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Abstract

Caching approximate values instead of exact values presents
an opportunity for performance gains in exchange for de-
creased precision. To maximize the performance improve-
ment, cached approximations must be of appropriate preci-
sion: approximations that are too precise easily become in-
valid, requiring frequent refreshing, while overly imprecise
approximations are likely to be useless to applications, which
must then bypass the cache. We present a parameterized al-
gorithm for adjusting the precision of cached approximations
adaptively to achieve the best performance as data values,
precision requirements, or workload vary. We consider in-
terval approximations to numeric values but our ideas can be
extended to other kinds of data and approximations. Our al-
gorithm strictly generalizes previous adaptive caching algo-
rithms for exact copies: we can set parameters to require that
all approximations be exact, in which case our algorithm dy-
namically chooses whether or not tocache each data value.

We have implemented our algorithm and tested it on syn-
thetic and real-world data. A number of experimental results
are reported, showing the effectiveness of our algorithm at
maximizing performance, and also showing that in the spe-
cial case of exact caching our algorithm performs as well as
previous algorithms. In cases where bounded imprecision is
acceptable, our algorithm easily outperforms previous algo-
rithms for exact caching.

1 Introduction

Adaptive data caching, e.g., [FC92, WJH97], plays a criti-
cal role in the performance of distributed information sys-
tems (such as the World-Wide Web) by adjusting the caching
strategy dynamically as conditions change. Cachingapprox-
imate valuesinstead of exact values presents an opportunity
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for further performance gains in exchange for decreased pre-
cision,e.g., [ABGMA88, BGM92, BP93, HSW94, KKO+98,
OW00, PL90, WXCJ98]. However, naively choosing what
appear to be good approximate values can result in perfor-
mance gains that are a factor of two (or more) less than the
gains achievable when approximate values are chosen care-
fully, without any improvement in precision. This paper fo-
cuses on the problem of setting the precision ofcached ap-
proximate values dynamically and adaptively to achieve the
best possible performance. Now let us motivate the problem
somewhat formally, but still abstractly. More concrete details
will be given in Section 2 and beyond.

1.1 Approximate Caching and Querying

An approximate data caching environmenthas one or more
data sources, S1; : : :Sn. EachSi hosts a setVi of exact data
values. Each exact valueV 2 Vi may be cached as anap-
proximationby zero or morecachesC1; C2; : : :Cm, so each
cacheCj may hold an approximationAj to the exact value
V . Whenever the value ofV changes toV 0, sourceSi ap-
plies a boolean testValid(Aj ;V

0) for each approximation
Aj cached by aCj, to decide whetherAj is still a valid ap-
proximation for the new valueV 0. If Valid(Aj ;V

0) evalu-
ates tofalse, the source creates a new approximationA0

j of
V 0 and transmits it toCj (a value-initiated refresh). Under
this protocol, caches are guaranteed to always contain valid
approximations, modulo communication overhead.

Typically, not all valid approximations have the same
precision, which we will represent by a nonnegative value
Prec(Aj ). At one extreme, an approximationAj of V hav-
ing Prec(Aj ) = 1 is an exact copy ofV . At the other ex-
treme, ifPrec(Aj ) = 0 , thenAj contains no information
aboutV . In general, an exact value can be approximated with
varying degrees of precision between0 and1. For example,
an integer value could be approximated by an interval, with
validity requiring the interval to contain the exact value, and
with the width of the interval determining the (inverse of) the
precision.

Cached approximate values are accessed byqueriesrun-
ning at a cache. If a query finds the precision offered by
an approximate valueAj to be insufficient, the query may
request the exact valueV from the remote sourceSi. The
source responds with the current exact valueV as well as a
new approximationA0

j to be used by subsequent queries. This
exchange is called aquery-initiated refresh.
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1.2 Maximizing Performance

Let us assume that our goal is to minimize overall network
traffic. Then, in an approximate data caching environment as
described in Section 1.1, we want to avoid both value- and
query-initiated refreshes as much as possible. The likelihood
that either type of refresh will occur depends on the precision
of the cached approximation. On one hand, value-initiated
refreshes are less likely to occur if the precision is low, since
low-precision approximations are likely to remain valid even
when the exact value fluctuates to some degree. On the other
hand, query-initiated refreshes are less likely to occur if the
precision is high, since queries are more likely to find the
precision sufficient and not request the exact value from the
source. Although the likelihood ofeach type of refresh can
be controlled by adjusting the precision, decreasing the like-
lihood of one type of refresh increases the likelihood of the
other. Therefore, it is not obvious how best to set the preci-
sion of cached approximations so as to minimize the overall
cost incurred by refreshes of both types.

We will present a parameterized algorithm for adjusting
the precision of cached approximations adaptively to achieve
the best performance as data values, precision requirements,
and/or overall workload vary. The specific problem we ad-
dress considers interval approximations to numeric values,
but our ideas can be extended to other kinds of data and ap-
proximations, as discussed briefly in Sections 2.1 and 5. Our
algorithm adjusts the precision of each cached approxima-
tion independently, and it strictly generalizes previous adap-
tive caching algorithms for exact copies (e.g., [WJH97]): we
can set parameters to require that all approximations be exact,
in which case our algorithm dynamically chooses whether or
not to cache each data value. We have implemented our algo-
rithm and performed tests over synthetic and real-world data.
We report a number of experimental results, which show the
effectiveness of our algorithm at maximizing performance,
and also show that in the special case of exact caching our
algorithm performs as well as previous algorithms. In cases
where it is acceptable for queries to produce answers with
bounded imprecision, our algorithm easily outperforms pre-
vious algorithms for exact caching.

1.3 Related Work

The previous work most similar to ours isDivergence
Caching[HSW94], which also considers the problem of set-
ting the precision of approximate values in a caching envi-
ronment. In their setting, precision is based on number of up-
dates to source values and not on the values themselves—the
precision of a cached approximation is inversely proportional
to the number of updates since the lastcache refresh (referred
to as astale value approximation). The Divergence Caching
algorithm proposed in [HSW94] works well in their environ-
ment, but does not generalize easily to the kinds of approx-
imations we consider, which are based on the magnitude of

source updates instead of their frequency. A more thorough
comparison is given in Section 4.7, where we discuss the dif-
ferences between our work and Divergence Caching in more
detail, and show performance results indicating that our ap-
proach modestly outperforms Divergence Caching when we
specialize ours to the stale value approximations of [HSW94].

No other work that we know of addresses precision set-
ting of cached approximate values while subsuming exact
caching techniques. The work on caching approximate values
in Interval Relations[BP93], TRAPP[OW00], Epsilon Seri-
alizability [PL90], andTACT [YV00] does not focus on the
problem of how to set precision optimally. InQuasi-Copies
[ABGMA88] and theDemarcation Protocol[BGM92], pre-
cision cannot be adjusted dynamically. Work onMoving Ob-
jects Databases[WCD+98] considers setting precision of
cached approximations, but queries are not permitted to re-
quest exact values from sources so remote read costs are not
taken into account. Conversely, inSoft Caching[KKO+98],
updates to the exact source value are not considered, so value-
initiated refreshes are not considered when setting precision.

1.4 Outline of Paper

The remainder of the paper is structured as follows. In Sec-
tion 2 we introduce the numeric data values and approxima-
tions we consider, and we describe our adaptive precision-
setting algorithm. We justify our algorithm mathematically
in Section 3. In Section 4 we describe our simulation en-
vironment and test data sets, then present our performance
results. We first justify empirically our claim from Section 3
that our algorithm converges to optimal performance, by con-
sidering steady-state synthetic data. We then switch to real-
world data, finding the best parameter settings to maximize
the performance of our algorithm under dynamically chang-
ing conditions. Next we demonstrate that our algorithm per-
forms as well as previous algorithms in the special case of ex-
act caching, and outperforms exact caching algorithms when
exact precision is not required. Finally, we compare our algo-
rithm against Divergence Caching. In Section 5 we conclude
and discuss avenues for future work.

2 Setting Interval Precision Adaptively

In this section we describe our algorithm for setting the preci-
sion of interval approximationsto numeric values. Our ideas
can be extended to other types of data and approximations,
as discussed briefly at the end of this section. An interval ap-
proximation[L;H] is a valid approximation (recall Section
1.1) of a numeric valueV , i.e., Valid([L;H ];V ), if V lies in
the interval,i.e., L � V � H. The precision is the reciprocal
of the width of the interval:Prec([L;H ]) = 1

H�L
. At one ex-

treme, a zero-width interval contains only the exact value and
thus has infinite precision. In the other extreme, an interval
of infinite width gives no information about the exact value
and thus has zero precision. We assume that intervals remain
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constant until a refresh occurs. Although intervals that vary
as a function of time are more general, we have found em-
pirically that they are not particularly helpful, as discussed in
Section 4.5.

Whenever the precisionPrec([L;H ]) of a cached interval
is not adequate for a query running at thecache,i.e., the inter-
val is too wide, the query initiates a refresh by requesting the
exact value from the source. (For examples of the kinds of
queries that would run over approximate cached values with
precision requirements, see,e.g., [OW00, FMP+00].) The
source responds with the current exact value as well as a new
interval[L0;H0] to be used by subsequent queries. The cost
incurred during a query-initiated refresh will be denotedCqr.
A value-initiated refresh incurs costCvr, and occurs when-
ever the exact valueV at a data source exceeds its interval
[L;H] in some cache, causingValid([L;H ];V ) to become
false. Notice that value-initiated refreshes are never required
for intervals of infinite width (H � L = 1). Conversely,
when an interval has zero width (H � L = 0), then a value-
initiated refresh occurs every timeV changes.

Both types of refreshes (value- and query-initiated) pro-
vide an opportunity for the source to adjust the interval be-
ing cached. For now let us assume that whenever the source
provides a new interval to the cache, the interval is centered
around the current exact value. (Uncentered intervals are con-
sidered in Section 4.5, and like time-varying intervals they
usually turn out not to be helpful.) Therefore, an approxi-
mation for a valueV is uniquely determined by the interval
widthW . The objective in selecting a good interval width is
to avoid the need for future refreshes, since we want to mini-
mize communication cost. To avoid value-initiated refreshes,
the interval should be wide enough to make it unlikely that
modifications to the exact value will exceed the interval. On
the other hand, to avoid query-initiated refreshes, the interval
should be as narrow as possible. As discussed in Section 1.2,
since decreasing the chance of one type of refresh increases
the chance of the other, it is not obvious how best to choose
an interval width that minimizes the total probability that a
refresh will be required.

Bothof the factors that affect the choice of intervalwidth—
the variation of data values (which causes value-initiated
refreshes) and the precision requirements of user queries
(which cause query-initiated refreshes)—are difficult to pre-
dict, so we propose an adaptive algorithm that adjusts the
widthW as conditions change. The overall strategy is as fol-
lows. First start with some value forW . Each time a value-
initiated refresh occurs (a signal that the interval was too nar-
row), increaseW when sending the new interval. Conversely,
each time a query-initiated refresh occurs (a signal that the in-
terval was too wide), decreaseW . This strategy, illustrated in
Figure 1, finds a middle ground between very wide intervals
that the value never exceeds yet are exceedingly imprecise,
and very narrow intervals that are precise but need to be re-
freshed constantly as the value fluctuates.
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Figure 1: Adaptive precision-setting algorithm.

We now define our algorithm precisely. The algorithm re-
lies on five parameters as follows. The first two are functions
of the particular distributed caching environment, while the
remaining three can be set to tune the algorithm.

(1) the value-initiated refresh costCvr
(2) the query-initiated refresh costCqr
(3) theadaptivity parameter� � 0
(4) thelower threshold�0 � 0
(5) theupper threshold�1 � 0

These parameters and others we will introduce later are sum-
marized in Table 1. Let us define acost factor� as� = 2�Cvr

Cqr
.

The cost factor is based on the ratio of the two refresh costs
and is used to determine how often to grow and shrink the
interval widthW as refreshes occur. The mathematical justi-
fication for multiplying the ratio by2 is given in Section 3.

Our algorithm sets the new widthW 0 for a refreshed in-
terval based on the old widthW during each value- or query-
initiated refresh as follows. Recall that� � 0 is the adaptivity
parameter.

� value-initiated refresh:
with probabilityminf�; 1g, setW 0  W � (1 + �)

� query-initiated refresh:
with probabilityminf1

�
; 1g, setW 0  W

(1+�)

In Section 3 we will justify mathematically why these are the
optimal probability settings for width adjustment. Intuitively,
the idea is to continually adapt the interval width to balance
the likelihood of the two types of refreshes. However, if two
value-initiated refreshes are more expensive than one query-
initiated refresh,i.e., � > 1, a larger width is preferred, so
the width is not decreased on every query-initiated refresh.
Conversely, if one query-initiated refresh is more expensive
than two value-initiated refreshes,i.e., � < 1, a smaller width
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Symbol Meaning Note

Cvr cost of a value-initiated refresh used to determine cost factor�
Cqr cost of a query-initiated refresh used to determine cost factor�
� cost factor defined as2 � Cvr

Cqr
determines width adjustment probability


 cost rate (per time step) metric our algorithm minimizes
W width of a cached approximation set adaptively by our algorithm
W � width that minimizes the cost rate
 our algorithm converges toW = W �

� adaptivity parameter how much to adjust width
�0 lower threshold widths below�0 are set to0
�1 upper threshold widths above�1 are set to1
Pvr probability of a value-initiated refresh increases with precision
Pqr probability of a query-initiated refresh decreases with precision
� precision constraint of a query parameter to experiments

�avg average precision constraint of queries parameter to experiments
�� variation of precision constraints across queriesparameter to experiments
�min minimum precision constraint derived from�avg and��
�max maximum precision constraint derived from�avg and��
n number of data sources parameter to experiments
� cache size (in number of approximate values) parameter to experiments
Tq time period between queries parameter to experiments
s random walk step size used for analysis in Appendix A

Table 1: Model and algorithm symbols.

is preferred, so the width is not increased on every value-
initiated refresh. Whenever the width is adjusted, the mag-
nitude of the adjustment is controlled by the adaptivity pa-
rameter�.

Now let us consider the lower and upper thresholds,�0
and �1. When our algorithm computes an interval width
W < �0, we instead setW = 0, and when we compute a
W � �1, we instead setW = 1. The purpose of these
thresholds is to accommodateboundary cases where either
exact caching (W = 0) or no caching (W = 1) is appro-
priate, since without this mechanism the width would never
actually reach these extreme values. The source still retains
the original width, and uses it when setting the next width
W 0. As part of our performance study we describe how to set
these parameters and others.

If a cache does not have enough space to store an approx-
imation for every data value requested, it evicts the widest
intervals, since they are the least precise approximations and
thus contribute least to overall cache precision. (This deci-
sion also is based on original widths, not on0 or1 widths
due to thresholds.) Caches do not need to notify sources when
approximations are evicted. If an evicted approximation in-
curs a value- or query-initiated refresh, the modified approx-
imation may be cached and another evicted, or the modified
approximation may still be the widest and remain uncached.

2.1 Other Types of Data and Approximations

We have presented our algorithm specifically for interval ap-
proximations to numeric source values, but other types of

source data and approximations can use a similar numeric
approach. For example, non-numeric data can be approxi-
mated by stale versions, where precision is quantified as a
numeric measure of the deviation between the exact value and
the cached approximation. Then our algorithm can be used to
set maximum deviations adaptively in order to optimize over-
all performance. In Section 4.7 we apply our algorithm in
this fashion to emulate Divergence Caching [HSW94], where
the deviation metric is the number of updates to the exact
value not reflected in the cached approximation. Further ex-
ploration of this general topic is left as future work.

3 Justification of Algorithm

In this section we justify our algorithm mathematically. Let
Pvr andPqr represent the probability that a value- or query-
initiated refresh (respectively) will occur ateach time step.
Then the expectedcost rateper time step
 = Cvr � Pvr +
Cqr � Pqr, whereCvr andCqr are the costs of value- and
query-initiated refreshes (respectively) as introduced in Sec-
tion 2.

For a given cached approximation with widthW , the prob-
ability of each type of refresh can be written asPvr = K1

W2

andPqr = K2 �W , whereK1 andK2 aremodel parame-
ters that depend on the nature of the data and updates, the
frequency of queries, and the distribution of query precision
requirements. In Appendix A we justify these equations in
detail for the case of interval approximations. However, the
important—and intuitive—point is that, for all kinds of data
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and approximations, the value-initiated refresh probability in-
creases with precision (i.e., with a smallerW ), while the
query-initiated refresh probability decreases with precision.

Now that we know howPvr andPqr depend onW , we can
rewrite our cost rate
 in terms ofW : 
(W ) = Cvr �

K1

W2 +
Cqr �K2�W . Our goal then is to find the value forW that min-
imizes this expression, which is achieved by finding the root
of the derivative. Using this approach, the optimal value for
W isW � = (2� Cvr

Cqr
�K1

K2

)(
1

3
) = (��K1

K2

)(
1

3
), where� = 2�Cvr

Cqr

is the cost factor we defined in Section 2. Unfortunately, set-
ting the interval widthW based on this formula forW � is
difficult unless update behaviors and query/updateworkloads
are stable and known in advance, since model parametersK1

andK2 depend on these factors. One approach is to moni-
tor these factors at run-time to setK1 andK2 appropriately,
which is similar to the approach taken by Divergence Caching
[HSW94]. However, we will see that our approach achieves
the same optimal interval widthW � without the monitoring
complexity or overhead.

Our approach is motivated by the observation that��Pvr =
Pqr whenW = W � = (� � K1

K2

)(
1

3
). Let us first consider

the special case where� = 1. (We will discuss other values
for � momentarily.) In this special case, the optimal value
for W occurs exactly when the two types of refreshes are
equally likely. Our algorithm takes advantage of this obser-
vation by dynamically adjusting the interval widthW so as to
equate the likelihood of each type of refresh, thereby discov-
ering the optimal widthW �. Our algorithm adjusts the width
W based solely on observing refreshes as they occur, with-
out the need for storing history or for direct measurements of
updates, queries, or precision requirements. Furthermore, as
conditions change over time, our algorithm adapts to always
moveW toward the optimal widthW �. Theadaptivity pa-
rameter� � 0, introduced in Section 2, controls how quickly
the algorithm is able to adapt to changing conditions.

The graph in Figure 2 illustrates the principle behind our
algorithm. Still considering� = 1, it plots the cost rate

and refresh probabilitiesPvr andPqr as functions of the in-
terval widthW . The model parametersK1 andK2 are fixed
asK1 = 1 andK2 = 1

200 . (These values were set based
roughly on a query period of10 seconds and an average pre-
cision constraint of10. Changing these values only shifts the
graph.) Notice that the widthW � that minimizes the cost
rate
 corresponds exactly to the point where the curves for
Pvr andPqr cross. Therefore, by equalizing the chance that
refreshes will be either value- or query-initiated, the optimal
widthW � is discovered.

Now consider the general case where� can have any value.
Our algorithm still discovers the optimal widthW �. Recall
that the optimal width occurs when� � Pvr = Pqr . Our al-
gorithm achieves this condition by not always adjusting the
interval width on every refresh. In cases where� < 1, it is
desirable for value-initiated refreshes to be more likely than
query-initiated refreshes. Thus, the width is decreased on ev-

W
�

Pqr
Pvr




interval widthW

re
fr

e
sh

p
ro

b
a

b
ili

tie
s

an
d

co
st

ra
te


2018161412108642

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 2: Cost rate and refresh probabilities when� = 1 as
functions of interval width.

ery query-initiated refresh but only increased with probabil-
ity � on value-initiated refreshes. Conversely, in cases where
� > 1, the width is increased on every value-initiated refresh
but only decreased with probability1

�
on query-initiated re-

freshes.

4 Performance Study

In this section we present the results of a performance study
of our algorithms, and of related algorithms, using synthetic
data as well as real-world data taken from a network monitor-
ing application. We first describe our simulation environment
in Section 4.1. In Section 4.2 we present results demonstrat-
ing empirically that our algorithm does achieve optimal per-
formance in the steady state, as motivated mathematically in
Section 3. We introduce our real-world data set in Section 4.3,
and in Section 4.4 we present results indicating how best to
set the tunable parameters of our algorithm. In Section 4.5
we discuss some variations of our algorithm that proved to be
unsuccessful in most cases. In Section 4.6 we show that our
algorithm precisely matches the performance of adaptive ex-
act caching when exact precision is required, and outperforms
exact caching when exact precision is not required. Finally,
in Section 4.7 we discuss how our algorithm can be applied
in the Divergence Caching [HSW94] setting, and we empiri-
cally compare the two approaches.

4.1 Simulator Description

To study our adaptive algorithm empirically, we built a dis-
crete event simulator of an environment withn data sources
and one cache. Each source holds one exact numeric value,
and the cache can hold up to� � n interval approximations
to exact source values. In our synthetic experiments, exact
values are updated every time unit (which we set to be one
second) with a specified update distribution. In our real-world
experiments, the timing and values of updates are generated
from the network performance data we are using. For both
types of experiments, a query is executed at the cache every
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Tq seconds. We will describe how queries and query pre-
cision requirements are generated momentarily, but it is im-
portant to note that our algorithm is not specialized to any
particular type of query. The only assumption made by our
algorithm is that for each approximate value, the probability
of a query-initiated refresh is proportional to the width of the
approximation.

The queries we generate attempt to balance generality
and practicality and are inspired by the “bounded aggregate”
queries in [OW00]. Each query asks for either the SUM or
MAX of a set of approximate values in the cache, where
the query result is itself an interval approximation. Each
query is accompanied by aprecision constraint� � 0 spec-
ifying the maximum acceptable width of the result.1 Preci-
sion constraints are generated based on parameters�avg (av-
erage precision constraint) and�� (precision constraint vari-
ation): they are sampled from a uniform distribution between
�min = �avg � (1 � ��) and�max = �avg � (1 + ��). Us-
ing the algorithms in [OW00], from the query type, precision
constraint, and approximate data, a (possibly empty) subset
of the approximations are selected for query-initiated refresh,
after which the desired precision for the query result is guar-
anteed. Again, it is important to note that our algorithm is
not aware of or tuned to these query types or this method of
expressing precision requirements—they are used solely to
generate a realistic and interesting query load.

4.2 Optimality of Algorithm

Our first experiment was a simple one to verify the correct-
ness of our basic model and the optimality of our algorithmon
steady-state data. We used synthetic data consisting of only
one source data item, whose value performs a random walk
in one dimension: every second, the value either increases or
decreases by an amount sampled uniformly from[0:5; 1:5].
We simulated a workload having query periodTq = 2 sec-
onds, average precision constraint�avg = 20, and precision
constraint variation�� = 1, in an environment with� = 1.
The query type (SUM or MAX) is irrelevant since we have
only one data item.

Our goal was to establish the correctness of our model for
the refresh probabilitiesPvr andPqr, i.e., to show that as the
data undergoes a random walkPvr andPqr are proportional
to 1

W2 andW respectively, and for� = 1, equalizingPvr and
Pqr maximizes performance. Thus, we fixed interval width
W for each run (i.e., we turned off the part of our algorithm
that adjusts widths dynamically), but variedW across runs.
We measured the average rate at which value- and query-
initiated refreshes occurred, taking their reciprocals to obtain
Pvr andPqr, respectively. Measurements taken during an

1Note that queries specify absolute precision constraints and not
relative ones, which would factor in the magnitude of the result.
Converting relative precision constraints to absolute ones is dis-
cussed in [OW00, YV00], but full treatment of relative precision
constraints is a topic of future work.

W �
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Figure 3: Measured cost rate and refresh probabilities when
� = 1 as functions of interval width.

initial warm-up period were discarded, as in all subsequent
reported experiments.

The results are shown in Figure 3, which bears a striking
resemblance to Figure 2. The measured values forPvr and
Pqr are indeed proportional to1

W2 andW , respectively, and
the measured cost rate
 for different values ofW also is
shown in Figure 3. From this graph we verify empirically
that, in the� = 1 case, the minimum cost rate does indeed
occur when the two refresh probabilities are equal.

We then ran the same experiment letting our algorithm ad-
just interval widths. The algorithm converged toW = 3:11,
resulting in performance within1% of the optimalW � shown
in Figure 3. We further evaluated the optimality of our algo-
rithm with all combinations ofTq 2 f1; 2g, �avg 2 f10; 20g,
and� 2 f1; 4g. In all of these scenarios, our algorithm con-
verged to a width resulting in performance within5% of op-
timal.

4.3 Our Algorithm in a Dynamic Environment

To test our adaptive algorithm under real-world dynamic con-
ditions, we used publicly available traces of network traffic
levels between hosts distributed over a wide area during a
two hour period [PF95]. Foreach host, the data values we
use represent a one minute moving window average of net-
work traffic every second, and we picked the50 most heavily
trafficked hosts as our simulated data sources. Traffic levels at
these hosts ranged from0 to 5:2 � 106 bytes per second. The
simulated cache keeps an approximation of the traffic level
for at most� of the n = 50 sources, where� is a param-
eter of the algorithm that is set to� = 50 unless otherwise
stated. Queries are executed at the cache everyTq seconds,
computing either the MAX or SUM of traffic over10 ran-
domly selected sources. In all of our experiments, measure-
ments of the overall cost per unit time
 were taken after an
initial warm-up period.
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Figure 4: Source value and cached interval over time for
small precision constraints.
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Figure 5: Source value and cached interval over time for large
precision constraints.

In our experiments, we consider refresh costsCvr and
Cqr that are intended to model network behavior under com-
mon consistency models and concurrency control schemes,
although our algorithm handles arbitrary cost values. Usu-
ally, performing a remote read requires one request message
and one response message, soCqr = 2. If two-phase lock-
ing is used for cache consistency, thenCvr = 4 since two
round-trips are required and thus� = 2 � 42 = 4. Otherwise, if
updates are simply sent to thecache,e.g., in a multiversion or
loosely consistent concurrency control scheme, thenCvr = 1
and� = 2 � 12 = 1. Thus, most of our experiments consider
the� 2 f1; 4g cases.

Figures 4 and 5 depict the exact value at one of the data
sources for a short segment of a run, along with the cached
interval approximation as the value and interval change over
time. For illustrativepurposes we selected a portion of the run
where a host became active after a period of inactivity. These
figures illustrate the interval widths selected by our adaptive
algorithm with parameters� = 1, �0 = 0, and�1 = 1,
when SUM queries are executed every second (i.e., Tq = 1)
and � = 1. Figure 4 uses average precision constraint
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Figure 6: Effect of varying the adaptivity parameter�.

�avg = 50K, while Figure 5 uses average precision constraint
�avg = 500K.2 When the average precision constraint is
small, as in Figure 4, narrow intervals are favored. (To satisfy
the precision constraints of SUM queries, the width of each
of the10 individual intervals being summed should be on the
order of �avg10

= 50K
10

= 5K [OW00].) When the average
precision constraint is large, as in Figure 5, wide intervals (on
the order of�avg10 = 500K

10 = 50K) are favored.

4.4 Setting Parameters

Next, we describe our experiments whose goal was to de-
termine good values for the adaptivity parameter� and the
lower and upper thresholds�0 and�1. First, fixing�0 = 0
and�1 = 1 (meaning we never reset bound widths based
on thresholds), we studied the effect of the adaptivity pa-
rameter� on performance. Figure 6 shows the results. We
used SUM queries and varied�, considering several differ-
ent settings forTq , �min, �max, and �. In this and sub-
sequent experiments, the y-axis cost rate
 is the average
for the entire run. All combinations ofTq 2 f0:5; 1; 6g,
(�min; �max) 2 f(50K; 150K); (0; 100K)g, and� 2 f1; 4g
are shown. From these experiments and similar experiments
using MAX queries, we determined that a good overall set-

2In the remainder of this section we abuse the abbreviationK

for �103.
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Figure 7: Performance of settings for�1, query period
Tq = 0:5.

ting for � is 1. Recall from Section 2 that using� = 1, the
width W is doubled on value-initiated refreshes and halved
on query-initiated refreshes.

We now address setting the lower threshold�0. Recall that
the purpose of the lower threshold�0 is to force the interval
width of an approximation to0 when it becomes very small.
A nonzero�0 parameter is necessary for queries that ask for
exact answers,i.e., have� = 0: with �0 = 0, exact values
would not be cached, so such queries would always require
source refreshes. It turns out that the performance under a
workload with �avg = 0 is not very sensitive to the value
of �0, as long as�0 > 0. However, setting�0 too large can
adversely affect queries with small, nonzero precision con-
straints, since nonzero intervals of width below�0 are not per-
mitted. Therefore, toaccommodate queries with a variety of
precision constraints,�0 should be set to a small positive con-
stant� less than the smallest meaningful nonzero precision
constraint. For our network data, differences in precision of
� = 1K are not very significant, so we set�0 = � = 1K.
This setting for�0 has only a small impact on queries even
with moderately large precision constraints. For example, for
precision constraints between�min = 5K and�max = 15K,
the performance degradation is less than1% (for Tq = 1,
�1 =1, and� = 1).

Having determined good values for� and�0, we now con-
sider the upper threshold�1. Setting�1 to a small value
improves performance for high-precision workloads since it
eliminates caching of approximations that are not useful to
queries. However, a small�1 degrades the performance of
low-precision workloads,i.e., those having large precision
constraints. To illustrate this tradeoff, in Figures 7, 8, and 9
we plot performance as a function of the average precision
constraint�avg. Each graph corresponds to a different query
periodTq and shows the performance using three different
settings of�1, holding all other parameters fixed:� = 1,
�� = 0:5, �0 = 1K, and� = 1. Workloads having�avg = 0
perform best when�1 = �0, which guarantees that all inter-
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Figure 8: Performance of settings for�1, query period
Tq = 1.
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Figure 9: Performance of settings for�1, query period
Tq = 2.

vals are treated as having either no width (W = 0) or infinite
width (W = 1). That is, either the exact value is cached or
effectively no value is cached at all. Since queries with� = 0
require exact precision, cached intervals that are not exact are
of no use. Note that whenever we set�1 = �0, performance
is independent of�avg as illustrated by the horizontal lines in
Figures 7, 8, and 9. For workloads having a range of different
precision constraints, the upper threshold�1 should be set
to1.

Although these guidelines for setting the upper thresh-
old �1 apply to most types of queries including our SUM
queries, there are exceptions. For example, values can be
eliminated as candidates for the exact maximum based on in-
tervals of finite, nonzero width [OW00]. Therefore, for MAX
queries, approximate values can be useful to cache even when
exact precision is required in all query answers. We have ver-
ified experimentally that for MAX queries, setting�1 = 1
gives the best performance for all values of�avg , including
�avg = 0.

In summary, with parameter settings� = 1, �0 = �,
and�1 = 1, our algorithm adaptively selects intervals that
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give the best possible performance under dynamically vary-
ing conditions. When�� = 0, each query has the same pre-
cision constraint, so it is easier for the algorithm to discover
the best precision for cached intervals. On the other hand, if
�� is large, each query has a different precision constraint,
making it harder to find interval widths that work well across
multiple queries. Fortunately, it turns out that the degrada-
tion in performance due to a wide distribution of precision
constraints is small. We verified that the performance of our
algorithm is not very sensitive to the precision constraint dis-
tribution for several different average precision constraints,
while holding the other parameters fixed:Tq = 1, �0 = 1K,
�1 = 1, and� = 1. When�avg = 100K, the difference in
performance between a workload with�� = 0 and�� = 1
is only 1:9%. When�avg = 10K, the difference is5:5%.
When�avg = 5K, the difference is less than1%.

4.5 Unsuccessful Variations

We experimented with a number of variations to our algo-
rithm that seemed intuitive but proved unsuccessful in prac-
tice: using uncentered intervals, using intervals that vary as
functions of time, and adjusting intervals based on the refresh
history. We report briefly on our experience with each varia-
tion.

An interval is uncenteredif, at refresh time, the inter-
val does not bound the exact value symmetrically. Thus,
two width values are maintained instead of one: an upper
width and a lower width. The source independently adjusts
the upper and lower widths as follows. Each time a value-
initiated refresh occurs due to the value exceeding theupper
bound, then with probabilityminf�; 1g the upper width is in-
creased. Conversely, when the value drops below the lower
bound, with the same probability the lower width is widened.
Whenever a query-initiated refresh occurs, with probability
minf1

�
; 1g both widths are decreased. In our experiments

with both our synthetic random walk data and our real-world
network monitoring data, the uncentered strategy performed
worse than the centered strategy. However, in the case of
syntheticbiasedrandom walk data, where values were much
more likely to go up than down, using uncentered intervals
improved performance slightly over using centered intervals.

A second unsuccessful variation is to use approximations
that become more approximate over time. In this paper our
approximations are intervals[L;H]whose endpoints are con-
stant with respect to time. A more general approach is to
make bothL andH functions of timet. We ran experi-
ments that showed that using intervals whose width increases
with time proportionately tot

1

2 or t
1

3 resulted in worse per-
formance than using constant intervals, both for the network
monitoring data and unbiased synthetic random walk data.
For biased random walk data (as described in the previous
paragraph), the best interval functions turned out to be those
having both endpoints increase linearly with time:L(t) = k�t
andH(t) = k � t, where the constantk > 0 is adjusted to

match the average rate at which the data value increases. But,
for general scenarios where the data does not predictably in-
crease or decrease, constant intervals are preferred. Further-
more, constant intervals are much easier to index [KPS00]
than intervals that are functions of time. Finally, time-varying
intervals can be tricky to implement, especially when an up-
per bound decreases or a lower bound increases with time,
since an approximation can become invalid based on time
alone.

A third variation we tried is to have the algorithm consider
the pastr refreshes when deciding how to adjust the inter-
val. In this variation, the width is increased if the majority of
ther most recent refreshes were value-initiated. Otherwise,
the width is decreased. We also experimented with various
techniques to weight recent refreshes withinr more heavily.
However, none of these schemes outperformed the algorithm
presented in this paper, which effectively setsr = 1 making
it the most adaptive and simplest to implement.

4.6 Subsumption of Exact Caching

In this section we compare our algorithm against a state-of-
the-art adaptive algorithm for deciding whether to cache exact
replicas, which we derive from the replication algorithm in
[WJH97]. In this algorithm, the number of requested readsr

and writesw to each data value are counted. Thecaching
strategy for every data value is reevaluated everyx reads
and/or writes to the value,i.e., wheneverr + w � x. At
reevaluation, the projected cost of not caching,i.e., the cost
of performingr remote readsCnc = r � Cqr is computed.
Similarly, the projected cost of caching,i.e., the cost of per-
forming w remote writes,Cc = w � Cvr is computed. The
value is cached if and only ifCc < Cnc. If the cache has lim-
ited space, values having the lowest cost differenceCnc � Cc
are evicted and the source is notified of the eviction. Under
dynamic conditions, it has been shown that this adaptive exact
caching strategy continually approaches the optimal strategy
[WJH97].

Figures 10, 11, 12, and 13 compare our algorithm against
the exact caching algorithm of [WJH97] for SUM queries
executed everyTq 2 f0:5; 1; 2; 5g seconds. Foreach run, we
first determined the best setting for parameterx in the exact
caching algorithm. Thus we changed the value ofx, which
varied from3 to 45, between runs, whereas all of our own
parameters remained fixed:� = 1, �0 = 1K, and �1 2
f1K;1g. Figures 10 and 11 show the results for a cache
large enough to store all approximate values (� = 50), with
cost factor� = 1 and� = 4, respectively. Figures 12 and 13
show the results for a small cache of size� = 20, again with
� = 1 and� = 4 respectively.

The performance of our algorithm with�1 = �0 almost
precisely matches the exact caching algorithmunder all work-
loads, cache sizes, and cost configurations tested. If we set
�1 = 1, our algorithm offers a significant performance
improvement for workloads not requiring exact precision, at
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Figure 10: Comparison against exact caching,� = 1 and
� = 50.
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Figure 11: Comparison against exact caching,� = 4 and
� = 50.

the expense of a slight performance degradation for exact-
precision workloads in the case of SUM queries, as shown
in Figures 10 and 11. When MAX queries are used, our al-
gorithm performs substantially better than exact caching be-
cause values can be eliminated as candidates for the exact
maximum based on cached intervals, as discussed in Sec-
tion 4.4. When the cache size is limited, as in Figures 12
and 13, queries do not benefit much from nonzero preci-
sion constraints because inexact intervals tend to be evicted
from the cache.

4.7 Comparison with Divergence Caching

In Section 1.3 we discussedDivergence Caching[HSW94],
which is the previous work most similar to ours. Recall that in
Divergence Caching,stale value approximationsare consid-
ered, where precision is inversely proportional to the number
of updates to the source value not reflected in thecached ap-
proximation, independent of the actual updates. Rather than
adjusting the precision incrementally as our algorithm does,
the Divergence Caching algorithm continually resets the pre-
cision from scratch using detailed projections for data access
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Figure 12: Comparison against exact caching,� = 1 and
� = 20.
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Figure 13: Comparison against exact caching,� = 4 and
� = 20.

and update patterns. These projections are based on past ob-
servations using a moving window scheme where the cache
keeps track of thek most recent reads and the source keeps
track of thek most recent writes. Based on empirical trials,
the window sizek was set to23.

The Divergence Caching algorithm works well in its in-
tended environment, but it is not clear that it could be gener-
alized easily or effectively to incorporate update patterns as
well as frequency. On the other hand, we were able to adapt
our algorithm to handle stale value approximations, and we
report on a preliminary performance comparison. It was a
simple matter to use numeric intervals to bound the number
of updates to the exact source value. We also needed to ad-
just our formula for the cost factor� to �0 = Cvr

Cqr
. Recall that

in our setting, we set� = 2 � Cvr
Cqr

based on a mathematical
analysis (Appendix A). A similar (simplified) analysis of the
value-initiated refresh probability in the Divergence Caching
setting yields�0 = Cvr

Cqr
. No other modifications to our algo-

rithm were necessary.
Figures 14 and 15 show an initial performance compari-

son of the two approaches. We varied the average precision
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Figure 14: Comparison against Divergence Caching,Tq = 1.
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Figure 15: Comparison against Divergence Caching,Tq = 5.

constraint�avg (with �� = 1) for two different query pe-
riods Tq 2 f1; 5g. We set costsCvr = 1 andCqr = 2,
giving �0 = 0:5. For our algorithm we used� = 1, �0 = 1,
and�1 = 1 when�avg = 0 and�1 = 1 otherwise. For
the Divergence Caching algorithm we set the window size
k = 23. We also tried other values fork but no significant
performance improvements resulted. As can be seen, our al-
gorithm shows a modest performance improvement over Di-
vergence Caching when we specialize our algorithm to handle
stale value approximations.

5 Future Work

In this paper we have considered how to set the precision of
approximate values adaptively in dynamic data caching en-
vironments. As future work, we plan to investigate adap-
tive precision setting in symmetric replication architectures,
building on work on adaptive exact replication [WJH97] and
on replicating interval approximations [YV00]. We also plan
to explore algorithms for setting precision inmulti-leveldata
caching environments, where each data object resides on one
source and there is a hierarchy of caches (e.g., [Ink99]). With
multi-levelcaching, the precision of an approximation in one

cache may affect the precision of derived approximations in
other caches in the hierarchy. Finally, we plan to investi-
gate how our algorithms and approximations might be ap-
plied to other forms of data. For example, environments that
cache Web pages could use our approach as discussed in Sec-
tion 2.1, if the deviation between the exact copy at the source
and the stale cached replica can be measured numerically.
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A Estimating the Probability of Refresh

To determine the probability ofeach type of refresh, let us
consider a simplified model. First, we model the changing
data value as a random walk in one dimension. In the ran-
dom walk model the value either increases or decreases by
a constant amounts at each time step. A value-initiated re-
fresh occurs when the value moves out of the cached interval
approximation. Queries access the data everyTq time steps.
We assume each query accesses only one data value and is
accompanied by aprecision constraint� sampled from a uni-
form distribution between0 and�max. A query-initiated re-
fresh occurs when the cached interval's width is larger than a
query's precision constraint�. Although this model is simpli-
fied, it is useful for deriving formulas and demonstrating the
principles behind our algorithm. As we show empirically in
Section 4, our algorithm works well for real-world data under
a variety of query workloads and precision constraints.

Using our model, we now derive expressions for the value-
and query-initiated refresh probabilities ateach time step,
Pvr and Pqr respectively. These probabilities depend on
the nature of the data and updates, the frequency of queries,
and the distribution of precision constraints. The probabil-
ity of a query-initiated refresh at a given time step equals
the probabilityPq that a query is issued, multiplied by the
probabilityP�<W that the precision of the cached interval
does not meet the precision constraint of the query. Clearly,
the probabilityPq that a query occurs at each time step is
Pq =

1
Tq

. Recall that in our model, precision constraints are
uniformly distributed between0 and�max. Thus, as long as
0 � W � �max, P�<W = W

�max

. Putting it all together, we

havePqr = Pq � P�<W = W
Tq��max

. Therefore, the probabil-
ity of a query-initiated refresh is proportional to the interval
width: Pqr / W .

Determining a formula for the value-initiated refresh prob-
ability requires an analysis of the behavior of a random walk.
In the random walk model, aftert steps of sizes, the proba-
bility distribution of the value is a binomial distribution with
variances2 � t [GKP89]. Chebyshev's Inequality [GKP89]
gives an upper bound on the probabilityP that the value is
beyond any distancek from the starting point:P � t � ( s

k
)2.

If we let k = W
2 , and treat the upper bound as a rough ap-

proximation, we have the probabilityPvr that the value has
exceeded its interval aftert time steps:Pvr � t � (2�s

W
)2.

Therefore, the probability of a value-initiated refresh is pro-
portional to the reciprocal of the square of the interval width:
Pvr /

1
W2 .
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