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ABSTRACT
ESSAYS IN MACROECONOMIC DYNAMICS AND THE FINANCIAL MARKET
Wen Yao

Jests Ferndndez-Villaverde

This thesis explores the important link between macroeconomic dynamics and the
financial sector. The first essay studies Epstein-Zin preferences, which are found to
be able to account for both aggregate macroeconomic dynamics and asset prices. In
the first essay, I compare different solution methods for computing dynamic stochas-
tic general equilibrium (DSGE) models with Epstein-Zin preferences and stochastic
volatility. I show that perturbation methods are an attractive approach for comput-
ing this class of problems. The second essay emphasizes the importance of frictions in
the financial market on real economic activities. The model studies the international
business cycle co-movements when financial frictions are present. The model can
account, for the positive and sizable cross-country correlations of output, investment

and hours worked in the data.
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Chapter 1

Introduction



This thesis studies the connection between aggregate macroeconomic dynamics
and the financial sector. Since the work by Mehra and Prescott (1985), it is well
known that standard real business cycle models have difficulty in explaining asset
prices. The introduction of recursive preferences, such as Epstein-Zin preferences
adds extra flexibility and helps the model to explain asset pricing patterns. Given
the importance of Epstein-Zin preferences, the first essay compares different solu-
tion methods for computing the equilibrium of DSGE models with Epstein and Zin
preferences and stochastic volatility. I solve the stochastic neoclassical growth model
with recursive preferences and stochastic volatility using four different approaches:
second- and third-order perturbation, Chebyshev polynomials, and value function it-
eration. I document the performance of the methods in terms of computing time,
implementation complexity, and accuracy. Our main finding is that perturbations
are competitive in terms of accuracy with Chebyshev polynomials and value function
iteration, while being several orders of magnitude faster to run. Therefore, I conclude
that perturbation methods are an attractive approach for computing this class of
problems.

The second essay looks into the importance of financial frictions on real activi-
ties. I build a two-country DSGE model to study the quantitative impact of financial
frictions on business cycle co-movements when investors have foreign asset exposure.
An investor in each country holds capital in both countries and faces a leverage con-
straint on her debt. I show quantitatively that financial frictions along with foreign
asset exposure give rise to a multiplier effect that amplifies the transmission of shocks
between countries. The key mechanism is that a negative shock in the home country
reduces the wealth of investors in both countries which tightens their leverage con-

straints, leading to a fall in the investment, consumption, and hours worked in the



foreign country. Compared to the existing literature, which tends to produce either
negative or positive but small cross-country correlations, this model produces positive
and sizable correlations that are consistent with the data. The model can account
for two thirds of the output correlation, most of the employment correlation and a
positive investment correlation. In addition, the model also shows that, consistent
with empirical findings, when investors have more foreign asset exposure in the other

country, the output correlation between the two countries increases.



Chapter 2

Computing DSGE Models with
Recursive Preferences and
Stochastic Volatility



2.1 Introduction

This paper compares different solution methods for computing the equilibrium of dy-
namic stochastic general equilibrium (DSGE) models with recursive preferences and
stochastic volatility (SV). Both features have become very popular in finance and in
macroeconomics as modelling devices to account for business cycle fluctuations and
asset pricing. Recursive preferences, as those first proposed by Kreps and Porteus
(1978) and later generalized by Epstein and Zin (1989 and 1991) and Weil (1990), are
attractive for two reasons. First, they allow us to separate risk aversion and intertem-
poral elasticity of substitution (EIS). Second, they offer the intuitive appeal of having
preferences for early or later resolution of uncertainty (see the reviews by Backus et
al., 2004 and 2007, and Hansen et al., 2007, for further details and references). SV
generates heteroskedastic aggregate fluctuations, a basic property of many time series
such as output (see the review by Ferndndez-Villaverde and Rubio-Ramirez, 2010),
and adds extra flexibility in accounting for asset pricing patterns. In fact, in an influ-
ential paper, Bansal and Yaron (2004) have argued that the combination of recursive
preferences and SV is the key for their proposed mechanism, long-run risk, to be
successful at explaining asset pricing.

But despite the popularity and importance of these issues, nearly nothing is known
about the numerical properties of the different solution methods that solve equilibrium
models with recursive preferences and SV. For example, we do not know how well value
function iteration (VFI) performs or how good local approximations are compared
with global ones.! Similarly, if we want to estimate the model, we need to assess which
solution method is sufficiently reliable yet quick enough to make the exercise feasible.
This paper attempts to fill this gap in the literature, and therefore, it complements
previous work by Aruoba et al. (2006), in which a similar exercise is performed with
the neoclassical growth model with CRRA utility function and constant volatility.

We solve and simulate the model using four main approaches: perturbation (of
second and third order), Chebyshev polynomials, and VFI. By doing so, we span most

of the relevant methods in the literature. Our results provide a strong guess of how

! Also, remember that the most common solution algorithm in the DSGE literature, (log-) lin-
earization, cannot be applied, since it makes us miss the whole point of recursive preferences or SV:
the resulting (log-) linear decision rules are certainty equivalent and do not depend on risk aversion
or volatility.



some other methods not covered here, such as finite elements, would work (rather
similar to Chebyshev polynomials but more computationally intensive). We report
results for a benchmark calibration of the model and for alternative calibrations that
change the variance of the productivity shock, the risk aversion, and the intertemporal
elasticity of substitution. In that way, we study the performance of the methods both
for cases close to the CRRA utility function with constant volatility and for highly
non-linear cases far away from the CRRA benchmark. For each method, we compute
decision rules, the value function, the ergodic distribution of the economy, business
cycle statistics, the welfare costs of aggregate fluctuations, and asset prices. Also, we
evaluate the accuracy of the solution by reporting Euler equation errors.

We highlight four main results from our exercise. First, all methods provide a high
degree of accuracy. Thus, researchers who stay within our set of solution algorithms
can be confident that their quantitative answers are sound.

Second, perturbations deliver a surprisingly high level of accuracy with consid-
erable speed. Both second- and third-order perturbations perform remarkably well
in terms of accuracy for the benchmark calibration, being competitive with VFI or
Chebyshev polynomials. For this calibration, a second-order perturbation that runs
in a fraction of a second does nearly as well in terms of the average Euler equation
error as a VFI that takes ten hours to run. Even in the extreme calibration with
high risk aversion and high volatility of productivity shocks, perturbation works at
a more than acceptable level. Since, in practice, perturbation methods are the only
computationally feasible method to solve the medium-scale DSGE models used for
policy analysis that have dozens of state variables (as in Smets and Wouters, 2007),
this finding has an outmost applicability. Moreover, since implementing second- and
third-order perturbations is feasible with off-the-shelf software like Dynare, which re-
quires minimum programming knowledge by the user, our findings may induce many
researchers to explore recursive preferences and/or SV in further detail. Two final
advantages of perturbation are that, often, the perturbed solution provides insights
about the economics of the problem and that it might be an excellent initial guess
for VFI or for Chebyshev polynomials.

Third, Chebyshev polynomials provide a terrific level of accuracy with reasonable
computational burden. When accuracy is most required and the dimensionality of
the state space is not too high, as in our model, they are the obvious choice.

Fourth, we were disappointed by the poor performance of VFI, which, com-



pared with Chebyshev, could not achieve a high accuracy even with a large grid.
This suggests that we should relegate VFI to solving those problems where non-
differentiabilities complicate the application of the previous methods.

The rest of the paper is organized as follows. In section 2, we present our test
model. Section 3 describes the different solution methods used to approximate the
decision rules of the model. Section 4 discusses the calibration of the model. Section
5 reports numerical results and section 6 concludes. An appendix provides some
additional details.

2.2 The Stochastic Neoclassical Growth Model with

Recursive Preferences and SV

We use the stochastic neoclassical growth model with recursive preferences and SV
in the process for technology as our test case. We select this model for three reasons.
First, it is the workhorse of modern macroeconomics. Even more complicated New
Keynesian models with real and nominal rigidities, such as those in Woodford (2003)
or Christiano et al. (2005), are built around the core of the neoclassical growth model.
Thus, any lesson learned with it is likely to have a wide applicability. Second, the
model is, except for the form of the utility function and the process for SV, the same
test case as in Aruoba et al. (2006). This provides us with a set of results to compare
to our findings. Three, the introduction of recursive preferences and SV make the
model both more non-linear (and hence, a challenge for different solution algorithms)
and potentially more relevant for practical use. For example, and as mentioned in
the introduction, Bansal and Yaron (2004) have emphasized the importance of the
combination of recursive preferences and time-varying volatility to account for asset
prices.

The description of the model is straightforward, and we just go through the details
required to fix notation. There is a representative household that has preferences over
streams of consumption, ¢;, and leisure, 1 — [;, represented by a recursive function of

the form: ;

1— 1—v

Uy = max |(1— 8) (¢ (1 1)) 7 + 5 (B UL (2.1)

ct,lt

The parameters in these preferences include 3, the discount factor, v, which controls



labor supply, ~, which controls risk aversion, and:

where ¢ is the EIS. The parameter 6 is an index of the deviation with respect to
the benchmark CRRA utility function (when 6 = 1, we are back in that CRRA case
where the inverse of the EIS and risk aversion coincide).

The household’s budget constraint is given by:

ct—i-it—kbt—Jrfl = wily + ke + by

Ry
where 4; is investment, Rf is the risk-free gross interest rate, b; is the holding of an
uncontingent bond that pays 1 unit of consumption good at time t+1, w; is the wage, I,
is labor, r; is the rental rate of capital, and k; is capital. Asset markets are complete
and we could have also included in the budget constraint the whole set of Arrow
securities. Since we have a representative household, this is not necessary because
the net supply of any security is zero. Households accumulate capital according to
the law of motion k; 1 = (1 — 0)k; + i; where § is the depreciation rate.

The final good in the economy is produced by a competitive firm with a Cobb-
Douglas technology 1y, = e* k‘f lt1 ~¢ where 2 is the productivity level that follows:

2= Az + €%y, 60 ~ N (0,1).
The innovation &, is scaled by a SV level o;, which evolves as:
or= (1= p)7 + por_1 + nwy, wy ~ N (0,1)

where 7 is the unconditional mean level of oy, p is the persistence of the processes, and

7 is the standard deviation of the innovations to o;. Our specification is parsimonious

2Stationarity is the natural choice for our exercise. If we had a deterministic trend, we would
only need to adjust 8 in our calibration below (and the results would be nearly identical). If we had
a stochastic trend, we would need to rescale the variables by the productivity level and solve the
transformed problem. However, in this case, it is well known that the economy fluctuates less than
when A < 1, and therefore, all solution methods would be closer, limiting our ability to appreciate
differences in their performance.



and it introduces only two new parameters, p and 7. At the same time, it captures
some important features of the data (see a detailed discussion in Ferndndez-Villaverde
and Rubio-Ramirez, 2010). Another important point is that, with SV, we have two
innovations, an innovation to technology, €;, and an innovation to the standard de-
viation of technology, w;. Finally, the economy must satisfy the aggregate resource
constraint y; = ¢; + 4.

The definition of equilibrium is standard and we skip it in the interest of space.
Also, both welfare theorems hold, a fact that we will exploit by jumping back and forth
between the solution of the social planner’s problem and the competitive equilibrium.
However, this is only to simplify our derivations. It is straightforward to adapt the
solution methods described below to solve problems that are not Pareto optimal.

Thus, an alternative way to write this economy is to look at the value function
representation of the social planner’s problem in terms of its three state variables,

capital k;, productivity z;, and volatility, o;:

S

V (ki 2, 04) = max | (1 — 3) (CZ‘,J (1- lt)l_v)% + (Etvl_’y (e Zt+170t+1))

cylt
_ Lz 1.671-¢ _
s.t. ¢ + ktJr]_ =€ kt lt + (1 (S) k‘t
2= Agy_1+e%ey, & ~ N (0,1)
oy = (1 —p)T + por_1 + nwy, wy ~ N (0,1).

Then, we can find the pricing kernel of the economy

m _ aVt/actﬂ
t+1 a%/act .

Now, note that:

oV, 1 (1 1))
—=1-=-p)V,
act ( B) t v ¢
and:
1~y 1 1y 1 — v 1—1 1-v) 22
T @V, (m (R Gt S )
e Ct+1

where in the last step we use the result regarding 0V;/0c¢; forwarded by one period.



Cancelling redundant terms, we get:

1y _ 1-5
— OVi/Ocra _ 8 (C§+1(1 - lt+1)1v) oo Vit ’ (2.2)
o Vi /Ocy cf (T — 1)t Ci+1 EMIJH . .

This equation shows how the pricing kernel is affected by the presence of recursive

1—1
Vl—’y 0
i (2.3)
EtVtH

is equal to 1 and we get back the pricing kernel of the standard CRRA case. If 6 # 1,
the pricing kernel is twisted by (2.3).

preferences. If § = 1, the last term,

We identify the net return on equity with the marginal net return on investment:
Rjpy = Ce* ki lyyy — 0

with expected return E; [R},,] .

2.3 Solution Methods

We are interested in comparing different solution methods to approximate the dynam-
ics of the previous model. Since the literature on computational methods is large,
it would be cumbersome to review every proposed method. Instead, we select those
methods that we find most promising.

Our first method is perturbation (introduced by Judd and Guu, 1992 and 1997 and
nicely explained in Schmitt-Grohé and Uribe, 2004). Perturbation algorithms build a
Taylor series expansion of the agents’ decision rules. Often, perturbation methods are
very fast and, despite their local nature, highly accurate in a large range of values of
the state variables (Aruoba et al., 2006). This means that, in practice, perturbations
are the only method that can handle models with dozens of state variables within any
reasonable amount of time. Moreover, perturbation often provides insights into the
structure of the solution and on the economics of the model. Finally, linearization and
log-linearization, the most common solution methods for DSGE models, are particular

cases of a perturbation of first order.
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We implement a second- and a third-order perturbation of our model. A first-
order perturbation is useless for our investigation: the resulting decision rules are
certainty equivalent and, therefore, they depend on ¢ but not on v or o;. In other
words, the first-order decision rules of the model with recursive preferences coincide
with the decision rules of the model with CRRA preferences with the same ) and &
for any value of v or g;. We need to go, at least, to second-order decision rules to have
terms that depend on 7 or o; and, hence, allow recursive preferences or SV to play a
role. Since the accuracy of second-order decision rules may not be high enough and,
in addition, we want to explore time-varying risk premia, we also compute a third-
order perturbation. As we will document below, a third-order perturbation provides
enough accuracy without unnecessary complications. Thus, we do not need to go to
higher orders.

The second method is a projection algorithm with Chebyshev polynomials (Judd,
1992). Projection algorithms build approximated decision rules that minimize a resid-
ual function that measures the distance between the left- and right-hand side of the
equilibrium conditions of the model. Projection methods are attractive because they
offer a global solution over the whole range of the state space. Their main drawback
is that they suffer from an acute curse of dimensionality that makes it challenging
to extend it to models with many state variables. Among the many different types
of projection methods, Aruoba et al. (2006) show that Chebyshev polynomials are
particularly efficient. Other projection methods, such as finite elements or parame-
terized expectations, tend to perform somewhat worse than Chebyshev polynomials,
and therefore, in the interest of space, we do not consider them.

Finally, we compute the model using VFI (Epstein and Zin, 1989, show that
a version of the contraction mapping theorem holds in the value function of the
problem with recursive preferences). VFI is slow and it suffers as well from the curse
of dimensionality, but it is safe, reliable, and well understood. Thus, it is a natural
default algorithm for the solution of DSGE models.

2.3.1 Perturbation

We describe now each of the different methods in more detail. We start by explaining
how to use a perturbation approach to solve DSGE models using the value function of

the household. We are not the first to explore the perturbation of value function prob-

11



lems. Judd (1998) already presents the idea of perturbing the value function instead
of the equilibrium conditions of a model. Unfortunately, he does not elaborate much
on the topic. Schmitt-Grohé and Uribe (2005) employ a perturbation approach to
find a second-order approximation to the value function that allows them to rank dif-
ferent fiscal and monetary policies in terms of welfare. However, we follow Binsbergen
et al. (2009) in their emphasis on the generality of the approach.?

To illustrate the procedure, we limit our exposition to deriving the second-order
approximation to the value function and the decision rules of the agents. Higher-
order terms are derived analogously, but the algebra becomes too cumbersome to
be developed explicitly (in our application, the symbolic algebra is undertaken by
Mathematica, which automatically generates Fortran 95 code that we can evaluate
numerically). Hopefully, our steps will be enough to allow the reader to understand
the main thrust of the procedure and obtain higher-order approximations by herself.

First, we rewrite the exogenous processes in terms of a perturbation parameter Y,

2 = Azp_1 + xetey

o= (1 —p)a + poy_1 + xnw.

When x = 1, which is just a normalization, we are dealing with the stochastic version
of the model. When y = 0, we are dealing with the deterministic case with steady
state kg, 255 = 0, and oy, = 7. Also, it is convenient for the algebra below to define

a vector of states in differences with respect to the steady state:

St = (kt - kSS7 Zt—1,E¢, 0t—1 — Ogg, Wi, X)

where s;; is the i — th component of this vector at time ¢ for ¢ € {1,...,6}. Then,

we can write the social planner’s value function, V (s;), and the decision rules for

3The perturbation method is related to Benigno and Woodford (2006) and Hansen and Sargent
(1995). Benigno and Woodford present a linear-quadratic (LQ) approximation to solve optimal
policy problems when the constraints of the problem are non-linear (see also Levine et al., 2007).
This allows them to find the correct local welfare ranking of different policies. Our perturbation
can also deal with non-linear constraints and obtains the correct local approximation to welfare
and policies, but with the advantage that it is easily generalizable to higher-order approximations.
Hansen and Sargent (1995) modify the LQ problem to adjust for risk. In that way, they can handle
some versions of recursive utilities. Hansen and Sargent’s method, however, requires imposing a
tight functional form for future utility and to surrender the assumption that risk-adjusted utility is
separable across states of the world. Perturbation does not suffer from those limitations.

12



consumption, ¢ (s;), investment, i (s;), capital, k (s;), and labor, I (s;), as a function
of St.
Second, we note that, under differentiability assumptions, the second-order Taylor

approximation of the value function around s; = 0 (the vectorial zero) is:
i 1 i
Vv (St) = ‘/ss + ‘/;755315 + 5‘/;]',55815315

where:

1. Each term V_, is a scalar equal to a derivative of the value function evaluated
at 0: Vi =V (0), Viss = Vi(0) for ¢ € {1,...,6}, and V};,s = V;; (0) for
i,j€{1,...,6},

i 6 i J 6 6
2. We use the tensors V; 557 = > 0| Vi ss8ic and Vijsosisi =D 01 >0y VijssSitSiit,

. .. 6 . .
which eliminate the symbol )’ , when no confusion arises.

We can extend this notation to higher-order derivatives of the value function. This
expansion could also be performed around a different point of the state space, such
as the mode of the ergodic distribution of the state variables. In section 5, we discuss
this point further.

Ferndndez-Villaverde et al. (2010) show that many of these terms V., are zero
(for instance, those implied by certainty equivalence in the first-order component).
More directly related to this paper, Binsbergen et al. (2009) demonstrate that v does
not affect the values of any of the coefficients except Vi s and also that Vgg .5 # 0.
This result is intuitive, since the value function of a risk-averse agent is in general
affected by uncertainty and we want to have an approximation with terms that capture
this effect and allow for the appropriate welfare ranking of decision rules. Indeed, Vi ss
has a straightforward interpretation. At the deterministic steady state with y = 1
(that is, even if we are in the stochastic economy, we just happen to be exactly at the

steady state values of all the other states), we have:
1
V (07 07 07 07 07 1) = ‘/ss + 5%6,88

Hence %%6758 is a measure of the welfare cost of the business cycle, that is, of how
much utility changes when the variance of the productivity shocks is at steady-state

value o, instead of zero (note that this quantity is not necessarily negative). This

13



term is an accurate evaluation of the third order of the welfare cost of business
cycle fluctuations because all of the third-order terms in the approximation of the
value function either have coefficient values of zero or drop when evaluated at the
deterministic steady state.

This cost of the business cycle can easily be transformed into consumption equiv-
alent units. We can compute the percentage decrease in consumption 7 that will
make the household indifferent between consuming (1 — 7) ¢ s units per period with
certainty or ¢; units with uncertainty. To do so, note that the steady-state value
function is just V,, = ¢%, (1 — ly,)' ", which implies that:

—v 1 v —v
v (1= 1)+ 5 Vonss = (1= 7)) (1 les)'

SS

or:

Then:

1
1‘/6655U
=1 |14 %]
T l—l—QVSS}

We are perturbing the value function in levels of the variables. However, there
is nothing special about levels and we could have done the same in logs (a com-
mon practice when linearizing DSGE models) or in any other function of the states.
These changes of variables may improve the performance of perturbation (Fernandez-
Villaverde and Rubio-Ramirez, 2006). By doing the perturbation in levels, we are
picking the most conservative case for perturbation. Since one of the conclusions that
we will reach from our numerical results is that perturbation works surprisingly well
in terms of accuracy, that conclusion will only be reinforced by an appropriate change
of variables.*

The decision rules can be expanded in the same way. For example, the second-

order approximation of the decision rule for consumption is, under differentiability

4This comment begets the question, nevertheless, of why we did not perform a perturbation in
logs, since many economists will find it more natural than using levels. Our experience with the
CRRA utility case (Aruoba et al., 2006) and some computations with recursive preferences not
included in the paper suggest that a perturbation in logs does slightly worse than a perturbation in
levels.
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assumptions:

. 1 o
7 1 .J
c(8t) > Css + CissSy + o CidissSi51

where we have followed the same derivative and tensor notation as before.

As with the approximation of the value function, Binsbergen et al. (2009) show
that 7 does not affect the values of any of the coefficients except cgs 5. This term
is a constant that captures precautionary behavior caused by risk. This observation
tells us two facts. First, a linear approximation to the decision rule does not de-
pend on + (it is certainty equivalent), and therefore, if we are interested in recursive
preferences, we need to go at least to a second-order approximation. Second, given
some fixed parameter values, the difference between the second-order approximation
to the decision rules of a model with CRRA preferences and a model with recursive
preferences is a constant. This constant generates a second, indirect effect, because
it changes the ergodic distribution of the state variables and, hence, the points where
we evaluate the decision rules along the equilibrium path. These arguments demon-
strate how perturbation methods can provide analytic insights beyond computational
advantages and help in understanding the numerical results in Tallarini (2000). In
the third-order approximation, all of the terms on functions of x? depend on +.

Following the same steps, we can derive the decision rules for labor, investment,
and capital. In addition we have functions that give us the evolution of other variables
of interest, such as the pricing kernel or the risk-free gross interest rate R,{ . All of these
functions have the same structure and properties regarding ~ as the decision rule for
consumption. In the case of functions pricing assets, the second-order approximation
generates a constant risk premium, while the third-order approximation creates a
time-varying risk premium.

Once we have reached this point, there are two paths we can follow to solve
for the coefficients of the perturbation. The first procedure is to write down the
equilibrium conditions of the model plus the definition of the value function. Then, we
take successive derivatives in this augmented set of equilibrium conditions and solve
for the unknown coefficients. This approach, which we call equilibrium conditions
perturbation (ECP), gets us, after n iterations, the n-th-order approximation to the
value function and to the decision rules.

A second procedure is to take derivatives of the value function with respect to

states and controls and use those derivatives to find the unknown coefficient. This
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approach, which we call value function perturbation (VFP), delivers after (n + 1)
steps, the (n + 1)-th order approximation to the value function and the n—th order
approximation to the decision rules.’ Loosely speaking, ECP undertakes the first step
of VFP by hand by forcing the researcher to derive the equilibrium conditions.

The ECP approach is simpler but it relies on our ability to find equilibrium con-
ditions that do not depend on derivatives of the value function. Otherwise, we need
to modify the equilibrium conditions to include the definitions of the derivatives of
the value function. Even if this is possible to do (and not particularly difficult), it
amounts to solving a problem that is equivalent to VF'P. This observation is impor-
tant because it is easy to postulate models that have equilibrium conditions where
we cannot get rid of all the derivatives of the value function (for example, in prob-
lems of optimal policy design). ECP is also faster from a computational perspective.
However, VFP is only trivially more involved because finding the (n + 1)-th-order
approximation to the value functionon top of the n-th order approximation requires
nearly no additional effort.

The algorithm presented here is based on the system of equilibrium equations
derived using the ECP. In the appendix, we derive a system of equations using the
VEP. We take the first-order conditions of the social planner. First, with respect to

consumption today:

9\, =0
aCt ¢

where )\; is the Lagrangian multiplier associated with the resource constraint. Second,

with respect to capital:
—At + B A <Cezt+1kttlllt1;f +1- 5) = 0.

Third, with respect to labor:

1—v ¢
v (1—lt>

= (1= )™ kS1 .

Then, we have E;m; (( et kf;lll;f +1-— 6) = 1 where m;,; was derived in equation

>The classical strategy of finding a quadratic approximation of the utility function to derive a lin-
ear decision rule is a second-order example of VFP (Anderson et al., 1996). A standard linearization
of the equilibrium conditions of a DSGE model when we add the value function to those equilibrium
conditions is a simple case of ECP. This is done, for instance, in Schmitt-Grohé and Uribe (2005).
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(2.2). Note that, as explained above, the derivatives of the value function in (2.2) are
eliminated.
Once we substitute for the pricing kernel, the augmented equilibrium conditions

are:

D=

Vi - [(1 (@ (=) T 4 B BV (ko) =0

1y 1— \ =7
1) ¢ Vi ( (—171-¢
E —_ Cany o +1—(5> —1=0
t B( Ct ) (Et‘/ti_lny C t+1 “t+1

]_ _
U (- ekl =0

1
ey =3
E (—0”1) “l ) Rl -1=0
Gt BiViia

G+ iy — ek T =0
kt+1—it—(1—5)kt20

plus the law of motion for productivity and volatility. Note that all the endogenous
variables are functions of the states and that we drop the max operator in front of the
value function because we are already evaluating it at the optimum. Thus, a more
compact notation for the previous equilibrium conditions as a function of the states
is:

F(0)=0
where [ : RS — RS,

In steady state, ms; = [ and the set of equilibrium conditions simplifies to:

Vis = Cos (1 — l85>1_v

(ChSTH +1-06)=1/8
1—v  cg

o -l (1= Q)RS I
Rl =1/8
Cos +lss = kS 111
iss = Okiss
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a system of 6 equations on 6 unknowns, Vi, ¢, Kss, iss, lss, and Rfs that can be easily
solved (see the appendix for the derivations). This steady state is identical to the
steady state of the real business cycle model with a standard CRRA utility function
and no SV.

To find the first-order approximation to the value function and the decision rules,
we take first derivatives of the function F' with respect to the states s; and evaluate
them at 0:

F;(0)=0forie{1,...,6}.

This step gives us 48 different first derivatives (8 equilibrium conditions times the 6
variables of F'). Since each dimension of F' is equal to zero for all possible values of
s¢, their derivatives must also be equal to zero. Therefore, once we substitute the
steady-state values and forget about the exogenous processes (which we do not need
to solve for), we have a quadratic system of 36 equations on 36 unknowns: V; s, ¢; ss,
Ui sss Kiss, liss, and R{ss fori € {1,...,6}. One of the solutions is an unstable root of
the system that violates the transversality condition of the problem and we eliminate
it. Thus, we keep the solution that implies stability.

To find the second-order approximation, we take derivatives on the first derivatives

of the function F', again with respect to the states and the perturbation parameter:
F;;(0)=0fori,j€{l,...,6}.

This step gives us a new system of equations. Then, we plug in the terms that we
already know from the steady state and from the first-order approximation and we get
that the only unknowns left are the second-order terms of the value function and other
functions of interest. Quite conveniently, this system of equations is linear and it can
be solved quickly. Repeating these steps (taking higher-order derivatives, plugging
in the terms already known, and solving for the remaining unknowns), we can get
any arbitrary order approximation. For simplicity, and since we checked that we were
already obtaining a high accuracy, we decided to stop at a third-order approximation
(we are particularly interested in applying the perturbation for estimation purposes
and we want to document how a third-order approximation is accurate enough for

many problems without spending too much time deriving higher-order terms).
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2.3.2 Projection

Projection methods take basis functions to build an approximated value function and
decision rules that minimize a residual function defined by the augmented equilibrium
conditions of the model. There are two popular methods for choosing basis functions:
finite elements and the spectral method. We will present only the spectral method
for several reasons: first, in the neoclassical growth model the decision rules and
value function are smooth and spectral methods provide an excellent approximation.
Second, spectral methods allow us to use a large number of basis functions, with the
consequent high accuracy. Third, spectral methods are easier to implement. Their
main drawback is that since they approximate the solution with a spectral basis, if the
decision rules display a rapidly changing local behavior or kinks, it may be difficult
for this scheme to capture those local properties.

Our target is to solve the decision rule for labor and the value function {l;, V;}
from the two conditions:

- O-1)

71 11
Uct — B (Etthﬁﬁ) Bt [Vm P Ut (C€Zt+1k§+11lwf1+1< +1- 5)}
H(ltv V;f) = 0 =0

V- [0 = B)(er (- 1)'F + ARV

where, to save on notation, we define V; =V (ki, 2, 0y) and:

1y
1y (=)t
Uet = v
’ 0 Ct

Then, from the static condition

(1= Qe kS (1 - 1y)

C =
1—w

and the resource constraint, we can find ¢; and k1.
Spectral methods solve this problem by specifying the decision rule for labor and

the value function {l;, V;} as linear combinations of weighted basis functions:
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where {¢;(k)}i=1,. n, are the ny basis functions that we will use for our approximation
along the capital dimension and p = {péjm,p,}gm}i:l’m’nk;j:Lm’J;m:l’“’M are unknown
coefficients to be determined. In this expression, we have discretized the stochastic
processes o; for volatility and z; for productivity using Tauchen’s (1986) method
as follows. First, we have a grid of M points G, = {e°,¢e’?,....,e"™} for o; and a
transition matrix II" with generic element 77 = Prob (e”+! = e% e’ = ¢%). The
grid covers 3 standard deviations of the process in each direction. Then, for each M
point, we find a grid with J points GT* = {27, 2", ..., 27"} for z; and transition matrixes
[17™ with generic element 772{ ;" = Prob (zﬁl = 2| = z}”). Again, and conditional
on e’ the grid covers 3 standard deviations in each direction. Values for the decision
rule outside the grids GG, and G7' can be approximated by interpolation. We make
the grids for z; depend on the level of volatility m to adapt the accuracy of Tauchen’s
procedure to each conditional variance (although this forces us to interpolate when
we switch variances). Since we set J = 25 and M = 5, the approximation is quite
accurate along the productivity axis (we explored other choices of J and M to be
sure that our choice was sensible).

A common choice for the basis functions are Chebyshev polynomials because of
their flexibility and convenience. Since their domain is [-1,1], we need to bound
capital to the set [k, k], where k (k) is chosen sufficiently low (high) to bind only
with extremely low probability, and define a linear map from those bounds into [-1,1].
Then, we set (k) = 0;(¢u(k,)) where 1;(-) are Chebyshev polynomials and ¢ (k;)
is the linear mapping from [k, k] to [-1,1].

By plugging l(kt, zj, 0pm; p) and V (ke z;, 00m; p) into H(le, V;), we find the residual
function:

R(kta Zja Om; p) = H(l(kta Zj> Om; p)? V(kta Zj? Om; p))

We determine the coefficients p to get the residual function as close to 0 as possible.
However, to do so, we need to choose a weight of the residual function over the
space (ki, zj,0m). A collocation point criterion delivers the best trade-off between
speed and accuracy (Fornberg, 1998) by making the residual function exactly equal
to zero in {k;} %, roots of the ng-th order Chebyshev polynomial and in the Tauchen
points (also, by the Chebyshev interpolation theorem, if an approximating function
is exact at the roots of the ny—th order Chebyshev polynomial, then, as n, — oo,

the approximation error becomes arbitrarily small). Therefore, we just need to solve
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the following system of nj x J x M X 2 equations:
R(ki, zj, 0m; p) = 0 for any 4, j, m collocation points

on ng X J x M x 2 unknowns p. We solve this system with a Newton method and an
iteration based on the increment of the number of basis functions. First, we solve a
system with only three collocation points for capital and 125 (125 = 25 x 5) points for
technology. Then, we use that solution as a guess for a system with more collocation
points for capital (with the new coefficients being guessed to be equal to zero) and
iterate on the procedure. We stop the iteration when we have 11 polynomials in the
capital dimension (therefore, in the last step we solve for 2,750 = 11 x 25 x 5 x 2
coefficients). The iteration is needed because otherwise the residual function is too

cumbersome to allow for direct solution of the 2, 750 final coefficients.

2.3.3 Value Function Iteration

Our final solution method is VFI. Since the dynamic algorithm is well known, our

presentation is most brief. Consider the following Bellman operator:

[

1y 1l 1=y
A% (kt, Zt,Ut) = ICHE}X (1 — 6) (C;) (1 — lt)17v> f + 5 (EtV1_7 (kt+1, Zt41, Ot+1)) 0
S.t. 4 ki = kS 4+ (1= 0) Ky
2= Az + €%y, e~ N(0,1)

oy = (1 —p)T + por_1 + nwy, wy ~ N (0,1).

To solve for this Bellman operator, we define a grid on capital, Gy = {k1, k2, ..., kp }s
a grid on volatility and on the productivity level. The grid on capital is just a uniform
distribution of points over the capital dimension. As we did for projection, we set
a grid G, = {e?,¢e%2,...,e°™} for o; and a transition matrix IT" for volatility and
M grids G = {2, 21", ..., 27} for z; and transition matrixes II”™ using Tauchen’s

(1986) procedure. The algorithm to iterate on the value function for this grid is:

1. Set n =0 and VO(k, 2, 0¢) = %, (1 — 155)17“ for all k; € G), and all z; € G..
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2. For every {ki, 2, 0.}, use the Newton method to find ¢}, I}, ky,, that solve:

(1= Qe kel *(1— 1)

C =
1—wv
1—y

-G vy ) B ) ]

Cy

ot ki = eSS+ (1= 0)k

3. Construct V™! from the Bellman equation:

VI = (L= B)(e (1= ) ) T + BE(V (K1, 7141, 0040)' 1)) 0) T

4. T Vv

v > 1.0e77, then n = n + 1 and go to 2. Otherwise, stop.

To accelerate convergence and give VFT a fair chance, we implement a multigrid
scheme as described by Chow and Tsitsiklis (1991). We start by iterating on a small
grid. Then, after convergence, we add more points to the grid and recompute the
Bellman operator using the previously found value function as an initial guess (with
linear interpolation to fill the unknown values in the new grid points). Since the
previous value function is an excellent grid, we quickly converge in the new grid.
Repeating these steps several times, we move from an initial 23,000-point grid into a
final one with 375,000 points (3,000 points for capital, 25 for productivity, and 5 for
volatility).

2.4 Calibration

We now select a benchmark calibration for our numerical computations. We follow
the literature as closely as possible and select parameter values to match, in the
steady state, some basic observations of the U.S. economy (as we will see below, for
the benchmark calibration, the means of the ergodic distribution and the steady-
state values are nearly identical). We set the discount factor 5 = 0.991 to generate
an annual interest rate of around 3.6 percent. We set the parameter that governs
labor supply, 6= 0.357, to get the representative household to work one-third of its

time. The elasticity of output to capital, ( = 0.3, matches the labor share of national
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income. A value of the depreciation rate 6 = 0.0196 matches the ratio of investment-
output. Finally, A = 0.95 and logg = 0.007 are standard values for the stochastic
properties of the Solow residual. For the SV process, we pick p = 0.9 and n = 0.06,
to match the persistence and standard deviation of the heteroskedastic component of
the Solow residual during the last 5 decades.

Since we want to explore the dynamics of the model for a range of values that
encompasses all the estimates from the literature, we select four values for the pa-
rameter that controls risk aversion, ~, 2, 5, 10, and 40, and two values for EIS ),
0.5, and 1.5, which bracket most of the values used in the literature (although many
authors prefer smaller values for 1), we found that the simulation results for smaller
¥’s do not change much from the case when )= 0.5). We then compute the model for
all eight combinations of values of v and v, that is {2,0.5}, {5,0.5}, {10,0.5}, and so
on. When ¢¥= 0.5 and v = 2, we are back in the standard CRRA case. However, in
the interest of space, we will report only a limited subset of results that we find are
the most interesting ones.

We pick as the benchmark case the calibration {~, ¢, log7,n} = {5,0.5,0.007,0.06}.
These values reflect an EIS centered around the median of the estimates in the litera-
ture, a reasonably high level of risk aversion, and the observed volatility of productiv-
ity shocks. To check robustness, we increase, in the extreme case, the risk aversion,
the average standard deviation of the productivity shock, and the standard deviation
of the innovations to volatility to {v,v,loga,n} = {40,0.5,0.021,0.1}. This case
combines levels of risk aversion that are in the upper bound of all estimates in the
literature with huge productivity shocks. Therefore, it pushes all solution methods to
their limits, in particular, making life hard for perturbation since the interaction of
the large precautionary behavior induced by v and large shocks will move the econ-
omy far away from the deterministic steady state. We leave the discussion of the

effects of ) = 1.5 for the robustness analysis at the end of the next section.

2.5 Numerical Results

In this section we report our numerical findings. First, we present and discuss the
computed decision rules. Second, we show the results of simulating the model. Third,
we report the Euler equation errors. Fourth, we discuss the effects of changing the

EIS and the perturbation point. Finally, we discuss implementation and computing

23



time.

2.5.1 Decision Rules

One of our first results is the decision rules and the value function of the agent.
Figure 2.1 plots the decision rules for consumption, labor supply, capital, and the
value function in the benchmark case when z; = 0 and o; = & computed over a
capital interval centered on the steady-state level of capital of 9.54 with a width of
+40%, [5.72,13.36]. We selected an interval for capital big enough to encompass all
the simulations in our sample. Similar figures could be plotted for other values of z;
and o;. We omit them because of space considerations.

Since all methods provide nearly indistinguishable answers, we observe only one
line in all figures. It is possible to appreciate very tiny differences in labor supply
between second-order perturbation and the other methods only when capital is far
from its steady-state level. Monotonicity of the decision rules is preserved by all
methods. We must be cautious, however, mapping differences in choices into differ-
ences in utility. The Euler error function below provides a better view of the welfare
consequences of different approximations.

We see bigger differences in the decision rules and value functions as we increase
the risk aversion and the variance of innovations. Figure 2.2 plots the decision rules
and value functions for the extreme calibration. In this figure, we change the interval
where we compute our decision rules to [3,32] (roughly 1/3 and 3 times the steady-
state capital) because, owing to the high variance of the calibration, the equilibrium
paths fluctuate through much wider ranges of capital.

We highlight several results. First, all the methods deliver similar results in our
original interval for the benchmark calibration. Second, as we go far away from
the steady state, VFI and the Chebyshev polynomial still overlap with each other
(and, as shown by our Euler error computations below, we can roughly take them as
the “exact” solution), but second- and third-order approximations start to deviate.
Third, the decision rule for consumption and the value function approximated by the
third-order perturbation changes from concavity into convexity for values of capital
bigger than 15. This phenomenon (also documented in Aruoba et al. 2006) is due to
the poor performance of local approximation when we move too far away from the

expansion point and the polynomials begin to behave wildly. In any case, this issue
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is irrelevant because, as we will show below, the problematic region is visited with

nearly zero probability.

2.5.2 Simulations

Applied economists often characterize the behavior of the model through statistics
from simulated paths of the economy. We simulate the model, starting from the
deterministic steady state, for 10,000 periods, using the decision rules for each of the
eight combinations of risk aversion and EIS discussed above. To make the comparison
meaningful, the shocks are common across all paths. We discard the first 1,000 periods
as a burn-in to eliminate the transition from the deterministic steady state of the
model to the middle regions of the ergodic distribution of capital. This is usually
achieved in many fewer periods than the ones in our burn-in, but we want to be
conservative in our results. The remaining observations constitute a sample from the
ergodic distribution of the economy.

For the benchmark calibration, the simulations from all of the solution methods
generate almost identical equilibrium paths (and therefore we do not report them).
We focus instead on the densities of the endogenous variables as shown in figure
3. Given the low risk aversion and SV of the productivity shocks, all densities are
roughly centered around the deterministic steady-state value of the variable. For
example, the mean of the distribution of capital is only 0.2 percent higher than the
deterministic value. Also, capital is nearly always between 8.5 and 10.5. This range
will be important below to judge the accuracy of our approximations.

Table 2.2 reports business cycle statistics and, because DSGE models with recur-
sive preferences and SV are often used for asset pricing, the average and variance
of the (quarterly) risk-free rate and return on capital. Again, we see that nearly all
values are the same, a simple consequence of the similarity of the decision rules.

The welfare cost of the business cycle is reported in table 2.3 in consumption
equivalent terms. The computed costs are actually negative. Besides the Jensen’s
effect on average productivity, this is also due to the fact that when we have leisure
in the utility function, the indirect utility function may be convex in input prices
(agents change their behavior over time by a large amount to take advantage of
changing productivity). Cho and Cooley (2000) present a similar example. Welfare

costs are comparable across methods. Remember that the welfare cost of the business
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cycle for the second- and third-order perturbations is the same because the third-order
terms all drop or are zero when evaluated at the steady state.

When we move to the extreme calibration, we see more differences. Figure 2.4
plots the histograms of the simulated series for each solution method. Looking at
quantities, the histograms of consumption, output, and labor are the same across all
of the methods. The ergodic distribution of capital puts nearly all the mass between
values of 6 and 15. This considerable move to the right in comparison with figure 3
is due to the effect of precautionary behavior in the presence of high risk aversion,
large productivity shocks, and high SV. Capital also visits low values of capital more
than in the benchmark calibration because of large, persistent productivity shocks.
In any case, the translation is more pronounced to the right than to the left.

Table 2.4 reports business cycle statistics. Differences across methods are mi-
nor in terms of means (note that the mean of the risk-free rate is lower than in the
benchmark calibration because of the extra accumulation of capital induced by pre-
cautionary behavior). In terms of variances, the second-order perturbation produces
less volatility than all other methods. This suggests that a second-order perturbation
may not be good enough if we face high variance of the shocks and/or high risk aver-
sion. A third-order perturbation, in comparison, eliminates most of the differences
and delivers nearly the same implications as Chebyshev polynomials or VFI.

Finally, table 2.5 presents the welfare cost of the business cycle. Now, in compar-
ison with the benchmark calibration, the welfare cost of the business cycle is positive
and significant, slightly above 1.1 percent. This is not a surprise, since we have both a
large risk aversion and productivity shocks with an average standard deviation three

times as big as the observed one. All methods deliver numbers that are close.

2.5.3 Euler Equation Errors

While the plots of the decision rules and the computation of densities and business
cycle statistics that we presented in the previous subsection are highly informative,
it is also important to evaluate the accuracy of each of the procedures. Euler equa-
tion errors, introduced by Judd (1992), have become a common tool for determining

the quality of the solution method. The idea is to observe that, in our model, the
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intertemporal condition:

G=1D(a=6)

Uet = ﬂ(EtVti?)%_lEt (V;;H " U1 R (key 2, 005 2441, Ut+1)) (2.4)

where R (ky, 2, 045 2¢401,0641) = 1+ Cezt“kf;ll ltlJ:f — ¢ is the gross return of capital
given states k;, z;, 0y, and realizations z;,1 and ;1 should hold exactly for any given
k:, and z;. However, since the solution methods we use are only approximations, there
will be an error in (2.4) when we plug in the computed decision rules. This Euler

equation error function EE* (k;, 2, 0;) is defined, in consumption terms:

1
e 1 L (=1na-9) I Y
BE (Vi) )0 1Ef<(vx+1) O ul e Rkzoszony) | |7

_ C(1—v) 1Y
Ly 7

EE" (ky, z,00) =1 — -
Ct

This function determines the (unit free) error in the Euler equation as a fraction of
the consumption given the current states and solution method 7. Following Judd and
Guu (1997), we can interpret this error as the optimization error incurred by the
use of the approximated decision rule and we report the absolute errors in base 10
logarithms to ease interpretation. Thus, a value of -3 means a $1 mistake for each
$1000 spent, a value of -4 a $1 mistake for each $10,000 spent, and so on.

Figure 2.5 displays a transversal cut of the errors for the benchmark calibration
when z = 0 and 0; = @. Other transversal cuts at different technology and volatility
levels reveal similar patterns. The first lesson from figure 5 is that all methods deliver
high accuracy. We know from figure 3 that capital is nearly always between 8.5 and
10.5. In that range, the (logl0) Euler equation errors are at most -5, and most of the
time they are even smaller. For instance, the second- and third-order perturbations
have an Euler equation error of around -7 in the neighborhood of the deterministic
steady state, VFI of around -6.5, and Chebyshev an impressive -11/-13. The second
lesson from figure 5 is that, as expected, global methods (Chebyshev and VFT) perform
very well in the whole range of capital values, while perturbations deteriorate as we
move away from the steady state. For second-order perturbation, the Euler error in
the steady state is almost four orders of magnitude smaller than on the boundaries.

Third-order perturbation is around half an order of magnitude more accurate than
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second-order perturbation over the whole range of values (except in a small region
close to the deterministic steady state).

There are two complementary ways to summarize the information from Euler
equation error functions. First, in the second column of table 2.6 , we report the
maximum error in our interval (capital between 60 percent and 140 percent of the
steady state and the grids for productivity and volatility). The maximum Euler error
is useful because it bounds the mistake owing to the approximation. Both perturba-
tions have a maximum Euler error of around -2.7, VFI of -3.1, and Chebyshev, an
impressive -9.8. We read this column as indicating that all methods perform ade-
quately. The second procedure for summarizing Euler equation errors is to integrate
the function with respect to the ergodic distribution of capital and productivity to
find the average error.® We can think of this exercise as a generalization of the Den
Haan—Marcet test (Den Haan and Marcet, 1994). We report our results in the third
column of table 2.6 . Both perturbations have roughly the same performance (around
-5.3), VFI a slightly better -6.4, while Chebyshev polynomials do fantastically well
at -10.4 (the average loss of welfare is $1 for each $500 billion). But even an approx-
imation with an average error of $1 for each $200,000, such as the one implied by
third-order perturbation, must suffice for most relevant applications.

We repeat our exercise for the extreme calibration. Figure 2.6 displays the results
for the extreme case. As we did when we computed the decision rules of the agents,
we have changed the capital interval to [3,32]. Now, perturbations worsen more as
we get further away from the deterministic steady state. However, in the relevant
range of values of capital of [6,17], where, as reported in figure 4, nearly all the mass
of the ergodic distribution is, we still have Euler equation errors smaller than -3 and,
hence, probably small enough for most applications of interest. The performance
of VFI deteriorates around one order of magnitude with respect to our benchmark
calibration. Chebyshev polynomials suffer more in relative terms (they started at a
quite outstanding accuracy level), but they still deliver the smallest errors in nearly
all the relevant range of capital.

Table 2.7 reports maximum Euler equation errors and their integrals. The max-

SThere is the technical consideration of which ergodic distribution to use for this task, since this
is an object that can only be found by simulation. We use the ergodic simulation generated by VFI,
which slightly favors this method over the other ones. However, we checked that the results are
robust to using the ergodic distributions coming from the other methods.
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imum Euler equation error is large for perturbation methods while it is rather small
using Chebyshev polynomials. However, given the very large range of capital used in
the computation, this maximum Euler error provides a too negative view of accuracy.
We find the integral of the Euler equation error to be much more instructive. With a
second-order perturbation, we have -4.02 and with a third-order perturbation we have
-4.12. To evaluate this number, remember that we have extremely high risk aversion
and large productivity shocks. Even in this challenging environment, perturbations
deliver a high degree of accuracy. VFI does not display a big loss of precision com-
pared to the benchmark case. On the other hand, Chebyshev polynomials deteriorate

somewhat, but the accuracy it delivers it is still of $1 out of each $1 million spent.

2.5.4 Robustness: Changing the EIS and Changing the Per-

turbation Point

In the results we reported above, we kept the EIS equal to 0.5, a conventional value
in the literature, while we modified the risk aversion and the volatility of produc-
tivity shocks. However, since some researchers prefer higher values of the EIS (see,
for instance, Bansal and Yaron, 2004, a paper that we have used to motivate our
investigation), we also computed our model with ¢¥)= 1.5. Basically our results were
unchanged. To save on space, we concentrate only on the Euler equation errors (de-
cision rules and simulation paths are available upon request). In table 7?7 | we report
the maxima of the Euler equation errors and their integrals with respect to the er-
godic distribution. The relative size and values of the entries in this table are quite
similar to the entries in table 2.6 (except, partially, VFI that performs a bit better).

Table ?? repeats the same exercise for the extreme calibration. Again, the entries
in the table are very close to the ones in table 2.7 (and now, VFI does not perform
better than when = 0.5).

As a final robustness test, we computed the perturbations not around the deter-
ministic steady state (as we did in the main text), but around a point close to the
mode of the ergodic distribution of capital. This strategy, if perhaps difficult to im-

plement because of the need to compute the mode of the ergodic distribution,” could

"For example, the algorithm of finding a perturbation around the steady state, simulate from
it, find a second perturbation around the model of the implied ergodic simulation, and so on until
convergence, may not settle in any fixed point. In our exercise, we avoid this problem because we
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deliver better accuracy because we approximate the value function and decision rules
in a region where the model spends more time. As we suspected, we found only trivial
improvements in terms of accuracy. Moreover, expanding at a point different from
the deterministic steady state has the disadvantage that the theorems that ensure the
convergence of the Taylor approximation might fail (see theorem 6 in Jin and Judd,
2002).

2.5.5 Implementation and Computing Time

We briefly discuss implementation and computing time. For the benchmark calibra-
tion, second-order perturbation and third- order perturbation algorithms take only
0.02 second and 0.05 second, respectively, in a 3.3GHz Intel PC with Windows 7 (the
reference computer for all times below), and it is simple to implement: 664 lines of
code in Fortran 95 for second order and 1133 lines of code for third order, plus in
both cases, the analytical derivatives of the equilibrium conditions that Fortran 95
borrows from a code written in Mathematica 6.® The code that generates the an-
alytic derivatives has between 150 to 210 lines, although Mathematica is much less
verbose. While the number of lines doubles in the third order, the complexity in
terms of coding does not increase much: the extra lines are mainly from declaring
external functions and reading and assigning values to the perturbation coefficients.
An interesting observation is that we only need to take the analytic derivatives once,
since they are expressed in terms of parameters and not in terms of parameter values.
This allows Fortran to evaluate the analytic derivatives extremely fast for new combi-
nations of parameter values. This advantage of perturbation is particularly relevant
when we need to solve the model repeatedly for many different parameter values, for
example, when we are estimating the model. For completeness, the second-order per-
turbation was also run in Dynare (although we had to use version 4.0, which computes
analytic derivatives, instead of previous versions, which use numerical derivatives that

are not accurate enough for perturbation). This run was a double-check of the code

have the ergodic distribution implied by VFI. This is an unfair advantage for perturbations at the
mode of the ergodic distribution but it makes our point below about the lack of improvement in
accuracy even stronger.

8We use lines of code as a proxy for the complexity of implementation. We do not count comment
lines.
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and a test of the feasibility of using off-the-shelf software to solve DSGE models with
recursive preferences.

The projection algorithm takes around 300 seconds, but it requires a good initial
guess for the solution of the system of equations. Finding the initial guess for some
combination of parameter values proved to be challenging. The code is 652 lines of
Fortran 95. Finally, the VFI code is 707 lines of Fortran 95, but it takes about ten

hours to run.

2.6 Conclusions

In this paper, we have compared different solution methods for DSGE models with
recursive preferences and SV. We evaluated the different algorithms based on accu-
racy, speed, and programming burden. We learned that all of the most promising
methods (perturbation, projection, and VFI) do a fair job in terms of accuracy. We
were surprised by how well simple second-order and third-order perturbations perform
even for fairly non-linear problems. We were impressed by how accurate Chebyshev
polynomials can be. However, their computational cost was higher and we are con-
cerned about the curse of dimensionality. In any case, it seems clear to us that, when
accuracy is the key consideration, Chebyshev polynomials are the way to go. Fi-
nally, we were disappointed by VFI since even with 125,000 points in the grid, it only
did marginally better than perturbation and it performed much worse than Cheby-
shev polynomials in our benchmark calibration. This suggests that unless there are
compelling reasons such as non-differentiabilities or non-convexities in the model, we
better avoid VFI.

A theme we have not developed in this paper is the possibility of interplay among
different solution methods. For instance, we can compute extremely easily a second-
order approximation to the value function and use it as an initial guess for VFI.
This second-order approximation is such a good guess that VFI will converge in
few iterations. We verified this idea in non-reported experiments, where VFI took
one-tenth of the time to converge once we used the second-order approximation to
the value function as the initial guess. This approach may even work when the
true value function is not differentiable at some points or has jumps, since the only
goal of perturbation is to provide a good starting point, not a theoretically sound

approximation. This algorithm may be particularly useful in problems with many
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state variables. More research on this type of hybrid method is a natural extension
of our work.

We close the paper by pointing out that recursive preferences are only one example
of a large class of non-standard preferences that have received much attention by
theorists and applied researchers over the last several years (see Backus, Routledge,
and Zin, 2004). Having fast and reliable solution methods for this class of new
preferences will help researchers to sort out which of these preferences deserve further
attention and to derive empirical implications. Thus, this paper is a first step in the

task of learning how to compute DSGE models with non-standard preferences.
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2.7 Appendices

2.7.1 Steady State of the Model

To solve the system:

Vis = Ciq (1 - ZSS)I_U
(Ch +1-0) =1/8
1—v ¢
v (1—=l)
m Rl =1/8
Cos + s = kSIS

Z.ss = 6kss

= (1 - kSIS

88788

note first that:

1

kes (11 =
g—(z(z ”)) -0

Now, from the leisure-consumption condition:

C v
% = 1-0)Q¢ = s = D (1 — I,
1L 1_U( () =c ( )
Then:
Cos + Okgs = kS 1LT¢ = Qs = 5 = (U = 0Q) L
and:

O (1 — L) = (9 = 6Q) Iy =

, P
ST 60+ B
. 0

-0+ P

from which we can find V,, and 7.
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2.7.2 Value Function Perturbation (VFP)

We mentioned in the main text that instead of perturbing the equilibrium conditions
of the model, we could directly perturb the value function in what we called value

function perturbation (VFP). To undertake the VFP, we write the value function as:

(4

1—v

—v 2 _ 1

V (ke, 20, 005 X) = I?%X (1-2) (cf (1- lt)l ) 7+ PRV (kts1, 2641, 0413 X)?
To find a second-order approximation to the value function, we take derivatives of
the value function with respect to controls (¢, I;), states (K, 24, 1), and the perturba-
tion parameter y. We collect these 6 equations, together with the resource constraint,

the value function itself, and the exogenous processes in a system:

F(ktazt>X) =0

where the hat over I’ emphasizes that now we are dealing with a slightly different set
of equations than the I’ in the main text.
After solving for the steady state of this system, we take derivatives of the function

F with respect to ky, 2, 04, and x:

F; (kss,0,04;0) = 0 for i = {1,2,3,4}

and we solve for the unknown coefficients. This solution will give us a second-order ap-
proximation of the value function but only a first-order approximation of the decision
rules. By repeating these steps n times, we can obtain the n 4 1-order approxima-
tion of the value function and the n-order approximation of the decision rules. It is
straightforward to check that the coefficients obtained by ECP and VFP are the same.
Thus, the choice for one approach or the other should be dictated by expediency.
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2.7.3 Tables and Figures

Table 2.1: Calibrated Parameters

Parameter 16} v

¢

J

A logog  p

Value 0.991 0.357 0.3 0.0196 0.95 0.007

0.9 0.06

Table 2.2: Business Cycle Statistics - Benchmark Calibration

c Yy i RI (%) RF%)
Mean

Second-Order Perturbation 0.7253 0.9128 0.1873 0.9070 0.9078
Third-Order Perturbation 0.7257 0.9133 0.1875 0.9062 0.9069
Chebyshev Polynomial 0.7256 0.9130 0.1875 0.9063 0.9066
Value Function Iteration  0.7256 0.9130 0.1875 0.9063 0.9066

Variance (%)
Second-Order Perturbation 0.0331 0.1084 0.0293 0.0001 0.0001
Third-Order Perturbation 0.0330 0.1079 0.0288 0.0001 0.0001
Chebyshev Polynomial 0.0347 0.1117 0.0313 0.0001 0.0001
Value Function Iteration  0.0347 0.1117 0.0313 0.0001 0.0001
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Table 2.3: Welfare Costs of Business Cycle - Benchmark Calibration

2nd-Order Pert. 3rd-Order Pert.

Chebyshev  Value Function

-2.0864e(-5) -2.0864e(-5)

-3.2849¢(-5)

-3.2849¢(-5)

Table 2.4: Business Cycle Statistics - Extreme Calibration

c Y i R (%) R*%)
Mean

Second-Order Perturbation 0.7338 0.9297 0.1950 0.8432 0.8562
Third-Order Perturbation 0.7344 0.9311 0.1955 0.8416 0.8529
Chebyshev Polynomial 0.7359 0.9329 0.1970 0.8331 0.8402
Value Function Iteration  0.7359 0.9329 0.1970 0.8352 0.8403

Variance (%)
Second-Order Perturbation 0.2956 1.0575 0.2718 0.0004 0.0004
Third-Order Perturbation 0.3634 1.2178 0.3113 0.0004 0.0005
Chebyshev Polynomial 0.3413 1.1523 0.3425 0.0005 0.0006
Value Function Iteration  0.3414 1.1528 0.3427 0.0005 0.0006
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Table 2.5: Welfare Costs of Business Cycle - Extreme Calibration

2nd-Order Pert. 3rd-Order Pert. Chebyshev Value Function
1.1278e-2 1.1278e-2 1.2855e-2 1.2838e-2

Table 2.6: Euler errors - Benchmark Calibration

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -2.6294 -5.2350
Third-Order Perturbation -2.7437 -5.3164
Chebyshev Polynomial -9.7919 -10.4034
Value Function Iteration -3.0848 -6.4039

Table 2.7: Euler errors - Extreme Calibration

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -1.5188 -4.0195
Third-Order Perturbation -1.6698 -4.1189
Chebyshev Polynomial -4.8979 -5.9339
Value Function Iteration -2.5186 -6.2870
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Chapter 3

International Business Cycles and

Financial Frictions
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3.1 Introduction

The question this paper addresses is the quantitative impact of financial frictions on
the business cycle co-movements between countries when investors have foreign asset
exposure. The breakout and spread of the 2007 financial crisis highlights the impor-
tance of financial frictions for international business cycle co-movements: European
investors who were exposed to US mortgage-backed securities experienced a fall in
their net worth when the US market collapsed. The decline in net worth tightened
their leverage constraint and led to a contraction in investment activities in Europe.
To analyze this mechanism, this paper embeds this type of financial friction within an
international real business cycle model and concludes that the presence of financial
frictions helps the model do a better job of accounting for the correlations of output,
investment and employment in the data. In addtion, the model also shows that as
foreign asset exposure increases, business cycles become more synchronized.

I build a two-country model where credit contracts are imperfectly enforceable
and business cycles are driven by technology shocks. Each country has two types of
agents: investor and saver. The investor holds both domestic and foreign capital.
She receives risky returns by renting her capital to the market production firm. She
also borrows from the domestic saver to finance her capital holdings. Because the
investor cannot promise to repay her loans, she faces a leverage constraint that limits
her loans to be smaller than a portion of the market value of her total capital hold-
ings. The saver makes use of the domestic capital in home production and lends her
savings to the investor. Both agents work at the market production firm. Since I am
interested in evaluating business cycle implications quantitatively, I model explicitly
endogenous labor supply and capital accumulation. These ingredients are important
for two reasons. First, variation in hours contributes to most of the business cycle
fluctuations. Second, financial frictions can generate a large amplification effect when
capital is fixed. Introducing capital accumulation disciplines the exercise empirically.

The financial frictions and foreign asset exposure in this model together generate
a multiplier effect that amplifies the transmission of shocks across countries. Output
correlation across countries is driven up through this financial channel. When a
negative technology shock hits the domestic market, the demand for capital in the
home country falls, which forces down the price of domestic capital. The price decline

leads to a tightening of investors’ leverage constraint in both countries. Borrowing is
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reduced globally and therefore demand for capital in the foreign country also declines.
Prices of foreign assets fall, triggering another round of decline in investment and
output. A multiplier effect arises since the decline in investment lowers asset prices
and investors’ net worth, further pushing down investment. With the presence of the
financial frictions and foreign asset exposure, the shock spills over from one country
to another and thus drives up the business cycle correlations.

To judge the empirical relevance of my framework, I conduct a quantitative exer-
cise aimed at exploring whether the existence of financial frictions can improve the
model’s ability to account for cross-country correlations of output, employment and
investment. I calibrate the model to match the data from the US and the rest of the
industrial world. The model is then solved using an iterative second-order perturba-
tion method developed by Heathcote and Perri (2009). This is because when agents
have multiple assets, in the steady-state where risk is absent, the returns on the assets
are the same. Therefore the portfolio shares are not determinate and we need to use
information from higher-order perturbation to pin down steady-state portfolios.

The main findings of the paper are the following. First, the simulation result shows
that the presence of financial frictions together with foreign asset exposure improves
the business cycle co-movements along several dimensions: the calibrated model pro-
duces positive and sizable correlations of output, investment and employment. The
model produces an output correlation of 0.4, which accounts for two-thirds of the
output correlation in the data. The model also indicates an employment correlation
of 0.41, which is close to 0.43 in the data. Moreover, the model predicts a positive
investment correlation of 0.64, which is closer to the data than the model without
financial frictions. Compared to the previous literature which tends to predict either
negative or positive but relatively small business cycle correlations, this model makes
good progress by taking financial frictions into account.

Second, substantial differences exist in impulse response functions between ver-
sions of the model with and without financial frictions. Let me take the IRFs for
hours as an example; other IRF's will be discussed later in the main text. When the
leverage constraint is present, after a decline in productivity in country 1, hours fall in
both countries. Hours fall in country 1 because of lower wages. Hours fall in country
2 because of the leverage constraint. Since the fall in productivity leads to a decline
in the asset price in country 1, which tightens the leverage constraint of country 2’s

investor, capital used in country 2’s production is reduced. Hence hours in country 2
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also fall. However, in the case where financial frictions are absent, when productivity
in country 1 falls, country 1’s hours decline but country 2’s hours increase because
country 2 is relatively more productive.

Third, this model also predicts that when the investor increases her foreign asset
exposure to the other country, the output correlation between the two countries in-
creases. This result is consistent with the evidence documented in Imbs (2006) that
output correlations rise with financial integration.

This paper is related to several strands of the literature. The first strand ad-
dresses the co-movements of international business cycles. Backus, Kehoe, and Kyd-
land (1992) showed that in a complete market model, output, investment and labor
are negatively correlated because of efficient allocation of resources across countries.
Baxter and Crucini (1995), Kollmann (1996), and Heathcote and Perri (2002) intro-
duced incomplete markets. However, they find that incomplete markets do not help
much in matching the business cycle correlations in the data, because there is little
need for insurance markets.

The second strand is a recent and growing literature analyzing financial frictions
in an open economy context, including Gertler, Gilchrist, and Natalucci (2007), Faia
(2007) and Devereux and Yetman (2010). Gertler, Gilchrist, and Natalucci (2007)
builds a small open economy model with credit frictions to explore the connection
between the exchange rate regime and financial distress in the case of the 1997 Korea
crisis. Faia (2007) studies financial frictions in a two-country DSGE model showing
that business cycle synchronization increases when economies have similar financial
structures, while it decreases with the degree of financial openness. However, these
two papers and the previous literature did not study the impact of financial frictions
when the constrained agents have foreign capital exposure.

The paper by Devereux and Yetman (2010) is the closest to my work in that
it studies financial frictions and capital portfolio choice in a two-country model. In
contrast to my paper, their model lacks capital accumulation and endogenous labor
choice, which are the key ingredients for business cycle fluctuations.

The third strand is the international portfolio choice literature, pioneered by Tille
and Van Wincoop(2007) and Devereux and Sutherland (2008) with a recent contri-
bution by Heathcote and Perri (2009). This literature uses higher order perturbation
to solve optimal portfolio allocations in DSGE models.

The paper is organized as follows. In Section 2, I describe the model economy,
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highlight the key mechanism and show how to solve this model. In Section 3, I discuss
the calibration of the model. In Section 4, I present the main results. I compare the
results from a model with financial frictions and a model without financial frictions. I
also provide some intuition for the results. In Section 5, I provide several robustness

checks. Section 6 concludes.

3.2 Model

In this section I outline a two-country, one-good international business cycle model.
The world economy consists of two countries, home (country 1) and foreign (country
2), which are the same size. Each country has three sectors: a household sector,
a market production sector and a capital producer sector. The household sector is
populated with two types of infinitely lived agents: investor and saver. The investor
and saver are distinct from each other in order to motivate lending and borrowing.
Adding the market production sector allows agents to derive returns from capital and
labor. Moreover, I have the capital producer to facilitate the introduction of variation
in capital price.

I assume that capital is mobile across the countries but labor is immobile across
the countries. The following subsections detail the economic choice faced by agents
in the two economies, the structure of production and the relevant market clearing

conditions.

3.2.1 Household

There are two types of households in the model: an investor and a saver. The investors
can buy the capital installed both domestically and abroad. They rent the capital to
the market production firm and receive a risky return. At the same time, they can
also borrow from domestic savers to finance their capital holdings. Investors account
for a fraction n of all households. The rest of the households participate only in the
domestic bond market and I refer to them as savers. Similar to the assumption made
in Bernanke, Gertler and Gilchrist (1999), I assume that investors have the ability
to transform capital into a factor that can be used in the market good production.
However, since savers do not have this ability, they will purchase capital to be used

only in home production. Savers are assumed to be more patient than investors such
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that in equilibrium, savers always want to lend to investors. Finally, the credit friction
comes in the form of a leverage constraint: the debt that investors borrow cannot

exceed a certain fraction of their total asset value.

Investor

I

Investors in each country i choose consumption c, provide labor services [}

i, and
make a portfolio choice among domestic capital, foreign capital and domestic debt.

Their utility is given by the following expression:

= I 771\t 1 I [(Z'It)1+0 o
E E LrIN —