to horizTubeModel and repeat

biomassPerSecondPerTube = (Xin-Xout)*Qout;

CO2PerSecondPerTube = biomassPerSecondPerTube*Yco2; %mol/s per tube

CO2total = 170.415/3600; %required uptake per second

NumTubes = CO2total/CO2PerSecondPerTube;

FlueGasReq = CO2PerSecondPerTube/y_in;

Prod = Qharvest*Xin;

deltaT = abs(Tin-Tbubbler);

removed = (CO2out-CO2in)*Qout;

entering = Qgas*y_in/(R*Tbubbler);

seqFrac = removed/entering;

LDR = mean(LDRTrack(1:99));

horizTubeModel.m

function [Xin,CO2in,O2in,Tin,uTrack,LDRTrack] = horizTubeModel(O2out,CO2out,Xout,Q)

%Function that integrates petal tube mass and energy balances

%out (in) means out of (in to) bubbler, not tubes!!!

global Yco2 Yo2 I A L Tbubbler Tair diameter Nu HeatCond dPdx density

T = Tbubbler;

O2 = O2out;

CO2 = CO2out;

X = Xout;

Cp = 4185.5; %Heat capacity of liquid (assume it’s independent of X), J/kg*K

Halg = 15000000; %Enthalphy of burning algae (J/kg)

velocity = Q/A;

if CO2 < 0

CO2=0;

end

steps = 100;

tau = A*L/Q;
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dt = tau/steps;

dx = dt*velocity; %m, Distance traveled in time step

dVol = dx*A; %m3, volume of differential plug

stepnum = 0;

uTrack = 1:steps;

LDRTrack = 1:steps;

for step=linspace(0,tau,steps)

%Mass bal

[u,LDR] = mu1(I,CO2,O2,X);

dX = X*u*dt;

X = X + dX;

O2 = O2 + dX*Yo2;

CO2 = CO2 - dX*Yco2;

if CO2 < 0

CO2 = 0;

end

%E Bal

dQconv = Nu*HeatCond*3.14159*(Tair-T)*dx*diameter*dt; %J, Convective heat

%transfer to differential piece of reactor

dQlight = dx*diameter*I*dt; %Total light energy onto plug

dQgrowth = dX*dVol*Halg; %Amount of energy CONSUMED by algae to produce

%biomass. Note the sign in the delta T line.

dQfric = dPdx*dx*dVol;

T = T + (dQconv+dQlight-dQgrowth+dQfric)/(dVol*density*Cp);

stepnum = stepnum + 1;

uTrack(stepnum) = u;

LDRTrack(stepnum) = LDR;

end

Xin = X;

CO2in = CO2;

O2in = O2;

Tin = T;

mu1.m

function [u,LightDarkRatio] = mu1(I0,CO2,O2,X)

%This function gives the specific growth rate as a function of light

%intensity, CO2 concentration, O2 concentration, and algae concentration

global Ks Ke H_O2 umax diameter A

if CO2<0

disp(’Warning: mu.m was passed a negative value for O2 or CO2’)

end

Po2 = 100*O2/H_O2; %Percent O2

if Po2>100

Po2=100;

end

PInhib = -0.0011*Po2^2+.3988*Po2-5.2934; %Percent inhibition by O2

B = 187; %from umax and Beers law paper

KA = umax*I0*CO2*(100-PInhib)/100;

KB = B*X;

KC = Ke*(Ks+CO2);

KD = I0*(Ks+CO2);

u = 0;
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steps = 10;

dy = diameter/(2*steps);

for y = linspace(0,diameter/2,steps) %Numerical integral of mu_y over horizontal

%cross sections

pathLen = 2*sqrt(diameter^2/4-y^2); %length of path of light

mu_y = (KA*KB*pathLen-A*log(KC*exp(KB*pathLen)+KD))/(KB*KD); %Integral of

% mu from 0 to pathlength

u = u + mu_y*dy;

end

u = 2*u/A; %Average mu

%Light/Dark ratio calculation

LightDef = 0.01; %Fraction of umax required to be considered "in light"

a = -log(LightDef)/(2*B*X);

b = diameter/2;

alpha = sqrt(b^2 - a^2);

C = b^2*atan(alpha/a)-alpha*a;

LightDarkRatio = A/(2*C) - 1;

QgasSelect

function [Prod,TotalPdrop,Qout,Ecool,deltaT,seqFrac,LDR] = QgasSelect(x)

%Function that determines F_2 requirement to meet 50% CO2 sequestration

Qgas = fminbnd(@(Q)Er2(Q,x),0.000001,0.01);

[Prod,TotalPdrop,Qout,Ecool,deltaT,seqFrac,LDR] = mainModelFunc(x(1),x(2),x(3),Qgas);

end

function E = Er2(Q,x)

%Function that returns error which reflects deviation from sequestration

%goal.

Qdim = size(Q);

if Qdim(2)>1

abc = 123;

end

if Q<=0

E = inf;

return

end

[~,~,~,~,~,a,~] = mainModelFunc(x(1),x(2),x(3),Q);

E = (a-0.52)^2;

end

ObjFunc.m

function loss = ObjFunc(x)

% Function f_1 in described in Optimization section. Reflects -1*(profits

% per tube) + Constraint barriers

%loss is -1*profits per tube

global ObjFuncTrack

%Barriers on x (L,A,X, and Qgas):
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low_barrier_starts = [1,5e-5,0.01];

low_barrier_stops = [5e-6,5e-6,5e-6];

loss = 0;

N = length(x);

for i = 1:N

if x(i) <= low_barrier_stops(i)

loss = Inf;

return

elseif x(i)< low_barrier_starts(i)

E = (x(i) - low_barrier_stops(i))/(low_barrier_starts(i)-low_barrier_stops(i));

loss = loss + E - log(E) - 1;

end

end

%Run simulation

[Prod,TotalPdrop,Qout,Ecool,deltaT,seqFrac,LDR] = QgasSelect(x);

%Additional Barriers:

deltaTstart = 18;

deltaTstop = 20;

if deltaT >= deltaTstop

loss = inf;

return

elseif deltaT >= deltaTstart

E = (deltaTstop-deltaT)/(deltaTstop-deltaTstart);

loss = loss + E - log(E) - 1;

end

seqFracstart = .51;

seqFracstop = .5;

if seqFrac <= seqFracstop

loss = inf;

return

elseif seqFrac <= seqFracstart

E = (seqFrac-seqFracstop)/(seqFracstart-seqFracstop);

loss = loss + E - log(E) - 1;

end

LDRstart = .12;

LDRstop = .10;

if LDR <= LDRstop

loss = inf;

return

elseif LDR <= LDRstart

E = (seqFrac-LDRstop)/(LDRstart-LDRstop);

loss = loss + E - log(E) - 1;

end

%Calculating Costs and Revenue:

%Biomass selling cost = $1.2/kg

%Acrylic cost = $1/kg

radius = sqrt(x(2)/3.14159);

thickness = 0.005;

AcrylCost = x(1)*(3.14159*(radius+thickness)^2-x(2))*1*1180/(3600*24*365*10);

%The 10 at the end is lifetime in years
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LandCost = x(1)*4*radius*(3036.39/10000)*.04/(3600*24*365);

%Change 1234 to su’m that makes sense...

NutCost = 0.0001*x(1)*x(2)*Prod; %using Mikaela’s formula

CoolingCost = Ecool*(1/3.4+1)*.17/(1000*3600); %0.01 is cost of cooling 1 m3/s of flue gas

PumpingCost = TotalPdrop*Qout*(1/.7)*.17/(1000*3600);

Revenue = Prod*1.2;

loss = loss + AcrylCost + LandCost + NutCost + CoolingCost + PumpingCost - Revenue;

ObjFuncTrack = [ObjFuncTrack;[x loss]];

KlaCalcs.m

%Script that estimates of k_La (mass transfer coefficients) in bubbler

P = 1;

R = 0.08201;

T = 303;

MW = (.1*44 + .1*32 * .8*14)/1000;

do = 0.001;

holes = 1200;

Qgas = 0.0053;

QperHole = Qgas*11.9206/holes;

rhog = P*MW/(R*T); %bubble density

mug = 1.81e-5; % water viscosity, from wikipedia

db = .19*do^.48*(4*QperHole*rhog/(3.14159*do*mug))^.32;

size = sqrt(holes); %cm, side length of square to fit all the holes, with 1cm spacing

kl = 5.32e-4;

kla = kl*6/db;

flueGasTemp.m

%Script that estimates the temperature of flue gas entering the bubbler,

%after flowing through stream 2 from power plant.

%Required heat removal in bubbler

m = 1320/8/3600; %kg/s

dT = 3; %Needs to be low!!

Cp = 1; %kJ/kg*K

Qflue = m*Cp*dT; %kW

V = 1129/8/3600; %m3/s flue gas

Vwater = 9.43e-5; %m3/s

Cpwater = 4.1855;

Qwater = Vwater*1000*Cpwater*dT; %kW

diameter = .1;

L = 100;

tau = L*(diameter/2)^2*3.14159/V;

velocity = (L/tau);

Tair = 300;

Vwind = 1;

Pr = 0.786-0.000397*Tair+0.000000448*Tair^2; %Pr of ambient air

KinVisc = -0.00000318+0.0000000335*Tair+9.82E-11*Tair^2; % Kinematic

%viscosity of ambient air

Re = Vwind*diameter/KinVisc;

Nu = 0.3+0.62*Re^0.5*Pr^0.333*(1+(Re/282000)^0.625)^0.8 ...
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/(1+(0.4/Pr)^0.667)^0.25; %Incropera Eqn 7.54

HeatCond = 0.0000727*Tair+0.00454;

ReD = velocity*diameter/0.8e-6;

fdfind = @(fd) 1/sqrt(fd)+1.93*log10(1.9/(ReD*sqrt(fd)));

fd = fzero(fdfind,0.03);

L = 100;

tau = L*(diameter/2)^2*3.14159/V;

steps = 5000;

dt = tau/steps;

T = 200+273;

rho = m/V;

dx = L/steps;

dM = ((L/steps)*(diameter/2)^2*3.14159)*rho;

TTrack = [];

for i = linspace(0,tau,steps)

dQconv = Nu*HeatCond*3.14159*(Tair-T)*dx*diameter*dt;

T = T + dQconv/(dM*Cp);

TTrack = [TTrack,T];

end

plot(TTrack)

velocity = (L/tau);

dPdx = fd*rho*velocity^2/(2*diameter);

TotalPdrop = dPdx*L;

Tdiff = T - Tair;

A .1.3 Code for Nighttime Tank Lighting Optimization

muSet.m

function LPT = muSet(r0,d)

%Function that finds minimum number of lights per tube that meets intensity

%requirements

LPT = fminbnd(@(L)Er(r0,d,L),1,10000);

end

function Error = Er(r0,d,L)

%Function that returns a value indicating deviation from minimum intensity

%requirement

N = 24; %Choose even N

CO2 = 2.1034;

O2 = 0.1624;

P_LED = L*.95; % 1 W per mount, assume 95% efficiency

I0 = P_LED/(2*pi()*r0*2.45);

muTrack = [];

muCheck = 0;

ITrack = [];

xstep = 0;

totstep = 0;

I = 1;

position = r0;
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while I>.19

position = position + r0/50;

I = intensity(N/2+position/d,N/2,N,r0,d,I0);

end

LightArea = (position^2-r0^2)*3.14159/6;

TotalArea = (d/2)*(d/2)*cos(3.14159/6)*.5-r0^2*3.14159/6;

Error = (LightArea/TotalArea-0.12)^2;

end

function I = intensity(rx,ry,N,r0,d,I0)

%Function that returns intensity in the tank at a given position

B = 187; %Beers law constant

X = 1.663;

I = 0;

for Rx = 1:N

for Ry = 1:N

rel = d*sqrt((Rx - rx)^2+0.75*(Ry-ry)^2);

I = I + I0*exp(X*B*(r0-rel))*r0/rel;

end

end

end

function u = mu(I,CO2,O2)

%Function that returns specific growth rate, given intensity, CO2

%concentration, and O2 concentration.

umax = 0.27/3600;

Ke = 18.7;

Ks = 0.000167;

H_O2 = 1.3;

Po2 = 100*O2/H_O2; %Percent O2

PInhib = -0.0011*Po2^2+.3988*Po2-5.2934;

u = umax*I*CO2./((Ke+I)*(Ks+CO2))*(100-PInhib)/100;

end

ObjFunc.m

function loss = ObjFunc(x)

global ObjFuncTrack

LPT = muSet(x(1),x(2));

%Barriers on x (r0,d,LPT):

low_barrier_starts = [0.01,x(1)*2.2,1];

low_barrier_stops = [0.007,x(1)*2.1,0];

loss = 0;

N = length(x);

for i = 1:N

if x(i) <= low_barrier_stops(i)

loss = Inf;

return

elseif x(i)< low_barrier_starts(i)

E = (x(i) - low_barrier_stops(i))/(low_barrier_starts(i)-low_barrier_stops(i));
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loss = loss + E - log(E) - 1;

end

end

%Additional Barriers:

%Mounts are 3.45mm x 3.45mm

LED_fitstop = .85*pi()*(x(1)-0.002)^2 / 0.00345^2;

LED_fitstart = LED_fitstop*0.95;

if LPT >= LED_fitstop

loss = inf;

return

elseif LPT >= LED_fitstart

E = (LED_fitstop-LPT)/(LED_fitstop-LED_fitstart);

loss = loss + E - log(E) - 1;

end

%max radius

r0stop = .06;

r0start = 0.05;

if x(1) >= r0stop

loss = inf;

return

elseif x(1) >= r0start

E = (r0stop-x(1))/(r0stop-r0start);

loss = loss + E - log(E) - 1;

end

%From Mikaela:

h = 2.45-.85*4*x(1)^2*2.45/x(2)^2;

numTubes = .85*4*91/(x(2)^2*pi()*h);

% %Old Method (using pipes and film)

% thickness = 0.003;

% AcrylCost = numTubes*2.45*3.14159*(x(2)^2-(x(2)-thickness)^2)*1*1180/10;

% FilmCost = (numTubes*x(1)*2*pi()*2.45*138.44)/10;

% LightCost = numTubes*LPT*.16/5;

% ElectricityCost = numTubes*LPT*.00016*16*365;

% loss = loss + FilmCost + LightCost + AcrylCost + ElectricityCost;

innerV = pi()*(x(1)-0.002)^2*2.45;

outerV = pi()*x(1)^2*2.45;

PTFECost = numTubes*(outerV-innerV)*2200*0.6/20;

MACost = numTubes*innerV*950*.35/20;

LightCost = numTubes*LPT*.16/8;

ElectricityCost = numTubes*LPT*.00016*16*365;

TankCost = (numTubes*outerV+91)*30/10; %should be 78, but it’s not working for some reason...

ManufCost = numTubes*2.45*3/8;

%All costs are per year

loss = loss + PTFECost + MACost + LightCost + ElectricityCost+TankCost+ManufCost;

ObjFuncTrack = [ObjFuncTrack;[x loss]];
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A .2 Estimation of Bare Module Costs

Most of the fabricated equipment for this process will require some level of customization, as it is unique

to the design. This made finding accurate costs and Bare Module Factors (BMF) difficult. Most of

the equipment costs were estimated by searching B2B-provided listings. Furthermore, many of the pur-

chased machinery, such as pumps, would be purchased at a smaller scale than would normally be used

for a full scale chemical production plant. This means that many of the reported Bare Module Factors

from sources such as Seider et al overestimate the indirect costs associated with things like installation.

Finally, this pilot plant can be considered part of a start-up business scenario, where much of the custom

fabrication could be done cheaply on-site by start-up business owners. The following sections list the

BMF for each equipment item, accompanied by an explanation of how or where the Bare Module Factors

were estimated or sourced from. Smaller or very simple pieces of equipment like plastic holding tanks

were assigned smaller BMFs, while more complex equipment such as pressure vessels were assigned BMFs

more consistent with those assigned to similar equipment in larger scale facilities. Refer to Section 10 for

equipment specification sheets and Section 11 for the full table of costs. Note that the final profitability

analysis (Section 11) was performed using contingency factors ranging from 15 to 50 percent of the direct

permanent investment to further account for unexpected costs.

Plastic Gas Exchange Tank (E-2): 2.1 This is a small plastic tank with a maximum volume of

3000L. The listed B2B price is $100 including accessories such as a mesh exhaust cover and input/output

pipes. One provider lists an additional $100 fee to cover installation, which was therefore included in the

BMF.

Acrylic Tubing (A): 1.1 The listed price is $1/kg for custom made acrylic tubes of the size that is

desired for this design. Installation would involve piecing together individual lengths of tubing (lengths

do not exceed 13 meters, so handling can be performed easily by one person) and arranging them in

the layout described in Section 4. Cost of installation was determined by estimating the cost of paying

someone at a rate consistent with engineering hourly pay in Ceara, Brazil, for the time required to piece

together each length of tubing with a pipe elbow fitting. Time per connecting two lengths was conser-

vatively estimated at approximately twenty minutes, resulting in 4% of total costs. The cost for elbow

fittings is 1% of the total acrylic cost and was also included in the BMF. The final BMF was raised to

1.1 to include any other small indirect costs.

Multi-stage Blower (E-1): 2.15 This is the bare module cost given for gas compressors in Chapter

16 of Product and Process Design Principles (Seider et. al, 2016).

Water Chiller (E-3): 1.1 This is a small $380 water chiller that is listed as involving “easy installa-

tion”. It can be installed as-is into the plastic water tank by a single person in little time. A BMF of
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1.1 includes any added costs associated with piping and tubing.

Centrifugal Pump (E-4): 1.1 This a small pump, costing less than $3000. It is listed as a simple

structure involving convenient operation. The pump is small and can be set up by one or two people

in little time, resulting in low installation fees. This cost and other direct and indirect costs should not

exceed $300.

Night Tank (E-11): 3 The listed B2B price for the large 100m3 night tank was $5000. The provider

manufactures individual siding plates that are then custom-configured to reflect the customers desired

tank height. For the volume required for this design, the total listed cost would be approximately

$50/m3. Other providers listed similar costs for similar scales and manufacturing methods. Installation

costs at a rate of pay consistent with engineering pay in Ceara, Brazil were lumped into a BMF of 3,

which includes other indirect and direct costs as well. This is a conservative estimate, compared to the

methods outlined in Chemical process equipment: Selection and design(2nd ed.), Couper, J. R. (2005).

Amsterdam: Elsevier. (http://kkft.bme.hu/htms/kornykozp/Cost.of.Equipments.pdf)

LEDs (B): 1.05 The cost per LED is $0.16. Installation involves soldering the LED mount onto a light

guide base. This should be able to be easily accomplished in under 5 hours given the small size and

simple procedure.

PTFE Granules (D), PMMA Granules (C): 2 PTFE granules will be melted down and formed into

tubes in a mold, after which the roughening procedure (described in Section 7) will take place. PMMA

granules will be then melted down and poured into the PTFE hollow tubes, forming the core of the light

guide. The BMF accounts for low-cost materials required to perform this manufacturing, as well as costs

associated with pay consistent with engineer pay in Ceara, Brazil, for performing the manufacturing and

installation.

Chemical Storage Containers: 1.05 These are small storage containers requiring almost no added

costs, and no installation.

Peristaltic Pumps: 1.05 These are very small pumps requiring only a small amount of added (and

very cheap) tubing, and short set-up time by one person.

Rotary Steam Dryer (E-10): 1.3 The BMF was found in Figure A.7 of Analysis, synthesis, and

design of chemical processes (Turton, 2003) as a conservative estimate for a rotary dryer.

Gas Blower (E-7): 2.15 This is the bare module cost given for gas compressors in Chapter 16 of

Product and Process Design Principles (Seider et. al, 2016).

Pressure Vessel (E-8): 4.16 This is the bare module cost given for gas compressors in Chapter 16 of

Product and Process Design Principles (Seider et. al, 2016).

Flotation Tank (E-6): 1.2 This is a small tank consisting of 14 panels of 1mx0.5m that are easily

configured into a tank of volume 1.5m3. Installation is included at a rate of pay consistent with engineer
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pay in Ceara, Brazil.

Holding Tank (E-5): 1.05 This is a small plastic tank solely for the purpose of holding harvested

algae. It will require very little installation or other indirect costs.

A .3 Aspen Plus Rotary Steam Tube Dryer Simulation
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PLATFORM: WINDOWS APRIL 10, 2018

VERSION: 36.0 Build 249 TUESDAY
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ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE I

ASPEN PLUS (R) IS A PROPRIETARY PRODUCT OF ASPEN TECHNOLOGY, INC.

(ASPENTECH), AND MAY BE USED ONLY UNDER AGREEMENT WITH ASPENTECH.

RESTRICTED RIGHTS LEGEND: USE, REPRODUCTION, OR DISCLOSURE BY THE

U.S. GOVERNMENT IS SUBJECT TO RESTRICTIONS SET FORTH IN

(i) FAR 52.227-14, Alt. III, (ii) FAR 52.227-19, (iii) DFARS
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ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 1

RUN CONTROL SECTION

RUN CONTROL INFORMATION

-----------------------

THIS COPY OF ASPEN PLUS LICENSED TO UNIVERSITY OF PENNSYLVAN

TYPE OF RUN: EDIT

INPUT FILE NAME: _1810itd.inm

INPUT PROBLEM DATA FILE NAME : _1810itd

OUTPUT PROBLEM DATA FILE NAME: _0253xrf

LOCATED IN:

PDF SIZE USED FOR INPUT TRANSLATION:

NUMBER OF FILE RECORDS (PSIZE) = 0

NUMBER OF IN-CORE RECORDS = 256

PSIZE NEEDED FOR SIMULATION = 1

CALLING PROGRAM NAME: apmain

LOCATED IN: C:\Program Files (x86)\AspenTech\Aspen Plus V10.0\Engine\\xeq

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 2

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

---------------------------------

STREAM SOURCE DEST STREAM SOURCE DEST

1 ---- HX 2 ---- HX

4 HX ---- 3 HX ----

FLOWSHEET CONNECTIVITY BY BLOCKS

--------------------------------

BLOCK INLETS OUTLETS

HX 2 1 4 3
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CONVERGENCE STATUS SUMMARY

--------------------------

DESIGN-SPEC SUMMARY

===================

DESIGN CONV

SPEC ERROR TOLERANCE ERR/TOL VARIABLE STAT BLOCK

------ ----- --------- ------- -------- ---- -----

DS-1 -0.39065E-03 0.10000E-02 -0.39065 44.483 # $OLVER10

# = CONVERGED

* = NOT CONVERGED

LB = AT LOWER BOUNDS

UB = AT UPPER BOUNDS

DESIGN-SPEC: DS-1

------------------

SAMPLED VARIABLES:

VFRAC : VAPOR FRACTION IN STREAM 4 SUBSTREAM MIXED

SPECIFICATION:

MAKE VFRAC APPROACH 0.100000

WITHIN 0.00100000

MANIPULATED VARIABLES:

VARY : TOTAL MASSFLOW IN STREAM 2 SUBSTREAM MIXED

LOWER LIMIT = 15.0000 KG/HR

UPPER LIMIT = 50.0000 KG/HR

FINAL VALUE = 44.4831 KG/HR

VALUES OF ACCESSED FORTRAN VARIABLES:

VARIABLE VALUE AT START FINAL VALUE UNITS

OF LOOP

-------- -------------- ----------- -----

VFRAC 0.203542 0.996094E-01

CONVERGENCE BLOCK: $OLVER10

----------------------------

SPECS: DS-1

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 3

FLOWSHEET SECTION

CONVERGENCE BLOCK: $OLVER10 (CONTINUED)

MAXIT= 30 STEP-SIZE= 1.0000 % OF RANGE

MAX-STEP= 10.0 % OF RANGE

XTOL= 1.000000E-08

THE NEW ALGORITHM WAS USED WITH BRACKETING=NO

METHOD: SECANT STATUS: CONVERGED

TOTAL NUMBER OF ITERATIONS: 4

NUMBER OF ITERATIONS ON LAST OUTER LOOP: 0

*** FINAL VALUES ***
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VAR# MANIPUL/TEAR-VAR VARIABLE DESCRIPTION

---- ---------------- -------------------------

1 TOTAL MASSFLOW 2.MIXED.TOTAL.MASSFLOW

UNIT VALUE PREV VALUE ERR/TOL

----------- ------------ ------------ ------------

KG/HR 44.4831 46.1500 -0.3906

*** ITERATION HISTORY ***

DESIGN-SPEC ID: DS-1

ITERATED: TOTAL MASSFLOW IN STREAM 2 SUBSTREAM MIXED

ITERATION VARIABLE ERROR ERR/TOL

--------- -------- ----- -------

1 50.00 UB 0.1035 103.5

2 49.65 0.9763E-01 97.63

3 46.15 0.3363E-01 33.63

4 44.48 -0.3906E-03 -0.3906

COMPUTATIONAL SEQUENCE

----------------------

SEQUENCE USED WAS:

$OLVER10 HX

(RETURN $OLVER10)

OVERALL FLOWSHEET BALANCE

-------------------------

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF.

CONVENTIONAL COMPONENTS (KMOL/HR )

H2O 4.49580 4.49580 0.00000

SUBTOTAL(KMOL/HR ) 4.49580 4.49580 0.00000

(KG/HR ) 80.9931 80.9931 0.00000

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 4

FLOWSHEET SECTION

OVERALL FLOWSHEET BALANCE (CONTINUED)

NON-CONVENTIONAL COMPONENTS (KG/HR )

COAL 2.49500 2.49500 0.00000

SUBTOTAL(KG/HR ) 2.49500 2.49500 0.00000

TOTAL BALANCE

MASS(KG/HR ) 83.4881 83.4881 0.00000

ENTHALPY(CAL/SEC ) -77759.1 -77759.1 0.120635E-08

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E 0.00000 KG/HR

PRODUCT STREAMS CO2E 0.00000 KG/HR

NET STREAMS CO2E PRODUCTION 0.00000 KG/HR

UTILITIES CO2E PRODUCTION 0.00000 KG/HR
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TOTAL CO2E PRODUCTION 0.00000 KG/HR

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 5

PHYSICAL PROPERTIES SECTION

COMPONENTS

----------

ID TYPE ALIAS NAME

COAL NC MISSING

H2O C H2O WATER

ID ATTRIBUTE TYPES

COAL PROXANAL ULTANAL SULFANAL

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 6

U-O-S BLOCK SECTION

BLOCK: HX MODEL: HEATX

-----------------------------

HOT SIDE:

---------

INLET STREAM: 2

OUTLET STREAM: 4

PROPERTY OPTION SET: IDEAL IDEAL LIQUID / IDEAL GAS

COLD SIDE:

----------

INLET STREAM: 1

OUTLET STREAM: 3

PROPERTY OPTION SET: IDEAL IDEAL LIQUID / IDEAL GAS

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF.

CONV. COMP.(KMOL/HR ) 4.49580 4.49580 0.00000

(KG/HR ) 80.9931 80.9931 0.00000

NONCONV. COMP(KG/HR ) 2.49500 2.49500 0.00000

TOTAL BALANCE

MASS(KG/HR ) 83.4881 83.4881 0.00000

ENTHALPY(CAL/SEC ) -77759.1 -77759.1 0.120635E-08

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E 0.00000 KG/HR

PRODUCT STREAMS CO2E 0.00000 KG/HR

NET STREAMS CO2E PRODUCTION 0.00000 KG/HR

UTILITIES CO2E PRODUCTION 0.00000 KG/HR

TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE:

TWO PHASE FLASH

MAXIMUM NO. ITERATIONS 30

CONVERGENCE TOLERANCE 0.000100000

FLASH SPECS FOR COLD SIDE:

TWO PHASE FLASH

MAXIMUM NO. ITERATIONS 30
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CONVERGENCE TOLERANCE 0.000100000

FLOW DIRECTION AND SPECIFICATION:

COUNTERCURRENT HEAT EXCHANGER

SPECIFIED COLD VAPOR FRACTION

SPECIFIED VALUE 0.9925

LMTD CORRECTION FACTOR 1.00000

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 7

U-O-S BLOCK SECTION

BLOCK: HX MODEL: HEATX (CONTINUED)

PRESSURE SPECIFICATION:

HOT SIDE PRESSURE DROP BAR 0.0000

COLD SIDE PRESSURE DROP BAR 0.0000

HEAT TRANSFER COEFFICIENT SPECIFICATION:

HOT LIQUID COLD LIQUID CAL/SEC-SQCM-K 0.0203

HOT 2-PHASE COLD LIQUID CAL/SEC-SQCM-K 0.0203

HOT VAPOR COLD LIQUID CAL/SEC-SQCM-K 0.0203

HOT LIQUID COLD 2-PHASE CAL/SEC-SQCM-K 0.0203

HOT 2-PHASE COLD 2-PHASE CAL/SEC-SQCM-K 0.0203

HOT VAPOR COLD 2-PHASE CAL/SEC-SQCM-K 0.0203

HOT LIQUID COLD VAPOR CAL/SEC-SQCM-K 0.0203

HOT 2-PHASE COLD VAPOR CAL/SEC-SQCM-K 0.0203

HOT VAPOR COLD VAPOR CAL/SEC-SQCM-K 0.0203

*** OVERALL RESULTS ***

STREAMS:

--------------------------------------

| |

2 ----->| HOT |-----> 4

T= 1.6000D+02 | | T= 1.1140D+02

P= 1.5000D+00 | | P= 1.5000D+00

V= 1.0000D+00 | | V= 9.9609D-02

| |

3 <-----| COLD |<----- 1

T= 1.0002D+02 | | T= 2.7000D+01

P= 1.0132D+00 | | P= 1.0132D+00

V= 9.9250D-01 | | V= 0.0000D+00

--------------------------------------

DUTY AND AREA:

CALCULATED HEAT DUTY CAL/SEC 6193.4815

CALCULATED (REQUIRED) AREA SQM 2.3802

ACTUAL EXCHANGER AREA SQM 2.3802

PER CENT OVER-DESIGN 0.0000

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT (DIRTY) CAL/SEC-SQCM-K 0.0203

UA (DIRTY) CAL/SEC-K 483.2238

LOG-MEAN TEMPERATURE DIFFERENCE:

LMTD CORRECTION FACTOR 1.0000

LMTD (CORRECTED) C 12.8170
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NUMBER OF SHELLS IN SERIES 1

PRESSURE DROP:

HOTSIDE, TOTAL BAR 0.0000

COLDSIDE, TOTAL BAR 0.0000

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 8

U-O-S BLOCK SECTION

BLOCK: HX MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

HOT

-------------------------------------------------------------

| | | |

HOT IN | VAP | COND | COND | HOT OUT

------> | | | |------>

160.0 | 111.4| 111.4| | 111.4

| | | |

COLDOUT | BOIL | BOIL | LIQ | COLDIN

<------ | | | |<------

100.0 | 100.0| 100.0| | 27.0

| | | |

-------------------------------------------------------------

COLD

ZONE HEAT TRANSFER AND AREA:

ZONE HEAT DUTY AREA LMTD AVERAGE U UA

CAL/SEC SQM C CAL/SEC-SQCM-K CAL/SEC-K

1 273.286 0.0460 29.2453 0.0203 9.3446

2 5157.151 2.2310 11.3858 0.0203 452.9451

3 763.045 0.1031 36.4498 0.0203 20.9341

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 9

U-O-S BLOCK SECTION

HEATX COLD-TQCU HX TQCURV INLET

-------------------------------------

PRESSURE PROFILE: CONSTANT2

PRESSURE DROP: 0.0 BAR

PROPERTY OPTION SET: IDEAL IDEAL LIQUID / IDEAL GAS

-----------------------------------------------------

! DUTY ! PRES ! TEMP ! VFRAC !

! ! ! ! !

! ! ! ! !

! ! ! ! !

! CAL/SEC ! BAR ! C ! !

! ! ! ! !

!============!============!============!============!

! 0.0 ! 1.0133 ! 100.0178 ! 0.9925 !

! 294.9277 ! 1.0133 ! 100.0178 ! 0.9386 !

! 589.8554 ! 1.0133 ! 100.0178 ! 0.9386 !
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! 884.7831 ! 1.0133 ! 100.0178 ! 0.8847 !

! 1179.7108 ! 1.0133 ! 100.0178 ! 0.8308 !

!------------+------------+------------+------------!

! 1474.6385 ! 1.0133 ! 100.0178 ! 0.7769 !

! 1769.5661 ! 1.0133 ! 100.0178 ! 0.7230 !

! 2064.4938 ! 1.0133 ! 100.0178 ! 0.6691 !

! 2359.4215 ! 1.0133 ! 100.0178 ! 0.6152 !

! 2654.3492 ! 1.0133 ! 100.0178 ! 0.5613 !

!------------+------------+------------+------------!

! 2949.2769 ! 1.0133 ! 100.0178 ! 0.5074 !

! 3244.2046 ! 1.0133 ! 100.0178 ! 0.4535 !

! 3539.1323 ! 1.0133 ! 100.0178 ! 0.3996 !

! 3834.0600 ! 1.0133 ! 100.0178 ! 0.3457 !

! 4128.9877 ! 1.0133 ! 100.0178 ! 0.2918 !

!------------+------------+------------+------------!

! 4423.9154 ! 1.0133 ! 100.0178 ! 0.2379 !

! 4718.8430 ! 1.0133 ! 100.0178 ! 0.1840 !

! 5013.7707 ! 1.0133 ! 100.0178 ! 0.1301 !

! 5308.6984 ! 1.0133 ! 100.0178 ! 7.6152-02 !

! 5430.4367 ! 1.0133 ! 100.0178 ! 2.2250-02 !

!------------+------------+------------+------------!

! 5603.6261 ! 1.0133 ! 100.0178 ! BUB>0.0 !

! 5898.5538 ! 1.0133 ! 84.1071 ! 0.0 !

! 6193.4815 ! 1.0133 ! 56.0661 ! 0.0 !

-----------------------------------------------------

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 10

U-O-S BLOCK SECTION

HEATX HOT-TQCUR HX TQCURV INLET

-------------------------------------

PRESSURE PROFILE: CONSTANT2

PRESSURE DROP: 0.0 BAR

PROPERTY OPTION SET: IDEAL IDEAL LIQUID / IDEAL GAS

-----------------------------------------------------

! DUTY ! PRES ! TEMP ! VFRAC !

! ! ! ! !

! ! ! ! !

! ! ! ! !

! CAL/SEC ! BAR ! C ! !

! ! ! ! !

!============!============!============!============!

! 0.0 ! 1.5000 ! 160.0000 ! 1.0000 !

! 294.9277 ! 1.5000 ! 111.4037 ! 0.9967 !

! 589.8554 ! 1.5000 ! 111.4037 ! 0.9519 !

! 884.7831 ! 1.5000 ! 111.4037 ! 0.9070 !

! 1179.7108 ! 1.5000 ! 111.4037 ! 0.8621 !

!------------+------------+------------+------------!

! 1474.6385 ! 1.5000 ! 111.4037 ! 0.8173 !

! 1769.5661 ! 1.5000 ! 111.4037 ! 0.7724 !

! 2064.4938 ! 1.5000 ! 111.4037 ! 0.7276 !

! 2359.4215 ! 1.5000 ! 111.4037 ! 0.6827 !

! 2654.3492 ! 1.5000 ! 111.4037 ! 0.6379 !

!------------+------------+------------+------------!

! 2949.2769 ! 1.5000 ! 111.4037 ! 0.5930 !

! 3244.2046 ! 1.5000 ! 111.4037 ! 0.5482 !
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! 3539.1323 ! 1.5000 ! 111.4037 ! 0.5033 !

! 3834.0600 ! 1.5000 ! 111.4037 ! 0.4584 !

! 4128.9877 ! 1.5000 ! 111.4037 ! 0.4136 !

!------------+------------+------------+------------!

! 4423.9154 ! 1.5000 ! 111.4037 ! 0.3687 !

! 4718.8430 ! 1.5000 ! 111.4037 ! 0.3239 !

! 5013.7707 ! 1.5000 ! 111.4037 ! 0.2790 !

! 5308.6984 ! 1.5000 ! 111.4037 ! 0.2342 !

! 5430.4367 ! 1.5000 ! 111.4037 ! 0.2157 !

!------------+------------+------------+------------!

! 5603.6261 ! 1.5000 ! 111.4037 ! 0.1893 !

! 5898.5538 ! 1.5000 ! 111.4037 ! 0.1445 !

! 6193.4815 ! 1.5000 ! 111.4037 ! 9.9609-02 !

-----------------------------------------------------
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STREAM SECTION

SUBSTREAM ATTR PSD TYPE: PSD

----------------------------

INTERVAL LOWER LIMIT UPPER LIMIT

1 0.0 METER 2.0000-05 METER

2 2.0000-05 METER 4.0000-05 METER

3 4.0000-05 METER 6.0000-05 METER

4 6.0000-05 METER 8.0000-05 METER

5 8.0000-05 METER 1.0000-04 METER

6 1.0000-04 METER 1.2000-04 METER

7 1.2000-04 METER 1.4000-04 METER

8 1.4000-04 METER 1.6000-04 METER

9 1.6000-04 METER 1.8000-04 METER

10 1.8000-04 METER 2.0000-04 METER
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STREAM SECTION

1 2 3 4

-------

STREAM ID 1 2 3 4

FROM : ---- ---- HX HX

TO : HX HX ---- ----

CLASS: MCINCPSD MCINCPSD MCINCPSD MCINCPSD

TOTAL STREAM:

KG/HR 39.0050 44.4831 39.0050 44.4831

CAL/SEC -3.8896+04 -3.8863+04 -3.2703+04 -4.5056+04

SUBSTREAM: MIXED

PHASE: LIQUID VAPOR MIXED MIXED

COMPONENTS: KMOL/HR

H2O 2.0266 2.4692 2.0266 2.4692

TOTAL FLOW:

KMOL/HR 2.0266 2.4692 2.0266 2.4692

KG/HR 36.5100 44.4831 36.5100 44.4831

L/MIN 0.6134 988.0468 1026.5191 88.1135

STATE VARIABLES:

TEMP C 27.0000 160.0000 100.0178 111.4037
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PRES BAR 1.0133 1.5000 1.0133 1.5000

VFRAC 0.0 1.0000 0.9925 9.9609-02

LFRAC 1.0000 0.0 7.5000-03 0.9004

SFRAC 0.0 0.0 0.0 0.0

ENTHALPY:

CAL/MOL -6.8227+04 -5.6661+04 -5.7225+04 -6.5691+04

CAL/GM -3787.1580 -3145.1548 -3176.4614 -3646.3903

CAL/SEC -3.8408+04 -3.8863+04 -3.2215+04 -4.5056+04

ENTROPY:

CAL/MOL-K -38.8471 -8.3598 -8.9962 -31.7807

CAL/GM-K -2.1563 -0.4640 -0.4994 -1.7641

DENSITY:

MOL/CC 5.5066-02 4.1651-05 3.2904-05 4.6705-04

GM/CC 0.9920 7.5035-04 5.9278-04 8.4140-03

AVG MW 18.0153 18.0153 18.0153 18.0153

SUBSTREAM: NCPSD STRUCTURE: NON CONVENTIONAL

COMPONENTS: KG/HR

COAL 2.4950 0.0 2.4950 0.0

TOTAL FLOW:

KG/HR 2.4950 0.0 2.4950 0.0

STATE VARIABLES:

TEMP C 35.0000 MISSING 100.0178 MISSING

PRES BAR 1.0133 1.5000 1.0133 1.5000

VFRAC 0.0 MISSING 0.0 MISSING

LFRAC 0.0 MISSING 0.0 MISSING

SFRAC 1.0000 MISSING 1.0000 MISSING

ENTHALPY:

CAL/GM -704.2956 MISSING -704.2956 MISSING

CAL/SEC -488.1160 MISSING -488.1160 MISSING

DENSITY:

GM/CC 1.1020 MISSING 1.1020 MISSING

AVG MW 1.0000 1.0000 1.0000 1.0000

COMPONENT ATTRIBUTES:

COAL PROXANAL
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STREAM SECTION

1 2 3 4 (CONTINUED)

STREAM ID 1 2 3 4

MOISTURE 0.0 MISSING 0.0 MISSING

FC 0.0 MISSING 0.0 MISSING

VM 0.0 MISSING 0.0 MISSING

ASH 0.0 MISSING 0.0 MISSING

ULTANAL

ASH 0.0 MISSING 0.0 MISSING

CARBON 62.6000 MISSING 62.6000 MISSING

HYDROGEN 8.5900 MISSING 8.5900 MISSING

NITROGEN 7.0200 MISSING 7.0200 MISSING

CHLORINE 0.0 MISSING 0.0 MISSING

SULFUR 0.0 MISSING 0.0 MISSING

OXYGEN 20.2500 MISSING 20.2500 MISSING

SULFANAL

PYRITIC 0.0 MISSING 0.0 MISSING
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SULFATE 0.0 MISSING 0.0 MISSING

ORGANIC 0.0 MISSING 0.0 MISSING

SUBSTREAM ATTRIBUTES:

PSD

FRAC1 1.0000 MISSING 1.0000 MISSING

FRAC2 0.0 MISSING 0.0 MISSING

FRAC3 0.0 MISSING 0.0 MISSING

FRAC4 0.0 MISSING 0.0 MISSING

FRAC5 0.0 MISSING 0.0 MISSING

FRAC6 0.0 MISSING 0.0 MISSING

FRAC7 0.0 MISSING 0.0 MISSING

FRAC8 0.0 MISSING 0.0 MISSING

FRAC9 0.0 MISSING 0.0 MISSING

FRAC10 0.0 MISSING 0.0 MISSING

ASPEN PLUS PLAT: WINDOWS VER: 36.0 04/10/2018 PAGE 14

PROBLEM STATUS SECTION

BLOCK STATUS

------------

****************************************************************************

* *

* Calculations were completed normally *

* *

* All Unit Operation blocks were completed normally *

* *

* All streams were flashed normally *

* *

* All Convergence blocks were completed normally *

* *

****************************************************************************
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A .4 Nutrient Formula

As recommended by the Canadian Phycological Culture Center, the BBM formula from the Handbook of

Phycological Methods (Stein, 2013) was chosen, as it has been shown to support high levels of Chlorella

growth. The formula was then modified to support the biomass productivity goals of the design in the

most economic manner possible. The following table tabulates the formula components and preparation

amounts. Stock solutions should be made manually every two days, and then stock solution is injected

continuously into the freshwater stream that is delivered to the reactor.

Table A .1: Nutrient formula and preparation amounts for stock solution and broth.

A .5 List of Acronyms and Short-forms

• AC - Annualized cost

• BBM - Bold’s Basal Medium

• BFD - Block flow diagram

• BMF - Bare Module Factor

• B2B - Business to business
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• CO2 - Carbon dioxide

• DAF - Dissolved air flotation

• DPI (CDPI) - Direct permanent investment

• EMC - Equilibrium moisture content

• GEC - Gas exchange column

• LED - Light emitting diode

• NOx - Nitrogen oxide based gases

• OJT - Objective time chart

• O2 - Oxygen

• PBP - Payback period

• PBR - Photobioreactor

• PFD - Process flow diagram

• ROI - Return on investment

• SOx - Sulfur oxide based gases

• TBM (CTBM) - Total bare module cost

• TCI (CTCI) - Total capital investment

• TDC (CTDC) - Total depreciable costs

• TPI (CTPI) - Total permanent investment

• TRL - Technology readiness level

• VP - Venture profit

• v/v - Volume-by-volume fraction

• w.b. - Wet basis
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