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Abstract for further performance gains in exchange for decreased pre-
) ) . cision,e.g, [ABGMAS88, BGM92, BP93, HSW94, KK 98,
Caching approximate values instead of exact values presengsiyno, PLOO, WXCJ98]. However, naively choosing what
an opportunity for performance gains in exchange for deyppear to be good approximate values can result in perfor-
creased precision. To maximize the performance improvemance gains that are a factor of two (or more) less than the
ment, cached approximations must be of appropriate preCijains achievable when approximate values are chosen care-
sion: approximations that are too precise easily become i”rully, without any improvement in precision. This paper fo-
valid, requiring frequent refreshing, while overly imprecise ,ses on the problem of setting the precisiorcathed ap-
approximations are likely to be useless to applications, whichy,yimate values dynamically and adaptively to achieve the
must then bypass the cache. We present a parameterized Blsst possible performance. Now let us motivate the problem

gorithm for adjusting the precision of cached approximationg,omewhat formally, but still abstractly. More concrete details

adaptively to achieve the best performance as data valueg| pe given in Section 2 and beyond.
precision requirements, or workload vary. We consider in-
terval approximations to numeric values but our ideas can bg 1 Approximate Caching and Querying
extended to other kinds of data and approximations. Our aIA imate dat hi . -
gorithm strictly generalizes previous adaptive caching algo- nt approxmg € aSa caEc 'Eg e;nw;onm ’V'S <f3ne ort Lnotre
rithms for exact copies: we can set parameters to require thgtalasmérceﬁ Ly t "'I ;C ;} osts %Se ! ?] e(zjxac ata
all approximations be exact, in which case our algorithm dy-Va ues t'acb exact value € F1 rgy Ce cacCe as aarp—h
namically chooses whether or notdache each data value. ~ProXImationdy zero or Mor&acnesty, £, . .. ¢y, SO €ac
. . : cacheC; may hold an approximatiod; to the exact value
We have implemented our algorithm and tested it on syn: ,
. . V. Whenever the value df changes td’’, sourceS; ap-
thetic and real-world data. A number of experimental results’,: , , o
lies a boolean testulid(A;, V') for each approximation

are reported, showing the effectiveness of our algorithm aglj cached by &, to decide whether, is still a valid ap-

maximizing performance, and also showing that in the Spegroximation for the new valu&”. If Valid(A;, V') evalu-
cial case of exact caching our algorithm performs as well a L
tes tofalse, the source creates a new approximatignof

previous algorithms. In cases where bounded imprecision is, and transmits it ta; (a value-initiated refresh Under
J

I r algorithm il rforms previ lgo-, . : .
gcceptab S, our a1go! thm easily outperforms previous alg this protocol, caches are guaranteed to always contain valid
rithms for exact caching.

approximations, modulo communication overhead.
_ Typically, not all valid approximations have the same
1 Introduction precision which we will represent by a nonnegative value

. . .. Prec(4;). At one extreme, an approximatioty of V' hav-
Adaptive data cachinge.g, [FC92, WJH97], plays a criti- ing Prec(A;) = oo is an exact copy of’. At the other ex-

cal role in the performance of distributed information sys-y.cme if Prec(A;) = 0, then 4; contains no information
tems (such as the World-Wide Web) by adjusting the caching,, 117 1n general, an exact value can be approximated with
strategy dynamically as conditions change. Caclaipgrox-  \4rving degrees of precision betwegandoc. For example,
imate valuesnstead of exact values presents an opportunity, - integer value could be approximated by an interval, with

* This work was supported by the National Science FoundaYalidity requiring the interval to contain the exact value, and
tion under grant [1S-9811947, and by a National Science Foundatiowith the width of the interval determining the (inverse of) the
graduate research fellowship. precision.

Permission to make digital or hard copies of all or part of this work ~Cached approximate values are accessedusriesrun-
for personal or classroom use is granted without fee provided thating at a cache. If a query finds the precision offered by
copies are not made or distributed for profit or commercial advangn approximate valud; to be insufficient, the query may

tage and that copies bear this notice and the full citation on the ﬁrsltequest the exact vallié from the remote sourcs;. The

page. To copy otherwise, to republish, to post on servers or to redis- ds with th ¢ t vall I
tribute to lists, requires prior specific permission and/or a fee. source responds wi € current exact vaiuas well as a

ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA New approximationt’; to be used by subsequent queries. This
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00. exchange is called guery-initiated refresh
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1.2 Maximizing Performance source updates instead of their frequency. A more thorough

. L comparison is given in Section 4.7, where we discuss the dif-
Let us assume that our goal is to minimize overall networkferences between our work and Diveraence Caching in more
traffic. Then, in an approximate data caching environment a 9 9

described in Section 1.1, we want to avoid both value- anc?eta”’ and show performance re_:sults indicating. that our ap-
guery-initiated refreshes as much as possible. The IikeIihooroaCh modestly outperforms Divergence Caching when we

. . .. _specialize ours to the stale value approximations of [HSW94].
that either type of refresh will occur depends on the precision -
No other work that we know of addresses precision set-

of the cached approximation. On one hand, value-lnltlate(iiing of cached approximate values while subsuming exact

refreshes are less likely to occur if the precision is low, since . ) . .
low-precision approximations are likely to remain valid even pachlng techmqges. The work on caching appro?qmate \{alues
when the exact value fluctuates to some degree. On the oth'@r.lme.r\./al RelationgBP93], TRAPP[OWO0], Epsilon Seri-
hand, query-initiated refreshes are less likely to occur if theé® izability [PL90], andTACT[YVOQ] does not focus on the

precision is high, since queries are more likely to find theﬂ%%el\;nAg;hO\évdt?hS% pr:lec:sein r(])r;trlrr:ally. B%Jagécoeles
precision sufficient and not request the exact value from thé. ] a eDemarcation Protoco] 1, pre-

source. Although the likelihood afach type of refresh can cision cannot be adjusted dynamically. WorkMdoving Ob-

) n X . he
be controlled by adjusting the precision, decreasing the Iike’ézcgﬁega;abszmgg)nsgi]ufozseﬁ:?afeetzgg .priglgorg_of
lihood of one type of refresh increases the likelihood of the P ' q e
other. Therefore, it is not obvious how best to set the preci—qLIeSt gxact values from sources so remotg read Cgsts are not
sion of cached approximations so as to minimize the overaﬁaken Into account. Conversely, $oft Cachmg{l_(KO 98,
updates to the exact source value are not considered, so value-

cost incurred by refreshes of both types. S . ) -
. . . ... initiated refreshes are not considered when setting precision.
We will present a parameterized algorithm for adjusting

the precision of cached approximations adaptively to achievzi 4
the best performance as data values, precision requirements,
and/or overall workload vary. The specific problem we ad-The remainder of the paper is structured as follows. In Sec-
dress considers interval approximations to numeric valuedion 2 we introduce the numeric data values and approxima-
but our ideas can be extended to other kinds of data and a$ions we consider, and we describe our adaptive precision-
proximations, as discussed briefly in Sections 2.1 and 5. Outetting algorithm. We justify our algorithm mathematically
a|gorithm adjusts the precision of each cached approximdn Section 3. In Section 4 we describe our simulation en-
tion independently, and it strictly generalizes previous adapYironment and test data sets, then present our performance
tive caching algorithms for exact copiesd, [WJH97]): we  results. We first justify empirically our claim from Section 3
can set parameters to require that all approximations be exadhat our algorithm converges to optimal performance, by con-
in which case our algorithm dynamically chooses whether opidering steady-state synthetic data. We then switch to real-
not to cache each data value. We have implemented our alg¥torld data, finding the best parameter settings to maximize
rithm and performed tests over synthetic and real-world datahe performance of our algorithm under dynamically chang-
We report a number of experimental results, which show thég conditions. Next we demonstrate that our algorithm per-
effectiveness of our algorithm at maximizing performance,forms as well as previous algorithms in the special case of ex-
and also show that in the special case of exact caching o@ct caching, and outperforms exact caching algorithms when
algorithm performs as well as previous algorithms. In case§Xact precision is not required. Finally, we compare our algo-
where it is acceptable for queries tooguce answers with rithm against Divergence Caching. In Section 5 we conclude
bounded imprecision, our algorithm easily outperforms pre2nd discuss avenues for future work.

vious algorithms for exact caching.

Outline of Paper

2 Setting Interval Precision Adaptively

1.3 Related Work In this section we describe our algorithm for setting the preci-
The previous work most similar to ours Bivergence sion ofinterval approximationso numeric values. Our ideas
Caching[HSW94], which also considers the problem of set-can be extended to other types of data and approximations,
ting the precision of approximate values in a caching envias discussed briefly at the end of this section. An interval ap-
ronment. In their setting, precision is based on number of upproximation[L, H] is a valid approximation (recall Section
dates to source values and not on the values themselves—thel) of a numeric valu®’, i.e, Valid([L, H], V), if V liesin
precision of a cached approximationis inverselggortional  theintervalj.e, L <V < H. The precision is the reciprocal

to the number of updates since the lesthe refresh (referred of the width of the intervalPrec([L, H]) = ﬁ Atone ex-

to as astale value approximatign The Divergence Caching treme, a zero-width interval contains only the exact value and
algorithm proposed in [HSW94] works well in their environ- thus has infinite precision. In the other extreme, an interval
ment, but does not generalize easily to the kinds of approxef infinite width gives no information about the exact value
imations we consider, which are based on the magnitude aind thus has zero precision. We assume that intervals remain
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constant until a refresh occurs. Although intervals that vary ~DPata Source __ bataCache

as a function of time are more general, we have found em- update & 7
pirically that they are not particularly helpful, as discussed in | . : !
i : "too narrow" | ;
Section 4.5. o ) 3 m} value-initiated
Whenever the precisiofirec([L, H]) of a cached interval : 5 9}% (5.9
is not adequate for a query running at taehej.e, the inter- o

val is too wide, the query initiates a refresh by requesting the . . o
exact value from the source. (For examples of the kinds of (&) Growing the interval on a value-initiated refresh
gueries that would run over approximate cached values with

g . Data Source  request Data Cache
precision requirements, see,g, [OW00, FMPF00].) The fo-----—---—--- exactvalue oo
. ! 7 ‘ : query
source responds with the current exact value as well as a new 3 @; !
interval[L’, H'] to be used by subsequent queries. The cost | . exact .V"?‘tl_”t 5 o wider
incurred 'dl.Jring a query—irjitiated refresh will be denotegl. ?:f?ef)ér: 00 wide'
A value-initiated refresh incurs cost,,,, and occurs when- | [[5’9]6 N ! 3 [[6 83]]

ever the exact valu¥ at a data source exceeds its interval
[L, H] in some cache, causingalid([L, H], V) to become
false. Notice that value-initiated refreshes are never required

(b) Shrinking the interval on a query-initiated refresh

for intervals of infinite width @ — L = oc). Conversely, Figure 1: Adaptive precision-setting algorithm.
when an interval has zero widt®/(— L = 0), then a value-
initiated refresh occurs every timé changes. We now define our algorithm precisely. The algorithm re-

Both types of refreshes (value- and query-initiated) pro-ies on five parameters as follows. The first two are functions
vide an opportunity for the source to adjust the interval be-of the particular distributed caching environment, while the
ing cached. For now let us assume that whenever the sourcemaining three can be set to tune the algorithm.
provides a new interval to the cache, the interval is centere L
around the current exact value. (Uncentered intervals are cogl) the value—linlitl_ated refresh cost,
sidered in Section 4.5, and like time-varying intervals theyt?) the guery-initiated refresh cost,,
usually turn out not to be helpful.) Therefore, an approxi-(3) theadaptivity parametex > 0
mation for a valug/” is uniquely determined by the interval (4) thelower thresholdy > 0
width . The objective in selecting a good interval width is (3) theupper threshold, > 0
to avoid the need for future refreshes, since we want to Minithege parameters and others we will introduce later are sum-
mize communication cost. To avoid value-initiated refreshes o rjzeq in Table 1. Let us defineast factop asp = 9. Cux.
the interval should be wide enough to make it unlikely tha -

dificati o th t val i d the int | OtThe cost factor is based on the ratio of the two refresfh costs
rmoditications to the exact value witl exceed the Interval. DN, 4 is ysed to determine how often to grow and shrink the

tk;}e Oltgir hand, to avoid quer.)gllnltfteéj. refresh§§, tShe 'tr.]ter\f}}terval widthW as refreshes occur. The mathematical justi-
should be as narrow as possibie. As dISCUSSed IN SECUON L.goatiqn for multiplying the ratio by is given in Section 3.
since decreasing the chance of one type of refresh increasesy - algorithm sets the new widt” for a refreshed in-

the chance of the other, it is not obvious how best to choosg, - pased on the old widfi during each value- or query-

an mtervgl width th_at minimizes the total probability that a initiated refresh as follows. €tall thaix > 0 is the adaptivity
refresh will be required. parameter =

Both of the factors that affect the choice of interval width—
the variation of data values (which causes value-initiated ¢ value-initiated refresh:
refreshes) and the precision requirements of user queries with probabilitymin{p, 1}, setW’ < W - (1 + «)
(which cause query-initiated refreshes)—are difficult to pre- o guery-initiated refresh:
dict, so we propose an adaptive algorithm that adjusts the \yitp probabilitymin{ 1,1}, setW” « W
width W as conditions change. The overall strategy is as fol- a (1+a)
lows. First start with some value fd#. Each time a value- In Section 3 we will justify mathematically why these are the
initiated refresh occurs (a signal that the interval was too nareptimal probability settings for width adjustment. Intuitively,
row), increasd¥ when sending the new interval. Conversely, the idea is to continually adapt the interval width to balance
each time a query-initiated refresh occurs (a signal that the inthe likelihood of the two types of refreshes. However, if two
terval was too wide), decrea$g. This strategy, illustratedin  value-initiated refreshes are more expensive than one query-
Figure 1, finds a middle ground between very wide intervalsgnitiated refreshj.e, p > 1, a larger width is preferred, so
that the value never exceeds yet are exceedingly imprecis&he width is not decreased on every query-initiated refresh.
and very narrow intervals that are precise but need to be reonversely, if one query-initiated refresh is more expensive
freshed constantly as the value fluctuates. than two value-initiated refreshds., p < 1, a smaller width

357



| Symbol| Meaning | Note |

Cyr cost of a value-initiated refresh used to determine cost factor
Coyr cost of a query-initiated refresh used to determine cost factor
p cost factor defined &- g—q determines width adjustment probability
Q cost rate (per time step) metric our algorithm minimizes
w width of a cached approximation set adaptively by our algorithm
w= width that minimizes the cost rafe our algorithm converges % = W™
« adaptivity parameter how much to adjust width
T lower threshold widths belowr; are set ta@)
Teo upper threshold widths abover,, are set tax
P, probability of a value-initiated refresh increases with precision
P, probability of a query-initiated refresh decreases with precision
) precision constraint of a query parameter to experiments
davg average precision constraint of queries parameter to experiments
Ad variation of precision constraints across quetrigsarameter to experiments
Omin minimum precision constraint derived fromd,,, andAd
Omaz maximum precision constraint derived fromd,,, andAd
n number of data sources parameter to experiments
K cache size (in number of approximate valueg) parameter to experiments
T, time period between queries parameter to experiments
s random walk step size used for analysis in Appendix A

Table 1: Model and algorithm symbols.

is preferred, so the width is not increased on every valuesource data and approximations can use a similar numeric
initiated refresh. Whenever the width is adjusted, the magapproach. For example, non-numeric data can be approxi-
nitude of the adjustment is controlled by the adaptivity pa-mated by stale versions, where precision is quantified as a
rametera. numeric measure of the deviation between the exact value and
Now let us consider the lower and upper thresholgs, the cached approximation. Then our algorithm can be used to
and .. When our algorithm computes an interval width set maximum deviations adaptively in order to optimize over-
W < 71, we instead seV = 0, and when we compute a all performance. In Section 4.7 we apply our algorithm in
W > 7., we instead seW = co. The purpose of these this fashion to emulate Divergence Caching [HSW94], where
thresholds is to accommodab®undary cases where either the deviation metric is the number of updates to the exact
exact cachingW/ = 0) or no caching W = <) is appro- value not reflected in the cached approximation. Further ex-
priate, since without this mechanism the width would nevermploration of this general topic is left as future work.
actually reach these extreme values. The souilleetains
the original width, and uses it when setting the next width
W’. As part of our performance study we describe how to se

these parameters and others. In this section we justify our algorithm mathematically. Let

_ Ifacache does not haveeugh space to store an approx- p, - and p,, represent the probability that a value- or query-
imation for every data value requested, it evicts the widesinitiated refresh (respectively) will occur atch time step.
intervals, since they are the least precise approximations anfhen the expectedost rateper time steg2 = C,, - Py, +

thus contribute least to overall cache precision. (This deciCqT . P, whereC,, andC,, are the costs of value- and
sion also is based on original widths, not@mr co widths  ery-initiated refreshes (respectively) as introduced in Sec-
due to thresholds.) Caches do not need to notify sources whepy, 2.

approximations are evicted. If an evicted approximation in- For a given cached approximation with width, the prob-

curs a value- or query-initiated refresh, the modified apProXapijity of each type of refresh can be itten asP,, = £b
ur T W2

imation may be cachgd and anqther evicted, or the modified P, = K, - W, whereK; and Kk, aremodel parame-
approximation may still be the widest and remaiached. (o that depend on the nature of the data and updates, the
o frequency of queries, and the distribution of query precision
2.1 Other Types of Data and Approximations requirements. In Appendix A we justify these equations in
We have presented our algorithm specifically for interval ap-detail for the case of interval approximations. However, the
proximations to numeric source values, but other types ofmportant—and intuitive—point is that, for all kinds of data

g Justification of Algorithm
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and approximations, the value-initiated refresh probabilityin% 0.3 , , , , , , , ,

creases with precisiori.¢., with a smalleriw), while the

query-initiated refresh probability decreases with precision.
Now that we know howP,,. and P, depend oriV, we can

rewrite our cost rat€? in terms ofW: Q(W) = C,, - &% +

Cqr-K3-W. Our goal thenis to find the value foF that min- =

imizes this expression, which is achieved by finding the rod§

of the derivative. Using ;[his approach, the optimal value fop 01

W isW* = (2. g_::. %)(g) = .(p. %).(é),wherep =92. g:: S 05

is the cost factor we defined in Section 2. Unfortunately, se

ting the interval widthi¥' based on this formula fol* is S

difficult unless update behaviors and query/updateworkloads

are stable and known in advance, since model paramgters

and i{y depend on these factors. One approach is to moni-. . -
tor these factors at run-time to s&% and K appropriately, Figure 2: Cost rate and refresh probabilities whes 1 as

which is similar to the approach taken by Divergence Caching}tunctlonS of interval width.

[HSW94]. However, we will see that our approach achievesery query-initiated refresh but only increased with probabil-
the same optimal interval width’* without the monitoring ity p on value-initiated refreshes. Conversely, in cases where
complexity or overhead. p > 1, the width is increased on every value-initiated refresh
Our approach is motivated by the observation thdt,, = but only decreased with probability on query-initiated re-
P, whenW = W* = (p- £1)(3). Let us first consider freshes.
the special case whepe= 1. (We will discuss other values
for p momentarily.) In this special case, the optimal valuey Performance Study
for W occurs exactly when the two types of refreshes are
equally likely. Our algorithm takes advantage of this obserdn this section we present the results of a performance study
vation by dynamically adjusting the interval widki so asto ~ of our algorithms, and of related algorithms, using synthetic
equate the likelihood of each type of refresh, thereby discoveata as well as real-world data taken from a network monitor-
ering the optimal widtfi#*. Our algorithm adjusts the width ing application. We first describe our simulation environment
W based solely on observing refreshes as they occur, within Section 4.1. In Section 4.2 we present results demonstrat-
out the need for storing history or for direct measurements ofng empirically that our algorithm does achieve optimal per-
updates, queries, or precision requirements. Furthermore, #rmance in the steady state, as motivated mathematically in
conditions change over time, our algorithm adapts to alway§ection 3. We introduce our real-world data set in Section 4.3,
move W toward the optimal widtf¥*. The adaptivity pa- and in Section 4.4 we present results indicating how best to
rametera > 0, introduced in Section 2, controls how quickly set the tunable parameters of our algorithm. In Section 4.5
the algorithm is able to adapt to changing conditions. we discuss some variations of our algorithm that proved to be
The graph in Figure 2 illustrates the principle behind ourunsuccessful in most cases. In Section 4.6 we show that our
algorithm. Still considering: = 1, it plots the cost rat€  algorithm precisely matches the performance of adaptive ex-
and refresh probabilitieB, . and P, as functions of the in-  actcaching when exact precisionis required, and outperforms
terval width#W. The model parameteis; and K are fixed ~ €xact caching when exact precision is not required. Finally,
ask; = 1 and K, = Wlo- (These values were set based in Section 4.7 we discuss how our algorithm can be applied
roughly on a query period dfd seconds and an average pre- in the Divergence Caching [HSW94] setting, and we empiri-
cision constraint of0. Changing these values only shifts the cally compare the two approaches.
graph.) Notice that the width’* that minimizes the cost
rate 2 corresponds exactly to the point where the curves fo-1  Simulator Description
P,, and P, cross. Therefore, by equalizing the chance thatTo study our adaptive algorithm empirically, we built a dis-
refreshes will be either value- or query-initiated, the optimalcrete event simulator of an environment wittdata sources
width W~ is discovered. and one cache. Each source holds one exact numeric value,
Now consider the general case whgrean have any value. and the cache can hold up 40< n interval approximations
Our algorithm still discovers the optimal widlir*. Recall  to exact source values. In our synthetic experiments, exact
that the optimal width occurs when- P,, = P,.. Our al- values are updated every time unit (which we set to be one
gorithm achieves this condition by not always adjusting thesecond) with a specified update distribution. In our real-world
interval width on every refresh. In cases where: 1, itis  experiments, the timing and values of updates are generated
desirable for value-initiated refreshes to be more likely tharfrom the network performance data we are using. For both
guery-initiated refreshes. Thus, the width is decreased on ewypes of experiments, a query is executed at the cache every

0.25 |

lities and cost r
o
N

hp

interval widthWw
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ate

T, seconds. We will describe how queries and query prez
cision requirements are generated momentarily, but it is ins
portant to note that our algorithm is not specialized to an% o6
particular type of query. The only assumption made by oug
algorithm is that for each approximate value, the praliigb
of a query-initiated refresh is proportional to the width of theg
approximation. 8 %
The queries we generate attempt to balance generalfﬁ/ 03
and practicality and are inspired by the “bounded aggregat%’

0.5%

d average

e

X
gueries in [OWO00]. Each query asks for either the SUM o& 0.2 P P *
MAX of a set of approximate values in the cache, wher& N e e
the query result is itself an interval approximation. Eactg %[ » &wi\i 1

query is accompanied bygecision constraind > 0 spec- 3
ifying the maximum acceptable width of the resulPreci- 3 1 2 3 4 5 6 7 8 9 10
sion constraints are generated based on paramgter¢av- & interval width W/

erage precision constraint) afd (precision constraint vari-

ation): they are sampled from a uniform distribution betweenFigure 3: Measured cost rate and refresh probabilities when
Smin = Oavg - (1 — Ad) anddpmae = Savg - (1 + AJ). Us- P = 1 as functions of interval width.

ing the algorithms in [OWO0Q], from the query type, precision
constraint, and approximate data, a (possibly empty) subsét .
of the approximations are selected for query-initiated refreshfePorted experiments. . o
after which the desired precision for the query result is guar- 1€ results are shown in Figure 3, which bears a striking
anteed. Again, it is important to note that our algorithm is"eémblance to Figure 2. The measured valueg’prand

not aware of or tuned to these query types or this method ofe- @€ indeed proportional tﬂ% andW, respectively, and
expressing precision requirements—they are used solely '€ measured cost rafe for different values ofi¥” also is

generate a realistic and interesting query load. shown in Figure 3. From this graph we verify empirically
that, in thep = 1 case, the minimum cost rate does indeed

occur when the two refresh probabilities are equal.

i i i , We then ran the same experiment letting our algorithm ad-
Our first experiment was a simple one to verify the correct-just interval widths. The algorithm convergedi® = 3.11,

ness of our basic model and the optirr_1a|ity of our qlgprithm Olkesulting in performance withit% of the optimali’* shown
steady-state data. We used synthetic data consisting of onfy rijgyre 3. We further evaluated the optimality of our algo-
one source data item, whose value performs a random wall, 1 with all combinations of, € (1,2}, 600y € {10,20}

in one dimension: every second, the value either increases Qhdp € {1,4}. Inall of these gcenar’ios, ou? algorit’hm c,:on-

decreases by an amount sampled uniformly @5, 1.5).  \erged to a width resulting in performance withi#t of op-
We simulated a workload having query peridg = 2 sec-  {imal.

onds, average precision constraipt, = 20, and precision
constraint variatiol\é = 1, in an environment withy = 1.
The query type (SUM or MAX) is irrelevant since we have
only one data item. To test our adaptive algorithm under real-world dynamic con-
Our goal was to establish the correctness of our model folitions, we used publicly available traces of network traffic
the refresh probabilitie®,, and P,,, i.e, to show that as the levels between hosts distributed over a wide area during a
data undergoes a random wdk, and P, are proportional two hour period [PF95]. Foeach host, the data values we
to 7 andW respectively, and fos = 1, equalizingP,, and ~ Use represent a one minute moving window average of net-
P, maximizes performance. Thus, we fixed interval widthwork traffic every second, and we picked fitemost heavily
W for each runi(e., we turned off the part of our algorithm trafficked hosts as our simulated data sources. Traffic levels at
that adjusts widths dynamically), but vari&d across runs. these hosts ranged frofnto 5.2 - 10° bytes per second. The
We measured the average rate at which value- and quergimulated cache keeps an approximation of the traffic level
initiated refreshes occurred, taking their reciprocals to obtaifor at mostx of then = 50 sources, where is a param-
P, and P,,., respectively. Measurements taken during aneter of the algorithm that is set to = 50 unless otherwise
— ) o _ stated. Queries are executed at the cache eligseconds,
l_\lote that queries specify absol_ute precision constraints and ncﬁomputing either the MAX or SUM of traffic ovel0 ran-
relative ones, which would factor in the magnitude of the result. .
Converting relative precision constraints to absolute ones is disdomly selected sources. In all O_f (?ur experiments, measure-
cussed in [OWO00, YV00], but full treatment of relative precision ments of the overall cost per unit tinfewere taken after an
constraints is a topic of future work. initial warm-up period.

itial warm-up period were discarded, as in all subsequent

4.2 Optimality of Algorithm

4.3 Our Algorithm in a Dynamic Environment
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davg = BOK, while Figure 5 uses average precision constraint
Savg = B00K.2 When the average precision constraint is

Figure 5: Source value and cached interval over time for larg€™Mall, @s in Figure 4, narrow intervals are favored. (To satisfy

time (seconds)

precision constraints. the precision constraints of SUM queries, the width of each
of the10 individualintervals being summed should be on the
In our experiments, we consider refresh coSts and  order of 5;69 = 3K — 5K [OW00].) When the average

Cy that are intended to model network behavior under comyprecision constraintis large, as in Figure 5, wide intervals (on
mon consistency models and concurrency control schemethe order of‘s‘igg = % = 50K) are favored.

although our algorithm handles arbitrary cost values. Usu-

ally, performing a remote read requires one request message4  Setting Parameters

and one response message(§p = 2. If two-phase lock-
ing is used for cache consistency, thén. = 4 since two
round-trips are required and thps= 2 -% = 4. Otherwise, if
updates are simply sent to tbache e.g, in a multiversion or
loosely consistent concurrency control scheme, thgn= 1

Next, we describe our experiments whose goal was to de-
termine good values for the adaptivity parameteand the
lower and upper thresholdg and ... First, fixingrg = 0
andr., = oo (meaning we never reset bound widths based
andp = 2- % — 1. Thus, most of our experiments consider on thresholds), we studied the effect of the adaptivity pa-
rametera on performance. Figure 6 shows the results. We

thep € {1,4} cases. ; . U .
Figures 4 and 5 depict the exact value at one of the datg\sed SUM queries and varied considering several differ-

. 8nt settings forTy, dmin, dmas, @andp. In this and sub-
sources for a short segment of a run, along with the cache . : :
sequent experiments, the y-axis cost réiteés the average

mterval approximation as the value and mterval.change OVel “the entire run. All combinations of, € {0.5,1,61,
time. For illustrative purposes we selected a portion of the ru Sims Smae) € {(50K, 150K), (0, 100K)}, andp € {1,4)
where a host became active after a period of inactivity. These ™" “ma® ’ Y X P ’

figures illustrate the interval widths selected by our adaptiveare shown. From these experiments and similar experiments

algorithm with parameters = 1, 7 = 0, andr, = oo, using MAX queries, we determined that a good overall set-

when SUM queries are executed every secord T, = 1) 2In the remainder of this section we abuse the abbreviation
andp = 1. Figure 4 uses average precision constrainfor x103.
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ting for « is 1. Recall from Section 2 that using = 1, the
width W is doubled on value-initiated refreshes and halved
on query-initiated refreshes.

T T T T
Too =70 = 1K —+—
I~ Too = 2K —-X--—

We now address setting the lower threshnjdRecall that
the purpose of the lower threshotgl is to force the interval
width of an approximation té when it becomes very small. .
A nonzerory parameter is necessary for queries that ask fog U
exact answers,e., haved = 0: with ; = 0, exact values %
would not be cached, so such queries would always require 2 - B R )
source refreshes. It turns out that the performance under a1} .
workload withd,,, = 0 is not very sensitive to the value o ' ' ' '
of 7, as long asy > 0. However, settingy too large can 0 100 200 300 400 500
adversely affect queries with small, nonzero precision con- average precision constraint, (x10°)
straints, since nonzero intervals of width beleynare not per-
mitted. Therefore, taccommodate queries with a variety of
precision constraintsy should be set to a small positive con-
stante less than the smallest meaningful nonzero precision 5 s are treated as having either no widtti & 0) or infinite
constraint. For our network data, differences in precision of g (1 — o). That is, either the exact value is cached or
¢ = LI are not very significant, so we s&f = ¢ = LK.  gffectively no value is cached at all. Since queries With 0
This setting forr has only a small impact on queries even roq.jire exact precision, cached intervals that are not exact are
with _mpderately Igrge precision constr:’:unts. For exampJe, f%f no use. Note that whenever we set = 7, performance
precision constraints betweéR, = 5K anddmar = 15K, jgindependent of,,, as illustrated by the horizontal lines in
the performance degradation is less tha (for T, = 1, Figures 7, 8, and 9. For workloads having a range of different
Too = 00, andp = 1). precision constraints, the upper thresheld should be set

Having determined good values ferandry, we now con- 10 cc.
sider the upper threshold,,. Settingr,, to a small value Although these guidelines for setting the upper thresh-
improves performance for high-precision workloads since itold 7., apply to most types of queries including our SUM
eliminates caching of approximations that are not useful tajueries, there are exceptions. For example, values can be
queries. However, a smatl,, degrades the performance of eliminated as candidates for the exact maximum based on in-
low-precision workloadsi.e., those having large precision tervals of finite, nonzero width [OWO00]. Therefore, for MAX
constraints. To illustrate this tradeoff, in Figures 7, 8, and 9queries, approximate values can be useful to cache even when
we plot performance as a function of the average precisioexact precision is required in all query answers. We have ver-
constraind,,,. Each graph corresponds to a different queryified experimentally that for MAX queries, setting, = oc
period T, and shows the performance using three differengives the best performance for all valuesigf,, including
settings ofr.,, holding all other parameters fixegi = 1,  dquy = 0.

Ad = 0.5, 19 = 1K, anda = 1. Workloads having,.,, = 0 In summary, with parameter settings = 1, 19 = e,
perform best when., = ry, which guarantees that all inter- andr,, = oo, our algorithm adaptively selects intervals that

e cost rate
N [6;] (o] ~ [eo¢] [{e]
T
|

w
T
|

Figure 9: Performance of settings foet,, query period
T, = 2.
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give the best possible performance under dynamically varymatch the average rate at which the data value increases. But,
ing conditions. Whem\J = 0, each query has the same pre- for general scenarios where the data does not predictably in-
cision constraint, so it is easier for the algorithm to discovercrease or decrease, constant intervals are preferred. Further-
the best precision for cached intervals. On the other hand, finore, constant intervals are much easier to index [KPS00]
Ad is large, each query has a different precision constraintthan intervalsthat are functions of time. Finally, time-varying
making it harder to find interval widths that work well across intervals can be tricky to implement, especially when an up-
multiple queries. Fortunately, it turns out that the degradaper bound decreases or a lower bound increases with time,
tion in performance due to a wide distribution of precision since an approximation can become invalid based on time
constraints is small. We verified that the performance of oualone.

algorithm is not very sensitive to the precision constraint dis- A third variation we tried is to have the algorithm consider
tribution for several different average precision constraintsthe pastr refreshes when deciding how to adjust the inter-
while holding the other parameters fixéh; = 1, o = 1K,  val. In this variation, the width is increased if the majority of
Too = 00, @andp = 1. Whend,,, = 100K, the difference in  ther most recent refreshes were valudiated. Otherwise,
performance between a workload wit¥ = 0 andAd = 1  the width is decreased. We also experimented with various
is only 1.9%. Whené,,, = 10K, the difference i$.5%.  techniques to weight recent refreshes withimore heavily.

Whend,,, = 5K, the difference is less tha¥. However, none of these schemes outperformed the algorithm
presented in this paper, which effectively sets 1 making
4.5 Unsuccessful Variations it the most adaptive and simplest to implement.

We experimented with a number of variations to our algo- ) )
rithm that seemed intuitive but proved unsuccessful in prac4-6 Subsumption of Exact Caching
tice: using uncentered intervals, using intervals that vary a$n this section we compare our algorithm against a state-of-
functions of time, and adjusting intervals based on the refreslthe-art adaptive algorithm for deciding whether to cache exact
history. We report briefly on our experience with each varia-replicas, which we derive from the replication algorithm in
tion. [WJIH97]. In this algorithm, the number of requested reads
An interval is uncenteredif, at refresh time, the inter- and writesw to each data value ar@ented. Thecaching
val does not bound the exact value symmetrically. Thusstrategy for every data value is reevaluated everseads
two width values are maintained instead of one: an uppeand/or writes to the valué,e, wheneverr + w > z. At
width and a lower width. The source independently adjustseevaluation, the projected cost of not caching, the cost
the upper and lower widths as follows. Each time a valueof performing» remote read®,. = = - Cy is computed.
initiated refresh occurs due to the valueeading thaupper  Similarly, the projected cost of cachinigg., the cost of per-
bound, then with probabilitsnin{p, 1} the upper widthisin- forming w remote writesC, = w - C,, is computed. The
creased. Conversely, when the value drops below the loweralue is cached if and only &. < C,.. If the cache has lim-
bound, with the same probability the lower width is widened.ited space, values having the lowest cost differafce— C.
Whenever a query-initiated refresh occurs, with probabilityare evicted and the source is notified of the eviction. Under
min{%, 1} both widths are decreased. In our experimentsdynamic conditions, it has been shown that this adaptive exact
with both our synthetic random walk data and our real-worldcaching strategy continually approaches the optimal strategy
network monitoring data, the uncentered strategy performefWJH97].
worse than the centered strategy. However, in the case of Figures 10, 11, 12, and 13 compare our algorithm against
synthetichiasedrandom walk data, where values were muchthe exact caching algorithm of [WJH97] for SUM queries
more likely to go up than down, using uncentered interval®executed ever, € {0.5, 1,2, 5} seconds. Foeach run, we
improved performance slightly over using centered intervalsfirst determined the best setting for parametén the exact
A second unsuccessful variation is to use approximationsaching algorithm. Thus we changed the value: pvhich
that become more approximate over time. In this paper ouvaried from3 to 45, between runs, whereas all of our own
approximations are intervdls, H] whose endpoints are con- parameters remained fixed: = 1, iy = 1K, andr, €
stant with respect to time. A more general approach is tq 1K, co}. Figures 10 and 11 show the results for a cache
make bothL and H functions of timet. We ran experi- large enough to store all approximate values<{ 50), with
ments that showed that using intervals whose width increasest factorp = 1 andp = 4, respectively. Figures 12 and 13
with time proportionately té= or¢3 resulted in worse per- show the results for a small cache of size- 20, again with
formance than using constant intervals, both for the networl = 1 andp = 4 respectively.
monitoring data and unbiased synthetic random walk data. The performance of our algorithm with, = 79 almost
For biased random walk data (as described in the previousrecisely matches the exact caching algorithmder all work-
paragraph), the best interval functions turned out to be thosads, cache sizes, and cost configurations tested. If we set
having both endpointsincrease linearly with tinigt) = &-¢ T« = o0, our algorithm offers a significant performance
andH(t) = k - t, where the constarit > 0 is adjusted to improvement for workloads not requiring exact precision, at
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the expense of a slight performance degradation for exacend update patterns. These projections are based on past ob-
precision workloads in the case of SUM queries, as showservations using a moving window scheme where the cache
in Figures 10 and 11. When MAX queries are used, our alkeeps track of thé& most recent reads and the source keeps
gorithm performs substantially better than exact caching betrack of thek most recent writes. Based on empirical trials,
cause values can be eliminated as candidates for the exabie window size: was set t@3.

maximum based on cached intervals, as discussed in Sec-The Divergence Caching algorithm works well in its in-
tion 4.4. When the cache size is limited, as in Figures 12ended environment, but it is not clear that it could be gener-
and 13, queries do not benefit much from nonzero precialized easily or effectively to incorporate update patterns as
sion constraints because inexact intervals tend to be evicteslell as frequency. On the other hand, we were able to adapt

from the cache. our algorithm to handle stale value approximations, and we
report on a preliminary performance comparison. It was a
4.7 Comparison with Divergence Caching simple matter to use numeric intervals to bound the number

of updates to the exact source value. We also needed to ad-

| i . i i .
n Section 1.3 we discussdtivergence CachingHSW94], just our formula for the cost factgrto p’ = % Recall that

which is the previous work most similar to ours. Recall thatin
Divergence Cachingstale value approximatiorare consid- N OUr setting, we sep = 2 - == based on a mathematical
ered, where precision is inversely proportional to the numbegnalysis (Appendix A). A S|m|lar (simplified) analysis of the
of updates to the source value not reflected inchehed ap-  value-initiated refresh probability in the Divergence Caching
proximation, independent of the actual updates. Rather thaetting yields’ = &:=. No other modifications to our algo-
adjusting the precision incrementally as our algorithm doestithm were necessary.

the Divergence Caching algorithm continually resets the pre- Figures 14 and 15 show an initial performance compari-
cision from scratch using detailed projections for data accesson of the two approaches. We varied the average precision
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cache may affect the precision of derived approximations in
other caches in the hierarchy. Finally, we plan to investi-
gate how our algorithms and approximations might be ap-
plied to other forms of data. For example, environments that
cache Web pages could use our approach as discussed in Sec-
tion 2.1, if the deviation between the exact copy at the source
and the stale cached replica can be measured numerically.
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