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Abstract 

In estimating the 3-D rigid body motion and structure from time-varying images, most of 
previous approaches which exploit a large number of frames assume that the rotation, and the 
translation in some case, are constant. For a long sequence of images, this assumption in gen- 
eral is not valid. In this paper, we propose a new state estimation formulation for the general 
motion in which the 3-D translation and rotation are modeled as the polynomials of arbitrary 
order. Extended Kalman filter is used to find the estimates recursively from noisy images. A 
number of simulations including the Monte Carlo analysis are conducted to illustrate the per- 
formance of the proposed formulation. 
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1. INTRODUCTION 

Token-matching approach and optical flow approach are two kinds of approaches to the recovery of 3- 

D motion and structure from images by using, respectively, the measurement of projective position 

[Agga81, Lin86, Seth87, Fang84, Rana801 and the measurement of optical flow [Ullrn81, Hom81, 

Wohn83, Hild83, Nage83, Schu85, Heeg861. Our work described in this paper belongs to the token- 

matching approach. For the token matching approach, point features in the scene have been studied 

extensively [Ullrn79, Roac80, Nage81, Long81, Huan81, Tsai84, Faug87, Nage861. Other features like 

line segments and conic arc in the scene have also been used [Liu86, Miti86, Faug87, Tsai831. For the 

optical flow approach, 3-D motion is determined from the measurement of optical flows, and its tem- 

poral and spatial derivatives [Long80, Waxm85, Long84, Subb85, Kana85, Waxm86, Wu861. 

Aggarwal and Nandhakumar [Agga88] gave an excellent and up to date review of the whole field of 

estimating the 3-D structure and motion from sequences of monocular and stereoscopic images. 

Most of existing structure-from-motion algorithms which utilize a small number (two or three) of 

frames perform poorly under the presence of noise in the measurement. Recently, a number of 

researchers [Weng87, Broi86a,b, Bo1185, Iu89a, Broi89, Kuma891 have proposed to use a large number 

of frames in order to improve the estimation performance. The very first step towards the "multi- 

frame" analysis is to model the kinematic variables of moving object during an extended period of 

time. As far as the translational motion is concerned, the trajectory w.r.t. time describes the motion 

completely. Since an object can move almost arbitrarily in front of a camera, we do not know this tra- 

jectory explicitly. However, according to Weierstrass approximation theorem, we can approximate any 

continuous trajectory over a closed and bounded time interval by using polynomials. In practice, we 

can only use low order polynomials because of the numerical stability and the real-time constraints. If 

the object moves in the 3-D space smoothly, such low order polynomials may be good enough in 

describing its motion locally. Note that the projectile motion of a throwing ball can be represented by 

using second order polynomials. In the following we contrast our approach to the two previous work 

which is considered as the major contribution to our understanding of motion estimation from a long 

sequence of images. 

Weng, Huang and Ahuja [Weng87] proposed the locally constant angular momentum model in 

estimating 3-D motion from the measurements of projective positions. Their model assumed that angu- 

lar momentum was constant over a short time interval, the moving body possessed an axis of syrn- 

metry and the motion of the rotation center was approximated as a polynomial. The first two assump- 

tions are required in their derivation because they wanted the Euler's equations integrable. In our 
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approach, we do not make these two assumptions because we directly derive the relation between the 

unknown motion parameters and the projective positions, rather than solving the equations involving 

the external torque and the angular momentum. In finding the 3-D motion, they first estimated the rota- 

tion matrices and the translation between the frames by using "two-frame" motion analysis, and then 

determined the motion of the rotation center, i.e., their approach considers each frame separately. In 

our approach, we utilize all the available information in the temporal and spatial domains to estimate 

the translation velocity of the rotation center, the rotation of the rigid body and the relative depth 

simultaneously. Furthermore, in their paper, only simulations on binocular image sequences were 

reported. 

Broida and Chellappa [Broi86a,b] estimated motion parameters sequentially from the projective 

position of multiple points in a sequence of noisy images. They used a dynamic model to describe the 

temporal behavior of parameters and employed the iterative extended Kalrnan filter to estimate them. 

In [Broi86a], they estimated the motion of a two-dimensional object from its one-dimensional projec- 

tions. They assumed that the image coordinates of feature points were available, that the motion was 

unforced, that the absolute distance to the center of rotation was known and that the noise level in the 

Kalrnan filter formulation was known. In [Broi86b], they extended their work to 3-D rigid body 

motion. Quaternions were used to describe the rotation. Motion was modeled by a truncated Taylor 

series but only the linear term was used in their derivation. Simulations on very special motion only, 

such as pure translation or rotation about a fixed and known axis, were reported in their paper. In 

[Broi86c], they used batch approach to find the estimate. Their result on uniqueness of rigid body 

motion was limited to the pure translational motion [Broi89]. For the non-constant rotation, numerical 

integration was proposed [Broi86b,c, Broi891 but neither specific algorithms nor experiments were 

given. 

Iu and Wohn [Iu89a] argued that the estimation of motion should exploit the temporal informa- 

tion from images first rather than seeking for the motion constraint from the spatial domain. They 

showed that the 3-D velocity of a single point up to a scalar factor could be recovered from images 

and proved the uniqueness of solution for the case that the 3-D velocity is modeled as an arbitrary 

order of polynomials. Regression relation between unknown motion parameters and measurements 

from noisy images was derived and the batch approach was used to find the optimal estimate under the 

criterion of Maximum Likelihood. They also extended their work to 3-D rigid body motion with con- 

stant angular velocity. In [Iu89b], extended Kalman filter was used to estimate the motion sequen- 

tially. 
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We have observed that most of the previous approaches modeled the rotation, and the translation 

for some cases, as a constant. One may attempt to extend the analysis for the constant motion to the 

one for the general motion by expanding the translational and the rotational parameters in polynomials 

and plugging them into the original formulation of the constant motion. However, for the rotational 

motion, although we can still use a higher order polynomials to describe the rotation, the state equation 

relating the rotation and the 3-D trajectory of the feature points respect to the rotational center is time 

varying. Since there is no explicit closed form solution for this equation, the previous approaches were 

not able to handle the non-constant rotational motion effectively. In this paper, we propose a new state 

estimation formulation in which the explicit solution of the above state equation is not required. Conse- 

quently, the analysis can include the object motion with arbitrary orders of translation and rotation. 

The rest of the paper is organized as follows. Section 2 describes the model of general rigid body 

motion. Section 3 gives the state estimation formulation. The motion with constant acceleration is dis- 

cussed first. Section 4 gives the result of simulations. Some concern on generating the test data is also 

pointed out. Section 5 is the conclusion of this paper with discussion. 
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2. MODEL OF RIGID BODY MOTION 

Suppose that there are n, feature points on the visible surface of the rigid object and that we have 

measured the projected position of these points as the object moves in front of a camera. It is well 

known that any rigid body motion can be represented by the translation of the rotational center and the 

rotation of the entire object with respect to this rotational center. We also know that we can only 

recover the translation up to a scale factor because of the perspective projection. Thus, our objective is 

to find this translation of the rotational center up to the scalar factor and the rotation from the observed 

projected positions. 

Let $(t) = [Xi(t) Yi(t) zi(t)lT, ~ ( t )  = [xi(t) yi(t)lT and x( t )  = [Vxi(t) VYi(t) vZi(t)lT be the 3-D position, 

the projected position and the instantaneous velocity of i-th feature point at time t, respectively. The 

symbol 'T' denotes the transpose of a vector. Then we have 

Note that we have used the pin-hole camera model and have scaled the Z-axis such that the focal 

length is normalized to one [Long80]. Let ;Z(t) = [Q,(t) QY(t) QZ(t)lT be the angular velocity of the 

object respect to the rotational center Po(t). - From the assumption of rigidity, we have 

where the symbol 'x' denotes the cross product of vectors. We can express (2.3) alternatively in the 

following form: 

If the object moves smoothly in the 3-D space, we may model the translation and the rotation as the 

following polynomials with orders d, and d, respectively. 
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where @'](to) = [ xrnl(to> Y["I(~) Z["I(~) lT and @"](to) = [ i2g1(to) !2F1(t,,) i2P1(to) lT are the n-th deriva- 

tives of Eo(t) and g(t) evaluated at time t = to. Note that gho1(k) = co(to) and @[O1(t,,) = Q(t,,). The physi- 

cal interpretation of Ehll(b) and gh21(b) are the velocity and acceleration of translation at time to, respec- 

tively. The g[O1(to) and at1](b) - are the angular velocity and acceleration of rotation at time t,,, respec- 

tively. Then our goal is to estimate the translational coefficients PR](~~J, - n = 0, 1, . - , d, in (2.6) scaled 

by the factor representing the absolute depth and rotational coefficients @"](to), n = 0, 1, - . , d, in 

(2.7), from the measurement of ~ ( t ~ ) ,  i = 0, - - . , n, - 1, j = 0, 1, . . - . 
If the rotation is constant, i.e., - Q(t) = Q(t,-,), - then A(t) is a constant matrix and the state equation 

(2.4) has the close-form solution 

where e A [ t - b l  is the state transition matrix and eAt is equal to the inverse Laplace transform of 

(sI - A)-'. Then the rigid body motion can be determined by solving the regression problem [Iu89a] or 

the state estimation problem [Broi86b]. Unfortunately, if the rotation is time varying, there is in general 

no closed-form expression for [ E(t) - Po(t) - ] in terms of - Q(t) and [ E(t,,) - gflt,,) ] because of the time- 

varying nature of A(t) [Iu89aj. This is why one can not extend the derivation of the previous 

approaches [Iu89a, Broi86bl to the general motion in a straightforward manner. In this paper, we 

develop a state estimation formulation in which the explicit solution of (2.4) is not required, given an 

arbitrary order of rigid body motion. 

3. STATE ESTIMATION FORMULATION AND RECURSIVE SOLUTION 

The problem of recovering general rigid body motion will be formulated as the state estimation prob- 

lem. Let ~ ( t )  be the state vector which is composed of the unknown motion parameters. Let - m(tj) be the 

measurement vector which is formed by the available measurements from the image at time tj; 

where - n(tj) is a discrete-time random process describing the noise in the measurements. The com- 

ponents of ~( t . )  are assumed to be independent and ( - n(tj), j = 0, 1, . e . ) are assumed to be white zero 

mean Gaussian random vectors with common variance matrix. If we can derive the state evolution and 

the relation between the measurement and state vectors in the following plant equation and measure- 

ment equation, 
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where - f(.) and - h(.) are nonlinear vector functions, then the solution of our rigid body motion problem 

can be obtained by solving the nonlinear state estimation problem. Extended Kalman filter, iterative 

extended Kalman filter and nonlinear filter are commonly used for solving this type of problem recur- 

sively with different computational complexity [Mayb82]. In the following, we will first consider a 

special case-the motion of constant acceleration with three non-collinear feature points-and then will 

extend the derivation to the general case. 

3.1 Special Non-constant Motion 

In this section, we consider a non-constant motion in which the accelerations of translation and rotation 

are constant, and there are only three non-colinear points on the rigid body, i.e., d, = 2 , 4  = 1 and 

n, = 3. This implies that ~I"l(t) - = - i2rnl(t) = [O 0 OIT for m 2 3 or n 2 2. 

Let the state vector 

where the subscript 't' denotes the vector evaluated at time t. Let q be the i-th component of ~ ( t )  at 

time t. The total number of states, n, is 20. The evolution of the first 14 components of the state vec- 

tor which are related to the object translation and rotation can be found as follows. 

Next, we consider the relative position of feature point i w.r.t. the center of rotation. From (2.4) and 

using (2.2), we can find the time derivative of [Xi@) Yi(t) &(t) lT scaled by l/Zo(t) as follows. 
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Consequently, the evolution of the state components related to point i is obtained as follow. Let 

p = 15 + 3(i - 1) for i = 1, 2, 

So far, we have obtained the plant equation which describes all the states changing in time. The meas- 

urement vector for the motion of interest is given by 

The total number of measurements at each instant is 6. From the definition of the state vector in (3.4) 

and using (2.2), the components of ljs(t)) at time t, hi, are given by 

Let p = 15 + 3(i - 1) and q = 1 + 2i for i = 1,2, then 

Equations (3.9) and (3.10) form the measurement equation we sought for. 

3.2 General Motion 

Consider n, points on the rigid body. The translation and the rotation are modeled as (2.6) and (2.7), 

respectively. Define the state vector as 

The total number of states n, is given as 3(4 + 4 + %) + 2. The components ( s k ] 2  of the state vector 

at time t change with time as follows. For sl and s2, 
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For the states which represent the translational motion, let p = 3 + 3(i - 1) for i = 1, . . . , dt - 1, 

For the states which represent the rotational motion, let p = (34 + 3) + 3i for i = 0, . . - , 4  - 1, 

For the states which represent the location of feature points, let p = (34 + 3 4  + 6) + 3(i - 1) for 

i = l ,  - . . , n , -  1, 

I;.] = [a::]. t dt 
+ 2 + 5 

Using the definitions of state vector and measurement vector in (3.11) and (3.1), we can obtain the 

measurement equation in the form of (3.3) with the following components of &&(t,)), (h,~:: ,, where n, 

is the total number of measurements at each time and equals to 2n,. 

Let p =  (34+ 3 4 +  6)  + 3(i - 1) and q =  1 + 2i for i =  1, - - 0 ,  n,- 1, 

hq=Sp/Sp+2> h q + 1 = s p + 1 / s p + 2 -  

- 
S34+3d1+3 

s34+.+4 

s34+3dr+5 
L 

In summary, we obtain the state equation which is formed by (3.12)-(3.15) and the measurement equa- 

tion which is given by (3.16)-(3.17) for the general rigid body motion. Thus, the estimation of the gen- 

eral motion for a rigid body can be obtained by solving the nonlinear state estimation problem as we 

claimed earlier. 

= [n] 

4. SIMULATION RESULTS 

In order to illustrate the performance of the proposed approach to the motion estimation of the general 

rigid body motion, a number of experiments on simulated data are conducted. In the simulation, only 

three feature points are used. The focal length of the camera is set to one unit. The visible portion of 
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the image plane is (-0.36, 0.36) x (-0.36, 0.36) units. This portion corresponds to the viewing angle of 

k 20 degrees. The observed image is considered as 256 x 256 pixels. We consider the motion of con- 

stant acceleration (4 = 2 and d, = 1). The time interval between frames is 0.04 second. To solve the 

nonlinear state estimation problem in (3.2) and (3.3) recursively, extended Kalrnan filter is used. The 

initial estimates of the translation and rotation are set to zero. The initial estimates of the related depth 

of the feature points are set to one. 

On generating test data 

The noisy measurements of the projected position ~ ( t ) ,  i = 0, - , npl at different sampling time tj, 

j=O, 1, . . .  , are generated by adding white zero mean Gaussian noise to the exact values of ~ ( t ) .  In 

the following, we explain and discuss the procedure of obtaining these exact projected positions from 

the given motion parameters: the 3-D position of feature points at time zero, the translational 

coefficients pP1(0), - n = 1, . . , d, and rotational coefficients - nl"](0), n = 1, - . . , 4. 

At a first glance, one may be tempted to use (3.12)-(3.15) to get the time evolution of state vector 

and then use (3.16) and (3.17) to obtain ~ ( t )  at different sampling times. However, since the time evo- 

lution of the states in (3.12)-(3.15) is nonlinear and coupled, a system of nonlinear differential vector 

equations with a large number of unknowns is required to solve. Although numerical techniques such 

as Runge Kutta method can be used to find this solution, the accumulated error may result the large 

error in the generated data. This is especially true when a large number of frames, say 100 frames, are 

involved. In order to overcome this problem, we use another approach. We first obtain the 3-D trajec- 

tory of rotational center &(t) at different sampling times by using (2.6) with known P~](O), - 
n = 1, - . . , d,. The 3-D trajectory of individual feature point, s(t), is determined by solving the state 

equation (2.4) and adding the result to - Po(t). Note that A(t) in (2.4) at any time can be found by using 

(2.7) with known - Q["](o), n = 1, - . - ,4. The state equation (2.4) is time-varying but it is not nonlinear. 

Also, there are only three unknowns in the equation. Runge Kutta method is used to solve the equa- 

tion. Then the exact projected positions are obtained by using the perspective relation in (2.2). 

Experiment 1: Various noisy levels 

In this experiment, we compare the estimates at different noisy levels. The standard deviations of the 

noise are set to 0.5, 2.5 and 5 pixels. The 3-D translation gJ1](t) is [ -1 5 10 lT + [ -0.05 -2.5 -5 lT t 

unitslsecond. The 3-D angular velocity - Q(t) is [ -0.4 0.5 3 lT + [ 0.1 -0.3 -1.7 lT t radianslsecond. The 

3-D positions of the three feature points at time zero are (4, -2, 20), (5, -5, 19.5) and (3, -5, 20.5) 



Page 11 

units. Figure l a  shows the images of the simulated motion at every five frames. Figure l b  shows the 

exact and noisy trajectories of the first three feature points on the image plane (Only the trajectory with 

2.5 pixel error is shown). Figures l c  and Id are the x and y components of the trajectory, respec- 

tively. Figures le-11 are the exact and estimated x,J11(t)/zo(t), ~,J'l(t)/z~(t), all(t)iZo(t), Qx(t), a&), Qz(t), 

Zl(t)/Zo(t) and Z2(t)/Zo(t), respectively. From these results, we observed that the estimated errors 

decrease as the noise in the measurements decrease. The estimate errors for xi1] / Zo(t) and YJ'] / Z,-,(t) 

are smaller than that for z,J11 / zo(t). The estimate of rotations in X and Y direction are worst than that 

in Z direction. The estimate of relative depths can follow the change of the movement. As we use 

more frames, the estimate error decreases. For the case of 2.5 pixel error in the measurements, it takes 

about 60 frames to converge. This observation period is less than 2.5 seconds. Note that the estimate 

error is very large if we only use a smaller number of frames. This justifies that motion analysis using 

a small number of frames performs badly if there is noise in the measurements. We have similar 

observations discussed above for the following Monte Carlo analysis. 

Experiment 2: Monte Carlo analysis 

In this experiment, we run the simulation for fifty different sets of noise and compute the sample mean 

and standard deviation of the estimates . The standard deviation of the noise is 2.5 pixels. The 3-D 

translation zJ1](t) is [ -3 1 10 lT + [ 1 -1 -2 lT t unitslsecond. The 3-D angular velocity @(t) is 

[ -0.5 0.5 2 lT + [ 0.2 -0.1 -1.4 lT t radianslsecond. The 3-D positions of the particles at time zero are 

(0, 0, 20), (4, -4, 19.5) and (-2, -4, 20.5) units. Figure 2a shows the images of the simulated motion at 

every five frames. Figures 2b, 2c and 2d show the exact and a typical noisy trajectories, and their x 

and y components. Figures 2e-21 show the sample mean and the rt 1 standard deviation of the 

estimated x6l1(t)tZ0(t), ~6l](t)/Z~(t), Z6l1(t)/z0(t), Qx(t), Qy(t), aZ(t), Zl(t)iZo(t) and &(t)/Zo(t) versus 

number of frames used in the estimation, respectively. It is observed that the sample mean converges 

to the true values and the sample standard deviations decrease as we use more frames. 

5. CONCLUSION 

We have proposed a new state formulation to analyze the object motion with arbitrary orders of trans- 

lation and rotation from a sequence of video images. Extended Kalrnan filter was used to find the esti- 

mate recursively. The simulations showed that the proposed formulation was quite effective for 

estimating the non-constant rigid body motion, even the measurements had 5 pixels error. This formu- 

lation may be adopted with minor modification to the motion analysis for other measurements, such as 

the sequences of stereo images, spatially distributed infrared image, and radar observations of range 
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and bearings [Mayb82]. 

We may follow the derivations in this paper with modification to formulate the general rigid body 

motion in terms of quaternions [Broi86b]. However, we need to solve an additional time-varying 4x1 

vector differential equation in order to obtain the quaternions at different instant from the non-constant 

angular velocity. Also, a non-linear algebra transformation is required to relate the estimated states to 

the measurements. These will increase the computational complexity and the additional error in the 

numerical integration. 

For the model of rigid body motion we used, we assumed that the projective position of rota- 

tional center is visible, that the motion is smooth, and that the orders of the translation and rotation are 

known. Note that these assumptions are also used in [Weng87] and [Broi89]. For the first assurnp- 

tion, if the rotational center belongs to one of the feature points but we do not know which point is, 

one may regard each point as the rotational center, and apply the estimation procedure to each case. 

This approach is not unrealistic since the number of feature points we observed is commonly small and 

all the procedures can be processed simultaneously. Another approach is to detect the rotational center 

from the observed points and then estimate the motion. On the other hand, if the feature points do not 

contain the rotational center, then the method is not applicable directly. 

In regard to the other two assumptions, since the object can move almost arbitrarily in front of a 

camera, the order of polynomials in describing the true motion may not match to the model exactly. 

Also, the object may change its motion abruptly. One such example is a ball bouncing off the ground. 

This situation leads us to consider three classes of model mismatch: undermodeling, overmodeling and 

parameter jumping. We have analyzed the performance degradation due to these model mismatches and 

proposed the Finite Lifetime Alternately Triggered Multiple Model Filter @TAT MMF), as a new solu- 

tion. This issue is dealt in [Iu89b, Iu90aI. 
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Fig. la. Images of simulated motion at every five 
frames for experiment 1. Last plot includes the trajec- 
tories on image plane. 



Exact and noisy trajectories (2.5 pixels error) 
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Fig. lb. Exact and noisy trajectories for experiment 
1. Standard deviation of the noise is 2.5 pixels. 

Exact and noisy measurements of y-component versus frames 
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Fig. Id. Noisy measurements of y-component of the 
trajectories versus number of frames for experiment 
1. Standard deviation of the noise is 2.5 pixels. 
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Fig. lc. Noisy measurements of x-component of the 
trajectories versus number of frames for experiment 
1. Standard deviation of the noise is 2.5 pixels. 

Exact and estimated X#l(t)&(t) versus frames 
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Fig. le. Exact and estimated x6l1(t)/Z0(t) versus 
number of frames for experiment 1. Standard devia- 
tions of the noise are 0.5 (O), 2.5 (A) and 5.0 (0) 
pixels. 



Exact and estimated Y~'I(t)lZo(t) versus frames 
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Exact and estimated Z#](t)&(t) versus frames 
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Fig. If. Exact and estimated YJ1l(t)/&(t) versus Fig. lg. Exact and estimated zdl1(t)/zo(t) versus 
number of frames for experiment 1. Standard devia- number of frames for experiment 1. Standard devia- 
tions of the noise are 0.5 (01, 2.5 (A) and 5.0 (0) tions of the noise are 0.5 (a), 2.5 (A) and 5.0 (0) 
pixels. pixels. 

Exact and estimated &(t) versus frames 
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Fig. lh. Exact and estimated Rx(t) versus number of 
frames for experiment 1. Standard deviations of the 
noise are 0.5 (D), 2.5 (A) and 5.0 (0) pixels. 
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Fig. li. Exact and estimated RY(t) versus number of 
frames for experiment 1. Standard deviations of the 
noise are 0.5 (O), 2.5 (A) and 5.0 (0) pixels. 



Exact and estimated Qz(t) versus frames 
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Exact and estimated &(t)/&(t) versus frames 
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Fig. lj. Exact and estimated Llz(t) versus number of Fig. lk. Exact and estimated Zl(t)/zo(t) versus number 
frames for experiment 1. Standard deviations of the of frames for experiment 1. Standard deviations of 
noise are 0.5 (a), 2.5 (A) and 5.0 (0) pixels. , the noise are 0.5 (O), 2.5 (A) and 5.0 (0) pixels. 

Exact and estimated Z2(t)&(t) versus frames 
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Fig. 11. Exact and estimated Z z ( t ) / ~ t )  versus number 
of frames for experiment 1. Standard deviations of 
the noise are 0.5 (O), 2.5 (A) and 5.0 (0) pixels. 



Fig. 2a. Images of simulated motion at every five 
frames for experiment 2. Last plot includes the tra- 
jectories on image plane. 



Exact and noisy trajectories 
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Fig. 2b. Exact and noisy trajectories for experiment 
2. Standard deviation of the noise is 2.5 pixels. 
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b a a  and noisy measurements of x-component versus frames 

0.24 6 

Fig. 2d. Noisy measurements of y-component of the 
trajectories versus number of frames for experiment 
2. Standard deviation of the noise is 2.5 pixels. 
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Fig. 2c. Noisy measurements of x-component of the 
trajectories versus number of frames for experiment 
2. Standard deviation of the noise is 2.5 pixels. 

Sample mean and Am of Xdll(t)&(t) versus frames 
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Fig. 2e. Sample mean (A) and +- standard deviation 
(0) of estimated x6l1(t)/Zo(t) versus number of frames 
for experiment 2. 
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Fig. 2f. Sample mean (A) and f standard deviation 
(0) of estimated YJ11(t)/Zo(t) versus number of frames 
for experiment 2. 
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Fig. 2h. Sample mean (A) and * standard deviation 
(0) of estimated &(t) versus number of frames for 
experiment 2. 
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Fig. 2g. Sample mean (A) and k standard deviation 
(0) of estimated Z#'(t)/Zo(t) versus number of frames 
for experiment 2. 
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Fig. 2i. Sample mean (A) and * standard deviation 
(0) of estimated Ry(t) versus number of frames for 
experiment 2. 
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Fig. 2j. Sample mean (A) and * standard deviation Fig. 2k. Sample mean (A) and * standard deviation 
(0) of estimated Rz(t) versus number of frames for (0) of estimated Zl(t)lZo(t) versus number of frames 
experiment 2. for experiment 2. 
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Fig. 21. Sample mean (A) and k standard deviation 
(0) of estimated Zz(t)/Zo(t) versus number of frames 
for experiment 2. 


