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Abstract— TUNERCAR is a toolchain that jointly optimizes
racing strategy, planning methods, control algorithms, and
vehicle parameters for an autonomous racecar. In this paper, we
detail the target hardware, software, simulators, and systems
infrastructure for this toolchain. Our methodology employs a
parallel implementation of CMA-ES which enables simulations
to proceed 6 times faster than real-world rollouts. We show
our approach can reduce the lap times in autonomous racing,
given a fixed computational budget. For all tested tracks, our
method provides the lowest lap time, and relative improvements
in lap time between 7-21%. We demonstrate improvements over
a naive random search method with equivalent computational
budget of over 15 seconds/lap, and improvements over expert
solutions of over 2 seconds/lap. We further compare the perfor-
mance of our method against hand-tuned solutions submitted
by over 30 international teams, comprised of graduate students
working in the field of autonomous vehicles. Finally, we discuss
the effectiveness of utilizing an online planning mechanism to
reduce the reality gap between our simulation and actual tests.

I. INTRODUCTION

Since its inception, racing has been a key driver of
new technology in the automotive industry. Some domains,
such as powertrain engineering, are obvious beneficiaries
of racing development. However, the goals of racing – fast
and aggressive driving – are seemingly orthogonal to the
safety-oriented specifications of the autonomous vehicle
industry. Nevertheless, scenarios faced by racing drivers (and
autonomous racers) force the development of technology
which must operate safely in both nominal conditions and,
more importantly, at the limits of vehicle performance.

The objective of developing an optimal autonomous racer
is motivated by the desire to create safe and reusable core
autonomy components, namely vehicle and environment
agnostic planning and control software. Racing, in this context,
is a mechanism to create a competitive environment where
the quality of the chosen vehicle configuration has a clear
measure – lap time. While nominal conditions may be handled
even with poorly integrated components (e.g. a pure pursuit
controller which works even when accidentally used on the
wrong robot [1]), racing conditions severely punish sub-
optimal vehicle dynamics, racing strategy (path and speed
selection) and controller parameters.

This paper introduces the notion that component reuse and
adaptation is analogous to creating a compiler-like tool that
targets computational, physical, and external environmental
details of a robot’s operational domain. In general, the goal
of a compiler is to validate and then transform a source
program from one language to another (usually lower-level
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e.g. assembly) which is suitable for the target domain [2].
Modern optimizing compilers [3] also seek to improve the
performance of the transformed program. To concretize the
analogy, we define the source program as a parameterized
description of the vehicle dynamics, tracking controllers,
and local planning method which we wish to transform to
perform safely and efficiently in the operational environment
represented by a map, physical laws, and sensing capabilities.

We propose a solution to this parameter search problem
analogous to the concept of superoptimization [4], [5], [6],
[7], a technique that searches the space of equivalent and
correct programs for the most performant instance rather
than applying a sequence of optimization passes which
attack specific performance bottlenecks. Despite the success
of superoptimization approaches in narrow domains [8],
[9], viewing the autonomous vehicle as the compilation
target creates entirely new issues due to the cyber-physical
nature of the platform. First, no simulator or model can
perfectly emulate the target thus creating a noisy performance
measure and potentially falsifying correctness claims. Second,
addressing this reality gap by instead executing the proposed
program transformations on the vehicle is dangerous, slow,
and expensive. The vehicle may get damaged due to aggres-
sive strategies, tests cannot proceed faster than real-time, and
evaluations cannot be easily parallelized. In response to these
challenges, our solution provides a validated, deterministic,
and parallel simulation environment as well as a method of
adapting derived strategies to reality via an efficient online
optimization component.

This work has three primary contributions. First, we
provide a toolchain for superoptimization of autonomous
racers called TUNERCAR (see Figure 1). This toolchain
includes target hardware, modular software, and a calibrated
simulator. Second, we describe a methodology for tuning a
high-dimensional set of hyperparameters spanning control,
planning, dynamics, and strategy; it is a general approach
for adapting and optimizing heterogeneous components to
new robots and domains. Finally, we validate our solution on
an AV software stack and 1/10th-scale open-source vehicle
developed for this project [f1tenth.org].

In what follows, we demonstrate that TUNERCAR achieves
improvement in lap time relative to other approaches tested
given a fixed computation budget, and that our solution
exceeds the performance of crowd-sourced expert solutions
by up to 21%. Section II describes the problem setup and
optimization pipeline. Section III places our solution in
context with previous approaches. Section IV describes the
modular autonomy stack, simulator, and hardware utilized
for large-scale experiments detailed in Section V.
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Fig. 1: The TUNERCAR toolchain which jointly optimizes racing strategy, planning methods, control algorithms, and vehicle
parameters for an autonomous racecar.

II. METHODOLOGY

A. Problem statement

Our goal is to determine the best vehicle parameters, racing
strategy, and controller settings that minimize lap time for a
given racing track (also referred to as map). Mathematically,
we define the objective function as the lap time, f(Θ) :
Rn → R. Here lap time is computed by simulating the system
producing a trajectory. The search space parametrized by Θ
is the concatenation of three components – vehicle dynamics,
racing strategy, and controller. Note that in this work we
utilize a simulator (black-box) where the resulting scalar
measure is deterministic given an assignment of parameters
θ ∈ Θ but may be noisy relative to in situ executions. We
do not make any other assumptions such as the existence
of a gradient. Our approach is shown in Figure 1. In what
follows we define a parameterization of the autonomous racer,
describe an evaluation criteria, and detail a method to sample
and optimize realizations of the parameters.

B. Search space

The physical parameters Θp are defined as the mass, m,
the location of the center of gravity in the longitudinal
direction, lg, the friction coefficient, µs, the height of the
center of gravity, hg, front cornering stiffness, Cαf

, and
rear cornering stiffness, Cαr

. We limit the range of these
parameters such that they are physically achievable without
major modifications. The nominal values and their ranges
are based on system identification performed on the actual
vehicle, for further details see Appendix A.

The strategy parameters Θs are defined by the nominal
path (x, y) and the velocity profile (vx, vy); the size varies
depending on the track, for example, Θs ∈ R260 on
Philadelphia Track A. The path and velocity profile combined
represent the largest portion of the search. To improve the
convergence of our proposed optimization method, we note
that a deterministic assignment of the optimal velocity profile
is possible given a path x, y, reducing the size of the search
space by 1/3. Specifically, the optimal velocity profile can be
computed in polynomial time by solving a convex minimum-
time parametric optimization problem. We refer the reader to
[10] and Appendix B for full details of the minimum time
path traversal formulation.

Finally, the driver parameters Θd represent aspects of
the control algorithms used. Manipulating these parameters
affects how the vehicle tracks the raceline. There are three
components: the waypoint lookahead gain gw, the planning
horizon dl, and the speed gain vg (a precise definition is
given in Section IV-C).

C. Evaluation criteria

For a given set of parameters, θ, i.e. waypoints with
velocities, vehicle dynamics and controllers, we calculate
the lap time, f(θ), using our simulator detailed in Section IV.
When the simulator receives a new sample, the parameters
are updated, the environment is reset, and the virtual vehicle
attempts to traverse the track. The result, simulated lap time,
is used as the objective function which sorts a set of samples
(or population) into quantiles. Solutions are determined to be
feasible if the trajectory does not intersect with the boundaries
of the track (accounting for the car’s length and width).
Infeasible solutions are rejected and replaced at the sampling
stage described in the next subsection.

D. Optimization

Our proposed optimization problem is high-dimensional,
non-convex, non-smooth, and lacks a closed-form expression
of the dynamics. Thus, we use gradient-free black-box
optimization techniques. A potential pitfall of heuristic
optimization methods applied to this class of problem is
the inherent tension between exploration of the search space
and exploitation of solutions due to the potential existence
of local minima. We utilize a method known as covariance
matrix adaptation evolution strategies (CMA-ES), [11]; our
implementation is described in Algorithm 1. CMA-ES is
known to perform well in challenging regimes with many
local minima because it explicitly balances exploration
with hill-climbing. CMA-ES adapts the covariance matrix
(increases the L2 norm) of the proposal distribution when
the top performers of the population are far from the rest
of the population, and conversely narrows the spread of the
proposal distribution as the population becomes less diverse.
Additionally, this approach also allows massively parallel
evaluation of solutions, the most computationally expensive
aspect of this pipeline.



Algorithm 1 Covariance matrix adaptation evolution strategy
(CMA-ES) [11]

1: input: population size λ, parent number µ
2: randomly initialize population: θk for k = 1, ..., λ
3: calculate population means θ̂g of the parameters
4: while termination criterion not met do
5: evaluate current population θg using f(θ)
6: sort θ from smallest to largest objective, f(θ)
7: isolate top K = µλ individuals: θk for k = 1, ..,K
8: estimate the covariance matrix C(g+1) using θ̂g

9: calculate the means θ̂(g+1) of θk for k = 1, .., µ
10: sample λ individuals via θ̂(g+1) and C(g+1)

11: end while

As described in Algorithm 1, we first randomly initialize
a population of feasible solutions using uniform sampling.
Once the population has been evaluated, the top µλ solutions
are isolated. In Section V, we detail the results of a grid
search to identify high-performing, generalizable settings for
µ and the population size, λ. The top quantile of solutions is
used to fit a multivariate Gaussian distribution from which the
next generation of samples is drawn. We repeat this process,
terminating when the L2-norm of the covariance matrix, Cg ,
is less than ε = 0.01 (see Section V and [11]).

III. RELATED WORK

This paper presents a general approach to heterogeneous
component integration and optimization suitable for robotic
systems that interact with a physical environment. A complete
discussion of superoptimization and compiler literature has
been omitted. However, specific approaches such as program
sketching, population-based training, and program synthesis
are of interest to the robotics community. We also consider a
narrower view of this work relative to numerous methods for
optimizing specific vehicle components and software within
the racecar engineering community.

Sketching [6] utilizes fragments of programs which capture
macroscopic details about the structure of the solution in
order to synthesize the low-level details. In contrast, program
synthesis [12] attempts to construct a correct program from
scratch using only formal specifications. Neither approach
inherently considers optimality, only correctness. Examples of
sketching [13] and program synthesis [14] techniques applied
to robotics generally fail to address the gap between models
of robotic systems and realizable interactions between the
program and the world. Even still, a variety of computational
complexity and undecidability results [15] remain a barrier to
applying these methods to realistic systems. Another closely
related approach, population-based training (PBT) [16] has
recently been utilized to search for efficient neural network
designs; however, earlier work [17] focused only on physical
robot design, a subset of the problem addressed in this paper.
Likewise, [18] directly addresses the synthesis of a controller
and planner interface but does not address the real-world
applicability of the approach, specifically with respect to
the (lack-of) realism in the simulator and vehicle dynamics.

Like [18] the approach presented in Section II utilizes a
black-box optimization method, CMA-ES [19]. We note that
most literature in superoptimization employs similar search
algorithms.

In general, race car optimization has historically been
divided into two main categories: vehicle parameter op-
timization and racing trajectory optimization. The former
uses a fixed track and fixed trajectory while varying the
car parameters while the latter uses a fixed track and a
fixed car while varying the trajectories. In [20], 500 pairs
of roll stiffness and weight distribution values are evaluated
using Pareto minimum analysis to optimize for the fastest
lap time. More recently, [21], [22], [23], feature expanded
design spaces, parallel computation, and utilize simple genetic
algorithms.

In raceline optimization, several approaches have been
proposed. An iterative two-step algorithm that separates
the longitudinal and lateral control components is explored
in [24]. Alternatively, in this paper, we use a population-
based guided search using CMA-ES to determine the best
raceline. In this process, we use the result from [10] that
calculates both lateral and longitudinal forces required to
minimize time to traverse a fixed trajectory. Concurrent work
uses Bayesian optimization in place of CMA-ES [25]. An
alternative approach [26], attempts to separate the autonomous
racecar performance into two steps. First an approximate
solution to the high-level path planning problem is computed
then the lap time is minimized using a model predictive
controller (MPC) in a receding horizon fashion. Similarly [27]
formulates raceline optimization as an MPC problem using a
learned dynamics model. Like these works we also perform
system identification and incorporate model predictive control;
however, we generalize the raceline optimization problem to
explicitly consider the system as a whole.

IV. SIMULATOR AND HARDWARE

TUNERCAR includes a complete set of system components
which are utilized to demonstrate the approach. In this section
we outline the vehicle hardware, simulator, and vehicle
software. The target hardware, an open-source 1/10th scale
autonomous vehicle created by the authors, is mapped to
a validated, deterministic simulator capable of modeling
both the dynamics and sensors included on the vehicle
[f1tenth.org]. The simulator includes a wrapper which
enables a distributed approach to optimization of the source
program with low communication overhead. In addition, the
toolchain provides performance oriented implementations of
the core algorithms (see Section IV-C) and a method to update
their parameters.

A. Hardware

The vehicle, shown in Figure 2, is designed around a
ready-to-run RC car chassis [28]. A power board used
to manage the onboard compute and sensors as well as
mounting plate design are provided. All aspects – hardware,
mechanical design, software – of these additional parts are
open source. Computation occurs on the onboard NVIDIA
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Fig. 2: Target 1/10th scale vehicle.

TX2, a modern embedded system on a chip (SoC) which
contains a conventional multicore ARM CPU in addition to
a power-efficient GPU. The main sensor is a planar laser
scanner (or LIDAR) which can capture range measurements.
The LIDAR enables the vehicle to localize, estimate odometry,
and create maps. Due to the operating environment (typically
corridors with few features), we supplement the LIDAR
measurements with additional odometry information from
the electronic speed controller [29]. An optional RGB-D
camera provides additional sensing modalities, but is not
used in these experiments.

B. Simulator

The simulator uses a lightweight 2D physics engine
written in C++ which implements the single track vehicle
model described in [30]. System identification was performed
to determine vehicle parameters – mass, center of mass
moment of inertia, friction coefficient, cornering stiffness,
and maximum acceleration/deceleration rates, Appendix A in
[31] contains further details. The moment of inertia was
estimated using the bifilar (two-wire) pendulum method
[32]. Tire parameters were found using the PAC2002 Magic-
formula model [33] and the cornering stiffness coefficient
was back-calculated using [34]. A force scale was used to
measure the kinetic friction coefficient between the rubber
tires and linoleum floor as the vehicle was dragged laterally at
a constant velocity. In addition to modeling vehicle dynamics,
the simulator detects collisions between the vehicle and
obstacles in the environment in linear-time using a pre-
computed lookup table of range measurements [35]. This
method is also used to simulate the vehicle’s LIDAR.

The simulator differs significantly from existing ROS-based
tools. To create deterministic rollouts, the C++ executable
is wrapped in the OpenAI Gym [36] environment which
explicitly steps time when all inputs have been computed.
A further benefit of this approach is the ability to take
advantage of faster than real-time execution. On commodity
hardware, simulations proceed at approximately 6x real-time.
Finally, the simulation environment provides a method for
the members of the vehicle dynamics parameter class to be
modified by TUNERCAR at the beginning of each rollout. Last,
the simulation toolchain include a front end for generating
random maps and pre-processing occupancy grid maps created
using SLAM.

The TUNERCAR toolchain employs a MapReduce [37]

Fig. 3: MapReduce pattern of the search implementation.

Fig. 4: Adjusting the horizon of the path planner shifts the
lattice of samples (blue markers), the green marker represents
the pure pursuit trackers selected lookahead distance.

messaging pattern implemented using ZeroMQ [38], a high-
performance asynchronous messaging library. Figure 3 shows
many ‘workers’ spawned in parallel, each equipped with a
simulator, velocity optimizer, and full vehicle stack. Samples
from the CMA-ES search node are then broadcast to a pool
of worker nodes. On receipt of a new sample, the worker
instantiates vehicle and environment parameters and simulates
a rollout to compute the lap time. In order to update the
searcher’s sampling distribution, the worker simply transmits
the lap time and task index to a sink node which collects the
worker results and synchronizes the search epochs.

C. Vehicle Software

Some algorithms are considered adaptable; others such as
the simultaneous localization and mapping package (SLAM)
are only used offline to create a model of the environment
and, thus, are not tuned. The complete set of non-adaptable
algorithms and software includes Google Cartographer [39]
for SLAM, a particle filter for pure localization [40], and a
behavior controller which manages communication between
the planning nodes and the motor controller.

TUNERCAR compiles parameterized versions of two pro-
cesses on the vehicle: a geometric path tracking controller
based on pure pursuit [1], [41] and a path planning module
which utilizes a sampling-based non-linear model predictive
control [42], [43]. While the reference trajectory is computed
by TUNERCAR it is differentiated from these modules as it
is not updated online.

1) Path Tracker: The goal of path tracker is to compute
steering inputs which allow the autonomous vehicle to
follow a sequence of waypoints defined in the map frame.



Performance of a path tracker is measured by the feasibility
of the inputs, heading error, and lateral offset between the
path and vehicle’s position [41]. We utilize the pure pursuit
path tracker [1], a geometric method which has been shown
to be effective if properly tuned for the expected operating
conditions. In particular, the lookahead distance, which is used
to select a point on the path ahead of the vehicle significantly
affects the performance. Too small of a lookahead and the
vehicle oscillates; too large and corners are cut. Thus, the
lookahead distance of the path tracker computed as gwdl
(where the tracking lookahead gain is gw < 1 to ensure the
tracking lookahead doesn’t exceed the path planning horizon,
dl), is included in the search space as a tuneable parameter.

2) Path Planner: The goal of the path planner is to
generate kinematically and dynamically feasible trajectories
that can take the vehicle from its current pose to a sampled
set of goal poses, see Figure 4. Each trajectory is represented
as a set of cubic spirals, p = [s, a, b, c, d] where s is
the total arc length of the trajectory and (a, b, c, d) are
equispaced knot points encoding the path curvature. For each
trajectory, gradient descent is used to find spline parameters
which minimize the error between the goal pose and the
calculated end point given by a forward simulation of the
vehicle dynamics. Real-time performance of the system is
improved by creating a dense lookup table of pre-computed
goal, solution pairs as described in [44]. Thus, online,
once a goal point has been chosen, all that remains is to
sample N equidistant points corresponding to the spline
parameters stored in the lookup-table and check them against
an occupancy grid for feasibility. In order to adapt the method
to the operational domain the horizon of the planner is
adjusted to account for track geometry.

V. CASE STUDY

In our experiments we explore the assignment of hyperpa-
rameters of the CMA-ES algorithm as well as the effectiveness
of the method in both simulation and reality. As noted in
Section II, CMA-ES requires only three hyperparameters:
ε, the threshold of the L2 norm of the covariance matrix
for the sampling distribution, λ, the population size, and µ,
the quantile of samples to retain between epochs. Figure 5
shows an experiment in which ε is determined. We repeat this
experiment on multiple hyperparameters selections, observing
that the lowest lap time does not decrease significantly
after the L2 norm reaches the determined threshold for all
experiments. Figure 6 shows the performance of the CMA-
ES population for a selection of quantiles µ and population
sizes λ. We observe that the best final minimum lap time is
achieved as λ increases and µ decreases. We omit results from
some combinations of hyperparameters for the sake of clarity
in Figures 5 and 6. Based on these experiments we select a
µ of 0.01 and λ of 10000 for best overall performance in
terms of lap time (here, convergence rate is less of a concern
due to the offline nature of our approach).

Fig. 5: Convergence of L2 norm of covariance matrix to
determine the threshold ε. The termination threshold for the
norm is reached when the optimization converges to a local
minimum.

Fig. 6: Effect of population size λ and quantile µ on
performance. The combination of λ at 10000, and µ at 0.01
has the best performance in terms of the balance between
best lap time and convergence rate.

Fig. 7: Performance on Philadelphia Track A with fixed
computation.

To further evaluate the CMA-ES implementation in TUNER-
CAR, we compare the mean and variance of the top 100 lap
times relative to a naive random sampling for fixed compu-
tational budgets between 10,000 and 200,000 simulations.
The results, shown in Figure 7 show that our methodology
converges to a set of solutions with lap times significantly
lower than that of naive random sampling.



Fig. 8: Comparison of simulated versus real performance: (A)
Philadelphia Track A, (B) Philadelphia Track B

TABLE I: TUNERCAR performance in simulation and reality

Philadelphia Track A
Method Lap Time (s, sim) Lap Time (s, real)

TUNERCAR 16.2376± 0.2161 16.19
Pure Pursuit 17.2307± 0.0620 17.00

Expert Solutions N/A 22.2291 ± 3.5958

Philadelphia Track B
Method Lap Time (s, sim) Lap Time (s, real)

TUNERCAR 13.2424± 0.7782 14.03
Pure Pursuit 13.8256± 0.8848 16.80

Fig. 9: Agent solutions on the tracks: (A) Porto, (B) Torino

TABLE II: TUNERCAR vs. expert-tuned agents in simulation

Method Lap Time (Porto, s) Lap Time (Torino, s)

TUNERCAR 8.11± 0.7372 17.96± 0.1214
Pure Pursuit 11.9± 0.8342 20.52± 0.1367

Best Expert Solution 9.37 19.19

We designed three sets of experiments to evaluate the ef-
fectiveness of our toolchain. First, we conducted experiments
to validate the results of our approach using the hardware
detailed in Section IV. These experiments are conducted on
Philadelphia Track A, B which are challenging due to the

90 degree turns and narrow drivable surface areas (as seen
in Fig. 8). The list of physical car parameters to tune was
limited to an easily modifiable subset that avoided major
structural changes to the car’s components: total car mass
and longitudinal location of the car’s center of mass. After
the pipeline has computed an optimal trajectory and set of
parameters, we physically modified the car’s parameters and
deployed the tuned system, using the optimized waypoints
and velocities.

Our second set of experiments was conducted in simulation
and compared against historical racing times recorded in the
environments. We chose to run the optimization process on a
set of two tracks – Porto [45] and Torino [46] – where we have
hosted competitive racing events in order to benchmark the
performance of TUNERCAR relative to hand-tuned solutions.
Due to the variety of modifications various entrants utilized
(e.g. springs, suspension, geometry, and custom chassis), we
do not restrict the set of physical parameters.

Lastly, we evaluate the reality gap in light of the pro-
posed online optimization strategy by comparing vehicle
performance in simulation to that which was achievable in
reality. Figure 9 and Table II details the solutions found
by TUNERCAR which exceed expert tuning-performance
on (8.A) Torino and (8.B) Porto. Figure 8 and Table I
show a comparison of the relative performance between top
solutions deployed on the car and in the simulator on (9.A)
Philadelphia Track A and (9.B) Philadelphia Track B as
well as a comparison to expert engineered controllers (both
crowd-sourced and created by the authors)

VI. CONCLUSIONS

We introduce TUNERCAR, a superoptimization toolchain
for jointly optimizing racing strategy, vehicle parameters,
planning methods, and control algorithms for an autonomous
racecar. We detail the target hardware, software, simulators,
and systems infrastructure necessary for implementation. Our
methodology deploys a modern evolution strategy onto a
massively parallelized software stack that enables simulations
to proceed 6x times faster than real-world rollouts, achieving
up to 21% faster lap times compared to expert solutions
on real world race tracks. We validate our solution on an
AV software stack and 1/10th-scale open-source vehicle
developed for this project [f1tenth.org].

While the method as described in this paper has not been
rigorously tested in head-to-head racing, the online path-
planning component is capable of navigating the vehicle in
the presence of other agents. Future work should investigate
the feasibility of deploying this methodology utilizing an
expanded search space that encodes the behaviors of other
racers. A clear limitation of the presentation of this work
is a lack of comparisons to other black-box optimizations,
we mitigate this deficiency by measuring the toolchains
performance against a variety of hand-tuned solutions entered
in F1/10 competitions. Given that the experimental results
show that we can find significant performance improvements
over the other competition entries, it is important to explore
whether other search strategies can create even faster agents.
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APPENDIX

A. System identification

In this section, we describe the procedure used to identify
the vehicle parameters, namely the mass, the location of
the center of gravity, the moment of inertia, the friction
coefficient, the cornering stiffness, and the maximum accel-
eration/deceleration rates.

1) Mass and center of gravity: The vehicle weighs
3518.6±0.1 g, including the mass of the lithium polymer
battery. The center of gravity is estimated by balancing the
vehicle on the edge of a ruler. For a wheelbase of 0.317 m,
the distance of the center of gravity from the front wheels
lf and the rear wheels lr is measured to be 0.147±0.005 m
and 0.147±0.005 m, respectively.

2) Moment of Inertia: We use the bifilar (two-wire)
pendulum method. This method is used to measure the
moment of inertia of symmetric objects, such as airplanes
[32], unmanned air vehicles [47], and tennis rackets [48].
The bifilar pendulum is a torsional pendulum that consists of
the test object suspended by two thin parallel wires that are
equidistant from the center of gravity. A small moment is
applied to the vehicle, and the angular frequency ω is found
by recording the period of oscillation about the vertical axis
that goes through the center of gravity. The moment of inertia
Iz is given by

Iz =
mgd2

4Lω2
, (1)

where m is the mass of the vehicle, g the acceleration due to
gravity, d the distance between the wires, and L the length
of the wires. Equation (1) is obtained from the nonlinear
mathematical model of a bifilar pendulum; the derivation can
be found in [49]. Figure 10 shows the setup of the vehicle
used in this paper. The moment of inertia of the vehicle is
estimated to be 0.047 kg·m2.

3) Friction coefficient and cornering stiffness: The sim-
ulator is based on the single-track vehicle model [30]. This
model relates the friction coefficient µ, the cornering stiffness
coefficient Cs, and the vertical force Fz by

Ci = µCS,iFz,i, (2)

where i = {f, r} for the front and rear axle, respectively. A
force scale is used to measure the kinetic friction coefficient
µ between the rubber tires and linoleum floor as the vehicle
was dragged laterally at a constant velocity. µ is estimated to
be 0.5230±0.0014. The cornering stiffness coefficients are
calculated using [34]; CS,f is estimated to be 4.191±0.002
and CS,r to be 4.8469±0.002.

4) Maximum acceleration and deceleration rates: We
perform 19 speed tests ranging from 2 m/s to 11 m/s in
increments of 0.5 m/s. The vehicle is commanded to accelerate
to a certain speed, maintain that speed for 0.5 s, and then brake.
The position data from the particle filter and velocity data
from the vehicle odometry are recorded for all the tests. The
acceleration and deceleration sections are fitted with separate
exponential curves, and the constant speed region is fitted
with a linear curve. We estimate the maximum acceleration

Fig. 10: Test setup of the vehicle.

Fig. 11: The distributions of maximum acceleration and
deceleration obtained from 19 speed tests.

and deceleration for each test; the distributions are shown
in Figure 11. The mean for the acceleration curve amax is
9.51 m/s2 while the mean for the deceleration curve dmax is
13.25 m/s2.

B. Minimum time path

The objective in autonomous racing is to determine a
trajectory that requires minimum time to traverse a track
for known vehicle dynamics. We represent this dynamics by
ẋ = f (x(t),u(t)), where x denotes the state of the vehicle
and u the set of control inputs. Formally, the problem can
be stated as

minimize
T,u(t)

∫ T

0

1dt (3)

subject to ẋ = f (x(t),u(t)) ,

x(0) = xS , x(T ) = XF ,
x(t) ∈ X , u(t) ∈ U .

Here, the second set of constraints includes an initial condition
for the start line and a terminal condition for crossing the
finish line. X and U capture track and actuation constraints,
respectively. Problem (3) is an example of a minimum time
optimal control problem and is computationally hard to solve,
especially in the presence of nonlinear constraints [50].

Now, for a fixed trajectory, calculation of minimum time
to traverse and the corresponding speed profile will require
solving (3) with an additional constraint that (x, y) must lie
on the trajectory. It turns out when a friction circle model
represents the vehicle dynamics; this new problem is much
easier to solve.



The friction circle model with a rear-wheel drive given by

m

[
ẍ
ÿ

]
=

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
Flong

Flat

]
, (4)

where m is the mass of the vehicle and φ the orientation
of the vehicle defined as a function of position (x, y) in
the global frame. The inputs to the model are a force in the
longitudinal direction Flong and a force in the lateral direction
Flat defined in the frame attached to the vehicle. We enforce
a constraint for the friction circle√

F 2
long + F 2

lat ≤ µsmg, (5)

where µs is the static coefficient of friction, g is the
acceleration due to gravity, and a constraint for the maximum
possible force with the rear-wheel drive

Flong ≤
lf

lf + lr
µsmg, (6)

where lf and lr are the distance of the center of gravity from
the front and the rear wheels in the longitudinal direction,
respectively. The model ignores the effect of tire slips. The
advantage of using the friction circle model is that it requires
minimum effort in system identification with only three
parameters to identify, namely m, lf , and lr.

By transforming the optimization problem from a gen-
eralized position space to a path coordinate space and
subsequently applying the nonlinear change of variables, the
problem of calculating minimum time over a fixed path can
be formulated as a convex optimization problem [51]. For
the friction circle model (4) with additional constraints (5)
and (6), the optimization is still convex [10].
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