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ABSTRACT

DATA-DRIVEN HAPTIC MODELING AND RENDERING OF
REALISTIC VIRTUAL TEXTURED SURFACES

Heather M. Culbertson

Katherine J. Kuchenbecker

The haptic sensations one feels when interacting with physical objects create a

rich and varied impression of the objects, allowing one to gather information about

texture, shape, compressibility, and other physical characteristics. The human sense

of touch excels at sensing and interpreting these haptic cues, even when the object

is felt through an intermediary tool instead of directly with a bare finger. Dragging,

pressing, and tapping a tool on the object allow you to sense the object’s roughness,

slipperiness, and hardness as a combination of vibrations and forces. Unfortunately,

the richness of these interaction cues is missing from many virtual environments,

leading to a less satisfying and less immersive experience than one encounters in the

physical world. However, we can create the perceptual illusion of touching a real

object by displaying the appropriate haptic signals during virtual interactions.

This thesis presents methods for creating haptic models of textured surfaces from

acceleration, force, and speed data recorded during physical interactions. The models

are then used to synthesize haptic signals that are displayed to the user during ren-

dering through vibrotactile and/or kinesthetic feedback. The haptic signals, which

are a function of the interaction conditions and motions used during rendering, must

respond realistically to the user’s motions in the virtual environment. We conducted

iv



human subject studies to test how well our virtual surfaces capture the psychophysical

dimensions humans perceive when exploring textured surfaces with a tool.

Three haptic rendering systems were created for displaying virtual surfaces us-

ing these surface models. An initial system displayed virtual versions of textured

surfaces on a tablet computer using models of the texture vibrations induced when

dragging a tool across the real surfaces. An evaluation of the system showed that

displaying the texture vibrations accurately captured the surface’s roughness, but

additional modeling and rendering considerations were needed to capture the full

feel of the surface. Using these results, a second system was created for rendering

a more complete three-dimensional version of the haptic surfaces including surface

friction and event-based tapping transients in addition to the texture vibrations. An

evaluation of this system showed that we have created the most realistic haptic sur-

faces to date. The force-feedback haptic device used in this system, however, was

not without its limitations, including low surface stiffness and undesired inertia and

friction. We developed an ungrounded haptic augmented reality system to overcome

these limitations. This system allowed us to change the perceived texture and friction

of a physical three-dimensional object using the previously-developed haptic surface

models.
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Chapter 1

Introduction

The sense of touch is so fundamental to everyday human experiences that it is often

overlooked. However, completing even simple tasks is challenging when your sense

of touch is impaired. Recall trying to pick something up after your hand has fallen

asleep. This everyday task becomes very difficult when you cannot feel the shape

of the object or determine if you are applying enough force to keep the object from

slipping. Now try picking up the same object without looking. Even without sight

you can use your sense of touch to help you adjust your hand until you have a stable

grip on the object. Feedback provided through the sense of touch makes such a simple

task trivial for humans to successfully complete. However, modern virtual reality and

human-computer interactions are often like the example where your hand falls asleep:

tactile cues are completely removed, forcing you to complete tasks using only visual

feedback.
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We are increasingly interacting with the world through technology such as a

computer, smartphone, or tablet. Traditionally the most common physical human-

computer interactions have been with a keyboard or mouse, not with anything on

the screen. Both finger- and stylus-based touchscreens have recently become more

mainstream and allow us to directly manipulate objects on the screen, but they do

not allow us to feel the objects with which we are interacting. Textured images on

the screen feel as smooth as glass and leave the user with an unsatisfying experience.

Adding the sense of touch back to these virtual interactions is necessary to create

more immersive and usable devices.

The sensations one feels when interacting with the physical world are so rich

and varied that fully capturing the depth of haptic information is a complex and

multi-faceted problem. For example, if you pick up a tool such as a pen and gently

drag its tip across the table, a rock, or the fabric of your shirt, you are able to

feel variations in the textures and friction even though you are not directly touching

the surface with your finger. Pressing the tool into the different surfaces provides

information about surface stiffness. The human sense of touch excels at sensing and

interpreting these haptic signals to gather information about the physical contacts

taking place. Traditional haptic interfaces for virtual reality provide some of the

information encoded in these signals, but they are unable to fully capture the full

richness of natural interactions.
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1.1 Human Tactile Sensing

Humans interact with the physical world through the use of our five senses: hearing,

vision, smell, taste, and touch. Each of these senses provides us with a different type

of sensory input, which we use to analyze and connect with the world around us. The

first four senses listed provide information through localized sensory organs, our ears,

eyes, nose, and tongue, respectively. The sense of touch, however, is not localized

to a specific region of the body; instead it is distributed throughout the entire body

through the touch sensory organ, our skin. The glabrous (nonhairy) skin of our hands

is more sensitive to external touch stimuli than the nonglabrous (hairy) skin of our

arms and legs [55]. Specialized cells embedded in our skin allow us to experience

a wide array of haptic sensations including temperature, pain, vibration, pressure,

and shear forces. Each of these cells is specialized to provide information about

a specific component of our sense of touch. The thermoreceptors sense changes in

skin temperature and provide information about the temperature of the surrounding

environment and the thermal properties of objects that are being touched [43]. The

nociceptors sense pain, which helps to protect us by reacting to potentially damaging

stimuli [75]. The mechanoreceptors sense pressure, shear forces, slip, and vibration.

There are several different types of mechanoreceptors, which each sense a component

of the haptic sensations that are the focus of this thesis.

The mechanoreceptors are divided into two main groups, fast adapting and slowly

adapting, which describe the temporal resolution of the mechanoreceptors [61]. Fast
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Table 1.1: Mechanoreceptors in the human hand [9,52,53]

Mechanoreceptor Response Rate Response Type

Meissner Corpuscles
(FA-I)

5− 50 Hz rate of skin deformation, slip

Merkel Disks (SA-I) < 5 Hz edges and spatial features

Pacinian Corpuscle
(FA-II)

20− 1000 Hz acceleration of the skin

Ruffini Endings
(SA-II)

< 5 Hz skin stretch

adapting mechanoreceptors capture transient signals, and slowly adapting mechanore-

ceptors capture static stimuli. They are further designated as Type I and Type II.

Type I mechanoreceptors (Meissner corpuscles and Merkel disks) have small recep-

tive fields, and Type II mechanoreceptors (Pacinian corpuscles and Ruffini endings)

have large receptive fields [61]. The characteristics of the four mechanoreceptors are

summarized in Table 1.1.

Meissner corpuscles (FA-I) are sensitive to low-frequency vibrations and sense the

rate of skin deformation [52]. This skin deformation is often due to the minuscule

slipping of a grasped object. The Meissner corpuscles sense this slip and signal that

a higher grip force is needed, which helps ensure successful grasping and lifting of an

object [54]. Merkel disks (SA-I) detect edges and spatial features; they have been

shown to play the largest role in sensing texture and roughness of objects felt with a

bare finger [54]. Although they can sense surface features such as a Braille dot during

either static touch or lateral scanning with a bare finger, the sensations felt during

scanning are more salient. Pacinian corpuscles (FA-II) sense a wide range of high-

frequency vibrations that are present during transient contacts with objects (e.g.,
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collisions or dragging across a bumpy surface), especially during contacts through an

intermediary tool [54]. However, like Meissner corpuscles, Pacinian corpuscles are

responsive only to changing signals. Both FA mechanoreceptors fire when contact is

initially made, but they stop firing during sustained contact [54]. Ruffini endings (SA-

II) sense skin stretch [52], which partially allows for the perception of the direction

of object motion or force [53]. The Ruffini endings can also sense the skin stretch

over tendons, which can also provide proprioceptive information of hand location or

pose [53].

When you interact with and touch objects in your environment, however, you do

not recognize the individual haptic signals that your body is sensing. Instead your

brain attributes the sensations to the object or world you are touching through the

principle of distal attribution [74]. This principle can be applied to touching physical

objects, touching remote objects through teleoperation, and touching virtual objects.

In order to achieve full distal attribution, the sensory input must be authentically

related to the motions made and the mode of touch. To create highly realistic virtual

objects, the haptic signals that are displayed to the user must mimic the signals

experienced during interactions with physical objects. The first step to achieving this

realism is to determine what haptic signals are sensed for a specific object and mode

of touch.
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1.2 Touch Modalities

This thesis focuses on haptics as it pertains to the human hand. The glabrous (non-

hairy) skin of the hands has the highest concentration of mechanoreceptors in the

human body [55]. Your hands are adept at doing a wide array of tasks including

playing music, threading a needle, juggling, and buttoning a shirt. Although the first

thing many people think of concerning their sense of touch involves manipulating and

feeling objects through their bare fingers, there are also a wide array of important

haptic interactions that are accomplished through the use of a tool: a student taking

notes on paper, an artist painting a new masterpiece, a surgeon finely cutting or

suturing tissue, or a paleontologist carefully excavating a new fossil. Both types of

haptic interactions, with bare fingers or through a tool, are essential to everyday

life. However, the types of haptic cues that are experienced in the two instances are

different.

For example, when you are touching an object with your bare fingers, you engage

in many different exploratory procedures to gather information about an object [69].

If you drag your finger across a textured surface, you are provided with a spatial

picture of the surface features, as well as an estimation of the friction through the

lateral forces. By pressing your finger into the surface, you can gauge its stiffness.

If you rest your finger on the surface, you can estimate its temperature and thermal

properties. These sensations combined make up your perception of that object and

can be divided into four perceptual dimensions: roughness (both micro and macro),
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slipperiness, hardness, and warmness [81].

In contrast, touching objects with a tool is a temporal interaction. Spatial cues are

not present because the deformation of the fingers is due to the shape of the pen and

not the surface features of the object [59]. Spatial information cannot be sensed with

a single point of contact. Instead motion of the tool is required to receive useful haptic

information. When you drag a tool across a surface, vibrations are created when the

tooltip hits the surface features [67]. These vibrations provide information about

the roughness of the surface [71, 119]. If you tap or press the tool into the surface,

you can estimate its stiffness [65]. The sensations felt with the tool are dependent

on the tool’s stiffness, size, and shape. Although touching an object with a tool

allows us to learn a lot about how the object feels, there is some information that is

lost compared to touching the object with a bare finger, most notably temperature

and macro roughness. Consequently, the perceptual dimensions for tool-mediated

interactions are roughness (micro), slipperiness, and hardness [119].

1.3 Haptic Interfaces

After the desired haptic signals are chosen, they must be displayed to a user. Hap-

tic interfaces are systems that are designed to display haptic signals to a user in

response to events in a physical or virtual world. These interfaces can take many

different forms and are commonly either attached to the body (wearable haptics) or

are grounded devices that a human grasps. Interfaces have been designed to display
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a wide array of haptic signals and are typically categorized by their ability to display

either kinesthetic or tactile information.

Kinesthetic haptic devices display forces through a tool or handle that is grasped

by the user. A large number of these kinesthetic devices are grounded lightweight

robotic arms that sit on a tabletop (or the floor for larger devices) and transmit

force from the ground to the user’s hand. The user grasps an actuated handle to

produce motion, which is commonly measured through encoders. There are two main

types of kinesthetic haptic devices, impedance-type devices and admittance-type de-

vices, which differ in the relationship between user motion and output force. With

impedance-type devices, the output force is computed as a function of position. For

example, if the user was exploring a virtual environment, a force would be applied

to stop the user from moving when they contact a virtual object or wall. No force

is displayed when the user is exploring free space, which is necessary for a satisfying

virtual experience [76]. With admittance-type devices, the desired position is com-

puted as a function of force. These devices measure the force that the user is exerting

and allow a corresponding motion. However, admittance-type devices have inherent

limitations that prevent the user from moving freely in free space. This thesis focuses

on force feedback provided by impedance-type haptic devices.

Tactile haptic devices interact directly with the skin and can display vibrations,

local shape, contact location, slip, and temperature [38]. There is a large body of prior

work that has explored the use of tactile actuators such as pin arrays (e.g., [56,109])
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and balloon arrays (e.g., [57]) to display spatial information to the user’s fingertip, as

well as tactile actuators to display temperature (e.g., [44]), slip (e.g., [98, 103, 111]),

and contact location (e.g., [92]). This thesis focuses on vibration as tactile feedback

because of its prevalence in tool-mediated interactions.

Consumers might be most familiar with vibrotactile feedback though vibration

alerts in cell phones or vibrations in game controllers to signify events in a game.

The common type of vibrotactile actuator that is embedded in phones is an eccentric

mass motor that has a mass attached a distance from the shaft of the motor. When

the motor is turned on, the device experiences steady vibrations. These motors are

small, lightweight, and inexpensive, but the quality of the haptic cues they provide

leaves many things to be desired. When controlling such motors you can specify the

amplitude or the frequency of the vibrations, not both. Therefore, the quality of the

vibrations that are output are not sufficient for displaying the rich vibrations expe-

rienced during interactions with the physical world. A second type of vibrotactile

actuator is the linear resonant actuator (LRA), which consist of a mass on a spring

in a magnetic field. They have successfully been used to display vibrations to mimic

button clicks [64]. As their name suggests, however, the LRAs have a single resonant

frequency. Similar to the eccentric mass motors, the LRAs do not provide rich vibro-

tactile feedback because of their narrow bandwidth. To display vibrations to match

the richness of tactile cues with the physical world, many researchers have turned

to voicecoil actuators, which are stronger and have a higher bandwidth than LRAs.
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These actuators work much the same way as a speaker, except they output vibrations

instead of sound. They are a mass-spring-damper system composed of a high-mass

magnet that is suspended between two flexure springs in an electromagnetic coil. The

desired vibration signal is commanded to the coil, which creates an electromagnetic

field to either attract or repel the magnet. Since the magnet has a large mass com-

pared to the rest of the actuator, its movement inside the coil creates large vibrations

that are transmitted to whatever the actuator is attached to.

1.4 Thesis Overview and Contributions

The goal of this thesis is to leverage our knowledge of the human sense of touch to cre-

ate virtual haptic interactions that are indistinguishable from their real counterparts.

I take an approach that has been coined “haptography” (haptic photography) [63]

because it allows a person to record the feel of an interesting interaction in much the

same way that traditional photography allows a person to visually record an inter-

esting scene or object. The underlying hypothesis is that modeling and rendering the

haptic signals generated when interacting with physical surfaces through a tool will

allow us to create realistic virtual textured surfaces. I present detailed methods for

creating these haptic texture models (Chapter 2). Then I describe and analyze three

systems for rendering the virtual surfaces: two-dimensional tablet (Chapter 3), three-

dimensional virtual reality (Chapter 4), and three-dimensional haptic augmented re-

ality (Chapter 5). I introduce our open-source Penn Haptic Texture Toolkit, which
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includes texture data and rendering methods (Appendix A). The primary contribu-

tions of this thesis are:

• Chapter 2: Recording and Modeling of Haptic Textures

– An efficient method for creating haptic texture models from brief tool

acceleration, force, and speed signals that are recorded in an unconstrained

manner. Evaluation of this method showed that ten-second data recordings

are sufficient for capturing the behavior of the texture-tool system over a

wide range of interaction conditions. Although the texture models’ spectral

properties were sensitive to differences in individual hand dynamics, the

effect was small compared to the changes in spectral properties due to

normal force and scanning speed.

– Methods for stably generating haptic texture vibrations in real time using

measurements of user normal force and scanning speed. A new model

interpolation scheme was implemented to ensure stability.

• Chapter 3: Rendering and Evaluation of Haptic Textures

– Methods for rendering haptic texture vibrations using a two-dimensional

tablet system.

– Analysis through a human-subject study indicated that displaying the tex-

ture vibrations accurately captured the texture’s roughness information.

However, the texture’s hardness information was not fully captured by
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the texture vibrations and the texture’s slipperiness information was not

captured at all by the texture vibrations.

• Chapter 4: Three-Dimensional Rendering of Haptic Surfaces

– Evidence that texture vibrations must respond to the user’s speed, but not

necessarily to the user’s force, in order to achieve realism.

– Methods for rendering three-dimensional haptic surfaces through a combi-

nation of friction, tapping transient, and texture vibration models.

– Analysis indicated that the combination of the three modes of feedback

accurately captures the real surfaces’ roughness, hardness, and slipperiness.

However, not all surfaces require that the three model components be

displayed for realism.

• Chapter 5: Displaying Texture and Friction via Haptic Augmented Reality

– Methods for determining the contact position on a physical three-dimensional

object using a geometric model of the object and measurements of the ap-

plied force and torque.

– A novel haptic augmented reality device for augmenting the perceived tex-

ture and friction of a physical three-dimensional object.

• Appendix A: The Penn Haptic Texture Toolkit

– Creation of an open-source database of texture data, models, and rendering
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code for 100 surfaces. Researchers can use the texture data to test their

own modeling schemes and directly compare to our texture models. The

toolkit has been downloaded over 500 times.
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Chapter 2

Recording and Modeling of Haptic

Textures

Dragging a tool across a textured object elicits a range of haptic cues that allow you to

form a perceptual impression of the object even though your finger does not directly

contact it. For example, if you pick up a pen and drag it across a table, a rock, or a

swatch of fabric, you can feel variations in the texture even though your finger is not

directly touching the surface. The vibrations that are felt during dragging are caused

by contact between the tooltip and small surface features [67] and are transmitted

to your hand through the rigid link of the tool. The human sense of touch excels

at sensing and interpreting these vibrations to gather information about the physical

world [59]. Unfortunately, the richness of these interaction cues is missing from many

virtual environments, leading to a less satisfying and less immersive experience than
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one encounters in the physical world.

Feeling appropriate tool vibrations during virtual interactions can create the per-

ceptual illusion that one is touching a real surface. Following the principle of distal

attribution, for virtual surfaces to be realistic they must convince you that the vi-

brations come from the contact between the tool and the virtual surface by behaving

in a physically appropriate manner [74]. However, most modern haptic algorithms

and devices are incapable of outputting high-fidelity reproductions of such vibra-

tions [17,62]. Many approaches to representing textures have been proposed, but no

consensus exists [85]. However, measurement-based models can be significantly more

realistic than models that are simply hand-tuned without a basis in physical real-

ity [83]. Recent research has proven the technological feasibility of creating texture

models from recorded high-frequency tool acceleration signals [24,95,96].

This Chapter presents a new method for the creation of haptic texture models from

short acceleration, force, and speed signals recorded when an individual explores a

textured surface with an instrumented tool in a natural and unconstrained manner.

This method is efficient in both required data and computation time. We focus

particularly on the vibrations caused by tool-surface contact; these signals relate to,

but do not completely capture the hardness and slipperiness of the surface. Thus,

our data-driven approach represents a carefully chosen practical simplification of the

tool-surface interaction. This Chapter presents work published in the Proceedings of

the IEEE World Haptics Conference [25] and the IEEE Transactions on Haptics [26].
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2.1 Prior Work in Texture Modeling

Modeling and rendering realistic tool-mediated textures is a complex and multi-

faceted problem that has not been fully solved. One of the limitations to finding a

solution to this problem is the inherent complexity of interactions between a tool and

the surface. Complete physics-based simulations are too computationally complex

for real-time rendering [85]. A physics-based simulation that was recently created

to explain the transients caused by a tool contacting a textured surface showed a

promising match to data recorded from a physical surface [77]. However, it could

not be completed in real time and would thus not be applicable to rendering virtual

textures.

To lower the complexity to a point where real-time execution is feasible, haptic

texture rendering schemes seek to model textures via a simplification of the underly-

ing physics. Many attempts have been made to recreate these interactions, but most

have not been able to completely match the richness and usefulness of haptic feedback

experienced during interactions with the physical world. One early approach to mod-

eling textures involved the implementation of virtual springs to perturb the height of

the user’s hand [80]. This rendering approach was also applied to generate stochastic

textures using Gaussian-distributed force fields [34]. However, the goal of these two

rendering approaches was to produce distinguishable textures and not textures with

a real-world basis.

An early approach that did have a basis in real textures analyzed the pixels of a
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grayscale image to create a surface height profile that directly depended on shading

value [6]. Data-driven modeling schemes such as this have an advantage over physics-

based modeling in that they do not require tedious and potentially inaccurate hand-

tuning. Rather, data-driven models seek to capture the output response of a system

(e.g., force, acceleration) given user inputs (e.g., position, velocity, force) [83].

Several researchers have explored the use of data captured from real interactions

to increase the realism of virtual haptic interactions. Past applications include the

use of real-world data to virtually represent the sensations felt when cutting [84] and

tapping [62]. Data-driven modeling has also recently been used in haptic augmented

reality, which seeks to modulate the haptic properties of real objects using virtual

feedback [40,50].

Several approaches have applied the principles of data-driven modeling in the area

of haptic textures. Direct playback of recorded vibrations, the simplest approach,

has been implemented using voice-coil actuators [102] and a cable-driven system [97];

however, there are many drawbacks to this approach. Because the power and fre-

quency content of the vibration must change as a function of the user’s force and

speed, one needs a method for interpolating between signals recorded under different

conditions. One could simply always play the recording closest to the user’s cur-

rent force and speed, but switching between recordings when force and speed change

will create perceptually noticeable artifacts in the new acceleration signal. Another

possible method could be to output a weighted average of recorded acceleration sig-
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nals as a function of force and speed. However, this summation in the time domain

causes significant constructive and destructive interference between the signals and

does not preserve frequency content. Furthermore, recordings require a large amount

of storage space, and any peculiarities that happened to be captured would likely be

perceptually noticeable when repeated in a loop. These pitfalls in directly playing

recorded acceleration signals have motivated a range of work in creating data-driven

texture models.

For example, Okamura et al. [82] represented patterned textures as a set of data-

driven decaying sinusoids that depend on the user’s speed and applied force. The

vibrations used to represent the textures were superimposed on forces used to repre-

sent the stiffness of the surface for output to a force-feedback joystick. Guruswamy

et al. [36] took a similar approach and created texture models based on a spatial

distribution of infinite-impulse-response filters that are fit with decaying sinusoids.

Other researchers have explored the use of alternative types of data captured from

real interactions to create virtual haptic texture models to increase realism. Pai et

al. [86] modeled measured friction variations as an autoregressive process under the

assumptions that the roughness of a surface is isotropic and people are sensitive only

to the statistical features of varying friction. Vasudevan and Manivannan [107] used

a SensAble PHANToM to drag across a textured surface and modeled the resulting

haptic texture from the frequency spectrum of the tooltip’s vertical displacements.

Although normal force was kept constant, they allowed for variations in scanning
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speed by interpolating between two texture datasets at different speeds.

From the many types of data recorded from interactions with physical surfaces,

the use of tool vibrations has resulted in the most realistic haptic textures to date

as rated by naive subjects [95]. The goal of the research presented in this Chapter

is to build on the methods for creating data-driven texture models presented in [24,

95, 96] where the experimenter recorded data in a controlled manner by dragging

the tool in a circular motion, keeping force and speed approximately constant. This

method of recording data was difficult and tedious, and it resulted in interaction

data that inevitably drifted in force and speed. Using a robot to record data might

allow for more consistent force and speed. However, the texture models we create

in this Chapter are a function of the entire tool-hand-surface system. Therefore,

the dynamics of the robot would need to match the dynamics of the human hand-

tool system to create accurate texture models, a challenging task. Furthermore, the

accelerometer would pick up the vibrations of the robot itself, which would lead to

inaccurate acceleration measurements. The ability to model data that is recorded

without constraints on the experimenter’s force and speed strongly motivated this

work, so anyone could perform the data collection.

2.2 Recording the Feel of a Texture

The first step in creating a haptic texture model is to record data from tool interac-

tions with real textures. This Section details the hardware and calculations needed
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Figure 2.1: Haptic recording device. The tool measures position, orientation, force, and
acceleration for three axes during interaction with texture samples.

to record and process the interaction data.

2.2.1 Data Collection System

We capture tool-surface interaction data using the custom haptic recording device

first presented in [25] and shown in Fig. 2.1. This device records the tool’s position,

orientation, contact force, and high-frequency acceleration while it is dragged across

a textured surface. A 16-bit USB analog-to-digital DAQ device from National Instru-

ments records the force and acceleration data at a rate of 10 kHz. A custom Matlab

GUI was created to interface with the recording system.

Magnetic Tracking Sensor

An 8 mm Ascension 3D Guidance TrakSTAR magnetic tracking sensor embedded in

the back of the tool measures the tool’s position and orientation at 240 Hz with a
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resolution of 0.5 mm and 0.1 degrees respectively.

Force Sensor

The force sensor, which is located between the body of the tool and the tooltip, is a

Nano17 SI-25-0.25 six-axis force/torque transducer from ATI Industrial Automation

Inc. The force sensor can be fitted with a variety of tooltips. The tooltip used in this

research was a stainless steel hemispherical tip with a diameter of 1.6 mm.

Accelerometers

Numerous three-axis analog accelerometers were considered to measure the tool vi-

brations, but none fit the required size, range, and bandwidth specifications. Con-

sequently two high-bandwidth two-axis ±18 g ADXL321 analog accelerometers were

chosen, having a resonant frequency of 5.5 kHz and a noise level of 0.126 m/s2. These

accelerometers are rigidly embedded in the tool at right angles to allow for measure-

ment of three orthogonal axes plus a fourth redundant axis. The accelerometers are

band-limited by a five-pole low-pass Bessel filter at 1000 Hz to remove the effects

of sensor resonance and frequencies above the bandwidth of human vibration detec-

tion [9]. Although humans cannot feel these higher frequencies, they can affect the

feel of the surface because the channels that process auditory and touch frequency

contents are linked [116]. Phase distortion, which is an artifact of the modeling ap-

proach taken in this work, does not directly affect the feel of textures because humans

cannot discriminate phase shifts in haptic signals [18]. However, it could still interfere
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with the tactile perception of the surface because it alters the way that synthesized

vibrations sound.

2.2.2 Data Collection Procedure

Data is recorded while the user holds the haptic recording device and explores a

selected surface using natural and unconstrained motions. The user is free to vary

normal force and scanning speed during each ten-second recording; however, a range

of normal forces and scanning speeds should be used to best capture the feel of the

surface under different contact conditions. A single ten-second recording was made

for each material presented.

2.2.3 Data Processing

The steps required to transform the recorded data into data usable for modeling are

shown in Fig. 2.2. The three acceleration signals are first converted from volts to

m/s2. A high-pass filter at 20 Hz is applied to the three signals to remove gravity

and the effects of purposeful human motion. Since humans cannot discriminate the

direction of high-frequency vibrations [9], the three filtered signals are mapped onto

a single axis using the DFT321 algorithm, which preserves the spectral and temporal

properties of the three-axis signals [66].

The force signals are separated into the three force axes, and a constant rotation

matrix is applied to rotate these force signals to the tool frame. The Euler angles
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Figure 2.2: A diagram of our data recording and processing system. Acceleration and force
are recorded at 10 kHz. Position and orientation are recorded at 240 Hz and upsampled to
10 kHz. A rotation matrix calculated from the orientation data at each time step is used
to find the force vector and tooltip position vector in the world frame. The normal and
tangential forces and tooltip speed are calculated and low-pass filtered.

and the positions are upsampled to 10 kHz to be at the same rate as the force

measurements. A rotation matrix from the tool frame to the world frame of the

magnetic tracker’s field generator is calculated at each time step. The forces are

rotated to the world frame, and the tooltip position in the world frame is found by

adding the sensor position in the world frame to a rotated constant offset vector from

the tracker sensor to the tooltip (obtained through calibration).

After recording, a plane is fit to the tooltip positions in the world frame to ap-

proximate the surface of the material and the unit vector normal to the surface plane

(ên) is determined. The unit vector in the direction of motion (êt) is calculated at

each time step. The inner product is calculated between ên and the force vector in

the world frame ~F to find the normal force (Fn), and separately the inner product

is calculated between êt and ~F to find the tangential force (Ft). Fn and Ft are used

to calculate the friction coefficient for the surface by fitting a line to the plot using
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Figure 2.3: Six textures that were haptically modeled with the presented methods. These
materials were chosen to provide a set of textures that was diverse in roughness, hardness,
slipperiness, and fineness of surface features.

a robust fit method in which outliers were removed. The slope of the line is the

kinetic friction coefficient. The tooltip speed v is calculated as the magnitude of the

discrete-time derivative of the tooltip position vector. The normal force, tangential

force, and speed are low-pass filtered at 100 Hz to reduce noise.

2.2.4 Texture Samples

The recording system was used to characterize the six surfaces shown in Fig. 2.3.

They were chosen to create a set that is diverse in roughness, hardness, slipperiness,

and fineness of surface features. All materials were cut to 10.2 cm squares. The cloth

materials (canvas, silk, vinyl) were mounted on a 0.32 cm thick piece of acrylic using

double-sided tape. Although a limited set of materials was chosen for presentation in

this work, the modeling and rendering methods are valid for a wide range of isotropic
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Figure 2.4: A diagram of our texture modeling system. The acceleration signal is fed into
the segmenting algorithm, which returns the segmentation points and proposed AR order.
An AR model is created for each segment and labeled with the median force and median
speed during that segment. The coefficients are converted to LSFs to ensure stability during
rendering. Outlier AR models are determined and rejected as appropriate. The remaining
AR models are stored in a Delaunay triangulation in force-speed space.

and homogeneous materials, as demonstrated in [23].

2.3 Texture Modeling

This section details our method for creating haptic texture models from short acceler-

ation, force, and speed signals that are recorded as described above. First we discuss

the time series model used to represent the texture data. Then we describe the seg-

menting method used to parse the data into short stationary segments. Finally, we

describe how the models are stored for later use in rendering virtual haptic textures.

Fig. 2.4 shows a full diagram of the texture modeling process.

2.3.1 Model Structure

In [24], we used auto-regressive moving-average (ARMA) models. This type of model

is typically used for weakly stationary data in which the signal evolves over time [16].
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ARMA models were needed because the data signal was long (5 seconds), and because

the force and speed were kept only approximately constant, which resulted in varying

signal power and frequency content. However, if the assumption of strong station-

arity can be made, the simpler autoregressive (AR) model structure is appropriate,

as used in some other previous work [95, 96]. An AR model is an all-pole infinite

impulse response (IIR) filter in which the system’s next output is modeled as a linear

combination of its previous outputs. The AR model order, p, specifies the number of

previous output values used. The AR model structure is:

A(p) y(t) = e(t) + u(t) (2.3.1)

where A(p) is the array of AR coefficients, and y(t), e(t), and u(t) are respectively the

output, white-noise disturbance value, and residual at discrete time t. The discrete-

time transfer function of an AR model is:

H(z) =
1

1−∑p
k=1 Akz

−k (2.3.2)

The coefficients of each AR model are computed by minimizing the residual error

variance using the Levinson-Durbin algorithm.

2.3.2 Data Segmentation

The recorded acceleration signals are not stationary because their power and fre-

quency content directly depend on the unconstrained movement of the tool. However,

the use of the AR model structure requires the assumption of strong stationarity. To
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make this assumption valid, we break the acceleration signal down into a sequence of

approximately stationary segments to model the signal as a piecewise autoregressive

process. An individual AR model is then created for each segment. For each ma-

terial, we segment the recorded acceleration signal using the Auto-PARM algorithm

presented in [28]. This algorithm determines the segmentation breakpoints and the

AR order of each segment by optimizing the minimum description length (MDL)

objective function:

MDL = log(m) + (m+ 1)log(n) +
m+1∑
j=1

log(pj)

+
m+1∑
j=1

pj + 2

2
log(nj) +

m+1∑
j=1

nj
2

log(2πσ2
j )

(2.3.3)

where m is the number of breakpoints, n is the length of data, and pj, nj, and σ2
j

are respectively the AR order, length, and variance of the jth segment. The MDL

function seeks to maximally compress the data by finding the best combination of

the number of segments, the number of AR coefficients, and the resulting error. This

maximum compression seeks to avoid the problem of oversegmenting the acceleration

signal; oversegmenting may leave insufficient data to make a good AR model or may

create redundant models. It also avoids the problem of overfitting individual AR

models because although a model with more coefficients may fit the recorded data

more precisely, it will be poor at prediction because it also fits the noise and random

effects present in the data. A minimum segment span constraint of 50 datapoints was

enforced to further prevent oversegmentation.
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The recorded acceleration signal was fed into the Auto-PARM algorithm, which

returned the location of the segment breakpoints and a proposed AR order for each

segment. The number of AR coefficients was allowed to vary from one to twenty with

equal probability. Auto-PARM implements an island-model genetic algorithm with

25 islands, which allows parallel computation to speed up convergence. A mutation

operation prevents the algorithm from being trapped in local optima. The resulting

segmentation for the acceleration signal recorded from canvas is shown in Fig. 2.5.

Note that the segment boundaries often align with changes in either the force or speed

signal even though only the acceleration signal was used in the segmentation process.

For the dataset shown, the algorithm resulted in 19 segments with a mean length of

5230 datapoints (523 ms).

2.3.3 Creation of Texture Model Set from Segments

Once the breakpoints and AR orders for a material’s dataset are returned by the

segmenting algorithm, a texture model is created for that material as a set of autore-

gressive models. All AR models for a single material must have the same number of

coefficients due to the need for interpolation between the AR models, as discussed

later. We choose the median of the AR orders selected for all segments for that ma-

terial, which for the data shown in Fig. 2.5 was 19 coefficients. We refit each segment

with this median AR order and determine the segment’s coefficients and variance.

The AR coefficients are converted to line spectral frequencies (LSF) to ensure stabil-
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Figure 2.5: Recorded acceleration signal that was segmented using the AutoPARM al-
gorithm. Dotted lines represent the segment breakpoints. Force and speed were not used
during the segmenting process, but they are shown to illustrate the motions the subject
used during data capture.

ity during rendering, as discussed in Section 2.4.1. Each AR model is associated with

the median force and speed of the segment from which it was constructed.

Although [113] found that textures can be represented as a function of distance

traveled when touched with a bare finger, we found that this approach was not ap-

plicable when using a tool because the dynamics of the tool-hand-surface system

drastically changes as force and speed vary. For example, the tooltip may glide across

the surface features when speed is increased [71], which alters both the power and

spectral content of the resulting tool vibrations. Similarly, an increase in normal

force requires the human to increase grip force, which increases the rigidity of the

system and changes its vibrational characteristics. Thus, this work focuses on force
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and speed as separate inputs to the system.

Due to the unconstrained method by which data is recorded, there is the chance

that outlier AR models could exist if either force or speed varied greatly during a

segment or if the tool or surface slipped during recording. Therefore, it is necessary

to check for the existence of outlier AR models and remove them from the texture

model set if appropriate. The AR models are placed in force-speed space and are

compared to surrounding AR models on the basis of five criteria: the variance of

error of the AR model and the power, spectral centroid, skewness, and kurtosis of the

original segment. The expected behavior of the system is that these five values should

increase monotonically as either force or speed increases. So a plane is fit to each of

the five values versus force and speed. Potential outlier AR models are determined by

the confidence intervals of the studentized residuals’ t-distributions. If an AR model

is determined to be an outlier under two or more criteria, the AR model is removed

from the texture model set.

2.3.4 Model Storage

In prior work, the model forces and speeds were linearly spaced at set values and

stored in a lookup table [24,95,96]. However, the segmentation and modeling process

described above yields a set of AR models that are scattered in force-speed space.

We thus construct a Delaunay triangulation using the z-score of the AR model forces

and speeds, as shown in Fig. 2.6. Each vertex of a triangle represents the location of
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Figure 2.6: Delaunay triangulation for the canvas model set. Each vertex represents an
AR model of a vibration segment recorded at that combination of force and speed.

an AR model in force-speed space.

The triangulation is extended to form a rectangular convex hull by adding linearly

spaced AR models at maximum modeled force, maximum modeled speed, zero force,

and zero speed. This step, which is done to simplify the rendering process, is accom-

plished by copying the coefficients of the closest AR model. For AR models at the

maximum modeled force or speed, the variance is copied as well. For AR models at

zero force or zero speed, the variance is set to zero so that no vibrations are generated

if the user is not touching the surface or is stationary.
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Figure 2.7: A diagram of our texture signal synthesis process using measurements of a
user’s current position and force. The position data is differentiated and low-pass filtered to
obtain the speed. A collision detection algorithm is run to determine where the user’s force
and speed lie in the Delaunay triangulation. Barycentric coordinates are used to interpolate
between the LSFs and variance of the three AR models at the vertices of the triangle. The
interpolated LSFs are transformed to AR coefficients. The coefficient and variance values
are passed to our LPC signal generator, which creates an appropriate acceleration waveform.

2.4 Generating Vibration Signals

This section describes how a model set created using the methods described above is

used to synthesize texture vibration signals using only force and speed data. Fig. 2.7

shows a full diagram of the vibration signal synthesis process.

2.4.1 AR Model Interpolation

A sample force-speed trajectory is shown in Fig. 2.8. The force and speed are recorded

at rates of 240 Hz and 10 kHz, respectively, and the force data is downsampled to

240 Hz. These force and speed values are used to determine which AR models to use in

generating the vibration signal for display to the user. Simply choosing the AR model

closest to the user’s current force and speed creates the potential for high-frequency

model switching, which can cause instability [73]. Similarly, directly interpolating the

AR models’ coefficients can move the poles of the resulting transfer function outside
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the unit circle, making the transfer function unstable, as shown in Fig. 2.9. Therefore,

to ensure a stable system, one must convert each AR model’s coefficients into line

spectral frequencies (LSF) before interpolation. The LSFs are found by mapping the

AR model’s poles in the discrete plane onto the unit circle and are defined as the

angles these mapped poles make with the real axis. This pole mapping ensures the

poles remain inside the unit circle, as shown in Fig. 2.9, which is a necessary condition

for stability.

We use a visibility-walk collision-detection algorithm [30] on the Delaunay tri-

angulation to determine which triangle contains the user’s current force and speed

point. The user’s force and speed are saturated at the maximum modeled force and

maximum modeled speed to ensure that the force-speed trajectory remains inside

the convex hull of the triangulation. Barycentric coordinates are used to provide a

weighted average of the LSFs and variance values of the three AR models at the

triangle vertices. These weights are found using:

λ1 =
(F2 − F3)(S − S3) + (S3 − S2)(F − F3)

(F2 − F3)(S1 − S3) + (S3 − S2)(F1 − F3)

λ2 =
(F3 − F1)(S − S3) + (S1 − S3)(F − F3)

(F2 − F3)(S1 − S3) + (S3 − S2)(F1 − F3)

λ3 = 1− λ1 − λ2

(2.4.1)

where Fi and Si are the ith model’s force and speed, F is the current force value, and

S is the current speed value. The interpolated LSFs are then converted back into AR

coefficients. New coefficients and variance values are calculated at 240 Hz.
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Figure 2.10: Recorded and synthesized data for comparison of texture model set perfor-
mance. The acceleration, force, and speed data were recorded from the canvas material
using the haptic recording device. The recorded force and speed signals were then used to
synthesize accelerations for all six materials.

2.4.2 Signal Synthesis

A white Gaussian excitation signal is generated with power equal to the interpolated

variance value. Histories of the excitation signal and vibration outputs are used to

calculate the new vibration output at a rate of 10 kHz.

Fig. 2.10 shows synthesized texture vibration signals for the six chosen materials.

Force and speed signals recorded while touching real canvas were used to synthesize

acceleration signals for all six textures to show their varied output responses. The

signal synthesized using the canvas model set has the best match to the recorded

acceleration signal. However, the synthesized canvas signal is lower in power than

the recorded canvas signal in places because the test trajectory included forces and

speeds higher than those that were modeled.
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2.5 Method Evaluation

After devising a way to model haptic textures from unconstrained tool-surface in-

teractions, we sought to evaluate the quality of the resulting virtual texture models.

The ideal output of any data-driven texture modeling approach is a virtual texture

that is perceptually indistinguishable from the real texture on which it is based. The

experience of a user interacting with such a texture depends on all of the components

of the system, including the hardware on which the texture is rendered. To better

assess the contributions of this Chapter, we focused our evaluation on texture signal

generation, leaving human perceptual assessments of the interactively rendered tex-

tures for Chapter 3. After developing a method for comparing two virtual textures

or a real texture and a virtual texture, we evaluated our virtual textures across six

materials, across nine haptographers, and across fifty-four combinations of material

and haptographer.

2.5.1 Spectral Difference Metric

Because each recording involves a unique force-speed trajectory, each virtual texture

model set we create includes AR models at a novel set of forces and speeds. Thus it is

not possible to directly compare two virtual texture models to one another, as done

in [24]. Instead, we do such comparisons by choosing a force-speed trajectory, applying

it to the two virtual textures, and comparing the resulting synthesized vibration

signals using the metric described below. The same approach can also be used to
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compare a certain recording of a real texture to what would be felt touching any

virtual texture with the force-speed trajectory used during the recording.

When the selected force and speed vary over time, the texture acceleration signal

is not stationary, so we compare the frequency spectra of the two signals for short

windows of time and then average the results across all windows. Each ten-second

signal was broken down into windows of 256 datapoints (25.6 ms) with 50% overlap,

and a Hamming window was applied to prevent spectral leakage. The amplitude

of the window’s discrete Fourier transform (DFT) was then normalized by the total

power in the window, so that the spectral shape of two signals could be compared,

irrespective of signal power. The normalized spectral error (NSE) was used as a

metric to compare the spectral shape of the two signals.

NSEj =
1

Nf

∑
k

|Yj(fk)−Xj(fk)| (2.5.1)

where Nf is the number of frequencies, and Yj(fk) and Xj(fk) are the normalized

amplitudes of the DFTs of the two signals being compared in the jth window at

frequency fk.

The NSE disregards differences in the power of the two signals, but power is

important in determining the perceptual roughness of the surface. Therefore, we also

compare signal power.

PEj =
|PY,j − PX,j|

1
2

(PY,j + PX,j)
(2.5.2)

Here PY,j and PX,j are the powers of the two signals being compared in the jth
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window. Both the frequencies and the magnitude of a vibration are important in

determining the feel of a surface. Therefore, we created the spectral difference (SD)

metric to place equal emphasis on spectral shape and power.

SD =
1

Nw

∑
j

(
NSEj

std(NSE)
+

PEj

std(PE)

)
(2.5.3)

where Nw is the number of windows, std(NSE) is the standard deviation of the nor-

malized spectral error across all tested windows, and std(PE) is the standard deviation

of the power error across all tested windows. Normalizing the NSE and PE yields a

dimensionless metric that is scale invariant and weights the two factors equally.

2.5.2 Spectral Differences Across Materials

To establish an acceptable range for the SD metric, the first test evaluated the dif-

ferences between virtual textures made for different materials. This test used virtual

textures made from ten seconds of data recorded by the experimenter for each of the

six real materials shown in Fig. 2.3. For comparison, the experimenter also made

three separate recordings for each of the real surfaces, ensuring the forces and speeds

spanned those commonly used when exploring textured surfaces with a tool. The

Table 2.1: Spectral Differences Across Materials
Model T1 T2 T3 T4 T5 T6

VT1 4.50 5.33 6.29 7.11 7.48 6.41

VT2 5.46 3.81 4.54 5.79 5.52 5.12

VT3 6.04 4.81 3.91 4.92 4.68 4.28

VT4 6.62 6.21 5.11 4.44 4.47 4.96

VT5 7.13 5.64 5.13 4.53 4.04 5.57

VT6 6.05 5.27 4.27 5.05 4.95 4.23
T1: Rough plastic, T2: Canvas, T3: Floor tile, T4: Silk, T5: Vinyl, T6: Wood
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maximum speed was 170 mm/s, and the maximum force was 2.8 N. The forces and

speeds of each recording were used to drive all six of the experimenter’s virtual tex-

tures, creating synthetic vibrations that could be compared across materials. The

spectral difference metric was calculated for each pair of real vibrations and vibra-

tions synthesized using that recording’s force-speed trajectory. These differences were

then averaged across all three trajectories to yield the results shown in Table 2.1. As

anticipated, the shaded boxes along the diagonal reveal the relatively small spectral

difference between the vibrations recorded from a real material and the vibrations

synthesized from a virtual version of the same material. Two standard deviations

above the mean of the differences along the diagonal is 4.72, which we will use as the

baseline of the spectral difference metric. Furthermore, the spectral difference is also

relatively small for material pairs of similar roughness and surface feature size, for

example rough plastic and canvas or silk and vinyl.

2.5.3 Spectral Differences Across Subjects

The second test compares real vibrations recorded by one person to virtual textures

made from data recorded by several different individuals touching the same material.

We collected data from eight individuals dragging the recording tool across each of

the six real textures. The procedures were approved by the Penn IRB under protocol

816548, and subjects gave informed consent. The subjects were all right handed with

limited experience with haptic devices. They were instructed to use natural and fluid
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motions and to vary force and speed as desired. Ten seconds of force, speed, and

acceleration data were recorded for each subject and material, resulting in 48 record-

ings. Each of these recordings was segmented and modeled as described in Section 2.3.

For comparison, we also consider the previous section’s virtual textures, which were

created from data recorded by the experimenter, an experienced haptographer.

The three force-speed trajectories for each material from the previous comparison

were used to synthesize vibrations for this comparison. The spectral difference was

calculated for each pair of recorded and synthesized accelerations, as shown in Ta-

ble 2.2. As expected, the spectral differences for the experimenter have the smallest

mean and standard deviation. Thus, the models made by the experimenter are more

consistent when compared with data also recorded by the experimenter than models

made by other subjects. This trend is due to differences in hand dynamics and grip,

which affect the vibrational characteristics of the pen. Many of the SD values for

the eight other subjects were within the baseline established above, as shown by the

shaded boxes. High SD values are caused by individual differences in hand dynamics

or because a subject’s motion did not cover the entire tested region of force-speed

space.

2.5.4 Spectral Differences Across Materials and Subjects

The final comparison evaluates the validity and consistency of the texture models

created across all materials and haptographers. A single force-speed trajectory was
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Table 2.2: Spectral Differences Across Subjects
Sub. T1 T2 T3 T4 T5 T6 mean stdev

S1 4.82 4.23 4.07 4.91 4.23 5.19 4.57 0.46

S2 5.53 4.64 4.04 4.54 4.68 4.63 4.68 0.48

S3 5.02 4.36 5.04 5.27 4.51 5.52 4.95 0.44

S4 5.42 4.19 3.94 4.92 4.04 5.28 4.63 0.66

S5 4.76 4.14 4.77 5.01 4.17 4.70 4.59 0.35

S6 4.44 3.76 3.96 5.26 4.39 4.99 4.47 0.58

S7 4.75 4.00 3.85 4.98 3.94 5.01 4.42 0.55

S8 4.61 3.42 3.81 4.26 4.54 4.31 4.16 0.46

Exp 4.50 3.81 3.91 4.44 4.04 4.23 4.15 0.28

chosen for this comparison. This trajectory was created by simulating a person’s

trajectory through the force-speed space using a smoothed random walk algorithm.

This method was chosen over using a recorded force-speed trajectory to ensure that

the trajectory fully spanned the force-speed space of interest. The trajectory was used

to simulate 30 seconds of vibration using each virtual texture from the eight subjects

plus the experimenter, which resulted in 54 synthesized signals. These signals were

then compared pairwise (1431 pairs) using the spectral difference metric to create a

dissimilarity matrix.

Multi-dimensional scaling (MDS), which is a common tool in haptic texture re-

search for visualizing differences between materials [12, 119], was used to analyze

the dissimilarity matrix. This technique optimally places the virtual textures in

an N-dimensional perceptual space such that the distances between the points ap-

proximately follow a monotonic transformation from the dissimilarities. Analysis of

the scree plot for up to six dimensions indicated that two or three dimensions were

necessary to achieve a good fit. Fig. 2.11 shows the 54 synthesized signals in a two-

dimensional perceptual space. The signals have been divided into six clusters using

41



Dimension 1
           
           
           

D
im

e
n
si

o
n
 2

 

 

Rough

Smooth

Fine

Coarse

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

T1: Rough Plastic

T4: Silk

T2: Canvas

T5: Vinyl

T3: Floor Tile

T6: Wood

Figure 2.11: Texture models for all subjects clustered quantitatively using the spectral
difference metric. Models were largely clustered according to material. Lines showing the
perceptual qualities of roughness and fineness of surface features are displayed.

k-means clustering. The regions in the figure represent the decision boundaries of

the clusters. As expected, synthesized signals from models of the same material are

closely clustered. Some outliers exist due to differences in hand dynamics between

subjects or if a subject’s movement did not span a large portion of the force-speed

space. Wood is not consistently placed in this two-dimensional space due to its non-

isotropic behavior. If the tool is dragged perpendicular to the grain, it feels relatively

rough. If the tool is dragged parallel to the grain, the result is a smoother texture.

Since the subjects were not constrained to drag the tool in only one direction, the

signals used to create models for wood contained vibrations from both the rough
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and smooth textures of wood. These inconsistent vibrations created models for wood

that are sometimes rough and sometimes smooth; future work should include tool

direction for modeling non-isotropic materials.

The average windowed power and the average windowed spectral centroid (SC)

were calculated for all 54 synthesized signals. The roughness of a material is captured

most by the power of the vibration, as shown in [45,71,89,119]. The SC was proposed

as a measure of fineness of surface features in [33] and is calculated as:

SCj =

∑
kXj(fk)

2fk∑
kXj(fk)2

(2.5.4)

where Xj(fk) is the normalized amplitude of the DFT in the jth window at frequency

fk. The power and spectral centroid were averaged across all windows. Linear re-

gression was conducted on the power and SC of the 54 signals to determine the

relationship between the two perceptual qualities and the placement of the signals in

the MDS space. The resulting perceptual quality lines are superimposed on the clus-

ter diagram in Fig. 2.11. The lines for roughness and fineness are close to orthogonal

with an angle of 76.4◦, which indicates little correlation between the two qualities.

They both contribute independently to the tactual perception of the materials.

The first MDS dimension closely follows the roughness of the materials. Rougher

materials are located on the right side of the cluster diagram, and the materials get

progressively smoother as you move to the left. Wood is spread across this rough-

smooth dimension because of its non-isotropic behavior. The materials also follow
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the fineness perceptual quality line as expected. Physically, canvas has the largest

surface features, and silk has the smallest surface features of the material set, as can

be seen visually in Fig. 2.3.

2.6 Summary

This research developed methods for the creation of haptic texture models from data

recorded during unconstrained tool-surface interactions. First we presented our data-

recording hardware, which measures the speed, force, and high-frequency acceleration

of the tool as a user drags it across a texture. Since the user’s force and speed vary

during data capture, the acceleration signal is not stationary. Therefore, we segment

the signal to represent it as a piecewise autoregressive process. This procedure results

in a texture model set that represents the feel of the texture at many input condi-

tions. Each texture model set is stored in a Delaunay triangulation with each vertex

representing a single model. Measurements of force and speed are used to synthesize

texture vibration signals.

A spectral difference metric was presented to quantify the fit of the models and the

consistency of models across many subjects. The fit of models is sensitive to differ-

ences in individual hand dynamics, but the models made from short data recordings

result in a reasonable spectral fit. Synthesized vibrations can be clustered by material

based only on the spectral difference metric, and the spectrum encodes the material’s

roughness and fineness of surface features.
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Chapter 3

Rendering and Evaluation of

Haptic Textures

Although much research has been done in determining the perceptual qualities of

real textures [45, 89, 119], there has not been extensive work in evaluating how these

perceptual qualities translate to virtual textures. Past studies that have analyzed

virtual textures focused on realism as a whole [95, 97]. In contrast, this Chapter

seeks to assess the perceptual qualities and similarities of real and virtual textures to

evaluate the strengths and weaknesses of the modeling approach that was presented

in Chapter 2. We hope this investigation helps researchers make informed decisions

about adopting similar methods. This Chapter presents work published in the IEEE

Transactions on Haptics [26].
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Figure 3.1: A diagram of our full texture rendering system. A texture vibration signal
is synthesized using measurements of the user’s current position and force given by the
Wacom tablet. This signal is then output via the computer soundcard, through a current
amplifier, to drive the Haptuator on the stylus. The dashed red box separates the tablet
hardware and output system.

3.1 Rendering Vibration Signals

This Section describes the hardware and steps necessary to render synthetic textures

to a human user utilizing the texture model set created in Section 2.3 and the texture

vibration signal synthesized as in Section 2.4. Fig. 3.1 shows the full diagram of the

texture synthesis and rendering process.

3.1.1 Tablet System

The virtual haptic textures are displayed on an updated version of the TexturePad

described in [95] and shown in Fig. 3.2. This system consists of a Cintiq 12WX

interactive pen display by Wacom Co., Ltd., which is capable of providing measure-

ments of the user’s force and position at a rate of 125 Hz. The Linux Wacom Project

code base [2] provides access to these variables. The force sensor has a resolution

of 0.0013 N, and the x-position and y-position measurements have a resolution of
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Figure 3.2: Our texture rendering system. A force sensor in the stylus measures the
applied normal force, and sensors embedded in the Wacom tablet measure the tool’s posi-
tion. The computer generates a synthetic texture vibration in real time, and a Haptuator
mounted on the stylus transmits these vibrations to the user’s hand.

4.934 µm and 4.861 µm, respectively. The position data is differentiated and low-

pass filtered to obtain the user’s speed. The force and speed measurements are used

to generate synthetic texture vibration signals as described in Section 2.4.

3.1.2 Dynamic Compensation

After the next acceleration value is synthesized and before it is played to the user, a

feed-forward dynamic compensation controller is implemented to diminish the reso-

nance of the Haptuator and achieve a higher-fidelity recreation of the tool vibrations.

This dynamic compensation scheme, which is outlined in [78], approximately inverts

the system’s dynamics to estimate the current output needed to create the desired

tool vibration.
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3.1.3 Rendering Hardware

The synthesized acceleration signal is output through the soundcard of the computer

using the PortAudio C library [1]. This output voltage is then passed through a linear

current amplifier with a gain of 1 A/V. The synthesized vibrations are transmitted

to the user by driving a Haptuator vibrotactile transducer (TactileLabs, model no.

TL002-14-A) that is firmly attached to the stylus via a custom 3D-printed plastic

bracket, as shown in Fig. 3.2.

3.2 Texture Samples

The five surfaces used in the human-subject evaluation of our modeling and rendering

methods are the same as those used in Chapter 2: rough plastic, canvas, floor tile,

silk, and vinyl. Wood was excluded from the study due to its anisotropy described

in Section 2.5.4.

Although they were not used directly in modeling, we determined the physical

parameters of the materials so they could be compared to the rated parameters in

the study reported later. The parameters of interest were roughness (surface feature

height), hardness (stiffness), slipperiness (friction), and fineness (spatial frequency of

surface features).
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3.2.1 Roughness Measurements

The roughness of each material was found optically using the images shown in Fig. 2.3.

The analyzed images were square with 500 pixels on each edge, which correlated to

a physical size of 63.5 mm. All pictures were taken from overhead using a Nikon

D40 digital camera mounted on a tripod under fluorescent lighting. The images were

converted to grayscale and separated into their roughness and waviness components

using a 2D Gaussian low-pass filter (σ = 2.54 mm). In the roughness component, a

light pixel represents a high point (a peak) and a dark pixel represents a low point (a

valley) on the texture. The presence and height of surface features (bumps) on the

surface can be determined by comparing the grayscale values of adjacent pixels [35].

To estimate the roughness of the textures, which is a measure of the surface feature

height, we calculated the symmetric grey-level co-occurrence matrix (GLCM) for

each image. The GLCM is a measure of how often combinations of pixel grayscale

values occur in an image. We divided the range of grayscale values into 500 equally

spaced bins and calculated the GLCM for four directions (0◦, 45◦, 90◦, 135◦), which

were then summed to obtain a spatially invariant GLCM for the image. The GLCM

was normalized by the sum of all components to express it as a probability. Using

the normalized GLCM, the roughness is estimated as the Angular Second Moment

(ASM):

ASM =
n−1∑
i=0

n−1∑
j=0

Mc (i, j)2 (3.2.1)
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Table 3.1: Physical Measurements of Materials

Material Roughness
(unitless)

Stiffness (R2)
(N/mm)

Friction (R2) Fineness
(mm-1)

T1: Rough Plastic 0.3252 42.20 (0.99) 0.18 (0.74) 1.25

T2: Canvas 0.3515 17.82 (0.98) 0.36 (0.87) 1.04

T3: Floor tile 0.3702 10.81 (0.99) 0.32 (0.85) 0.98

T4: Silk 0.2776 37.86 (0.98) 0.30 (0.86) 1.46

T5: Vinly 0.2842 15.07 (0.99) 0.49 (0.96) 1.18

where i is the row number, j is column number, and Mc is the normalized GLCM [35].

The estimated roughness parameters, Ra, are shown in Table 3.1. Although these

values are not direct physical measurements of the surface, they provide an accurate

representation of surface roughness and allow for the roughnesses of different materials

to be directly compared.

3.2.2 Surface Stiffness Measurements

Surface stiffness was found by measuring the force-displacement curve of each mate-

rial. An MTS LSB.501 50 N load cell was attached to an MTS Criterion Model 43

load frame with a position resolution of 0.06 µm. A stainless steel 1.6 mm hemispher-

ical tooltip was attached to the load cell, which was then lowered onto the material

until a load of 10 N was achieved. Position and force measurements were recorded at

10 Hz. Due to mechanical compliance in the system, only data above 1.0 N was used

in the analysis. Similarly, data beyond 3.0 N was discarded because the acrylic back-

ing strongly biased the stiffness measurements for large forces. Furthermore, 3.0 N

was the maximum force typically applied by humans when interacting with a texture
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through a tool [25]. This range of forces is similar to that used to calculate surface

compressibility in [12]. A line was fit to the force-position data between these two

limits. The slope of the line is a measurement of the surface stiffness in N/mm, as

shown in Table 3.1. No nonlinear behavior was observed, as indicated by the high R2

values.

3.2.3 Friction measurements

The slipperiness of the materials, which can be represented as the coefficient of ki-

netic friction, was found using data recorded by the haptic recording device. The

experimenter dragged the tool across the surface in a fluid motion and recorded ten

seconds of interaction data. The force measurements were separated into the tangen-

tial and normal components, and a line was fit to the plot using a robust fit method

in which outliers were removed. The slope of the line is the kinetic friction coefficient,

as shown in Table 3.1. The chosen materials closely follow the proposed Coulomb

friction model for the forces used, as indicated by the R2 values.

3.2.4 Fineness Measurements

The images from above were also used to calculate fineness, the materials’ spatial

periodicity, as the average spatial frequency of the surface features. Each row and

column of pixels was transformed into the frequency domain by taking the discrete

Fourier transform (DFT) of the grayscale pixel values. This procedure gave frequen-
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cies in units of pixel−1, which were converted to absolute spatial frequencies in mm−1.

The DFT was averaged across all rows and columns, and the spectral centroid was

calculated. The spectral centroid has commonly been used as a measurement of the

fineness of a texture [25,33]. The fineness parameters are shown in Table 3.1.

3.3 Human Subject Study

This section describes the human-subject experiment we ran to evaluate the real-

ism of our virtual textures and the strengths and weaknesses of this approach. In

particular, we wanted to determine the extent to which our modeling and rendering

approach captures the roughness, hardness, slipperiness, and fineness perceptual di-

mensions. To accomplish this, we adapted the study and analysis conducted in [119].

All procedures were approved by the Penn IRB under protocol 816548, and subjects

gave informed consent. Two separate sets of ten subjects were recruited for a total

of twenty subjects. The subjects were all right-handed with limited experience with

haptic devices.

3.3.1 Experimental Set-up

The subject sat at a table in front of the tablet and across from the experimenter. As

shown in Fig. 3.3, a black curtain was hung between the subject and the tablet, and

the subject wore headphones playing pink noise. These interventions ensured that

the subject used only haptic, and not visual and auditory, cues during the study. The
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subject used the augmented stylus to interact with the real and virtual textures. The

tablet measured the user’s force and speed during all texture interactions. When a

virtual texture was present, the force and speed values were used to render the tex-

ture vibration signal, as described in Section 3.1. When a real texture was present,

the Haptuator was not activated. An three-axis ADXL345 digital accelerometer con-

figured into ±78.4 m/s2 (±8 g) mode with a resolution of ±0.153 m/s2 was rigidly

attached to the stylus and polled at 800 Hz to record the tool vibrations. Subjects

were instructed to keep the stylus on the surface at all times except when switching

between textures and were not allowed to tap or statically press the stylus into the

surface. The experimenter monitored the subject’s hand to ensure that it did not

come in contact with the texture or tablet. A 0.6 cm thick acrylic piece with two

10.2 cm square cutouts was mounted to the face of the tablet. The cutouts were used

to secure the materials during the study and to act as a guide to keep the stylus

constrained to the textures. For virtual textures, a 0.32 cm thick smooth piece of

acrylic was placed in the cutout on the tablet screen so thickness cues could not be

used to determine the presence of a virtual texture.

3.3.2 Experimental Procedure

There were three separate phases to the study: free exploration, pairwise comparisons,

and adjective ratings. One set of ten subjects completed the pairwise comparison and

adjective ratings phases of the study, but that adjective rating data was not used in
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Figure 3.3: Experimental set-up. The subject sat in front of the tablet, across from the
experimenter. A black curtain prevented the subject from seeing the textures, and head-
phones playing pink noise masked audio cues. The subject grasped the stylus augmented
with a Haptuator in her dominant hand and interacted with real and virtual textures placed
on the tablet screen.

this analysis because order effects may have been present. A second set of ten subjects

completed the free exploration and adjective rating phases. The study used the real

and virtual versions of five of the textures shown in Fig. 2.3, for a total of ten textures

(five real, five virtual). Wood was used only in the pairwise comparison phase of the

study, but the data associated with the real and virtual versions of wood were not

used in the analysis due to its anisotropy, which was discussed in Chapter 2. Study

data were collected and managed using Research Electronic Data Capture (REDCap)

tools hosted at the University of Pennsylvania [41].
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Free Exploration

In this phase of the study, the ten textures were presented to the subject one at a

time in randomized order. At the beginning of each trial, the experimenter placed

one texture in the right cutout on the tablet and then turned on an LED to signal

that the texture was ready. The subject placed his or her hand under the curtain

and was given the stylus, which he or she used to explore each texture for as long as

desired. The first ten seconds of acceleration, force, and speed interaction data, as

measured by the tablet, were recorded for each texture. The subject then removed

his or her hand from under the curtain and typed a short description of that texture

on a nearby computer. This procedure was repeated until the subject had felt all ten

textures. This phase allowed the subjects to become familiar with the textures and

the experimental set-up.

Pairwise Comparisons

In this study phase, all possible pairs of textures (real-real, virtual-virtual, and real-

virtual) were presented to the subject one at a time for a total of 45 pairs. The

textures were presented in randomized order with equal likelihood of being placed

in the left or right cutout. For each pair, the experimenter placed the two textures

in the cutouts on the screen and turned on an LED to signal that the textures were

ready. The subject felt both textures with the stylus, switching between the two as

much as desired. Subjects then rated the similarity of the two textures by placing a
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mark on a scale of “completely the same” to “completely different” on the computer

using a mouse wielded in their non-dominant hand.

Adjective Ratings

In the final phase of the study, the textures were presented to the subject one at

a time in randomized order. In addition to the ten textures described above, the

subjects were also presented with an acrylic piece without a virtual texture present.

The subject was asked to rate each texture on the scales of rough-smooth, hard-

soft, slippery-not slippery, and fine-coarse. These scales were chosen from the list

provided in [81] as the psychophysical dimensions applicable to the perception of

textures through a tool. The subject followed the same procedure as above but felt

only the texture in the right cutout. The experimenter did not define the adjectives,

so the subject had to rely on his or her intuitive understanding of the scales. The

adjective scales were presented in randomized order, and the subject rated all textures

along each scale before proceeding to the next scale.

3.3.3 Results

Free Exploration Recordings

The acceleration recordings from the free exploration phase of the study were used

to compare the power and spectral centroid of the accelerations experienced when

interacting with real and virtual versions of the same texture. The force and speed
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recordings were also compared to determine if there was any difference in the speeds

and forces commonly used by subjects touching real and virtual textures. The mean

and one standard deviation above and below the mean of the acceleration power,

acceleration spectral centroid, speed, and force for each ten-second-long recording

were found. These values were combined across all subjects for each texture. The

resulting two-dimensional box plots are shown in Fig. 3.4, allowing for direct visual

comparison of the recorded values for corresponding real and virtual textures. The

central lines of each box denote the real and virtual medians, the edges of each box

denote the 25th and 75th percentiles, and the whiskers extend to the extreme data-

points not considered outliers. A line denoting the ideal relationship between the real

and virtual ratings is shown. Two-way analysis of variance (ANOVA) was performed

separately on the power, spectral centroid, speed, and force values using texture and

virtual/real as factors. The differences in the power of the acceleration signals were

found to be statistically significant across different textures (F = 101.2, p < 0.001),

but not statistically significant when comparing real and virtual textures (F = 2.48,

p = 0.12). Similarly, the differences in the spectral centroid of the acceleration sig-

nals were found to be statistically significant across different textures (F = 72.52,

p < 0.001), but not statistically significant when comparing real and virtual textures

(F = 2.31, p = 0.13). No statistically significant differences were found in the speeds

used by the subjects across different textures (F = 0.48, p = 0.75) and comparing

real and virtual textures (F = 1.48, p = 0.22). Similarly no statistically significant
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Figure 3.4: Comparison of the power and spectral centroid of the recorded acceleration
signal and the speeds and forces used by subjects during the free exploration phase of the
study. There is a strong linear trend for power and spectral centroid comparing values for
the corresponding real and virtual textures. There is no statistical difference in the speeds
and forces used by subjects on real and virtual textures.

differences were found in the forces across different textures (F = 1.19, p = 0.32)

and comparing real and virtual textures (F = 2.33, p = 0.13). The free response

descriptions provided by the subjects during this phase were not analyzed because

their purpose was to allow subjects to form an unbiased perception of the textures

before being asked to rate them along the four adjective scales.

Pairwise Comparisons

Each subject’s pairwise dissimilarity matrix was normalized by the standard devia-

tion of their dissimilarity ratings to compensate for individual differences in subjective
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Figure 3.5: Real and virtual textures placed in three-dimensional perceptual space based
on dissimilarity ratings. Lines showing the perceptual qualities of roughness, hardness,
slipperiness, and fineness were fit to the space using ratings along the four adjective scales.

rating scales. The normalized dissimilarity matrices were averaged across the ten sub-

jects. As in Section 2.5.4, multi-dimensional scaling was used on the resulting average

dissimilarity matrix to place the ten textures in an N-dimensional perceptual space.

The distance between a pair of textures in the perceptual space is proportional to

their average rated dissimilarity. An analysis of the scree plot for up to six dimensions

indicated that two or three dimensions were necessary to achieve a good fit (R2 > 0.9).

Fig. 3.5 shows the resulting fit of the ten textures into a three-dimensional perceptual

space.

Fig. 3.6 shows the normalized dissimilarity ratings before averaging, separated

into the four types of texture pairs (real-virtual same texture, real-real different tex-
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Figure 3.6: Comparison of dissimilarity ratings across the four types of texture pairs. The
median dissimilarity rating for the real-virtual same texture pairs is significantly lower than
the median ratings for the three other types of pairs.

tures, real-virtual different textures, virtual-virtual different textures). The median

dissimilarity rating for the real-virtual same texture pairs is much lower than the me-

dian ratings for the three other types of pairs, indicating that the corresponding real

and virtual texture pairs were rated as more similar than pairs of different textures.

To understand how the textures were distributed in the perceptual space, a cluster

analysis was conducted on the Euclidean distances between textures. A hierarchical

binary cluster tree was generated, and the resulting dendrogram is shown in Fig. 3.7.

Adjective Ratings

The adjective ratings were separately normalized for each subject along the four

scales by dividing by the standard deviation along that scale for that subject. The

normalized adjective ratings were then averaged across all subjects. The normal-

ized adjective ratings before averaging are shown in the two-dimensional box plots in
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Figure 3.7: Dendrogram of materials showing clustering of real and virtual textures using
the distances between textures in three-dimensional perceptual space.

Fig. 3.8. A two-factor ANOVA was performed separately on the four sets of adjective

ratings using texture and virtual/real as factors. When comparing across textures,

the differences in ratings of roughness (F = 52.18, p < 0.001), hardness (F = 24.46,

p < 0.001), and fineness (F = 44.76, p < 0.001) were found to be statistically sig-

nificant. The differences in slipperiness ratings were not found to be statistically

significant across textures (F = 1.74, p = 0.15). When comparing virtual and real

textures, the differences in hardness (F = 9.72, p < 0.005) and slipperiness (F = 99.91,

p < 0.001) ratings were found to be statistically significant. The differences in rough-

ness (F = 2.42, p = 0.12) and fineness (F = 2.37, p = 0.13) ratings were not found

to be statistically significant when comparing virtual and real textures.

We separately regressed the four sets of average adjective ratings onto the percep-

tual space to place the four adjective lines, as shown in Fig. 3.5. In the regression,

each set of adjective ratings was used as the dependent variable with the coordinates
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Figure 3.8: Comparison on subjects’ ratings of the ten textures along the four adjective
scales. The box plots for roughness and fineness show a strong linear trend in the ratings
for the corresponding real and virtual textures. The box plot for hardness shows a similar
trend in the ratings, while the box plot for slipperines shows no correlation.

Table 3.2: Correlation of Adjective Lines

Adjective Roughness Hardness Slipperiness Fineness

Roughness 1.00 0.81 −0.25 −0.98

Hardness 0.81 1.00 0.22 −0.83

Slipperiness −0.25 0.22 1.00 0.24

Fineness −0.98 −0.83 0.24 1.00

of the textures in the perceptual space as predictor variables. The independence of

the adjective lines was examined by analyzing the correlations in Table 3.2. There

was a high degree of negative correlation between the roughness and fineness scales,

and between fineness and hardness (p < 0.005). There was also a high degree of pos-

itive correlation between roughness and hardness (p < 0.005). No other correlations

were statistically significant.
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To determine the correlation between perceived dissimilarity of the textures and

the ratings along the four adjective scales, we performed a multilinear regression on

the average dissimilarity ratings. The pairwise differences in the average ratings of

textures along the four adjective scales were used to predict dissimilarity, D̂:

D̂ = b1dr + b2dh + b3ds + b3df (3.3.1)

where b1 = −0.081, b2 = 0.178, b3 = 0.071, and b4 = 0.366 are the regression coeffi-

cients, and dr, dh, ds, and df are the respective differences in the roughness, hardness,

slipperiness, and fineness between textures. Fig. 3.9 shows the normalized perceived

versus predicted dissimilarity. There was found to be a high degree of correlation

(R2 = 0.88) between the predicted and perceived dissimilarity values. Therefore,

approximately 88% of the dissimilarity between the textures can be explained by

the differences in the perceived roughness, hardness, slipperiness, and fineness of the

textures.

Comparing the adjective ratings to the measured parameters in Table 3.1, the

subjects performed best at discriminating the differences in roughness of the real tex-

tures (R2 = 0.54) and marginally worse at discriminating differences in slipperiness

(R2 = 0.31) and fineness (R2 = 0.29) although none of these correlations are statis-

tically significant. The rated hardness of the textures shows the greatest difference

from the relative measured hardness (R2 = 0.13).

63



0 0.5 1
0

0.5

1

R2 = 0.88

Predicted Dissimilarity
P

er
ce

iv
ed

 D
is

si
m

ila
rit

y
Figure 3.9: Normalized perceived vs. predicted dissimilarity. The perceived dissimilarity is
found using the dissimilarity ratings averaged across all subjects. The predicted dissimilarity
is found by performing multilinear regression on the average dissimilarity ratings using as
predictors the pair-wise differences in the average ratings of textures along the four adjective
scales.

3.3.4 Discussion

By evaluating how humans perceive both real and virtual textures, the study provided

many important insights into the strengths and weaknesses of our modeling and

rendering techniques. Since it was shown that the speeds and forces used by subjects

were not statistically different across textures, the perceived dissimilarities and the

corresponding adjective ratings were most likely not influenced by different interaction

conditions. The power and spectral centroid of the resulting vibrations, however, were

statistically different across textures and were presumably used by subjects during

rating.

The dendrogram in Fig. 3.7 shows that there are two distinct clusters separating

virtual and real silk and vinyl from virtual and real rough plastic, canvas, and floor

tile. Comparing this clustering to the adjective ratings in Fig. 3.8 and the measured
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physical parameters in Table 3.1, one can conclude that the main distinction between

the two groups is their respective roughnesses. Furthermore, from the ANOVA anal-

ysis on the adjective ratings along the four scales, we determined that the distinction

between virtual and real textures is not statistically significant when comparing the

rated roughness of the surfaces. Thus, our modeling and rendering methods accu-

rately capture and recreate the perceptual feeling of roughness of real textures, which

supports the use of tool vibrations to represent roughness [10, 11, 58, 119]. However,

textures that were rated rough were also commonly rated coarse, and textures rated

smooth were also rated fine. Although roughness and fineness were used as separate

perceptual dimensions in previous research [33], the high level of correlation between

the two reveals that subjects were not able to effectively separate the dimensions in

this study. This interaction is supported by the study ran in [13], which indicated

that both physical roughness and fineness contribute to a subject’s personal definition

of perceived roughness.

Although the clustering of the textures along the rough/smooth parameter shows

promise for our methods, the real and virtual versions of the same textures are not

directly clustered together. This disparity indicates that other perceptual parameters

that are not being directly modeled and rendered are important in the realism of

virtual textures. Differences in the rated hardness of textures were significant between

real and virtual surfaces, but Fig. 3.8 does show similar trends across the five textures

of both types. Since all of the virtual textures were rendered on the same piece of
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acrylic, and since hardness was not directly modeled or rendered, one might expect all

of the virtual textures to be rated the same hardness as the acrylic piece, which was

hardest of the materials (52.1 N/mm). Since the virtual textures received different

hardness ratings, the vibrations that were played to the subject seem to have created

an illusion of differing hardnesses, which we would expect because of the interplay

between the vibrational characteristics of the tool-hand-surface system and the surface

stiffness. More tests would be needed to confirm the effect of data-driven texture

vibrations on the perceived hardness of a surface. However, to fully capture the

hardness dimension, the surface stiffness must be rendered separately using a force-

feedback device. Additionally, the hardness ratings of the real textures showed the

lowest correlation to the measured stiffness parameters among the four parameters.

This inconsistency may be due to the fact that subjects were not allowed to tap

or statically press into the surface, which are the motions humans typically use to

evaluate the hardness of an object [65].

Further variation in the clustering can be explained by the slipperiness ratings.

Each virtual texture was consistently rated as more slippery than its corresponding

real texture, as indicated in Fig. 3.8. However, there was not significant variation

in the rated slipperiness when comparing across textures for either real or virtual

textures. This similarity is not supported by the measured coefficients of friction in

Table 3.1, indicating that there were factors other than friction affecting the percep-

tion of slipperiness of the real textures. When a tool is dragged across a real rough
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surface, the tooltip catches on the bumps, which cause impulses to the tooltip in

addition to the friction of the material. Thus, it may have been difficult for subjects

to separate the slipperiness of a real texture from its roughness [11], and the higher

slipperiness ratings of the virtual textures may be due partly to their inability to

provide these hard stops. This discrepancy in slipperiness may also be partly due to

the choice of the acrylic piece as the base on which to render the virtual textures. The

acrylic piece was rated as the most slippery, which agrees with its measured coeffi-

cient of friction (µk = 0.13). Choosing a less slippery base material would potentially

increase the slipperiness match between real and virtual by decreasing the slipperi-

ness of the virtual textures, but fully capturing slipperiness requires that friction be

rendered directly, which cannot be done with the current tablet system.

3.4 Summary

This Chapter presented a method for using texture model sets to create realistic

virtual textures in real time. The TexturePad system measures a user’s force and

speed and outputs a spectrally accurate time-domain vibration signal to a Haptuator.

We ran a study that evaluated the realism of our virtual textures and the strengths

and weaknesses of our modeling approach. Subjects rated the similarity of pairs of

textures. Subjects also rated all textures along four adjective scales (roughness, hard-

ness, slipperiness, fineness). The study indicated that our virtual textures accurately

capture and recreate the roughness of the real textures. However, the rated hardness
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and slipperiness of the virtual textures did not correlate well with the real textures.

Therefore, hardness and slipperiness should be added to the rendering process to

improve the realism of our virtual textures. Our current TexturePad system is in-

capable of modulating stiffness or friction, so a different rendering platform must be

implemented to provide these other aspects of the textures. Although our modeling

method has been shown to work well for isotropic, homogeneous textures, this is still

a limited subset of the types of textures that are commonly encountered. Thus ad-

ditional modeling considerations are needed to expand the utility of our methods to

model anisotropic and periodic textures as well.

The recording, modeling, and rendering methods presented in Chapters 2 and 3

were demonstrated at the 2013 IEEE World Haptics Conference in Daejeon, South

Korea to approximately 300 attendees [23]. Individuals were encouraged to bring their

own isotropic surfaces and make their own texture recordings, which we then used

to create a virtual version of their texture. Approximately 50 attendees participated

in both the recording and modeling part of the demonstration, and the remaining

attendees tried only the rendered virtual textures. This demonstration won the Best

Hands-On Demonstration award by audience vote (out of 80 demonstrations).
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Chapter 4

Three-Dimensional Rendering of

Haptic Surfaces

The field of haptic rendering seeks to understand the sensations felt during physical

interactions to create realistic three-dimensional virtual objects that can be felt as

well as seen. Traditional haptic rendering algorithms and devices, however, are inca-

pable of outputting high-fidelity reproductions of surface contacts [17]. Physics-based

simulations of textured surfaces are too computationally complex for real-time haptic

rendering [85]. Therefore, surfaces are commonly represented using a Hooke’s law

relationship with output force proportional to the user’s penetration into the object.

The maximum surface stiffness an impedance-type haptic device can stably render is

limited by the system’s sampling rate, computational time delays, and quantization

of position measurement and force output in the device [31]. These limitations cause
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hard virtual objects to feel unrealistically soft and spongy. Friction and flexibility

in the device limit its ability to accurately reproduce high-frequency vibrations [17],

meaning that virtual surfaces often do not include texture and thus feel smooth and

slippery.

To overcome the limitations of physics-based simulation, many researchers have

sought to capture the complexities of physical interactions through data-driven mod-

eling methods, which rely on data recorded during the real interaction of interest [83].

Data-driven modeling methods have shown promise in creating realistic virtual sensa-

tions, but most focus on modeling only one component of the surface, as summarized

in Section 2.1. For example, Chapters 2 and 3 present our methods for creating virtual

haptic textures by modeling and rendering the high-frequency vibrations that result

from dragging a tool across textured surfaces at different forces and speeds. The hu-

man subject study in Section 3.3 showed that these vibrations accurately presented

the roughness information of the surface, but they did not capture any of its slipper-

iness information and did not fully capture its hardness. This result indicated that

other modeling and rendering components are necessary to fully capture and recre-

ate the haptic sensations felt when touching surfaces with a tool. The tablet system

we created for rendering textures cannot modulate surface friction or stiffness, so we

needed to develop a different rendering platform. We began this process by extending

our rendering approach to display textures and surface friction on a three-dimensional

object using a Sensable Phantom Omni [21]. This rendering software was released in
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our open-source Penn Haptic Texture Toolkit, which is discussed in Appendix A.

One benefit of using an Omni is that surface stiffness can be directly controlled.

However, the Omni cannot output surface stiffnesses higher than 2.3 N/mm [3], which

is much lower than the stiffness of many real objects. Furthermore, the maximum

stable stiffness is actually less than the Omni’s specified maximum stiffness [31].

Therefore, simply modulating the stiffness of the virtual surface is not sufficient for

accurately portraying hardness. Displaying the high-frequency transient vibrations

that occur when tapping on a surface has been shown to increase the perceived hard-

ness of virtual objects and provide a better perceptual match with real surfaces than

Hooke’s law alone [62].

This Chapter builds upon our past work in texture rendering discussed in Chap-

ters 2 and 3 to capture the additional surface properties of slipperiness and hardness.

Our haptic surface models are comprised of three separate components: friction,

tapping, and texture. The individual model components are based on acceleration,

force, and motion data that are recorded when interacting with the physical sur-

faces through a tool. We render these realistic tool-mediated virtual haptic surfaces

through a combination of force and vibrotactile feedback.

We evaluate these haptic surfaces through two separate human-subject studies.

Section 4.5 discusses a study we designed and ran to evaluate the importance of cre-

ating texture vibrations that respond to user force and speed. This study investigates

the individual effect of these two user inputs on the realism of our virtual textures.
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Section 4.6 discusses a second study we designed and ran to evaluate the improve-

ments in realism that can be achieved by adding friction, tapping, and texture cues

to a virtual surface. This study assesses the contribution of the three components

of the haptic surface model and determines whether all three model components are

needed to create realistic virtual versions of each surface. This Chapter presents work

published in the Proceedings of the IEEE Haptics Symposium [20] and work that was

submitted for publication in the IEEE Transactions on Haptics [19].

4.1 Background

Traditional rendering schemes cannot fully capture the haptic sensations a person

experiences when touching physical objects. These rendering algorithms present the

shape of objects through a linear Hooke’s law relationship that relates the output force

to the user’s penetration into the object [120], but they are missing other important

haptic cues. When contacted through a tool, objects can be characterized by three

main perceptual components: slipperiness, hardness, and roughness [81]. To capture

these three perceptual dimensions, researchers have sought ways to accurately model

and render surface friction, tapping behavior, and texture vibrations. Since haptic

rendering schemes run in real time, they must model haptic interactions through a

simplification of the underlying physics. To achieve this simplification and create

virtual haptic interactions that feel realistic, many researchers have implemented

data-driven methods, which seek to capture the output response of a system given
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user inputs [83].

The perceptual dimension of slipperiness has been found to originate from surface

friction [81]. Kinetic friction is modeled as the tangential force that resists motion

when a tool is dragged across a surface with a certain normal force and tangential

speed. In addition, some friction models include a region of static friction, which re-

sists the start of motion. Several friction modeling techniques of differing complexity

have been explored for use in haptic rendering. Richard et al. presented a method for

modeling the friction between an aluminum block and three different surface materials

from measured force, acceleration, and velocity data [93]. After considering several

candidate models, Richard et al. chose a modified Karnopp friction model. Worden

et al. also explored modeling pre-sliding and sliding friction by testing a number of

grey-box and black-box models using friction data that was recorded using a tribome-

ter [115]. Jeon et al. fit force, position, and velocity data to a Dahl friction model,

which was then used to render friction in a haptic augmented reality scheme [51]. In

previous work, we modeled the friction between a hemispherical tool and a textured

surface using a modified Coulomb friction model that included a region of viscous

friction around zero velocity [21]. Many different friction models have been proposed,

and the behavior of the surface friction varies greatly depending on the properties of

the two surfaces in sliding contact. Therefore, an appropriate friction model must be

chosen by observing the behavior of the individual system. During rendering, friction

is typically displayed to the user through a force-feedback haptic device.
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Researchers have traditionally believed that perceptual hardness is related to the

elasticity or compressibility of a surface [81]. However, those studies focused on the

human perception of hardness using a bare finger. LaMotte studied the perception of

hardness through a tool and found that humans were significantly better at discrim-

inating the hardness of surfaces when tapping rather than when statically pressing

the tool into the surface [65]. This result indicates that the transient vibrations

elicited from tapping a tool on a surface largely determine the surface’s perceived

hardness. Many methods have been explored to model these transient signals to

change the perceived hardness of virtual surfaces. These methods typically follow

either an input-output or database approach [83]. In an input-output approach, a

mathematical relationship is found between the system parameters (e.g., material

type, incoming velocity) and the system’s output (e.g., measured vibrations). For

example, Wellman and Howe approximated the force response of a stylus tapped on

a rigid surface as an exponentially decaying sinusoid with a frequency that depends

on the material [112]. Okamura et al. extended this work by creating a library of tap-

ping responses for multiple materials and simultaneously displaying normal force and

tapping vibrations [82]. In a database approach, a set of transient vibration signals

are recorded from repeated taps on the surface and are stored directly. Kuchenbecker

et al. [62] ran a study to compare the realism of virtual surfaces using a database ap-

proach, an input-output approach, and Hooke’s law. The study showed that directly

playing either the velocity-scaled recorded acceleration transients or manually tuned
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decaying sinusoids created a virtual surface that most closely matched the perceived

hardness of the real surface. Displaying event-based tapping transients through a

force-feedback device has been shown to significantly increase the perceived hardness

of a virtual surface over the use of proportional feedback alone, but it’s not yet known

whether softer surfaces should have tapping transients.

The perceptual roughness of surfaces felt through a tool is known to depend on

the vibrations induced during dragging [10, 13, 58, 119]. Following the principle of

distal attribution, you recognize that these vibrations come from the contact between

the tool and the surface [74]. During contacts with real textures, the amplitude

and frequency of these vibrations change with normal force [70] and exploratory

speed [71]. Logically, virtually rendered textures designed to simulate real surfaces

should respond to the user’s motions in the same manner. Loomis has asserted that

to achieve full distal attribution, the signals that are felt must correspond to the user

inputs in a physically appropriate manner [74]. Many researchers have explored this

problem of creating realistic data-driven texture vibrations models as a function of

user input.

Several of these texture rendering approaches have focused on modeling textures

as a function of user speed. Vasudevan and Manivannan modeled the frequency spec-

trum of the vertical perturbations from dragging a Phantom Omni across a textured

surface [107]. They recorded the spectrum for two tangential speeds and interpolated

between them during rendering. Two groups have also directly played back recorded
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texture vibrations using a cable-driven system [97] and a voice-coil actuator [102]. In

these two examples, the recorded vibrations were sped up or slowed down depending

on user speed.

More sophisticated texture modeling techniques have created haptic textures that

depend on both user force and speed. Okamura et al. represented patterned tex-

tures as a set of data-driven decaying sinusoids at the material’s characteristic fre-

quency [82]. During rendering, the amplitude of the output vibrations depended on

user force and speed for both stochastic and patterned textures; the frequencies de-

pended on tool speed for only patterned textures. Guruswamy et al. created texture

models based on a spatial distribution of infinite-impulse-response filters that are fit

with decaying sinusoids [36]. The amplitude of the acceleration profile varied with

normal force, and the rate at which the modeled impulse forces were played depended

on user speed. In past work, we have also modeled texture vibrations as a function of

user force and speed using time series models [21, 24–26, 95, 96]. We have postulated

that the perceived realism of these virtual textures stems from the fact that they re-

spond to both force and speed, but we had never tested this hypothesis. Furthermore,

researchers have not previously studied whether all surface models need to include

texture.

Past work in haptic modeling and rendering has tended to focus on capturing only

one perceptual dimension. However, a surface’s slipperiness, hardness, and roughness

are all important in creating the full perceptual feel of the surface. This Chapter
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seeks to create realistic haptic surfaces by combining friction, tapping, and texture.

4.2 Surface Modeling

The haptic surface models presented in this Chapter are composed of three sepa-

rate modeling components: surface friction, tapping transients, and texture vibra-

tions. These three components seek to capture the surface’s perceptual slipperiness,

hardness, and roughness information, respectively. All three component models are

made from data that is recorded from interactions between a handheld tool and the

real surface. To facilitate data collection, the real surfaces studied in this Chapter

were mounted to acrylic using double-sided tape. Our custom device for recording

tooltip speed, contact force, and high-frequency acceleration of a tool was described

in Section 2.2.1. This section details the recording, data processing, and modeling

procedures that we use to build the three component models for a given surface.

4.2.1 Modeling Friction

Friction Data Recording

Ten seconds of data were recorded during an interaction with the physical surface.

The experimenter dragged the tool across the surface in a fluid circular motion while

the tool’s position, orientation, and force were recorded using the tool’s internal

sensors described in Section 2.2.1.
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Stationary (        ) Presliding stick (             ) Sliding (              ) 

Figure 4.1: Representation of a tool dragging along a surface in the Dahl friction model.
The tool and a point on the surface are modeled as being connected by a spring.

Due to the large difference in the sampling rates of the force and position data

(10,000 Hz vs. 240 Hz), upsampling the position data does not allow for accurate

estimation of the normal and tangential vectors for all time. This interpolation often

results in negative estimated friction force values when the direction of travel changes

drastically between position measurements. Therefore, we downsampled the three

axes of force data to 240 Hz. The tool’s position and orientation data were then used

to separate the downsampled force measurements into their tangential and normal

components. The recordings used to make the friction models in this Chapter are the

same as those available in our open-source Penn Haptic Texture Toolkit (HaTT) [22],

which is discussed in Appendix A.

Friction Model Creation

The Dahl friction model, which was first presented in [27] and adapted for use in haptic

rendering by Hayward et al. [42], represents friction as quasi-static contact bonds
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Figure 4.2: Friction data for a sample material, MDF. The friction coefficient is the slope
of the best fit line constrained to pass through the origin (R2 = 0.84).

that are continuously formed and then broken. The Dahl friction model beneficially

accounts for static friction and the transition to sliding motion. We found that

the simplest version of Dahl friction for sliding objects, the stick-slip model, was

appropriate for modeling the friction between the recording tool and the surfaces

modeled in this Chapter. The stick-slip model has a region of presliding displacement

followed by sliding contact with simple Coulomb friction.

The basis for the stick-slip Dahl friction model is shown in Fig. 4.1. The tooltip

position x and a point on the surface w are modeled as being connected by a spring.

The surface remains fixed as the tool is dragged. The spring connecting x and w

stretches until the spring stretch z reaches the maximum value zmax. At this stage,

the point on the surface moves with the tool to keep the spring stretch constant at

zmax, and Coulomb friction is followed.

Coulomb friction dictates that the tangential friction force Ff is proportional to

the normal force Fn via Ff = µkFn. A line through the origin was fit to the plot of

the recorded tangential versus normal force, as shown in Fig. 4.2. The slope of the
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line is the kinetic friction coefficient, µk.

4.2.2 Modeling Tapping Transients

Tapping Data Recording

The tapping model presented in this Chapter is adapted from the event-based feed-

back presented in [62]. Ten seconds of position, force, and acceleration data were

recorded while the experimenter used the recording device to tap on the selected sur-

face. The experimenter varied the speed at which the contact occurred to capture a

wide range of incoming speeds during each recording.

The three recorded acceleration signals from the sensor’s three axes were mapped

onto a single axis using the DFT321 algorithm presented in [66], which preserves the

spectral and temporal properties of the three-axis signals. This mapping is possible

because humans cannot determine the direction of vibrations at high frequencies [9].

The combined acceleration was high-pass filtered at 20 Hz to remove the effects of

gravity and purposeful human motion. The tool’s position data were upsampled to

10 kHz, and the speed of the tool just prior to tapping was calculated using the

discrete-time derivative of the upsampled position data.

Tapping Model Creation

The combined acceleration signal was manually partitioned into the individual taps,

which were aligned temporally. Each individual tap was labeled with its incoming
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Figure 4.3: Recorded tapping transient accelerations for two sample materials. The am-
plitude of the vibrations depends on the incoming speed of the tool. The spectral content
of the vibrations depends on the hardness of the surface.

speed. Following [62], we saved 100 ms of data after contact. Sample sets of taps for

two different materials are shown in Fig. 4.3. The tap response differs significantly

between the two materials. The taps from the harder surface (MDF) are of higher

frequency and amplitude. The taps from the softer surface (scouring pad) are slower

acting and lower power.
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4.2.3 Modeling Texture

Our texture modeling methods were presented in Chapter 2. A summary of the data

recording and modeling steps are included here for completeness.

Texture Data Recording

Ten seconds of data were recorded for each texture while the experimenter dragged

the recording device along the surface using natural and fluid motions. The power and

frequency content of the acceleration signals depend greatly on the normal force and

scanning speed used during data capture. Therefore, the experimenter used a wide

range of forces and speeds to fully capture the behavior of the tool-surface system

under many different interaction conditions.

After the data were recorded, they were processed into measurements of normal

force, friction force, tooltip speed, and combined acceleration signal as discussed

in [26]. The three acceleration signals were combined into a single signal using the

DFT321 algorithm [66], and the combined signal was high-pass filtered at 20 Hz to

remove the effects of gravity and purposeful human motion. The speed and force

signals were low-pass filtered at 100 Hz to remove noise. A sample processed data

recording for MDF is shown in Fig. 4.4. The texture recordings used to create the

models in this Chapter are the texture data sets available in HaTT [22], which is

discussed in Appendix A.
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Figure 4.4: Recorded tool acceleration, speed, and normal force signals from dragging the
recording tool across MDF in a circular motion. The accelerations change as a function of
the scanning speed and normal force used during the interaction.

Texture Model Creation

Model Structure: In this Chapter, as in past work [21, 25, 26, 95, 96], we borrow

from the principles of time series analysis and model the acceleration signal using an

autoregressive (AR) model structure, an all-pole infinite impulse response (IIR) filter

commonly used in speech processing [16]. An AR model is appropriate for modeling

our acceleration signal due to the similarities between an auditory signal and the

acceleration waveforms recorded here. Defined by its coefficients and variance, an

AR model calculates the system’s next output value as a linear combination of the

previous outputs.

A necessary condition for the AR model structure is strong stationarity, which

requires that the behavior of the signal does not change over time. Acceleration

signals recorded during natural interactions violate this condition, and therefore we
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cannot model the entire signal as a single autoregressive model. Instead, we segment

the acceleration signal and model it as a piecewise autoregressive process. We use

the Auto-PARM segmentation algorithm [28] to parse the acceleration signal into

segments in which the signal’s spectral characteristics are approximately constant.

Modeling Process : An AR model was created for each segment, and this model is

labeled with the median force and median speed that were used during recording

of that segment. The individual AR models for a single material are stored in a

Delaunay triangulation with a single AR model at each triangle vertex.

A haptic loop rate of 1000 Hz is required when rendering the textures in a virtual

environment created using OpenHaptics and OpenGL, as was done in [21]. Since

the acceleration data was recorded at 10 kHz, the AR models must be downsampled

by a factor of ten. The model downsampling process creates an equivalent model at

1000 Hz by using a zero-order hold on the inputs, consequently adding zeros to the

model. The addition of these zeros transforms the AR models into autoregressive

moving-average (ARMA) models, where the output depends on the history of both

the past outputs and the past inputs. An ARMA model corresponds to the following

discrete-time transfer function:

H(z) =

∑q
k=0Ckz

−k

1−∑p
k=1 Akz

−k (4.2.1)

where p is the AR model order, q is the MA model order, and Ak and Ck are the kth

AR and MA coefficients, respectively. Furthermore, when the model is resampled,
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the spectral density must remain constant. Therefore, the model variance must be

scaled by the ratio of the sampling rates:

var2 =
Fs,2
Fs,1

(var1) (4.2.2)

where Fs,1 and Fs,2 are the original and new sampling rates, respectively.

The texture models created using this process are available in HaTT [22], which

is discussed in Appendix A.

4.3 Surface Rendering

This Section discusses our methods for rendering virtual haptic surfaces using the

three model components described in Section 4.2. Each component is rendered sepa-

rately and added to the output of the other components to create the full feel of the

surface. The rendering methods presented in this Section build on those described

in [26].

During rendering, the Omni measures the user’s position and outputs a force.

When the user is touching a virtual object, the endpoint position of the haptic device

is referred to as the Haptic Interface Point (HIP), and the corresponding point on the

surface of the object is referred to as the Ideal Haptic Interface Point (IHIP) [101].

The virtual surface is displayed using a Hooke’s law relationship so that the normal

force is proportional to the user’s penetration depth into the object (the distance

between the HIP and the IHIP) with a gain of 0.25 N/mm. This gain was chosen to
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allow all surfaces to have the same underlying stiffness; the perceived hardness was

then changed between surfaces by the tapping transients alone. A higher gain left

the softer surfaces feeling too hard. Furthermore, we wanted subjects to use a large

range of normal forces when interacting with the virtual surface without saturating

the Omni’s force output. Because the surface was rendered using a Hooke’s law

relationship, the force resolution is proportional to the Omni’s position resolution.

When the stiffness value is high, only a small penetration depth is needed to reach

the maximum force, making it difficult for users to apply small forces.

4.3.1 Rendering Friction

The surface friction was rendered using the stick-slip Dahl friction model presented

in Section 4.2.1. The HIP x and the IHIP w are connected by a virtual spring. The

first stage of spring stretch represents the presliding stick shown in Fig. 4.1. The

second stage of spring stretch, the sliding region, follows simple Coulomb friction.

The location of the adhesion point on the surface is calculated as:

wk =

xk − sgn(xk − xk−1)zmax if |xk − wk−1| > zmax

wk−1 otherwise

(4.3.1)

where wk−1 is the previous location of the adhesion point, xk is the current location

of the tool, and xk−1 is the previous location of the tool. The value of zmax was

empirically tuned to ensure stability of the system. Surfaces with higher friction

required a larger value for zmax than surfaces with low friction, leading us to choose
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zmax to be proportional to the kinetic friction coefficient (zmax = 4 mm · µk). The

friction force is then calculated as:

zk = xk − wk

Ff = µkFn

(
zk
zmax

) (4.3.2)

The friction force is rendered using the motors of the Omni and is displayed

opposite the direction of motion of the IHIP.

4.3.2 Rendering Tapping

During rendering, the displayed tapping response is a function of the user’s incoming

contact speed vin, as in [62]. Because the user’s mass is constant, the momentum of the

Omni-hand system (p = mvin) varies linearly with incoming velocity. Therefore, the

amplitude of the transients must also scale with the incoming velocity. This velocity

dependence is also shown in the recorded tapping transients in Fig. 4.3. For incoming

speeds lower than the minimum recorded tapping speed, the lowest speed transient

is scaled by the quantity vin/vmin. For incoming speeds higher than the maximum

tapping speed, the highest speed transient is directly played. For intermediate speeds,

the transients from the two bounding speeds are interpolated before being played.

Although the tapping transients are recorded as accelerations, they must be ren-

dered as forces to provide the momentum cancellation necessary to elicit the sensations

of tapping on a stiff surface. If the tapping transients are instead played as vibra-

tions, such as through a voice-coil actuator, the user’s tool continues to penetrate
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the surface, creating the sensation of a soft surface. Therefore, to play the tapping

vibrations as a force, we first scaled the signal by the effective mass of the handle and

the user’s hand (0.05 kg, as determined in [21]) before playing it through the motors

of the Omni in the direction of the surface normal. Although adding the tapping

force to the stiffness response momentarily exceeds the maximum steady-state force

output of the device, the duration of the high force is sufficiently small (< 0.1 s) not

to overheat the motors.

4.3.3 Rendering Texture

This Section describes the methods for synthesizing and rendering a texture vibration

signal using the models created as described in Section 4.2.3. This Section extends

the texture rendering methods that were presented in [21] to include texture signal

output through a dedicated actuator (a Haptuator) instead of through the motors of

the Omni.

Texture Signal Generation

In real time we generate a texture vibration signal that varies according to the in-

teraction conditions. Measurements of the user’s current normal force and tangential

speed are used to interpolate between models in the Delaunay triangulation. To en-

sure stability, we first convert the ARMA coefficients into line spectral frequencies

(LSF) before interpolation, as described in [60]. After interpolation, the LSFs are
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converted back into ARMA coefficients. New coefficients and variance values are

calculated at a rate of 1000 Hz.

A white Gaussian excitation signal with power equal to the interpolated variance

is generated and used to drive the interpolated model. The excitation signal’s history

and a history of the previous vibration outputs are used to calculate the new vibration

output at a rate of 1000 Hz.

Hardware

In our initial work on this topic [21], the texture vibrations were displayed using

the motors of the Omni primarily to simplify the implementation of our open-source

rendering methods by others. However, displaying the vibrations through the Omni

motors distorts the signal significantly because the connection from motor to hand

is not rigid [79]. Therefore, we updated our rendering system to output the texture

vibrations through a dedicated voice-coil actuator, a Haptuator (Tactile Labs TL-

002-14R); this model is an updated version of the model used in our TexturePad

system [26]. We first considered putting the Haptuator within the body of a custom-

made Omni handle, but this location requires the Haptuator to be placed behind

the user’s grip. The vibrations then did not seem to emanate from tooltip contact,

degrading the user experience. Therefore, we placed the Haptuator at the tip of the

Omni handle, as shown in Fig. 4.5. We found that aligning the Haptuator axially

to the handle felt better than orthogonal to the handle, presumably because of the
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Figure 4.5: Omni with Haptuator attached to the stylus tip.

mechanical properties of the gimbal. The Haptuator was attached with a zip tie.

The texture vibrations are scaled and output through an analog output pin on

a Sensoray 626 PCI card at a rate of 1000 Hz. This output voltage is then passed

through a linear current amplifier with a gain of 1 A/V to drive the Haptuator.

4.4 Choosing Distinct Surfaces

Building from the database of friction and texture models in [22], we made a complete

set of 100 surface models including friction, tapping transient, and texture compo-

nents. This Section discusses the steps we used to select a set of fifteen perceptually

distinct surfaces for use in the human subject studies presented in the following Sec-

tions. We chose the surfaces by examining physical properties that correspond to

perceived slipperiness, hardness, and roughness.
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4.4.1 Friction Estimation

As described in Section 4.2.1, a Dahl friction model was fit to the data recorded

for each surface. The resulting kinetic friction coefficient was used to represent the

slipperiness of each surface.

4.4.2 Tapping Transient Estimation

The perceived hardness of each surface was estimated by fitting a line to a plot of

measured peak normal force at tap versus incoming speed, using the surface tapping

responses described in Section 4.2.2. The slope of this line, which we refer to as the

tap response factor, was shown to be a valid measure of the primary trend of the

dynamics of tapping transients in [32].

4.4.3 Roughness Estimation

We created an indicator for the perceived roughness of the surfaces by synthesizing

vibration signals for all 100 textures using a representative force-speed trajectory that

spans the area of force-speed space typically explored by humans. The total power of

the resulting vibration signal was calculated; this value has been shown to correspond

to the roughness of the surface [10,11,58,119].
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Figure 4.6: Clusters of surfaces based on kinetic friction coefficient, tap response factor,
and power of texture vibrations. A subset of surfaces that spans the perceptual space
represented by the original 100 surfaces was chosen by selecting one surface from each
cluster.

4.4.4 Surface Clustering

We plotted the 100 surfaces in the three-dimensional space defined by these three

measurements, as shown in Fig. 4.6. The studies presented in Sections 4.5 and 4.6 re-

quired a subset of surfaces that are distinct and span the perceptual space. To choose

this subset, we performed hierarchical clustering on the z-scores of the three param-

eters (friction coefficient, tap response factor, and vibration power). An analysis of

the scree plot of the distances to cluster centroid indicated that about fifteen clusters

were needed to form distinct groups of surfaces and capture the variation between

groups. Fig. 4.6 shows the resulting clustering for fifteen clusters. We wanted the
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Figure 4.7: The fifteen surfaces chosen from the cluster analysis to span the perceptual
space covered by the original 100 surfaces.

materials to span the perceptual space, so we chose one surface from each cluster.

The fifteen chosen surfaces are shown in Fig. 4.7.

4.5 Human Subject Study: Responsiveness to User

Force and Speed

This Section describes the human-subject experiment we ran to assess how the texture

vibrations’ responsiveness to user force and speed affect the realism of the virtual

textures. All procedures were approved by the Penn IRB under protocol 820685.

Fifteen subjects were recruited for the experiment (eight males and seven females).

Thirteen subjects were right-handed, and two subjects were left-handed. Six subjects

had no experience with haptic devices, eight subjects had limited experience, and one

subject had extensive experience.
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Figure 4.8: Experimental set-up. The subject sat at a table in front of a computer and
wore headphones playing pink noise to mask auditory cues. The subject used an Omni to
feel the virtual surfaces and an adapted Omni handle to feel the real surfaces.

4.5.1 Experimental Set-up

The subject sat at a desk in front of a computer throughout the study and wore

headphones playing white noise to mask outside sounds, as shown in Fig. 4.8. This

intervention ensured that the subject used only haptic, and not auditory, cues during

the study. The subject interacted with the physical surfaces using a detached Omni

handle that was modified to have a 3.175-mm-diameter stainless steel hemispherical

tooltip, chosen to match the tooltip used during data recording. Each surface was

mounted on a 10 cm×10 cm piece of acrylic using double-sided tape. During the

experiment, the physical surface was placed in a stage that holds the surface stationary
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above the table so the real and virtual surfaces are presented at the same height. The

corresponding virtual surface was represented as a horizontal plane to match the size

and orientation of the physical surface, and an image of the surface was displayed

on the screen, as shown in Fig. 4.8. The experimenter monitored the subject’s hand

during the experiment to ensure that it did not contact the surface or the Haptuator.

Subjects were instructed to limit their normal force to 2.75 N when touching the

virtual surface to avoid saturating the motors of the Omni, and a visual indicator

was activated if the subject exceeded this force threshold.

4.5.2 Experimental Procedure

Before beginning the study, subjects were allowed to feel all of the real surfaces with

the tool for as long as desired. This practice ensured that the subjects were familiar

with the surfaces and the range of haptic sensations they would feel during the study.

Subjects were also given time to practice using the Omni by exploring a simple haptic

environment consisting of a sphere and cube inside of a box.

In the study, subjects rated the similarity between each real surface and four

virtual versions of that surface. The four virtual surfaces were created by altering

the texture vibrations’ responsiveness to user force and speed. The control surface

(Condition FS) was created by allowing the texture vibrations to respond to both

the user’s normal force and tangential speed. The texture vibrations for the second

surface (Condition F) responded only to normal force, and speed was assumed to be a
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Table 4.1: Rendering Conditions

Normal Force Tangential Speed

Condition FS user force user speed

Condition F user force Sc=130 mm/s

Condition S Fc=1.2 N user speed

Condition φ Fc=1.2 N Sc=130 mm/s

constant value. The texture vibrations for the third surface (Condition S) responded

only to tangential speed, and normal force was assumed to be a constant value. The

texture vibrations for the fourth surface (Condition φ) did not respond to the user’s

normal force or tangential speed; they were generated assuming a constant force and

speed. For Conditions F and φ, speeds less than 1.0 mm/s were rounded to zero so

that no vibrations were played after the user stopped moving. A summary of the

experimental conditions is shown in Table 4.1. The tapping transient and friction

rendering were the same in all conditions.

The constant force and constant speed values were chosen using the modeled forces

and speeds for the fifteen textures in this study because they are representative of

the forces and speeds humans use when interacting with the physical surfaces. The

mean of the modeled force and mean of the modeled speed were calculated across all

textures, excluding models with a force greater than the saturation force (2.75 N). The

constant force value for the rendering conditions was set equal to the mean modeled

force (Fc = 1.2 N), and the constant speed value was set equal to the mean modeled

speed (Sc = 130 mm/s).

Samples of the output signals for the four rendering conditions are shown in
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Figure 4.9: Sample texture vibration signals that were synthesized for the four rendering
conditions using the Nylon Mesh texture model. The force-speed trajectory was chosen to
span the typical force-speed space explored by subjects when feeling the surfaces.

Fig. 4.9 for the Nylon Mesh material. A sample force-speed trajectory was chosen

to span the typical forces and speeds used by humans when dragging a tool across

a surface. The force-speed trajectory, which is shown overlaid on the Delaunay tri-

angulation of models for Nylon Mesh, remains inside the convex hull at all times.

The control texture signal (Condition FS), which responded to both user force and

speed, was synthesized using this force-speed trajectory. The signal for Condition F

was synthesized using the force measurements of the trajectory with the speed set to

a constant value; this modified trajectory lies on the line of constant speed shown in

Fig. 4.9. The signal for Condition S was synthesized using the speed measurements

of the trajectory with the force set to a constant value; this modified trajectory lies

97



on the line of constant force. The signal for the Condition φ was synthesized using

a constant force-speed signal; this modified trajectory is shown as a single point of

constant force and speed.

The subject was presented with one real surface and one of its four corresponding

virtual surfaces in each trial. The real surfaces were presented in randomized order,

as were the four rendering conditions within each surface. The subject rated the

similarity between a real surface and all four of its virtual versions before moving

on to the next real surface. Subjects were asked to rate the similarity of the virtual

surface to the corresponding real surface by placing a mark on a visual analog scale

from “completely different” to “completely the same”. Study data were collected

and managed using Research Electronic Data Capture (REDCap) tools hosted by

the University of Pennsylvania [41].

To best capture the effect of force and speed responsiveness on the perceived

similarity, we required subjects to use a range of normal forces and tangential speeds

when exploring each virtual surface before they were allowed to provide a rating for

the similarity between the real and virtual surface. The force-speed space was divided

into four quadrants: gentle force, slow speed; gentle force, fast speed; firm force, slow

speed; firm force, fast speed. The center of the force-speed space was set to (Sc, Fc).

Subjects were required to spend at least 5 seconds in each quadrant and were given

a visual indicator to display how much time they had spent in each quadrant, as

shown in Fig. 4.10. The circle indicators sequentially changed from red to green as
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Figure 4.10: Experimental set-up. The subject used a Phantom Omni with Haptuator
rigidly attached to the tip to interact with the virtual textures.

the time spent in that quadrant increased. The quadrant currently being explored by

the subject was highlighted in yellow.

4.5.3 Results

Each subject’s similarity ratings were normalized individually for each material by

subtracting the mean of the subject’s similarity ratings for that material. This nor-

malization scheme eliminated between-subject and between-material differences with-

out affecting within-material differences. The normalized similarity ratings are shown

in Fig. 4.11. A one-way analysis of variance (ANOVA) was performed for each ma-

terial on the normalized similarity ratings with rendering condition as the factor. A

multiple comparison test was conducted on the ANOVA results to determine which

conditions, if any, had a significantly different mean from the control condition for
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Figure 4.11: Comparison of similarity ratings across the four virtual versions of each
surface (Condition FS: responds to force and speed; Condition F: responds to force only;
Condition S responds to speed only; Condition φ: does not respond to force or speed.).
Statistically significant differences in similarity value from the control virtual surfaces are
marked with a bar and asterisks (∗ ∗ ∗ ≡ p ≤ 0.001, ∗∗ ≡ p ≤ 0.01, ∗ ≡ p ≤ 0.05).
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each material.

Removing the texture’s response to user speed (Condition F) caused a statistically

significant decrease in similarity for eleven surfaces: ABS Plastic (p = 6.12 × 10−5),

Blanket (p = 0.049), Brick 1 (0.039), Cork (p = 9.28×10−5), MDF (p = 0.010), Nylon

Mesh (p = 1.83 × 10−7), Paper Plate 2 (p = 0.0011), Sandpaper 100 (p = 0.039),

Silk 1 (p = 0.018), Tarp (p = 0.020), and Terra Cotta (p = 5.92× 10−5). Conversely,

removing the texture’s response to user force (Condition S) did not cause a statisti-

cally significant change in similarity for any of the surfaces. Removing the texture’s

response to both user force and user speed (Condition φ) caused a statistically signifi-

cant decrease in similarity for eleven surfaces: ABS Plastic (p = 8.75×10−5), Blanket

(p = 0.017), Brick 1 (p = 0.010), Cork (p = 5.45× 10−6), EPDM Foam (p = 0.0024),

MDF (p = 0.021), Nylon Mesh (p = 2.56× 10−6), Sandpaper 100 (p = 0.047), Silk 1

(p = 0.029), Tarp (p = 0.0024), and Terra Cotta (p = 0.012). However, there was not

a statistically significant difference in similarity for surfaces rendered without speed

responsiveness (Condition F) and surfaces rendered without both force and speed

responsiveness (Condition φ).

To compare the effects of removing force or speed responsiveness on the behavior

of texture vibration signals, a set of signals was synthesized using the force-speed

trajectory shown in Fig. 4.9. Four signals were synthesized for each texture following

the four rendering conditions. Both power and frequency spectra are important cues

in determining how haptic textures feel. Therefore, both should be taken into account
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when comparing the effects of force and speed response on the behavior of texture

vibration signals. The signals for Conditions F, S, and φ were compared to the control

signal (Condition FS) to determine how the power and spectrum of the signals change

when responsiveness was removed.

A windowed discrete Fourier transform was calculated for each signal using non-

overlapping windows of 32 datapoints, and the power in each window was calculated

from the DFT. The change in the signal’s power over time, which was calculated as

the standard deviation of the windowed power, is a measure of the power’s dependence

on changing user inputs. In Condition F, for example, changes in the signal’s power

over time are directly caused by changes in user force. We calculated the change in

power variation (P̂) between Condition FS and Conditions F, S, and φ to determine

the effect of removing responsiveness to user input on the signal’s power:

P̂x = std(PFS)− std(Px) (4.5.1)

where PFS is the windowed power of the control signal and Px is the windowed power

of the signal for the condition of interest. This subtraction normalizes the power

variation so P̂x is not affected by differences in overall signal power. The difference

between the two signals’ power variation estimates the amount of variation in power

that is lost when the signal’s response to user force and/or speed is removed. The

decrease in similarity was plotted against the change in power variation for the three

test conditions and a line of best fit was calculated. The slopes of the best fit lines
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Table 4.2: Comparison of Similarity to Texture Signal Behavior

Condition ∆Sim

∆P̂x
(R2)

∆Sim

∆ŜCx
(R2) ∆Sim

∆SDx
(R2)

Condition F 875.5 (0.33) 3.46 (0.22) 2.23 (0.38)

Condition S 1093.5 (0.30) 1.24 (0.28) 1.59 (0.32)

Condition φ 960.4 (0.57) 3.20 (0.31) 4.70 (0.65)

are shown in the first column in Table 4.2.

To compare the frequency spectra of the signals over time, the spectral centroid

was calculated for each window of the signal’s DFT using the equation:

SCj =

∑
kXj(fk)

2fk∑
kXj(fk)2

(4.5.2)

where Xj(fk) is the amplitude of the DFT in the jth window at frequency fk. The

change in the signal’s spectral centroid over time, which was calculated as the stan-

dard deviation of the windowed spectral centroid, is a measure of the spectrum’s

dependence on changing user inputs. We calculated the change in spectral centroid

variation (ŜC) between Condition FS and Conditions F, S, and φ to determine the

effect of the user input on the signal’s spectral centroid:

ŜCx = std(SCFS)− std(SCx) (4.5.3)

where SCFS is the windowed spectral centroid of the control signal and SCx is the

windowed spectral centroid of the signal for the condition of interest. The difference

between the two signals’ spectral centroid variations estimates the amount of spectral

variation that is lost when the signal’s response to user force and/or speed is removed.

The decrease in similarity was plotted against the change in spectral centroid variation
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Figure 4.12: Comparison of the change in similarity between the control surface and the
three experimental conditions to the conditions’ spectral difference metric.

for the three test conditions and a line of best fit was calculated. The slopes of the

best fit lines are shown in the second column in Table 4.2.

We proposed the spectral difference (SD) metric in [25] to compare two signals

with equal emphasis on spectral shape and power. We use a modified version of this

metric to compare Condition FS to Conditions F, S, and φ:

SDx =
P̂x

std(P̂x)
+

ŜCx

std(ŜCx)
(4.5.4)

Normalizing P̂x and ŜCx yields a dimensionless metric that weights the two factors

equally. The SD estimates the amount of power and spectral variation that is lost

when the signal’s response to user force and/or speed is removed. The decrease in

similarity is plotted against the spectral difference for the three conditions in Fig. 4.12,

and a line of best fit was calculated for each test condition. The slopes of the best fit

lines are shown in the third column in Table 4.2.
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4.5.4 Discussion

By evaluating the change in similarity between real and virtual textures caused by

the removal of force and/or speed responsiveness, this study elucidated the conditions

necessary to create realistic haptic textures. The similarity ratings shown in Fig. 4.11

indicate that allowing texture vibrations to respond to user speed alone is sufficient

for creating realistic virtual textures. Removing either speed responsiveness or both

force and speed responsiveness caused a statistically significant decrease in similarity

rating compared to the control condition for twelve of the fifteen textures. However,

removing force responsiveness alone did not cause a statistically significant change

in real-virtual similarity for any of the textures. Furthermore, removing both force

and speed responsiveness was not significantly different from removing speed respon-

siveness alone. Therefore, removing force responsiveness did not significantly alter

how realistic the virtual textures felt in this study. Although the addition of force

responsiveness caused an insignificant increase in similarity for seven of the textures

(ABS Plastic, Blanket, Cork, EPDM Foam, Nylon Mesh, Silk 1, and Terra Cotta),

it may not be feasible or practical to add force responsiveness due to limitations in

texture recording, modeling, or rendering. On the other hand, estimating user speed

from measurements of the user’s position over time is easier both computationally

and in terms of hardware, and it seems to be sufficient for rendering many haptic

texture vibrations.

Some textures, however, did not have a significant change in similarity when speed
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responsiveness was removed, which can be explained by physical characteristics of

the textures or limitations of the models. For example, we believe the differences in

similarity for Whiteboard are not significant because the vibrations produced from

dragging across its smooth surface are small and do not vary greatly with force and

speed. Therefore, subjects likely could not distinguish the subtle changes in the signal

for the four rendering conditions. The differences in similarity for Carpet 3 were also

not statistically significant due to properties of the surface itself. This sample is

comprised of a weave of strands attached to a base material. When dragging a tool

along the carpet at low forces, the tool remains on top of the woven material, which

produces texture vibrations that are well captured by our modeling and rendering

methods. However, if higher forces are applied, the tool can get stuck in the material,

eliciting impulse forces that cause the tool to temporarily stop. This behavior is not

captured by our current methods, which we believe greatly affected the similarity

ratings for this material. Several subjects commented on this lack of behavior of

the virtual surface as being a detriment to similarity. Since we could not accurately

match this behavior, the texture models for higher forces were less realistic than lower

force models, which caused confusion in the similarity renderings. Lastly, we believe

the differences in similarity for Polyethylene Foam were not significant due to the

range of the texture’s modeled forces and speeds. There were few models above the

constant force and constant speed values used in rendering Conditions F, S, and φ.

Therefore, the behavior of the signal did not change significantly if the subject used
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high forces and/or high speeds. Since the overall variation in the displayed signal

was less than expected, none of the similarities were significantly different between

the rendering conditions. This result highlights the need to record sufficient data

to model the haptic texture at the interaction conditions the user will employ when

feeling the virtual textures.

The sample signals shown for the four rendering conditions in Fig. 4.9 support our

result that responding to user speed is more important than responding to user force.

The signal that responds to force alone was fairly uniform across the time window

except for a slight decrease in the power of the signal at about t = 7 s. In contrast,

the signal that responds to speed alone appears more similar to the control signal,

which responds to both force and speed. It exhibits the same pulse behavior of the

control signal, and the power varies greatly over the time window. As expected, the

signal that did not respond to either force or speed was uniform for all 10 seconds.

These observations match our result from the rated similarity values, which showed

that responding to user speed is more important than responding to user force.

Although our results show that allowing texture vibrations to respond to user

speed is essential for increasing realism, the relationship between the change in simi-

larity and changes in the behavior of the texture signals depends on which response

component is removed. Table 4.2 illustrates how changes in similarity reflect changes

in power and spectral behavior of signals generated for the different rendering condi-

tions. In the first column of this table, we compared the power variation in a repre-
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sentative synthesized texture signal for Conditions F, S, and φ to the power variation

in the signal synthesized for the control Condition FS. A higher slope (∆Sim/∆P̂)

signifies that the perceived similarity was more sensitive to the changes in power

caused by the response component(s) that was removed. The slope was highest for

Condition S, indicating that the perceived similarity was most sensitive to changes in

power caused by the signal’s response to user force. However, ∆Sim/∆P̂ was similar

for all three test conditions, which suggests that the response of the signal’s power to

both user force and speed was important to the realism of the virtual textures.

In the second column of Table 4.2, we compared the spectral centroid variation in

a representative synthesized texture signal for Conditions F, S, and φ to the spectral

centroid variation in the signal synthesized for the control Condition FS. The calcu-

lated slope (∆Sim/∆ŜC) was much higher for Conditions F and φ than for Condition

S. This disparity indicates that the perceived similarity was most sensitive to changes

in the signal’s spectrum caused by the signal’s response to user speed. Conversely,

the perceived similarity was not highly sensitive to changes in the signal’s spectrum

caused by response to user force. This trend is also seen in the spectral difference

metric, which equally considered the contribution of both the power and frequency

spectra to the change in realism, as shown in Fig. 4.12 and the third column of Ta-

ble 4.2. Although the spectral difference is on the same order of magnitude for all

three conditions, changes in spectral difference when speed or both force and speed

responsiveness are removed correlate to higher changes in realism than when force
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responsiveness alone is removed. This result supports our previous conclusion that

responding to user speed is more important to realism than responding to user force.

While we believe this result reflects a fundamental difference in the importance

of force and speed in rendering haptic textures, the result may have been affected

by the limited range of normal forces subjects could use in the study. However, only

three of the fifteen subjects activated the high force indicator, which shows that the

subjects naturally used forces lower than the force limit (2.75 N). Furthermore, from

the study data captured in [25], we found that the average force applied by subjects

when dragging a tool across a texture was 1.1 N. Therefore, the forces that subjects

were able to use in this current study were within the range of normal forces we have

found that humans typically use and likely did not have a large effect on the results.

The results of this study for textures felt through a tool are in contrast with past

work in modeling textures felt with a bare finger, which showed that a texture can be

represented by the spatial spectrogram of tangential forces felt during dragging [113].

To render texture signals at speeds other than the speed used during data record-

ing, Wiertlewski et al. sped up or slowed down the rate at which the time-domain

force signal was played. However, our results indicate that the spatial spectrogram

approach cannot be used to represent textures that are felt through a tool because

changes in tool speed alter both the power and frequency spectrum of the vibration

signal. This variation is due to the behavior of the tooltip when it contacts the surface

features during dragging [77]. When tool speed is increased, the tooltip hits each sur-
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face feature with more momentum, causing a larger impulse and resulting in higher

power vibrations. Therefore, for tool-based texture rendering, data must be recorded

at many different tangential speeds to best capture the full feeling of the texture.

The subjects in this study were predominantly untrained and inexperienced users,

which matches a large portion of the population of potential users of haptic technol-

ogy. Although experts trained in haptic discrimination tasks may be more sensitive

to how texture signals change with force, this study showed there is not a significant

change in realism when force responsiveness was removed. However, subjects rated

the textures as significantly less realistic when the vibrations did not respond to user

speed. Therefore, for the average user, allowing texture vibrations to respond to user

speed and not user force should be sufficient to create realistic haptic textures.

This study focused on the overall realism of the virtual textures and does not

consider the perceptual qualities (e.g., roughness, hardness, and slipperiness) that

may be affected by the removal of force and/or speed responsiveness. For example,

past research has shown that the power of the texture signal determines the perceived

roughness of both virtual [104] and real [119] textures. In this study the changes in

signal power had the largest effect on realism when force responsiveness was removed,

which may indicate that changes in perceived roughness caused the decreases in re-

alism observed in Condition S. Further research is needed to determine the full effect

of the textures’ force and speed responsiveness on the separate perceptual qualities.

110



4.6 Human Subject Study: Friction, Tapping and

Texture

This Section describes the human-subject experiment we ran to assess the realism of

our haptic virtual surfaces. We also sought to determine the perceptual importance

and ecological validity of displaying friction, tapping, and texture information on the

virtual surfaces. Described in [68], ecological validity is the correlation between a

cue and a property of the world. We wanted to determine how the realism of the

virtual surfaces is affected by the three separate modeling components, and how this

relationship depends on the physical surface parameters.

All procedures were approved by the Penn IRB under protocol 820685. Two

separate sets of fifteen subjects were recruited for a total of thirty subjects. Twenty-

seven subjects were right-handed, and three subjects were left-handed. Twenty-nine

subjects had limited experience with haptic devices, and one subject had extensive

experience.

4.6.1 Experimental Set-up

The experimental set-up in this study was the same as that in Section 4.5 and is

shown in Fig. 4.8. When interacting with the real or virtual surfaces, subjects were

instructed to use any motions they desired including dragging, tapping, and pressing

into the surface. To avoid saturating the motors of the Omni, a visual indicator
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activated when the subject pressed on the virtual surface with more than 2.75 N of

normal force.

4.6.2 Experimental Procedure

There were three phases to the study: adjective ratings of the real surfaces, adjective

ratings of the virtual surfaces, and similarity ratings. The first and third phases

were completed by one set of 15 subjects. The second phase was completed by the

other set of 15 subjects. Before the study began, all subjects practiced with the

experimental setup. They were allowed to feel all of the real surfaces for as long

as desired using the tool. The subjects were also allowed to practice the motions

involved in using the Omni and become familiar with the forces output by the Omni

by exploring a simple haptic 3D environment consisting of a box with a stationary

sphere and cube rendered using only Hooke’s law. Study data were collected and

managed using Research Electronic Data Capture (REDCap) tools hosted by the

University of Pennsylvania [41].

Real Adjective Ratings

The real surfaces were presented to the subject one at a time in randomized order.

The subject was asked to rate each surface on the scales of hard-soft, slippery-not

slippery and rough-smooth. These scales were chosen from the list provided in [81]

as the psychophysical dimensions applicable to the perception of surfaces through a
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tool. The adjective scales were presented in randomized order, and the subject rated

all 15 surfaces on a single scale before moving on to the next scale.

Virtual Adjective Ratings

The procedure described above was completed by a second set of 15 subjects. These

subjects were asked to rate the 15 virtual surfaces on the same three adjective scales.

These virtual surfaces included surface stiffness plus friction, tapping transients, and

texture vibrations.

Similarity Ratings

Subjects cannot directly assess the relative importance of the three different hap-

tic modeling components because the information provided by the friction, tapping

response, and texture vibrations is processed together and may provide redundant

cues. The study in [72], which tested the relative contribution of tactile and auditory

information to judgments of roughness, overcame this problem by removing tactile

and auditory information one at a time. The perceptual discrepancy between the two

feedback components allowed subjects to disambiguate the relative contributions of

the tactile and auditory information. We followed a similar perceptual discrepancy

paradigm by turning the modeling components off one at a time. This study de-

sign created four virtually rendered surfaces for each real surface: the control surface

displaying all components, one surface without friction, one surface without tapping

transients, and one surface without texture vibrations.
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The subject was simultaneously presented with one real surface and one of its

four corresponding virtual surfaces. After exploring both surfaces, the subject was

asked to rate the similarity between the two surfaces by placing a mark on a scale of

”completely different” to ”completely the same” on a computer using a mouse. The

subject was required to tap on the virtual surface at least five times and drag along

the surface for at least 50 cm before providing their rating. The real surfaces were

presented in randomized order, and the four virtual surfaces were also presented in

randomized order. The subject rated the similarity between a real surface and all

four virtual versions of that real surface before moving on to the next real surface.

4.6.3 Results

Adjective Ratings

The adjective ratings were normalized by dividing each rating by the standard de-

viation of all ratings given by that subject for that scale. The normalized adjective

ratings were then averaged across all subjects.

Fig. 4.13 shows the correlation between the average adjective ratings and measured

physical parameters calculated in Section 4.4. The average rated slipperiness was

moderately inversely correlated with the measured friction coefficient (R2 = 0.53,

p = 2.20 × 10−3), and the average rated roughness was highly correlated with the

acceleration power (R2 = 0.68, p = 1.57 × 10−4). Although the tap response factor

was used to characterize the 100 surfaces in the clustering analysis in Section 4.4,
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Figure 4.13: Comparison of the measured surface parameters to the subjects’ ratings of the
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Figure 4.14: Comparison of the tap spectral centroid to the subject’s hardness ratings for
the fifteen real surfaces. The tap spectral centroid was found to be a better predictor of
rated hardness than the tap response factor.

this measurement was found to have a lower than expected correlation with the rated

hardness of the real surfaces (R2 = 0.22, p = 0.076). Instead, we found the spectral

centroid of the tapping transient vibrations had the best correlation with the average

rated hardness (R2 = 0.80, p = 7.30 × 10−6), as shown in Fig. 4.14. The average

spectral centroid of each surface’s tapping transients was calculated across several

representative taps as in Eq. (4.5.2). We chose a subset of incoming speeds that

were commonly used by subjects when tapping on a virtual surface with the Omni.

Tapping transients were calculated at every 10 mm/s in the interval from 50 mm/s
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Table 4.3: Correlation of Real Adjective Ratings

Real Adjective Slipperiness Hardness Roughness

Slipperiness 1.00 0.26 −0.91

Hardness 0.26 1.00 −0.05

Roughness −0.91 −0.05 1.00

Table 4.4: Correlation of Virtual Adjective Ratings

Virtual Adjective Slipperiness Hardness Roughness

Slipperiness 1.00 0.21 −0.74

Hardness 0.24 1.00 0.43

Roughness −0.74 0.43 1.00

to 100 mm/s; the spectral centroids of the resulting transients were calculated and

averaged across all speeds to yield the data plotted in Fig. 4.14.

Table 4.3 shows the correlation of the real adjective ratings, and Table 4.4 shows

the correlation of the virtual adjective ratings. There was a high degree of negative

correlation between the real ratings of roughness and slipperiness (p = 3.53×10−6) and

the virtual ratings of roughness and slipperiness (p = 0.002). No other correlations

were significant.

Fig. 4.15 shows the relationship between the rated adjectives for the corresponding
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Figure 4.15: Comparison of the subjects’ ratings of the control virtual surfaces to their
ratings of the fifteen real surfaces along the three adjective scales along the same scale.
There is high correlation between the rated characteristics of the real and virtual surfaces
for all three perceptual dimensions.
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Figure 4.16: Real and virtual surfaces placed in three-dimensional perceptual space. The
real and control virtual surfaces are placed using their average adjective ratings. The
remaining three virtual surfaces are placed by removing one modeling component (friction,
tapping, or texture), which corresponds with the removal of one perceptual component
(slipperiness, hardness, or roughness).

real and virtual surfaces. All three sets of adjectives are highly correlated across the

real and virtual surfaces including the slipperiness (R2 = 0.89, p = 1.55× 10−7), the

hardness (R2 = 0.89, p = 1.56×10−7), and the roughness (R2 = 0.85, p = 9.78×10−7).

Fig. 4.16 shows the real and virtual surfaces placed in three-dimensional perceptual

space and illustrates the theorized perceptual relationship between the real and virtual

surfaces. The real surface and the control virtual surface are placed using the adjective

ratings of those surfaces. The distance between these two surfaces is a measure of

how similar they feel to one another. The remaining three virtual surfaces are placed
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by changing the value of the relevant perceptual component. We place these surfaces

under the assumption that the perceived slipperiness is controlled by only the surface

friction, the perceived hardness is controlled by only the addition of the tapping

transients, and the perceived roughness is controlled only by the texture vibrations.

For example, the virtual surfaces without friction are placed by setting the slipperiness

to its maximum value; thus they lie in the roughness-hardness plane. Similarly, the

virtual surfaces without tapping transients or texture vibrations are placed by setting

the hardness or roughness, respectively, to zero.
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Figure 4.17: Comparison of similarity ratings across the four virtual versions of each
surface. Statistically significant differences in similarity from the control virtual surface are
marked with a bar and asterisks (∗ ∗ ∗ ≡ p ≤ 0.001, ∗∗ ≡ p ≤ 0.01, ∗ ≡ p ≤ 0.05).
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Similarity Ratings

The similarity ratings are shown in Fig. 4.17. The box plot of the four similarity

ratings for each surface provides a visual representation of the relative importance of

the three rendering components, which is different for each surface. The similarity

ratings between real and virtual surfaces decreased significantly for some conditions in

which a rendering component was removed, whereas some other similarities showed no

statistically significant difference if a component was removed. Removing the surface

friction created a statistically significant decrease in real-virtual similarity for only one

surface: EPDM Foam (p = 1.87 × 10−5). Removing the tapping transient response

created a statistically significant decrease in similarity for five surfaces: ABS Plastic

(p = 0.048), Brick 1 (p = 0.0072), MDF (p = 0.019), Paper Plate 2 (p = 0.046), and

Whiteboard (p = 0.0049). Removing the texture vibrations created a statistically

significant decrease in similarity for ten surfaces: ABS Plastic (p = 4.09 × 10−9),

Brick 1 (p = 3.87 × 10−9), Carpet 3 (p = 0.042), EPDM Foam (p = 0.004), MDF

(p = 0.001), Nylon Mesh (p = 1.10 × 10−7), Paper Plate 2 (p = 5.83 × 10−4),

Polyethylene Foam (p = 0.047), Sandpaper 100 (p = 4.91 × 10−8), and Terra Cotta

(p = 1.05 × 10−4). None of the differences in real-virtual similarity ratings were

significant for four surfaces: Blanket, Cork, Silk 1, and Tarp.

The condition that resulted in the maximum average similarity rating was deter-

mined for each surface. Fig. 4.18 shows the similarity ratings for each surface for the

condition with the highest average rating. Although some of the three conditions in
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Figure 4.18: Similarity ratings for the condition with the highest average similarity rating
calculated separately for each surface. Although some rendering conditions resulted in
higher average similarity than the control surface, none of these differences were statistically
significant.

which a component was removed have a higher average similarity, the difference is

not statistically significant (p > 0.05).

For subsequent analyses, each subject’s similarity ratings were normalized by the

standard deviation of their ratings to compensate for individual differences in sub-

jective rating scales. The normalized similarity ratings were then averaged across all

subjects.

To determine how the similarity ratings change when the components are turned

off one at a time, we first looked at the change in similarity rating as a function of the

surface’s measured parameters, as shown in Fig. 4.19. The percent differences were
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Figure 4.19: Relationship between the surfaces’ physical parameters and the percent dif-
ference in similarity ratings resulting from the removal of the relevant modeling component.

calculated as follows:

%diffx =
S1 − Sx
S1

(4.6.1)

where S1 is the average normalized similarity rating when all model components were

displayed and Sx is the average normalized similarity rating when the component of

interest was removed. The measured friction coefficient was found to highly correlate

to the percent difference in the similarity ratings when the friction was turned off

(R2 = 0.67, p = 1.95 × 10−4). The tapping spectral centroid was highly correlated

with the percent difference in the similarity ratings when the tapping transients were

turned off (R2 = 0.70, p = 1.12 × 10−4). There was a weak correlation between the

acceleration power and the percent difference between the similarity ratings when the

texture vibrations were turned off (R2 = 0.31, p = 0.03).

Lastly we looked at the change in similarity rating as a function of the adjective

ratings of the real surfaces, as shown in Fig. 4.20. The percent differences were

calculated as in Eq. (4.6.1). There was a weak inverse correlation between the average

rated slipperiness and the percent difference between the similarity ratings when the
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Figure 4.20: Relationship between the average adjective ratings of the real surfaces and the
percent difference in similarity ratings resulting from the removal of the relevant modeling
component.

friction was turned off (R2 = 0.40, p = 0.01). The average rated hardness was

highly correlated with the percent difference in the similarity ratings when the tapping

transients were turned off (R2 = 0.67, p = 1.94× 10−4). The average rated roughness

was found to highly correlate with the percent difference in the similarity ratings

when the texture vibrations were turned off (R2 = 0.70, p = 9.39× 10−5).

4.6.4 Discussion

By evaluating the change in similarity between real and virtual surfaces induced by the

removal of individual modeling components, the study provided important insights

into the strengths of our modeling approach and the importance of the perceptual

dimensions (slipperiness, hardness, and roughness) to the realism of haptic virtual

surfaces. The high correlation between the real and virtual adjective ratings for all

three scales (Fig. 4.15) indicates that the modeling and rendering methods presented

in this Chapter capture all three perceptual dimensions. This correlation shows a
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marked improvement over the rendering methods presented in Chapter 3, which ac-

curately captured only the roughness of the surfaces by modeling and displaying the

texture vibrations. Using all three surface model components accurately captures the

three perceptual dimensions of surface interactions with a tool.

However, Fig. 4.17 showed that the rendering components are not equally im-

portant to the real-virtual similarity of all surfaces. A cursory glance shows that

displaying the texture vibrations appears to be the most important because remov-

ing texture vibrations creates a statistically significant decrease in similarity for the

largest number of surfaces. However, removing the texture vibrations did not result

in a significant change in similarity for five surfaces. Furthermore, removing the fric-

tion or tapping transients creates a significant decrease in similarity rating for some

surfaces, indicating that the importance of the separate modeling components is com-

plex. As suggested by Fig. 4.19, the relative difference in similarity ratings depends

on the physical parameters of the surface.

Slipperiness

The percent difference in similarity rating when friction is removed significantly cor-

relates with the measured friction coefficient, as shown in Fig. 4.19a. In simple terms,

rendering friction is more important for surfaces with high friction. Interestingly, the

similarity ratings for surfaces with the lowest coefficients of friction (Whiteboard:

µk = 0.17, MDF: µk = 0.19, ABS Plastic: µk = 0.21, Silk 1: µk = 0.28, and Tarp:

123



µk = 0.41) improve when friction is removed. This negative percent difference sug-

gests that the friction of these virtual control surfaces was too high. One reason for

this discrepancy is the presence of friction in the motors of the Omni, which was not

taken into account when rendering the surfaces. Thus, when the modeled surface

friction was added to the Omni’s internal friction, the subjects perceived the surface

friction as being too high. This finding highlights the need to take the frictional

properties of the device into consideration when rendering virtual surfaces.

Although Fig. 4.13 shows that the real ratings of slipperiness are moderately

correlated with the physical measurements of surface friction, they show only weak

correlation to the percent difference in similarity ratings when the surface friction

was removed (Fig. 4.20a). This discrepancy indicates that friction is not the only

contributor to the perceived slipperiness of the surface, which violates the assumption

we made in creating Fig. 4.16. This observation is supported by the high correlation

seen between the real ratings of roughness and slipperiness in Table 4.3 and the high

correlation seen between the virtual ratings of roughness and slipperiness in Table 4.4.

Thus, the surface roughness, and consequently the texture vibrations, likely play a

role in the perceived slipperiness of a surface. This phenomenon was also uncovered

by the human subject study results in [26] and has been studied in [13]. Thus, to fully

capture the slipperiness perceptual dimension of a surface, both the surface friction

and the texture vibrations must be displayed on the virtual surface.
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Hardness

Contrary to our expectation that hardness would correlate well with the tap response

factor defined in [32], this study found that the spectral centroid of the tapping tran-

sient vibrations was the best predictor of perceptual hardness ratings (Fig. 4.14). This

relationship results from differences in physical properties of the tool-hand-surface

system for hard and soft surfaces. As discussed in [108], impact with high stiffness

surfaces elicits wide-bandwidth transient vibrations, and impact with low stiffness

surfaces elicits lower-bandwidth vibrations that are damped out quickly. Therefore,

the tapping transient vibrations for hard surfaces will have a higher spectral centroid

than tapping transient vibrations for soft surfaces. These trends can be observed in

the DFTs shown in Fig. 4.3.

The percent difference in similarity rating when the tapping transients are removed

is significantly correlated with the measured tapping spectral centroid (Fig. 4.19b) and

the rated hardness (Fig. 4.20b). Only one surface had a negative percent difference:

Carpet 3. Since this surface had the lowest tap spectral centroid (SCtap = 47.8 Hz),

it was physically the softest of the 15 tested surfaces. The negative percent difference

indicates that virtual Carpet 3 was perceived as too hard, which may have been

because the underlying stiffness of the surface was too high. All virtual surfaces were

rendered using the same underlying stiffness (0.25 N/mm). This finding highlights

the need to take the stiffness of the physical surfaces into account when rendering

the virtual surfaces. Displaying tapping transients can make a virtual surface feel
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harder, but they are not needed for very soft surfaces that can simply be rendered

using Hooke’s law.

Roughness

The percent difference in similarity rating when the texture vibrations were removed

is only weakly correlated to the measured power of the acceleration signal, as shown

in Fig. 4.19c. This disparity indicates that the power was not the only important

component of the vibration signal; subjects were probably also paying attention to the

signal’s spectral properties. However, the percent difference in similarity ratings when

the texture vibrations were removed was strongly correlated to the rated roughness

of the real surfaces (Fig. 4.20c), which supports the conclusions of previous work that

the roughness information is encoded in the vibrations [10,13,58,119]. Furthermore,

the real roughness ratings were correlated with the acceleration power (Fig. 4.13),

which shows that the power of the vibrations is important in determining roughness.

Therefore, to display the roughness of a surface, it is necessary to model and render

the texture vibrations. For very smooth surfaces, however, displaying the texture

vibrations is not needed to create a realistic virtual surface.

The results of this study show that the importance of rendering the surface friction,

tapping transients, or texture vibrations depends on the physical surface being mod-

eled. When deciding whether to include a rendering component or not, researchers

should balance the potential increase in realism with the computational and hard-
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ware costs of adding that component. To further increase realism, researchers should

also take into account the mechanical properties of the rendering hardware, such as

friction and bandwidth, when displaying the modeled components to the user.

4.7 Summary

This Chapter presented methods for modeling and rendering haptic virtual surfaces

from data recorded during tool-surface interactions. The virtual surfaces were created

using a combination of friction, tapping transient, and texture vibration models to

capture the full haptic experience. First we presented the data recording and modeling

steps for the three component models, followed by a description of the steps necessary

to render the virtual surfaces using an Omni force-feedback device augmented with a

Haptuator. A Coulomb friction relationship was fit to data recorded from dragging

on the surface and was rendered using a stick-slip Dahl friction model. The tapping

vibration transients were modeled from data recorded during tapping on the physical

surfaces at various speeds. During rendering, the tapping transients are displayed

as momentum-cancelling force transients through the motors of the Omni. Texture

models were created to represent the vibrations induced in a tool as it is dragged

across a textured surface. The recorded vibration signal is modeled as a piecewise

autoregressive process, and the individual AR models are labeled with the force and

speed at which the data was recorded. During rendering the AR models are used

to generate a synthetic texture vibration signal that responds appropriately to the
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forces and speeds used to explore the virtual surface. The vibration signal is displayed

through a voice-coil actuator attached to the tip of the Omni.

We ran a study to test whether it is necessary to create haptic texture models

that respond to both user force and speed. Our analysis showed that removing the

speed responsiveness of a texture caused a statistically significant decrease in realism,

whereas removing the force responsiveness of a texture did not significantly alter the

realism. Therefore, creating haptic textures that respond only to user speed should be

sufficient for achieving realism. Our results further showed that, although both force

and speed affect the texture signal’s power and spectral properties, the changes due

to speed are more salient to users than the changes due to force. Researchers can use

the results of this study to decide whether to include force and speed responsiveness

in their haptic textures.

We ran a second study that evaluated the improvement in similarity between real

and virtual surfaces that is created by the addition of friction, tapping, and texture

cues. Subjects rated all real and virtual surfaces along three adjective scales (slipper-

iness, hardness, and roughness), and subjects also rated the similarity between pairs

of real and virtual surfaces. Four virtual surfaces were created for each real surface:

one control surface in which all model components were displayed and three surfaces

in which the model components were turned off one at a time. The study results

indicated that the combination of surface friction, tapping transient, and texture vi-

bration models fully captured the real surfaces’ slipperiness, hardness, and roughness.
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However, the importance of the three model components was not constant across sur-

faces. We found that the importance of the three separate modeling components had

an approximately linear relationship with the physical parameters and the adjective

ratings of the real surfaces. Intuitively, rendering a given component of a surface is

important when that surface property is strong. Researchers can use the results of

the reported study to decide whether to include friction, tapping, and/or texture in

their haptic applications.
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Chapter 5

Displaying Texture and Friction

via Haptic Augmented Reality

The three-dimensional virtual surfaces presented in Chapter 4 accurately captured

the physical surfaces’ roughness, hardness, and slipperiness. These virtual surfaces

were created through a combination of texture vibration, tapping transient, and sur-

face friction models. The choice of a force-feedback haptic device as the rendering

hardware allowed us to display normal and lateral forces, which had many benefits

over the vibration-only rendering used in the tablet system of Chapter 3. However,

as discussed in Section 4.6, the selected force-feedback device had several disadvan-

tages, including limited virtual object stiffness and undesired friction and vibrations.

We address these limitations in the novel haptic rendering system presented in this

Chapter. As in past Chapters, our goal is to simulate the experience of touching
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diverse real surfaces through a tool as realistically as possible.

Due to computational time delays and quantization in position measurements,

impedance-type force-feedback devices cannot stably render a virtual object with a

stiffness high enough to match that of rigid objects [31]. In the system in Chapter 4,

we displayed tapping transients when the user first came into contact with the virtual

surface. These transient forces increased the perceived hardness of the surfaces, but

the underlying stiffness remained too low. This discrepancy was noticed by subjects

when they statically pressed into the virtual surface, which degraded the overall

virtual experience. Fully matching the hardness of physical objects is critical to

increasing the realism of the interaction. Thus, we have designed a system that uses

a stiff physical object in the place of a virtual object. Overlaying haptic texture and

friction signals when the user touches the physical object creates a haptic experience

that is a mix of real and virtual sensations. Such systems are referred to haptic

augmented reality and share many parallels to visual augmented reality systems such

as head-mounted displays [47]. Haptic augmented reality systems can include any

combination of real or virtual haptics and vision. However, many existing systems

center on force-feedback devices (e.g., [4, 8, 14, 40,47,49,51,105,117]).

The results from the human subject study in Chapter 4 indicated that undesired

friction and vibrations in the force-feedback device further degrade virtual interac-

tions. In that study, the friction of the virtual surfaces was perceived as too high

when the modeled friction was displayed on top of the internal friction of the device.
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Furthermore, the vibrations of the Omni degraded the feel of the virtual textures. For

surfaces with texture vibrations that were low in power (e.g., whiteboard), subjects

did not notice a difference between the vibrations they felt when the texture was

turned on or off because the texture vibrations were too small to distinguish from

the device’s mechanical vibrations. These types of issues with undesired friction and

vibrations are common to many force-feedback haptic devices, especially those that

are cable driven. Rotary motors contribute additional vibrations through cogging

torque ripple, which is more prominent in low-cost motors [90]. Therefore, to avoid

unwanted friction and vibrations, we must not use cables and rotary motors.

This Chapter presents a novel haptic augmented reality system we have engineered

for displaying texture and friction on the surfaces of a three-dimensional physical ob-

ject. This technical approach deviates significantly from traditional haptic rendering,

but the goals are the same: measure how the user’s tool is contacting the object,

output realistic texture vibrations, and output realistic friction forces. Section 5.1

reviews prior work in the field of haptic augmented reality. Section 5.2 describes our

method for determining the tool contact position, speed, normal force, and friction

force from a single six-axis force-torque sensor and a three-dimensional geometric

model of the object. Section 5.3 describes the design of the tool’s critical components

for reducing undesired friction and vibrations. Section 5.4 reviews our method for

displaying haptic texture vibrations. Section 5.5 describes the mechanism we created

for modulating the friction between the tool and the object. Finally, the contributions
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of this Chapter will be summarized in Section 5.6.

5.1 Background

The field of visual augmented reality has recently experienced rapid growth, fueled

by the growing popularity and technological advances of smart phones and virtual

reality headsets [106]. Visual augmented reality overlays visual information, partic-

ularly virtual objects, on real-world scenes. This concept of mixed real and virtual

environments has been expanded to include haptics as well. Jeon et al. created a

taxonomy to describe the possible combinations of real and virtual vision and haptics

that comprise the realm of haptic augmented reality [47]. Users can touch a com-

pletely real object, a completely virtual object, or a real object with virtual haptic

sensations added to augment how it feels. A key challenge lies in creating a scene

where the visuals and haptics work seamlessly together.

Many researchers have focused on the challenge of adding virtual objects to a

visually real scene. In the majority of these systems, the user feels and interacts

with the virtual objects through a force-feedback haptic device. Vallino and Brown

created one of the first systems of this type, which allowed users to manipulate virtual

objects that were visually overlaid on a physical environment [105]. A Phantom

force-feedback device was used to display the shape and weight of the virtual objects.

Aleotti et al. created a system for manipulating virtual objects using a Falcon force-

feedback device [4]. This system allowed for both virtual and real objects in the
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augmented environment, and it handled the real-virtual interactions between objects.

Ye et al. created the VisHap system to interact with virtual objects using a Phantom

force-feedback device [117]. Unlike many systems that include force-feedback devices,

however, the user did not hold the Phantom. Instead, the tip of the Phantom followed

the motion of the user and contacted his or her hand only when he or she made contact

with a virtual object. This paradigm allowed for more distinct virtual objects because

the user felt external sensations only when touching the virtual objects.

Haptic augmented reality systems have also been developed to virtually simulate

specific tasks. Bianchi et al. created a haptic augmented reality ping-pong game [14].

This system involved a head-mounted camera to capture the real scene. The virtual

object was superimposed on the image, and the augmented scene was then shown

using a head-mounted display. Bayart et al. created an augmented reality system for

virtual painting using an Omni force-feedback device to control the virtual tool and

provide haptic feedback [8]. The Omni was visually hidden, and a virtual tool (i.e.,

a pencil or a paintbrush) was displayed on the screen. The user then virtually drew

or painted on physical objects. Harders et al. created a haptic augmented reality

medical simulator using a physical mock-up of a patient’s leg [40]. A portion of the

physical leg was missing, which was then created virtually through the addition of

graphics and haptics. Open surgery was simulated by allowing users to cut into the

virtual portion of the leg using a Phantom force-feedback device.

Another area of haptic augmented reality involves changing how a physical object
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feels through the addition of haptic feedback. For example, researchers have created

systems that change the perceived friction between a tool and the physical surface.

Jeon et al. modulated the friction of a physical surface using a Phantom force-feedback

device [51]. The Phantom device included a force sensor attached at the tip, which

measured the friction as the user dragged the tip across a physical surface. The

Phantom created an additional lateral force to reach a target friction force. In another

approach, Wintergerst et al. created a set of styli that could actively alter the friction

between the stylus tip and a touch screen [114]. An electromagnetic coil was used

to attract a rolling ball to the body of the stylus, which would increase the apparent

surface friction. This friction control system was used to provide feedback during

dragging gestures, including guiding the user, simulating virtual mass, and enhancing

drawing by simulating different tools.

Researchers have also created haptic augmented reality systems to change the

perceived hardness of physical objects. Jeon and Choi modulated the stiffness of a

physical object using a Phantom force-feedback device [47]. A force sensor was at-

tached to the tip of the Phantom to measure the user’s applied force. The Phantom

was then used to generate additional force to increase the object’s perceived stiffness.

This stiffness augmentation was extended to allow for three-dimensional interactions

with physical objects [48,49], and it was further extended to allow the perceived stiff-

ness to be changed while squeezing a physical object using two Phantom devices [50].

Hachisu et al. altered the perceived hardness of a physical surface by displaying tap-
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ping transients using a voicecoil actuator [37]. Innate vibrations from tapping on the

physical surface were removed by using an elastic sheet so that the physical hardness

was affected only by the tapping transients.

Haptic augmented reality systems have also been created to change the perceived

texture of physical objects. Bau and Poupyrev created the REVEL system to change

the perceived texture of objects touched with a bare finger [7]. Texture was added

using reverse electrovibration, which involves injecting a weak AC electrical signal

into the user’s body, creating an oscillating electrical field around the user’s fingers.

The user then touches physical objects that have been coated with an insulator-

covered electrode. The properties of the AC signal determine the surface texture

that is felt. Yoshimoto et al. altered perceived texture by displaying electrical stimuli

through electrodes attached to the user’s finger [118]. Asano et al. changed the

perceived roughness of textured surfaces by playing vibrations through a voicecoil

actuator attached to the user’s finger [5]. The perceived roughness could be increased

or decreased depending on the properties of the vibrations that are played.

Past work in haptic augmented reality has tended to focus on changing the per-

ception of only one haptic attribute. This Chapter presents a novel haptic augmented

reality system that alters both the perceived texture and friction of a physical object.
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5.2 Interaction Condition Measurements

This Section describes the system we have designed to measure the user’s interaction

conditions during rendering. Our previous haptic surface rendering schemes that

were discussed in Chapters 3 and 4 required measurements of the user’s normal force

and scanning speed to generate the haptic texture and friction signals. To utilize

the same texture and friction models, this new rendering system also requires the

ability to measure these interaction conditions in real time. This Section describes

the hardware and methods required to collect this data.

5.2.1 Hardware Description

When determining the best hardware for measuring the user’s interaction conditions,

we had to take into account both the measurements required and the overall user

experience. Displaying both texture and friction on the surfaces of a physical object

requires measurements of the user’s normal force and scanning speed. Therefore, we

needed hardware that was capable of measuring three axes of contact force data and at

least two axes of position data. While we needed to include all of these measurements,

however, we also wanted to create a device that was not overly large or cumbersome

to use. Our haptic recording tool discussed in Section 2.2.1 was capable of measuring

the signals of interest, but it was not suitable for our augmented reality rendering

system because it is bulky and does not have space for friction actuation, due to the

placement of the force sensor.
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(a) 

x 
y z 

(b) 

Figure 5.1: The force/torque sensor system used to determine interaction conditions. (a)
The sensor’s axes and origin. (b) An acrylic cube is rigidly attached to the sensor to serve
as the physical object to be augmented with texture and friction.

Instead of placing the haptic interaction sensors inside the tool, we decided to

offload the sensing by placing a six-axis force/torque transducer (Nano17 SI-25-0.25,

ATI Industrial Automation Inc.) underneath the physical object. The force sensor

and its axes are shown in Fig. 5.1. For this prototype, we used a 25.4 mm cube as the

physical object, rigidly mounted to the force sensor via a custom 3D-printed adapter,

as shown in Fig. 5.1(b). Other objects could be used instead. The force applied by

the user to the object is measured by the Nano17. This sensor has a force resolution

of 1/160 N and torque resolution of 1/32 N·mm along all axes. The signals are read

by the computer at 1000 Hz through a 16-bit USB analog-to-digital DAQ device from

National Instruments. The sensor is zeroed with the object attached, and the voltages

are low-pass filtered at 20 Hz to remove noise.
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The three-axis force measured by this sensor will allow us to calculate the normal

force and friction force of the interaction, as discussed in Section 5.2.4. But how

can we measure the point of contact? As discussed in Section 5.2.3, we can use the

measured torque signal to estimate the point of contact. Consequently, the size of the

physical object that can be used is limited by the sensor’s maximum rated torque,

which is ±250 N·mm about each axis. As discussed in Section 4.5.4, the average force

applied by a user when dragging a tool across a textured surface was 1.1 N [25]. The

same study data showed that the maximum force applied by any of the users was

4.3 N. Therefore, it is reasonable for us to assume that the user of our system will

not apply a force higher than 5 N. If we assume the object is centered in the x- and

y-directions shown in Fig. 5.1(a) and does not extend below the top of the sensor,

the maximum size of the object is 10 cm× 10 cm× 5 cm.

5.2.2 Force Threshold

During rendering, we measure the three axes of force and torque information as the

user drags a tool along any portion of the physical object. It is important to correctly

determine whether the user is touching the object because the realism would be

significantly degraded if texture vibrations were displayed when the tooltip was in

free space. Contact can be detected by comparing the magnitude of the measured

force vector to a force threshold value. This force threshold was chosen by clamping

the force sensor to a table and monitoring the measured force as noise was added
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Figure 5.2: Percentage of false contacts as a function of the force threshold level.

to the force signals by tapping on the table near the sensor. This noise was added

to simulate the system’s real working environment where vibrations could be present

due to someone walking by or bumping into the table. Fig. 5.2 shows the percentage

of false positive contacts as a function of force threshold values. We selected the force

threshold to be Fthresh = 0.08 N as this was the minimum value for which there were

no false contacts.

5.2.3 Position Measurements

The haptic recording system described in Section 2.2.1 uses a magnetic motion track-

ing sensor to measure the tool’s speed and position. However, there are many limita-

tions and disadvantages to using this type of sensor, including its low sampling rate,

sensitivity to ferromagnetic material, and sensitivity to magnetic fields created by

electromagnetic actuators. To avoid these limitations in our augmented reality sys-

tem, we devised a way to sense tool contact position without requiring an additional
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Figure 5.3: A diagram of our system for determining the user’s interaction conditions
on the augmented reality system. The user’s contact position is determined from a three-
dimensional geometric model of the object and measurements of the applied force and
torque.

sensor. We combine a geometric model of the object with measurements of the force

and torque applied by the tool to estimate the tool’s contact location. This method

for determining contact position through intrinsic contact sensing was first proposed

by Bicchi et al. [15] and has been applied to a medical simulator by Riener et al. [94].

Fig. 5.3 displays a flow diagram showing the full process.

A diagram illustrating our method for determining the contact position is shown

in Fig. 5.4. The user’s applied force is transmitted directly through the rigid object

so that the measured force is equal to the applied force. The relationship between

the moment ~M and the force ~F measurements from the force/torque sensor is:

~M = ~r × ~F =


rx

ry

rz

×

Fx

Fy

Fz

 =


0 −rz ry

rz 0 −rx

−ry rx 0




Fx

Fy

Fz

 (5.2.1)

where ~r is the unknown position vector from the origin of the force/torque sensor
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Figure 5.4: Diagram illustrating how contact position is estimated from force and torque
measurements.

to the point of contact. This equation cannot be solved directly for ~r because the

skew-symmetric matrix representing the cross product is not invertible. However, we

can represent the line of action of ~F as the straight line:

~L(λ) = ~r∗ + λ~F (5.2.2)

where λ is a scalar parameter with the units mm/N and ~r∗ is any vector from the

sensor origin to the line of action. As given in [94], this vector can be calculated as:

~r∗ =
~F × ~M∣∣∣~F ∣∣∣2 (5.2.3)

The point of contact can then be calculated by finding the intersection point(s) be-

tween the force’s line of action and the surface of a three-dimensional geometric model

of the object. Our prototype employs a cube, for which it is trivial to calculate the
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intersection points on the faces of the cube. We can represent more complex objects

as a mesh and calculate the intersection points between the force line of action and

the individual triangles of the mesh. If the line of action passes through more than

one point on the surface of the object, the point where the force is in compression

is chosen as the point of contact. To avoid multiple potential points of contact, the

physical object must be convex. We calculate the tool’s speed from a history of

the points of contact, which allows us to track the motions made when the user is

interacting with the physical object.

Because an additional position sensor is not required, we can determine the contact

position of any tool that touches the object. The only requirement is that the tool

makes a point contact with the object. This condition is necessary because the tool

cannot apply any local moments for the equations to remain valid, nor can it contact

the surface in two locations.

5.2.4 Force Measurements

Once the point of contact is determined, the measured force vector can be separated

into its normal and tangential components. First, the vector normal to the surface at

the point of contact (ên) is calculated. The inner product is calculated between (ên)

and the force vector ~F to find the magnitude of the normal force, Fn. The tangential

force vector is calculated as ~Ft = ~F − ~Fn. The friction force, Ft, is the magnitude of

the force tangential to the direction of motion.
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Figure 5.5: Free body diagram showing the two-dimensional case used to determine posi-
tion repeatability.

5.2.5 Analysis of Position Measurements

The method described in Section 5.2.3 enables us to calculate the tool contact position

from measurements of the force and torque vectors acting on the object. To test the

limits of our system and determine the efficacy of this position sensing approach,

we characterize the accuracy and resolution of the resulting position values. This

Section details our theoretical and experimental analysis of the system’s position

measurements.

Theoretical Position Repeatability

The theoretical position repeatability of our system can be understood using an anal-

ysis of the propagation of uncertainty for a simple two-dimensional case. For this

analysis we assume a vertical normal force is applied in the negative two-direction

(~F = −F k̂) at a horizontal distance ~r = r̂j from the origin, as shown in Fig. 5.5. The
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Figure 5.6: Theoretical position repeatability estimated using error analysis of a simple
one-dimensional case of the contact position calculations.

resulting moment is ~M = −M î. From Eq. (5.2.3), the vector from the origin to the

line of action of the force is ~r∗ = M
F

ĵ, which can also be seen by inspection. Using

error analysis, the uncertainty in ~r∗ is:

∆~r∗ =
M

F

√(
∆M

M

)2

+

(
∆F

F

)2

ĵ (5.2.4)

where ∆M is the uncertainty in the sensor’s moment measurement and ∆F is the

uncertainty in the sensor’s force measurement. Therefore, the uncertainty introduced

in the calculation for the position depends on the applied force and moment values.

Fig. 5.6 shows the theoretical position repeatability for the simple two-dimensional

case for different values of r⊥. The plot shows that the uncertainty is significantly

higher for lower forces, but is approximately constant for higher forces.
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Figure 5.7: Estimated tool position at different normal force levels. The amount of noise
in the position decreases as force is increased.

Effect of Force on Position Measurements

This force dependency of the calculated position is evident in the experimental system.

Fig. 5.7 shows calculated tool trajectories for the same type of tool motion conducted

at three force levels. As predicted above, there is more noise in the position signal

when the normal force is low. The estimated trajectories are smoother at medium or

high force values.

Static Position Resolution

After determining that the position repeatability is highly dependent on the applied

force, we wanted to investigate the system’s static position resolution for a constant

force. The system’s position resolution was measured by recording the contact posi-

tion as a probe was statically held at fixed points on the top surface of the cube. Five

trials were recorded for each of five points on the cube; the points were located at the

center and near the four corners of the cube’s top surface. For each trial we calculated

the deviation of the position measurements from the average measurement for that
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Figure 5.8: Distribution of position errors for static position measurements. The distri-
butions are the same in the x and y directions, indicating that position resolution is the
same in all directions.

trial in the x and y directions separately. The first and last 50 ms of each trial was

excluded to eliminate any effects of loading and unloading the force sensor. The po-

sition errors were combined across all trials and all points. The resulting distribution

of position errors is shown in Fig. 5.8. The error did not exceed ±0.5 mm in either

direction for any of the trials. A two-sample Kolmogorov-Smirnov test indicated that

the two error distributions were not statistically different between the x and y direc-

tions (p = 0.29). Furthermore, the error distributions were not statistically different

across the different trials or points on the cube. These results indicate that the static

position measuring resolution of our system is approximately 0.5 mm, which is the

same as the position resolution of the magnetic tracking sensor used in our haptic

recording device.
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5.3 Pen Design

Although our force and position measurement system works with any tool that has

a single point of contact, we wanted to build a custom tool that could give us the

cleanest haptic experience with low inherent friction and vibrations. The design of

the pen is also crucial to the texture and friction output that will be discussed in

Sections 5.4 and 5.5. This Section describes the design and analysis of the resulting

pen.

5.3.1 Design Considerations

When rendering a virtual haptic interaction, it is important to start with a smooth

base interaction to create free space that feels free [76]. During rendering the user

ideally feels only the haptic signals the system is actively displaying, which should not

be contaminated with underlying sensations from the haptic device. This contamina-

tion was an issue in the Omni-based system studied in Section 4.6, where the device’s

friction caused the perceived surface slipperiness to be too low when the modeled

surface friction was displayed. To avoid similar problems with this haptic augmented

reality system, we sought a design with low friction between the pen and the physical

object.

Another important design consideration is the level of vibrations felt when drag-

ging the tool across the object’s surface. Because we will be changing the perceived

texture of the object by playing texture vibrations during dragging, we want the vi-
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Figure 5.9: Tooltip socket design with four bearings.

brations caused by dragging the pen across the base material to be as low as possible.

If these vibrations are too high, they can contaminate the desired texture vibration

signal, degrading the overall interaction.

5.3.2 Tooltip Design

To achieve low friction between the pen and any base surface, we designed a pen

whose tip contained a rolling ball. The ball must be free to roll smoothly in all

directions; therefore, we designed a low-friction socket to contain the ball. Instead

of building a single socket out of a low-friction material, we created a system of four

metal bearings to allow the ball to rotate, as shown in Fig. 5.9. A single socket would

be more susceptible to wear and would have more friction overall than a design that

includes bearings. In our socket design, the four bearings share the load of the normal

force applied when dragging the tool across a surface.

The four-bearing socket has many benefits over other bearing designs that were
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considered. Other proposed designs included lining the entire socket with small bear-

ings. This design did not work well because the bearings rubbed against one another

and occasionally jammed. The design shown in Fig. 5.9, however, keeps the bearings

separate in their own sockets, so they do not rub together. The resulting socket allows

the tooltip to move easily along a surface.

5.3.3 Material Choice

It was essential that the bearings and the central ball roll smoothly with low friction

and add minimal vibrations. To roll smoothly, the materials must be rigid and have

low coefficients of friction at all interfaces. The materials must also have good abrasion

resistance to limit wear so that the system will continue to function over an extended

period of time. Delrin and PTFE (Teflon) were considered for the bearings and the

center ball because of their low friction. However, the surface finish on the plastic

balls was not smooth, causing noticeable vibrations during rolling. Instead we chose

chrome steel as the material of the bearings and the center ball because of its surface

quality, hardness, and wear resistance. The socket was printed using an Stratasys

Objet30 3D printer because of its high resolution (28 µm), high accuracy (0.1 mm),

and low friction.
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Figure 5.10: (a) Simplified socket design used in analysis. (b) Free body diagram of forces
applied to the rolling ball.

5.3.4 Dynamic Analysis

To analyze the dynamic behavior of the socket design, we look at a simplified two-

dimensional version of the socket, as shown in Fig. 5.10(a). The ball is rotating

clockwise, resulting in horizontal motion to the right. The bearings are fixed in their

sockets. The center ball is rolling without slipping on the ground, and it is slipping

along the surface of the bearings. Fig. 5.10(b) shows a free body diagram of the forces

acting on the system.

Assuming the system is moving at constant velocity, the force and moment balance

equations are:

∑
Fx = −F − Fb1 sin(45◦) +Nb1 sin(45◦)− Fb2 sin(45◦)−Nb2 sin(45◦) = 0 (5.3.1)

∑
Fy = N − Fb1 cos(45◦)−Nb1 cos(45◦) + Fb2 cos(45◦)−Nb2 cos(45◦) = 0 (5.3.2)
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∑
Mz@o = −FR + Fb1R + Fb2R = 0 (5.3.3)

where R is the radius of the ball.

We assume the friction between the bearings and center ball obeys a Coulomb

relationship, where the friction force is proportional to the normal force. Therefore,

the friction forces can be written as:

Fb1 = µbNb1

Fb2 = µbNb2

(5.3.4)

where µb is the coefficient of kinetic friction between the bearings and the ball. The

center ball rolls without slipping on the surface.

Because the ball must roll without slip along the surface, the following constraint

must also be obeyed:

F ≤ µsN (5.3.5)

where µs is the coefficient of static friction between the ball and surface. Although

the ball is rolling along the surface, we want the user to feels as though the tip of the

pen is sliding over the physical object with a specified coefficient of kinetic friction,

µ, to simulate the feel of the selected surface. Thus, we need to ensure that the static

friction force F obeys the Coulomb relationship with the associated normal force N ,

as follows:

F = µN (5.3.6)

where µ is the effective coefficient of kinetic friction between the tooltip and the
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surface.

5.3.5 Analysis of the Socket Design

This Section details our analysis of the completed tooltip design to test how well it

conforms to our design criteria of low friction and low vibrations during rolling.

Friction in the Socket

The displayed kinetic friction between the tool and a rigid surface should not depend

on the surface. Rather, as long as the ball is allowed to roll freely in the socket, the

measured surface friction should depend only on the friction between the bearings and

the center ball. However, the static friction between the ball and the surface must

be sufficiently high for rolling to occur; otherwise, the ball simply slides along the

surface. This rolling behavior is an important part of the mechanism for modulating

the perceived friction between tool and surface, as will be discussed in Section 5.5.

Soft surfaces will have a higher effective kinetic friction than very rigid surfaces.

This disparity occurs because softer surfaces deform slightly during rolling. Extra

force is needed to overcome the rolling resistance that results from the deformation

of the surface in front of the ball. Therefore, our augmented reality system uses a

rigid physical object to ensure smooth, low-friction interactions.

To test the level of friction in the socket, the pen was dragged across a smooth

surface mounted to the Nano17 force sensor, and the resulting normal and friction
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forces were measured. The effective coefficient of kinetic friction between the ball

and the surface was found to be µ = 0.17 by fitting a line to the measurements of

normal and friction force. Solving Eq. (5.3.1)–(5.3.3), we find that µb = 0.12. This

finding sets the lowest coefficient of friction that the haptic augmented reality system

can display. This coefficient of friction (µ = 0.17) is lower than the friction of 97 of

the 100 modeled textures available in our texture toolkit described in Appendix A.

Therefore, the base friction is low enough to allow us to match the friction of almost

all of the modeled textures.

Vibrations in the Socket

The physical contact between tool and surface generates unwanted tool vibrations,

which affect the feel of the interaction. Therefore, the choice of the underlying object

surface, as well as the socket design, was important to the overall system performance.

The surface needs to be smooth to minimize the unwanted vibrations. As discussed

in Section 5.3.5, the surface also needs to be rigid and have a high enough coefficient

of static friction to initiate rolling of the ball. To conform to all of these constraints,

we chose a rigid acrylic cube that is covered in a thin layer of rubber coating (Plasti

Dip, Performix).

To test the level of inherent vibrations in the system, the tool was dragged over

this smooth, rubber-coated surface. The three axes of acceleration were mapped onto

a single axis using the DFT321 algorithm [66], and they were high-pass filtered at
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Figure 5.11: Vibrations produced as the tool is dragged over a smooth surface.

20 Hz to remove effects of tool motion. Fig. 5.11 shows the recorded vibrations and the

signal’s DFT. The vibrations are lower in power than the vibrations for any of the 100

modeled textures available in our texture toolkit described in Appendix A. Although

the inherent vibrations are perceptible when no textures are being displayed, they will

not mask the virtual texture vibrations themselves. They may cause some degradation

in the realism, however, which we expect to be more prominent for textures that are

lower in power.

5.4 Augmented Textures

Now that we can measure interaction conditions and present a low-friction, low-

vibration base contact experience, we turn our attention to adding textures. The

three-dimensional virtual haptic rendering system discussed in Chapter 4 showed

that it is simple to map our haptic textures to an arbitrary three-dimensional shape.

Rather than needing the exact position of the tool, the texture vibrations depend

only on the user’s current tangential speed and normal force. This Section describes
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our method for adding our haptic textures to this augmented reality system.

5.4.1 Generating Textures

The user’s current tangential speed and normal force can be measured using the force-

torque sensor placed underneath the object, as discussed in Section 5.2. These values

are calculated at a rate of 1000 Hz and are used to determine the appropriate texture

model through interpolation as described in Section 2.4.1. The next texture output

value is calculated at every timestep as described in Section 2.4.2.

5.4.2 Hardware

After the texture signal is generated, it is scaled and converted to a voltage, which

is output through an analog output pin on a Sensoray 626 PCI card at a rate of

1000 Hz. The output voltage is then passed through a linear current amplifier with

a gain of 1 A/V.

This signal is then used to drive a voicecoil actuator (Haptuator Redesign, Tactile

Labs TL-002-14R) that is rigidly attached to the pen, as shown in Fig. 5.14. The ac-

tuator was attached perpendicular to the axis of the pen to maximize the propagation

of the vibrations through the tool and to the user’s fingertips. If the actuator was

aligned with the long axis of the pen, a significant portion of the vibrations would be

damped out because of the contact between the tooltip and the rigid object.
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Figure 5.12: Comparison of commanded and measured accelerations for two materials.

5.4.3 Analysis

This Section details our analysis of the texture rendering part of the haptic augmented

reality system. We test how closely the output vibrations match the commanded

vibrations. Then we analyze how playing the texture vibrations affects measurements

of tool position.

Commanded vs. Measured Vibrations

To test the texture vibration output of the system, we compare the commanded tex-

ture vibration signal with the measured vibrations felt by the pen. Fig. 5.12 shows

the comparison for two materials, ABS Plastic and MDF, which were chosen as rep-

resentative rough and smooth textures, respectively. The vibrations were synthesized

and recorded in real time using measurements of the user’s normal force and scanning
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speed as the experimenter dragged the pen across the smooth base material. A range

of forces and speeds were used in order to compare the vibrations for different interac-

tion conditions. Three axes of acceleration were recorded using two ±18 g ADXL321

accelerometers, and they were mapped onto a single axis using the DFT321 algo-

rithm. For each material, the amplitude of the spectrograms was normalized using

the maximum power of the commanded and measured signals, so the spectrograms

are shown using the same amplitude scale.

The measured vibrations for both ABS Plastic and MDF closely match the com-

manded vibrations in both power and frequency content, as can be seen in the spec-

trograms. However, the measured vibrations have higher power at frequencies around

500 Hz for both ABS Plastic and MDF. This disparity in high frequency content is

due to aliasing in the recorded acceleration signals, and is not present in the vibrations

being played to the user.

Effect on Position and Force Measurements

Displaying the texture vibrations through the voicecoil actuator attached to the pen

creates vibrations that propagate through the entire body of the pen. These vibrations

will also propagate to the object, which may add high-frequency noise to the force

and torque measurements. Since the tool’s position is calculated using the force and

torque measurements, the vibrations might affect the tool’s estimated position as

well. Therefore, it was important for us to test what effect, if any, the vibrations have
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Figure 5.13: Calculated tooltip trajectories when vibrations were playing and when they
were turned off. The DFT of the two trajectories indicates that the calculated tool position
is not affected by the presence of external vibrations.

on position.

An experimenter dragged the tool across the surface in a circular motion, inter-

mittently turning the texture vibrations on and off. We chose to play the texture

vibrations with the highest power (Brick 1) to test the worst case scenario. Fig. 5.13

shows the calculated tooltip position separately when the textures were on and off.

The measured tool trajectories are smooth both with and without vibrations playing.
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Figure 5.14: Design of haptic augmented reality pen. It can alter the perceived texture
of a physical object by displaying texture vibrations through the Haptuator. The friction
between the pen tip and object is modulated using a braking force applied to the metal ball
by the solenoid.

The discrete Fourier transform (DFT) of the position measurements shows that the

frequency content of the trajectories was the same for the two conditions. The peak

of the DFT for both condition occurs at about 1 Hz, which was the frequency of the

tool’s circular motion. These results show that although the texture vibrations can

introduce some noise into the force and torque signals, low-pass filtering the signals

from the sensor is sufficient to mitigate any effect of this noise.

5.5 Augmented Friction

The study reported in Section 3.3 showed that displaying texture vibrations accurately

captures the roughness of the surfaces but does not capture any of the surface’s

slipperiness. Therefore, to be able to display more than roughness with our augmented

reality system, we must include friction. This Section describes the modifications that

were made to our pen to allow for the modulation of friction between the tool and the
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Figure 5.15: Full haptic augmented reality system. An object is rigidly attached to the
force sensor, which provides measurements of the tool’s contact position, normal force, and
tangential force. The pen overlays haptic texture and friction signals on the physical object
based on the measured interaction conditions.

physical surface. The design of the pen is shown in Fig. 5.14. Our complete haptic

augmented reality system is shown in Fig. 5.15.

5.5.1 Friction Actuation Design

One of the advantages of our device over a traditional force-feedback haptic device

is its low inherent friction, which was described in Section 5.3. When the tool is

dragged across the surface, the lowest friction that can be displayed is the friction in

the socket when the ball is allowed to roll freely (µ = 0.17).

To alter the friction between the tool and the surface, we actively change how

difficult it is for the ball to roll by applying a force to the top of the rolling ball
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Figure 5.16: (a) Simplified socket design including additional solenoid plunger used in
analysis. (b) Free body diagram of forces applied to the rolling ball. The additional friction
force applied by the solenoid plunger alters how difficult it is for the ball to roll.

through a rubber-tipped rod, as shown in Fig. 5.16. We embed a linear solenoid in

the body of the pen to control the force that the rod applies to the ball, which changes

the amount of friction that slows the ball down.

5.5.2 Dynamic Analysis

To analyze the dynamic behavior of this modified socket design, we look at the sim-

plified two-dimensional representation shown in Fig. 5.16(a). The assumptions from

Section 5.3.4 are valid in this analysis as well. The free body diagram showing the

forces acting on the system is shown in Fig. 5.16(b). We assume the friction be-

tween the bearings and the ball follows the linear Coulomb relationships shown in

Eq. (5.3.4). Although the center ball is rolling without slipping, we want the user to

feel as though the tip of the pen is sliding on the surface with the coefficient of friction
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µ. To accomplish this, we enforce the Coulomb relationship shown in Eq. (5.3.6) to

create the system’s effective surface friction.

Assuming the system is moving at a constant velocity, the force and moment

balance equations are:

∑
Fx =− µN − µbNb1 sin(45◦) +Nb1 sin(45◦)− µsNs

− µbNb2 sin(45◦)−Nb2 sin(45◦) = 0

(5.5.1)

∑
Fy =N − µbNb1 cos(45◦)−Nb1 cos(45◦)−Ns

+ µbNb2 cos(45◦)−Nb2 cos(45◦) = 0

(5.5.2)

∑
Mz@o = −µNR + µbNb1R + µsNsR + µbNb2R = 0 (5.5.3)

where R is the radius of the ball.

The coefficient of kinetic friction between the solenoid plunger and the ball was

experimentally determined to be µs = 0.6. Solving Eq. (5.5.1)–(5.5.3) for a desired

effective surface friction µ, we find that the force the solenoid plunger must apply to

the ball is proportional to the normal force the user applies:

Ns = ϕN (5.5.4)

where ϕ is the scalar parameter:

ϕ =
µ (µ2

b (sin(45◦) + 1) + sin(45◦)) cos(45◦)− µb sin(45◦)

µ2
bµs (sin(45◦)− 1) cos(45◦)− µb sin(45◦) + µs sin(45◦) cos(45◦)

=
µ (µ2

b(
√

2 + 1) + 1) +
√

2µb

−µ2
bµs (

√
2− 1)−

√
2µb + µs

(5.5.5)

The values for µb and µs are known properties of the system, and µ is the desired
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Figure 5.17: Theoretical relationship between the user’s normal force and the force re-
quired by the solenoid to reach a specified coefficient of friction between the tool and the
surface.

effective surface friction.

Fig. 5.17 shows the value of ϕ as a function of the desired surface friction µ. Al-

though the value of ϕ is allowed to be greater than one in the theoretical calculations,

we do not expect this condition to occur in the physical system. If the force applied

by the solenoid Ns is greater than the user’s normal force N , the solenoid will push

the ball off of the bearings. In this situation, the only forces applied to the ball will

be N and Ns, which must be equal in order to satisfy the force balance. Thus, Ns

cannot be greater than N in the physical system. Setting the constraint ϕ ≤ 1, the

theoretical maximum surface friction for our prototype is µmax = 0.578.

This coefficient of friction is higher than the friction of 79 of the 100 modeled

textures available in our texture toolkit described in Appendix A. Therefore, the

friction range of our device is sufficiently large to match the friction of the majority

of the modeled textures.
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5.5.3 Characterizing the Solenoid

This Section discusses our analysis of the solenoid and its mechanical and electrical

characteristics. In particular, the solenoid’s temperature response and force output

both affect system performance.

Solenoid Selection

One of the critical characteristics we considered in choosing a solenoid is its size. Since

the solenoid must be embedded in the body of the pen, it could not be too large or

the tool would be unwieldy. The second critical characteristic we considered is the

solenoid’s force rating. We needed a solenoid that could apply forces high enough to

produce a wide range of braking forces to the ball. If the user applies the maximum

normal force we expect in the system (N = 5.0 N), the force the solenoid would have

to apply to the ball to achieve the theoretical maximum surface friction is 1.73 N. To

satisfy these requirements, we chose a 0.5 in. diameter, 1.0 in. long tubular solenoid

(Ledex, STA 195203-234).

As shown in Fig. 5.14, the solenoid is placed near the back of the pen. This place-

ment was necessary in order to address concerns about the temperature of the solenoid

by including a heatsink. A custom 90 mm long solenoid plunger was machined out

of tool steel to accommodate the solenoid’s placement and allow it to apply forces to

the steel ball at the tip.
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Force vs. Current Relationship

The theoretical relationship between current applied to the coil and the force exerted

by the solenoid plunger can be determined by first looking at the magnetic field

induced in the coil when current runs through the wire. The magnetic field B at the

open edge of the solenoid can be calculated as:

B =
µ0in

2

(
`√

`2 + r2

)
≈µ0in

2
if ` >> r

(5.5.6)

where µ0 is the magnetic permeability of free space, i is the current in the coil, n is

the number of coil windings per meter, ` is the length of the coil, and r is the radius

of the coil. The magnetic permeability is a measurement of the ability of the solenoid

plunger to support the formation of a magnetic field within itself.

Through conservation of energy, the force that the coil exerts on the solenoid

plunger can be found using the difference in the energy of the magnetic field between

when the solenoid is empty and when the plunger is fully inside the solenoid. This

change in energy can be calculated as:

∆U =Ufilled − Uempty

=
`πr2B2µr

2µ0

− `πr2B2

2µ0

(5.5.7)

where LπR2 is the volume of the solenoid plunger and µr is the relative magnetic

permeability of the plunger material. The holding force of the solenoid plunger can
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Figure 5.18: Measured and theoretical relationship between force and current in our
solenoid. The minimum force that the solenoid can apply is equal to the plunger’s weight.

be calculated as:

Ns =
∆U

`
=
πr2B2

2µ0

(µr − 1) (5.5.8)

The relationship between force and current for our solenoid was experimentally

determined by testing a range of current values. For each current value, the body of

the solenoid was held while a force was applied to the end of the solenoid plunger. The

peak force that was applied before the plunger moved was recorded as the force that

the solenoid coil exerted on the plunger. The resulting peak force values are shown

in Fig. 5.18. The line shown in Fig. 5.18 is calculated using Eq. (5.5.8). The theory

shows a very good fit to the measured force values. The solenoid plunger is made out

of tool steel, which has a relative magnetic permeability of µr = µm/µ0 = 2780. The

minimum force that the solenoid can exert on the ball is the weight of the solenoid
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plunger, which for our system is 0.042 N. This minimum force could be completely

removed by adding a return spring on the solenoid, but this would lower the maximum

normal force that could be applied by the solenoid to the ball.

Temperature Analysis

Heat is generated in the solenoid coil when current is applied. To avoid quickly

overheating the solenoid, a metal heat sink was added around the solenoid to allow

heat to be conducted from the solenoid through the metal tube. Once the heat reaches

the outside of the metal tube, it is lost via convection to the ambient air, cooling the

device.

To analyze the temperature in the solenoid over time, four levels of constant cur-

rent were applied for eight minutes each, always starting from room temperature.

The level of heat generation is greater than the level of cooling, causing the tem-

perature of the coil to increase over time. This heating results in an increase in the

resistance of the coil wire. Although it is difficult to measure the coil temperature

directly, we can estimate the temperature by measuring the coil resistance. During

each trial the voltage drop across the coil was recorded every 30 seconds. Since we

are applying a constant current, the resistance of the coil is linearly related to the

measured voltage via Ohm’s Law (R(t) = V (t)/i). From the measurements of coil

resistance, the temperature in the coil can be calculated as:

T (t) = Ti +
R(t)−Ri

αRi

(5.5.9)
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Figure 5.19: Temperature of the solenoid coil over time for different current values. There
are two distinct regions of heating in the coil.

where Ti is the ambient temperature, R(t) is the resistance in the coil at time t, Ri

is the initial resistance in the coil, and α is the temperature coefficient of resistance

for copper (α = 0.00386 ◦C−1).

Fig. 5.19 shows the estimated temperature of the solenoid coil over time for four

levels of constant current. The plot indicates two distinct regions of heating in the

solenoid. These different regions, before and after t = 2 min, exist because the

rate of cooling of the heat sink is greater at higher temperatures. Thus, the rate of

temperature increase over time is smaller after the system initially heats up. In both

regions the temperature increases approximately quadratically with time.

When driven at 100% duty cycle, the power output by the solenoid should be

limited to 4 W to avoid damage due to the temperature of the device. Our chosen

solenoid is rated to withstand temperatures up to 120 ◦C. We did not come close to
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reaching this potentially damaging temperature in any of our trials, as shown by the

estimated coil temperature in Fig. 5.19. However, it is not enough to consider only

the temperature of the coil. We also have to consider the comfort of individuals who

will be using our device. The solenoid’s heat sink is built as part of the pen. Although

it is above the point where the user will grip the pen, it is possible for the heat sink

to come into contact with the user’s hand. Therefore, we must avoid temperatures

that are too high to comfortably touch. This does not necessarily limit the currents

that we can use to drive the solenoid, but it may limit the amount of time one can

use the system before it becomes uncomfortably hot.

Current Drive vs. Voltage Drive

As shown in Eqs. (5.5.6) and (5.5.8), the force applied by the solenoid is directly

related to the current flowing through the coil. Thus, to apply a constant force

with the end of the solenoid plunger, the current flowing through the coil must be

kept constant. As discussed above, however, as the solenoid heats up over time its

resistance increases. Therefore, if a constant voltage was commanded, the current

through the coil would decrease over time. To maintain a constant force, we must

use current drive instead. By specifying a current through the coil, we can effectively

specify the force to be applied by the solenoid plunger to the ball. We use a current

amplifier with a gain of 1 A/V, similar to the amplifier used to drive the Haptuator.
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5.5.4 Friction Control Scheme

This Section discusses our control scheme for modulating the effective kinetic friction

between the tool and the surface.

The analysis in Section 5.5.2 showed that for a desired surface friction µ, the force

that must be applied by the solenoid Ns is proportional to the normal force applied

by the user N . As shown in Fig. 5.17, this ratio ϕ is linearly related to the desired

surface friction.

Section 5.5.3 determined that the force applied by the solenoid is quadratically

related to the commanded current. Thus, if the force that the solenoid should apply

to achieve a specified level of surface friction is known, the required current can be

calculated using the relationship determined in Fig. 5.18:

i =

√
1

27.8
(Ns − 0.042) (5.5.10)

The value of Fs can then be determined using the relationship shown in Eq. (5.5.4).

Thus, the current can be calculated as:

i =

√
1

27.8
(ϕN − 0.042) (5.5.11)

The relationship between ϕ and µ was experimentally determined by recording the

tool’s normal and friction forces where the current was calculated as in Eq. (5.5.11)

for a range of values for ϕ. A ten-second recording was taken for each value of ϕ, and

a line was fit to a plot of the measured friction force versus normal force. The slope
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Figure 5.21: Experimental relationship between the user’s normal force and the force
required by the solenoid to reach a specified coefficient of friction between the tool and the
surface.

of this line is the surface’s effective coefficient of friction µ. Representative plots of

the recorded force values are shown in Fig. 5.20. The plots exhibit a strong linear

fit with slight deviation from the average friction value, which illustrates that the

surface friction can accurately be controlled by setting ϕ to be a constant value. If

such performance was deemed insufficient, feedback control could be added.

Fig. 5.21 shows the experimental relationship between ϕ and the resulting sur-

face friction. The correlation is highly linear and closely matches the theoretical
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friction.

relationship determined in Fig. 5.17. Thus, the solenoid current can be calculated as:

i =

√
1

27.8

(
(2.92µ− 0.56)N − 0.042

)
(5.5.12)

where N is the tool’s measured normal force and µ is the desired coefficient of fric-

tion. Therefore, only real-time measurements of the tool’s normal force are needed

to accurately control the friction between the tool and surface.

The minimum measured coefficient of friction was µmin = 0.20, which is slightly

higher than the friction measured in Section 5.3.5. This discrepancy is caused by

the rubber-tipped solenoid plunger, which is always in contact with the ball. The

maximum measured coefficient of friction was µmax = 0.52, which is close to the

theoretical maximum determined in Section 5.5.2. However, this maximum friction

cannot be achieved for all interaction conditions. To avoid damaging the solenoid by

exceeding its maximum rated power, we limit the current to imax = 0.3 A. Fig. 5.22

shows the maximum normal force the user can apply before the current required to

drive the solenoid exceeds imax. For coefficients of friction higher than µ = 0.35 N,
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the maximum normal force the user can apply is less than our assumed limit of

Nmax = 5 N. Thus, for higher friction values, the user’s normal force should be

restricted so the solenoid’s current limit is not exceeded. Fig. 5.23 shows the operating

range for our friction modulation system.

5.5.5 System Analysis

After determining an appropriate friction control scheme, we wanted to test how well

the system performed in outputting the commanded texture vibrations and friction.

Fig. 5.24 shows the commanded and measured accelerations and effective friction

coefficients for ABS Plastic and Tarp. The commanded and measured vibrations

closely match the commanded vibrations in both overall power and variability over

time.

A constant friction coefficient was commanded using Eq. (5.5.12) where µ is the
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Figure 5.24: Comparison of commanded and measured accelerations and effective friction
coefficients for two materials.

real surface’s coefficient of friction. The measured friction coefficient was calculated

at each time step using the present measurements of normal force and friction force.

Both ABS Plastic and Tarp show a measured effective friction coefficient that os-

cillates around the commanded friction coefficient. Although the measured friction

coefficients are not constant, the deviations we see are on the same order of mag-

nitude as variations in measured friction for real surfaces. Therefore, the results in

Fig. 5.24 show that the system is able to accurately modulate the effective friction to

match the friction of the real surface, while simultaneously displaying realistic friction

vibrations.
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5.6 Summary

This Chapter presented a novel haptic augmented reality system for altering the

perceived texture and friction of a physical three-dimensional object. First we de-

scribed a method for determining the contact position on a three-dimensional object

using a geometric model of the object and measurements of the applied force and

torque. Analysis of this method indicated that the position resolution is approxi-

mately 0.5 mm for our system, which is comparable to other commercially available

position measurement systems. Next, we described the design of a low friction, low

vibration pen created to ensure smooth interactions with the physical object. This

haptically clean experience is necessary to increase the realism of the additional hap-

tic texture and friction feedback. The design centers on a steel ball supported by

four small steel bearings; the ball rolls on the surface without slip. We then rigidly

attached a voicecoil actuator to the pen to display previously modeled texture vi-

brations, and we designed a novel mechanism for modulating the effective friction

between the pen and the physical surface. This friction control includes a solenoid

that applies a braking force to the ball, increasing the friction in the socket. The

braking force translates to an increase in friction between the ball and the surface.

The experimental range of friction between the tool and surface was from µ =0.20

to µ =0.52. This range of friction coefficients is sufficient to render a large range of

physical surfaces, including 63 of the 100 textures included in our Penn Haptic Tex-

ture Toolkit. Our analysis of this system showed that it was able to accurately output
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the commanded texture vibrations and modulate the surface friction to a commanded

value. This haptic augmented reality system can be used to create a wide array of

haptic surfaces, while alleviating the problems of low stiffness and undesired internal

friction and vibrations that are common to many force-feedback devices.
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Chapter 6

Conclusion

The sensations you feel when interacting with the physical world through a tool are

rich and varied. These haptic signals provide you with important information about

the texture, friction, and hardness of objects in your surroundings. Fully capturing

the complexity of these interactions is essential for creating realistic haptic virtual

objects and surfaces. Unfortunately, most haptic rendering schemes fall short of this

mark.

This thesis presents methods for modeling haptic virtual surfaces using accelera-

tion, force, and speed data recorded while dragging or tapping on a physical surface.

These models are used to create virtual surfaces using three separate rendering sys-

tems, which are evaluated for realism.
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6.1 Contributions

Recording and modeling of haptic textures

Chapter 2 of this thesis describes new methods for creating haptic texture vibration

models from data that was recorded during interactions with a textured surface. One

benefit of this new method is that it allows texture data to be recorded without

constraints on the normal force applied or the scanning speed used during recording.

This unconstrained recording is an advantage over the previous methods described

in [95], which required that data be recorded at constant force and speed. However,

humans are not robots and cannot maintain perfectly constant force and speed, which

resulted in undesired behavior in the acceleration signal in the previous modeling

approach. Conversely, our new texture modeling method is robust to changes in the

spectrum of the acceleration signal. Instead of creating a single texture model for

each data recording, the acceleration signal is broken into segments where the power

and spectral properties are approximately constant. The signal is then modeled as a

piecewise autoregressive process and the individual autoregressive models are stored

in a Delaunay triangulation. This Chapter also presents a new method for stably

generating synthetic texture signals from user force and speed values. We tested

the recording and modeling process with novice data recorders. The results showed

that our methods were robust across different users with minor variations due to

differences in hand dynamics or the range of forces and speeds used during recording.
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This modeling method, however, is valid for only isotropic and homogeneous textures.

Although this represents a large portion of natural textures, a different modeling

approach would be needed to model a wider range of textures, including those that

are anisotropic or periodic.

Rendering and evaluation of haptic textures

Chapter 3 presents methods for displaying haptic textures on a tablet computer using

the texture models that were created in Chapter 2. The tablet and stylus provided

measurements of the user’s force and speed to generate the texture signals in real

time. These signals were then displayed to the user by being played through a voice-

coil actuator that was rigidly attached to the stylus. A human-subject study showed

that although the textures rendered in this manner were very realistic, we succeeded

in capturing only the roughness information of the surface with the vibrations. This

modeling and rendering approach is not sufficient to fully capture the real surface’s

hardness and slipperiness information.

Three-dimenensional rendering of haptic surfaces

Chapter 4 describes a more complete method of creating haptic models of textured

surfaces. To overcome the limitations of the vibration-only texture models, additional

surface friction and tapping transients were added to more fully capture the surfaces’

perceptual qualities. These model components were created from data recorded while
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dragging or tapping a tool on real surfaces. These additional model components

required force feedback in addition to vibrotactile feedback, which necessitated the

switch to a Phantom Omni augmented with a voice-coil actuator for rendering. These

haptic surface models were evaluated through two human subject studies to test their

realism. The first study investigated whether it is necessary for texture vibrations to

respond to both user force and speed during rendering. The results of this study indi-

cated that to create realistic virtual surfaces it is necessary for the texture vibrations

to respond to user speed, but not necessarily user force. This result is important to

haptics researchers because incorporating force responsiveness might not be feasible

or practical due to limitations in texture recording, modeling, or rendering; includ-

ing speed responsiveness is easier in terms of both computational complexity and

hardware. The second study investigated whether it is necessary to include all three

model components (surface friction, tapping transients, and texture vibrations) to

create realistic surfaces. The results of the study showed that displaying all three

components fully captured the surface’s slipperiness, hardness, and roughness infor-

mation. However, it may not be necessary to include all three components to create

a realistic virtual surface. The relative importance of the three model components

depends on the underlying properties of the real surface.
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Haptic augmented reality

Chapter 5 describes a novel haptic augmented reality system for altering the perceived

texture and friction of a physical three-dimensional object. Due to size limitations of

our device, we do not include force and position sensors in the pen itself. Rather, we

offload the sensing by placing a force/torque sensor underneath the physical object.

Using only the measurements from this sensor and a three-dimensional geometric

model of the object, we accurately calculate the tool’s contact position. We created

a custom pen for interacting with the physical object. The pen was designed to have

low inherent friction and vibrations so as to not contaminate the texture and friction

signals that are displayed. We rigidly attached a voicecoil actuator to the pen to

display texture vibrations. We then created a novel friction modulation actuator by

applying a braking force to a rolling ball in the tip of the pen. This braking force

translates to an increase in friction between the tooltip and the surface. Analysis

of the system showed that it is capable of accurately modulating the friction of the

physical object in the range of µ =0.20 to µ =0.52

6.2 Future Directions

This thesis presents a significant contribution to the field of data-driven haptic mod-

eling and rendering. However, there are limitations to our methods resulting from

assumptions we have made concerning the characteristics of the haptic surfaces. The
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modeling and rendering methods presented here are valid only for surfaces that are

isotropic, which means that they must have the same haptic properties in all direc-

tions. This assumption excludes an important group of materials including corduroy

and wood with a thick grain. Modeling anisotropic surfaces would require that the

recorded signals take into account the direction of the tool.

A second avenue for expansion of these haptic surface models was discussed in

Section 4.5.4. In that study, the sample of carpet was not captured well by our

surface modeling methods because its surface properties allowed the tool to penetrate

the surface and get temporarily stuck during dragging. The resulting lateral impulse

forces on the tooltip are important to the feel of the surface, but they are not captured

through texture vibrations alone. Rather, fully capturing this behavior would require

that the penetration of the tool into the surface and the lateral forces be modeled

as a separate component. Capturing this behavior would allow us to model a wider

variety of surfaces including soft foam and thick woven fabric in addition to carpet.

A further improvement to the modeling and rendering methods would be to in-

clude the sounds generated when the tool is dragged across a surface. In the human

subject studies presented in this thesis, we blocked auditory cues by having subjects

wear headphones while touching real or virtual surfaces. However, in real interactions

haptic and auditory cues work together to form your perception of the world. Fur-

thermore, auditory cues can influence your perception of how an object feels [100].

To fully capture the richness of real objects, virtual rendering should include both
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haptic and auditory cues. The modeling methods presented in Chapter 2 could not

be directly applied to modeling sound because the autoregressive model structure

does not preserve the signal’s phase. However, a model interpolation scheme similar

to the one described in Section 2.4.1 could be implemented if auditory models were

available for a range rendering conditions.

The modeling and rendering principles presented in this thesis could be applied

to other haptic applications where realism is desired or a necessity. Increasing haptic

realism is especially crucial for medical simulators where doctors train to learn a

new skill before performing it on a human patient. Unrealistic haptic feedback is

considered by many to hinder widespread adoption of this technology into the medical

curriculum [39]. Our data-driven modeling methods could be adapted to model the

types of signals doctors experience during procedures such as detecting a cavity or

giving an epidural injection. These models could then be added to virtual medical

simulators to increase fidelity.
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Appendix A

The Penn Haptic Texture Toolkit

As the field of robotics has expanded, there has been a push toward the development

of open-source data and software, e.g., [87]. This collaborative environment facilitates

the timely advancement of technology because it allows researchers to build upon the

work and ideas of their colleagues around the world. Open-source contributions have

also flourished in the vision community through the use of vision databases, which

provide researchers with a standard set of data with which to test their algorithms.

These databases save the research community time because collecting data can be

time intensive and expensive.

Several texture databases have been developed for use in computer vision research.

The Brodatz repository is a set of black and white images that are considered the clas-

sic standard in texture image processing research [110]. The VisTex database contains

images of real-world textures under everyday conditions [91]. The MeasTex image
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database was compiled to supplement the Brodatz images and the VisTex database

sets [99]; it contains a quantitative measurement framework for image texture analysis

algorithms. The DynTex database contains sequences of dynamic texture videos [88].

These texture databases allow for the standardization of test conditions and accelera-

tion in the research pipeline. However, there have not yet been any similar databases

developed for use in haptics research. This lack of freely available data is probably

limiting the speed at which haptic technology can be advanced.

Both our group and others have recently been applying data-driven modeling to

haptic textures, with a variety of approaches being explored [24–26, 36, 82, 86, 95,

96, 107]. Our texture modeling approach was discussed in Chapters 2-3. Other re-

searchers have begun asking us to share data collected with our recording system

discussed in Section 2.2 and shown in Fig. A.2. Furthermore, at present there is no

straightforward way for this group of researchers to compare and validate their mod-

eling and rendering methods. To fulfill this need, we have developed the Penn Haptic

Texture Toolkit (HaTT), which consists of haptic texture and friction models of 100

materials, the original data used to create the texture and friction models, images of

the materials, and the code and methods necessary to render these textures using a

SensAble Phantom Omni. Including the rendering code has the additional benefit of

allowing others to incorporate our haptic textures into their virtual environments to

create richer and more immersive experiences for their users. For example, a designer

could make a tactile virtual room with one of our carpet textures on the floor, our
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painted brick texture on the walls, and our wood texture on the door.

Enabling others to test and use our virtual textures required us to modify both

our modeling and rendering methods. Our past work discussed in Chapters 2-3 and

published in [24,26,95,96] rendered virtual textures on a Wacom tablet using a voice-

coil actuator attached to the stylus. The first human-subject study on our textures

showed they were the most realistic haptic textures to date [95]. The methods were

refined to work with data recorded in an unconstrained manner, Chapter 2, and a

second human-subject study was run to evaluate the strengths and weaknesses of this

modified approach, Chapter 3. This study found that modeling and rendering textures

using only vibrations accurately recreates the roughness of the real textures but is not

sufficient to match slipperiness and hardness. Adding in these important perceptual

qualities requires a device that can control normal and friction forces, which could

not be accomplished using the original TexturePad system. Furthermore, we wanted

to make our rendering methods openly available to other researchers, so we chose the

widely available SensAble Phantom Omni.

The toolkit is available for public download at http://repository.upenn.edu/

meam\_papers/299/ under copyright from the University of Pennsylvania allowing

for the use, copy, and modification of the included software for non-profit research

purposes. The rendering code is distributed with permission from Geomagic, the

maker of the Omni and OpenHaptics. This Appendix provides a detailed description

of the toolkit contents, which has been published in [21].
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A.1 Data Collection

This Section describes the specific surfaces that are included in the toolkit and the

data that was collected and processed to make the haptic texture and friction models

in HaTT. This Section concludes with a description of the recorded data files found

in the toolkit.

A.1.1 Texture Samples

The toolkit includes the 100 texture samples shown in Fig. A.1. The materials were

chosen to represent different combinations of roughness, hardness, and slipperiness

and are divided into ten categories: paper, metal, carbon fiber, fabric, plastic, wood,

stone, foam, tile, and carpet. All chosen materials are isotropic and homogeneous,

as these conditions are necessary for the modeling methods presented in Chapter 2.

Except for metal, all materials were cut to 10.16 cm squares and were mounted on a

0.32-cm-thick piece of acrylic using double-sided tape. The tape was placed only at

the edges of the material so it would not affect the compliance of the surface. The

toolkit includes close-up color images of all textures, which were taken using a Nikon

D40 digital camera. The images are stored as square bitmaps with 1024 pixels on

each edge, correlating to a physical scale of 15 pixels/mm.
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Figure A.1: Images of the 100 textures that were haptically modeled and are included
in the toolkit. The materials are divided into ten categories: paper, metal, carbon fiber,
fabric, plastic, wood, stone, foam, tile and carpet. Note that the images are zoomed in from
the images included in the toolkit to show detail.

A.1.2 Included Data Files

Data was recorded using the same hardware and methods described in Section 2.2.

The hardware, which includes sensors to record the tool’s position, orientation, force,

and high-frequency acceleration as it is dragged across a textured surface is also shown

in Fig. A.2. For this research, a 3.175-mm-diameter stainless steel hemispherical

tooltip was attached to the end of the tool and used to interact with the surface. Ten

seconds of data were recorded for each texture while the experimenter held the haptic

recording device and explored the surface using natural and unconstrained motions.

After the data was recorded, it was processed as described in Section 2.2.3.

The toolkit includes two data recordings for each material, which are processed as

discussed in Section 2.2.3. The signals are presented at 10 kHz, and all axes are with

respect to the magnetic field generator’s world frame shown in Fig. A.2. Table A.1

summarizes the included data files, which are stored in XML format.
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Figure A.2: Haptic recording device. The tool measures position, orientation, force, and
acceleration for three axes during interaction with texture samples.

A.2 Haptic Texture and Friction Models

This Section discusses our methods for creating texture and friction models from the

acceleration, force, and speed signals recorded in the previous section. We present a

new method for resampling the models to render the textures at a sampling rate that

differs from the 10 kHz used when recording the data. This Section concludes with a

description of the model files that are included in the toolkit.

A.2.1 Texture Models

We model the recorded acceleration signal as a piecewise autoregressive process using

the methods presented in Section 2.3. Each AR model is labeled with the median
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Table A.1: Recorded Data Files

Field Description

Accel MATERIAL Files

<AccelUnits> Units of acceleration

<SampleRate> Sample rate in Hz

<Accel> Combined acceleration signal using DFT321 algorithm

<Accel x> Array of acceleration values in x-direction

<Accel y> Array of acceleration values in y-direction

<Accel z> Array of acceleration values in z-direction

Position MATERIAL Files

<SpeedUnits> Units of speed

<PositionUnits> Units of position

<SampleRate> Sample rate in Hz

<Speed> Array of absolute speed values, low-pass filtered at 100 Hz

<Position x> Array of position values in x-direction

<Position y> Array of position values in y-direction

<Position z> Array of position values in z-direction

Force MATERIAL Files

<ForceUnits> Units of force

<SampleRate> Sample rate in Hz

<ForceNormal> Array of force normal to surface

<ForceTangential> Array of force values tangential to direction of motion

<Force x> Array of force values in x-direction

<Force y> Array of force values in y-direction

<Force z> Array of force values in z-direction

force and median speed of the segment from which it was made, and these labels are

used to store and access the models in a Delaunay triangulation in force-speed space.

During rendering of the virtual texture, a texture vibration signal is generated using

a measurement of the user’s current force and speed, as discussed in Section 2.4.

Model Resampling

The HaTT texture models were created from data recorded at 10 kHz. However,

others may want to render the texture vibrations at a sampling rate that is different

from that used to record the data. For example, the rendering scheme presented later

in this Appendix uses the common haptic sampling rate of 1 kHz. Our desire to share
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Table A.2: Model Resampling Files

File Description

CreateResampledModels.m Main resampling function. Takes in
new sampling rate in Hz as argument.

readValueXML.m Reads in single value from XML file

readArrayXML.m Reads in array of values from XML file

resampleModels.m Takes in the parsed model information,
the original sampling rate (10,000 Hz),
and the desired sampling rate. Returns
the model information of the down-
sampled models.

modelXSL createHTML.xsl XSL stylesheet to create an HTML file
for each new model XML file

these models across platforms and between devices further motivates the need for

models at multiple sampling rates. Therefore, we decided to record the data at a much

higher sampling rate than needed for our rendering scheme and resample the models

to the desired sampling rate. This model resampling creates an equivalent model at

a different sampling rate by using a zero-order hold on the inputs. Resampling an

AR model adds zeros to the model, which transforms the model to an autoregressive

moving-average (ARMA) model, where the output depends on the history of both

the past outputs and inputs.

The toolkit includes Matlab code to accomplish this model resampling and write

the XML files necessary for the rendering code. Table A.2 provides a summary of

the files included. The resampled models must have a sampling rate lower than the

original 10 kHz.
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A.2.2 Friction Model

A second data recording was made to obtain an estimate of the friction coefficient for

the stainless steel hemispherical tooltip dragging across each material. As described

in Section 4.2.1, we chose to model this interaction using Coulomb friction, wherein

Ff = µkFn. The original recording was found not to be ideal for fitting a simple

Coulomb friction model due to the varied input conditions necessary to make a good

texture model. Conversely, it was found that a smooth, fluid motion resulted in a

more consistent estimate of the friction coefficient because at high speeds the tool

glides over the surface [71] so the tangential force is not dominated by impacts with

the surface features.

We downsampled the force data to 240 Hz before using the normal and tangential

unit vectors to calculate the normal and friction forces. A Coulomb friction model was

fit to the data by constraining a line to intersect the origin. The friction coefficients of

the surfaces in the toolkit range in value from 0.11 for wax paper to 1.39 for ethylene

propylene diene monomer (EPDM) foam.

A.2.3 Included Model Files

The toolkit includes both the original AR models at 10 kHz and the resampled ARMA

models at 1 kHz. Table A.3 shows the fields included in the model XML files. The

model XML files are used for rendering in the next section. HTML files are also

included in the toolkit for visualization of the model sets.
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Table A.3: Model Files

File Description

<Material> Texture name

<AccelUnits> Units of acceleration

<SpeedUnits> Units of speed

<ForceUnits> Units of force

<SampleRate> Model sample rate in Hz

<mu> Kinetic friction coefficient

<htmlPicture> File path to image of texture for HTML

<renderPicture> File path to image of texture for rendering

<numMod> Number of models

<numTri> Number of triangles in Delaunay triangulation

<maxSpeed> Maximum modeled speed

<maxForce> Maximum modeled force

<speedList> Array of all modeled speeds

<forceList> Array of all modeled forces

<tri> Model vertices for one triangle

<DTpicture> File path to image of Delaunay triangulation

<numARCoeff> Number of AR coefficients

<numMACoeff> Number of MA coefficients

<model> Information for one ARMA model, including:

<modNum> Model number

<ARcoeff> Array of AR coefficients

<ARlsf> Array of AR line spectral frequencies

<MAcoeff> Array of MA coefficients

<MAlsf> Array of MA line spectral frequencies

<var> Model variance

<gain> Gain of MA coefficients

<speedMod> Model speed

<forceMod> Model force

A.3 Texture Rendering

This Section describes the methods used to render the textures and display them to a

user. First we describe the hardware, and then we describe the software that handles

the rendering calculations and displays the output forces to the user. This Section

concludes with a description of the files included in the toolkit necessary for rendering

the haptic virtual textures.
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Figure A.3: A person using a Phantom Omni to interact with the cork texture on a virtual
sphere.

A.3.1 Hardware

The code presented in the toolkit is for the implementation of our texture rendering

methods with a SensAble Phantom Omni. An Omni was chosen because of its low cost

and wide availability among haptics researchers. Several researchers have adapted the

rendering code to work with other hardware including the Magnetic Levitation Haptic

Interface by Butterfly Haptics. The rendering methods presented in the toolkit were

originally implemented on a Linux computer running Ubuntu version 12.04 LTS with

a GeForce GTX 570/PCIe/SSE2 graphics card. The Windows version of the rendering

code has also been implemented in Visual Studio 2008 on a computer running 64-bit

Windows 7 with an Intel HD Graphics 2000 graphics card.
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A.3.2 Software

The rendering code presented in this toolkit is based on OpenHaptics 3.0 and uses the

Haptic Device API (HDAPI), which runs the haptic servo loop thread at 1000 Hz [46].

The included texture rendering program maps the haptic textures on to a 100-mm-

diameter sphere, as shown in Fig. A.3. The user interacts with the textured sphere

through a 3.2-mm-diameter spherical proxy. Any of the 100 textures can be selected

to render from a menu, and the image of the texture is displayed on the sphere.

During rendering, three separate forces are calculated and displayed to the user:

the normal force (~Fn), which provides the general shape and hardness of the sphere,

the friction force (~Ff ), which controls the slipperiness of the surface, and the texture

force (~Ft), which adds our modeled textures to the surface.

If a collision between the proxy and the sphere is detected, the software gets the

user’s current applied normal force and current position. The normal force follows a

Hooke’s law relationship to the proxy’s penetration depth with a gain of 0.5 N/mm.

The time history of position is used to estimate the user’s current velocity. A second-

order low-pass filter at 20 Hz is applied to the velocity estimate to reduce noise and

remove movement caused by displaying the texture. We then subtract the component

of the velocity vector in the normal direction to obtain the user’s velocity tangent to

the surface.

The user’s tangential velocity vector is used to calculate the unit vector tangent

to the direction of motion for the display of friction. Our friction rendering approach
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was set by the modeling approach made in Section A.2.2. However, by itself Coulomb

friction cannot be used in rendering because there is a discontinuity in the magni-

tude and direction of the friction force at zero velocity. This discontinuity creates an

unrealistic and jarring feeling and can cause the system to become unstable for large

friction coefficients. Therefore, it was necessary to add a region of viscous damp-

ing around zero velocity to remove discontinuities in the friction force, as shown in

Fig. A.4. We aimed to keep this viscous region as small as possible, so the threshold

velocity for the transition between viscous damping and Coulomb friction was not

kept constant for all materials. Instead we made this threshold velocity a function of

the material’s friction coefficient:

vth =
µk
b

(A.3.1)

where vth is the velocity threshold, and b is the slope of the viscous region divided

by the normal force, which was empirically chosen as 0.004 s/mm. Although some

of the instability seen in friction rendering could be fixed by switching to a device

with a higher position resolution such as the Phantom Premium, we chose to test

the rendering code on a Phantom Omni to make the toolkit available to a wider

audience. Researchers using the toolkit may wish to modify the friction rendering

approach for their own system and could also fit more sophisticated friction models

from the provided data.

Using our estimates of the user’s current normal force and tangential speed, we

synthesize vibrations at 1000 Hz as described in Section 2.4. This signal generation
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Figure A.4: Friction model used for rendering. A region of viscous damping was added
around zero velocity for stability. The slope of the viscous region was kept constant for all
materials.

returns accelerations in the units of m/s2. However, the Omni needs to display forces,

so we scale this acceleration by the effective mass of the handle and the user’s hand,

which was empirically chosen to be 0.05 kg; this value would need to be adjusted for

realistic rendering with other haptic interfaces. Since humans cannot discriminate

the direction of high-frequency vibration [9], it does not matter in which direction we

display the texture forces. Therefore, to minimize the chances of exceeding the output

capabilities of the Omni, we create a texture unit vector (êt) that is perpendicular to

both the normal vector (ên) and the friction vector (êf ), as shown in Fig. A.5.

Each time through the servo loop, if collision with the sphere is detected, the

normal, friction, and texture force vectors are calculated, and their resultant sum is

displayed to the user. A sample of the three output forces and the user’s speed is
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Figure A.5: Direction of forces displayed to the user. ~v indicates the user’s direction of
travel.

shown in Fig. A.6.

A.3.3 Rendering Code

The files necessary to run the described rendering code are shown in Table A.4. Third

party code is explicitly labeled. In addition, the Boost Random Number Library is

needed to generate the excitation signals [29].

A.4 Summary

Motivated by the current lack of a freely available database of haptic textures, we

have created the Penn Haptic Texture Toolkit of 100 textures. For each texture,
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Figure A.6: The three force signals output to the user by the Omni and the speed of the
user while interacting with virtual cork.

the toolkit contains two recorded datasets, texture and friction models, an image,

and the code necessary to render the textures using a SensAble Phantom Omni. We

hope that this toolkit will become a tool to help researchers enhance their haptic vir-

tual environments and also compare and validate texture modeling approaches. This

Appendix presents our methods for modeling and rendering haptic virtual textures,

as well as the information included in the toolkit. Each texture’s model set is cre-

ated from a ten-second high-frequency acceleration recording, which is segmented and

modeled as a piecewise autoregressive process. The individual AR models are labeled

with the force and speed used during data recording and are stored in a Delaunay

triangulation. A measurement of the user’s current normal force and tangential speed

can be used to synthesize textures in real time. A method for resampling the models

was presented to facilitate the sharing of the models amongst researchers and across
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Table A.4: Rendering Files

Field Description

src folder

main.cpp Runs graphics loop and haptics loop. Cal-
culates texture vibrations

AccSynthHashMatrix.cpp Constructs hash entries to store models.
Interpolates between models

ContactModel.cpp? Defines equation of the force fields

helper.cpp? Sets the graphics state

pugixml.cpp§ XML parser

include folder

AccSynthHashMatrix.h Hash table class for texture generation

autoGenHashMatrix.h Parses model parameters from xml file and
stores models in memory

shared.h Shared memory file for texture generation

sharedInit.h Initializes variables in shared memory for
texture generation

ContactModel.h? Defines constants for contact in simulation

Constants.h? Defines physical constants of simulation

pugixml.hpp§ XML parser

pugiconfig.hpp§ Configuration file for XML parser

foreach.hpp§ Boost.Foreach support for pugixml classes

build folder

TexturedSphere Executable for rendering

Models MATERIAL.xml Model XML files

images folder

MATERIAL square.bmp Texture image for display in rendering
?Adapted from OpenHaptics sample code, §Copyright 2006-2012 by Arseny Kapoulkine

devices.

Additionally, the use of the Phantom Omni allowed for the direct rendering of

friction, which was shown in Chapter 3 to be a limiting factor in the realism of our

textures displayed on a tablet. Chapter 4 presents an updated version of this rendering

system, which includes augmenting the Omni’s handle with a voice-coil actuator to

directly output the texture vibrations instead of using the Omni’s motors. This

modification allows us to better control the output, which results in higher-fidelity

recreations of the synthesized texture vibrations.
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