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Abstract

COSMOLOGICAL IMPLICATIONS OF MODIFIED GRAVITY: SPHERICAL

COLLAPSE AND HIGHER ORDER CORRELATIONS

Alexander Borisov

Bhuvnesh Jain

In the Standard Model of Cosmology the nature of the Dark Energy has

become one of the most significant and conceptual challenges to be resolved. One of

the possible approaches to solving it is to introduce modifications to General Rela-

tivity, that include Chameleon effects, which allow for a change in the strength of

gravity based on the environment. This can provide for a consistent explanation of

both large-scale observations and Solar system experiments. In the task to distin-

guish them from the ΛCDM model of gravity, or any other competing explanation,

we need to study the consequences of these modifications for the growth of pertur-

bations. In this thesis a recently developed Chameleon f(R) modification to gravity

is explored. We study its consequences for the distribution of matter on large scale

using the Bispectrum. Using 1D simulations we examine the formation of galaxy

and cluster halos and its observational effects. Finally we present an investigation

of a method for studying gravitational lensing.
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Chapter 1

Introduction

1.1 Dark energy and the need for modified gravity

The last decade has been an active period in the evolution of our understanding

of the Universe. The scientific community has achieved significant advancement in ana-

lyzing and measuring its content, and a variety of new experiments are underway or being

developed to reduce the uncertainty of our measurements, or to resolve the remaining

debates. Like high-energy physics, cosmology has its own Standard Model. According to

it [1] the Universe is a spatially flat - that is, the energy density contained in the curva-

ture of space is negligible. It contains about 4% baryonic matter, 23% Cold Dark Matter

(CDM) and the remaining 73% in the so called Dark Energy, which many consider to be

the cosmological constant driving the acceleration of the Universe. The present value of

the Hubble constant is H0 = 71km/s/Mpc.

The great unknown in the Standard Model of Cosmology, however, is the nature

of the Dark Energy. It has become one of the most significant and conceptual challenges
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that modern physics has to face. While we are waiting for a successful quantization of

gravitation theories – for example string theory – the classical paradigm is that gravity is

the geometry of space-time in which matter propagates. In the evolving research process

two general approaches have emerged. One is to look for a solution in the matter sector of

the paradigm – Dark Energy is a new unseen form of energy which has negative pressure.

The other is to modify the geometry part via changes in the Einstein-Hilbert action.

The accepted gravitational theory, General Relativity (GR), is a field theory

described by a 2-tensor called the metric tensor gµν . The aforementioned action then is:

S = Sg + Sm =

[

1

16πG

∫

d4x
√−gR

]

+ Sm, (1.1)

where g is the determinant of the metric tensor, and R is the Ricci scalar, constructed

by the metric and its derivatives, and Sm is the part of the action describing the matter

content of the Universe. Varying this action leads to the well-known field equations - the

Einstein equation:

Rµν − 1

2
Rgµν = 8πGTµν (1.2)

Unfortunately General Relativity in this form cannot explain the observed accelerated

expansion of the Universe. The task of modifying the Einstein-Hilbert action is by itself

not trivial and there are many approaches to it. Let us first consider some implications of

General Relativity. When we look at the Universe at very large scales we observe that it

is homogeneous and isotropic and thus is suitably described by the so called Friedmann-

Robertson-Walker metric:

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2), (1.3)
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where we have used the observation that the Universe is spatially flat. The quantity a(t)

is called the scale factor. In this case the so called Friedmann equation can be derived:

H2(t) ≡
(

ȧ

a

)2

=
8πGρ

3
(1.4)

where H(t) describes the evolution of the Hubble parameter and ρ(t) is the total mass

density. We can also define the deceleration parameter:

q ≡ − Ḣ

H2
− 1 = − äa

ȧ2
(1.5)

This dimensionless paramater can be negative, i.e. the Universe is accelerating, for some

unusual type of energy-matter species. The deceleration can be expressed via its density

and pressure as:

q =
1

2

(

1 + 3
p

ρ

)

(1.6)

and after introducing the equation of state for that species p = wρ:

q =
1

2
(1 + 3w) (1.7)

As mentioned, the observations [2] require that q becomes negative sometime in the

evolution of the Universe. This means that a species for which w < −1
3 should dominate

at late times. The problem thus is that no known particle, including candidate particles

that constitute CDM, has such an equation of state. In particular CDM has pressure of

zero or w = 0, q = 1
2 .

We can gain some intuition by simply adding a constant term to the action:

Sg =
1

16πG

∫

d4x
√−g(R − Λ) (1.8)

This then leads to a modification in the Einstein equations:

Rµν − 1

2
Rgµν = 8πGTµν + Λgµν (1.9)
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By looking at the new term it becomes clear that in a flat universe it represents the Stress

tensor for an energy species in the form:

T µ
ν = diag(Λ,Λ,Λ,Λ). (1.10)

But this means that it has w = −1. Thus we have resolved the issue with the acceleration

of the Universe at late times, when the cosmological constant starts dominating over the

matter content. But just adding ad hoc a cosmological constant to the action, or invoking

the anthropic principle, seems theoretically unappealing. One could argue that quantum

field theories predict a huge cosmological constant from the energy of the quantum vacuum.

But the measured cosmological constant from observations is:

ρΛ ⋍ 10−47 GeV4, (1.11)

while the field theory prediction is of order of the Plank mass MPl
4:

ρΛ,QFT ⋍ 1072 GeV4. (1.12)

This discrepancy of about 120 orders of magnitude is catastrophic. Aside from this pre-

diction, particle physics has yet to pinpoint the origin of Cold Dark Matter and is very

far from considering exotic particles with negative pressure.

In the meantime further modifications of the Einstein-Hilbert action are being

explored. Some borrow ideas from string theory and create braneworld cosmologies. A

particular example is the DGP model which has seen a lot of development recently [3, 4, 5].

In it we live on a particular slice of the bulk space-time called a brane. The overall action

when restricted to the brane with proper boundary conditions will produce a modified

Friedmann equation:

H2 − H

r0
=

8πG

3
ρ, (1.13)
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which depending on the choice of the r0 parameter produces an accelerating Universe at

late times when H
r0

≈ 8πG
3 ρ. Recently there has been a lot of debate over the viability of

DGP models [6] but the work continues to overcome these obstacles.

Another approach is to consider empirical modifications of the Einstein-Hilbert

action (similar to just adding ad hoc cosmological constant) with the reasoning that they

could be viewed as the effective low-energy Lagrangians of some higher dimensional string

theory model. Of particular interest are the so called f(R) modifications:

Sg =
1

16πG

∫

d4x
√−g(R + f(R)), (1.14)

where f(R) is a function of the Ricci scalar [7]. A major obstacle for such theories

has been that they could not consistently explain both large-scale observations and Solar

System experiments. On the other hand, in a somewhat unrelated way a new mechanism

was proposed [8] which allowed for a change in the strength of gravity based on the

environment/local conditions. This was called the Chameleon mechanism and quickly

became a powerful tool for adjusting the behavior of models on small scales. The model

proposed by Hu and Sawiki [9] in 2007 exhibited such Chameleon properties and is the

model studied in this dissertation. This model is designed to fit the same expansion

history as the Standard Model of cosmology – ΛCDM – to agree with the observations.

Like all other modifications of gravity, it depends on several parameters that can be

adjusted according to experimental data. How do we distinguish the new hypothesis

from the ΛCDM model or any other competing explanations of the observed phenomena?

The answer is conceptually simple: study what consequences and predictions the proposed

hypothesis leads to, then compare them to experimental data, or propose new experiments

designed to test the predictions [10]. The consequences of the selected model we have
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studied are: matter distribution statistics on large scales and the formation of halos and

clusters.

1.2 Matter distribution statistics: the Bispectrum

In the study of matter statistics there are two approaches: perturbation theory

(valid in the quasi-linear regime) and simulations (necessary to explore the non-linear

regime). We carried out a perturbative calculation of the three-point statistic: the Bis-

pectrum.

In perturbation theory we start with an ansatz for the metric described by two

scalar potentials in Newtonian gauge:

ds2 = −(1 − 2Ψ) dt2 + (1 − 2Φ) a2(t) d~x2, (1.15)

where in GR the two potentials will generally be equal to each other (in the absence of

anisotropic stresses): Φ = −Ψ. It is very convenient to express all quantities in Fourier

space, such as the overdensity:

δ̂(~k, t) =

∫

d3x δ(~x, t) e−i~k·~x (1.16)

Using the continuity, Euler, and Poisson’s equations we can arrive at the following equa-

tions, which describe the evolution of the overdensity and the connection between the

scalar potentials and the matter distribution:

δ̈ + 2Hδ̇ +
k2Ψ

a
= 0. (1.17)

k2(Φ − Ψ) = −8πG̃eff(k, t)ρ̄MGa2δ(k, t) (1.18)

Φ = −Ψ η(k, t) (1.19)
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where G̃eff = Geff(1 + η−1)/2. The parameters G̃eff and η(k, t) are sufficient to describe

general modifications to gravity in perturbation theory. Now expanding the density per-

turbations, δ(~k, t) ≃ δinitial(~k)D(k, t), we obtain the equation for the linear growth factor:

D̈ + 2HḊ − 8πG̃eff

(1 + η)
ρ̄a2 D = 0. (1.20)

For particular choice of G̃eff and η(k, t) based on our model of modified gravity we will

obtain a first order solution for the overdensity field. Furthermore, we will later show how

to obtain a second order perturbative solution, as it is needed for the calculation of the

Bispectrum.

As already mentioned, the 2-point correlation function – the power spectrum –

has been studied in the literature [9]. We will instead focus on the 3-point correlation

function of the density field:

〈δ(~k1)δ(~k2)δ(~k3)〉 = (2π)3δD(~k1 + ~k2 + ~k3)Bδ(~k1, ~k2, ~k3) (1.21)

Observe that for an initially Gaussian density field we have Bδ ∼ 〈δ3〉 ∼ 〈δ2
1δ2〉, which is

where we need the second order solution. Additionally, since δ2 ∝ O(δ2
1), the Bispectrum

is proportional to the second power of the power spectrum. To scale out the amplitude of

the power spectrum we are also interested in the so called reduced Bispectrum:

Qδ ≡ Bδ(~k1, ~k2, ~k3)

Pδ(k1)Pδ(k2) + Pδ(k2)Pδ(k3) + Pδ(k1)Pδ(k3)
. (1.22)

Detailed derivations, results and discussion of our calculations of the Bispectrum will be

provided in Chapter 2 of this thesis.
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1.3 Structure Formation and Gravitational Lensing

To provide more tools for exploring modifications of gravity, the formation of

large-scale structure can be studied. Dark matter halos are the basic building blocks of the

Universe. A study of their properties (density profiles, halo mass function etc.) to see how

they differ when compared to the predictions of ΛCDM gravity will be helpful in guiding

the direction of observational surveys. A common approach in this field is to investigate

the evolution of an isotropic initial overdensity – the spherical collapse. While this simple

case can be solved analytically in the Standard Model, such solutions can not be obtained

for general modifications of gravity. For the particular case of f(R) modification that is the

topic of this thesis, analytical solutions can be obtained in two limiting approximations

[11]. This is the reason that, for a more detailed study, simulations are needed. The

task is further complicated by having to concurrently simulate the evolution of the scalar

field associated with the f(R) model [12]. The details of our simulation, the technical

difficulties, and current results are described in Chapter 3.

An important consequence of the previous considerations is that modifications

to gravity affect the evolution of the matter content of the Universe, which is mostly Cold

Dark Matter. Recently a powerful tool has been developed, that allows us a direct obser-

vation of the distribution of CDM – gravitational lensing. Matter distribution corresponds

to perturbations in the metric, which in turn causes perturbations to the null-geodesics,

the light paths. When light from a galaxy passes through a massive object its image can

appear distorted; its size and shape will change, corresponding to magnificaton and shear.

Weak gravitational lensing uses the statistical properties of the shapes of many such dis-

torted galaxies to obtain information about the foreground dark matter, which acts as a

8



lens. The basics of weak lensing are outlined in [13].

Improvements in the methods used in studying gravitational lensing are essential

for furthering our understanding of cosmology. A study of optimizing techniques for

measuring galaxy shapes for lensing was done in [14]. In Chapter 4 we present an

investigation of a particular calculation in the statistical measurement of galaxy shapes,

the evaluation of the Responsivity.

9



Chapter 2

The Bispectrum in the

quasi-linear regime

2.1 Introduction

The energy contents of the universe pose an interesting puzzle, in that general

relativity (GR) plus the Standard Model of particle physics can only account for about 4%

of the energy density inferred from observations. By introducing dark matter and dark

energy, which account for the remaining 96% of the total energy budget of the universe,

cosmologists have been able to account for a wide range of observations, from the overall

expansion of the universe to the large scale structure of the early and late universe [15].

The dark matter/dark energy scenario assumes the validity of GR at galactic and

cosmological scales and introduces exotic components of matter and energy to account for

observations. Since GR has not been tested independently on these scales, a natural

alternative is that GR itself needs to be modified on large scales. This possibility, that
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modifications in GR on galactic and cosmological scales can replace dark matter and/or

dark energy, has become an area of active research in recent years.

Attempts have been made to modify GR with a focus on galactic [16] or cos-

mological scales [3, 7, 17]. Modified Newtonian Dynamics (MOND) and its relativistic

version (Tensor-Vector-Scalar, TeVeS) [16] attempt to explain observed galaxy rotation

curves without dark matter (but have problems on larger scales). The DGP model [3], in

which gravity lives in a 5D brane world, naturally leads to late time acceleration of the

universe.

Adding a correction term f(R) to the Einstein-Hilbert action [7] also allows late

time acceleration of the universe to be realized.

In this paper we will focus on modified gravity (MG) theories that are designed

as an alternative to dark energy to produce the present day acceleration of the universe.

In these models, such as DGP and f(R) models, gravity at late cosmic times and on large-

scales departs from the predictions of GR. By design, successful MG models are difficult

to distinguishable from viable DE models against observations of the expansion history of

the universe. However, in general they predict a different growth of perturbations which

can be tested using observations of large-scale structure (LSS) [4, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32].

In this chapter we consider the quasilinear regime of clustering in which perturba-

tion theory calculations are valid. We explore what f(R) modifications to gravity predict

about the behavior of the three-point correlation function. In §II we outline the particular

type of f(R) gravity model we will be using for our calculations. In §III we introduce the

fundamentals of perturbation theory and in particular how it applies to modified gravity.
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In §IV we focus on second order corrections and in particular the Bispectrum. In §V we

present our results and compare with other studies of the nonlinear regime. In §VI we

discuss the implications for observations.

2.2 The f(R) modified gravity model

In general f(R) models are a modification of the Einstein-Hilbert action of the

form:

S =

∫

d4x
√−g

[

R + f(R)

2κ2
+ Lm

]

, (2.1)

where R is the curvature, κ2 = 8πG, and Lm is the matter Lagrangian. A major issue with

gravity modifications has been that while they are successful at explaining the acceleration

of the universe, they also tend to fail to comply with Solar system (very small scales)

observations. Recently, though, the so called Chameleon mechanism was found [33, 8]

that makes it possible to overcome this problem. Significant attempts have been made

to include Chameleon behavior [5] in DGP theories as well. One example of an f(R)

model that exhibits Chameleon behavior was constructed by Hu and Sawicki [9]. The

functional form of f(R) there is derived from a list of observational requirements: it

should mimic ΛCDM in the high-redshift regime as well as produce ΛCDM acceleration

of the universe at low redshift without a true cosmological constant; it should also fit Solar

system observations.

The particular form chosen by [9] is:

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
(2.2)
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with

m2 ≡ κ2ρ̄0

3
= (8315Mpc)−2

(

Ωmh2

0.13

)

(2.3)

where κ2 ≡ 8πG and ρ̄0 is the average density today. In this model, modifications to GR

only appear at low redshift, when we are safely in the matter dominated regime. The

properties of the model are well described by the auxiliary scalar field fR ≡ df(R)
dR .

Before going to the expansion history, it is worth briefly reviewing the main

features of this model, following the original presentation in [9]. The trace of the modified

Einstein equations serves as the equation of motion for fR:

32fR − R + fRR − 2f = −κ2ρ, (2.4)

or, in terms of the effective potential,

2fR =
∂Veff

∂fR
. (2.5)

The effective mass for the fR field is then given by the second derivative of Veff , evaluated

at its extremum:

m2
eff =

∂2Veff

∂f2
R

=
1

3

(

1 + fR

fRR
− R

)

. (2.6)

The Compton wavelength of the field is then given by λfR
≡ m−1

eff .

It is very convenient to introduce a dimensionless quantity:

B =
fRR

1 + fR
R

′ H

H
′

(2.7)

It has been shown [9] that in the high-curvature regime B is connected to the Compton

wavelength via:

B1/2 ∼ λfR
H (2.8)
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and thus is essentially the Compton wavelength of fR at the background curvature in units

of the horizon length.

In the static limit with |fR| ≪ 1 and |f/R| ≪ 1, Eqn. 2.4 becomes

▽2fR ≈ 1

3
(R − κ2ρ) (2.9)

where ρ is the local density. This equation has 2 modes of solutions. One is the very high

curvature R ≈ κ2ρ and the other one is the low curvature (but still high compared to

the background density) R ≪ κ2ρ. For more on the interplay of these two regimes and

applications in solar system observations see [9].

Let’s now move on to the expansion history. For the model to yield behavior

that is observationally viable requires a choice for the present day value of the fR field

fR0 ≪ 1. This is equivalent to R0 ≫ m2. In that case the approximation R ≫ m2 is valid

for the whole expansion history and we have:

lim
m2/R→0

f(R) ≈ −c1

c2
m2 +

c1

c2
2

m2

(

m2

R

)n

(2.10)

In the limiting case of c1/c
2
2 → 0 at fixed c1/c2 we obtain a cosmological constant

behavior ΛCDM . Thus to approximate the ΛCDM expansion history with a cosmological

constant ΩΛ and matter density Ωm we set:

c1

c2
≈ 6

ΩΛ

Ωm
(2.11)

Fixing c1/c2 leaves 2 of the orignal 3 parameters of the model, expressed for

example as n and c1/c
2
2, to control how closely the model mimics ΛCDM . Larger n

mimics until later in the expansion history, while smaller c1/c
2
2 mimics it more closely.
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For flat ΛCDM we have the following relations:

R ≈ 3m2

(

a−3 + 4
ΩΛ

Ωm

)

(2.12)

fR = −n
c1

c2
2

(

m2

R

)n+1

(2.13)

As we will see later these are the necessary ingredients for the application of

perturbation theory to the model.

Finally we need to obtain a suitable parametrization of the mode. At the present

epoch we have:

R0 ≈ m2

(

12

Ωm
− 9

)

(2.14)

fR0 ≈ −n
c1

c2
2

(

12

Ωm
− 9

)

−n−1

(2.15)

In particular, for ΩΛ = 0.76 and Ωm = 0.24, we have R0 = 41m2 and fR0 ≈

−n c1/c
2
2/(41)

n+1. ¿From now on we will parametrize the model through fR0 and n.

Fig. 9 in [9] shows that there is a wide range of viable parameter values which satisfy

Solar system and Galaxy requirements. We re-iterate that what makes this particular

f(R) model viable is its Chameleon behavior – the possibility of uniting galaxy and solar

system observations with the expansion of the Universe.

2.3 Perturbation Formalism

By definition, the dark sector (dark matter and dark energy) can only be inferred

from its gravitational consequences. In general relativity, gravity is determined by the total
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stress-energy tensor of all matter and energy (Gµν = 8πG Tµν).

We may consider the Hubble parameter H(z) to be fixed by observations. In

a dark energy model, ρ̄ is given by the Friedman equation of GR: ρ̄ = 3H2/8πG. The

equation of state parameter is w = −1 − 2Ḣ/3H2. The corresponding modified gravity

model has matter density to be determined from its Friedman-like equation. We will

consider MG models dominated by dark matter and baryons at late times.

2.3.1 Metric and fluid perturbations

With the smooth variables fixed, we will consider perturbations as a way of

testing the models. In the Newtonian gauge, scalar perturbations to the metric are fully

specified by two scalar potentials Ψ and Φ:

ds2 = −(1 − 2Ψ) dt2 + (1 − 2Φ) a2(t) d~x2 (2.16)

where a(t) is the expansion scale factor. This form for the perturbed metric is fully

general for any metric theory of gravity, aside from having excluded vector and tensor

perturbations (see [34] and references therein for justifications). Note that Ψ corresponds

to the Newtonian potential for the acceleration of particles, and that in general relativity

Φ = −Ψ in the absence of anisotropic stresses.

A metric theory of gravity relates the two potentials above to the perturbed

energy-momentum tensor. We introduce variables to characterize the density and velocity

perturbations for a fluid, which we will use to describe matter and dark energy. The

density fluctuation δ is given by

δ(~x, t) ≡ ρ(~x, t) − ρ̄(t)

ρ̄(t)
(2.17)
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where ρ(~x, t) is the density and ρ̄(t) is the cosmic mean density. The second fluid variable

is the divergence of the peculiar velocity

θ ≡ ∇jT
j
0 /(p̄ + ρ̄) = ~∇ · ~v, (2.18)

where ~v is the (proper) peculiar velocity. Choosing θ instead of the vector v implies that

we have assumed v to be irrotational. Our notation and formalism follows that of [10].

In principle, observations of large-scale structure can directly measure the four

perturbed variables introduced above: the two scalar potentials Ψ and Φ, and the density

and velocity perturbations specified by δ and θ. It is convenient to work with the Fourier

transforms, such as:

δ̂(~k, t) =

∫

d3x δ(~x, t) e−i~k·~x (2.19)

When we refer to length scale λ, it corresponds to a a statistic such as the power spectrum

on wavenumber k = 2π/λ. We will henceforth work exclusively with the Fourier space

quantities and drop theˆsymbol for convenience.

2.3.2 Linearized fluid equations

We will use the perturbation theory equations for the quasi-static regime of the

growth of perturbations. We begin with the fluid equations in the Newtonian gauge,

following the formalism and notation of [35].

For minimally coupled gravity models with baryons and cold dark matter, but

without dark energy, we can neglect pressure and anisotropic stress terms in the evolution

equations to get the continuity equation:

δ̇ = −
(

θ

a
− 3Φ̇

)

≃ −θ

a
, (2.20)
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where the second equality follows from the quasi-static approximation as for GR. The

Euler equation is:

θ̇ = −Hθ − k2Ψ

a
. (2.21)

We parametrize modifications in gravity by two functions G̃eff(k, t) and η(k, t)

to get the analog of the Poisson equation and a second equation connecting Φ and Ψ [36,

10]. We first write the generalization of the Poisson equation in terms of an effective

gravitational constant Geff :

k2Φ = −4πGeff(k, t)ρ̄MGa2δMG . (2.22)

Note that the potential Φ in the Poisson equation comes from the spatial part of the metric,

whereas it is the “Newtonian” potential Ψ that appears in the Euler equation (it is called

the Newtonian potential as its gradient gives the acceleration of material particles). Thus

in MG, one cannot directly use the Poisson equation to eliminate the potential in the

Euler equation. A more useful version of the Poisson equation would relate the sum of the

potentials, which determine lensing, with the mass density. We therefore introduce G̃eff

and write the constraint equations for MG as

k2(Φ − Ψ) = −8πG̃eff(k, t)ρ̄MGa2δMG (2.23)

Φ = −Ψ η(k, t) (2.24)

where G̃eff = Geff (1 + η−1)/2.

The parameter G̃eff characterizes deviations in the (Φ − Ψ)-δ relation from that

in GR. Since the combination Φ − Ψ is directly responsible for gravitational lensing, G̃eff

has a specific physical meaning: it determines the power of matter inhomogeneities to
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distort light. This is the reason we prefer it over working with more direct generalization

of Newton’s constant, Geff .

With the linearized equations above, the evolution of either the density or velocity

perturbations can be described by a single second order differential equation. From Eqns.

2.20 and 2.21 we get, for the linear solution, δ(~k, t) ≃ δinitial(~k)D(k, t),

δ̈ + 2Hδ̇ +
k2Ψ

a
= 0. (2.25)

For a given theory, Eqns. 2.23 and 2.24 then allow us to substitute for Ψ in terms of δ to

determine D(k, t), the linear growth factor for the density:

D̈ + 2HḊ − 8πG̃eff

(1 + η)
ρ̄a2 D = 0. (2.26)

What we need now are G̃eff and η for our modified gravity model.

2.3.3 Parametrized post-Friedmann framework

Hu & Sawicki [9] also developed a formalism for simultaneous treatment of the

super-horizon and quasi-static regime for modified gravity theories (in particular f(R)

and DGP) [37] (see also [38]. They begin by describing the different regimes individually

and the requirements they impose on the structure of such models. Consequently they

describe a linear theory parametrization of the super-horizon and the quasi-static regime

and test it against explicit calculation. What is important for this paper is the proposed

interpolation function for the metric ratio

g =
Φ + Ψ

Φ − Ψ
(2.27)
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For consistency we will express formulae from Hu & Sawicki in terms of physical

time instead of expansion factor. We start with a background FRW universe for which we

have the curvature in terms of the Hubble parameter R = 6Ḣ + 12H2. As we mentioned

the background evolution H is chosen to match that of flat ΛCDM . We can then compute

the Compton parameter B for our preferred model since we know what f(R), R and H

are:

B =
fRR

1 + fR
Ṙ

H

Ḣ
(2.28)

The next step is to look at the super-horizon regime. In that case we know how

to calculate the potentials Φ and Ψ. Their evolution is given by [25]:

Φ̈ +

(

1 − Ḧ

HḢ
+

Ḃ

H(1 − B)
+ B

Ḣ

H2

)

HΦ̇+

(

2
Ḣ

H2
− Ḧ

HḢ
+

Ḃ

H(1 − B)

)

H2Φ = 0, (kH → 0)

(2.29)

Ψ =
−Φ − BΦ̇/H

1 − B
, (kH → 0) (2.30)

This allows us to compute gSH = g(t, kH → 0).

Furthermore in the case of subhorizon evolution where kH = k/a(t)H ≫ 1 we

have gQS = −1
3 [25].

According to [37] in the case of f(R) theories we can use the following interpo-

lation functions for the metric ratio:

g(t, k) =
gSH + gQS(cgkH)ng

1 + (cgkH)ng
(2.31)

The evolution then is well described by [37] cg = 0.71B1/2 and ng = 2 In terms of the

post-Newtonian parameter: η = −Φ/Ψ we have g = (η − 1)/(η + 1).
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We still need one more ingredient, G̃eff , which is given by [37]

G̃eff (k, t) =
G

1 + fR
(2.32)

We now have all the needed components to use in equation (2.26) for the growth

factor of density perturbations. Calculations of the fractional change in the linear density

power spectrum compared to GR have been done [9]. We show these in Fig. 2.1, using

G̃eff and η for the particular model we investigate. We have assumed the transfer function

for the concordance Λ−CDM model consistent with the 5-year WMAP data [1].

We can also use the relations given above to obtain the linear growth factors for

θ and the potentials from D. Note that in general the growth factors for the potentials

have a different k dependence than D.

2.4 The Bispectrum in Perturbation Theory

2.4.1 Nonlinear fluid equations

The fluid equations in the Newtonian regime are given by the continuity, Euler

and Poisson equations. Keeping the nonlinear terms that have been discarded in the study

of linear perturbations above, the continuity equations gives:

δ̇ + θ = −
∫

d3k1

(2π)3

~k · ~k1

k2
1

θ( ~k1)δ(~k − ~k1) (2.33)

where the term on the right shows the nonlinear coupling of modes. Note that the time

derivatives are with respect to conformal time in this section.

The Euler equation is

θ̇ + Hθ + k2Ψ = −
∫

d3k1

(2π)3
k2~k1 · (~k − ~k1)

2k2
1 |~k1 − ~k2|2

θ( ~k1)θ(~k − ~k1) (2.34)
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Figure 2.1: (Color online) Fractional change at z = 0 in the density power spectrum of the f(R) model

compared to ΛCDM for a set of choices of fR0. The upper panel is the n = 4 model, while the lower panel

has n = 1. This figure can be compared with Fig. 4 in [9].
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We neglect pressure and anisotropic stress as the energy density is taken to be dominated

by non-relativistic matter [39]. The Poisson equation is given by Eqn. 2.23 and supple-

mented by the relation between Ψ and Φ given by Eqn. 2.24. Using these equations we

can substitute for Ψ in the Euler equation to get

θ̇ + Hθ +
8πG̃eff

(1 + η)
ρ̄MGa2δ

= −
∫

d3k1

(2π)3
k2~k1 · (~k − ~k1)

2k2
1 |~k1 − ~k2|2

θ( ~k1)θ(~k − ~k1) (2.35)

Eqns. 2.33 and 2.35 are two equations for the two variables δ and θ. They constitute a

fully nonlinear description and can be solved once η and G̃eff are specified. An important

caveat is that they may nevertheless be invalid on strongly nonlinear scales or for particular

MG theories. For the f(R) model considered here, they are valid on scales well above 1

Mpc; on smaller scales the chameleon mechanism modifies the growth of structure [40].

Since we will use perturbation theory, our approach breaks down once δ ∼ 1 in any case.

Next we consider perturbative expansions for the density field and the resulting

behavior of the power spectrum and bispectrum. Let δ = δ1 +δ2+ ... where δ2 ∼ O(δ2
1). In

the quasilinear regime, i.e. on length scales between ∼10-100 Mpc, mode coupling effects

can be calculated using perturbation theory. While this is strictly true only for general

relativity, a MG theory that is close enough to GR to fit observations can also be expected

to have this feature.

For MG, following [10], let us simplify the notation by introducing the function:

ζ(k, t) =
8πG̃eff

(1 + η)
, (2.36)

which is simply 4πG in GR but can vary with time and scale in MG theories. The evolution

of the linear growth factor is given by substituting for Ψ in Eqn. 2.37 to get (as above,
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but with conformal time here)

δ̈1 + Hδ̇1 − ζρ̄a2δ1 = 0. (2.37)

The linear growth factor has a scale dependence for our f(R) as shown in Fig. 1.

In addition we show below that the second order solution has a functional depen-

dence on G̃eff and η that can differ from GR. Thus potentially distinct signatures of the

scale and time dependence of G̃eff (k, z) can be inferred from higher order terms. These

rely either on features in k and t in measurements of PΦ−Ψ and Pδ, or on the three-point

functions which can have distinct signatures of MG even at a single redshift [41]. Quasi-

linear signatures due to η(k, z) can also be detected via second order terms in the redshift

distortion relations for the power spectrum and bispectrum. Our discussion generalizes

that of [18] who examined a Yukawa-like modification of the Newtonian potential.

2.4.2 Second order solution

From a perturbative treatment of Eqns. 2.33 and 2.35 the second order term for

the growth of the density field is given by [10]

δ̈2 + Hδ̇2 − ρ̄a2ζδ2 =

HI1[δ̇1, δ1] + I2[δ̇1, δ̇1] + İ1[δ̇1, δ1], (2.38)

where I1 and I2 denote convolution like integrals of the two arguments shown, given by

the right-hand side of equations 2.33 and 2.35 as follows

I1[δ̇1, δ1](~k) =

∫

d3k1

(2π)3

~k · ~k1

k2
1

δ̇1( ~k1)δ1(~k − ~k1) (2.39)

and

I2[δ̇1, δ̇1](~k) =

∫

d3k1

(2π)3
k2~k1 · (~k − ~k1)

2k2
1 |~k1 − ~k2|2

δ̇1( ~k1)δ̇1(~k − ~k1). (2.40)
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Finally, the last term in Eqn. 2.38 is simply İ1[δ̇1, δ1] = I1[δ̈1, δ1] + I1[δ̇1, δ̇1]. Note that by

continuing the iteration, higher order solutions can be obtained.

2.4.3 Three-point correlations

Distinct quasilinear effects are found in three-point correlations – we will use

the Fourier space bispectrum. Recently Tatekawa & Tsujikawa have performed a simi-

lar perturbative analysis and presented results on the skewness [43]. We prefer to use

the bispectrum as it allows one to study specific quasilinear signatures contained in the

configuration dependence of triangle shapes. The bispectrum for the density field Bδ is

defined by

〈δ(~k1)δ(~k2)δ(~k3)〉 = (2π)3δD(~k1 + ~k2 + ~k3)Bδ(~k1, ~k2, ~k3) (2.41)

Since Bδ ∼ 〈δ3〉 ∼ 〈δ2
1δ2〉 (using 〈δ3

1〉 = 0 for an initially Gaussian density field) at tree

level, the second order solution enters at leading order in the bispectrum. Note also that

the wavevector arguments of the bispectrum form a triangle due to the Dirac delta function

on the right-hand side above.

The bispectrum is the lowest order probe of gravitationally induced non-Gaussianity.

A useful version of it is the reduced bispectrum Q, which for the density field δ is given

by

Qδ ≡ Bδ(~k1, ~k2, ~k3)

Pδ(k1)Pδ(k2) + Pδ(k2)Pδ(k3) + Pδ(k1)Pδ(k3)
. (2.42)

Q is useful because it is insensitive to the amplitude of the power spectrum; thus e.g. at

tree level and in the case of a scale free linear power spectrum P (k) ∼ kn it is static and

scale independent for regular gravity [42].
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2.5 Results

In Fig. 2.2 we present the bispectrum for the f(R) model and its dependence on

scale for two different redshifts. For comparison we also show the bispectra predicted in

GR. In the lower panel we present the ratio of the f(R) bispectra to that in GR. We have

assumed the transfer function for the concordance Λ−CDM model consistent with the

5-year WMAP data [1]. Calculation is done at tree level with Ωm = 0.24. The bispectra

in f(R) gravity are enhanced relative to GR, increasingly so at high-k. The enhancement

is of order 10-20% for observationally relevant scales around k ∼ 0.1 and redshifts below

unity.

We turn our attention to the reduced bispectrum Q, which is expected to show

features not associated with the linear power spectrum [42]. We show two relevant cases.

The first one is with equilateral triangles, shown in Fig. 2.3. Deviations from GR are

at the percent-level, which makes them impossible to detect with current measurements.

Qualitatively, the parameters of the model do influence the scale and time dependence of

the reduced bispectrum.

Slightly stronger deviations from regular gravity are observed for isosceles triangle

configurations, shown in Fig. 2.4. Once again strong scale and time variation is observed

when changing the model parameters. We also show the angular dependence of the reduced

bispectrum for 3:1 ratio configurations and its comparison to regular gravity in Fig. 2.5.

2.5.1 Does the Linear Growth Factor Determine Nonlinear Clustering?

Quasilinear effects, and the bispectrum in particular, show signatures of gravi-

tational clustering. However, we find that the reduced bispectrum Q remains very close
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Figure 2.2: (Color online) Upper panel: The Bispectrum of the f(R) model for equilateral triangles

depending on scale for the f(R) model with fR0 = 10−5, n = 1. The corresponding regular gravity

bispectrum is shown as the dashed curve. Lower panel: The Ratio of the f(R) Bispectrum to the regular

gravity one.
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Figure 2.3: (Color online) The reduced bispectrum Q for equilateral triangles for the f(R) model
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to to that of GR in the modified gravity models we have considered (see also [43] for a

related study). This is qualitatively similar to previous findings about the insensitivity of

Q to cosmological parameters within a GR context [42].

Thus the deviations in the bispectrum are largely determined by the linear growth

factor. Ambitious future surveys will be needed to achieve the percent level measurements

required to probe the unique signatures of modified gravity in the bispectrum. On the

other hand, this means that the bispectrum can be used as a consistency check on the

power spectrum. It has been shown that the bispectrum contains information comparable

to the power spectrum, thus improving the signal-to-noise [44] . Equally importantly,

it is affected by sources of systematic error in different ways and contains signatures of

gravitational clustering that are unlikely to be mimicked by other effects.

Currently the results of N-body simulations for this f(R) model [40] show that

our assumptions are consistent with their result for the power spectrum on scales k .

0.2[h/Mpc]). On smaller scales, the onset of nonlinearity and the chameleon mechanism

invalidate our results. The deviation from the linear prediction grows fast and is of order

10% on scales k ∼ 0.2 − 0.5[h/Mpc] depending on the model. So the results in our plots

on those scales will need to be carefully checked with simulations.

Modifications to the Newtonian potential were simulated by [32] (also see [18],[45]).

These simulation studies found that, to a good approximation, the nonlinear power spec-

tra depend only on the initial conditions and linear growth. The standard fitting formulae

for Newtonian gravity [46] were adapted to predict the nonlinear spectrum at a given

redshift. Therefore tests for modified gravity using the power spectrum require either a

measurement of the scale dependent growth factor (in combination with the initial spec-
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trum measured from the CMB), or of measurements at multiple epochs. More likely a

combination of probes will be used for robust tests of gravity (see e.g. [10]).

Related studies of nonlinear clustering in f(R) models or DGP gravity are in

progress [11, 48, 47]; these authors are considering the power spectra, bispectra as well as

halo properties, in particular the halo mass function. The f(R) studies of [40] and [11] show

distinct effects of the chameleon field on small scales (comparable to galaxy and cluster

sized halos for most models); [37] suggest a fit for the nonlinear power spectrum with

additional parameters that describe the transition to the small-scale regime. The DGP

study of [47] requires inclusion of nonlinear terms in the Poisson equation. So clearly for

different models there can be new nonlinearities and couplings to additional fields that

impact the small-scale regime of clustering. Even so, for a class of models that includes

the f(R) models studied here, the quasistatic, Newtonian description parameterized by

G̃eff and η = Φ/Ψ applies over a wide range of scales relevant for large-scale structure

observations. In this regime, to a good approximation, many clustering statistics can be

predicted using the linear growth factor and the standard gravity formalism.

2.5.2 Implications for Lensing and Dynamics

Lensing observations provide estimates of the convergence power spectrum and

bispectrum (see e.g. [49]). For a rough estimate of these quantities, we take the source

galaxies distribution to be a delta function at a given redshift and take the lensing matter to

be situated at half the distance. Since we have taken the expansion history to be ΛCDM ,

so comoving distances are the same as in GR. With these approximations, Pκ ∝ PΦ−Ψ.

From Eqn. 2.23 we can see that the difference of the lensing behavior of our modified
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gravity case and the regular gravity one is given by (see also [41])

PΦ−Ψ ∝ Pδ

(

G̃eff (k, t1/2)

G

)2

(2.43)

where t1/2 is the physical time at the redshift of the lensing matter.

Thus we can write:

PκMG

PκGR
∝ PδMG

PδGR

(

G̃eff (k, t1/2)

G

)2

(2.44)

Analogously we can see that the ratio of convergence bispectra behaves like

(G̃eff (k, t1/2)/G)3 but the ratio of the reduced bispectra behaves like

QκMG

QκGR
∝ QδMG

QδGR

G

G̃eff(k, t1/2)
(2.45)

Thus the convergence power spectrum and reduced bispectrum could be success-

fully used to differentiate and/or rule out models of modified gravity. Unfortunately in

the currently discussed model we have Eqn. 2.32:

τ(k, t(a)) =
G̃eff

G
=

1

1 + fR(a)
(2.46)

which deviates from unity at the order of fR0, which is much smaller than unity. Thus

the convergence power spectrum and reduced bispectrum follow almost identically the

predictions for their matter counterparts. This means that the comparison of lensing to

tracers of mass fluctuations does not reveal distinct signatures of f(R) gravity.

The Newtonian potential Ψ drives dynamical observables such as the redshift

space power spectrum of galaxies [10], [36]. The velocity growth factor Dθ is related to

the density growth factor via the function β:

Dθ ∝ aβHD (2.47)
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where β = d ln D/d ln a. This function varies with scale and expansion factor for our

f(R) models. Both τ and β can be seen in Fig. 2.6 which clearly shows that observables

based on peculiar velocities would show a clear signature of f(R) gravity. More detailed

calculations of lensing and velocity statistics are beyond the scope of this study.
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Figure 2.6: (Color online) The fractional change in τ (blue lines) and β2 (red lines) for the f(R) model

with fR0 = 10−5, n = 1 compared to GR as a function of scale.

2.6 Discussion

In this paper we studied the growth of structure in an f(R) modified gravity

model [9]. In the quasilinear regime, we used perturbation theory to calculate the three-

point correlation function, the bispectrum, of matter. Our results are applicable up to

scales at which the derivation of the quasi-linear perturbation theory is still valid.

We found that in the bispectrum the dominant behavior is due to the difference
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in the linear growth factors between the modified gravity model and regular gravity. The

bispectrum itself shows significant departures in scale and time compared to the predic-

tions of GR. However the reduced bispectrum, which is independent of the linear growth

factor in perturbation theory for GR, remains within a few percent of the regular gravity

prediction. It does show interesting signatures of modified gravity at the percent level.

Our results are consistent with studies of the nonlinear regime via N-body sim-

ulations, which have found that on a wide range of scales the nonlinear power spectrum

can be predicted using the (modified gravity) linear growth factor in the standard for-

mulae developed for Newtonian gravity. Our results imply that three-point correlations

follow this trend at the few percent level. (The regime around and inside halos probed by

[40] to test the chameleon behavior is not included in our perturbative study.) It would

be interesting to compare perturbative and simulation results for the bispectrum for the

models considered here and other modified gravity models.

Upcoming surveys in the next five years will not attain the percent level accuracy

at which the reduced bispectrum shows distinct signatures of f(R) gravity. In this time-

frame, the bispectrum will be useful as a consistency check on potential deviations from

GR found in the power spectrum. Such a check is useful since measurement errors and

scale dependent biases of tracers can mimic some of the deviations in the power spectrum.

Next generation surveys, to be carried out in the coming decade, will provide sufficient

accuracy to test the distinct signatures seen in our results for the reduced bispectrum.

With these surveys, the bispectrum can provide truly new signatures of gravity.
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Chapter 3

Simulating spherical collapse

3.1 Introduction

Recently the nonlinear regime of structure formation in f(R) modified gravity

theories has been actively studied, focusing on the effects of the chameleon field which al-

ters the dynamics of mass clustering. A series of papers [9, 11, 12, 37, 40] have explored the

consequences of this evolution through simulations and comparison to analytical predic-

tions. The evolution of isolated spherical overdensities in an expanding universe provides

a useful approximation for structure in the Universe. In part using this model, [11] ex-

plores the topic of properties of dark matter halos that form galaxies and galaxy clusters.

These in turn are an important tool for studying the nature of Cold Dark Matter and

Dark Energy [10]. In [11] halo mass functions, linear bias and density profiles have been

calculated to observe their differences from the Standard Model of cosmology - the ΛCDM

model. In addition analytical calculations have been done in the two limiting cases of the

f(R) model:
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1. The strong field regime, where f(R) behaves like a ΛCDM model, but with a larger

Newton’s constant (by a factor of 4/3).

2. The weak field regime, where there is no observable difference from the Standard

Model.

The results from these bounding situations have been compared to simulations by [11] and

the observed differences have been discussed. Since the strength of gravity has been inside

these two limiting cases, a reasonable expectation is that the final observed quantities

should also remain inside the predictions. In this chapter we will explore the validity of

such linear assumption by performing a direct simulation of a spherical collapse of an

isotropic object. As chameleon f(R) theories exhibit highly no-linear behavior and there

exist coupled fields, it is worth checking through explicit calculation the naive expectation

based on limiting cases. We want to be able to compare relevant quantities, like like δc,

with the results from the analytical calculation in [11].

The evolution and collapse of spherical overdensities have been useful for mod-

elling the formation of galaxy and cluster halos. In the Standard Model of gravity the

problem can be approached analytically and we will outline the derivation presented in

[11]. We start with the nonlinear and Euler equation for a non-relativistic pressureless

fluid in comoving coordinates:

∂δ

∂t
+

1

a
▽ · (1 + δ)v = 0

∂v

∂t
+

1

a
(v · ▽)v + Hv = −1

a
▽Ψ, (3.1)

where these equations continue to be valid for modifications of gravity that remain a

metric theory [50]. These can now be joined together to form a second order equation for
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δ.

∂2δ

∂t2
+ 2H

∂δ

∂t
− 1

a2

∂2(1 + δ)vivj

∂xi∂xj
=

▽ · (1 + δ)▽Ψ

a2
(3.2)

This equation needs information about the velocity and potential fields. In the case of

spherical top-hat distribution the velocity field takes the form v = A(t)r to have a spatially

constant divergence. Its amplitude is related to the top-hat density perturbation through

the continuity equation:

δ̇ +
3

a
(1 + δ)A = 0 (3.3)

This leads to:

∂2vivj

∂xi∂xj
= 12A2 =

4

3
a2 δ̇2

(1 + δ)2
, (3.4)

and in the approximation of top-hat the equation for the evolution of δ becomes:

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
▽2Ψ, (3.5)

which is completed by the Poisson’s equation for the potential:

▽2Ψ = 4πGa2δρm. (3.6)

It is common to express spherical collapse through the evolution of the radius of the

top-hat. For that we use mass conservation:

M =
4π

3
r3ρ̄m(1 + δ) = const. (3.7)

to obtain the following relation:

r̈

r
= H2 + Ḣ − ▽2Ψ

3a2
(3.8)

Expressing derivatives in terms of scale factor ′ = d/dlna, with the useful substitution

y = r
ri
− a

ai
, and using Poisson’s equation we obtain:

y′′ +
H ′

H
y′ = −1

2

Ωma−3 − 2ΩΛ

Ωma−3 + ΩΛ
y − 1

2

Ωma−3

Ωma−3 + ΩΛ
(
a

ai
+ y)∆, (3.9)
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where

∆ =

(

1

1 + yai/a

)3

(1 + δi) − 1. (3.10)

In these coordinates collapse occurs when y = − a
ai

. The task of computing δc now reduces

to the following: for a given ai find an initial overdensity δi such that the collapse occurs

at a = 1. Then using the linear growth factor in ΛCDM (see for example [50]) we

extrapolate δi to the present epoch to obtain δc.

In the case of modified gravity analytical approach can not be used in the general

case. Thus we need to use simulations. As described in [12] for simulations in the case

of the particular f(R) model we have chosen, the solution for the potential driving the

dynamics of the evolution is coupled with the solution for the scalar field fR [9]. In our case

we deal with isotropic objects and thus have a one-dimensional system. In the first section

we derive the radial equation for the fR field. In subsequent sections we will describe the

relaxations scheme for numerically solving the aforementioned equation, the dynamics

code tests. After that we will focus on particular technical difficulties we encountered in

performing the simulations and our approach in resolving them. Finally, we will outline

the current results and the future work to be done.

3.2 Derivation of the radial equation for an isotropic object

Following [12] which set up the 3D simulation framework for the f(R) chameleon

model we start with:

∇2fR =
1

3c2
[δR(fR) − 8πGδρ] (3.11)

∇2φ =
16πGρ0

3
δρ − 1

6
δR(fR). (3.12)
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For the purposes of numerical calculations we need to define relevant unitless quantities,

and we find working in comoving coordinates more intuitive. Thus we adopt the usual

definition of code units [12, 52, 53]:

r̃ =
x

r0a
, t̃ = tH0, ρ̃ = a3 ρ

ρ0
, (3.13)

R̃ = a3 R

R0
, c̃ =

c

r0H0
, φ̃ =

φ

φ0
, p̃ = a

v

v0
,

where

ρ0 = ρc,0ΩM,0, R0 =
8πGρ0

3
, φ0 = (r0H0)

2, v0 = r0H0 (3.14)

and r0 is an appropriate length scale (used for example to define the size of the overdensity).

Bare symbols X are physical coordinates/quantities while symbols with tilde X̃ are code

quantities, symbols with bars X̄ are average physical and symbols with both bar and tilde

¯̃X are average code quantities.

Equations (3.11 3.12) then become the following in code units (Eqns. 25,27 in

[12]):

∇̃2δfR =
ΩM,0

ac̃2

[

δR̃

3
− δ

]

(3.15)

∇̃2φ̃ =
ΩM,0

a

[

−δR̃

6
+ 2δ

]

(3.16)

where

δ =
ρ − ρ̄

ρ̄
= δ̃. (3.17)

The next step is to express δR̃ in terms of fR in code coordinates. We start with (Eqn 9

in [12]):

R̄ = 8πGρ̄M

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(3.18)
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This is the average curvature in the f(R) model. Thus:

R̄

R0
= 3

ρ̄M

ρ0

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(3.19)

We arrive at:

R̄

R0
= 3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(3.20)

From that we also have:

R̄(a = 1)

R0
= 3

(

1 + 4
ΩΛ,0

ΩM,0

)

(3.21)

We also need the relation between fR and R. Using (Eqn. 12 in [12]) defining f̄R(a =

1) = fR0 and working in the case n = 1 we see that:

fR

fR0
=

(

R̄(a = 1)

R

)2

(3.22)

This leads to:

R

R0
=

R

R̄(a = 1)

R̄(a = 1)

R0
= 3

(

1 + 4
ΩΛ,0

ΩM,0

)

√

fR0

fR
(3.23)

For further use we will also need:

√

fR0

f̄R
=

R̄

R̄(a = 1)
=

(

1
a3 + 4

ΩΛ,0

ΩM,0

)

(

1 + 4
ΩΛ,0

ΩM,0

) (3.24)

So now we can proceed:

δR̃ = R̃ − ¯̃R =
a3

R0
(R − R̄) =

a3

R0
δR = (3.25)

= 3a3

(

1 + 4
ΩΛ,0

ΩM,0

)





√

fR0

fR
−

(

1
a3 + 4

ΩΛ,0

ΩM,0

)

(

1 + 4
ΩΛ,0

ΩM,0

)





So now let’s consider the following substitution:

fR = f̄Reu (3.26)
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We see then that:

δR̃

3
= a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(

e−u/2 − 1
)

(3.27)

From now on we will use only code quantities and drop the tilde notation. Expanding the

Laplacian in code units we arrive at the following equation for fR:

f̄R
1

r2

∂

∂r

(

r2 ∂

∂r
eu

)

=
ΩM,0

ac̃2

[

a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(

e−u/2 − 1
)

− δ

]

(3.28)

Now we can make the observation that:

1

r2

∂

∂r

(

r2 ∂X

∂r

)

=
1

r

∂2X

∂r2
(3.29)

With that in mind let’s consider a different substitution:

fR =
f̄Reu

r
(3.30)

Thus we achieve the following equation:

f̄R
1

r

∂2

∂r2
eu =

ΩM,0

ac̃2

[

a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(√
re−u/2 − 1

)

− δ

]

(3.31)

Additionally we will convert it to a system of 2 first order ODEs using an auxiliary function:

y =
∂

∂r
eu = eu ∂

∂r
u = euu′ (3.32)

So the system with explicit r dependence looks like:

u′(r) = e−u(r)y(r) (3.33)

y′(r) =
r

f̄R

ΩM,0

ac̃2

[

a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(√
re−u(r)/2 − 1

)

− δ(r)

]

(3.34)

Considering that we can approximate rfi ∼ r∞, where rfi is the upper boundary

of integration in code coordinates, we can impose the boundary condition that fR(rfi) =

43



f̄R which translates to u(rfi) = ln(rfi). As the relaxation scheme requires 2 boundary

points we will impose a condition on the inner boundary. We do not know what the

solution in the center of a collapsing isotropic mass distribution is. What we know is that

it has to be symmetrical. Furthermore we can expect the solution to be smooth in the

center. These 2 requirements imply that the derivative of the solution is zero in the center

f ′

R(0) = 0.

3.3 Relaxation scheme for solving the system of nonlinear

ODEs

As discussed in [9] (p.8) the primary equation we need to solve is non-linear

and cannot be solved as an initial value problem as the homogeneous equation has expo-

nentially growing and decaying modes that get amplified by numerical errors. So we also

employ a relaxation method for solving 2-point boundary problems in ODE. We employ

a Newton’s method [51] with dynamical allocation of the mesh grid. The mesh allocation

function is taken to be logarithmic with its higher density at the origin, which is the pri-

mary region of interest and where we expect the solution to be more rapidly changing. As

a guess solution for each step we utilize the relaxed solution of the previous step, while

for the initial guess at the beginning of the simulation we use a linear solution. Generally

if we have a system of discretized first order ordinary differential equations in the form:

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1) k = 2..M, (3.35)

where the index k spans the number of grid points 2..M , the vector E consists of the system

of N discretized 1st order ODEs at each point (and has a total of N ∗ M components -
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N ∗ (M − 1) from differential equations and N from boundary conditions). E1 and EM+1

describe the boundary conditions. So a Taylor expansion with respect to small changes

∆yk looks like:

Ek(yk + ∆yk,yk−1 + ∆yk−1) ≈ (3.36)

≈ Ek(yk,yk−1) +
N
∑

n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N
∑

n=1

∂Ek

∂yn,k
∆yn,k,

For a solution we want the updated value Ek(yk + ∆yk,yk−1 + ∆yk−1) to be zero, which

sets up a matrix equation:

N
∑

n=1

Sj,n∆yn,k−1 +

2N
∑

n=N+1

Sj,n∆yn,k = −Ej,k, (3.37)

where

Sj,n =
∂Ej,k

∂yn,k−1
, Sj,n+N =

∂Ej,k

∂yn,k
, (3.38)

and the quantity Sj,n is a N × 2N matrix at each point. Analogously we obtain similar

algebraic equations on the boundaries. Considering our problem we look at Eqs. (3.33

and 3.34) to obtain (after discretization):

E1,k = (yk − yk−1) − (rk − rk−1)

(

rk + rk−1

2

)

1

f̄R

ΩM,0

ac̃2
∗ (3.39)

∗
[

a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

(

√

rk + rk−1

2
e−(

rk+rk−1
4

) − 1

)

− δ(
rk + rk−1

2
)

]

E2,k = (uk − uk−1) − (rk − rk−1)

(

yk + yk−1

2

)

e−(
rk+rk−1

2
) (3.40)

S1,1,k = −1, S1,3,k = 1 (3.41)

S1,2,k = S1,4,k =

(

rk − rk−1

4

)(

rk + rk−1

2

)

∗ (3.42)

∗
[

a3

(

1

a3
+ 4

ΩΛ,0

ΩM,0

)

√

rk + rk−1

2
e−(

rk+rk−1
4

)

]
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S2,1,k = S2,3,k = −
(

rk − rk−1

2

)

e−(
rk+rk−1

2
) (3.43)

S2,2,k =

(

rk − rk−1

2

)(

yk + yk−1

2

)

e−(
rk−rk−1

2
) − 1 (3.44)

S2,4,k =

(

rk − rk−1

2

)(

yk + yk−1

2

)

e−(
rk−rk−1

2
) + 1 (3.45)

The boundary conditions are also easily translated in terms of the relaxation scheme.

E2,0 = eu1 − r1y1, E1,M+1 = euM − rM (3.46)

The notation here is probably a bit confusing. The quantity E is a vector which consists

consecutively of 2 elements per M − 1 grid points. In addition there is one element each

at the beginning and the end that correspond to the boundary conditions. Thus the total

length of E is NM , while the matrix S has NM × NM elements. The task of relaxing

the solution at each step of the scheme requires solving the matrix equation S · b = E.

The vector b contains the updates ∆yk. For a grid of 1000 points our equation requires a

matrix of derivatives of size 2000x2000 elements. Fortunately it is sparsely populated and

as such can be represented by a sparse array structure. This allows for the use of methods

particularly designed for solving such systems, like Krylov’s method, which we employ.

3.4 Dynamics

The time evolution of the simulation is employed in the usual way. At each time

step we proceed as following:

1. Given an initial density profile (from the previous time step) we compute the corre-

sponding solution for the fR field.

46



2. This allows us to compute the solution for the Newtonian potential that drives the

dynamics.

3. The mass shells are then moved according to the dynamics equations [12]:

dr̃

da
=

p̃

ȧa2
(3.47)

and

dp̃

da
= −∇φ̃

ȧ
, (3.48)

where ȧ = a−1/2
√

ΩM,0 + ΩΛ,0a3, as we tune the expansion of the universe to be the

same as in ΛCDM .

4. After the particles (shells) have been moved we can compute the new density distri-

bution and proceed to a new time step thus closing the cycle.

3.5 Testing the code

An important issue in the case of numerical simulations is testing the code for

stability and accuracy. The following have been checked:

1. Self consistency: as per [12] we can start with an analytical function for fR(r). This

can be analytically solved to obtain a corresponding density distribution. Now we

can plug that density distribution in the numerical code and check how well the

obtained solution reproduces the original analytical function. We observe deviations

of the order less than 10−7.

2. During the relaxation scheme a measure of our accuracy is the residual relative size

of the elements in the vector~b (as compared to the size of the corresponding elements
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Figure 3.1: (Color online) Fractional change in the solution for fR at the final step of the relaxation

process .

of the solution) ∆yk

yk
. This tells us how much we need to correct the solution obtained

by the previous step in the relaxation. A sample plot of these as a function of time

iteration step is provided at Fig.3.1.

3. We have also checked that the dynamics of the simulation performs satisfactory for

analytically solved situation. In particular we observe that for simulations of 20000

time iterations we recover the analytical results (turn around radius, virial radius,

collapse time) for the Einstein-De Sitter (matter dominated Ωm = 1) model within

0.3%. This is the dominant numerical error.
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3.6 The virialization problem.

An important issue we need to address before proceeding is of finding the epoch

at which a collapsing object reaches its virial radius. In the cases of Einstein-De Sitter

(ΩM,0 = 1) and ΛCDM universes we have analytic solutions [11] (App. A), but that is

not so in the case of f(R) gravity. What we do employ is a step by step calculation of

the Virial condition. Let’s look at energy conservation. The total velocity vt = dx/dt =

d(ar)/dt = ȧr + v, where x = ar is the physical distance, r is the comoving distance and

v = aṙ is the proper peculiar velocity. The acceleration equation is

d(avp)

dt
= −dφ

dr
(3.49)

On the other hand, vt satisfies another equation

v̇t = −dφt

dx
; φt = φ − 1

2
aär2 (3.50)

Multiplying vt to both sides and integrating over t, we obtain the familiar energy conser-

vation

1

2
(vt)2 + φt = constant (3.51)

For this reason, vt and φt are the relevant quantities for the virial theorem. Multiply Eq.

3.50 by x, we obtain

d

dt
(xvt) − (vt)2 = −x

dφt

dx
(3.52)

This equation is satisfied at all time. After virialization, we then take the ensemble

average of the above equation for each particle. Now the velocity of particles is random

(no correlation with x), so we have 〈xvt〉 = 0. Then

〈(vt)2〉 = 〈xdφt

dx
〉 (3.53)
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An equivalent expression, which can be applied straightforwardly, is

2K ≡
∫

(vt)2dM = −
∫

x
dφt

dx
dM (3.54)

K is the total kinetic energy. The integral is over the region of mass M . This is the

general expression of the virial theorem. One can check in the case of Newtonian gravity,

φt ∝ M/x, this reduces to familiar form of the virial theorem, 2K + W = 0. For the

purposes of the simulation we need to express the above formulae in terms of comoving

code coordinates Eqs. 3.13 and 3.14. It is straightforwards to obtain:

r2
0

∫

dM

(

r̃ȧ +
H0p̃

a

)2

(3.55)

for the kinetic term, and:

r2
0

∫

dMr̃

(

H2
0

dφ̃

dr̃
− r̃aä

)

(3.56)

for the potential term. These are subsequently discretized and the sum is over the region

with relevant mass.

As expected in the case of GR (EDS and ΛCDM) the epoch at which the sum

of these two terms is zero coincides with the analytically predicted epoch of reaching the

virial radius [11, 54]:

η =
ρeff

(1 + F )ρm
=

2ΩΛ

(1 + F )Ωma−3(1 + δ)
(3.57)

η =
2s − 1

2s3 − 1
,

where s = rv/rTA is the ratio of the virial radius and the maximal radius at turn-around.

All relevant quantities are defined at turn-around.

In our simulations we observe that the difference between the analytical result

and our evaluation is of order 10−5 for 20 000 time steps. We do not see any reason
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for the same approach to not be valid in the case of f(R) modifications. Thus we define

the epoch of achieving virial radius in f(R) by the moment when this sum becomes zero

during simulations. As per Fig. 3.2 observe that there are 2 moments when this condition

is satisfied. We are obviously interested in the second one, which occurs after passing the

turnaround point.
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Figure 3.2: (Color online) Evolution of the virial term. Observe that there are two points where it

crosses the zero. We are interested in the one that happens after turnaround.

3.7 First light: the edge effect

When people study spherical collapse in ordinary GR they concentrate on initial

top-hat density distributions. This is very convenient as a top-hat remains a top-hat during

collapse. (In other words a top-hat is a Green’s function for the spherical collapse evolution

operator in GR). This allows for a straight forwards definition of fundamental quantities
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of spherical collapse - in particular δc and ∆vir. This is not the case for modified gravity

theories. Unfortunately we have no idea what profile would be the analogous Green’s

function. We can still compare, though, the evolution of top-hat distribution and try to

compute δc and ∆vir in a similar way. The issue we encountered was that of an edge effect:

at the outer edge of the initial distribution the density becomes very large. This effect is

easy to explain. As the universe expands the size of the background fR field increases and

we approach the high limit of the f(R) theory - where it behaves as GR with enhanced

Newton’s constant. This means that the outer edge of the collapses faster than it would

do in regular GR. The inside of the collapsing object, though, is under the effect of the

chameleon and the solution for the fR field becomes much smaller and thus the collapse

slows down to approach the one in GR with regular strength of the Newton’s constant.

This makes the edge to become more and more dense as compared to the inside of the

object. And this creates a positive feedback. The higher the edge density the stronger its

screening effect and the inside slows down even further thus enhancing the accumulation

of matter at the edge.

There is an even more interesting consequence as Justin Khoury has suggested.

The mathematics of the chameleon is such that this edge effect can separate the inside

and the edge with a void. We actually observe that the solution for fR starts exhibiting

that kind of behavior in the very late stages of the collapse but it’s very close to the epoch

of reaching virial radius so the effect is unobservable in the density profiles.

The edge effect unfortunately has some very adverse effects. Our simulation

code became irreparably (at least for us) unstable in the very late stages of the collapse of

pure top-hat distribution. What we could do though was to smooth out the edge which
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Figure 3.3: (Color online) a comparison of the density profiles at the epoch of achieving virial radius

between f(R) and ΛCDM . In each case the starting profile and mass are the same. The virial radius is

reached at different epochs. The ΛCDM profile is in red.
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reduces the strength of the positive feedback and allows for stable evolution of the collapse.

The complicated part of that approach is that, as Birkhoff’s theorem is not satisfied in

f(R) models of gravity, the end result significantly depends on the environment, and in

particular, what smoothing is used.

In our case we appropriate a Gaussian, which has the benefit of being smooth at

the seem. The dispersion of the Gaussian allows for controlling how close we are to a pure

top-hat density distribution. Even with smoothing, though, the code becomes unstable

beyond reaching the epoch of the virial radius, preventing us from achieving collapse to

singularity - the epoch of collapse. In Fir. 3.3 we show a comparison of the density profiles

at virialization between f(R) and ΛCDM . In each case the starting profile and mass are

the same. They achieve virialization at different epochs.

3.8 Spherical collapse of top-hat initial distributions. Mea-

suring δc.

The main goal of this study is to compare the non-linear evolution of spherical

collapse with what previous research in the field predicted.

3.8.1 The expectations: what was previously known.

The precursor paper to our study [11] dealt with spherical collapse in an analyt-

ical way (App.A) by solving the 2 limiting cases for the strength of the effective Newton’s

constant in the f(R) model of gravity. The prediction in the end is that the fundamental

quantities should lie inside of the region bound by the values of the 2 limiting cases. In

particular they are identified by the value of the parameter F which governs the strength
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of the effective Newton’s constant. Regular GR corresponds to F = 0 and the strong field

limit to F = 1/3. For ΩM,0 = 0.24 these imply δc = 1.673 for F = 0, and δc = 1.692 for

F = 1/3.

3.8.2 Computing δc

Generally computing δc is straight forward. For a given starting epoch ain we

need to find an initial overdensity δin,GR, which would collapse to a singularity at present

time. Then we just need to evolve that initial overdensity to present time via the linear

growth factor. In the case of ΛCDM this can be performed analytically ([55] App.A). In

the case of f(R) modified gravity there are 2 complications.

1. The linear growth factor is scale dependent.

2. Our simulation allows us to only reach the epoch of achieving the virial radius and

not the epoch of collapse.

Resolving the first issue is not a complicated task. The solution is to go to Fourier

space and convolve the linear growth factor at the epoch of collapse (normalized with the

growth factor at the initial epoch) with the Fourier image of a top-hat function. After

that, we need to Fourier transform back to physical space, which is greatly simplified, as

we are interested only at the value at r = 0, and sums up to the evaluation of an integral.

In the next subsection we deal with the problem of estimating the collapse epoch.
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Figure 3.4: (Color online) Smoothed density profiles with Gaussians with different dispersion.

3.8.3 Environmental dependence. How to approximate a top-hat initial

distribution.

The numerical issues we have with the development of the edge-effect - the strong

spike - are a significant obstacle in obtaining quantified results. But the approach we

employ to at least partially resolve the conundrum allows us to also study the environment

effects due to the invalidity of Birkhoff’s theorem. Recall that if Birkhoff’s theorem is valid

in a gravitational theory then the behavior of a shell depends only on the mass inside the

ball enclosed by that shell. In our case that is not correct and shells are influenced by

what is outside - the environment. We utilize a sequence of initial profiles, each of which

has a pure top-hat part and then is smoothed with a Gaussian with varying dispersions

Fig.3.4 that bring us closer and closer to a pure top-hat distribution. This way we can
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study the trend of changes in the top-hat part of the initial profile when approaching a

pure top-hat overdensity.

3.8.4 Finding the epoch of collapse - going beyond the epoch of achiev-

ing the virial radius.

As mentioned before beyond the virial epoch our code experiences numerical

instabilities due to the edge effect spike in the overdensity. So we need to find a way to

estimate the collapse epoch. The first observation we make is that the time/scale factor

between the epoch of reaching the virial radius and the epoch of collapse to singularity

is a small fraction of the total time/scale factor spent in the evolution of the spherical

object. Thus we will assume that if an object in f(R) gravity achieves its virial radius at

the same epoch as a corresponding object in ΛCDM does, then these two objects should

reach collapse to a singularity at approximately the same epoch as well. Then we can

make an estimate of how wrong we are in this prediction. The task of finding δc then is

moved to finding the initial overdensity in f(R), which would reach its virial radius at the

same epoch at which a corresponding object in GR does. In addition we require that the

GR object collapses to a singularity at the present epoch.

What is left is estimating the error of this calculation. One way to approach the

the problem is to look at the radial velocity field of the evolving shells in our simulation

and compare them between the corresponding objects in f(R) and ΛCDM . On Pic. 3.5

we show the velocity ratio computed shell by shell and normalized by the physical position

of the shells (the corresponding f(R) and ΛCDM have different mass and different size at

the epoch of achieving the virial radius). The different colors correspond to the different
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smoothing factors we have introduced as way to approach a pure top-hat distribution. In

our simulation we have chosen shell number 100 to represent the edge of the top-hat part

of the initial overdensity. As we can see the normalized velocity ratio remains within 5%

of unity, which suggests that a good estimate of our error would be of the same order.
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Figure 3.5: (Color online) Shell by shell velocity ratio of f(R) and ΛCDM collapsing objects, normalized

by the physical position of the corresponding shells. Dependence on smoothing factor is shown by different

colors (red for σ = 3, blue for σ = 2, and green for σ = 1.3). Edge of the top-hat part of the initial

distribution is represented by shell number 100.

Another way to approach the issue is to vary the initial overdensity and look

at how much it changes the epoch of achieving the virial radius and compare with the

expected epoch of collapse. In particular, values for the initial overdensity, that have

epoch of virial radius close or beyond the expected epoch of collapse, set a bound on our

error. We found that this also puts a hard error bar of 5%, which is what we finally used

in our calculation.
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3.8.5 Results and discussion.

The main result of the work is presented in Fig.3.6. The calculations are done

for Ωm = 0.24 to be able to directly compare results with [11]. We needed to check the

following conjectures:

1. In the weak field regime our calculations should approach the result for regular

strength ΛCDM (F = 0).

2. In the strong field regime the result must approach the values predicted in [11] for

F = 1/3.
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Figure 3.6: (Color online) δc as a function of field strength fR0, ΩM,0 = 0.24.

These conjectures have been confirmed successfully. The new result is the behavior in the

mid-range of field strength, and particularly in the physically interesting region around
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fR0 = −10−6 – currently the upper bound on that parameter that has not been rejected by

observations or theoretical considerations. We observe strong environmental dependence

with a significant trend: when reducing the dispersion of the smoothing Gaussian (and

thus approaching pure top-hat distribution) we deviate further away from the analytical

prediction in [11]. This result shows that the non-linear chameleon properties of the

f(R) models strongly affect its behavior and linear predictions should be viewed as simple

guidelines.

It is important to point out that the spiked edge-effect observed in the behavior

of top-hat initial density distributions is not an automatic rejection of the model. In

reality we know that large-scale structure did not evolve from top-hat distributions. In

our simulations we also look at more realistic initial profiles – for example pure Gaussian

distribution – and they do not exhibit extraordinary behavior. We focused on top-hat for

this work as we wanted to obtain some quantified initial results from the simulation.

3.9 Future work.

Obtaining estimates for δc is the first step of the possible applications of our

simulation. We intend to continue our work with the computation of the virial overdensity

∆vir and then focus on abundance and clustering properties of halos: mass function

and halo bias. In addition, we would also extend our results across a wider range of

cosmological parameters (Ωm for example).

Acknowledgments: We are grateful to Wayne Hu, Mike Jarvis, Justin Khoury,

Matt Martino, and Ravi Sheth. BJ is supported in part by NSF grant AST-0607667.
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Chapter 4

Weak lensing Responsivity.

4.1 Introduction

One of the most powerful tools for studying the distribution of matter in the

Universe is the gravitational lensing of light. While the so-called strong lensing, which

produces phenomena like multiple images, arcs, and Einstein rings, contributes a lot of

information about rich galaxy clusters, cosmologists are interested in the properties of

more typical mass structures. To characterize these, weak gravitational lensing can be

used, where the distortions of shapes of a large number of background galaxies is analyzed.

These signals are very subtle: the typical shears and magnifications are of order a few

percent. In addition the original undistorted images are unobservable and thus the useful

signal is just a perturbation over an intrinsic variation of the shapes of the galaxies of

30% or more. A study of some optimal techniques for the measurement of the weak

gravitational shear from cosmological images was done in [14]. A major topic in that

study is how from a set of galaxy elipticities ẽi with known measurement error to obtain
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a best estimate of the lensing distortion δ. This task depends on several factors: how the

original ensemble of elipticities responds to the applied distortion, the shape noise coming

from the variety of shapes in the unlensed population, and the measurement error for each

galaxy. The general approach is to a create statistics δ̃ from the ẽi to estimate the lensing

distortion δ that has been applied. We know that for weak lensing (|δ| << 1) elipticities

behave like (3.29 in [14]):

e(δ) ≈ e + δ − e(δ · e) (4.1)

This means we need to know the “Responsivity” of the statistics defined as:

R̃ =
∂δ̃

∂δ
(4.2)

In what follows, we outline the derivation in [14]. See their section 5 for more details.

Generally a galaxy image with true elipticity e will be measured at ẽ with probability

distribution p(ẽ|e). So the measured distribution of elipticities under lensing distortion δ

is:

P̃δ(ẽ) =

∫

d2ePδ(ẽ) p(ẽ|e) (4.3)

We assume distortion of the form:

δ̃ =

∑

w(ẽi) ẽi
∑

w(ẽi)
=

∫

d2ẽ w(ẽ) P̃ (ẽ) ẽ
∫

d2ẽ w(ẽ) P̃ (ẽ)
(4.4)

Additionally we assume isotropic population thus terms linear in e+ or e×, where e ≡

(e+, e×) ≡ (e cos θ, e sin θ) and similarly for δ, can be dropped and also:

R =
∂δ̃+

∂δ+
=

∂δ̃×
∂δ×

, (4.5)

and all the off-diagonal elements are zero. Then we get:

〈R〉 =

∫

d2ẽ
[

w(ẽ)ẽ+

∫

d2e p(ẽ|e)
(

∂Pδ (ẽ)
∂δ+

)]

∫

d2ẽ w(ẽ) P̃ (ẽ)
(4.6)
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Here w is a weight function for combining elipticities into distribution. Using (5.6) in [14]

which gives us Pδ(ẽ) = P (e)[1 + δ.e(3 − 1−e2

e
d log P

de )] we obtain:

〈R〉 =

∫

d2ẽ
[

w(ẽ)ẽ+

∫

d2e p(ẽ|e)P (e) e+ (3 − 1−e2

e
d log P

de )
]

∫

d2ẽ w(ẽ) P̃ (ẽ)
(4.7)

Finally we need an expression for R as a sum over the observed objects and applied

weights. For this we take the derivative of (4.4) and assume that the measurement error

does not have first order dependence on δ (which is a good approximation).

R =

∑

(w(1 − 〈e2
+〉ẽ +

ẽ2
+

ẽ
dw
dẽ (1 − 〈e2

+〉ẽ − 〈e+e×〉ẽ ẽ×
ẽ+

))
∑

w
, (4.8)

where

〈e2
+〉ẽ =

∫

d2e p(e|ẽ) e2
+ =

∫

d2e p(ẽ|e)P (e)e2
+

∫

d2e p(ẽ|e)P (e)
, (4.9)

and analogously for 〈e+e×〉ẽ. In [14] a fairly simple approximation for P (e) was made.

Our goal is to improve upon this by allowing for the calculation of the integral for more

realistic P (e).

4.2 Calculating the integral

We assume a Gaussian for p(ẽ|e) = 1√
2σ2

µ

e
−

(ẽ−e)2

2σ2
µ . Then the relevant quantity

we are interested in is: 〈e2
+〉ẽ = A

B , where we obtain the following integrals by switching

to polar coordinates in (4.9).

A =
1

√

2σ2
µ

∫ 2π

0
dΦ

∫ 1

0
de e3 cos2(Φ)P (e)∗ (4.10)

∗ e
−

ẽ2

2σ2
µ e

»

−
e2

2σ2
µ

+ 2e

2σ2
µ

(ẽ1 cos(Φ)+ẽ2 sin(Φ))

–
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B =
1

√

2σ2
µ

∫ 2π

0
dΦ

∫ 1

0
de e e

−
ẽ2

2σ2
µ e

»

−
e2

2σ2
µ

+ 2e

2σ2
µ

(ẽ1 cos(Φ)+ẽ2 sin(Φ))

–

P (e) (4.11)

So let’s deal with the angular parts of the integrals first. We have for B:

∫ 2π

0
dΦ e

2eẽ

2σ2
µ

cos(Φ−θ)
= 2π e

−
e2

2σ2
µ I0(

ẽe

σ2
µ

), (4.12)

where we have expressed ẽ in polar coordinates too. This allows us to obtain:

B =
e
−

ẽ2

2σ2
µ

√

2σ2
µ

∫ 1

0
de eP (e) 2π e

−
e2

2σ2
µ I0(

ẽe

σ2
µ

), (4.13)

where In are the modified Bessel functions. In this form this integral can be easily com-

puted numerically. The analogous integral for A is:

∫ 2π

0
dΦ cos2(Φ)e

2e

2σ2
µ

(ẽ1 cos(Φ)+ẽ2 sin(Φ))
=

∫ 2π

0
dΦ cos2(Φ) e

2eẽ

2σ2
µ

cos(Φ−θ)
. (4.14)

Denoting k = ẽe
σ2

µ
gives us:

∫ 2π

0
dΦ cos2(Φ) ek cos(Φ−θ)

Now change coordinates to:

x = Φ − θ ⇒ Φ = x + θ (4.15)

cos2(x + θ) =
1

2
[1 + cos(2x + 2θ)] =

1

2
[1 + cos(2x) cos(2θ) − sin(2x) sin(2θ)] (4.16)

Thus we get the following expression:

∫ 2π−θ

−θ
dx

1

2
[1 + cos(2x) cos(2θ) − sin(2x) sin(2θ)] ek cos(x) (4.17)

One piece of the integral:

∫ 2π−θ

−θ
dx sin(2x) sin(2θ) ek cos(x) = 0
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is zero by symmetry argument. So after changing back the domain of integration (as it is

a full period) we are left with:

∫ 2π

0
dx

1

2
[1 + cos(2x) cos(2θ)] ek cos(x) = π

[

I0(
ẽe

σ2
µ

) + cos(2θ)I2(
ẽe

σ2
µ

)

]

(4.18)

Or we get:

A =
e
−

ẽ2

2σ2
µ

√

2σ2
µ

∫ 1

0
de e3 P (e)π e

−
e2

2σ2
µ

[

I0(
ẽe

σ2
µ

) + cos(2θ)I2(
ẽe

σ2
µ

)

]

(4.19)

We have another term in the expression for the Responsivity to calculate: 〈e+e×〉ẽ

We can analogously express it as the ratio of two integrals C
B where B is the same as before

and for C we have:

C =
1

√

2σ2
µ

∫ 2π

0
dΦ

∫ 1

0
de e3 cos(Φ) sin(Φ)P (e)∗ (4.20)

∗ e
−

ẽ2

2σ2
µ e

»

−
e2

2σ2
µ

+ 2e

2σ2
µ

(ẽ1 cos(Φ)+ẽ2 sin(Φ))

–

Once again we will calculate the angular part of the integral with the same change of

coordinates (4.15):

1

2

∫ 2π

0
dΦ sin(2Φ) ek cos(Φ−θ) =

1

2

∫ 2π−θ

−θ
dx [sin(2x) cos(2θ) + cos(2x) sin(2θ)] ek cos(x) (4.21)

= π sin(2θ)I2(k).

Here again the first term is zero by symmetry argument and the second one just integrates

to a modified Bessel function. So the final result is:

C =
e
−

ẽ2

2σ2
µ

√

2σ2
µ

∫ 1

0
de e3 P (e)π e

−
e2

2σ2
µ sin(2θ)I2(

ẽe

σ2
µ

) (4.22)
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We can now express these expressions in a better form (5.32 in [14]).

〈e2
+〉ẽ = k0(ẽ) + k1(ẽ)ẽ

2
+ (4.23)

〈e+e×〉ẽ = k1(ẽ)ẽ+ẽ×, (4.24)

where k0 and k1 depend only on the magnitude and not the direction of ẽ. After substi-

tuting the expressions we calculated and a slight manipulation we obtain:

k0(ẽ) =
1

2

∫ 1
0 de e3 P (e)e

−
e2

2σ2
µ

[

I0(
ẽe
σ2

µ
) − I2(

ẽe
σ2

µ
)
]

∫ 1
0 de eP (e)e

−
e2

2σ2
µ I0(

ẽe
σ2

µ
)

(4.25)

=
σ2

µ

ẽ

∫ 1
0 de e2 P (e)e

−
e2

2σ2
µ I1(

ẽe
σ2

µ
)

∫ 1
0 de eP (e)e

−
e2

2σ2
µ I0(

ẽe
σ2

µ
)

(4.26)

k1(ẽ)ẽ
2 =

∫ 1
0 de e3 P (e)e

−
e2

2σ2
µ I2(

ẽe
σ2

µ
)

∫ 1
0 de eP (e)e

−
e2

2σ2
µ I0(

ẽe
σ2

µ
)

(4.27)

We have used the recurrence relationship for the modified Bessel functions to produce the

final result for k0(ẽ).

With these coefficients our expression for the Responsivity (4.8) becomes:

R =

∑

[

w
(

1 − k0 − k1ẽ2

2

)

+ ẽ
2

dw
dẽ

(

1 − k0 − k1ẽ
2
)

]

∑

w
(4.28)

4.3 Numerical computation

4.3.1 The probability function

As mentioned above the simplification of the integrals from 2D to 1D allows for

a much faster numerical computation and thus we can examine the results with several
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Figure 4.1: (Color online) The distribution of intrinsic elipticities for modestly bright galaxies.
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possible assumptions for 2πeP (e) and compare them with the analytically treatable case

of Gaussian distribution. One such assumption is to simulate the distribution presented

in Fig. 4.1 (Fig.4 taken from [14], heavy histogram) with the following expression:

P (e) =
1

2π
[C1H(ǫ − e) + (

C2

e
+ C3)H(e − ǫ)H(µ − e) + C4(

1 − e

e
)H(e − µ)], (4.29)

where H(x) is the Heaviside function and C1, ..., C4, ǫ, µ parametrise the distribution. The

particular choice of values we took is C1 = 12.0, C2 = 1.24, C3 = −0.4, C4 = 6.0, ǫ =

0.1, µ = 0.85, which provide a good approximation to the observed P (e) of the real galaxies

shown in Fig. 4.1.

4.3.2 Description of the simulation

We start with creating a set of galaxies with random distribution in elipticities.

This is achieved by the following steps:

a) We pick out the magnitude of the original “true” elipticity from the suggested

probability function P (e). (For the case of old k’s this function is approximated by a

Gaussian with dispersion equal to the shape-noise error. This allowed for analytical so-

lution to the Responsivity integrals). In our case we make a “better” approximation to

the observed probability function (the function described above). After the magnitude is

picked out from that distribution the direction of the elipticity is randomly chosen (as we

assume isotropy).

b) The weak lensing shear is chosen. In particular we pick a specific magnitude

of the shear with some random direction. The question is can we predict the applied weak

lensing.
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c) Finally we apply measurement error. We allow a range of dispersions for

the Gaussian distributed error. For each galaxy we randomly pick dispersion from that

range. Then we pick the specific magnitude and direction of the error from a Gaussian

distribution with that dispersion.

After all previous steps we arrive at the the “observed” galaxy. We create a large

set of those (usually 106 but simulations with 107 and 108 galaxies are also done). The

next step is to perform the integrals needed to calculate the Responsivity. For each galaxy

we obtain the k0 and k1 quantities, both with the numerical 1D integrals (new k’s) and

the old analytical formulae (old k’s). Then Responsivity is calculated. For that we have

explored 3 different weighting schemes.

a) Uniform scheme ( w = 1 for all galaxies).

b) Elipticity dependent scheme (favors low elipticities). Observed and known to

have bias for large (> 0.1) shears. In our simulations we use relatively large shears (up to

0.3) and so we used the final weighting scheme.

c) Non-elipticity dependent scheme.

w =
1

σ2
SN + σ2

µ

(4.30)

This scheme favors low measurement error galaxies. It simplifies the calculation

of the Responsivity (as dw
dẽ = 0) as well as makes it easier for analytical dissection of the

results (via δ-function distribution for P (e) which allows immediate analytical solution for

all integrals and thus for a way to make a proof check of the code.) After the Responsivity

is calculated we find our predicted weak lensing shear as the mean elipticity divided by

the Responsivity. From that we can obtain the magnitude of the predicted weak lensing
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shear.

4.3.3 Comparison of old k’s and new k’s results

We need to establish the method of comparison. The way we chose to do it is

the following: We perform the simulations and calculations for a range of magnitudes of

the applied weak lensing shear (with random directions). At the end this creates a set of

true vs predicted shears with their uncertainties. Then we attempt a linear fit for this set.

If the model is working we should get a good fit with slope of 1 (and intercept of 0). How

close our calculations are to having a slope of 1 (within uncertainty) tells us how good the

model is.

The most important result we obtained with the current code is the following:

The simulation contains 107 galaxies per point. The range of measurement uncertainties

is 0.001 to 0.5. The elipticity probability function is (4.29). The linear fit has 11 data

points for magnitude of the applied shear from 0 to 0.3, spread equidistantly with stepsize

of 0.03.

Slope

old k’s 0.990007 +/- 0.00276351

new k’s 0.989845 +/- 0.00276273

This result was surprising to us. Our expectations were that the new method of

calculating the relevant quantities will produce better results than the analytical (which

assumes Gaussian distribution). But we actually see not significantly different result. The

trend is being maintained for a variety of values of the parameters (number of galaxies in

the simulation etc.) which implies that the result is universal. The problem could lie in
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several things.

a) As the slopes are so similar, but not quite 1, it is possible that there is another

aspect of the calculation, that we did not improve.

b) There is an error in the theoretical derivation of the integrals and/or we made

some incorrect assumption.

c) There is an error in the code.

The following results show that we may need to be concerned with another issue.

By selecting a very small range for the dispersion of the Gaussian of the measurement error

we can see if the current estimator (which takes the arithmetic mean of all elipticities)

is correct. The issue at hand is that we expect the measurement error to be circularly

distributed and thus to even out when the mean is taken. But in elipticity space close

to the boundary (magnitudes close to 1) that is certainly not the case. The simulation

contains 106 galaxies per point. The elipticity probability function is (4.29). Table 4.1

shows the resulting slopes depending on the chosen measurement error.

We observe that for large measurement uncertainties the methods fail to predict

the weak lensing shear. Thus we had an idea that it might be plausible to use a new

estimator - the arithmetic mean of the elipticities in η-space (e = tanh(η)) This requires

reevaluation of all integrals needed for the calculation of the relevant quantities in η-space,

including the analytical results for P (e) being Gaussian.

4.4 Discussion and conclusion

In this chapter we worked towards a more accurate calculation of a statistical

measurement of the applied weak lensing distortion on a set of observed galaxies than

71



Table 4.1: Table of slopes as a function of measurement error.

Range of σ. Slope

0.001 - 0.0011 1.00329 ± 0.00856345

0.005 - 0.0051 1.00342 ± 0.008485

0.010 - 0.0101 1.00357 ± 0.00837918

0.050 - 0.0501 1.00411 ± 0.00775047

0.100 - 0.1001 1.00245 ± 0.00735592

0.500 - 0.5001 0.82772 ± 0.0138621

1.000 - 1.0001 0.53667 ± 0.0195379

2.000 - 2.0001 0.24152 ± 0.0230548

previously used. Under particular assumptions for the statistical distributions involved,

we succeeded in obtaining a simplification of the integral involved, which allowed for

significantly faster numerical evaluation. Subsequently we utilized a comparison scheme

allowing us to relate the result to analytical formulae used in the literature. The outcome,

however, was surprising as it did not show any improvement. We confirmed that the

approximation of P (e) being Gaussian is as good as doing the correct integral using the

actual P (e) function. Instead we found that the approximation of p(e|ẽ) may be more

problematic. Larger errors led to incorrect Responsivity calculations. While we have an

idea that might solve the problem, we did not implement it to test it. Further work would

be needed to resolve the situation.
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Chapter 5

Conclusion

In chapter 1 we gave an outline of one of the dominant problems in modern

cosmology – the nature of Dark Energy. We discussed the issues surrounding an ad hoc

inclusion of a cosmological constant in the Standard Model and also the difficulties of

deriving it from a fundamental theory (like String Theory for example). We pointed out

a possible approach for resolving the conundrum – modifying gravity. But as GR is an

extremely well tested theory on solar system and laboratory scales (10−3 − 1012m) any

modifications to it must reproduce GR’s behavior on small scales. This was very difficult

to obtain until the chameleon type models were discovered. These modified theories can

change their behavior depending on the environment. Thus, while explaining the current

observations on large scales, they can also “evade” observations in dense environments like

the solar system.

Testing modifications to gravity is an important and demanding task. We out-

lined specific characteristics of the large scale structure of the Universe, which, when

observed, should provide data allowing us to distinguish between different modifications

73



or rule some of them out. In particular we focused our attention to the three-point corre-

lation function and spherical collapse. We chose a well developed model in the literature,

the f(R) type of modification to gravity.

In chapter 2 we employed perturbation theory in the quasi-linear regime to cal-

culate the deviations of the three point correlation function – the Bispectrum – that would

be caused by the f(R) model. We showed that the deviation should have distinct features,

but in the physically relevant part of the parameter space of the model and at scales where

perturbation theory is applicable, the predicted effect is at the percent level and as such is

undetectable by current observations. It does constitute a powerful consistency check of

power spectrum measurements. Future surveys, designed to have percent level precision,

will be important for testing our predictions.

In chapter 3 we studied the development of a spherical collapse simulation for our

f(R) modified gravity model. Spherical collapse has been an important tool in the study

of the formation of the large scale structure. A simulation was needed as it was impossible

to obtain general analytical solutions for modified gravity, unlike in GR. We described

details of our simulation, the technical difficulties and how we chose to resolve them, and

finally we presented our first results, which provided a new insight to the issues of non-

linearity in gravity. We expect to continue the work with refining our computation and

the calculation of additional relevant parameters: virial overdensity, halo mass function

etc.

In chapter 4 we focused on the possibility to improve a calculation used in the

analysis of weak gravitational lensing. We outlined the traditional way of performing

the computation, which uses an approximation of the intrinsic distribution of galaxies
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elipticities P (e) by a Gaussian. Then we derived a way of computing the relevant quantity

– the Responsivity – for more realistic distributions. The comparison of the two ways of

calculating the Responsivity showed that they do not exhibit significant difference, leading

to the idea that the approximation of p(e|ẽ) may be more problematic. Future work should

focus on reevaluation of that part of the calculation.
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