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ABSTRACT 

 

THE ROLE OF ADAPTIVE STRESS RESPONSES IN HIV REPLICATION AND 

MACROPHAGE-MEDIATED NEUROTOXICITY 

 

Stephanie A. Cross 

Dennis L. Kolson, M.D., Ph.D. 

 

Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and 

neurodegeneration through persistent inflammation and neurotoxin release from infected and/or 

activated macrophages. Inflammation and immune activation within both the central nervous 

system (CNS) and periphery correlate with disease progression and morbidity in ART-treated 

individuals. Accordingly, drugs targeting these pathological processes are needed for effective, 

adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV infected 

monocyte-derived macrophages (HIV/MDM) release excitatory neurotoxins, we demonstrate that 

HIV infection dysregulates adaptive stress responses, including the antioxidant response and the 

unfolded protein response (UPR). HIV infected macrophages have dramatic reductions in heme 

oxygenase-1 (HO-1) levels. Activation of the antioxidant response attenuates HIV replication and 

restoration of HO-1 expression, specifically, reduces neurotoxin release from HIV/MDM, even 

with robust HIV replication. We propose that dysregulation of the antioxidant response during HIV 

infection drives macrophage-mediated neurotoxicity and that pharmacological inducers of the 

antioxidant response could serve as adjunctive neuroprotectants and HIV disease modifiers in 

ART-treated individuals. Additionally, we found that HIV infection activates the UPR in 

macrophages, increasing phosphorylated eIF2α in our in vitro system and macrophagic BiP in 

HAND frontal cortex. Pharmacological induction of the UPR, which attenuates viral replication, 

enhances macrophage-mediated neurotoxicity. Therefore, processes that induce the UPR in 

macrophages may enhance neurotoxin production and contribute to pathological processes 
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underlying HAND. Understanding how HIV infection affects adaptive stress responses and 

neurotoxin production pathways in the macrophage will improve our ability to develop effective 

adjunctive therapies for the neurological consequences of HIV infection.  
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At the end of 2009, an estimated 30.8 million adults and 2.5 million children were living with HIV 

globally (WHO, 2010). Current antiretroviral therapy (ART) regimens for HIV infection have 

greatly improved virological control and clinical outcomes in infected individuals. However, 

despite the efficacy of ART, the prevalence of HIV-associated neurocognitive disorders (HAND) 

has persisted, with prevalence and associated morbidity estimated at up to 50% (McArthur et al., 

2003; Robertson et al., 2007; Sacktor et al., 2002). While ART will remain the mainstay of HIV 

therapy, there is a need for adjunctive neuroprotective therapies that address the pathological 

processes persisting in ART-treated individuals. 

 

HIV-1 infection of the central nervous system (CNS) can result in cognitive, motor, and behavioral 

abnormalities, collectively known as HIV-associated neurocognitive disorders (HAND) (Antinori et 

al., 2007; McArthur et al., 2010). Pathological processes in both the brain and periphery, involving 

multiple cell types, contribute to the neurological complications of AIDS. Early in the course of 

infection, HIV traffics into the brain via infected monocytes and lymphocytes (Dunfee et al., 2006). 

Despite ART, HIV persists in the CNS in parenchymal microglia and perivascular macrophage 

reservoirs (Ho et al., 1985; Koenig et al., 1986; Petito et al., 1986). And because HIV cannot 

infect neurons, HIV-induced neuronal damage is mediated indirectly by the release of neurotoxins 

from infected and/or activated macrophages, microglia and astrocytes. In vitro and in vivo studies 

have identified viral proteins, pro-inflammatory cytokines, interferons, excitatory amino acids, 

phospholipids, and reactive oxygen species as neurotoxic factors produced by 

macrophages/microglia following HIV infection (Boven et al., 1999; Brenneman et al., 1988; Brew 

et al., 1995; Gelbard et al., 1993; Gelbard et al., 1994; Gendelman et al., 1998; Genis et al., 

1992; Jiang et al., 2001; Maragos et al., 2003; Scorziello et al., 1998; Song et al., 2003; 

Wesselingh et al., 1993). Furthermore, the severity of pre-mortem HAND correlates with 

increased numbers of microglia and macrophages in the CNS, supporting the hypothesis that 

these cell types are principal mediators of HIV-induced neurological impairment (Anthony et al., 

2005; Glass et al., 1995; Petito et al., 1986).  
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The persistence of HAND in individuals effectively controlled for systemic viral replication is 

incompletely explained, although recent evidence suggests that prolonged inflammation in both 

the CNS and periphery may be responsible (Ancuta et al., 2008; Brenchley et al., 2006b; Eden et 

al., 2007). Multiple pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis 

factor-alpha (TNF-α), and IL-6 are elevated in the CNS and/or CSF of patients with HAND (Achim 

et al., 1993; Foli et al., 1997; Oster et al., 1987; Perrella et al., 1992). The pro-inflammatory 

environment within the CNS is a result of cytokine release from immune activated astrocytes 

(Kramer-Hammerle et al., 2005; Sabri et al., 2003) and monocytes/macrophages stimulated by 

direct viral infection, shed viral proteins or proinflammatory mediators (Rappaport et al., 1999; 

Sundar et al., 1991). Inflammation can alter the permeability of the blood-brain barrier, enhance 

entry of infected monocytes into the CNS, and drive peripheral processes that contribute to the 

neurological complications of HIV. Accordingly, drugs targeting inflammatory-mediated processes 

in the CNS and systemic compartments are needed for effective, adjunctive therapy in HAND.  

 

Numerous physiological and pathological stimuli can initiate and/or propagate the inflammatory 

response. Of the many relevant pathways, this work focuses on the interactions between 

oxidative stress, endoplasmic reticulum (ER) stress and inflammation. The ER, as a protein 

folding compartment and dynamic calcium store, is primed to sense cellular stress and initiate 

adaptive stress responses, including the unfolded protein response (UPR). Intracellular calcium 

signals and free radicals, such as reactive oxygen species (ROS) and nitric oxide (NO), act as 

messengers in coordinating several of the adaptive stress responses. Calcium release from the 

ER, during states of stress, can induce the generation and release of ROS from the mitochondria. 

This in turn activates the antioxidant response, inflammatory pathways and with sustained 

activation, cellular apoptosis. Furthermore, ROS can feedback onto the ER and target calcium 

channels and resident-ER chaperones to exacerbate ER calcium release and ER stress. As a 

consequence, misfolded proteins accumulate in the ER, induce the UPR, and activate signaling 

cascades to promote the inflammatory response, antioxidant response, apoptosis and other 
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cellular adaptive stress responses (Ron and Walter, 2007; Zhang and Kaufman, 2008). The effect 

of HIV infection on the antioxidant response, the UPR and the interactions between these 

adaptive stress responses and inflammation has not yet been explored. 

 

The antioxidant response maintains redox balance and counteracts oxidative damage by inducing 

the transcriptional upregulation of proteins that are involved in detoxification of reactive oxygen 

species (ROS). These genes have a common promoter element, the antioxidant response 

element (ARE), and are regulated by nuclear factor erythroid 2-related factor 2 (Nrf2) (Figure 1.1). 

Following exposure to ROS or electrophiles, Nrf2 translocates to the nucleus to drive expression 

of numerous genes, including heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 

(NQO1), glutathione peroxidase 1 (GPX1), and genes responsible for the synthesis of 

glutathione, the principal antioxidant produced by the cell. Recent studies have demonstrated that 

viral infection can affect the cellular oxidation state and induce the activation of the antioxidant 

response (Chen et al., 2011; Schaedler et al., 2010). HIV infected patients have evidence of 

increased ROS production and depressed levels of glutathione (Dworkin et al., 1986), suggesting 

that the antioxidant response is altered following HIV infection.  

 

We hypothesized that HIV infection of macrophages would result in suppression of the 

antioxidant response and that induction of the antioxidant response would attenuate HIV 

replication. Furthermore, restoration of the cellular redox state in HIV-infected macrophages could 

dampen inflammatory processes if they are driven by virus-induced generation of excessive ROS. 

The studies presented in this body of work begin to characterize the consequences of HIV 

infection on the antioxidant response and the link between the dysregulation of the antioxidant 

response and macrophage-mediated neurotoxicity. Most importantly, we demonstrate that HIV 

infection dramatically reduces levels of HO-1 in macrophages and that restoration of HO-1 

decreases macrophage mediated neurotoxicity. We also show that induction of the antioxidant 

response attenuates NF-κB and TNFα signaling, a major mediator of inflammation and immune 
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activation. Our results provide evidence that therapeutics that ameliorate the dysregulation of the 

antioxidant response following HIV-infection should be considered as adjunctives to ART for the 

treatment and prevention of HAND. 

 

We also examined the role of HIV-infection of macrophages on activation of the UPR and the 

interaction between activation of the UPR and the antioxidant response. Virus replication and 

assembly can strain the capacity of the endoplasmic reticulum (ER) and result in the 

accumulation of misfolded proteins and induction of the UPR. The UPR is designed to eliminate 

misfolded proteins and promote cellular recovery by attenuating translation and upregulating the 

expression of chaperones, degradation factors, and regulators of metabolic and redox states. 

Activation of the signaling pathways comprising the UPR can also induce the transcription of 

inflammatory genes via activation of NF-κB pathways, among others.  

 

The UPR is a quality control mechanism that can be activated during physiological stress (e.g., 

glucose deprivation, oxidative stress) and viral infection (Figure 1.1). The UPR attempts to 

eliminate excessive misfolded proteins in the ER through two mechanisms; 1) attenuation of 

protein translation, in order to reduce the flux of proteins entering into the ER and 2) induction of 

chaperone proteins and degradation factors to refold and/or eliminate misfolded proteins. Three 

proteins have been identified as sensors of ER stress: protein kinase RNA-like ER kinase 

(PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). Under 

normal conditions, the ER chaperone immunoglobulin heavy-chain-binding protein (BiP) is bound 

to the sensor domain of PERK, ATF6 and IRE1 in the ER lumen. When misfolded proteins 

accumulate in the ER, BiP is sequestered away from these sensors to bind to misfolded proteins, 

resulting in activation of PERK, ATF6 and IRE1 (Bertolotti et al., 2000). Activation of PERK 

initiates a signaling cascade that results in the inhibition of new protein translation, mediated by 

phosphorylated eIF2α, and the induction of genes important for cellular recovery from ER stress, 

as mediated by ATF4 transcriptional activity. ATF6 activates genes carrying ER stress response 
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elements (ERSEs) in their transcriptional promoters (Mori, 2000). ERSEs are found in genes 

encoding for cellular chaperones including BiP, protein-disulfide isomerase (PDI) and calreticulin 

(Harding et al., 2003). Phosphorylation of IRE1 results in the alternative splicing of X box binding 

protein 1 (XBP-1) mRNA, which encodes an active transcription factor capable of inducing genes 

regulated by the ERSE (Lee et al., 2003). In addition, sXBP-1 can also activate the transcription 

of genes containing UPR elements (UPRE), thereby enhancing the capacity of ER-stressed cells 

to degrade irrevocably misfolded proteins via ER-associated protein degradation (ERAD) 

(Hosokawa et al., 2001; Yoshida et al., 2003). Chronic activation of the UPR, which occurs when 

the cell cannot manage or recover from ER stress, results in the activation of signaling pathways 

that will commit the cell to apoptosis (Ferri and Kroemer, 2001; Oyadomari et al., 2002a). 

 

In some cases, viral infection induces ER stress and activates components of the three branches 

of the UPR. Enveloped viruses utilize the ER as the primary site of envelope glycoprotein 

biogenesis and several viruses undergo genomic replication and particle assembly in the ER 

compartment. Increasing the burden on the ER, especially at times of high viral production, could 

increase the accumulation of misfolded proteins in the ER lumen and activate the UPR. However, 

while activation of the UPR is essential for host cell survival during viral infection, some of the 

consequences of UPR activation, such as inhibition of protein translation and enhanced ERAD, 

would be detrimental to viral replication. Consequently, many viruses that induce the UPR have 

evolved mechanisms to regulate pathways of the UPR in order to promote efficient viral 

replication. While UPR activation has been reported following cellular infection by several 

different viruses, the effect of HIV infection on activation of the UPR and the role of the UPR in 

modulating HIV replication has not yet been investigated.mon 
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Figure 1.1  The signaling pathways comprising the antioxidant response and the Unfolded 
Protein Response (UPR). The antioxidant response maintains the redox state of the cell and 
counteracts oxidative damage through induction of proteins that are involved in detoxification of 
reactive oxygen species (ROS). The transcription of these genes is regulated by Nrf2-dependent 
transcription of the antioxidant response element (ARE). During states of low oxidative stress, 
Nrf2 is kept transcriptionally inactive by Keap1, which sequesters Nrf2 in the cytoplasmic 
compartment. Following exposure to ROS or electrophiles, Keap1 is degraded by the proteasome 
and Nrf2 translocates to the nucleus to drive expression of HO-1, NQO1, and glutathione 
peroxidase 1 (GPX1), among others. Accumulation of misfolded protein in the ER causes ER 
stress and results in the activation of the UPR, an adaptive stress pathway. PERK, IRE1 and 
ATF6 have sensor domains that monitor levels of misfolded protein in the ER lumen. Following 
activation, each of these pathways initiates a signaling cascade that results in the transcriptional 
upregulation of genes that will help the cell reduce, manage or recover from ER stress. 
Phosphorylation of eIF2α by activated PERK results in the attenuation of all cap-dependent 
protein translation, in order to reduce the incoming burden of new proteins into the ER. Increased 
levels of phosphorylated eIF2α also result in the translational upregulation of ATF4, a 
transcription factor that increases amino acid response element (AARE)-regulated genes in order 
to modulate cellular metabolism and redox state during cellular recovery from ER stress. ATF4 
also increases levels of GADD34, which restores protein translation by mediating eIF2α 
dephosphorylation as part of a negative feedback loop. In addition to PERK, three other kinases 
(PKR, GCN2 and HRI) can phosphorylate eIF2α and initiate the UPR, although instead of 
misfolded protein levels, they respond to double stranded RNA, amino acid limitation and heme 
levels, respectively. ATF6, upon activation, translocates to the Golgi where is it cleaved into an 
active form, which also functions as a transcriptional regulator of ER stress-element (ERSE)-
regulated genes. ERSEs regulate genes encoding for a variety of cellular chaperones, which 
promote the proper folding of misfolded proteins in the ER, including BiP and GRP94. Activation 
of IRE1 results in its auto-phosphorylation and the subsequent activation, by a splicing event, of 
XBP1 mRNA. Spliced XBP1 (sXBP1) encodes a transcription factor capable of upregulating 
genes with ERSEs or UPR elements (UPREs). Transcriptional upregulation of UPRE-regulated 
genes results in increased levels of EDEM, which enhances the degradation of misfolded proteins 
in the ER by ER-associated degradation (ERAD). If the UPR is unable to manage the stress to 
the ER, the cell will undergo CHOP-mediated apoptosis.    
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We hypothesized that HIV infection would induce the UPR during times of high viral replication, 

when viral protein translation, glycoprotein biogenesis and viral particle assembly would be 

highest. We found that HIV infection increases levels of phosphorylated eIF2α in our in vitro 

model system and that macrophagic BiP was increased in the macrophages of HAND frontal 

cortex. Interestingly, pharmacological induction of the UPR, which attenuates viral replication, is 

associated with increased macrophage-mediated neurotoxicity. This finding has important 

implications for the development of adjunctive therapies for HAND. Therapeutics or processes 

that induce the UPR in macrophages, regardless of the effect on HIV replication, could enhance 

neurotoxin production and contribute to the pathological processes underlying HAND. 

 

HIV infection results in the alteration of several adaptive stress pathways in the macrophage. 

Suppression of the antioxidant response and induction of the UPR both associate with high levels 

of viral replication and neurotoxin production. And while pharmacological induction of either stress 

pathway attenuates HIV replication, only induction of the antioxidant response results in 

decreased macrophage-mediated neurotoxicity. Therefore, activation of the UPR by 

inflammation, oxidative stress or ART is predicted to enhance neurotoxin production in 

macrophages, regardless of the level of HIV replication. Understanding how HIV infection affects 

adaptive stress responses and neurotoxin production pathways in the macrophage will continue 

to improve our ability to develop effective adjunctive therapies for HAND.  
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CHAPTER 2 

 

 

NEUROAIDS AS AN INFLAMMATORY DISORDER1 

 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This work was originally published in The Neurology of AIDS, 3rd Edition. Cook DR*, Cross SA*, 
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Abstract 

The pathological basis for the neurological complications of AIDS involves complex interactions 

between multiple cell types within both the brain and the periphery. This review focuses on the 

role for inflammation in the development of HIV-associated neurocognitive disorders (HAND). 

Specifically, evidence for inflammation in HAND pathogenesis in the pre-antiretroviral therapy 

(ART) and post-ART eras is discussed. The biology of HIV infection and subsequent CNS 

invasion is emphasized, with particular focus on chemokines and chemokine receptors. Chronic 

neuroinflammation has also been implicated in other infectious and non-infectious CNS disorders, 

of which multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD) and HTLV-

1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) are reviewed. The status of 

current adjunctive therapies for HAND and their relationship to such neuroinflammatory disorders 

is also included. Understanding common pathways of neuroinflammation will lead to the 

identification of biomarkers for classification, diagnosis, and clinical prognosis, as well as to the 

development of novel treatment modalities for HAND and other neuroinflammatory disorders of 

the CNS. 
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Introduction 

Advances in antiretroviral therapies for HIV infection have improved virological control and greatly 

increased the life expectancy of infected individuals. However, despite the availability of these 

potent antiviral drugs, the prevalence of HIV-associated neurocognitive disorders (HAND) has 

persisted and even increased (McArthur et al., 2003; Robertson et al., 2007; Sacktor et al., 2002), 

emphasizing the need for effective adjunctive neuroprotective therapies.  Inflammation in the 

brain and in the periphery is a driving force in the neuropathogenesis of HAND, MS, HAM/TSP, 

and probably also AD and PD.  As these conditions share common features in their pathogenic 

processes, identifying common mechanisms and developing targeted treatment modalities will 

not only benefit HAND patients, but likely also be effective in other neuroinflammatory disorders.  

 

2.1 - Pathological Characteristics of NeuroAIDS 

Clinical Characteristics of HIV-Associated Neurocognitive Disorders (HAND) 

According to recent estimates, over 33 million people are currently living with HIV-1 worldwide 

(WHO, 2009). HIV-1 infection has devastating consequences for the immune system, resulting in 

immunodeficiency marked by profound CD4+ T-cell depletion. In addition, neurologic disorders 

involving the CNS and the peripheral nervous system (PNS) affect between 40–70% of HIV-

positive individuals at some point during the course of infection (McArthur et al., 2005). Although 

opportunistic infections of the CNS and PNS associated with HIV-induced immunodeficiency 

have become far less common because of the availability of antiretroviral therapy (ART) (Habata 

et al., 1999; Mamidi et al., 2002; Roullet, 1999), the prevalence of primary HIV-induced 

neurological disorders has increased (Antinori et al., 2007). Conditions directly induced by HIV-1 

include peripheral neuropathies, vacuolar myelopathies, and HIV-associated neurocognitive 

disorders (HAND) (Antinori et al., 2007; Childs et al., 1999; McArthur et al., 2005; McArthur et al., 

2003).   
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HAND are comprised of three conditions of increasingly severe cognitive impairment and 

interference with activities of daily living: (1) HIV-associated asymptomatic neurocognitive 

impairment (ANI), (2) HIV-associated mild neurocognitive disorder (MND), and (3) HIV-associated 

dementia (HAD) (Antinori et al., 2007; Grant, 2008). The diagnosis of ANI, the least severe of the 

HAND conditions, describes individuals who have mild cognitive impairment, revealed by formal 

neuropsychological testing, that does not affect day-to-day functioning and does not meet criteria 

for delirium or dementia. In the more severe MND, increased cognitive impairment interferes with 

daily functioning as determined by self-reporting or by observation of others. Again, individuals 

with MND do not meet the criteria for delirium or dementia. HAD, the most severe form of HAND, 

is typically diagnosed during end-stage HIV infection, primarily in patients with low CD4+ T-cell 

counts. In HAD, cognitive impairment is associated with marked interference with day-to-day 

functioning and HAD is considered a significant independent risk factor for death due to AIDS 

(Liner et al., 2008). Since the inception of ART, the incidence of HAD, defined as the percentage 

of new HAD cases diagnosed in a given year, has decreased (McArthur et al., 2004; Nath et al., 

2008; Sacktor et al., 2002). However, the prevalence of HAD, defined as the overall number of 

HAD cases, is rising owing to the increased life span of HIV patients (McArthur et al., 2003; 

Robertson et al., 2007; Sacktor et al., 2002). There is also evidence of ongoing 

neurodegeneration that may manifest as ANI or MND in patients without evidence of active HIV 

disease, contributing to the continued prevalence of HAND in the ART era. Moreover, the onset 

of HAND during ART-controlled clinical latency underscores the need for adjunctive 

neuroprotective therapies, because no current therapies would be expected to improve 

neurologic outcomes in the absence of viral replication (Antinori et al., 2007; Brew, 2004; Sacktor 

et al., 2002). 

 

Pathology of HAND: Evidence for Neuroinflammation 

HIV-1 enters the brain early in the course of infection via infected macrophages and lymphocytes 

(Ho et al., 1985; Koenig et al., 1986; Petito et al., 1986). Subsequently, the virus persists in the 
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CNS primarily in perivascular macrophages and microglia and increased numbers of 

macrophages and microglia have been found to correlate with the severity of HAND (Glass et al., 

1995). In general, intrathecal replication of HIV-1 is controlled by CD8+ T cells (McCrossan et al., 

2006; Sadagopal et al., 2008), and cerebral spinal fluid (CSF) viral load has been found to 

correlate with both viral load in the brain and the degree of cognitive dysfunction in HAND (Brew 

et al., 1997; Ellis et al., 2000; Ellis et al., 1997; Ellis et al., 2002; McArthur et al., 1997). 

Importantly, in addition to the initial neuroinvasion and infection of macrophages and microglia, it 

is believed that HIV infection and immune activation in the periphery and ongoing neuroinvasion 

of activated monocytes play a role in the development of HAND (Banks et al., 2006; Gartner, 

2000). 

 

The pathological hallmarks of HIV infection in the brain in the pre-ART era, collectively termed 

HIV encephalitis (HIVE), include monocyte infiltration and accumulation of perivascular 

monocyte-derived macrophages (MDM), formation of microglial nodules and multinucleated giant 

cells (syncytia) due to HIV-driven fusion of MDM/microglia, widespread reactive microgliosis and 

astrogliosis, and myelin pallor indicative of oligodendrocyte damage (Adle-Biassette et al., 1999; 

Gendelman et al., 1994; Lawrence and Major, 2002; Masliah et al., 1997; Petito et al., 1986; 

Wiley and Achim, 1994). Since the initiation of widespread ART (1996/7), however, at least one 

study suggests the presence of “burnt out” HIVE in some individuals dying with AIDS (see below) 

(Gray et al., 2003). MDM and microglia are the primary CD4+ cells in the CNS and the major 

sources of productive HIV infection in the brain (Gonzalez-Scarano and Martin-Garcia, 2005; Kaul 

et al., 2001; Kolson and Gonzalez-Scarano, 2000; McArthur et al., 2003) and clinical disease 

severity correlates more strongly with the amount of monocyte infiltration and MDM/microglia 

activation than with the quantity of infected cells or viral load (Adle-Biassette et al., 1999; Glass et 

al., 1995), suggesting that MDM/microglia play a predominant role in the neuroinflammation and 

neurotoxicity seen in HAND. Immune activation of MDM/microglia is demonstrated by expression 

of CD14 (lipopolysaccharide receptor), CD16, CD68, and MHC class II in vivo (Anderson et al., 
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2002; Bell, 2004; Fischer-Smith et al., 2004; Swindells et al., 1999). Furthermore, CSF markers of 

immune activation and inflammation are commonly detected in individuals with HAND. These 

markers include CCL2 (monocyte chemoattractant protein-1, MCP-1) (Chang et al., 2004; Conant 

et al., 1998), β2 microglobulin (Brew et al., 1992; Brew et al., 1996; Enting et al., 2000; McArthur 

et al., 1992), quinolinic acid (Achim et al., 1993; Brew et al., 1995; Heyes et al., 1991; Heyes et 

al., 2001), arachidonic acid metabolites (Genis et al., 1992; Griffin et al., 1994), oxidative stress 

markers (Haughey et al., 2004; Schifitto et al., 2009a), and platelet activating factor (PAF) 

(Gelbard et al., 1994). 

 

Although most studies demonstrate that neurons are not infected by HIV, neuronal loss is 

common in HAND and post-mortem studies of HAND patients have revealed morphological 

changes in neurons including loss of synaptic density, dendritic simplification, and vacuolization 

(Masliah et al., 1997; Petito et al., 1986). This neuronal damage induced by HIV infection affects 

multiple regions of the brain and several neuronal subtypes. HIV antigen is commonly detected in 

the thalamus, basal ganglia, and central white matter and neuronal damage and loss has been 

reported in the frontal cortex, cerebellum, putamen, and substantia nigra, although the distribution 

of HIV antigen might be altered in individuals receiving ART (Everall et al., 1991; Ketzler et al., 

1990). 

 

Changes in Neuropathology of HAND in the Era of ART  

The most effective current therapy for HAND is treatment of the underlying HIV infection with 

ART. Neuropsychological performance is improved in AIDS patients treated with ART and the 

CNS penetration of antiretroviral drugs directly correlates with decreased CSF viral loads and 

improved neurocognitive performance (Letendre et al., 2008). However, some recent studies 

suggest that ART drugs might demonstrate CNS neurotoxicity in treated patients, with associated 

poorer neurocognitive performance (Marra et al., 2009; Schweinsburg et al., 2005). Unfortunately, 

although ART can improve cognition, it does not fully eradicate impairments. In addition, patients 
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who have had ART exposure before developing HAND do not appear to respond as well to a 

change in their ART regimen, indicating the presence of drug-resistant viruses in the CNS or the 

emergence of a burn-out phase of the disease (Brew et al., 2007). 

 

The era of ART has changed the neuropathology of HIV-1 infection (Table 2.1) (Anthony et al., 

2005; Boisse et al., 2008; Brew, 2004). Before the introduction of ART, neuroinflammation was 

frequently observed in HIV-infected patients and usually increased throughout the progression of 

disease from the asymptomatic stage to AIDS and HAD. Inflammation is less severe during ART, 

but it appears to be persistent within the macrophage/microglial populations (Gray et al., 2003). 

Furthermore, ART seems to have limited the severity of pathological changes characteristic of 

HIVE. As described by Gray and colleagues (Gray et al., 2003), the persistent pathological 

findings in ART-experienced individuals include neuronal loss with apoptosis, astrocytosis, myelin 

pallor, and at least a few activated microglia and perivascular macrophages. Distinctly absent are 

multinucleated giant cells and microglial nodules. 

 

Although for the most part ART has limited the persistent infiltration of HIV-infected lymphocytes 

into the CNS (Anthony and Bell, 2008), it should be noted that an exception to this occurs during 

neurologic immune reconstitution inflammatory syndrome (neuroIRIS). NeuroIRIS is a relatively 

rare (less than 1% of those who initiate ART) consequence of the introduction of ART in highly 

immunosuppressed patients and is marked by a severe deterioration in neurologic status that is 

characterized by massive lymphocytosis, extensive demyelination, and white matter damage 

(Anthony et al., 2005; Boisse et al., 2008). In neuroIRIS there is a paradoxical clinical 

deterioration in spite of improved CD4+ T-cell counts and decreased viral loads (McCombe et al., 

2009). Despite the overall effectiveness of ART in limiting the infiltration of infected cells into the 

CNS, neuroinflammation still persists. However, the primary sites of neuroinflammation are 

different (Table 2.1); a strong involvement of the basal ganglia was observed pre-ART, whereas 

post-ART specimens display prominent signs of inflammation in the hippocampus and adjacent 
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parts of the entorhinal and temporal cortex (Anthony et al., 2005; Ho et al., 1985). Notably, these 

autopsy studies have demonstrated microglial activation in brains of individuals treated with ART 

comparable to those of patients with fully developed, pre-ART AIDS, although HIVE (when 

defined as the presence of HIV-infected multinucleated giant cells) is much less common now. 

Overall, these studies confirm the notion that neuroinflammation continues to be associated with 

HIV CNS infection in ART-experienced individuals, albeit without HIVE. 
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Table 2.1 - Changes in the neuropathology of HAND in the era of HAART 

 
 Pre HAART Post HAART 
 
CSF viral load 

 
viral load correlates with 
cognitive dysfunction  (Brew 
et al., 1997; Ellis et al., 
2000; Ellis et al., 1997; Ellis 
et al., 2002; McArthur et al., 
1997)  

 
CSF viral load is decreased 
with treatment (Letendre et al., 
2008) 

 
cognitive dysfunction 

 
severe in HAD and 
improved when patients 
begin HAART (Letendre et 
al., 2008) 

 
variable, from mild to severe 
(Antinori et al., 2007; McArthur 
et al., 2004) 

 
predictive biomarkers of 
dementia 

 
CSF viral load, decreased 
CD4+ T-cells, increased 
levels of CCL2 (Bandaru et 
al., 2007; von Giesen et al., 
2005)  

 
increased levels of CCL2, β2 
microglobulin, quinolinic acid, 
arachidonic acid metabolites, 
oxidative stress markers, 
platelet activating factor 
(Bandaru et al., 2007) 

 
major pathological findings 

 
multinucleated giant cells, 
microglial nodules, neuronal 
loss, astrocytosis, myelin 
pallor, activated microglia 
and perivascular 
macrophages 

 
neuronal loss, astrocytosis, 
myelin pallor, activated 
microglia and perivascular 
macrophages.   

 
multinucleated giant cells 
and microglial nodules 

 
present 

 
absent 

 
neuroinflammation 

 
severe and progressive 

 
less severe, but chronic 

 
site of neuroinflammation 

 
basal ganglia (Ho et al., 
1985) 

 
hippocampus and entorhinal 
and temporal cortex (Anthony 
et al., 2005; Ho et al., 1985)  

 
microglial activation 

 
present 

 
present 

 
CNS  
complications from Tx  

 
N/A 

 
NeuroIRIS (rare <1%) (Boisse 
et al., 2008) 
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2.2 - Biology of HIV Infection and Invasion of the Brain 

As mentioned above, HIV-1 traffics into the brain early in the course of infection via infected 

monocytes and lymphocytes (Dunfee et al., 2006). Despite retroviral therapy, HIV-1 persists in 

the CNS throughout the duration of infection in parenchymal microglia and perivascular 

macrophages (Ho et al., 1985; Koenig et al., 1986; Petito et al., 1986). Because increased 

numbers of microglia and macrophages correlate with the severity of pre-mortem HAND, these 

cell types probably mediate neurological impairment (Anthony et al., 2005; Glass et al., 1995; 

Petito et al., 1986). Multiple pro-inflammatory cytokines, including interleukin (IL)-1β, tumor 

necrosis factor-alpha (TNF-α), and IL-6 are elevated in the CNS and/or CSF of patients with HAD 

(Achim et al., 1993; Foli et al., 1997; Oster et al., 1987; Perrella et al., 1992). The pro-

inflammatory environment within the CNS is a result of cytokine release from 

monocytes/macrophages stimulated by either direct viral infection or by shed viral proteins 

(Rappaport et al., 1999; Sundar et al., 1991) and astrocyte activation without productive infection 

but with immune activation (Kramer-Hammerle et al., 2005; Sabri et al., 2003). Inflammatory 

mediators modulate the permeability of the blood-brain barrier, the entry of infected monocytes 

into the CNS, and peripheral processes that contribute to the neurological complications of HIV. 

Thus, understanding the mechanisms responsible for HIV entry into the CNS and the modulation 

of replication within the monocyte/macrophage reservoir are important for developing targeted 

therapeutics for HAND. 

 

Integrity of the Blood-Brain Barrier (BBB): Role for Neuroinflammation 

The blood-brain barrier (BBB) separates the CNS from the periphery and modulates the traffic of 

low-molecular-weight nutrients, peptides, proteins, and cells in and out of the brain. The integrity 

and traffic across the BBB can be impacted by many factors, including HIV-dependent cytotoxicity 

towards cellular BBB components, chemotactic gradients, and the regulation of adhesion 

molecules and tight junction proteins (Figure 2.1). Progressive HIV infection and immune 

compromise result in the breakdown of the BBB (Dallasta et al., 1999; Kanmogne et al., 2002; 
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Persidsky et al., 2000), which permits the entry of free virus, lymphocytes, and infected and/or 

activated monocytes into the CNS. 

 

The BBB is composed of brain microvascular endothelial cells (BMECs) that are connected by 

intercellular junctions to form a semipermeable monolayer. HIV infection increases the 

permeability of the BBB by compromising the integrity of the tight junctions. Brain regions with 

HIVE demonstrate an accumulation of activated/infected perivascular macrophages and a 

decrease in the tight junction membrane proteins zonula occludens (ZO-1) and occludin (Dallasta 

et al., 1999; Persidsky et al., 2006). TNF-α production by activated/infected macrophages can 

directly increase the permeability of the BBB to free virus (Fiala et al., 1997). However, these 

profound structural changes of the BBB are late events associated with encephalitis and HIV 

neuroinvasion is an early and continuing process. 

 

HIV enters the CNS compartment through infected monocytes that cross the BBB via trans-

endothelial migration, and this process is particularly enhanced by monocyte immune activation 

(Figure 2.1). Infected and immune-activated monocytes induce adhesion molecules on BMECs, 

thereby increasing transmigration during HIV infection. In HIVE brain tissue, viral load and pro-

inflammatory cytokines correlate with levels of the adhesion molecules E-selectin and VCAM-1 

(Hurwitz et al., 1994; Nottet et al., 1996; Persidsky et al., 1997; Sasseville et al., 1994). Exposure 

to TNF-α stimulates astrocytes to produce ICAM-1, VCAM-1, IG9, and E-selectin, all of which 

promote monocyte attachment and transmigration (Hurwitz et al., 1994). Following HIV infection, 

inflammatory cytokines promote the expression of adhesion molecules on BMECs and thereby 

promote the transmigration of activated/infected monocytes into the brain. Whether compromise 

to the BBB is as common now in the ART era as in the pre-ART (HIVE) era remains to be 

determined. 
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Figure 2.1  Role for inflammation via cytokines and chemokines in HIV neuroinvasion and 
neurodegeneration. HIV-infected monocytes cross the BBB, differentiate into macrophages, and 
productively infect microglia and other macrophages. Infected and/or activated 
macrophages/microglia and immune activated astrocytes release pro-inflammatory cytokines 
which promote monocyte neuroinvasion by increasing expression of adhesion molecules required 
for monocyte attachment and increasing BBB permeability. This pro-inflammatory environment is 
enhanced by LPS- and cytokine-induced systemic immune activation, which promotes monocyte 
recruitment and further BBB permeability. Together, the resulting neuroinflammation can directly 
and indirectly cause neuronal loss. Infected and/or activated macrophages/microglia and 
astrocytes also release chemokines, which can serve as both neurotoxic pro-inflammatory factors 
and neuroprotectants against HIV-induced neurotoxicity. Cytokines and chemokines can undergo 
reciprocal modulation by additional neurotoxic factors released from infected and/or activated 
macrophages/microglia, including excitatory amino acids (EAAs), phospholipids and reactive 
oxygen species (ROS).   
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Inflammation in the Periphery 

Pathology in the periphery may also be involved in the development of HAND (Figure 2.1) 

(Gartner, 2000). Neurological complications following HIV infection have been associated with an 

expanded population of circulating blood monocytes expressing markers of activation (Pulliam et 

al., 1997). These activated CD14+/CD16+ monocytes produce TNF-α and IL-1β, which contribute 

to inflammation in the periphery and further activation of other immune cells (Thieblemont et al., 

1995). CD16+ monocytes are particularly susceptible to HIV infection, are capable of tissue 

invasion, and they compose the majority of the accumulated perivascular macrophages in 

patients with HIVE (Ellery et al., 2007; Jaworowski et al., 2007; Shiramizu et al., 2005). Peripheral 

activation of monocytes leads to an enhancement of infected and invasive monocytes that can be 

recruited into the CNS by chemokines (chemotactic cytokines), as discussed in detail below. 

 

In the gastrointestinal tract, HIV infection also causes microbial translocation, in which HIV-driven 

depletion of gut-associated lymphoid tissue (GALT) results in leakage of bacteria into the 

bloodstream and subsequently increases systemic bacterial lipopolysaccharide (LPS) (Brenchley 

et al., 2006b; Douek, 2007). LPS increases monocyte transmigration into the CNS by contributing 

to the systemic immune activation of chronic HIV infection. In addition to priming peripheral 

monocytes for neuroinvasion, bacterial LPS can also compromise the integrity of the BBB. In vitro 

studies demonstrate that LPS-stimulated macrophages create gaps between endothelial cells of 

an artificial BBB, resulting in enhanced monocyte transmigration (Persidsky et al., 1997; Wang et 

al., 2008; Zhou et al., 2006). Notably, studies in SIV-infected rhesus macaques and HIV-infected 

humans correlate higher levels of plasma LPS, LPS-binding protein, and soluble CD14 with 

increased HAND severity (Ancuta et al., 2008) and more rapid progression towards AIDS 

(Brenchley et al., 2006b). Thus, the neurological complications of HIV are not exclusively 

mediated by pathological processes within the CNS, and components of systemic immune 

activation also play a significant role in the development of HAND. 
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In summary, inflammatory mediators contribute to HIV infection of the brain by affecting 

components of both the CNS and the peripheral compartments. Pro-inflammatory cytokines 

activate a neuroinvasive subset of monocytes in the periphery, compromise the integrity of the 

BBB, and promote the transmigration of infected monocytes into the CNS. In addition to 

mediating HIV neuroinvasion, inflammatory mediators also promote the accumulation of 

macrophages in the brain. These cells serve as a primary reservoir for HIV in the CNS and 

contribute to the pathogenesis of HAND via the release of neurotoxic and inflammatory cellular 

products, which can activate noninfected cells (macrophages/microglia, astrocytes). 

Understanding the role of inflammation in mediating HIV infection of the CNS could provide new 

therapeutic targets for HAND and other neuroinflammatory diseases. 

 

2.3 - Mechanisms of HIV-Induced Neurodegeneration: Roles for Chemokines, Chemokine 

Receptors, and Inflammation 

Monocyte infiltration and macrophage/microglia activation are thought to initiate HAND 

pathogenesis through both systemic and CNS inflammatory signaling (Kaul et al., 2001; Kraft-

Terry et al., 2009; Yadav and Collman, 2009). Following systemic inflammation and monocyte 

infiltration, activated and/or infected macrophages/microglia within the CNS can release a variety 

of neurotoxic factors, including viral proteins (gp120, Tat), pro-inflammatory cytokines (TNF-α, IL-

1β, IL-6), interferons (IFN-α, IFN-β, IFN-γ), excitatory amino acids (glutamate, quinolinic acid), 

phospholipids (platelet activating factor, arachidonic acid), and reactive oxygen species (Boven et 

al., 1999; Brenneman et al., 1988; Brew et al., 1995; Gelbard et al., 1993; Gelbard et al., 1994; 

Gendelman et al., 1998; Genis et al., 1992; Jiang et al., 2001; Maragos et al., 2003; Scorziello et 

al., 1998; Song et al., 2003; Wesselingh et al., 1993). Many of these factors can undergo 

reciprocal modulation by chemokines. Indeed, chemokines and chemokine receptors expressed 

within the CNS have central roles in HIV neuropathogenesis, from the function of chemokine 

receptors in mediating infection of the macrophage/microglia reservoir, to the seemingly 

dichotomous roles of chemokines as neurotoxic pro-inflammatory factors and neuroprotectants 
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against HIV-induced neurotoxicity (Collman and Yi, 1999; Doms, 2000; Gonzalez-Scarano and 

Martin-Garcia, 2005; Martin-Garcia et al., 2002). Here, we focus on the α-, β-, and δ-chemokine 

subfamilies in relation to HAND pathogenesis. 

 

α-Chemokines  

The α-chemokines, which bind CXCR chemokine receptors, affect HAND neuropathogenesis by 

enhancing neuroinvasion, promoting astrocyte activation, and directly acting as neurotoxic or 

neuroprotective factors (Figure 2.1). Increased expression of several α-chemokines has been 

documented in the CSF and brain tissue of HAD patients, including CXCL10 (γ-interferon-

inducible protein 10, IP-10) and CXCL12 (stromal cell-derived factor-1, SDF-1) (Cinque et al., 

2005; Kolb et al., 1999; Rostasy et al., 2003; Zhang et al., 1998). In vitro studies demonstrate that 

CXCL10 is expressed in microglia and astrocytes, and that gp120, Tat, TNF-α and IFN-γ can act 

independently or synergistically to increase CXCL10 release (Asensio et al., 2001; D'Aversa et 

al., 2004; Dhillon et al., 2008a; Kutsch et al., 2000; Williams et al., 2009a; Williams et al., 2009b). 

In turn, soluble CXCL10 can directly induce apoptosis in neurons (Sui et al., 2004; Sui et al., 

2006a; van Marle et al., 2004) and increase neuroinflammation through leukocyte recruitment into 

the CNS (Asensio et al., 2001; Dhillon et al., 2008a; Kolb et al., 1999). 

 

Like CXCL10, CXCL12 is a potent chemoattractant that can increase recruitment, adhesion, and 

transendothelial migration of monocytes into the CNS (Malik et al., 2008; Peled et al., 1999; Peng 

et al., 2006; Rostasy et al., 2003; Wu et al., 2000). CXCL12 is expressed in astrocytes, microglia, 

and neurons, and exposure to LPS or IL-1β from HIV-infected and/or activated macrophages can 

increase CXCL12 release (Bajetto et al., 1999; Ohtani et al., 1998; Peng et al., 2006). 

Conversely, CXCL12 can trigger astrocytic release of TNF-α and glutamate, causing neuronal 

damage and apoptosis (Bezzi et al., 2001). Like CXCL10, CXCL12 can also act as a direct 

neurotoxin. It can undergo proteolytic cleavage by matrix metallic proteinase-2, which changes its 

co-receptor specificity from CXCR4 to CXCR3, the receptor for CXCL10, and enhances its 
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neurotoxicity (Vergote et al., 2006; Zhang et al., 2003). The neurotoxic properties of native, non-

cleaved CXCL12 are controversial as CXCL12 exposure produces either neuroprotective or 

neurodegenerative responses depending on the experimental conditions (Hesselgesser et al., 

1998; Kaul and Lipton, 1999; Khan et al., 2004; Lazarini et al., 2000; Zheng et al., 1999a; Zheng 

et al., 1999b). 

 

β-Chemokines 

Like α-chemokines, β-chemokines, which bind CCR receptors, can mediate neurotoxic and 

neuroprotective effects against HIV-induced neurotoxicity (Figure 2.1). Several ligands in the β-

chemokine subfamily are expressed at increased levels during HIV infection, including CCL2, 

CCL3 (macrophage inflammatory protein-1α, MIP-1α), CCL4 (MIP-1β), and CCL5 (regulated on 

activation, normal T cell expressed and secreted (RANTES; (Kelder et al., 1998)). Interestingly, 

CCL2 CSF levels increase in SIV-infected macaques and HIV-infected individuals prior to 

neurocognitive impairments and correlate with severity of dementia, suggesting that CCL2 can be 

a predictive marker for clinical HAND (Cinque et al., 1998; Dhillon et al., 2008b; Kelder et al., 

1998; Ragin et al., 2006; Sevigny et al., 2004; Sevigny et al., 2007; Zink et al., 2001; Zink et al., 

1998). In vitro studies demonstrate that CCL2 is expressed and released from endothelial cells, 

macrophages, microglia, and astrocytes during HIV infection and in response to gp120, Tat, TNF-

α, IL-1β, IFN-β, and IFN-γ (Choe et al., 2001; Conant et al., 1998; D'Aversa et al., 2004; Gu et al., 

1997; Guillemin et al., 2003; Lehmann et al., 2006; McManus et al., 2000; Mengozzi et al., 1999). 

HIV infection of macrophages increases their expression of the CCL2 receptor, CCR2, and 

concomitantly increases CCL2-mediated recruitment and transmigration of HIV-infected 

monocytes into the CNS (Eugenin et al., 2006; Park et al., 2001). Thus, inflammation following 

HIV infection establishes a cycle of monocyte/macrophage activation and neuroinvasion 

mediated by CCL2. However, CCL2 also provides neuroprotection against Tat-induced 

neurotoxicity (Eugenin et al., 2003; Yao et al., 2009), suggesting that increased expression of 

CCL2 during HIV infection may play a destructive and/or protective role. Additionally, the potential 
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CNS destructive role for CCL2 in HIV infection thus appears to be driven through its 

enhancement of monocyte transendothelial migration and not direct effects on neurons. 

 

While elevated CCL2 CSF levels are associated with an increased risk of HAND, the association 

of CCL3, CCL4, and CCL5 with HAND is unclear (Letendre et al., 1999). CCL3, CCL4, and CCL5 

can all serve as ligands for the CCR5 receptor and can suppress CCR5-mediated HIV infection 

(Cocchi et al., 1995). Studies also demonstrate that CCL3, CCL4, and CCL5 are expressed and 

released from microglia and astrocytes during HIV infection and in response to Tat (Cota et al., 

2000; D'Aversa et al., 2004; El-Hage et al., 2005; Si et al., 2002), and can ameliorate excitatory 

amino acid- and gp120-induced neurotoxicity in vitro (Bruno et al., 2000; D'Aversa et al., 2004; 

Kaul and Lipton, 1999; Meucci et al., 1998; Meucci et al., 2000). The neuroprotective effects of 

CCL5 could be mediated by CCL2 induction (Eugenin et al., 2003). Together, these studies 

suggest that β-chemokines play important roles in modulating neuroinflammation and 

neurotoxicity during HIV infection and that they could express either protective or destructive 

effects within the CNS inflammatory microenvironment. 

 

δ-Chemokines 

CX3CR1 and its unique ligand, CX3CL1 (fractalkine), are the only known receptor-ligand pair in 

the δ-chemokine subfamily. Furthermore, CX3CL1 is the only chemokine expressed in higher 

amounts in the CNS than in peripheral tissues, suggesting its critical role in modulation of HAND 

pathogenesis (Figure 2.1) (Bajetto et al., 2001; Cotter et al., 2002; Re and Przedborski, 2006). It 

is expressed as a membrane-anchored form on the cell surface or as a soluble form, which can 

be proteolytically released from the cell. CX3CL1 expression is elevated in serum, CSF, and brain 

tissue of HAD patients (Erichsen et al., 2003; Pereira et al., 2001; Sporer et al., 2003) and in vitro 

studies suggest that exposure to purified HIV virus, gp120, TNF-α, IL-1β, IFN-γ, or glutamate 

increases expression of soluble and membrane-bound forms of CX3CL1 in neurons and 

astrocytes (Chapman et al., 2000a; Erichsen et al., 2003; Maciejewski-Lenoir et al., 1999; Pereira 
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et al., 2001; Sporer et al., 2003). Both forms of CX3CL1 can serve as potent CNS leukocyte 

chemoattractants and can mediate monocyte adhesion and transendothelial migration across the 

BBB (Ancuta et al., 2003; Chapman et al., 2000b; Harrison et al., 1998; Imai et al., 1997; Tong et 

al., 2000). In addition to recruiting activated peripheral blood monocytes, fractalkine can trigger 

the production of IL-6 and CCL2 by CD16+ monocytes (Ancuta et al., 2003). Elevated CCL2 

levels can lead to further recruitment of monocytes to the brain while IL-6 can activate and 

promote the differentiation of monocytes into macrophages, which could promote 

neurodegeneration. CX3CL1 differentially modulates other neuroinflammatory factors as well, 

increasing secretion of TNF-α and IL-8, from monocytes and macrophages (Ancuta et al., 2003; 

Ancuta et al., 2006; Cotter et al., 2002), while inhibiting TNF-α, IL-1β, and IL-6 release from LPS-

activated microglia and attenuating cytokine-mediated neuronal loss in vivo and in vitro (Cardona 

et al., 2006; Mizuno et al., 2003). 

 

Like β-chemokines, CX3CL1 can also promote neuronal survival, as it can protect against gp120- 

and Tat-induced neurotoxicity in vitro (Deiva et al., 2004; Limatola et al., 2005; Meucci et al., 

1998; Meucci et al., 2000). While it is unclear what factors maintain the in vivo balance between 

these neurotoxic and neuroprotective functions of CX3CL1 and other chemokines, the 

dysregulation of chemokine signaling likely significantly contributes to HAND pathogenesis. 

These processes are central to neurodegenerative diseases such as HIV infection and multiple 

sclerosis, and have implications for other neuroinflammatory diseases (Kaul and Lipton, 2006; Li 

and Ransohoff, 2008; Ransohoff, 1999; Ransohoff and Zamvil, 2007; Savarin-Vuaillat and 

Ransohoff, 2007). 

  

2.4 - Inflammatory Markers in NeuroAIDS and Other Neuroinflammatory Diseases 

Chronic neuroinflammation and elevated levels of pro-inflammatory cytokines and chemokines 

are associated with several neurodegenerative disorders of the CNS including HAND, MS, AD, 

PD, and HAM/TSP (Block and Hong, 2005; Grant et al., 2002; Mrak and Griffin, 2005; Sawada et 
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al., 2006). In the CNS, macrophages/microglia are the principal mediators of inflammation and, 

when activated, secrete pro-inflammatory cytokines (including TNF-α, IL-1β, and IL-6), 

chemokines (including CCL2 and CCL3), and adhesion molecules (ICAM-1, VCAM-1) that 

promote inflammation. Regardless of the factor initiating microglia activation, a chronic 

inflammatory response in the brain can contribute to the death of vulnerable neuronal populations 

and understanding common mechanisms in these neuroinflammatory disorders could identify 

common targets for broadly protective drugs. Additionally, more reliable biomarkers for 

neuroinflammatory diseases are needed in order to make early and accurate diagnoses, monitor 

the course of disease progression, and predict a patient’s response to therapy. 

 

Inflammation in Neurodegenerative Diseases Associated with Aging  

HAND shares clinical features with normal aging including the deterioration of cognitive abilities 

and working memory (Alirezaei et al., 2008; Kaul, 2009). Of interest, diffusion tensor imaging 

studies, where diffusion is an indicator of neuroinflammation, have shown altered water diffusion 

within specific brain regions in HIV-infected patients in comparison to normally aging control 

patients (Chang et al., 2008). These data suggest that even a well-controlled HIV infection may 

accelerate aging and promote neurodegeneration. In addition, there are several pathological 

features shared between HAND and neurodegenerative diseases associated with aging, 

including AD and PD (Brew et al., 2009; Chang et al., 2008; Esiri et al., 1998; Khanlou et al., 

2009). These include neuroinflammation, oxidative stress, and cellular degradation pathways 

(Brew et al., 2009; Lovell and Markesbery, 2007; Nath et al., 2008). 

 

The neuropathology of HAND is clearly distinguishable from AD at autopsy, although there are 

some shared features. HAND demonstrates less atrophy and fewer neurofibrillary tangles in 

plaques, which are the hallmarks of AD. Amyloid beta (Aβ) deposition, which precedes symptoms 

in AD, has also been described in the brains of HIV-infected individuals, although its potential role 

in HAND symptoms is controversial (Brew et al., 2009; Esiri et al., 1998). Aβ deposition has pro-
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inflammatory effects that accelerate neurodegeneration in vitro (Craft et al., 2006). In AD brains, 

microglia localize to amyloid plaques (McGeer et al., 1987) and upregulate human leukocyte 

antigen-DR (HLA-DR) and complement in addition to several pro-inflammatory cytokines that are 

also implicated in HAND pathogenesis (IL-1β, IL-6, and TNFα) (Eikelenboom et al., 2002; 

McGeer and McGeer, 2010; McGeer et al., 1987; Sheng et al., 1998). Notably, a transgenic 

mouse model for a familial AD mutation of amyloid precursor protein recapitulates this 

proinflammatory effect of Aβ deposition and astrocytes and microglia expressing IL-1β, IL-6, TGF-

β, and TNF-α surround plaques (Qiao et al., 2001). In addition to common expression of 

cytokines that are believed to be involved in the pathogenesis of AD and HAND, LPS 

concentrations are elevated in both disorders (Ancuta et al., 2008; Herber et al., 2006). 

 

As with AD, HAND also shares some similar neuropathological features with PD. The presence of 

α-synuclein-positive inclusions in the cell bodies (Lewy bodies) and processes (Lewy neuritis) in 

the substantia nigra is the neuropathological hallmark of PD. Lewy bodies have also been 

observed in autopsied brains of HIV-infected individuals (Brew et al., 2009; Esiri et al., 1998; 

Kaul, 2009; Khanlou et al., 2009) and dopamine deficiency is found in both disorders. However, 

whether neuroinflammation in PD is a consequence or a cause of the selective loss of 

dopaminergic neurons in the substantia nigra is unknown. Evidence for neuroinflammation in PD 

includes increased CSF levels of proinflammatory cytokines, including TNF-α, IL-1β, IL-6, TGF-β, 

and IFN-γ (Hunot et al., 1999; Vawter et al., 1996). Moreover, single nucleotide polymorphisms 

associated with increased production of cytokines and chemokines are overrepresented in PD 

cohorts and may confer increased susceptibility to PD (Hakansson et al., 2005a, b; Kruger et al., 

2000). 

 

Although the role for neuroinflammation in AD and PD is not completely understood, inflammatory 

mediators may be used as both biomarkers and targets for drug development for these disorders. 

For example, platelet inflammatory biomarkers, like cyclooxygenase 2 (COX-2) and 
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phospholipase A2 could be exploited as peripheral inflammatory biomarkers (Casoli et al., 2010). 

COX-2 and its homolog COX-1 are pro-inflammatory proteins that are used by activated microglia 

to synthesize a variety of inflammatory mediators and are elevated in AD brains. Both COX-1 and 

COX-2 are targets of non-steroidal anti-inflammatory drugs (NSAIDS), and there is a link between 

chronic use of NSAIDS and a reduced risk for AD and PD (Breitner et al., 1995; Chen et al., 

2003). Moreover, biomarkers identified in AD, PD, and other diseases related to aging may also 

be relevant in HAND. In a recent study, β-Amyloid(1–42)(Aβ42) measurements in the CSF of 

HAND patients were found to be similar to those found in patients with AD and significantly 

decreased compared to those in normal controls and HIV-infected individuals with normal 

cognitive function (Clifford et al., 2009). However, HAND patients had normal or slightly 

depressed levels of CSF tau and tau phosphorylated at threonine 181 (p-Tau181), which 

distinguished them from patients with AD (Clifford et al., 2009). The detection of pro-inflammatory 

proteins in the periphery may, in the future, be exploited as useful biomarkers in a wide spectrum 

of neurodegenerative disorders. 

 

Other Chronic Progressive, Inflammatory Disorders of the CNS with Known or Suspected Viral 

Etiology 

Neuroinflammation is a major component of other disorders of the CNS with known or suspected 

viral etiology including HAM/TSP and MS. The human retrovirus HTLV-1 (human T-lymphotropic 

virus type I) causes HAM/TSP in a small percentage (<5%) of infected individuals. The incubation 

period between infection with HTLV-I and the development of HAM/TSP is typically long (20–30 

years) and the clinical hallmark of this chronic progressive neurologic disorder is a gradual onset 

of lower extremity weakness (McFarlin and Blattner, 1991; Osame et al., 1990). HTLV-I is 

predominantly CD4+T-cell-tropic. However, CD8+ T cells, astrocytes, monocytes/macrophages, 

and microglia may also become infected and serve as viral reservoirs (Hoffman et al., 1992; 

Nagai et al., 2001a; Nagai et al., 2001b; Watabe et al., 1989). As in HAND, 

monocytes/macrophages are believed to contribute to the pathogenesis of HAM/TSP. However, 
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in contrast to the pathogenesis of HAND/HIV-1 infection of the CNS, much of the 

neurodegeneration resulting from HTLV-I infection is caused directly by HTLV-I Tax-specific 

cytotoxic T cells (CTLs) restricted to immunodominant epitopes of HTLV-I gene products 

(predominantly Tax) (Elovaara et al., 1993; Jacobson et al., 1990b). These HTLV-I-specific CTLs 

are readily detected in the peripheral blood lymphocytes (PBLs), CSF, and active inflammatory 

lesions of HAM/TSP patients (Greten et al., 1998; Levin et al., 1997). HTLV-I Tax-specific CTLs 

secrete many proinflammatory cytokines and chemokines including IFN-γ, TNF-α, CCL3, CCL4, 

and IL-16 (Biddison et al., 1997). In addition, HTLV-I Tax trans-activates many host genes and 

HTLV-I-infected astrocytes secrete high levels of IL-1α, IL-6, TNF-α, and matrix 

metalloproteinases (MMPs) (Szymocha et al., 2000a; Szymocha et al., 2000b). Increased levels 

of HTLV-I tax mRNA, an increased frequency of HTLV-I Tax-specific CD8+ T cells, and high 

proviral loads correlate with disease severity in HAM/TSP and provide good biomarkers of 

disease progression (Yamano et al., 2002). Other candidate HAM/TSP biomarkers, CD244 (a 

signaling lymphocyte activation molecule [SLAM] family receptor) and SLAM-associated protein 

(SAP), were found to be significantly higher in HAM/TSP compared to asymptomatic carriers and 

uninfected individuals and both may be used as biomarkers for neurodegeneration in HTLV-I-

infected individuals (Enose-Akahata et al., 2009). 

 

Another prototypic neuroinflammatory disease with some neuropathological similarities to HAND 

is MS. MS is the most common inflammatory disease of the CNS, with a prevalence that ranges 

between 2 and 150 per 100,000 (Rosati, 2001). The etiology of MS is unknown. In part, this is 

attributable to the variability of this disease, suggesting that many factors may be involved in the 

development of MS (reviewed in (Soldan et al., 2008)). However, it is generally believed that 

genetic, immunological, and environmental factors contribute to MS pathogenesis. Infectious 

agents have been implicated in the pathogenesis of MS for over 100 years but no single 

causative agent has been identified. Again, unlike HAND, MS is chiefly a T-cell-mediated 

neuroinflammatory disorder. However, in both MS and HAND an inflammatory cascade 
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contributes to disease pathogenesis. Although the neuroinflammatory nature of MS has been 

confirmed at all stages, inflammation tends to decrease after decades of disease, as irreversible 

neuronal degeneration accumulates. Such neuroinflammation is detectable through brain 

magnetic resonance imaging (MRI) as the presence of gadolinium-enhancing lesions, which 

represent areas of inflammation associated with leakiness of capillary endothelial cells and 

infiltration of serum components into the brain parenchyma. Analysis of CSF often reveals 

markers of neuroinflammation, as does examination of autopsied brain specimens (see below). 

 

The overexpression of several proinflammatory cytokines, including TNF-α, IFN-g, IL-12, IL-6 and 

CXCL10 have been demonstrated in MS brain specimens (Bartosik-Psujek and Stelmasiak, 

2005; Drulovic et al., 1998; Drulovic et al., 1997; Frohman et al., 2006; Miljkovic et al., 2002; 

Ubogu et al., 2006). Importantly, an increase in TNF-α expression in peripheral blood 

mononuclear cells has been found to precede MS relapses and inflammatory activity (Rieckmann 

et al., 1995). In contrast, anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) and other 

chemokines (CCL2 and CCL5) are downregulated during MS disease exacerbations (Mahad et 

al., 2002a, b; Malmestrom et al., 2006; Rieckmann et al., 1995). The altered expression of these 

cytokines promotes disease pathogenesis by upregulating MHC and adhesion molecule 

expression on endothelial and glial cells, activating macrophages, recruiting TH-1 cells, and/or by 

directly damaging oligodendrocytes and myelin sheaths. In addition, soluble adhesion molecules 

such as ICAM-1 and E-selectin are elevated in the sera of MS patients while soluble vascular cell 

adhesion molecules VCAM-1 and E-selectin are increased in the CSF of MS patients, thereby 

promoting the trafficking of activated T cells into the CNS (Dore-Duffy et al., 1995).  

 

Another long-standing diagnostic biomarker for MS is the presence of oligoclonal bands, which 

represent intrathecally expressed immunoglobin. While the presence of oligoclonal bands clearly 

suggests neuroinflammation in the CSF, the MS-relevant reactive antigens have not yet been 

identified. CSF oligoclonal bands are also present in HAM/TSP and in these individuals they have 
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been found to be chiefly directed against HTLV-I (Jacobson et al., 1990a). More reliable 

biomarkers that can be assayed in the peripheral blood and CSF of MS patients are still being 

sought due to the high cost of frequent MRI and its poor reliability to detect neuronal 

degeneration, axonal loss, and to some extent, spinal cord lesions. 

 

There are many molecules with the potential for more specific clinical diagnostic and prognostic 

application in MS including auto-antibodies, virus antibodies, transcription factors, molecules in 

the nitric oxide pathway, neuronal breakdown products, apolipoprotein E (a marker for cognitive 

dysfunction in AD), molecules in the amyloid precursor protein pathway, cytokines, and 

chemokines among others (reviewed in (Harris and Sadiq, 2009)). Several biomarkers of MS 

inflammatory disease activity are also of interest in HAND, including IL-6 and osteopontin, which 

are both upregulated in HAND and in MS lesions (Burdo et al., 2008; Cannella and Raine, 1995; 

Frei et al., 1991) and CCL2, which is downregulated during MS exacerbations and increased in 

HAND (Kelder et al., 1998). Further assessment of these biomarkers and the use of proteomics 

and microarray technologies to discover new and specific biomarkers for neuroinflammatory 

diseases will ultimately improve diagnosis and treatment of these disabling neuroinflammatory 

disorders. 

 

2.5 - Therapeutic Considerations 

Given the complexity of the pathogenesis of HIV-associated neurodegeneration, multiple cell 

types and cellular processes are under investigation as therapeutic targets. Ongoing clinical trials 

are examining drugs that target overall neuronal survival in addition to reducing 

neuroinflammation. It is likely that a combination of classes of drugs will be necessary to 

ameliorate the neurocognitive decline in HIV patients receiving ART. 

 

ART is increasingly effective in reducing morbidities and mortality in HIV-1-infected patients. 

While ART has significantly decreased the incidence of HAD, presumably by lowering systemic 
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viral loads, current efforts are focused on improving the penetration of ART past the BBB. 

Improved penetration or retention of bioavailable ART drugs in the CNS may slow HAND 

progression by decreasing CNS viral replication and reducing concomitant release of neurotoxins 

from infected and activated macrophages/microglia (Ellis et al., 2007; Letendre et al., 2008; 

Spitzenberger et al., 2007). However, a recent study demonstrated that ART regimens with 

strong CNS penetration and reduced CSF viral loads were associated with poorer neurocognitive 

outcomes (Marra et al., 2009). While further clinical studies are needed, this study highlights the 

importance of considering drug toxicity when promoting ART in the CNS. Furthermore, effective 

therapies for HAND will likely require combination therapy that not only targets viral load, but also 

addresses the indirect pathways known to contribute to HIV-associated neurodegeneration. 

 

Clinical similarities between HIV-associated neurodegeneration and other neurodegenerative 

diseases have prompted investigation into currently approved neuroprotective therapies in HAND 

(Table 2.2). Memantine (Namenda), approved in the treatment for Alzheimer’s disease, is a non-

competitive NMDA receptor antagonist that also increases levels of brain-derived neurotrophic 

factor (BDNF) and conserves dopamine function in SIV-infected macaques (Meisner et al., 2008). 

Both in vitro and in vivo animal studies have shown that memantine inhibits gp120 and Tat-

induced neurotoxicity (Anderson et al., 2004; Nath et al., 2000; Toggas et al., 1996). A short-term 

clinical trial in HAND patients demonstrated that memantine improved neuronal metabolism (as 

judged by magnetic resonance spectroscopy/MRS), indicative of neuroprotection, but did not 

cause significant neurocognitive improvement (Schifitto et al., 2007a). Nevertheless, this study 

suggests a potential beneficial effect of memantine, even following short-term administration, 

although a longer-term follow-up study in this patient cohort failed to reveal a clinically 

demonstrable neurological benefit (Zhao et al., 2010). 

 

Selegiline (Deprenyl), a monoamine oxidase B (MAO-B) inhibitor used in the treatment of early-

stage Parkinson’s disease, has shown some promise in clinical trials for HAND. Selegiline is 
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proposed to act as a neuroprotectant by reducing the antioxidant burden of the cell (Magyar and 

Szende, 2004). Early trials with orally or transdermally administered selegiline demonstrated 

some improvement in psychomotor speed (Sacktor et al., 2000; The Dana Consortium, 1998). 

However, recent studies have shown neither a reduction in biomarkers of oxidative stress nor 

evidence of cognitive improvement with short-term (24 weeks) transdermal selegiline (Schifitto et 

al., 2009a; Schifitto et al., 2007b). While memantine and selegiline have shown some 

effectiveness, they are clearly not potential monotherapies for HAND. In addition to using such 

drugs prior to neurocognitive decline, effective neuroprotective therapies will likely have to be 

used in combination and over the duration of viral infection in order to have maximal clinical 

benefit. 
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Table 2.2  Therapeutics under consideration for HAND 
 
 
Generic (Brand) 
Name 

Molecular 
Target Effects/Role References 

 
Memantine 
(Namenda) 
 

 
NMDA receptor 
antagonist 

 
Increases BDNF levels, 
conserves dopamine function, 
inhibits gp120 and Tat-induced 
neurotoxicity, improves 
neuronal metabolism, short-
term treatment provided no 
neurocognitive impairment 

 
(Anderson et al., 2004; 
Meisner et al., 2008; Nath 
et al., 2000; Schifitto et 
al., 2007a; Toggas et al., 
1996; Zhao et al.) 

 
Selegiline 
(Deprenyl) 

 
MAO-B Inhibitor 

 
Proposed to reduce 
antioxidant burden of the cell, 
may improve psychomotor 
speed, no clinical evidence of 
cognitive improvement over 24 
week treatment 

 
(Magyar and Szende, 
2004; Sacktor et al., 2000; 
Schifitto et al., 2009a; 
Schifitto et al., 2007b; The 
Dana Consortium, 1998) 

 
Sodium valproate 
and lithium 

 
GSK-3β inhibitor 

 
Reduces neurotoxicity, 
improved neuropsychological 
performance  

 
(Ances et al., 2008; Dou 
et al., 2003; Everall et al., 
2002; Letendre et al., 
2006; Schifitto et al., 
2006; Schifitto et al., 
2009b; Tong et al., 2001) 

 
SSRIs – 
citalopram, 
paroxetine 

 
Serotonin 
transporter 

 
May decrease HIV viral levels 
in CSF, improved adherence 
to ART 

 
(Ances et al., 2008; 
Letendre et al., 2007) 

 
Minocycline 

 
5-lipoxygenase 
and others 

 
Decreases CCL2 levels in 
CSF, improves encephalitis, 
suppresses HIV replication 
and inhibits secretion of TNFα, 
IFNγ and IL-2 by lymphocytes 

 
(Colovic and Caccia, 
2003; Copeland and 
Brooks, 2010; Si et al., 
2004; Szeto et al., 2010; 
Zink et al., 2005) 

 
PMS-601 

 
platelet-activating 
factor (PAF) 
receptor 
antagonist 

 
Reduces neurotoxicity, 
microgliosis and TNFα, CCL3, 
CCL4 and CCL5 secretion by 
macrophages 

 
(Eggert et al., 2009b; 
Martin et al., 2000) 

 
Copolymer-1 
(Copaxone) 

 
 

 
Decreases microgliosis, 
astrogliosis, neurotoxicity and 
TNFα and IL-12 levels 

 
(Gorantla et al., 2007; 
Gorantla et al., 2008) 

 
CEP-1347 

  
Anti-apoptotic, decreases 
monocyte secretion of TNFα, 
reduces microgliosis and 
neurotoxicity 

 
(Bodner et al., 2002; 
Eggert et al., 2009a; Sui 
et al., 2006b) 
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In addition to therapies for neurodegenerative diseases, compounds in clinical use for 

neuropsychiatric disorders are also under investigation in HAND (Ances et al., 2008). Sodium 

valproate (VPA) and lithium are approved for treatment of bipolar disorder and related mood 

disorders, and both inhibit glycogen synthase kinase-3β and provide neuroprotection against HIV-

induced toxicity in vitro and in mouse models of HIVE (Dou et al., 2003; Everall et al., 2002; Tong 

et al., 2001). Several small pilot studies have demonstrated improved neuropsychological 

performance in HAND patients following short-term VPA or lithium therapy (Letendre et al., 2006; 

Schifitto et al., 2006; Schifitto et al., 2009a). Additional studies using selective serotonin reuptake 

inhibitors (SSRIs), including citalopram and paroxetine, are also under consideration as 

adjunctive therapies for HAND (Ances et al., 2008; Letendre et al., 2007). 

 

Other adjunctive therapies for HAND are focused on targeting inflammation cascades that 

contribute to neurotoxicity. Minocycline is a broad-spectrum tetracycline antimicrobial that is 

currently in phase I clinical trials for HAND (Copeland and Brooks, 2010). Minocycline is capable 

of efficiently crossing the BBB and can suppress HIV replication in microglia, macrophages, and 

lymphocytes (Colovic and Caccia, 2003; Si et al., 2004; Szeto et al., 2010; Zink et al., 2005). In 

addition, minocycline has anti-inflammatory properties and can inhibit the secretion of the 

inflammatory cytokines TNF-α, IFN-γ, and IL-2 by lymphocytes (Szeto et al., 2010). Experimental 

studies using SIV-infected macaques demonstrated that minocycline decreased CSF levels of 

CCL2, a marker of CNS inflammation, and decreased the severity of encephalitis (Zink et al., 

2005). 

 

In addition to minocycline, several other therapies that have anti-HIV and anti-inflammatory 

effects are also being considered as adjunctive therapy for HAND. PMS-601, a platelet-activating 

factor (PAF) receptor antagonist, reduces neurotoxicity, microgliosis, and macrophage secretion 

of the inflammatory mediators TNF-α, CCL3, CCL4, and CCL5 in vitro and in a mouse model of 

HIVE (Eggert et al., 2009b; Martin et al., 2000). Copolymer-1 (COP-1 or Copaxone) is a clinically 
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approved immune modulator used in the treatment of MS. In addition to decreasing levels of 

TNF-α and IL-12, COP-1 decreases microgliosis, astrogliosis, and neurotoxicity in a mouse 

model of HIVE (Gorantla et al., 2007; Gorantla et al., 2008). CEP-1347 is an anti-apoptotic 

immune modulator that decreases monocyte secretion of TNF-α and macrophage secretion of 

chemokines, including CCL4 and CXCL10 (Eggert et al., 2009a; Sui et al., 2006b). CEP-1347 

reduces microgliosis and HIV-mediated neurotoxicity in vitro and reduces signs of HIVE in a 

mouse model (Bodner et al., 2002; Eggert et al., 2009a; Sui et al., 2006b). As our understanding 

of the complex nature of HAND pathogenesis evolves, it is becoming clear that adjunctive 

therapies that address not only viral burden in the CSF but also the contribution of processes 

such as inflammation are critical for successful clinical management of HAND. In addition, the 

development of adjunctive therapies for HAND will contribute to and likely improve the clinical 

management of other neuroinflammatory disorders, including AD, PD, and MS. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS 
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Reagents 

Stock solutions of dimethyl fumarate and monomethyl fumarate (Sigma, St. Louis, MO), tert-

butylhyrdoquinone (tBHQ; Acros Organics/Thermo Fischer Scientific, Geel, Belgium), 

thapsigargin (Tocris Bioscience, Ellisville, MO), Sal003 (Calbiochem/EMD Biosciences, La Jolla, 

CA), clotrimazole (Sigma) were prepared in DMSO and stored at -20°C until use. Tin (IV) 

mesoporphyrin IX dichloride (SnMP), cobalt (III) protoporphyrin IX chloride (CoPP), and hemin 

(Frontier Scientific, Logan, UT) were prepared in 1N NaOH and stored at -20°C until use. Stock 

solutions of Ara-C (Sigma), phytohemagglutinin (PHA; Sigma), TNFα (R&D Systems, 

Minneapolis, MN) and CCL2 (Peprotech, Rocky Hill, NJ) were prepared in filter-sterilized distilled 

water and stored at -20°C. Stock solutions of efavirenz (NIH AIDS Research and Reference 

Reagent Program, Germantown, MD) were prepared in DMSO and frozen at -80°C until use. 

 

Isolation and culture of human monocyte-derived macrophages (MDM)  

All human studies were reviewed and approved by the Institutional Review Board at the 

University of Pennsylvania. Human monocytes were prepared from PBMCs of healthy donors and 

isolated by Ficoll density gradient centrifugation as previously described (Chen et al., 2002; 

O'Donnell et al., 2006). Monocytes were plated at 1×106 cells per well to Cell-Bind 6-well plates 

(Corning, Lowell, MA) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 

10% horse serum, 1% non-essential amino acids with 50 U/mL penicillin/streptomycin at 37°C, 

6% CO2. Cells were cultured for 7-8 days and visually inspected for MDM differentiation before 

use in HIV-infection experiments. MDM were cultured for 7-10 days before use in non-infectious 

experiments. 

 

HIV infection of MDM 

MDM were pretreated with efavirenz, MMF, DMF or tBHQ, at the indicated concentrations, for 1 

hour. All wells were normalized for the vehicles appropriate for drug treatments (DMSO and/or 

NaOH). Differentiated MDM were exposed to 50ng (p24 ELISA, equivalent to 1.82 ± 0.22 
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kcpm/µL by reverse transcriptase (RT) activity assay) of HIV-1 Jago (R5 strain) or 89.6 (R5/X4 

strain) for 24 hours. HIV-Jago is a macrophage tropic, CSF isolate from a patient with confirmed 

HIV-associated dementia (Chen et al., 2002). Virus stocks were prepared by the University of 

Pennsylvania Center for AIDS Research Virology Core. For some experiments, HIV/MDM were 

exposed to drug treatments, or appropriate vehicle controls, for 6 (0.5µM thapsigargin) or 24 

hours (10µM clotrimazole or 50µM Sal003) beginning at day 6 post infection. Following drug 

exposure, wells were washed x1 with DMEM before cells were put into fresh, drug-free media for 

the remainder of the infection time course. Supernatants from HIV-infected or non-infected 

(Mock) MDM were collected every 2-4 days and stored at -80°C. Supernatants were monitored 

for HIV replication by quantifying viral RT activity, as analyzed by the amount of radiolabeled 

deoxythymidine incorporation.  

 

Subcellular fractionations and Western blot analysis 

For whole cell lysate collection, cells were rinsed twice with ice-cold PBS and lysed in 75mM Tris-

HCl (pH 6.8), 15% glycerol, 3.75mM EDTA, 3% SDS and supplemented with Complete Protease 

Inhibitor Cocktail (Roche Applied Science, Indianapolis, IN) and PhosSTOP phosphatase inhibitor 

cocktail (Roche Applied Science).  

 

To assess for nuclear translocation of NF-κB proteins, differentiated MDM were treated with DMF 

for 24 hours, exposed to TNFα (1 ng/mL) for 10 minutes and fractionated. To prepare nuclear 

extracts, cells were rinsed twice in ice-cold PBS and lysed on ice for 10 minutes in 10mM HEPES 

(pH 7.9), 10mM KCl, 10mM EDTA, 1mM DTT, 0.4% Nonidet P-40, supplemented with protease 

and phosphatase inhibitors. Nuclei were pelleted for 3 minutes at 16,000 × g and the supernatant 

(cytoplasmic fraction) was collected and stored at -20°C. The nuclear pellet was resuspended in 

20mM HEPES (pH 7.9), 400mM NaCl, 1mM EDTA, 10% glycerol, 1mM DTT, protease and 

phosphatase inhibitors and incubated at 4°C on a rocking platform at 200rpm for 2 hours. After 

centrifugation at 16,000 × g for 5 minutes, supernatants (nuclear fractions) were collected and 
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stored at -20°C. All protein concentrations were determined by the Detergent Compatible (DC) 

protein assay (Bio-Rad Laboratories, Hercules, CA). 

 

Cell lysates were subjected to SDS-PAGE as previously described (O'Donnell et al., 2006) using 

the following antibodies: rabbit anti-HO-1 (Stressgen/Enzo Life Sciences, Farmingdale, NY), 

mouse anti-NQO1 (Abcam, Cambridge, MA), mouse anti-Nrf2 (R&D Systems), rabbit anti-RelB 

(Cell Signaling Technologies, Danvers, MA), rabbit anti-NF-κB p65 (Cell Signaling), rabbit anti-

NF-κB p50 (Cell Signaling), rabbit anti-poly (ADP-ribose) polymerase (PARP) (Cell Signaling), rat 

anti-GRP94 (Stressgen), mouse anti-BiP (BD Transduction Laboratories/BD Biosciences, 

Franklin Lakes, NJ), rabbit anti-phosphorylated eIF2α (Invitrogen, Carlsbad, CA), mouse anti-

eIF2α (Cell Signaling), rabbit anti-β-tubulin (Cell Signaling), mouse anti-GAPDH (Advanced 

Immunochemical, Long Beach, CA), and species-specific HRP-conjugated secondary antibodies 

(Jackson ImmunoResearch Laboratories, West Grove, PA or Cell Signaling). For densitometry 

analysis, films were scanned and a fixed cursor area centered over each band was assessed for 

pixel density using ImageJ (NIH, Bethesda, MD). 

 

MDM-mediated neurotoxicity  

Rat cerebrocortical neuronal cultures were prepared from embryos of Sprague-Dawley rats at day 

17 of gestation, as previously described (O'Donnell et al., 2006). All procedures were within the 

ARRIVE guidelines for animal research, and in accordance with protocols approved by the 

University of Pennsylvania Institutional Animal Care and Use Committee. Cells were plated in 

tissue culture dishes pre-coated with poly-L-lysine (Peptides International, Louisville, KY) and 

maintained in neurobasal media plus B27 supplement (Invitrogen) at 37°C and 5% CO2. Forty-

eight hours after plating, cells were treated with 10µM Ara-C. After 7 days in vitro (DIV), 

approximately one-half volume of fresh media was added to the cells in order to counteract 

effects of evaporation. All cultures were used between 14 and 16 DIV. 
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Cell-based microtubule-associated protein 2 (MAP2) ELISAs were performed on primary rat 

cerebrocortical cells plated at a density of 6×104 cells per well in 96-well plates. Following a 24 

hour exposure to HIV/MDM supernatant, cultures were fixed and fluorescently labeled as 

described (Wang et al., 2007; White et al., 2011) using the following reagents: mouse anti-MAP2 

(Covance, Princeton, NJ), goat anti-mouse β-lactamase TEM-1 conjugate (Invitrogen), and 

Fluorocillin Green substrate (Invitrogen). Fluorescence intensity was measured using a 

fluorometric plate reader with the 480/520 nm filter set. Macrophage supernatant was applied at a 

1:10-1:50 dilution; the dilution that gave values within the linear range of the assay is presented. 

 

Immunofluorescence 

Primary rat cerebrocortical cells were plated at a density of 2×105 cells per 35mm dish with glass 

coverslips. Following exposure to HIV/MDM supernatant for 24 hours, cultures were fixed and 

fluorescently labeled as described (O'Donnell et al., 2006) using the following reagents: mouse 

anti-MAP2 (Sigma) and species-specific Cy3-conjugated secondary antibody (Jackson 

ImmunoResearch Laboratories), and Hoescht 33342 (Invitrogen).  

 

LDH assay  

Soluble lactate dehydrogenase (LDH) in HIV/MDM culture supernatant was measured using the 

Cytotoxicity Detection KitPLUS (Roche Applied Science) according to manufacturer’s instructions. 

 

Electrophoretic Mobility Shift Assay (EMSA) 

Following 24 hours of pretreatment with DMF, human MDM were exposed to 1 ng/mL TNFα for 

10 minutes and nuclear protein extracts were isolated as described. 8µg of nuclear protein was 

assessed for NF-κB-DNA binding with an EMSA kit (Panomics, Santa Clara, CA), used according 

to manufacturer’s directions. The labeled oligonucleotide for NF-κB p50 binding, 5’-

AGTTGAGGGGACTTTCCCAGGC-3’, was used. 
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Cytokine detection in culture supernatants 

The concentration of TNFα in culture supernatants was detected using an ELISA kit (Invitrogen) 

and used according to manufacturer’s instructions. Uninfected MDM were treated with 0.067% 

DMSO (vehicle), DMF or tBHQ for 24 hours prior to exposure to 10 µg/mL PHA for 6 hours. 

Supernatants were collected and frozen at -80°C until assayed.  

 

Chemotaxis assay 

Monocyte chemotaxis was assayed using the Chemicon QCM 96-well (5µM pore size) Migration 

kit (Millipore, Temecula, CA) according to manufacturer’s directions. Freshly isolated human 

monocytes were plated at a density of 2x105 cells/well in serum- and growth factor-free culture 

media to the upper chamber in the presence of DMF, MMF or vehicle (0.02% DMSO). CCL2 (300 

ng/mL) was added to the lower chamber and cells were incubated at 37°C and 6% CO2 for 6 

hours (Chiou et al., 2011; Eugenin et al., 2006; Janic et al., 2008). Exposure of monocytes to 300 

ng/mL CCL2 for 6 hours most consistently induced chemotaxis, with an average of 35.3 ± 20.2% 

above baseline. All cells that had migrated through the insert, including those adhered to bottom 

of the membrane, were collected. For quantification, cells were lysed and labeled with CyQuant 

GR dye. Fluorescence was read with the 480/520 nm filter set on a fluorometric plate reader. 

 

Flow cytometry 

Human PBMCs were cultured in RPMI supplemented with 10% FBS and 50 U/mL 

penicillin/streptomycin at 37°C and 5% CO2. Following 6 or 36 hours of treatment with the 

indicated concentrations of DMF or DMSO vehicle, cells were washed with ice-cold FACS buffer 

(PBS, 1% BSA, 0.1% NaN3) and stained with CD11b-PE (clone ICRF44, eBioscience, San Diego, 

CA), CD14-PE/Cy7 (M5E2, BioLegend, San Diego, CA), CCR2-PerCP/Cy5.5 (TG5, BioLegend), 

CD4-FITC (OKT4, BioLegend), CD195/CCR5-Alexa Fluor 700 (HEK/1/85a, BioLegend) and 

CD184/CXCR4-PerCP/Cy5.5 (12G5, BioLegend) antibodies. Mouse IgG2a-PerCP/Cy5.5 (MOPC-

173, BioLegend) was used as the isotype control for CCR2 staining. Antibody-stained cell 
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suspensions were pretreated with 4’6’-diamidino-2-phenylindole (DAPI) to identify dead cells. 

Flow cytometry was performed on a LSR-II (BD Biosciences). Doublets were excluded using 

forward side scatter-height versus forward side scatter-width and side scatter-height versus side 

scatter-width parameters. Data were analyzed using FlowJo (Tree Star, Ashland, OR). 

Monocytes were identified as CD11b+CD14+ cells. 

 

Indirect fluorescence assay 

For immunofluorescent staining, paraffin-embedded tissue sections from the frontal cortices of 

control (n = 2) and HIV(+) (n = 12) human autopsy cases were obtained from the National Neuro-

AIDS Tissue Consortium. Glass slides containing paraffin-embedded sections (5 µm) were 

deparaffinized and rehydrated as described previously (Chalovich et al., 2005). Endogenous 

peroxidase activity was inactivated using 3% H2O2 in methanol. Antigen unmasking was 

performed by target retrieval solution (Dako Corporation, Carpinteria, CA) at 95°C for 1 h. 

Tissue sections were then blocked with 10% normal goat serum in PBS. Mouse monoclonal 

antibodies to BiP (1:150, BD BioSciences) and the macrophage/microglia marker, HLA-DR (MHC 

class II protein, clone CR3/43,1:1000, Sigma) were used in IFA for macrophagic BiP. Rabbit 

polyclonal antibodies to phosphorylated eIF2α (1:1000, Invitrogen) and the macrophage/microglia 

marker, HAM56 (human alveolar macrophage, clone 56, 1:100, Dako Corporation) were used in 

IFA for macrophagic phosphorylated eIF2α. The tyramide amplification system (New England 

Biolabs, Beverly, MA) was used according to manufacturer’s directions for the detection of HLA-

DR and phosphorylated eIF2α. DNA was visualized by DAPI staining (5 mM, Molecular Probes, 

Carlsbad, CA). Slides were mounted in Vectashield (Vector Laboratories, Burlingame, CA) and 

analyzed by laser confocal microscopy on a Bio-Rad Radiance 2100 equipped with Argon, Green 

He/Ne, Red Diode and Blue Diode lasers (Bio-Rad), as described previously (Strachan et al., 

2005). All images shown were captured with uniform threshold and intensity settings.  
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Post-acquisition analysis for immunofluorescent staining was performed using MetaMorph 6.0 

image analysis software (Universal Imaging, Inc, Downingtown, PA, USA). Eight 212 µm × 212 

µm images were captured randomly from the areas of positive staining in the midfrontal cortical 

grey matter for each case. HLA-DR, HAM56 and phosphorylated eIF2α area was determined by 

the measurement of the number of the pixels positive for the desired signal. Total macrophage 

specific BiP was determined by the measurement of integrated pixel intensity of BiP over pixels 

positive for HLA-DR, where integrated pixel intensity is defined as total pixel intensity per image 

times the area of pixels positive for the signal. Total HAM56 and phosphorylated eIF2α intensity 

was determined by the measurement of integrated pixel intensity for HAM56 or phosphorylated 

eIF2α per image, where the integrated pixel intensity is defined as total pixel intensity per image 

times the area of pixels positive for the signal. Total macrophage specific phosphorylated eIF2α 

was determined by the measurement of integrated pixel intensity of phosphorylated eIF2α over 

pixels positive for HAM56. Data is also presented for phosphorylated eIF2α colocalization 

normalized to the area of pixels positive for HAM56 (macrophagic phosphorylated eIF2α intensity 

per HAM56 area), to account for differences in HAM56 expression due to effects of disease.  

 

Statistics 

All quantifications are expressed as mean ± standard error of mean. Statistical comparisons were 

made by Student’s t-test, one-way ANOVA plus Newman-Keuls post hoc test or post hoc test for 

linear trend, as indicated. All graphs were generated and statistical analyses were performed 

using GraphPad Prism software (San Diego, CA), and values of p<0.05 were considered 

significant.  
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Table 3.1 Summary of case data for autopsy tissue obtained from the National Neuro-AIDS 

Tissue Consortium brain bank for BiP and HLA-DR staining. 

 

Case HIV Gender Age (yrs) Post mortem 
interval (hrs) 

Neurocognitive 
diagnosis 

HIV1 + M 44 8.5 HAND 

HIV2 + M 33 20 HAND 

HIV3 + M 51 5 HAND 

HIV4 + M 33 6 HAND 

HIV5 + F 31 9 HAND 

HIV6 + M 49 12 HAND 

HIV7 + N/A 46 2.75 Normal 

HIV8 + N/A 45 13 Normal 

HIV9 + N/A 44 16.4 Normal 

HIV10 + N/A 34 5 HAND 

HIV11 + N/A 32 14 HAND 

HIV12 + N/A 57 5.5 HAND 

Control1 - M 44 21.5 Normal 

Control2 - M 52 17.5 Normal 
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Table 3.2 Summary of case data for autopsy tissue obtained from the National Neuro-AIDS 

Tissue Consortium brain bank for phosphorylated eIF2α and HAM56 staining. 

 

Case HIV Gender Age (yrs) Post mortem 
interval (hrs) 

Neurocognitive 
diagnosis 

HIV1 + M 35 9.25 HAND 

HIV2 + F 34 5 HAND 

HIV3 + M 57 5.5 HAND 

HIV4 + M 32 14.5 HAND 

HIV5 + M 38 5.5 HAND 

HIV6 + M 32 14 HAND 

HIV7 + M 36 2.5 HAND 

HIV8 + M 37 11.5 HAND 

HIV9 + M 31 8.83 HAND 

HIV10 + M 49 67.33 HAND 

HIV11 + M 42 27.33 HAND 

HIV12 + M 50 21 HAND 

HIV13 + M 43 unknown HAND 

HIV14 + M 50 18 Normal 

HIV15 + M 46 2.75 Normal 

Control1 - M 46 27.65 Normal 

Control2 - F 47 19.18 Normal 

Control3 - M 40 14.66 Normal 

Control4 - F 51 21.75 Normal 
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CHAPTER 4 

 

 

THE ANTIOXIDANT RESPONSE ATTENUATES HIV REPLICATION AND MACROPHAGE-

MEDIATED NEUROTOXICITY2 

 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 This work was originally published in The Journal of Immunology. Cross SA, Cook DR, Chi 
AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. 2011. Dimethyl fumarate, 
an immune modulator and inducer of the antioxidant response, suppresses HIV replication and 
macrophage-mediated neurotoxicity; a novel candidate for HIV-neuroprotection. J. Immunol. Vol. 
187 (10): pp-pp. Copyright © 2011 The American Association of Immunologists, Inc. 
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Abstract 

Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and 

neurodegeneration through persistent inflammation and neurotoxin release from infected and/or 

activated macrophages/microglia. Furthermore, inflammation and immune activation within both 

the central nervous system (CNS) and periphery correlate with disease progression and morbidity 

in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS 

and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model 

of HIV-mediated neurotoxicity, in which HIV infected monocyte-derived macrophages (MDM) 

release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage 

antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration 

of HO-1 expression in HIV-infected MDM reduces neurotoxin release without altering HIV 

replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to 

treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential 

neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of 

the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct 

mechanisms are proposed; inhibition of NF-κB nuclear translocation and signaling, which could 

contribute to the suppression of HIV replication, and induction of HO-1, which is associated with 

decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte 

chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS 

in response to inflammatory mediators. We propose that dysregulation of the antioxidant 

response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could 

serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.  
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Introduction 

HIV-1 infection of the central nervous system (CNS) can result in cognitive, motor, and behavioral 

abnormalities, collectively known as HIV-associated neurocognitive disorders (HAND) (Antinori et 

al., 2007; McArthur et al., 2010). Early in the course of infection, HIV traffics into the brain via 

infected monocytes and lymphocytes (Dunfee et al., 2006) and despite antiretroviral therapy 

(ART) persists in parenchymal microglia and perivascular macrophages (Ho et al., 1985; Koenig 

et al., 1986; Petito et al., 1986). HIV infection of the CNS results in the immune activation of 

resident glia, and because HIV cannot infect neurons, neuronal damage is mediated by 

neurotoxins released by these infected and/or activated macrophages, microglia and astrocytes. 

Although the severity of HAND has been significantly reduced through the widespread use of 

ART, the prevalence and associated morbidity remain high (~50%) (Robertson et al., 2007; 

Sacktor et al., 2002). The persistence of HAND in individuals effectively controlled for systemic 

viral load is incompletely explained, although recent evidence suggests that prolonged 

inflammation in both the CNS and periphery may be responsible (Ancuta et al., 2008; Brenchley 

et al., 2006b; Eden et al., 2007).  

 

Chronic systemic inflammation is tightly linked to morbidity and mortality in ART-treated patients, 

which suggests that adjunctive anti-inflammatory drugs or immune modulators may improve 

clinical outcomes. Despite undetectable plasma viral loads, measures of systemic inflammation 

correlate to cerebral spinal fluid (CSF) immune activation, CNS inflammation and HAND (Ancuta 

et al., 2008; Brenchley et al., 2006b; Eden et al., 2007). It has been proposed that elevated 

peripheral inflammation mediates neurocognitive decline by increasing the transendothelial 

migration of infected and/or activated monocytes into the brain (Ancuta et al., 2008; Persidsky et 

al., 1997). An increased number of microglia and macrophages in the CNS correlates with the 

severity of pre-mortem HAND, demonstrating the importance of these cell types in mediating 

neurological impairment (Anthony et al., 2005; Glass et al., 1995; Petito et al., 1986). Some of the 

most striking evidence linking peripheral inflammation to HAND derives from the strong 
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association between early and persistent damage caused to gut-associated lymphoid tissue 

(GALT) by HIV infection (or SIV infection in macaques), increased microbial translocation, 

systemic immune/monocyte activation and HAND progression (Ancuta et al., 2008; Brenchley 

and Douek, 2008; Brenchley et al., 2006a; Brenchley et al., 2006b). Therefore, reducing 

inflammation in the periphery as well as within the CNS is expected to improve neurocognitive 

impairment in HIV-infected patients.  

 

Fumaric acid esters (FAEs), including dimethyl fumarate (DMF) and its primary in vivo metabolite 

monomethyl fumarate (MMF), are a class of compounds that have anti-inflammatory and immune 

modulating effects in vitro and in vivo. Fumaderm, a formulation of DMF and other FAEs, has 

been used in Europe since 1995 as an effective treatment for psoriasis; its mechanism of action 

is attributed to modulation of T cell activation and infiltration into plaques (Hoxtermann et al., 

1998). DMF is currently under investigation for use in multiple sclerosis (MS) and a recently 

completed Phase III study demonstrated a significant benefit in suppressing relapses, disease 

progression and brain lesion inflammation (2011). Using the rodent model of MS, experimental 

allergic encephalomyelitis (EAE), it was shown that DMF reduces the recruitment of monocytes 

into areas of active demyelination in the brain (Schilling et al., 2006). In in vitro model systems, 

DMF has been shown to inhibit pro-inflammatory cytokine production and NF-κB signaling via 

inhibition of nuclear translocation (Loewe et al., 2002; Schilling et al., 2006; Seidel et al., 2009; 

Stoof et al., 2001). Furthermore, DMF induces the expression of Nrf2-driven antioxidant response 

genes, including heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1) 

(Lehmann et al., 2007; Linker et al., 2011). Notably, induction of HO-1 expression in human 

monocytes by hemin has been associated with suppression of HIV-1 replication (Devadas and 

Dhawan, 2006).  

 

Because HIV replication can be strongly driven by NF-κB activation and nuclear translocation, we 

hypothesized that DMF treatment of HIV-infected monocyte-derived macrophages (HIV/MDM) 
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would result in attenuation of HIV replication, immune activation and neurotoxin production. Our 

in vitro system models macrophage-mediated neurotoxicity during HIV infection by utilizing 

human MDM and rat cerebrocortical neuronal cultures. In this system, HIV infection of MDM 

results in the release of low molecular weight excitotoxins that injure neurons through excessive 

activation of N-methyl-D-aspartate (NMDA) receptors (Kaul et al., 2005; Lipton, 2004; O'Donnell 

et al., 2006). In this study we demonstrate that DMF attenuates HIV replication, nuclear 

translocation of NF-κB subunits and TNFα production in human MDM. Furthermore, supernatants 

from DMF and MMF-treated HIV/MDM cultures are markedly less neurotoxic to primary neurons 

than those from non-treated HIV/MDM cultures. Suppression of neurotoxin production is 

mediated by induction of HO-1 in HIV/MDM, and this suppression of neurotoxin production can 

occur even without suppression of HIV replication. Finally, DMF and MMF also reduce CCL2-

induced chemotaxis in human monocytes. This study demonstrates that DMF inhibits key steps in 

HAND pathogenesis through distinct effects on HIV replication and macrophage-mediated 

neurotoxin production and DMF should be considered as an adjunctive therapeutic for 

ameliorating the neurological complications of HIV infection.  
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Results 

DMF and MMF inhibit HIV replication in human MDM 

Dimethyl fumarate (DMF), and its in vivo primary metabolite monomethyl fumarate (MMF), inhibit 

NF-κB signaling, suppress the production of inflammatory mediators and induce an antioxidant 

response in a variety of cell types (Lehmann et al., 2007; Loewe et al., 2002; Schilling et al., 

2006; Seidel et al., 2009; Stoof et al., 2001; Vandermeeren et al., 1997; Vandermeeren et al., 

2001). NF-κB signaling has been established as a major pathway of HIV transcriptional 

regulation, and recent studies have implicated the antioxidant response enzyme, HO-1, as a 

negative regulator of HIV replication in monocytes (Devadas and Dhawan, 2006; Devadas et al., 

2010). Therefore, we hypothesized that DMF could modulate HIV replication in human 

macrophages through one or both of these mechanisms. Human MDM were treated with DMF or 

MMF and then examined for virus replication. As shown in Figure 4.1, exposure of MDM to DMF 

(A) or MMF (B) attenuated HIV replication in a dose-dependent manner, as determined by culture 

supernatant reverse transcriptase levels. Suppression of replication in MDM was seen with the 

R5 CSF HIV strain, Jago (Figure 4.1) and the prototypic R5/X4 strain, 89.6 (Figure 4.2). As 

shown in Table 4.1, HIV replication was inhibited by an average of approximately 30% at MMF 

concentrations achieved in vivo after single dose administration (4.4µM in CSF and 6.5µM in 

plasma) (Linker et al., 2011; Litjens et al., 2004). No drug toxicity was detected at concentrations 

up to 100µM in HIV-infected MDM (HIV/MDM) (Figure 4.1C, 1D) and non-infected MDM (data not 

shown). DMF demonstrated additive effects in attenuating HIV replication when used in 

combination with efavirenz, a non-nucleoside reverse transcriptase inhibitor (Figure 4.3A). There 

was no observed cellular toxicity when DMF was used in combination with efavirenz (Figure 

4.3B).  
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Figure 4.1  Dimethyl fumarate and monomethyl fumarate attenuate HIV replication in 
human MDM. Human MDM infected with 50ng HIV (p24 ELISA, equivalent to 1.82 ± 0.22 
kcpm/µL by reverse transcriptase (RT) activity assay) were treated with DMF (A) or MMF (B) 
over the course of infection at the indicated concentrations (1-30µM) or with 20nM of the non-
nucleoside reverse transcriptase inhibitor, efavirenz (EFZ). Culture supernatants were collected 
every 2-3 days, as indicated, and HIV replication was quantified by RT activity. C) DMF and D) 
MMF cause no cytotoxicity in HIV/MDM as assessed by LDH assay of supernatants harvested at 
day 14 post infection. Maximum (Max) LDH release represents the soluble LDH release following 
cell lysis. RT curves are representative of 3-4 independent experiments, with each replicate 
performed on cell preparations from different donors. LDH assays represent data averaged from 
3-5 individual donors. All statistical comparisons were made by one-way ANOVA plus Newman-
Keuls post hoc testing, ***p<0.001 vs. EFZ.  
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Figure 4.2  Dimethyl fumarate attenuates 89.6 HIV replication in human MDM. Human MDM 
infected with HIV-89.6 were treated with DMF (A) or MMF (B) over the course of infection at the 
indicated concentrations (1- 30µM) or with the non-nucleoside reverse transcriptase inhibitor, 
efavirenz (EFZ). Culture supernatants were collected every 2-4 days, as indicated, and assessed 
for RT activity. Values indicate the mean ± SEM. RT curves are representative of 2-3 
independent experiments, with each replicate performed on cell preparations from different 
donors. 
  



  
56 

Table 4.1.  Reduction in RT activity, relative to vehicle control, with increasing concentrations of 

DMF and MMF among individual donors. 

 
Donor # 5µM DMF 15µM DMF 30µM DMF 

5 16.7 ± 11.0% 
n =4 

27.8 ± 9.8% 
n =3 

64.0 ± 13.4% 
n =5 

36 10.0 ± 13.1% 
n =3 

68.0 ± 3.6% 
n =1 

52.7 ± 15.4% 
n =3 

40 17.1 ± 6.7% 
n =2 

66.0 ± 5.0% 
n =1 

73.4 ± 20.9% 
n =2 

7 59.6 ± 5.0% 
n =2 

65.2 ± 9.2% 
n =1 

60.6 ± 5.7% 
n =2 

26 81.5 ± 12.4% 
n =1 

91.3 ± 6.7% 
n =1 

51.2 ± 15.1% 
n =3 

38 38.7 ± 4.3% 
n =1 

42.3 ± 4.2% 
n =1 

53.9 ± 6.0% 
n =2 

AVG 26.5 ± 36.0% 
n =20 (12) 

45.5 ± 26.4% 
n =13 (11) 

55.0 ± 32.3% 
n =25 (13) 

    
    

Donor # 5µM MMF 15µM MMF 30µM MMF 
33 29.5 ± 19.2% 

n =3 
36.7 ± 14.6% 

n =3 
66.1 ± 13.9% 

n =3 
40 14.7 ± 21.5% 

n =2 
57.0 ± 8.3% 

n =2 
61.6 ± 8.3% 

n =2 
38 29.5 ± 9.9% 

n =2 
36.7 ± 2.9% 

n =1 
66.1 ± 3.7% 

n =2 
29 33.6 ± 93.9% 

n =2 
76.8 ± 4.3% 

n =1 
86.9 ± 1.7% 

n =1 
AVG 28.6 ± 32.4% 

n =12 (7) 
47.8 ± 27.1% 

n =10 (7) 
67.5 ± 20.5% 

n =12 (7) 
 
Values were calculated from RT data from the peak of infection and are presented as mean ± SD. 
For combined average (AVG) data, n = number of replicates averaged (number of unique 
donors). Only individual donors assayed more than once are included in the table. 
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Figure 4.3  Dimethyl fumarate and efavirenz have additive effects on attenuation of HIV 
replication and neurotoxin production in human MDM. A) DMF and efavirenz (EFZ), a non-
nucleoside reverse transcriptase inhibitor, have additive effects on the attenuation of HIV 
replication in human MDM. MDM were infected with HIV-Jago and treated with DMF and/or EFZ 
over the course of infection. Culture supernatants were collected every 3 days and assessed for 
RT activity. Values indicate the mean ± SEM. RT curves are representative of 2 independent 
experiments, with each replicate performed on cell preparations from a different donor. B) DMF 
and EFZ cause no cytotoxicity in HIV/MDM as assessed by LDH assay of supernatants harvested 
at day 15 post infection. Maximum (Max) LDH release represents the soluble LDH release 
following cell lysis. LDH assays represent data averaged from 2 individual donors. C) DMF and 
EFZ used in combination reduce macrophage-mediated neurotoxicity to a greater extent than 
either drug alone. Neuronal survival was assessed by MAP2 ELISA following exposure to 
supernatant of HIV-infected macrophages, which were treated with DMF and/or EFZ over the 
course of infection. MAP2 data is expressed as a percentage of untreated (UT) cultures (n = 6). 
All statistical comparisons were made by one-way ANOVA plus Newman-Keuls post hoc testing, 
**p<0.01 and ***p<0.001 vs. Vehicle.   
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DMF and MMF reduce HIV/MDM-mediated neurotoxicity 

We and others have shown that HIV-infected MDM release potent neurotoxins that injure neurons 

through over-activation of N-methyl-D-aspartate receptors (NMDAR) and that this excitotoxicity is 

mediated by glutamate and other low molecular weight NMDAR agonists (Chen et al., 2002; 

Jiang et al., 2001; O'Donnell et al., 2006). Although the mechanisms underlying neurotoxin 

production in HIV/MDM are not fully understood, suppression of HIV replication in MDM generally 

suppresses such neurotoxicity, as demonstrated by treatment with efavirenz (Figure 4.4). 

Similarly, in addition to suppressing HIV replication (Figure 4.1), DMF (Figure 4.4A) and MMF 

(Figure 4.4B) also reduce HIV/MDM neurotoxin production in a dose-dependent manner, as 

assessed by neuronal survival in our in vitro HIV neurotoxicity model. Representative images of 

HIV/MDM-mediated neurotoxicity and the protective effects of DMF and MMF are shown (Figure 

4.4C), where surviving neurons are labeled for MAP2 (microtubule-associated protein 2). DMF 

and EFZ used in combination resulted in additive effects on the suppression of macrophage-

mediated neurotoxicity (Figure 4.3C), demonstrating that DMF may successfully reduce HIV 

replication and macrophage-mediated neurotoxicity that is not fully suppressed by ART. This 

neuroprotection is due to drug effects on the macrophages, as DMF and MMF do not prevent 

HIV/MDM mediated neurotoxicity when applied directly to the neurons prior to addition of 

HIV/MDM supernatants (data not shown).  
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Figure 4.4  DMF and MMF reduce HIV/MDM mediated neurotoxicity. Rat cerebrocortical 
cultures were exposed to supernatant from HIV-infected macrophages that were treated with 
DMF (A) or MMF (B) at the indicated concentrations (1-30µM) during the course of infection. 
Neuronal survival was assessed by MAP2 ELISA and expressed as a percentage of untreated 
(UT) cultures (n = 6; ***p<0.001 vs. Vehicle). C) Representative images of rat cerebrocortical 
cultures immunofluorescently stained for MAP2 (red) and Hoescht 33324 (blue) following 24 
hours treatment with the indicated HIV/MDM supernatant. Scale bar represents 50µm. All 
statistical comparisons were made by one-way ANOVA plus Newman-Keuls post hoc testing.  
 

 

 

DMF inhibits NF-κB nuclear entry, DNA binding and TNFα production in human MDM 

NF-κB and TNFα are part of a positive feedback loop that regulates the transcriptional activity of 

the HIV long terminal repeat (LTR). In unstimulated cells, NF-κB is unable to bind DNA due to its 

association with inhibitory κB (IκB) proteins, which sequester NF-κB in the cytoplasmic 

compartment (Baldwin, 1996; Ganchi et al., 1992; Henkel et al., 1992). Following exposure to an 

activating stimulus such as TNFα, NF-κB is rapidly freed from the inhibitory complex and 

translocates into the nucleus to induce transcriptional activation of viral and host genes. NF-κB 

proteins are major modulators of the HIV LTR and are among the most potent activators of 
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proinflammatory and inflammatory genes. Five members of the mammalian NF-κB/Rel family 

have been described, including c-Rel, NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), and 

RelB. Functional NF-κB complexes are composed of heterodimer complexes containing p65, c-

Rel, or RelB bound to p50 or p52 (Baldwin, 1996; Kilareski et al., 2009; Neumann et al., 2000). 

Exposure to activating stimuli, such as TNFα, induces the nuclear accumulation of NF-κB 

proteins, DNA binding by NF-κB p50 and transcription from the HIV LTR (Duh et al., 1989). 

 

To determine if DMF and MMF inhibit the nuclear translocation of NF-κB proteins in MDM, DMF 

and MMF-treated MDM were stimulated with TNFα and subjected to subcellular fractionations 

before detection of NF-κB subunits by Western blotting. DMF and MMF each inhibited TNFα-

induced nuclear accumulation of RelB, p65 and p50 in a dose-dependent manner (Figure 4.5A, 

3B). We also demonstrate that DMF inhibited the formation of the NF-κB p50-DNA complex, as 

assessed by EMSA (Figure 4.5C). Because NF-κB signaling also induces expression of 

inflammatory mediators, we assessed the effects of DMF treatment on TNFα release from MDM. 

In agreement with previous reports of DMF decreasing the release of inflammatory mediators 

from multiple cell types, including TNFα, IL-1β and IL-6, (Lehmann et al., 2007; Wilms et al., 

2010) we found that DMF suppresses release of TNFα from PHA-activated MDM (Figure 4.5D). 

Furthermore, DMF also markedly suppressed HIV-induced TNFα release from MDM (Figure 

4.5E). Thus, DMF and its primary metabolite, MMF, inhibit NF-κB translocation and signaling 

events that contribute to the positive feedback loop that modulates HIV transcription in infected 

and activated MDM.  

  



  
61 

 

Figure 4.5  DMF inhibits NF-κB nuclear translocation, DNA binding and TNFα production in 
human MDM. A) DMF and B) MMF inhibit the nuclear translocation of the NF-κB proteins RelB, 
p65 and p50 in human MDM in a dose-dependent manner. Cells were treated with DMF or MMF 
for 24 hours, exposed to TNFα (10 min), separated into cytoplasmic and nuclear fractions and 
analyzed by Western blotting. Results of densitometry analysis are presented numerically under 
each panel as the ratio of NF-κB protein to PARP, a nuclear marker and loading control. Blots are 
representative of 4-6 independent experiments, with each replicate performed on cell 
preparations from different donors. C) DMF inhibits nuclear NF-κB p50 binding to DNA in TNFα 
stimulated MDM, as assessed by EMSA. Results of densitometry analysis were normalized to 
vehicle. D) DMF inhibits the production of TNFα in MDM stimulated with PHA (10µg/mL). Values 
are expressed as percent TNFα production relative to Vehicle treated cells (227 ± 11.9 pg/mL 
TNFα in Vehicle). Data are expressed as mean ± SEM and represent data averaged from 4 
different donors. E) TNFα production in HIV/MDM is inhibited by DMF treatment. HIV/MDM were 
treated with DMF (1-30µM) or 20nM efavirenz (EFZ) over the course of infection and culture 
supernatants from day 14-15 post infection were assayed for TNFα by ELISA. Values represent 
the mean ± SEM of data averaged from 5 different donors. All statistical comparisons were made 
by one-way ANOVA plus Newman-Keuls post hoc testing (*p<0.05, **p<0.01, ***p<0.01 vs. 
Vehicle).  
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DMF restores the antioxidant response suppressed by HIV infection in MDM  

The antioxidant response is one of the cellular adaptive stress responses that can modulate virus 

replication and host cell survival, as shown in Hepatitis B and Dengue 2 infection models (Chen 

et al., 2011; Schaedler et al., 2010). The antioxidant response maintains redox balance and 

counteracts oxidative damage through induction of proteins that are involved in detoxification of 

reactive oxygen species (ROS). These proteins are produced by genes with a common promoter 

element, the antioxidant response element (ARE), and ARE transcription is mediated by Nrf2. 

Under conditions of low oxidative stress, Nrf2 is kept transcriptionally inactive by Kelch-like ECH-

associated protein 1 (Keap1), which sequesters Nrf2 in the cytoplasmic compartment (Itoh et al., 

1999). Following exposure to ROS or electrophiles, Keap1 is degraded by the proteasome and 

Nrf2 translocates to the nucleus to drive expression of numerous genes including, HO-1, NQO1, 

glutathione peroxidase 1 (GPX1), and genes responsible for glutathione synthesis (glutamate 

cysteine ligase modifier, glutamate cysteine ligase catalytic subunit and glutathione synthetase). 

HIV infection is associated with increased ROS production and depressed levels of glutathione, 

the major intracellular antioxidant (Dworkin et al., 1986). We observed a marked reduction in the 

level of HO-1 expression in HIV/MDM across multiple human donors, with a more modest but 

nonetheless consistent reduction in GPX1 levels (Figure 4.6A, 4B). The effects of DMF on Nrf2 

and NQO1 levels were more variable among HIV/MDM cultures from different donors, but 

trended towards increased expression relative to uninfected Mock/MDM (Figure 4.6A, 4B).  

 

Upon exposure of HIV/MDM to DMF, expression of Nrf2, HO-1, GPX1 and NQO1 increased with 

increasing doses of DMF (Figure 4.6C), suggesting a restoration of antioxidant responses in HIV-

infected MDM. Both HIV infection and DMF increase total levels of Nrf2, suggesting that while 

HIV infection stabilizes or induces total cellular Nrf2 levels, this is not sufficient for the coordinated 

transcriptional activation of ARE-regulated genes, such as HO-1 and GPX1. DMF and MMF 

treatment activates transcription of these ARE-regulated genes in HIV-infected macrophages, 

possibly by disrupting inhibitory Nrf2-Keap1 interactions (Linker et al., 2011). DMF restores levels 
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of HO-1 and GPX1 to those observed in uninfected MDM, while NQO1, which is not suppressed 

during HIV infection, is induced to levels exceeding those in uninfected MDM (Figure 4.6D). We 

have also confirmed that MMF can induce the antioxidant response in HIV/MDM (Figure 4.6E, 

4F) and that both DMF and MMF induce the antioxidant response in uninfected MDM (data not 

shown). DMF induction of antioxidant responses in MDM occurs independently of HIV infection, 

which is consistent with previous findings describing induction of the antioxidant response by 

DMF in multiple cell types, including glia and neurons (Lehmann et al., 2007; Linker et al., 2011).  
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Figure 4.6  DMF restores the imbalance in the antioxidant response caused by HIV 
infection. HIV infection of human MDM reduces HO-1 and GPX1 expression, as assessed by 
Western blotting (A) and quantified by densitometry analysis (B). Values indicate mean ± SEM of 
6 different donors. Statistical comparisons were made by two-tailed paired t-test (*p<0.05, 
**p<0.01 and ***p<0.001 vs. Mock). C) DMF activates the Nrf2-dependent antioxidant response in 
HIV/MDM and restores HO-1 and GPX1 levels to that found in uninfected Mock cells, as 
quantified by densitometry analysis (D). E) MMF activates the Nrf2-dependent antioxidant 
response in HIV/MDM and restores HO-1 and GPX1 levels to that found in uninfected Mock cells, 
as quantified by densitometry analysis (F). Blots are representative of 3 independent 
experiments, with each replicate performed on cell preparations from different donors. 
Densitometry data are expressed as mean ± SEM and represent data averaged from 3 different 
donors. 
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DMF inhibition of HIV replication and NF-κB signaling is not mediated by HO-1 

HIV infection of human MDM results in alterations to the antioxidant response with a striking 

reduction in HO-1 levels (Figure 4.6A, 4.6B). Induction of HO-1 by hemin has been reported to 

decrease HIV replication in human monocytes, suggesting that DMF’s induction of HO-1 may 

underlie its antiviral effects (Devadas and Dhawan, 2006). We used a pharmacologic inhibitor of 

HO-1 enzymatic activity, tin mesoporphyrin (SnMP), to determine the potential role for HO-1 in 

DMF-mediated suppression of HIV replication and NF-κB translocation. As shown in Figure 4.7A, 

SnMP had no effect on DMF-mediated HIV suppression, which suggests that DMF does not 

suppress HIV replication through enhanced HO-1 expression and activity. We found no effect of 

SnMP on DMF-mediated suppression of HIV replication regardless of donor, level of infection, 

DMF dose or timing of SnMP addition (data not shown). We also confirmed that SnMP does not 

inhibit DMF’s suppression of TNFα-induced nuclear accumulation of NF-κB (Figure 4.7B). In 

addition, we show that an inducer of HO-1 expression, cobalt protoporphyrin (CoPP) had no 

effect on TNFα-induced nuclear accumulation of NF-κB (Figure 4.7B). These results suggest that 

DMF’s induction of HO-1 does not directly suppress HIV replication or NF-κB signaling. 
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Figure 4.7  HO-1 does not mediate the attenuation of HIV replication or NF-κB signaling 
induced by DMF. A) SnMP, an inhibitor of HO-1 enzymatic activity, does not inhibit DMF-
mediated attenuation of HIV replication. DMF and vehicle treated HIV/MDM were exposed to 
10µM SnMP from day 6 through day 15 post infection. Culture supernatants were collected every 
3 days and assessed for RT activity. RT curves are representative of 3 independent experiments, 
with each replicate performed on cell preparations from different donors. B) SnMP and CoPP, a 
specific inducer of HO-1, do not directly affect or alter DMF-mediated inhibition of the nuclear 
translocation of NF-κB proteins, as assessed by western blotting. Human MDM were treated with 
10µM SnMP, 10µM CoPP and/or 100µM DMF for 24 hours before treatment with 1 ng/mL TNFα 
(10min) and subcellular fractionation. Western blot is representative of 3 independent 
experiments, with each replicate performed on cell preparations from different donors. 
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Induction of HO-1 reduces neurotoxin production from HIV/MDM 

We sought to determine whether the suppression of HIV/MDM neurotoxin production by DMF 

(Figure 4.4) was associated with DMF’s suppression of HIV replication and/or induction of HO-1 

expression. Inhibiting HIV replication in HIV/MDM can suppress neurotoxin release in vitro, as 

demonstrated by efavirenz treatment (Figure 4.4), and similar effects of ART drugs in vivo are 

thought to account for their ability to limit the severity of HAND in ART-experienced cohorts. 

While previous studies found that increased HO-1 activity is associated with decreased HIV 

replication in MDM (Devadas and Dhawan, 2006; Devadas et al., 2010), we found that neither 

inhibition of HO-1 activity by SnMP treatment of MDM (Figure 4.8A) nor induction of HO-1 

expression by CoPP (Figure 4.8D, 6F) altered HIV replication. Remarkably, however, SnMP 

treatment significantly increased the neurotoxicity of MDM supernatant (Figure 4.8B), even when 

HIV replication was low or absent (Figure 4.8C). The increase in MDM-mediated neurotoxicity 

was a consequence of inhibiting HO-1 activity in the macrophage since SnMP was not toxic when 

added directly onto neurons (data not shown). And while CoPP does not attenuate HIV replication 

or inhibit NF-κB signaling, supernatant from CoPP-treated HIV/MDM is significantly less 

neurotoxic than untreated controls with a similar level of HIV replication (Figure 4.8E). These 

studies demonstrate that HO-1 is a critical modulator of neurotoxin production in HIV/MDM and 

that HO-1 levels can modulate HIV/MDM neurotoxicity without affecting HIV replication.  
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Figure 4.8  HO-1 induction reduces neurotoxin production in HIV/MDM without affecting 
HIV replication. A) SnMP, an inhibitor of HO-1 enzymatic activity, does not directly affect HIV 
replication and supernatant from these SnMP treated HIV/MDM are significantly more neurotoxic 
(B), despite equal levels of HIV replication. C) Uninfected Mock/MDM and 20nM efaverinz (EFZ) 
treated HIV/MDM, which normally produce minimal neurotoxins, are significantly more neurotoxic 
when treated with 10µM SnMP. D) CoPP, a specific inducer of HO-1 expression, does not directly 
affect HIV replication and supernatant from these CoPP treated HIV/MDM are significantly less 
neurotoxic (E), despite high levels of virus replication. F) CoPP treatment exponentially increases 
HO-1 levels without greatly altering the other components of the antioxidant response, as 
assessed by Western blotting. For A and C, SnMP or CoPP was added at day 6 post infection 
onwards and culture supernatants were collected every 3 days and assessed for RT activity. RT 
curves are representative of 3 independent experiments, with each replicate performed on cell 
preparations from different donors. For neuronal survival assays, survival was assessed by MAP2 
ELISA and expressed as a percentage of untreated (UT) cultures (n = 6; ***p<0.001 vs. vehicle 
treated paired-condition). Statistical comparisons were made by one-way ANOVA plus Newman-
Keuls post hoc testing. Western blot is representative of 3 independent experiments, with each 
replicate performed on cell preparations from different donors. Two film exposures (short and 
long) of HO-1 are presented to demonstrate the extent of HO-1 induction over basal levels. 
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DMF and MMF inhibit CCL2 induced chemotaxis in human monocytes 

The recruitment of activated and infected monocytes to the CNS in response to CCL2 is a key 

step in the pathogenesis of HAND (Cinque et al., 1998; Zink et al., 2001). In a previous DMF 

study using the mouse EAE model, DMF reduced macrophage infiltration into the spinal cord in 

areas of active demyelination (Schilling et al., 2006). We hypothesized that DMF could inhibit 

chemotaxis of human monocytes in response to chemotactic cytokines, such as CCL2. We found 

that DMF and MMF inhibited chemotaxis in freshly isolated human monocytes in response to 

CCL2 in a dose-dependent manner (Figure 4.9A, 7B). Furthermore, we found that DMF reduced 

the expression of the CCL2 receptor, CCR2, in freshly isolated human CD11b+CD14+ monocytes 

within 6 hours of treatment (Figure 4.9C, 7D), without causing death (Figure 4.9E). These results 

indicate that DMF and MMF can decrease monocyte chemotaxis in response to CCL2 and that 

this effect is associated with downregulation of CCR2 expression. 
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Figure 4.9  DMF and MMF reduce CCL2 induced chemotaxis in human monocytes. A) DMF 
and B) MMF inhibit CCL2-induced chemotaxis in freshly isolated human monocytes in a dose-
dependent manner. Values are expressed as percent migration of unstimulated cells (US; 0 
ng/mL CCL2) (n = 10-22; **p<0.01 vs. Vehicle). C) DMF decreases CCR2 expression on 
CD11b+CD14+ PBMCs following 6 hours of treatment, as quantified (D). E) DMF does not cause 
significant cell death over 6 hours of treatment in freshly isolated human monocytes, as 
measured by DAPI positivity in CD11b+CD14+ gated PBMCs. For all experiments, values 
represent data averaged from 3 different donors. All statistical comparisons were made by one-
way ANOVA plus Newman-Keuls post hoc testing. Results of post test for linear trend are also 
presented. 
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Discussion 

Monocytes and macrophages are major reservoirs for HIV in both the periphery and CNS, and 

they facilitate the spread of virus to target cells, allow for viral persistence and serve as major 

contributors to inflammation-mediated pathology. Despite current ART, latently infected 

monocytes and CD4+ T-lymphocytes persist, resulting in inflammation in the periphery and in the 

CNS in up to 50% of patients on ART (Robertson et al., 2007; Sacktor et al., 2002). While ART 

will remain the mainstay of HIV therapy, effective adjunctive therapies that suppress 

inflammation, improve morbidity and improve long-term cognitive outcomes are greatly needed. 

The immunomodulator DMF, which is effective for the treatment of psoriasis and which shows 

promising results for multiple sclerosis treatment in recent clinical trials, is an attractive candidate 

as a safe adjunctive neuroprotectant against HIV. We have demonstrated that physiologically 

relevant doses of DMF and its primary metabolite, MMF, (Linker et al., 2011; Litjens et al., 2004) 

affect key steps in the pathogenesis of HAND in our in vitro model system by inhibiting HIV 

replication, neurotoxin production, NF-κB signaling and TNFα production in human MDM and 

reducing monocyte chemotaxis in response to CCL2. These results suggest that DMF could 

serve as an effective neuroprotectant in HAND and have beneficial effects on systemic HIV-

disease progression as well.  

 

We have shown that DMF and MMF attenuate macrophage-mediated neurotoxicity following HIV 

infection by simultaneously attenuating viral replication and inducing HO-1 expression. 

Furthermore, induction of HO-1 can significantly decrease macrophage-mediated neurotoxicity 

even without decreasing HIV replication. Consequently, DMF may be an especially relevant 

therapeutic in patients who have relatively good virologic control but still suffer from neurological 

complications of HIV. We have shown that HIV infection of MDM results in a dysregulation of the 

antioxidant response with an especially prominent reduction in HO-1 levels, associated with 

supernatant neurotoxicity, and that DMF treatment restores HO-1 levels and reduces neurotoxin 

production in macrophages. In activated microglia, an oxidative burst is required for the release of 
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excitotoxic glutamate (Barger et al., 2007), demonstrating that alterations to cellular oxidative 

state can mediate the production and/or release of MDM neurotoxins. DMF’s ability to decrease 

HIV replication and neurotoxin production by distinct mechanisms makes it an especially 

attractive therapeutic candidate for HAND. Furthermore, macrophage- and microglia-mediated 

neurotoxicity contribute to many other neurological disorders including multiple sclerosis, 

Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease and stroke/reperfusion 

injury, for which therapeutics for restoring oxidative balance resultant from the disease state have 

been investigated/prescribed (Uttara et al., 2009).  

 

Numerous proinflammatory factors contribute to HIV disease pathogenesis in both the peripheral 

and CNS compartments. TNFα, IL-6, IL-1β, IFN-γ and other proinflammatory cytokines are 

elevated in the blood and CSF of HIV-infected patients (Breen et al., 1990; Ciardi et al., 1994; 

Kobayashi S, 1990; Ownby et al., 2009). Among these, TNFα is the most potent mediator of 

inflammation and is induced early after HIV monocytic infection and its expression continues to 

increase over the course of infection (Esser et al., 1996; Folks et al., 1988; Koyanagi et al., 1988). 

It is well established that TNFα exposure upregulates HIV replication by initiating a signaling 

cascade that activates the nuclear translocation of NF-κB (Butera et al., 1993; Nabel and 

Baltimore, 1987; Poli et al., 1990; West et al., 2001). We have shown that DMF and MMF 

attenuate TNFα-mediated NF-κB signaling in human macrophages and reduce nuclear NF-κB 

levels, which are expected to decrease transcription from the HIV-LTR. However, the NF-κB and 

TNFα signaling loop may not entirely mediate DMF’s antiviral activity. Attenuation of HIV 

replication occurs at low concentrations, as does induction of the ARE, while inhibition of NF-κB 

signaling may be more relevant at concentrations of 15µM and greater. Future studies are 

necessary to assess the role of the antioxidant response, including NQO1 and the cellular redox 

state, in mediating HIV infection and replication. DMF may alter the expression of the HIV co-

receptors, CXCR4 and CCR5, similarly to the observed downregulation of cell surface CCR2. It 

has been reported that antioxidants decrease the stability of mRNA transcripts for CXCR4 and 
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CCR5 in human monocytes, suggesting that DMF treatment may directly reduce HIV entry into 

human monocytes (Saccani et al., 2000). 

 

However, DMF’s ability to inhibit NF-κB and TNFα signaling following both PHA stimulation and 

HIV infection has clear implications for the physiologic reduction of neuroinflammation and 

cytokine induced neuronal injury. Elevated TNFα levels increase monocyte entry into the brain, 

promote HIV replication, and drive inflammatory cascades, thereby enhancing the production of 

neurotoxins in the CNS from MDM, microglia and astrocytes (Fiala et al., 1997). Therefore, 

dampening TNFα-driven processes might also afford neuroprotection against HIV. Indeed, TNFα 

is linked to glutamine synthetase and glutamate import in macrophages (Porcheray et al., 2006), 

and DMF’s inhibition of TNFα-driven processes may further decrease the release of excitatory 

neurotoxins, such as glutamate, in HIV/MDM. In human macrophages, we have shown that DMF 

is a potent suppressor of NF-κB nuclear translocation, subsequent binding to DNA and 

expression of NF-κB dependent genes. Therefore, DMF is a particularly good therapeutic 

candidate for pathological states characterized by macrophage driven inflammation and NF-κB 

signaling. 

 

Although not directly dependent upon HO-1, DMF’s antioxidant properties are likely mediating the 

inhibition of NF-κB activity. We hypothesize that such effects are due to DMF’s modulation of the 

macrophage intracellular redox state as activation of the antioxidant response has been shown to 

block NF-κB activity and HIV transcription (Roederer et al., 1990; Schreck R, 1991; Staal FJ, 

1993). Furthermore, classical (α and β), novel (δ) and atypical (ζ) PKC isotypes can modulate the 

nuclear translocation and transcriptional activity of NF-κB and PKC is activated by oxidative 

stress and inhibited by antioxidants (Asehnoune et al., 2005; Boscoboinik et al., 1991; 

Gopalakrishna et al., 1995; Gopalakrishna et al., 1997; Sun et al., 2000). In addition to potential 

effects on PKC, DMF may also affect the phosphorylation of IκB kinases (IKK) and subsequent 

phosphorylation and degradation of IκB proteins (Seidel et al., 2009; Vandermeeren et al., 2001). 
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Finally, DMF may affect NF-κB dependent transcription by modulating the preferred composition 

of NF-κB homo- and heterodimers that form after nuclear translocation has occurred. The 

intracellular oxidative state can affect levels of NF-κB p50 homodimers, which do not possess 

transactivation domains and are thought to act as transcriptional repressors of NF-κB heterodimer 

responsive genes (Cristofanon et al., 2009; Hoberg et al., 2006; Zhou et al., 2001). We are 

currently examining the role of DMF and MMF in modulating the activation state of the 

macrophage, which would affect the cell’s relative sensitivity to pro-inflammatory signals and 

thereby contribute to decreased NF-κB signaling.  

 

While other antioxidants have been considered as potential therapeutics for HAND, through direct 

effects on macrophages or neurons, DMF is unique in its ability to inhibit CCL2-induced monocyte 

chemotaxis. Monocyte transmigration across the blood-brain barrier is dependent upon 

production of chemokines, such as CCL2, in the CNS and the activation of monocytes in the 

periphery. Levels of CCL2 in the CSF correlate with CSF viral load and with the clinical severity of 

HAND (Cinque et al., 1998; Conant et al., 1998; Kelder et al., 1998; Letendre et al., 1999; 

Sozzani et al., 1997; Zink et al., 2001), and CCL2 is produced by brain macrophages, astrocytes 

and endothelial cells in response to inflammatory mediators and HIV proteins (Gu et al., 1997; 

Guillemin et al., 2003; Lehmann et al., 2006). Not only does DMF decrease TNFα production and 

NF-κB signaling in MDM, both of which have been implicated in CCL2 production, but DMF and 

MMF inhibit CCL2-driven monocyte chemotaxis, possibly by modulation of CCR2 expression. 

DMF and MMF may modulate the cell surface expression of CCR2 by inducing the antioxidant 

response and consequently altering the redox state of the cell. It has been demonstrated that 

direct antioxidants are capable of reducing the transcript stability of CCR2, which has been linked 

to decreased cell surface expression and CCL2-induced chemotaxis in human monocytes 

(Saccani et al., 2000). These findings in our in vitro model system predict suppression of 

transendothelial migration of monocytes into the CNS during HIV infection. Furthermore, it has 

been reported that DMF modulates adhesion molecule expression in human endothelial cells by 
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inhibiting TNFα-induced expression of ICAM-1, VCAM-1 and E-selectin (Vandermeeren et al., 

1997). Expression of each of these adhesion molecules has been linked to monocyte entry into 

the CNS after HIV infection and down-regulation by DMF is expected to further inhibit monocyte 

entry into the CNS. Given these findings, DMF should be considered as a potential therapeutic for 

other neuroinflammatory diseases associated with CCL2-induced recruitment of leukocytes to the 

CNS. 

 

With this study, we identify dimethyl fumarate as a candidate adjunctive therapy and potential 

neuroprotectant against HIV. To our knowledge, we are the first to demonstrate that HIV infection 

dysregulates components of the antioxidant response in human macrophages and that 

restoration of HO-1 levels, specifically, can reduce macrophage-mediated neurotoxicity. DMF is 

the first proposed neuroprotectant that reduces CCL2-mediated monocyte chemotaxis as a 

component of its mechanism of action. Furthermore, we have shown that DMF attenuates HIV 

replication associated with decreased TNFα and NF-κB signaling. Given these findings, we 

propose that DMF should be considered a relevant therapeutic candidate for neurological 

disorders and other complications of HIV-infection mediated by monocyte and macrophage 

inflammation.  
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Work in Progress 

Induction of the antioxidant response with tBHQ attenuates HIV replication, macrophage-

mediated neurotoxicity and NF-κB signaling 

We have demonstrated that DMF and MMF treatment attenuate macrophage-mediated 

neurotoxicity in a dose-dependent manner and that these effects are due to induction of the 

antioxidant response, specifically restoration of HO-1 levels (Cross et al., 2011). We also 

hypothesized that induction of the antioxidant response and alteration of the cellular redox state is 

responsible for DMF and MMF’s inhibition of NF-κB nuclear translocation following TNFα 

exposure and PHA-induced TNFα production in uninfected macrophages. tBHQ (tert-

butylhydroquinone) is a well characterized and potent inducer of the antioxidant response. tBHQ 

possesses an oxidizable 1,4 diphenolic structure that dissociates the Keap1-Nrf2 complex, 

inducing Nrf2 translocation to the nucleus and transcription of ARE-regulated genes (De Long et 

al., 1987; Talalay, 1989; van Ommen et al., 1992). As shown in Figure 4.10, tBHQ treatment 

results in a robust increase in HO-1 protein levels, with a more moderate but significant increase 

in NQO1. And similar to DMF/MMF treatment, tBHQ treatment also results in a dose-dependent 

decrease in HIV replication in human macrophages with concomitant decreases macrophage-

mediated neurotoxicity. Furthermore, tBHQ inhibits the nuclear translocation of NF-κB proteins 

following TNFα exposure and TNFα release following PHA stimulation (Figure 4.10D and E). 

tBHQ, a classic activator of the antioxidant response, has the same antiviral and anti-

inflammatory properties as DMF and MMF treatment, supporting the hypothesis that alterations to 

the cellular redox state via activation of the antioxidant response are mediating the observed 

effects. These results also suggest that other pharmacologics that restore the dysregulation of the 

antioxidant response in HIV-infected macrophages should be considered as adjunctive therapies 

for HAND. Ongoing experiments are investigating the effect of tBHQ treatment on CCR2 

expression and CCL2-induced monocyte chemotaxis.  
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Figure 4.10  tBHQ, an inducer of the antioxidant response, attenuates HIV replication and 
macrophage-mediated neurotoxicity. A) tBHQ attenuates HIV replication in a dose-dependent 
manner. Human MDM infected with HIV-Jago were treated with tBHQ over the course of 
infection. Culture supernatants were collected every 3 days and assessed for RT activity. RT 
curves are representative of 2 independent experiments, with each replicate performed on cell 
preparations from a different donor. B) tBHQ reduces macrophage-mediated neurotoxicity 
following HIV infection. Neuronal survival was assessed by MAP2 ELISA following exposure of 
rat cerebrocortical neuronal cultures to supernatant of HIV-infected macrophages treated with 
tBHQ over the course of infection. MAP2 data is expressed as a percentage of untreated (UT) 
cultures (n = 6). C) tBHQ induces the antioxidant response in uninfected human MDM as 
assessed by Western blotting. D) Similarly to DMF and MMF, tBHQ inhibits the nuclear 
translocation of NF-κB proteins RelB, p65 and p50 in human MDM. Cells were treated with 
100µM tBHQ for 24 hours, exposed to TNFα (10 min), separated into nuclear fractions and 
analyzed by Western blotting. Blots are representative of 3 independent experiments, with each 
replicate performed on cell preparations from different donors. E) tBHQ inhibits the production of 
TNFα in MDM stimulated with PHA (10µg/mL) for 24 hours. Values represent data averaged from 
3 different donors. Data are expressed as mean ± SEM. All statistical comparisons were made by 
one-way ANOVA plus Newman-Keuls post hoc testing, ***p<0.001 vs. Vehicle.  
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Induction of HO-1 expression with hemin attenuates macrophage-mediated neurotoxicity without 

altering HIV replication 

Previous reports have associated hemin treatment, an inducer of HO-1, with attenuation of HIV 

replication (Devadas and Dhawan, 2006). However, we were unable to replicate these previously 

published results. As shown in Figure 4.11, hemin treatment of HIV-infected macrophages had no 

effect on viral replication, although it did induce levels of HO-1 above those seen in EFZ-treated 

controls. However, the extent of HO-1 induction following 20µM hemin treatment was several-fold 

less than that achieved with 100µM DMF treatment (Figure 4.11B). Hemin treatment also resulted 

in a small increase in NQO1 levels in HIV/MDM and previously published studies suggest that 

hemin is capable of activating several ARE-regulated genes, in addition to HO-1, through 

activation of Nrf2 (Iwasaki et al., 2006). However in our in vitro system, the effect of hemin in 

macrophages is similar to that seen with CoPP treatment, with preferential activation of HO-1 and 

no effect on HIV replication. And consistent with previous findings using CoPP (Figure 4.8), 

induction of HO-1 with hemin reduced neurotoxin production in HIV-infected macrophages, even 

in the absence of alterations to viral replication (Figure 4.11C). As previously demonstrated in 

Figure 4.8, treatment of HIV-infected macrophages with SnMP, which inhibits of HO-1 enzymatic 

activity despite increasing HO-1 expression, had no effect on HIV replication but enhanced 

neurotoxin production. While robust induction of the antioxidant response attenuates HIV 

replication and NF-κB driven inflammation, these effects are mediated by induction of ARE-

regulated genes other than HO-1. However, the enzymatic activity of HO-1 is sufficient to alter 

neurotoxin production pathways, possibly by increasing iron, biliverdin or carbon monoxide (CO) 

levels, the catalytic byproducts following heme catabolism by HO-1. Future experiments will 

explore the role of HO-1 enzymatic activity in modulating known neurotoxin production pathways 

in macrophages. 
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Figure 4.11  Hemin, an inducer of HO-1 and the antioxidant response, attenuates 
macrophage-mediated neurotoxicity without altering HIV replication. A) Human MDM were 
infected with HIV-Jago and treated with 20µM hemin, 10µM SnMP or the non-nucleoside reverse 
transcriptase inhibitor, efavirenz (EFZ), over the course of infection. Culture supernatants were 
collected every 3 days and assessed for RT activity. Values indicate the mean ± SEM. B) 50µM 
hemin increases total levels of HO-1 and modestly increases NQO1 levels, as assessed by 
Western blotting in HIV-infected human macrophages. C) Hemin reduces macrophage-mediated 
neurotoxicity following HIV infection. Neuronal survival was assessed by MAP2 ELISA following 
exposure of rat cerebrocortical neuronal cultures to supernatant of HIV-infected macrophages 
treated with hemin over the course of infection. MAP2 data is expressed as a percentage of 
untreated (UT) cultures (n = 6). All statistical comparisons were made by one-way ANOVA plus 
Newman-Keuls post hoc testing, ***p<0.001.   
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DMF treatment reduces levels of the HIV co-receptors, CCR5 and CXCR4, on human monocytes 

We have demonstrated that treatment of macrophages with DMF or MMF over the course of 

infection inhibits HIV replication (Figure 4.1). We hypothesized that DMF and MMF could inhibit 

HIV infection by decreasing levels of the HIV co-receptors, CCR5 and CXCR4, via alterations of 

the cellular redox state (Cross et al., 2011). As shown in Figure 4.12, CD11b+CD14+ PBMCs had 

significantly less cell surface expression of CXCR4 after 6 hours and CCR5 after 36 hours of 

DMF treatment. DMF treatment of CD11b+CD14+ PBMCs transiently increased cell surface levels 

of CD4 after 6 hours of treatment. However, CD4 cell surface expression was equal to or less 

than the vehicle control after 36 hours of DMF treatment. DMF’s effect on receptor expression 

was not global, as levels of CD14 did not significantly change with treatment. These results 

suggest that DMF and MMF treatment may attenuate HIV replication in macrophages by 

inhibiting receptor-mediated viral entry. Furthermore, they suggest that DMF treatment can inhibit 

infection of human monocytes by both CCR5- and CXCR4-tropic viruses 

 

We are currently investigating the effects of DMF treatment on early stages of viral replication 

through the use of virus pseudotyping. A pseudotyped virus is an enveloped virus particle, in this 

case HIV, which has been assembled with a foreign viral glycoprotein, such as vesicular 

stomatitis virus glycoprotein (VSV-G). VSV-G pseudotyped viruses can infect macrophages 

independently of the traditional HIV co-receptors. Luciferase assays, detecting transcription from 

the nef gene of the HIV genome, will be performed on infected macrophages, in the presence and 

absence of DMF, to assess if DMF treatment alters early events in viral infection (reverse 

transcription, nuclear translocation, incorporation into the genome and transcription/translation) in 

addition to viral entry.  

 

 

  



  
81 

 
 
Figure 4.12  DMF decreases the cell surface expression of CXCR4 and CCR5 on human 
monocytes3. A) DMF significantly decreases CXCR4 cell surface expression on CD11b+CD14+ 
human PBMCs following 6 hours of treatment, B) but has little effect following 36 hours. C) DMF 
has no significant effect on CCR5 cell surface expression on CD11b+CD14+ human PBMCs after 
6 hours of treatment, but D) significantly decreases CCR5 expression following 36 hours. E) DMF 
significantly increases CD4 cell surface expression on CD11b+CD14+ human PBMCs following 6 
hours of treatment, F) but decreases CD4 expression following 36 hours of treatment. DMF has 
no significant effect on CD14 cell surface expression on CD11b+CD14+ human PBMCs after G) 6 
hours or H) 36 hours of treatment. For all experiments, values represent data averaged from 6-8 
different donors. All statistical comparisons were made by one-way ANOVA plus Newman-Keuls 
post hoc testing, *p<0.05, **p<0.01  and ***p<0.001 vs. Vehicle. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 All of the data contained in this figure was collected and analyzed by Anthony W.S. Chi, PhD 
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DMF treatment of HIV-infected macrophages has no effect on viral replication after infection is 

established; although DMF, but not efavirenz, decreases macrophage-mediated neurotoxicity 

If DMF treatment decreases HIV infection by reducing the cell surface expression of the HIV co-

receptors, then addition of DMF to an established infection would have little effect on HIV 

replication. Figure 4.13 demonstrates that as expected, the NNRTI, efavirenz, does not alter HIV 

replication when added to macrophages at day 9 post infection. Since efavirenz attenuates HIV 

replication by inhibiting the reverse transcription of the HIV RNA genome immediately following 

HIV entry, efavirenz application to an established infection would have no antiviral activity. 

Efavirenz treatment of HIV-infected macrophages supporting high levels of viral replication does 

not attenuate neurotoxin production (Figure 4.13B). When added to an established infection, DMF 

treatment has no effect on HIV replication (Figure 4.13C). This supports the hypothesis that DMF 

attenuates viral replication by inhibiting cell surface CCR5 and CXCR4 levels and thereby viral 

entry. However, when DMF was added to macrophages supporting high levels of HIV replication, 

there was significantly less neurotoxin production, as compared to vehicle control (Figure 4.13D). 

This finding is in agreement with previous studies demonstrating that induction of HO-1 reduces 

neurotoxin production in HIV-infected macrophages, even without attenuation of HIV replication.  

 

These experimental results also suggest that DMF treatment has little effect on HIV replication 

kinetics after HIV has entered the cell and incorporated into the host genome. We had proposed 

that DMF’s antiviral effects were a consequence of decreased transcription from the HIV LTR due 

to attenuation of NF-κB and TNFα signaling (Cross et al., 2011). However, if this hypothesis were 

true, addition of DMF to HIV-infected macrophages should have decreased viral transcription. 

DMF-mediated inhibition of NF-κB and TNFα signaling has important implications for 

inflammation mediated pathology of HAND, but our data suggests that this is not a major 

mechanism underlying DMF’s antiviral effects. Rather, DMF treatment prevents the infection of 

macrophages and would limit viral spread of both CXCR4 and CCR5 tropic viruses. Furthermore, 
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DMF is an attractive adjunctive therapy for HAND, since treatment of infected macrophages 

attenuates neurotoxin production, whereas traditional antiretrovirals would have little effect. 
 

 

 

Figure 4.13  DMF, but not efavirenz, added to an established HIV infection decreases 
macrophage-mediated neurotoxicity without altering HIV replication. A) MDM infected with 
HIV-Jago were treated with 20nM of the non-nucleoside reverse transcriptase inhibitor, efavirenz 
(EFZ), over the course of infection or were left untreated until day 6 post infection, and then 
treated with EFZ for the remainder of the time course (+EFZ). B) HIV/MDM treated with EFZ over 
the course of infection do not produce neurotoxins, whereas HIV/MDM treated with EFZ from day 
6 through day 12 (+EFZ) cause as much neurotoxicity as vehicle controls. C) MDM infected with 
HIV-Jago were left untreated until day 6 post infection, and then treated with 15µM or 30µM DMF 
until day 9 post infection. D) HIV/MDM treated with 15µM and 30µM DMF from day 6 through day 
9 post infection cause significantly less neurotoxicity than vehicle control, despite having 
equivalent levels of RT activity. For panels A and C, culture supernatants were collected every 3 
days and assessed for RT activity. Values indicate the mean ± SEM. RT curves are 
representative of 2 independent experiments, with each replicate performed on cell preparations 
from a different donor. For panels B and D, neuronal survival was assessed by MAP2 ELISA 
following exposure of rat cerebrocortical neuronal cultures to supernatant of HIV-infected 
macrophages from the end of the time course (day 12 in panel B and day 9 in panel D). MAP2 
data is expressed as a percentage of untreated (UT) cultures (n = 6). All statistical comparisons 
were made by one-way ANOVA plus Newman-Keuls post hoc testing, ***p<0.001 vs. Vehicle. 
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CHAPTER 5 

 

 

THE UNFOLDED PROTEIN RESPONSE ATTENUATES HIV REPLICATION AND 

MACROPHAGE-MEDIATED NEUROTOXICITY 
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Abstract 

Viral infection can result in the activation of host cell adaptive stress responses, including the 

antioxidant response and the unfolded protein response (UPR). Virus replication and assembly 

can strain the capacity of the endoplasmic reticulum (ER) and result in the accumulation of 

misfolded proteins and activation of the UPR. The UPR is designed to eliminate misfolded 

proteins and promote cellular recovery by attenuating translation and upregulating the expression 

of chaperones, degradation factors, and regulators of metabolic and redox states. Several 

viruses, including hepatitis C virus and herpes simplex virus, regulate antiviral components of the 

UPR in order to promote efficient viral replication. However, the effect of HIV infection on the UPR 

has not yet been investigated. We hypothesized that HIV infection would activate and modulate 

the UPR in infected macrophages. Using our in vitro model system, we found that HIV infection 

increases levels of phosphorylated eIF2α, which inhibits protein translational during states of 

cellular stress. We also found that the chaperone BiP, considered the master regulator of the 

UPR, was increased in the macrophages of HAND frontal cortex. While HIV infection activates 

components of the UPR in macrophages, pharmacological induction of the UPR attenuates HIV 

replication. This suggests that induction of phosphorylated eIF2α during HIV replication has some 

antiviral effect, although it is not sufficient to considerably attenuate HIV replication. Interestingly, 

pharmacological induction of the UPR, which attenuates viral replication, is associated with 

increased macrophage-mediated neurotoxicity. This finding has important implications for the 

development of adjunctive therapies for HAND. Therapeutics or processes that induce the UPR in 

macrophages, regardless of the effect on HIV replication, could enhance neurotoxin production 

and contribute to the pathological processes underlying HAND.  

 

As we have previously described the effect of HIV replication on the antioxidant response, we 

assessed how restoration of the antioxidant response altered the UPR in HIV-infected 

macrophages. Activation of the antioxidant response with DMF and MMF attenuated HIV 

replication and decreased levels of phosphorylated eIF2α and BiP in HIV/MDM. Reductions in 
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phosphorylated eIF2α trend with increased levels of HO-1, but do not depend upon HO-1 

enzymatic activity. In contrast, BiP levels decrease with induction of the antioxidant response, but 

these alterations are independent of HO-1. These findings suggest that while dysregulation of the 

antioxidant response reflects levels of HIV replication and HO-1 levels modulate neurotoxin 

production, levels of phosphorylated eIF2α and BiP do not predict HIV replication or extent of 

macrophage-mediated neurotoxicity. Ongoing studies are assessing the link between UPR 

activation, inflammation pathways and the antioxidant response as they relate to HIV infection 

and macrophage-mediated neurotoxicity. 

 

HIV infection alters several adaptive stress pathways in the macrophage. The suppression of the 

antioxidant response and induction of the UPR both associate with high levels of viral replication 

and neurotoxin production. Pharmacological induction of either stress pathway attenuates HIV 

replication, however, induction of the antioxidant response, but not the UPR, decreases 

neurotoxin production. Therefore, activation of the UPR by inflammation, oxidative stress or ART 

is predicted to enhance neurotoxin production in macrophages, regardless of the level of HIV 

replication. Understanding how HIV infection affects adaptive stress responses and neurotoxin 

production pathways in the macrophage will continue to improve our ability to develop effective 

adjunctive therapies for HAND. 
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Introduction 

Accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen results in the 

activation of an adaptive stress response known as the unfolded protein response (UPR). The 

UPR is a quality control mechanism that can be activated during physiological stress (e.g., 

glucose deprivation, oxidative stress) and viral infection. The UPR reduces the load of misfolded 

proteins in the ER by attenuating new protein translation via phosphorylated-eIF2α and 

upregulating chaperones that mediate protein folding, such as BiP. During viral infection, the cell 

can experience an excess flux of viral proteins passing through the ER. Several viruses, including 

human cytomegalovirus (CMV) and herpes simplex virus (HSV), are capable of regulating cellular 

responses to infection, including the UPR, in order to promote host cell survival while promoting 

efficient viral replication. The effect of HIV infection on the UPR has not yet been investigated.  

 

The Unfolded Protein Response 

The endoplasmic reticulum facilitates protein folding, is part of the protein-sorting pathway and is 

the site of post-translational modifications such as N-linked glycosylation and disulfide bond 

arrangement. These ER processes are tightly monitored in order to prevent improperly folded or 

modified proteins from being released into the cell. Under normal conditions, approximately 30% 

of newly synthesized proteins fail to achieve native structure due to errors in transcription, 

translation, post-translational modifications or protein folding (Schubert et al., 2000). If not 

managed, misfolded proteins accumulate in the ER and can result in toxic aggregates that 

interfere with the function of normal proteins (Romisch, 2004). In response to increased levels of 

misfolded proteins in the ER lumen, a signaling cascade known as the Unfolded Protein 

Response (UPR) or Integrated Stress Response (ISR) is activated. This signaling cascade limits 

the translation of new proteins, which decreases the incoming burden on the ER machinery, 

enhances the degradation of improperly folded proteins and upregulates levels of chaperones, 

which assist in protein folding/refolding. ER stress and induction of the UPR can occur under 

physiological conditions known to increase levels of misfolded protein, such as glucose 
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deprivation (Kaufman et al., 2002), heat shock (Kasuya et al., 1999; Matsumoto et al., 2005), 

oxidative stress (Holtz et al., 2006; Yan et al., 2008), hypoxia (Feldman et al., 2005; Koumenis 

and Wouters, 2006), increase demand of secretory function (B-cell antibody production) (Gass et 

al., 2002), and viral infection (Ambrose and Mackenzie, 2011; He et al., 1997; Isler et al., 2005; 

Yoshida et al., 2001).  

 

Activation of the UPR attempts to eliminate misfolded proteins in the ER lumen through two 

mechanisms; 1) through attenuation of protein translation, in order to reduce the flux of proteins 

entering into the ER and 2) through the induction of chaperone proteins and degradation factors 

to refold and/or eliminate misfolded proteins. Three proteins have been identified as sensors of 

ER stress: protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), 

and inositol-requiring enzyme 1 (IRE1). These proteins are transmembrane proteins with a 

sensor domain in the ER lumen and a kinase effector domain in the cytosolic compartment. 

Under normal conditions, the ER chaperone immunoglobulin heavy-chain-binding protein (BiP), 

also known as glucose regulated protein-78 (GRP78), is bound to the sensor domain of PERK, 

ATF6 and IRE1 in the ER lumen. When misfolded proteins accumulate in the ER, BiP is 

sequestered away from these sensors to bind to misfolded proteins (Bertolotti et al., 2000). BiP 

release from PERK and IRE1 results in the homodimerization of their luminal domains, causing 

autophosphorylation and activation of downstream signaling cascades (Figure 5.1). In contrast, 

BiP release from ATF6 unmasks a Golgi localization signal, resulting in the relocation of ATF6 to 

the Golgi, where it is cleaved into an activated form (Shen et al., 2002).  

 

  



  
89 

 

Figure 5.1  The signaling pathways comprising the Unfolded Protein Response (UPR). 
Accumulation of misfolded protein in the ER causes ER stress and results in the activation of the 
UPR, an adaptive stress pathway. PERK, IRE1 and ATF6 have sensor domains that monitor 
levels of misfolded protein in the ER lumen. Following activation, each of these pathways initiates 
a signaling cascade that results in the transcriptional upregulation of genes that will help the cell 
reduce, manage or recover from ER stress. Phosphorylation of eIF2α by activated PERK results 
in the attenuation of all cap-dependent protein translation, in order to reduce the incoming burden 
of new proteins into the ER. Increased levels of phosphorylated eIF2α also result in the 
translational upregulation of ATF4, a transcription factor that increases amino acid response 
element (AARE)-regulated genes in order to modulate cellular metabolism and redox state during 
cellular recovery from ER stress. ATF4 also increases levels of GADD34, which restores protein 
translation by mediating eIF2α dephosphorylation as part of a negative feedback loop. In addition 
to PERK, three other kinases (PKR, GCN2 and HRI) can phosphorylate eIF2α and initiate the 
UPR, although instead of misfolded protein levels, they respond to double stranded RNA, amino 
acid limitation and heme levels, respectively. ATF6, upon activation, translocates to the Golgi 
where is it cleaved into an active form, which also functions as a transcriptional regulator of ER 
stress-element (ERSE)-regulated genes. ERSEs regulate genes encoding for a variety of cellular 
chaperones, which promote the proper folding of misfolded proteins in the ER, including BiP and 
GRP94. Activation of IRE1 results in its auto-phosphorylation and the subsequent activation, by a 
splicing event, of XBP1 mRNA. Spliced XBP1 (sXBP1) encodes a transcription factor capable of 
upregulating genes with ERSEs or UPR elements (UPREs). Transcriptional upregulation of 
UPRE-regulated genes results in increased levels of EDEM, which enhances the degradation of 
misfolded proteins in the ER by ER-associated degradation (ERAD). If the UPR is unable to 
manage the stress to the ER, the cell will undergo CHOP-mediated apoptosis.   
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After activation, PERK initiates a signaling cascade that results in the inhibition of new protein 

translation and the induction of genes important for cellular recovery from ER stress. PERK 

directly phosphorylates the eukaryotic initiation factor eIF2α at serine 51 (Harding et al., 2000b; 

Harding et al., 1999). When phosphorylated, eIF2α inhibits cap-dependent protein translation by 

tightly binding eIF2B. This prevents eIF2B from catalyzing the GDP-GTP exchange and thereby 

stops the binding of the initiator Met-tRNA to the ribosome and initiation of translation 

(Krishnamoorthy et al., 2001). While inhibiting the majority of cellular protein translation, 

phosphorylated-eIF2α specifically increases the translation of select stress-responsive proteins, 

including activating transcription factor 4 (ATF4) (Harding et al., 2000b). ATF4 mRNA is efficiently 

translated due to small upstream open-reading frames (uORF) within the 5' untranslated region, 

resulting in a “uORF bypass scanning system” (Lu et al., 2004). ATF4 binds to the promoter 

regions of an array of different genes, including metabolism and redox regulatory factors involved 

in mediating recovery from ER stress. ATF4 deficiency results in increased sensitivity to cell 

death with a variety of stresses, including oxidative stress and amino acid deprivation (Harding et 

al., 2003). ATF4 also activates an inhibitory feedback loop to restore cellular protein translation by 

inducing levels of growth arrest- and DNA damage-inducible gene 34 (GADD34), which interacts 

with protein phosphatase 1 (PP1) and increases the dephosphorylation of eIF2α (Brush et al., 

2003; Ma and Hendershot, 2003). 

 

When BiP is sequestered away from ATF6 during ER stress, the inactive 90-kDa ATF6 precursor 

translocates to the Golgi where it is cleaved by site-1 and site-2 proteases into the 

transcriptionally active 50-kDa protein (Ye et al., 2000). ATF6, along with the constitutively 

expressed transcriptional regulator, nuclear factor Y (NF-Y), activate genes carrying ER stress 

response elements (ERSEs) in their transcriptional promoters [Mori, Cell, 2000]. ERSEs are 

found in genes encoding for cellular chaperones including BiP, GRP94, protein-disulfide 

isomerase (PDI) and calreticulin (Harding et al., 2003). Consequently, ATF6 activation results in 

the upregulation of ER chaperones and other proteins that are needed to promote proper protein 
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folding in an effort to relieve ER stress. Increased levels of BiP dampen PERK, IRE1 and ATF6 

activation when the misfolded protein burden in the ER is managed. Furthermore, ATF6 can 

increase the amount of X box binding protein 1 (XBP-1) mRNA, providing a link between the 

ATF6 and IRE1 pathways (Lee et al., 2002; Yoshida et al., 2001).  

 

Phosphorylation of IRE1, which has intrinsic endonuclease activity, results in the removal of a 26-

nucelotide intron from the XBP-1 transcript (Lee et al., 2002). The spliced form of XBP-1 (sXBP-

1) mRNA encodes an active transcription factor, capable of inducing genes regulated by the 

ERSE (Lee et al., 2003). In addition, sXBP-1 can also activate the transcription of genes 

containing UPR elements (UPRE), which are responsive to ER stress and are distinct from the 

ERSE (Lee et al., 2002; Yamamoto et al., 2004; Yoshida et al., 2001). One consequence of 

sXBP1 activation of the UPRE is the enhanced transcription of ER degradation enhancing α-

mannosidase-like protein (EDEM). EDEM increases the capacity of ER-stressed cells to degrade 

irrevocably misfolded proteins via ER-associated protein degradation (ERAD) (Hosokawa et al., 

2001; Yoshida et al., 2003). EDEM promotes the release of terminally misfolded proteins from the 

ER-resident chaperone calnexin, thereby making them available for transport to the cytoplasm for 

degradation by the ubiquitin proteasome system (UPS) (Kopito, 1997; Oda et al., 2003). 

Therefore, while the ATF6 pathway is important for protein refolding, the IRE1-XBP1 pathway 

mediates protein degradation via ERAD (Yoshida et al., 2003).  

 

Chronic activation of the UPR, which occurs when the cell cannot manage or recover from ER 

stress, results in the activation of signaling pathways that will commit the cell to apoptosis (Ferri 

and Kroemer, 2001; Oyadomari et al., 2002a). At least three apoptosis pathways have been 

implicated in this apoptotic event. The first is transcriptional activation of C/EBP homologous 

protein (CHOP, also known as GADD153), primarily by ATF4 (Fawcett et al., 1999; Harding et al., 

2000a; Ma et al., 2002), although the CHOP promoter can also be regulated by IRE1 and ATF6 

(Wang et al., 1998; Yoshida et al., 2000). Induction of CHOP compromises cell viability 
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(Friedman, 1996; McCullough et al., 2001; Zhan et al., 1994) and targeted disruption of CHOP 

significantly protects cells from apoptosis following sustained ER stress (Oyadomari et al., 2002b; 

Zinszner et al., 1998). The second is activation of the cJUN NH2-terminal kinase (JNK) pathway, 

mediated by a complex between IRE1, TNF receptor-associated factor 2 (TRAF2) and apoptosis 

signal-regulating kinase1 (ASK1) (Nishitoh et al., 2002; Urano et al., 2000). The third pathway 

involved in initiating apoptosis in ER-stressed cells is mediated by caspase-12. Caspase-12, 

which is localized to the ER, is activated by specifically ER stress and not by apoptotic signals 

originating from the membrane or mitochondria (Nakagawa et al., 2000). All three of these 

apoptosis pathways ultimately lead to the activation of caspase-3 with BAX (Bcl-2–associated X 

protein) and BAK (Bcl-2 homologous antagonist/kiler) mediating the final steps of ER stress-

mediated apoptosis (Wei et al., 2001).  

 

Viral infection activates the UPR 

In some cases, viral infection induces ER stress and activates components of the three branches 

of the UPR. BiP, considered the master regulator of the UPR, is induced in cells infected with 

respiratory syncytial virus (RSV) (Bitko and Barik, 2001), hanta viruses (Li et al., 2005), hepatitis 

C virus (HCV) (Liberman et al., 1999) and several members of the flavivirus family (Jordan et al., 

2002; Su et al., 2002; Tardif et al., 2002). Activation of PERK has been reported in cells infected 

with herpes simplex virus (HSV) (Cheng et al., 2005; Mulvey et al., 2007) and cytomegalovirus 

(CMV) (Isler et al., 2005). Furthermore, the IRE1 and XBP-1 signaling pathway is activated with 

dengue infection (Yu et al., 2006) and the ATF6 pathway is activated in HCV infected cells (Tardif 

et al., 2004). Enveloped viruses utilize the ER as the primary site of envelope glycoprotein 

biogenesis and several viruses undergo genomic replication and particle assembly in the ER 

compartment. Increasing the burden on the ER, especially at times of high viral production, would 

easily increase the accumulation of misfolded proteins in the ER lumen and activate the UPR. 

However, while activation of the UPR is essential for host cell survival during viral infection, some 

of the consequences of UPR activation would be detrimental to viral replication. Consequently, 
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many viruses have evolved mechanisms to regulate the UPR and promote efficient viral 

replication. 

 

Some of the consequences of UPR activation would be detrimental to efficient viral replication, 

while others would promote viral protein folding and assembly. Activation of the PERK pathway 

and phosphorylation of eIF2α results in the attenuation of protein translation for most transcripts 

in the host cell and viral genome dependent upon cap-dependent protein translation. Thus, a 

virus that causes phosphorylation of eIF2α must escape translational inhibition in order to 

express viral and cellular gene products necessary for viral replication. However, activation of 

ATF4 results in the transcriptional upregulation of genes involved in reestablishing cellular 

metabolism (as part of the UPR recovery effort), translation and buffering oxidative stress 

(Harding et al., 2003), and may therefore be beneficial to viral replication. ATF6 activation 

typically results in the activation of molecular chaperones, whose expression would benefit virus 

replication by promoting the proper folding of viral proteins. Activation of XBP-1, however, 

increases the transcription of EDEM and thereby enhances the degradation of misfolded protein 

by ERAD. Activation of IRE1 and XBP-1 could hamper viral replication by degrading viral proteins 

that are not efficiently folded within the ER lumen.  

 

Viruses can modulate components of the UPR 

Several viruses that are known to induce ER stress and activate components of the UPR have 

adapted strategies to avoid or shutdown signaling pathways that would attenuate viral replication. 

Infection by herpes simplex virus (HSV) results in the activation of PERK and phosphorylation of 

eIF2α (Wylie et al., 2009), however, the virus is able to escape from the resultant translational 

inhibition (He et al., 1997). The γ134.5 gene of HSV has homology to GADD34, whose expression 

level modulates the rate of eIF2α dephosphorylation by protein phosphatase 1 (PP1). HSV 

infection results in the transcription and translation of γ134.5. As HSV induces ER stress and 

phosphorylation of eIF2α, γ134.5 associates with PP1 and mediates the dephosphorylation of 
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eIF2α. HSV, which has a large genome, encodes a viral protein to modulate the UPR. For many 

other viruses, the mechanisms by which they modulate and avoid the consequences of the UPR 

are not as well understood.  

 

Cytomegalovirus (CMV) infection results in the activation of PERK, phosphorylation of eIF2α and 

increased translation of ATF4. Despite this strong activation of the PERK-eIF2α pathway, CMV 

infection does not attenuate protein translation. The mechanism by which CMV overcomes the 

translational inhibition normally mediated by phosphorylated eif2α is unknown (Isler et al., 2005).  

 

Infection with dengue virus also results in increased levels of phosphorylated eIF2α, although this 

induction does not attenuate protein translation of either host or viral transcripts (Edgil et al., 

2006). During infection, dengue virus may sustain host and viral cell protein translation by 

simultaneously inducing the phosphorylation of eIF2α and increasing total levels of eIF2α 

(Umareddy et al., 2007), thereby reducing the activated fraction of total eIF2. Interestingly, 

pharmacological induction of ER stress in dengue-infected cells inhibits approximately 50% of 

cellular protein synthesis, while translation of dengue viral proteins is only inhibited 0-20% (Edgil 

et al., 2006). This finding suggests that translation of dengue viral proteins, as compared to most 

host cell proteins, can occur efficiently under conditions of impaired cap-dependent protein 

translation. While the exact mechanism is still unknown, dengue virus can replicate by a novel 

noncanonical, cap-independent mechanism that is independent of eIF4E (Edgil et al., 2006). 

eIF4E, the rate limiting component of cap-dependent translation, directs ribosomes to the cap 

structure of mRNA transcripts. 

 

Many viruses actively antagonize the host translational machinery in order to shut off host cell 

protein translation, thereby preventing the activation of host-mediated antiviral responses. 

Picornavirus and poliovirus infection results in the cleavage of eIF4G isoforms by viral proteases 

and results in host translational shutdown (Gradi et al., 1998). In order for viral protein translation 
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to continue unimpaired, viruses such as poliovirus and hepatitis C virus (HCV) utilize internal 

ribosome entry sites (IRES) (Pelletier and Sonenberg, 1988). These are RNA elements that 

directly recruit ribosomes in a cap-independent manner, thereby requiring only a subset of the 

canonical eIFs. While the cellular mechanisms underlying IRES-dependent translation are still 

under investigation, the use of IRES by viruses has been more intensively studied. The HCV 

IRES directly bind the 40S ribosomal subunit in such a way that the HCV initiator codons enter 

the ribosomal P-site without mRNA scanning. Consequently, HCV IRES-dependent translation 

requires eIF2 and eIF3, but not eIF1 or eIF4 isoforms (Fraser and Doudna, 2007). In contrast, the 

IRES of picornaviruses does not attract the 40S ribosomal subunit directly, rather, a high-affinity 

binding site for eIF4G brings viral mRNA into contact with the ribosome. Translation from the 

IRES is dependent upon all of the standard eukaryotic translation initiation factors, except for the 

cap-binding protein eIF4E. However, picornavirus transcripts recruit several RNA-binding proteins 

that are not usually involved in translation, such as La protein and the polypyrimidine tract-binding 

protein (PTB) (Hunt and Jackson, 1999), to stimulate their IRES-mediated translation. How these 

recruited proteins and other IRES trans-acting factors (ITAFs) aid in IRES-dependent protein 

translation is still under active investigation. 

 

In addition to modulation of the PERK-eIF2α pathway and translation initiation, viruses can also 

modulate the rate of ERAD in order to prevent viral protein degradation. HCV infection results in 

increased splicing of the uXBP1 transcript and elevation of sXBP1 protein levels (Tardif et al., 

2004). However, the transcriptional upregulation of UPRE genes and ERAD activity is repressed 

in HCV-infected cells, suggesting that HCV dampens the transcriptional activity of sXBP1 (Tardif 

et al., 2004). This defect in IRE1-XBP1 pathway signaling may ultimately result in the translation 

of more viral protein, since functional knockdown of IRE1 results in increased IRES-dependent 

translation (Tardif et al., 2004). Based upon these studies, it is predicted that a host cell 

experiencing ER stress following HCV infection may promote viral translation over host cell 

protein translation due to HCV-mediated modulation of the UPR. 
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While activation of the UPR is primarily an adaptive stress response, it can also be responsible 

for virus-induced cellular pathology. For example, respiratory syncytial virus (RSV), a lytic virus, 

primarily spreads by inducing cellular apoptosis via caspase-12, which is specifically activated 

with sustained ER-stress. Functional knockdown of caspase-12 protects RSV-infected cells from 

apoptosis, demonstrating that activation of the UPR is part of the viral life cycle (Bitko and Barik, 

2001). Moloney murine leukemia virus (MoMLV), a retrovirus that causes a non-inflammatory 

spongiform neurodegenerative disease, induces the UPR as a consequence of viral envelope 

misfolding in the ER (Dimcheff et al., 2003). Interestingly, the severity of neurological disease 

correlates to the folding instability of the viral envelope, suggesting that the observed spongiform 

neurodegeneration is the consequence of a virus-induced protein folding disorder (Portis et al., 

2009). Viruses that induce ER-stress and the UPR have evolved many mechanisms to promote 

efficient replication and avoid the antiviral consequences of host-cell adaptive stress responses. 

The effect of HIV on the UPR and the role of the UPR in HIV replication and neurotoxicity have 

not yet been explored. 

 

HIV proteins are processed in the ER and Golgi 

The genome of HIV consists of 9.8 kilobases of single-stranded RNA that encode nine viral 

genes. The HIV genome encodes for three structural genes (env, gag and pol) and six regulatory 

genes, which control viral replication (vif, rev, nef, tat, vpu and vpr). The extensive glycosylation 

of the HIV-1 envelope glycoproteins (gp), gp120 and gp41, plays an important role in evasion of 

the host immune system and is required for infectivity (Wei et al., 2003). First synthesized in the 

endoplasmic reticulum, the160kD envelope precursor protein (cleaved into gp120 and gp41 in 

later processing stages) undergoes extensive processing with the addition of 25-30 N-linked 

glycosylations (Leonard et al., 1990). In fact, approximately 50% of the molecular weight of 

envelope glycoprotein is due to oligosaccharide modifications. In addition to requiring extensive 

folding and glycosylation in the ER, HIV proteins also require the host cell’s Golgi and endosome 
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network in order to complete the viral lifecycle. Newly synthesized envelope proteins are sent to 

the plasma membrane, where they must be endocytosed and routed back to the plasma 

membrane via the trans-Golgi-network (TGN) (Rowell et al., 1995). The TGN is a critical site for 

HIV biogenesis, as it where envelope glycoproteins incorporate into infectious viral particles. In 

HIV-infected macrophages, virus release then proceeds through the subsequent release of 

mature viruses by exocytosis (Nguyen et al., 2003; Pelchen-Matthews et al., 2003). Given the 

extent of the involvement of the ER and Golgi in HIV replication, HIV infection and may induce the 

accumulation of misfolded proteins in the ER and activate the UPR, especially during times of 

high viral replication. Interestingly, it has been reported that HIV’s envelope protein directly 

interacts with BiP (Earl et al., 1991). 

 

HIV infection may induce and modulate the UPR 

Given the extent of involvement of the ER and Golgi in HIV biogenesis, we hypothesize that HIV 

infection induces the UPR in macrophages, especially at times of high viral replication. However, 

since HIV replicates efficiently without causing cellular apoptosis in macrophages, HIV may also 

modulate the UPR in order to prevent the inhibition of protein translation and upregulation of 

CHOP. Furthermore, macrophages experiencing ER stress may be more prone to producing 

neurotoxins and/or inflammatory mediators that drive HAND pathology. In order to address these 

questions, we will use our in vitro model system and pharmacologic manipulations of the UPR in 

infected and non-infected human macrophages. We will assess the impact of HIV infection on the 

UPR, the role of the UPR in modulating HIV infection and the consequences of UPR induction on 

neurotoxin production.  
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Results 

HIV infection induces phosphorylation of eIF2α in human MDM  

It has become increasingly clear that viruses that activate adaptive stress responses in the host 

cell have adapted to modulate or take advantage of these responses in order to promote efficient 

viral replication. We hypothesized that HIV infection of human macrophages would result in the 

activation of the UPR, especially during periods of high viral replication. As shown in Figure 5.2B, 

HIV-infected monocyte derived macrophages (HIV/MDM) demonstrate a biphasic induction of 

phosphorylated eIF2α, while total eIF2, BiP and GRP94 (probe not shown) levels remain steady. 

Phosphorylated eIF2α is highest following the 24hours of infection and at times of high viral load. 

This increase in phosphorylated eIF2α is a consequence of active HIV replication, since HIV-

infected macrophages treated with the non-nucleoside reverse transcriptase inhibitor, efavirenz 

(EFZ), do not show elevations in phosphorylated eIF2α at either 24hours post infection (HPI) or at 

times of high viral reverse transcriptase (RT) activity (Figure 5.2D). EFZ treated HIV/MDM are 

exposed to viral inoculum and have normal levels of viral entry but the HIV-genome is not reverse 

transcribed, incorporated into the host genome or actively replicated. This suggests that HIV 

infection of the host cell increases levels of phosphorylated eIF2α via viral post-entry and post 

reverse transcription mechanisms. Furthermore, the biphasic induction of phosphorylated eIF2α 

may represent two separate signaling processes with two different time courses, both of which 

result in enhanced phosphorylation of eIF2α. Currently, we do not know the kinase responsible 

for phosphorylating eIF2α in HIV-infected macrophages. 

 

In addition to PERK, the classic kinase mediating eIF2α phosphorylation in the UPR, there are 

three other kinases capable of phosphorylating eIF2α. These are protein kinase RNA regulated 

kinase (PKR), heme-regulated inhibitor kinase (HRI) and general control nonderepressible-2 

kinase (GCN2). All of these kinases inhibit protein synthesis by phosphorylation of eIF2α, 

although their tissue distributions and activator domains make each kinase uniquely suited to 

detect different stress conditions. PKR is induced by interferon and double-stranded RNA 
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(dsRNA) and is a principal mediator of host-cell antiviral responses since dsRNA rarely occurs 

under normal conditions within the cell. PKR activation has been reported during human T-

lymphotropic virus type I (HTLV-1) (Mordechai et al., 1995), Epstein-Barr virus (EBV) (Elia et al., 

1996), Hepatitis D (Circle et al., 1997; Robertson et al., 1996) and HIV infection (Maitra et al., 

1994; Roy et al., 1991), among others. GCN2, which is highly expressed in the liver and brain, is 

activated under conditions of nutritional deprivation and inhibits protein translation via 

phosphorylated eIF2α in order to conserve amino acids for essential metabolic processes (Sood 

et al., 2000). However, stressors unrelated to nutritional deprivation, such UV irradiation, 

proteasomal inhibition and viral infection can also activate GCN2 (Jiang and Wek, 2005). Sindbis 

virus (SV) genomic RNA directly binds to GCN2 and functional GCN2 decreases the 

permissiveness of cells to both SV and vesicular stomatitis virus (VSV) infection. These findings 

suggest that GCN2 contributes to the cellular antiviral response to RNA viruses (Berlanga et al., 

2006). HRI, which is primarily expressed in cells of the erythroid lineage, attenuates protein 

synthesis in heme-deficient states, coordinating hemoglobin synthesis with iron availability (Chen 

and London, 1995). HRI protein is also present in macrophages and HRI regulates iron 

homeostasis and macrophage maturation (Liu et al., 2007). Less is known about the role of HRI 

in viral infection, although HRI can be transcriptionally and translationally upregulated in response 

to heat shock, treatment with a dsRNA mimic (Polyinosinic:polycytidylic acid; poly I:C)  and 

infection with the aquareovirus, grass carp hemorrhagic virus (GCHV) (Zhu et al., 2006). While 

each of the four eIF2α kinases have a stimulus that they are particularly well suited to detect, it is 

clear that they can be broadly activated by several stresses and that any or all of these kinases 

could be activated during viral infection. 

 

HIV infection in human macrophages induces the biphasic induction of phosphorylated eIF2α 

without altering total eIF2α or BiP levels (Figure 5.2). The increase in phosphorylated eIF2α 

observed at either 24HPI or at times of high viral replication may be mediated by any of the four 

known eIF2α kinases. At periods of high viral replication, the enhanced burden on the processing 
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capacity of the ER and Golgi by HIV glycoproteins could result in the accumulation of misfolded 

proteins and activation of PERK. The transactivation-responsive (TAR) element of HIV forms an 

elaborate RNA tertiary structure, including a 23-basepair hairpin with three bulges capable of 

dimerization, which is capable of activating PKR (Heinicke et al., 2009). GCN2 could be activated 

during periods of high viral replication if the rate of viral protein synthesis exceeded the availability 

of amino acids needed for basal host cell translation. Cellular iron homeostasis has been linked to 

rates of HIV transcription, suggesting that HRI activation and activity may impact HIV replication 

in macrophages (Debebe et al., 2007). In order to determine the kinase(s) responsible for eIF2α 

phosphorylation in HIV-infected macrophages, genetic manipulation of the human macrophage is 

necessary. With typical transfection protocols, only 2-5% of primary human macrophages will 

express the inserted gene of interest. However, recent work with Minivector DNA (a non-viral, 

supercoiled vector incorporating short hairpin RNA) has been reported to work well in primary 

cells such as macrophages and dendritic cells (Zhao et al., 2011). This highly biostable vector 

produces high cell transfection efficiency and gene silencing capacity, which would be required in 

order to detect effects on HIV replication levels (Zhao et al., 2011). Using the Minivector DNA 

system, we could knockdown each of the eIF2α kinases to determine the role of each in 

modulating phosphorylated eIF2α levels in basal conditions and during HIV infection. 
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Figure 5.2  HIV infection induces phosphorylation of eIF2α in human MDM. A) MDM were 
infected with HIV-Jago (0-24 HPI) and culture supernatants were collected, as indicated, and 
assessed for reverse transcriptase (RT) activity. Values indicate the mean ± SEM. B) HIV 
infection results in a biphasic induction of phosphorylated eIF2α without an increase of BiP, as 
assessed by Western blotting. Maximum levels of phosphorylated eIF2α occur at the end of the 
24-hour infection and at times of high viral production/release. Blot is representative of 3 
independent experiments, with each replicate performed on cell preparations from different 
donors. C) MDM were infected with HIV-Jago (day -1 to day 0) and culture supernatants were 
collected every 2-3 days, as indicated, and assessed for RT activity. Viral replication is effectively 
inhibited when MDM are treated with the non-nucleoside reverse transcriptase inhibitor, efavirenz 
(EFZ, 20nM), over the course of infection. Values indicate the mean ± SEM. D) HIV infection 
results in increased levels of phosphorylated eIF2α at 24-hours post infection (24 HPI) and at 
times of high viral production/release (day 8 post infection), relative to EFZ-treated MDM, as 
assessed by Western blotting. Blot is representative of 3 independent experiments, with each 
replicate performed on cell preparations from different donors. 
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HIV infection increases levels of macrophage specific BiP in the human frontal cortex of HAND 

Our in vitro model system of HIV-induced macrophage-mediated neurotoxicity utilizes primary 

human macrophages and rat cerebrocortical cultures. Following HIV-infection of human 

macrophages, cell culture supernatants are collected over the course of infection. This 

supernatant is applied to cerebrocortical cultures (in a 1:10 to 1:50 dilution) and neuronal survival 

is then assessed. While this model system utilizes primary cells and recapitulates the 

fundamental processes mediating HAND neuropathogenesis, many aspects of the human 

disease cannot be modeled. In vitro, the majority of our macrophages are infected with HIV over 

the course of the infection. In contrast, it is estimated that less than 0.1% of peripheral circulating 

monocytes are infected with HIV (Crowe et al., 2003). The proportion of HIV-infected CNS-

resident macrophages is likely less than 5% during ART, although this is expected to be highly 

variable and dependent upon the CNS-penetrance of ART regimen, relative immune-activation 

state of the individual and extent of CNS neuroinvasion and inflammation, for which the 

susceptibility factors are not well understood. Since the overwhelming majority of cells in the CNS 

are astrocytes and neurons, techniques that selectively parse out effects in CNS-resident 

macrophages are required to assess the role of the macrophage in the neuropathology of HAND. 

We analyzed human frontal cortex for brain-resident macrophages by indirect 

immunofluorescence (IFA) in order to characterize the state of UPR activation in HIV-associated 

neurocognitive disorder (HAND). 

 

IFA staining of BiP (Figure 5.3) and phosphorylated-eIF2α (Figure 5.4) in human frontal cortex 

from HIV-, HIV+ and HAND cases was performed. IFA results demonstrate that HIV infection 

associated with HAND significantly increases total macrophage specific BiP, relative to uninfected 

controls (HIV-) (Figure 5.3D). Cognitively normal, HIV+ cases had macrophage specific BiP levels 

in between the uninfected controls and the HAND cases. This increase in macrophage specific 

BiP in HAND cases occurred in the absence of increased macrophage area (Figure 5.3A and 

5.3B), suggesting that BiP expression is increasing on the individual cell level. Phosphorylated-
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eIF2α staining has proven more difficult. The signal for phosphorylated-eIF2α in macrophages 

has thus far been weak and highly variable, resulting in quantifications with large error bars and 

no statistical significance between conditions (Figure 5.4). At this point, we have no evidence that 

levels of macrophage-specific phosphorylated eIF2α are atlered with either HIV infection or 

neurocognitive status. 

 

 

 
Figure 5.3  HIV infection increases levels of macrophage-specific BiP in the human frontal 
cortex of HAND cases. A) Frontal cortex from cognitively normal HIV- and HIV+ cases and 
neurocognitively impaired HIV+ (HAND) cases were labeled with BiP, HLA-DR (macrophage 
marker, CCR3/43 antibody) and DAPI (DNA marker, blue). Quantification of Macrophage/HLA-
DR pixel area (B) shows no increase of HLA-DR-positive cells in HIV+ or HAND cases. 
Quantification of integrated pixel intensity of BiP colocalizing with HLA-DR (C, D) shows 
increased cell type-specific BiP expression with HIV infection and neurocognitive impairment 
(HAND). Statistical comparisons were made by two-tailed t-test in C and one-way ANOVA plus 
Newman-Keuls post hoc testing in D, *p<0.05. Data is expressed as mean ± SEM for n = 2 HIV-, 
n = 3 HIV+, cognitively normal and n = 9 HAND. For panels A and C, HIV+ represents all HIV+ 
cases (n = 12). Table 3.1, in the Methods section, provides further information on case history 
and tissue collection of individual samples. 
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Figure 5.4  HIV infection does not alter levels of macrophage specific phosphorylated-
eIF2a in the human frontal cortex of HAND cases. A) Frontal cortex from cognitively normal 
HIV- and HIV+ cases and neurocognitively impaired HIV+ (HAND) cases was labeled for 
phosphorylated eIF2α and HAM56, a macrophage/microglia marker. Quantification of HAM56 
pixel area (A, B) and integrated pixel intensity of HAM56 (C, D) shows no change in the staining 
of HAM56-positive cells in HIV+ or HAND cases, as compared to HIV- cases. Quantification of 
phosphorylated eIF2α pixel area (E, F) and integrated pixel intensity of phosphorylated eIF2α (G, 
H) shows no change in the staining of phosphorylated eIF2α-positive cells in HIV+ or HAND 
cases, as compared to HIV- cases. Quantification of integrated pixel intensity of phosphorylated 
eIF2α colocalizing with HAM56 (I, J) and integrated pixel intensity of phosphorylated eIF2α 
colocalizing with HAM56, normalized to GFAP area (K, L), shows no increased macrophage-
specific phosphorylated eIF2α expression with HIV infection or neurocognitive impairment. 
Statistical comparisons were made by two-tailed t-test or one-way ANOVA plus Newman-Keuls 
post hoc testing and no significant differences were found (significance was defined as p<0.05). 
Data is expressed as mean ± SEM for n = 4 HIV-, n = 2 HIV+, cognitively normal and n = 13 
HAND. For panels comparing only HIV- and HIV+, HIV+ represents all HIV+ cases (n = 15). 
Table 3.2, in the Methods section, provides further information on case history and tissue 
collection of individual samples. 
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Pharmacologic induction of the UPR by thapsigargin attenuates HIV replication and enhances 

neurotoxin production in human MDM 

Using our in vitro system, we found that HIV infection resulted in the activation of phosphorylated 

eIF2α at times of high viral replication (Figure 5.2). We have also demonstrated that the UPR is 

activated, with increased BiP expression, in CNS-resident macrophages of the frontal cortex in 

HAND (Figure 5.3). While the extent of UPR activation following HIV infection has not yet been 

fully characterized, initial studies suggest that HIV infection activates components of the UPR in 

macrophages and that the extent of this activation may correlate with the clinical appearance of 

HAND. To investigate the role of UPR activation in modulating HIV replication and neurotoxin 

production in infected macrophages, we used pharmacological inducers of the UPR in HIV/MDM 

in our in vitro model system.  

 

Pharmacological agents that disrupt calcium homeostasis in the ER, such as thapsigargin, induce 

the UPR. Thapsigargin is a non-competitive inhibitor of sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA), and is considered a classic activator of the UPR. Thapsigargin treatment 

decreases ER calcium levels, decreases the activity of calcium-dependent chaperones and 

induces the accumulation of misfolded proteins in the ER lumen. However, inhibition of SERCA 

can result in the secondary activation of plasma membrane calcium channels, resulting in 

increased cytosolic calcium levels and alterations in the regulatory functions of Ca2+-dependent 

kinases. While thapsigargin is considered a strong activator of the UPR, the signaling pathways 

induced by thapsigargin treatment vary according to cell type, concentration and duration of 

treatment and need to be empirically defined for each model system. 

 

HIV-infected macrophages were pulsed with thapsigargin for 6 hours after infection was 

established and viral replication was robust. As shown in Figure 5.5, thapsigargin treatment 

drastically reduces HIV replication in the 48 hours following drug exposure. This reduction in viral 

replication is not a consequence of cell death, since HIV replication began to recover in the 2-4 
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days following thapsigargin exposure (Figure 5.5A). Thapsigargin treatment induced a robust 

increase in phosphorylated eIF2α and a moderate increase in levels of BiP following the 6 hour 

treatment (Figure 5.5B). And, these markers of the UPR were not altered in vehicle treated 

HIV/MDM. This pharmacological induction of the UPR was transient and could no longer be 

observed 6 days after thapsigargin treatment. These findings demonstrate that HIV-infection does 

not prevent the induction of the UPR and that infected macrophages are capable of responding to 

robust ER stress by increasing levels of ERSE regulated genes, such as BiP. Furthermore, robust 

activation of the UPR is capable of inhibiting viral replication, suggesting that HIV cannot 

efficiently escape the antiviral effects of the UPR, including translational inhibition and/or 

induction of ERAD. Since inhibition of virus replication has traditionally resulted in less neurotoxin 

production in HIV-infected macrophages (Figures 4.1 and 4.2), we assessed the consequence of 

the inhibition of viral replication due to thapsigargin treatment on macrophage-mediated 

neurotoxicity. 

 

As previously discussed, attenuation of HIV replication with the nonnucleoside reverse 

transcriptase inhibitor (NNRTI), efavirenz (EFZ), significantly abrogates neurotoxin production in 

HIV/MDM (Figure 4.2 and Figure 5.5C). Interestingly, activation of the UPR and attenuation of 

HIV replication with thapsigargin treatment enhances neurotoxin production in HIV/MDM (Figure 

5.5C). This demonstrates that the inhibition of virus replication does not always produce a 

concomitant decrease in neurotoxin production in HIV/MDM; an important implication for the 

development of adjunctive therapies for HAND. And as shown in Figure 5.5D, uninfected 

macrophages, which normally do not produce neurotoxins, cause significant neurotoxicity when 

treated with thapsigargin. These findings suggest that ER stress can modulate neurotoxin 

production in macrophages and that the elevations of phosphorylated eIF2α with HIV infection 

(Figure 5.2) and increased BiP levels in HAND (Figure 5.3) may contribute to HIV-induced 

macrophage-mediated neurotoxicity. 
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Figure 5.5  Thapsigargin attenuates HIV replication and enhances neurotoxin production in 
human MDM. A) Thapsigargin (Thap) attenuates HIV replication in human MDM. MDM were 
infected with HIV-Jago and then treated for 6 hours on day 6 post infection with 0.5µM 
Thapsigargin. Following drug exposure, cells were washed and put into fresh drug-free media. 
Culture supernatants were collected every 2-3 days, as indicated, and assessed for RT activity. 
Values indicate the mean ± SEM. RT curves are representative of 3 independent experiments, 
with each replicate performed on cell preparations from a different donor. B) Thapsigargin 
treatment results in increased levels of phosphorylated eIF2α and BiP, as assessed by Western 
blotting of lysates collected after the 6 hour thapsigargin treatment on day 6 post infection (6+6). 
Thapsigargin treatment enhances neurotoxin production in C) HIV-infected and D) uninfected 
human macrophages. For C, culture supernatants from day 8 post infection were assayed. For D, 
uninfected macrophages were treated with 0.5µM of thapsigargin for 24hours followed by drug 
washout and media replacement. Culture supernatant from 72 hours after thapsigargin exposure 
was then assayed. Neuronal survival was assessed by MAP2 ELISA and data is expressed as a 
percentage of untreated (UT) cultures (n = 6). All statistical comparisons were made by one-way 
ANOVA plus Newman-Keuls post hoc testing, *p<0.05, **p<0.01 and ***p<0.001. 
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Phosphorylated eIF2α attenuates HIV replication and enhances neurotoxin production 

Thapsigargin treatment results in multiple cellular effects, including robust activation of the UPR 

signaling pathways that respond to the accumulated misfolded proteins in the ER. However, 

thapsigargin treatment also results in the depletion of ER Ca2+ stores and potential alterations to 

Ca2+ dependent kinases in the cytosol. In order to better define the role of the UPR in affecting 

HIV replication and macrophage-mediated neurotoxicity, more specific pharmacological 

modulators were used. Clotrimazole (CLT) disrupts ER calcium stores by inhibiting calcium-

activated potassium (KCa2+) channels, resulting in calcium release from intracellular stores of the 

ER. In contrast to thapsigargin, however, clotrimazole treatment of human macrophages does not 

induce the UPR, as assessed by Western blotting for phosphorylated eIF2α and BiP (Figure 

5.6C). Sal003, a derivative of salubrinal with enhanced cell permeability, indirectly inhibits the 

dephosphorylation of eIF2, resulting in robust activation of the UPR (Figure 5.5C) without directly 

affecting ER calcium levels or Ca2+ dependent kinases. As shown in Figure 5.6A, clotrimazole 

has no major effect on HIV replication when added to HIV/MDM for 24 hours during an 

established infection. In contrast, Sal003 treatment inhibited HIV replication by approximately 

25%, as compared to vehicle control. This suggests that HIV replication is moderately sensitive to 

phosphorylated eIF2α levels, but not to disruptions in ER calcium homeostasis. While Sal003 

most likely mediates the attenuation of HIV replication by inhibiting translation via induction of 

phosphorylated eIF2α, further experiments are required to confirm the mechanism of action.   

 

While clotrimazole treatment had minimal impact on HIV replication, supernatant collected from 

macrophages that were pulsed with clotrimazole 48 hours previously were more neurotoxic than 

the vehicle treated control (Figure 5.6B). Sal003 treatment, which attenuated HIV replication, also 

caused HIV-infected macrophages to produce more neurotoxins (Figure 5.6B). These results 

confirm that attenuation of HIV infection does not necessarily result in a concomitant decrease in 

neurotoxin production by macrophages. Furthermore, both the activation of the UPR via induction 
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of phosphorylated eIF2α and disruption of ER calcium homeostasis are capable of enhancing 

neurotoxin production in HIV-infected macrophages.  

 
 

 

Figure 5.6  Pharmacological induction of phosphorylated eIF2α and disruption of Ca2+ 
stores in the endoplasmic reticulum enhances neurotoxin release in human MDM. A) 
Sal003, a specific inhibitor of eIF2α dephosphorylation, but not clotrimazole (CLT), an inducer of 
Ca2+ release from the endoplasmic reticulum, attenuates HIV replication in human macrophages. 
MDM infected with HIV-Jago were pulse-treated with Sal003 or clotrimazole for 24 hours (day 6-7 
post infection). Following drug exposure, cells were washed and put into fresh drug-free media. 
Culture supernatants were collected every 2-3 days, as indicated, and assessed for RT activity. 
Values indicate the mean ± SEM. B) Sal003 and clotrimazole enhance neurotoxin production in 
HIV-infected human macrophages. Neuronal survival was assessed by MAP2 ELISA following 
exposure to macrophage supernatants from day 9-post infection, which had been treated with 
Sal003 or clotrimazole 48-hours previously. MAP2 data is expressed in arbitrary fluorescent units 
(n = 6). All statistical comparisons were made by one-way ANOVA plus Newman-Keuls post hoc 
testing, **p<0.01 and ***p<0.001. C) 0.5µM thapsigargin and 50µM Sal003 treatment (6 or 24-
hours) results in increased levels of phosphorylated eIF2α and BiP, while 10µM clotrimazole has 
little effect on these markers of the unfolded protein response (UPR), as assessed by Western 
blotting in uninfected human macrophages. 
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Activation of the antioxidant response reduces levels of phosphorylated eIF2α in HIV-infected 

macrophages  

In addition to misfolded protein accumulation in the ER, the UPR can also respond to oxidative 

stress (Holtz et al., 2006; Yan et al., 2008). Reactive oxygen species (ROS) can target ER 

calcium channels and protein folding enzymes to exacerbate ER calcium release and ER stress. 

As a consequence of ROS, unfolded or misfolded proteins can accumulate in the ER and induce 

the activation of the classic UPR pathways (Ron and Walter, 2007; Zhang and Kaufman, 2008). 

We have previously demonstrated that HIV infection results in the dysregulation of components of 

the antioxidant response in macrophages and that specifically, reductions in HO-1 levels 

contribute to macrophage-mediated neurotoxicity (Cross et al., 2011). We first sought to 

determine how restoration of the antioxidant response, through DMF and MMF treatment, 

affected levels of phosphorylated eIF2α in HIV-infected macrophages. As shown in Figure 5.7, 

DMF and MMF treatment inhibited HIV replication and induced components of the antioxidant 

response (HO-1 and NQO1) in a dose-dependent manner. DMF and MMF treatment caused 

substantial decreases in phosphorylated eIF2α in a dose-dependent manner, approaching levels 

seen in uninfected (mock) MDM with 30µM of DMF/MMF (Figure 5.7E and F). Additionally, DMF 

and MMF treatment also resulted in moderate decreases in BiP and GRP94, while total levels of 

eIF2α remained unchanged. Since DMF/MMF treatment results in both the restoration of the 

antioxidant response (Figure 4.4) and attenuation of HIV replication in HIV/MDM, the observed 

decreases in phosphorylated eIF2α could be a consequence of either effect.  

 

In uninfected macrophages, MMF treatment results in the activation of the antioxidant response, 

as detected by increased levels of Nrf2 and NQO1 (Figure 5.8A). MMF treatment also decreases 

levels of GRP94 and BiP, without substantial alterations to levels of phosphorylated eIF2α or total 

eIF2α (Figure 5.8B). These findings suggest that DMF and MMF activate the antioxidant 

response and cause the concomitant down-regulation in expression of ERSE regulated genes, 

including BiP and GRP94, without significantly affecting levels of phosphorylated eIF2α. 
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Therefore, in HIV-infected macrophages, DMF/MMF treatment likely decreases levels of 

phosphorylated eIF2α secondary to attenuation of HIV replication. However, further experiments 

are necessary to demonstrate that phosphorylated eIF2α levels are not varying with the redox 

state of the cell, since induction of HO-1 and NQO1 can correlate with a substantial decrease in 

phosphorylated eIF2α levels without significant changes in the level of HIV replication (5µM 

versus 15µM DMF treatment in Figure 5.7).   
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Figure 5.7  DMF and MMF activate the antioxidant response and decrease levels of 
phosphorylated eIF2α in HIV-infected human macrophages. A) DMF and B) MMF attenuate 
HIV replication in human MDM. MDM were infected with HIV-Jago and treated with DMF, MMF or 
the non-nucleoside reverse transcriptase inhibitor, efavirenz (EFZ), over the course of infection. 
Culture supernatants were collected every 2-3 days, as indicated, and assessed for reverse 
transcriptase (RT) activity. Values indicate the mean ± SEM. RT curves are representative of 3 
independent experiments, with each replicate performed on cell preparations from a different 
donor. C) DMF and D) and MMF activate the Nrf2-dependent antioxidant response in HIV/MDM 
and restore HO-1 and GPX1 levels to that found in uninfected Mock cells. E) DMF and F) MMF 
decrease levels of phosphorylated eIF2α, which is induced with HIV replication, as assessed by 
Western blotting. DMF and MMF treatment also decreases Grp94 and BiP levels in a dose-
dependent manner. Blots are representative of 2-4 independent experiments, with each replicate 
performed on cell preparations from different donors.  
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Figure 5.8  MMF activates the antioxidant response and decreases levels of Grp94 and BiP 
in uninfected human macrophages. A) MMF activates the Nrf2-dependent antioxidant 
response in uninfected human macrophages, as demonstrated by increased levels of NQO1 and 
Nrf2. B) MMF treatment decreases Grp94 and BiP levels in a dose-dependent manner in 
uninfected human macrophages, without consistently affecting levels of phosphorylated eIF2α. 
Blots are representative of 2 independent experiments, with each replicate performed on cell 
preparations from different donors. 
 
 

 
Levels of phosphorylated eIF2α do not predict the extent of HIV replication or neurotoxin 

production in HIV-infected macrophages 

Components of the UPR and antioxidant response are both altered during HIV infection of 

macrophages. As we have previously demonstrated that decreased expression of HO-1 is 

associated with high levels of HIV replication and neurotoxin production in HIV/MDM (Cross et al., 

2011), we examined levels of phosphorylated eIF2α in conditions of high viral replication but 

altered neurotoxin production. As shown in Figure 5.9, restoration of HO-1 levels with CoPP, an 

inducer of HO-1 expression, decreases macrophage-mediated neurotoxicity without altering 

levels of replication. In contrast, enzymatic inhibition of HO-1 with SnMP results in enhanced 

neurotoxin production in the absence of alterations to HIV replication. Interestingly, both SnMP 

and CoPP treatment decreased levels of phosphorylated eIF2α, relative to vehicle controls, 

without causing significant alterations to GRP94, BiP or total eIF2α levels (Figure 5.9D). This 
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suggests that phosphorylated eIF2α levels do not necessarily correlate with HIV replication or 

with neurotoxin production in HIV-infected macrophages. Furthermore, these results suggest that 

pharmacological modulation of the antioxidant response, even in the setting of high viral 

replication and enhanced neurotoxin production, is sufficient to decrease levels of phosphorylated 

eIF2α. CoPP and SnMP are relatively specific for their actions on HO-1, however, both drugs also 

moderately increase NQO1 levels, suggesting that they have off-target effects on other 

components of the antioxidant response element (ARE). SnMP treatment also causes a reflexive 

increase in total HO-1 protein levels (Figure 5.9E), and while the enzymatic activity of HO-1 is 

inhibited, HO-1 may alter the redox state of the cell or dampen activation of phosphorylated eIF2α 

via a non-enzymatic mechanism. In fact, total HO-1 levels may specifically correlate with 

phosphorylated eIF2α since unlike DMF and MMF treatment, CoPP and SnMP had no effect on 

levels of the ERSE regulated chaperones, BiP and GRP94. The relationship between the 

antioxidant response and the UPR is complex and has not been fully elucidated for any cell type 

or paradigm. However, these experiments suggest that induction of the antioxidant response 

dampens the UPR in HIV-infected macrophages, although the underlying mechanisms and 

consequences of this interaction require more study.  
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Figure 5.9  Levels of phosphorylated eIF2α do not correlate with HIV replication or 
neurotoxin production in HIV-infected human macrophages. A) SnMP, an enzymatic inhibitor 
of HO-1, and CoPP, an inducer of HO-1, do not alter levels of HIV replication. MDM were infected 
with HIV-Jago and then treated with SnMP or CoPP from day 6 post infection onwards and 
culture supernatants were collected every 3 days and assessed for RT activity. RT curves are 
representative of 3 independent experiments, with each replicate performed on cell preparations 
from different donors. B) SnMP enhances neurotoxin production while (C) CoPP decreases 
neurotoxin production in HIV-infected macrophages. For neuronal survival assays, survival was 
assessed by MAP2 ELISA and expressed as a percentage of untreated (UT) cultures (n = 6; 
***p<0.001 vs. Vehicle). Statistical comparisons were made by one-way ANOVA plus Newman-
Keuls post hoc testing. D) SnMP and CoPP decrease levels of phosphorylated eIF2α, as 
assessed by Western blotting. E) SnMP inhibits HO-1 enzymatic activity but exponentially 
increases total levels of HO-1 and modestly increases NQO1, as assessed by Western blotting. 
F) CoPP treatment exponentially increases HO-1 levels and modestly increases NQO1 levels, as 
assessed by Western blotting. Western blots are representative of 2-3 independent experiments, 
with each replicate performed on cell preparations from different donors. Two film exposures 
(short and long) of HO-1 are presented in order to demonstrate the extent of HO-1 induction over 
basal levels. 
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Discussion 

Viral infection can induce the activation of host cell survival pathways, which may have direct 

antiviral effects and/or promote cell survival during sustained ER stress, alterations to the cellular 

redox state, and viral infection. We have demonstrated that HIV infection of human macrophages 

results in the activation of phosphorylated eIF2α and BiP, two critical components of the UPR, 

and that activation of the UPR correlates with macrophage-mediated neurotoxicity. In our in vitro 

model system, HIV infected macrophages have elevated levels of phosphorylated eIF2α during 

times of high viral replication but expression of the ERSE regulated genes, BiP and GRP94, is not 

increased. However, we found a significant increase in the amount of macrophagic-BiP in HAND 

frontal cortex, demonstrating that the UPR and ERSE regulated genes are activated in HIV 

infected brain tissue, suggesting as association with human pathology. Both our in vitro and in 

vivo data demonstrate activation of the UPR during HIV infection of the macrophage. Importantly, 

in our in vitro model system the majority of macrophages are robustly infected with HIV, while 

less than 5% of macrophages in the CNS are estimated to be infected during HAND. 

Furthermore, HAND pathology is mediated by both infected and non-infected, activated 

macrophages with both populations driving neuroinflammation and producing excitatory 

neurotoxins. Therefore, primary HIV infection of the macrophage may increase levels of 

phosphorylated eIF2α without activation of ERSE regulated genes. In contrast, immune activation 

of non-infected (or chronic, low-level replicating) macrophages may induce expression of ERSE 

genes, which may be more sensitive to upregulation in inflammatory states. In order to address 

these hypotheses, we plan to assess for the activation of phosphorylated eIF2α and ERSE 

regulated genes in uninfected macrophages that have been exposed to virus-free HIV/MDM 

supernatant in our in vitro model system. In this way, we can determine how the UPR is 

modulated in uninfected macrophages exposed to a pro-inflammatory environment induced by 

HIV-infection. We are also continuing evaluate how the three signaling pathways comprising the 

UPR (PERK, IRE1 and ATF6) respond to HIV infection and correlate to macrophage-mediated 
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neurotoxicity. Given limitations to available antibodies and the difficulty of performing efficient 

genetic manipulations in primary human macrophages, future studies will utilize qPCR.  

 

Importantly, we have demonstrated that conditions that induce robust activation of the UPR, with 

alterations in ERSE gene expression, are associated with the enhancement of neurotoxin 

production in macrophages (Figure 5.5 and 5.6). This suggests that activation of ER stress 

pathways can augment neurotoxin production pathways, even in uninfected macrophages. 

Interestingly, we have noted that in our in vitro model system, HIV-infected macrophages produce 

neurotoxins late in the course of infection. The extent of neurotoxin production varies with the 

donor and as previously noted, increases with robust HIV replication. However, macrophage-

mediated neurotoxicity also correlates with the appearance of increased phosphorylated eIF2α 

and decreased levels of HO-1, as assessed by Western blotting. While this may be a coincidental 

observation, it is consistent with the hypothesis that neurotoxin production in the macrophage is 

enhanced under states of extreme cellular stress, as indicated by dysregulation of the antioxidant 

response and activation of the UPR. Furthermore, these findings have important implications for 

the development of adjunctive therapeutics for HAND. Reduction of HIV replication has been the 

principal target for ameliorating the pathological consequences of HIV-infection. And while ART 

has greatly improved clinical outcomes for patients infected with HIV, our data demonstrate that 

drugs that activate the UPR may attenuate HIV replication, but will also enhance macrophage-

mediated neurotoxicity. In addition to physiological stressors like viral infection and inflammation, 

there have been reports that ART, specifically protease inhibitors, can activate the UPR in 

macrophages (Zhou et al., 2005). The role of ART-induced activation of the UPR in macrophages 

and the consequence to macrophage-mediated neurotoxicity has not yet been studied and 

remain a focus for future research.  

 

Activation of the UPR, especially phosphorylated eIF2α, during viral infection may be part of a 

cellular antiviral defense that serves to limit virus replication in the host cell. We have 
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demonstrated that HIV infection activates components of the UPR and that pharmacological 

induction of the UPR can attenuate HIV replication. This suggests that during HIV infection, the 

induction of phosphorylated eIF2α likely has some antiviral effect, but that HIV replication is 

relatively efficient despite this. In fact, selective induction of phosphorylated eIF2α with the 

pharmacological agent Sal003 (Figure 5.6) resulted in only a 25% inhibition of viral replication 

when applied for 24 hours. In contrast, a 6 hour treatment with thapsigargin resulted in a 70% 

inhibition of viral replication. These results suggest that high levels of phosphorylated eIF2α can 

attenuate HIV replication, to an extent, but that robust activation of all components of the UPR 

has a more substantial effect on viral replication. Perhaps, thapsigargin treatment induces the 

IRE1-XBP1 signaling pathway to upregulate EDEM and ERAD, thereby inducing an antiviral 

component of the UPR that HIV infection does not. It also remains possible that HIV is capable of 

escaping the translational inhibition normally imposed by activation of phosphorylated eIF2α. 

 

In order to understand how induction of the UPR alters HIV replication, there are several key 

experiments that need to be undertaken. One of the outstanding questions for this work is 

whether the level of phosphorylated eIF2α induced with HIV infection is sufficient to attenuate 

host cell protein translation. And, to determine how sensitive uninfected macrophages are to 

phosphorylated eIF2α-mediated inhibition of protein translation. In HIV-infected macrophages, we 

have seen no evidence of protein instability by Western blotting to suggest that the levels of 

phosphorylated eIF2α induced with infection have a substantial effect on protein translation. 

However, we must determine if this is due to viral modulation of the UPR and/or cellular 

translational machinery or an intrinsic property of the macrophage. To address this question, we 

are planning to perform metabolic labeling experiments (35S-methionine and 35S-cysteine) on 

uninfected and HIV-infected macrophages, both in the presence and absence of pharmacological 

modulators of the UPR (thapsigargin, Sal003 and cyclohexamide). We will also use qPCR to 

determine if HIV-induced induction of phosphorylated eIF2α results in the transcriptional 

upregulation of ATF4, and if ATF4 transcriptional targets and CHOP are upregulated. 
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If we find that HIV-infected macrophages are less sensitive to the inhibition of protein translation 

as mediated by phosphorylated eIF2α, we must then consider the mechanism by which HIV 

modulates this component of the UPR. The 5’ leader of the genomic RNA of HIV has an IRES 

(Brasey et al., 2003), and it is possible that HIV replication is capable of efficient translation even 

in conditions of phosphorylated eIF2α-mediated inhibition of protein translation, in a mechanism 

similar to other stress-responsive mRNAs (Fernandez et al., 2002). Independent of these 

findings, the relationship between UPR-activation following HIV infection and neurotoxin 

production in the macrophage will also be explored. 

 

Following HIV infection of the CNS, infected and non-infected/activated macrophages and glia 

release neurotoxins that result in neuronal dendritic damage, apoptosis and necrosis (Adamson 

et al., 1996; Dawson et al., 1993; Gelbard et al., 1995; Kaul et al., 2001; O'Donnell et al., 2006; 

Petito and Roberts, 1995). These neurotoxins include HIV viral proteins, prominflammatory 

cytokines, chemokines, and excitatory amino acids (Chen et al., 2002; Dawson et al., 1993; Kaul 

et al., 2001; Power et al., 1998; Tardieu et al., 1992). Excitatory neurotoxins that mediate 

neuronal damage via NMDA receptor activation are the major mediators of HIV-induced 

neurotoxicity. These low-molecular weight excitatory neurotoxins include glutamate, quinolinic 

acid, platelet activating factor, reactive oxygen species and NTox. In our in vitro system, 

glutamate has been determined to mediate a significant component of HIV/MDM-mediated 

neurotoxicity, with other low-molecular weight heat resistant species also contributing (O'Donnell 

et al., 2006). This correlates to in vivo findings, where HIV-infected patients have been found to 

have significantly higher concentrations of glutamate in their plasma and CSF, compared to 

uninfected controls (Droge et al., 1987; Ferrarese et al., 2001; Ollenschlager et al., 1988). 

Glutaminase, which is localized to the inner membrane of the mitochondria, is the primary 

enzyme involved in converting glutamine into glutamate by macrophages in the CNS (Curthoys 

and Watford, 1995; Holcomb et al., 2000; Nicklas et al., 1987; Wurdig and Kugler, 1991). HIV 
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infection results in the upregulation of the GAC isoform of glutaminase and its release into the 

cytosol of macrophages, presumably due to HIV-induced destabilization of the mitochondrial 

membrane (Erdmann et al., 2009). Interestingly, sustained activation of the UPR results in 

caspase-12 activation and cellular apoptosis mediated by mitochondrial outer membrane 

permeabilization via BAX and/or BAK. Therefore, activation of the UPR by HIV-infection or 

pharmacological treatment may result in enhanced macrophage-mediated neurotoxicity by 

compromising the mitochondria membrane and increasing glutaminase-mediated glutamate 

production. It is also possible for ER stress to directly affect the mitochondria through calcium and 

reactive oxygen species, thereby altering mitochondrial processes without inducing apoptosis 

pathways (Zhang and Kaufman, 2008). 

 

In addition to investigating glutamate production during UPR activation in HIV-infected 

macrophages, we will also examine quinolinic acid (QUIN). QUIN is a neurotoxin derived from 

tryptophan through the kynurenine metabolic pathway. HIV infection increase levels and the 

activity of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme of the kynurenine 

pathway, which leads to increased metabolism of tryptophan and the enhanced generation of 

neurotoxins such as QUIN (Guillemin et al., 2003; Sardar et al., 1995). Generation of QUIN by 

IDO is limited to activated macrophages and microglia in the CNS and IDO is induced by 

exposure to interferon-γ or during infection in order to deplete cellular tryptophan and limit 

metabolic processes (Carlin et al., 1989). Furthermore, TNFα levels can alter IDO activity, 

suggesting that any process that alters the inflammatory state and TNFα production can 

ultimately modulate IDO and QUIN production in the macrophage (Werner-Felmayer et al., 1989). 

UPR stress can directly increase inflammation and the production of proinflammatory mediators 

(Zhang and Kaufman, 2008). Activation of IRE1 can induce a signaling cascade involving JNK 

and the transcription factor AP1, resulting in the transcription of genes involved in the 

inflammatory response. Additionally, phosphorylated eIF2α-mediated inhibition of protein 
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translation can result in the destabilization of IκB, promoting the nuclear translocation of NF-κB 

proteins and inducing the expression of TNFα and other pro-inflammatory genes.  

 

Interactions between ER stress, oxidative stress and the inflammatory response are necessary 

and crucial for cell types with high metabolic and secretory demands, such as macrophages 

(Gregor and Hotamisligil, 2007; Schenk et al., 2008; Zhang and Kaufman, 2008), in order to cope 

with the cellular consequences of high levels of protein translation. Numerous stimuli such as 

glucose, lipids, and cytokines can activate both the UPR and the inflammatory pathways through 

calcium, reactive oxygen species, and/or nitric oxide mediators. We have demonstrated that HIV-

infection of human macrophages results in the suppression of components of the antioxidant 

response and activation of the UPR and that alterations to these pathways affect neurotoxin 

production following HIV infection. Interestingly, restoration of the antioxidant response 

attenuates HIV replication, decreases neurotoxin production and dampens induction of 

phosphorylated eIF2α (Figure 5.7). However, decreased neurotoxin production is associated with 

restoration of HO-1 levels and not to levels of phosphorylated eIF2α or the ERSE regulated 

genes, Bip and GRP94. Phosphorylated eIF2α levels can be dampened by restoring the 

antioxidant response in HIV-infected macrophages, even in the setting of robust HIV replication. 

These data suggest that reducing phosphorylated eIF2α will not necessarily attenuate HIV 

replication or neurotoxin production. In fact, phosphorylated eIF2α and activation of the UPR in 

HIV-infected macrophages may better correlate to overall cellular health, redox state or levels of 

inflammatory signaling. In HIV-infected macrophages, activation of the UPR likely enhances 

neurotoxin production, but our studies suggest that treatments that dampen activation of 

phosphorylated eIF2α will not be effective as adjunctive therapies in HAND. However, more study 

is needed to understand the role of phosphorylated eIF2α during HIV infection, especially as it 

intersects with inflammatory pathways and neurotoxin production in macrophages. 
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CHAPTER 6 

 

 

DISCUSSION 

 

 

  



  
123 

Summary of Work 

Despite antiretroviral therapy (ART), HIV infection of the central nervous system (CNS) promotes 

cognitive dysfunction and neurodegeneration through persistent inflammation and the release of 

neurotoxic factors from infected and/or activated macrophages/microglia. The persistence of 

HAND in individuals effectively controlled for systemic viral replication is incompletely explained, 

although prolonged inflammation in both the CNS and periphery may be responsible (Ancuta et 

al., 2008; Brenchley et al., 2006b; Eden et al., 2007). Because markers of inflammation and 

immune activation correlate with disease progression and morbidity in ART-treated individuals, 

drugs targeting these pathological processes are needed for effective, adjunctive therapy. This 

work begins to address the roles of two adaptive stress pathways, the antioxidant response and 

the unfolded protein response (UPR), in modulating macrophage-mediated neurotoxicity following 

HIV infection.  

 

Using our in vitro model of HIV-mediated neurotoxicity, we have shown that HIV infection 

dysregulates the macrophage antioxidant response, with profound reductions in levels of heme 

oxygenase-1 (HO-1). Induction of the antioxidant response with DMF, MMF or tBHQ attenuates 

HIV replication in a dose-dependent manner. Our data suggest that decreased levels of the HIV 

co-receptors, CXCR4 and CCR5, mediate attenuation of viral replication following the induction of 

the antioxidant response. We have also demonstrated that activation of the antioxidant response 

and restoration of HO-1 expression, specifically, reduces HIV-induced macrophage-mediated 

neurotoxicity. Importantly, we demonstrate that therapeutics that increase HO-1 levels, even 

during times of robust HIV replication, can suppress neurotoxin production. In addition to effects 

on macrophage-mediated neurotoxicity, inducers of the antioxidant response can also modulate 

inflammatory pathways and may decrease the immune activation state of HIV-infected 

macrophages. We have demonstrated that induction of the antioxidant response with DMF, MMF 

and tBHQ inhibits of NF-κB nuclear translocation, signaling and the production of the 

proinflammatory mediator, TNFα. Finally, we found that DMF and MMF treatment attenuates 
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CCL2-induced monocyte chemotaxis, suggesting that therapeutic inducers of the antioxidant 

response could decrease recruitment of activated monocytes to the CNS in response to 

inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV 

infection drives macrophage-mediated neurotoxicity and that inducers of the antioxidant 

response, such as DMF, could serve as adjunctive neuroprotectants and HIV disease modifiers in 

ART-treated individuals.  

 

In addition to investigating the antioxidant response in HIV-infected macrophage, we also 

assessed the consequence of HIV infection on the unfolded protein response (UPR). Using our in 

vitro model system, we found that HIV infection increases levels of phosphorylated eIF2α in 

human macrophages. We also demonstrate that the chaperone BiP, considered the master 

regulator of the UPR, is increased in the macrophages of HAND frontal cortex. HIV-infected 

macrophages are capable of responding to pharmacological induction of the UPR and induction 

of the UPR attenuates HIV replication. These results suggest that induction of phosphorylated 

eIF2α during HIV replication has antiviral consequences, although activation of the UPR it is not 

sufficient to considerably attenuate HIV replication during the normal course of infection in 

macrophages. Interestingly, pharmacological induction of the UPR, which attenuates viral 

replication, is associated with increased macrophage-mediated neurotoxicity. This finding has 

important implications for the development of adjunctive therapies for HAND. Therapeutics or 

processes that induce the UPR in macrophages, regardless of the effect on HIV replication, could 

enhance neurotoxin production and contribute to the pathological processes underlying HAND.  

 

As we have also described the effect of HIV replication on the antioxidant response, we assessed 

how restoration of the antioxidant response altered the UPR in HIV-infected macrophages. 

Activation of the antioxidant response with DMF and MMF attenuated HIV replication and 

decreased levels of phosphorylated eIF2α and BiP in HIV/MDM. Reductions in phosphorylated 

eIF2α trend with increased levels of HO-1, but do not depend upon HO-1 enzymatic activity. In 
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contrast, BiP levels decreased with induction of the antioxidant response, but these alterations 

were independent of HO-1. These findings suggest that while dysregulation of the antioxidant 

response reflects levels of HIV replication and HO-1 levels modulate neurotoxin production, levels 

of phosphorylated eIF2α and BiP do not predict the extent of HIV replication or macrophage-

mediated neurotoxicity. Ongoing studies are assessing the link between UPR activation, 

inflammation pathways and the antioxidant response as they relate to HIV infection and 

macrophage-mediated neurotoxicity. 

 

Developing adjunctive therapies for HAND requires an understanding of the pathological 

processes underlying the disease. The macrophage is a critical mediator of HAND 

neuropathology and is a critical mediator of inflammation and neurotoxin production within the 

CNS. This body of work focused on the roles of the antioxidant response and the UPR in 

modulating HIV replication, macrophage-mediated neurotoxicity and inflammatory processes. 

These experiments have demonstrated that induction of the antioxidant response, but not the 

UPR, should be considered as a potential target for adjunctive therapies for HAND. Our lab is 

continuing its focus on the role of the antioxidant response in modulating the neurological 

consequences of HIV infection and is planning to apply this work to animal model systems and 

hopefully, human clinical trials in the future. 

 

 

 

  



  
126 

Implications 

Despite highly active antiretroviral therapies (ART) and effective virological control, approximately 

50% of HIV-infected individuals will develop neurological consequences of HIV infection. In order 

to develop effective adjunctive therapies for HAND, we must consider and target the pathological 

consequences of HIV infection that persist in the CNS despite ART. Chronic immune activation, 

inflammation and viral persistence all contribute to neuronal damage and one of the principal cell 

types mediating these processes is the macrophage. While previous studies have explored the 

pathways responsible for neurotoxin production, little is known about the mechanisms linking HIV 

infection to these pathways. We hypothesized that HIV infection alters many components of 

cellular metabolism and signaling within the infected macrophage. Specifically, we focused on 

adaptive stress pathways, which have been implicated in the modulation of viral replication and 

viral-mediated pathology in recent years. We concentrated on the antioxidant response, due to 

clinical data demonstrating alterations to the oxidative state in HIV-infected patients, and the 

unfolded protein response (UPR), because of its clear link to inflammation pathways and its 

involvement during infection by many other viruses. The effect of HIV infection on the antioxidant 

response, the UPR and the interactions between these adaptive stress responses and 

inflammation had not yet been explored.  

 

This work has begun to address the roles of the antioxidant response and UPR in modulating 

HIV-induced macrophage mediated neurotoxicity and has implications for the development of 

adjunctive therapy for HAND. Namely, we demonstrate that restoration of the antioxidant 

response in HIV-infected macrophages can attenuate many of the key pathways contributing to 

the neuropathology of HAND including HIV replication, neurotoxin production, inflammatory 

signaling and chemotaxis. In order to develop more targeted therapies, we are continuing to 

explore how the antioxidant response affects neurotoxin production pathways and are 

concentrating on the role of HO-1 and its enzymatic activity. HO-1 reduces neurotoxin production 

in macrophages, even when viral replication is robust, suggesting that it may have a direct effect 
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on or modulate a critical component of neurotoxin production pathways. There are also reports 

that HO-1 plays a role in determining the immune activation state of cells, although this is still at a 

rather speculative stage and will require more experimentation. However, when considering how 

the antioxidant response, inflammation and neurotoxin production pathways modulate and are 

influenced by one other, we will need to consider the immune activation state, or profile, of the 

HIV-infected macrophages in our in vitro system. 

 

The microbial and cytokine milieu drives macrophages, T-cells, and other cell types of the 

immune system to express specialized and polarized functional properties. Interestingly, it has 

been reported that MMF shifts CD4+ T-cells towards a Th2 phenotype, which inhibits 

proinflammatory signaling (de Jong et al., 1996; Litjens et al., 2004). DMF and MMF likely also 

influence the polarization of activated and HIV-infected macrophages. TNFα exposure elicits a 

classic M1 form of macrophage activation, which results in the secretion of high levels of 

proinflammatory cytokines (TNFα, IL-1 and IL-6), and reactive oxygen and nitrogen intermediates 

(Mantovani, 2006). In contrast, M2 is a generic name for various forms of macrophage activation, 

which encompass all but M1-activated cells. The various versions of M2 cells generally dampen 

proinflammatory cytokine levels (IL-4Rα, IL-10, IL-1 receptor antagonisthigh, decoy IL-1 type II 

receptorhigh) and have high levels of scavenger, mannose, and galactose-type receptors. DMF 

may promote a shift from M1 activated macrophages towards a M2 phenotype. M2 HIV-infected 

macrophages would produce less TNFα, have less NF-κB signaling and may have decreased 

transcription from the HIV-LTR. It is also highly likely that this immune activation state and 

alterations to inflammation pathways and cell surface receptors will influence signaling events 

related to neurotoxin production pathways. The mechanism by which DMF and MMF shift the 

activation state of immune cells towards an anti-inflammatory state and the impact of activation 

state on neurotoxin production remains to be determined. 
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With this body of work, we have also demonstrated the antioxidant response is a better 

therapeutic target in regards to reducing macrophage-mediated neurotoxicity than targeting the 

UPR. It has been well established that activation of the UPR can drive inflammatory pathways 

and the production of proinflammatory mediators (Ron and Walter, 2007; Zhang and Kaufman, 

2008). And although pharmacological activation of the UPR attenuates HIV replication, it also 

enhances neurotoxin production, making it a poor therapeutic target for HAND. These data have 

implications for how we think about continued inflammation and macrophage-mediated 

neurotoxicity in patients experiencing neurological complications of HIV. Patients who are well 

controlled for viral replication through ART can still have neuronal damage and neurological 

impairment. We demonstrate that HAND patients have evidence of UPR activation in the frontal 

cortex, as evidenced by elevated levels of macrophagic BiP. And as we have demonstrated that 

UPR activation enhances neurotoxin production, even if HIV replication is low or absent, these 

results suggest that activation of the UPR may be driving neurotoxin production in macrophages 

even in the setting of ART. Even more importantly, our data demonstrate that simply controlling 

HIV replication does not guarantee a concomitant decrease in macrophage-mediated 

neurotoxicity, a concept that has not been previously proposed. Furthermore, we need to 

consider how potential therapies impact the UPR of the macrophage when we consider 

adjunctive therapies for HAND, since controlling viral replication is not sufficient to prevent 

neurological sequelae or ensure a reduction in neurotoxicity. 

 

This body of work has proposed many future avenues of research in regards to the role of 

adaptive stress responses in macrophage-mediated neurotoxicity. One of the key questions that 

remains in this work is how the antioxidant response, UPR and neurotoxin pathways intersect. It 

has been demonstrated that intracellular calcium signals and free radicals, such as reactive 

oxygen species (ROS) and nitric oxide (NO), act as messengers in coordinating adaptive stress 

responses. However, we have yet to determine if HIV infection directly impacts the antioxidant 

response or UPR, or if the markers of modulation/activation that we detect are an indirect 
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consequence of infection or mediated by other signaling pathways. It is possible that the 

antioxidant response drives the activation of the UPR, increases inflammation and directly 

modulates neurotoxin production pathways. However, it is also a possibility that activation of the 

UPR or inflammation drives the antioxidant response and neurotoxin production. In order to 

develop targeted and effective adjunctive therapies for HAND, we must continue to explore these 

pathways and identify critical mediators of the pathology. 
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