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Abstract— In many portable devices, wireless network inter-
faces consume upwards of30% of scarce system energy. Reducing
the transceiver’s power consumption to extend the system lifetime
has therefore become a design goal. Our work is targated
at this goal and is based on the following two observations.
First, conventional energy management approaches have focused
independently on minimizing the fixed energy cost (by shutdown)
and on scalable energy costs (by leveraging, for example, the
modulation, code-rate and transmission power). These two energy
management approaches present a tradeoff. For example, lower
modulation rates and transmission power minimize the variable
energy component, but this shortens the sleep duration thereby
increasing fixed energy consumption. Second, in order to meet
the Quality of Service (QoS) timeliness requirements for multiple
users, we need to determine to what extent each system in the
network may sleep and scale. Therefore, we propose a two-phase
methodology that resolves the sleep-scaling tradeoff across the
physical, communications and link layers at design time and
schedules nodes at runtime with near optimal energy-efficient
configurations in the solution space. As a result, we are ableto
achieve very low run-time overheads. Our methodology is applied
to a case study on delivering a guaranteed QoS for multiple users
with MPEG-4 video over a slow-fading channel. By exploiting
runtime controllable parameters of actual RF components and
a modified 802.11 Medium Access Controller, system lifetimeis
increased by a factor of3-to-10 in comparison with conventional
techniques.

Index Terms— TODO

I. I NTRODUCTION

Over the past two decades, processor power consumption
has increased by over200% every four years, while battery
energy density has increased by a modest25% [1]. As the
demand for higher data-rate wireless systems is growing [2],
the increasing energy disparity poses a challenge to system
designers in terms of system lifetime and cooling cost [3]. In
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TABLE I

WIRELESS TRANSCEIVER POWER CONSUMPTION.

Mode 802.11b 802.11a 802.11g
Sleep 132mW 132mW 132mW

Idle 544mW 990mW 990mW

Receive 726mW 1320mW 1320mW

Transmit 1089mW 1815mW 1980mW

particular, the power consumption of 802.11 transceivers [4]
has been increasing with the creation of each new standard
(Table I). Studies show that users favor handhelds weighing
less than340 grams and devices requiring less frequent
recharging [5]. Lithium ion batteries currently provide the
highest capacity of approximately90Whr/Kg [6]. If we target
a battery weight less than50% of the handheld’s weight, we
get 15Whr of battery energy. Now consider an average user’s
daily power consumption of2 hours in receive mode,1/2 hour
in transmit mode and4 hours in idle mode [7]. An 802.11a
transceiver with the given usage profile expends approximately
7.5Whr or50% of the handheld’s battery capacity. On average,
the wireless interface consumes upwards of30% of a laptop’s
energy, thus motivating the need to decrease it’s energy
consumption [8].

While the highest power is drawn during active modes, the
extended duration of the idle mode accounts for a significant
budget of the overall system energy. An energy-efficient design
must therefore jointly optimize the active and fixed energy
consumption. By throttling, for example, the transmit power,
modulation rate and code rate, the active energy consumption
per bit can be reduced for the same target receive signal-to-
noise ratio (SNR) [9]. The trade-off between transmission time
and transmission energy is convex - a fundamental property
for wireless communication bounded by Shannon’s channel
capacity [10]. In the remainder of this paper, we classify
this active energy saving technique asscaling. On the other
hand, the static energy consumed during the idle mode may be
minimized or eliminated by maximizing the shutdown time,
otherwise known assleeping.

The challenge in energy management for dynamic wireless
systems is to determine the extent to which the system should
sleep and scale while meeting per-packet QoS timing require-
ments. The key assumption underlying the method is that the
systems will operate in dynamic environments where a single
energy management solution is not sufficient. The variation
present in the system motivates the use of flexible cross-layer



Node 1

AP

Node 2 Node 3

Node 4

Data Transmission

Channel Access Grant

Uplink Downlink

Fig. 1. Centrally controlled point-to-multipoint LAN/PANtopology with
uplink and downlink communication.

solutions that adapt to the current instantiation while saving
maximally. The main system state variables affecting each
user are the present channel state and the instantaneous data
rate demanded. Furthermore, in a network of such systems,
an efficient energy management algorithm should exploit the
variations across users to minimize the overall network energy
consumption.

Therefore the problem explored here could be stated as
follows: How does one decide what system configurations to
assign to each user at runtime to minimize the overall energy
consumption while providing a sufficient level of QoS? This
must be achieved for a network of users with bursty delay-
sensitive data and over a slow fading channel.

A. Cross-Layer Resource Allocation

While a cross-layer approach, by definition, violates the
concept of strict network layering, we will show that by jointly
leveraging the runtime controllable parameters orcontrol
dimensionsacross multiple layers we can achieve significant
energy savings. Our focus is on wireless networks where
all users are in the same collision domain with an access
point (AP) to arbitrate exclusive channel access (Fig. 1). Our
solution exploits control dimensions from (a) radio frequency
integrated circuit (RFIC) system models, (b) communication
theoretic tradeoffs, and (c) link-layer scheduling.

The following three observations show the need to integrate
energy management approaches across layers. First, state-of-
the-art wireless systems such as 802.11a devices are built to
function at a fixed set of operating points assuming worst-
case conditions. Irrespective of the link utilization, thehighest
feasible transmission rate is used and the power amplifier
operates at maximum output power [8]. For non-scalable
systems, the highest rate results in the smallest duty cycle
and hence the lowest energy consumption. On the other
hand, for scalable systems, this strategy results in excessive
energy consumption for average channel conditions and link
utilizations. Recent energy-efficient wireless system designs
focus on VLSI implementations and adaptive physical layer
algorithms where a lower transmission rate results in energy
savings per bit [9], [11]. For these schemes to be practical,
they should be aware of the hardware energy characteristics
at various operating points.

Second, to realize sizable energy savings, systems need to
shutdown the components when inactive. This is achieved
only by tightly coupling the MAC communication to the
power management strategy in order to communicate traffic
requirements of each user for scheduling shutdown intervals.
Finally, intricate tradeoffs exist between sleeping and scaling
while satisfying the timeliness requirements across multiple
users. As the channel is shared, lowering the rate of one
user reduces the time left for the other delay-sensitive users.
This forces them to increase their rate, at the cost of energy
consumption or bit errors.

Our methodology for energy-efficient resource allocation,
MEERA, couples these three layers in a systematic manner
to determine the optimal system-wide power management at
runtime.

B. Contributions of this paper

In this paper we propose a two-phase solution to efficiently
solve the sleep-scaling tradeoff across the physical, communi-
cations and link layers for multiple users. At design time the
problem is resolved by selecting a set of appropriate operating
points in the solution space. Starting from this configuration
space, we schedule the nodes at runtime to achieve near-
optimal energy consumption with low overheads. In Section II
we present our two-phase energy management methodology.
In Section III, we apply this general methodology to a specific
case study employing physical layer models based on actual
RFICs, an energy-aware MAC, MPEG-4 movies and a realistic
indoor channel model [12]. Section IV presents simulation
results for multiple users to validate the methodology. Con-
cluding remarks are in Section V.

C. Related Work

There have been several initiatives to design energy-efficient
processors [13], [14] primarily employing dynamic voltage
scaling and low-power VLSI implementations. In [15], dy-
namic voltage scaling is further exploited by adding a smart
buffer scheme. These methods, however, do not extend well
for wireless transceivers, as the performance of analog circuits,
which dominate the energy consumption, does not scale as
monotonically with lower voltages as digital circuits. Wire-
less communications present non-linear and discrete energy-
performance tradeoffs between coding and transmit power
[16], between modulation and active circuit energy consump-
tion [17] and between transmission rates and shutting off the
system [11].

To address this, researchers have approached the problem
either from an information-theoretic perspective [9, 17] or
from an implementation-specific viewpoint [13], [19]. In [17],
modulation strategies are derived for delay-bounded traffic. It
is shown that when the transmit power and circuitry power
are comparable, the transmission energy decreases with the
product of bandwidth and transmit duration. They however
only consider an idealized network restricted to a single
flow with no medium access controller (MAC) or link layer
retransmissions, and with ideal constellation sizes. In [9],
scaling is framed as a convex optimization problem where
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users lower their transmission rate to minimize energy. They
do not consider the fixed circuit energy consumed during
idle and receive intervals. On the other hand, [16] explores
the practical cross-layer trade-off between transmissionpower
control and physical layer (PHY) rate for a centrally controlled
MAC with retransmissions. Their solutions are specific and
applicable to the 802.11a PHY [2]. They derive performance
based on simple AWGN channel models. They also consider
only a single flow with no delay constraints or system sleep
modes.

A more general framework to exploit the energy scalability
of transceivers is provided in [11]. They derive the operating
regions when a transceiver may sleep or use scaling. The anal-
ysis is based on simplified physical layer energy models and
only point-to-point file transfer is considered. Approaches to
trade-off energy and rate, taking into account implementation
aspects and operating conditions are proposed in [13], [19].
An energy-performance trade-off is presented for a single link
at design-time, as function of the system implementation.

Offline hardware energy optimizations for energy-scalable
systems are proposed in [11], [17], [18] and in [19] for
cellular systems. They express the need for a practical runtime
scheme to determine the configurations for one or more users,
taking into account environmental and application constraints
where appropriate. In order to derive optimal or near-optimal
operating points, a framework is needed to consider the impact
of the various control dimensions, the trade-offs between them
and the overall benefit to the user. In [20] a self-tuning
power management scheme is proposed which adapts its
sleeping behavior to user access patterns, application context,
characteristics of the network interface and energy usage of the
platform. They foresee a simple interface that allows applica-
tions to give hints about their intent, and show that self-tuning
improves both performance and energy conservation compared
to static approaches. Similarly, in [21] they abstract the power
management to a higher level to exploit application-specific
information to balance power savings and data performance.

A middleware scheme is proposed in [22] which exploits
global information (e.g. background traffic) and static device-
specific characteristics (e.g. hardware and offered video for-
mats) to dynamically adapt the packet schedule for sleep
maximization. In [23], the authors present a useful approach
to maximize the utility for multimedia applications through
scheduling of multiple resources along multiple control di-
mensions. Our approach to minimize energy consumption has
a similar basis and is extended for use in dynamic wireless
systems by incorporating communications constraints. Traffic
scheduling taking into account both the application and the
sleep profile of current hardware, is shown to outperform
straightforward transmission schemes significantly [24].We
extend the technique taking into account other hardware en-
ergy management techniques. The use of various scheduling
schemes to optimize system utility in cellular systems is
investigated extensively [25], but to the best of our knowledge
no scheduling techniques exist that specifically consider the
underlying hardware.

II. ENERGY-EFFICIENT DESIGN METHODOLOGY

The design of low-power wireless systems needs to en-
compass RF components, adaptive physical layer algorithms,
and the MAC protocol while taking into account environment
and application constraints. In order to extract significant
energy savings from the system resource allocation algorithms
must work harmoniously with implementations. This requires
a sound methodology that can scale with the combinatorial
explosion of the number of configurations and with the non-
linear and implementation-specific set of control dimensions.

Our methodology, outlined in Fig. 2, consists of two-phases.
In the design or calibration-time phase, we determine the
tradeoff between sleeping and scaling across all system states.
This is done by mapping acost profile(e.g., energy consumed
for a successful transmission),resource profile(e.g., time to
complete that successful transmission) andquality profile(e.g.,
probability to complete transmission successfully) for each
node, for every possible system configuration and state. For
even a modest number (e.g., 8) of control dimensions, this
can lead to a large number of possible system configurations
(on the order of106 for the considered system). However, this
system calibration is a one-time investment that allows forfast
and efficient run-time system adaptation. To decrease run-time
complexity, the Cost-Resource-Quality profiles obtained are
then pruned by taking the convex minorant across all three
dimensions [26]. Following this, in the runtime phase, each
node’s pruned Cost-Resource-Quality profile is traversed to
determine the operation point for given system states (e.g.,
channel state) and QoS requirements of all users. The runtime
phase is executed in a greedy manner, selecting the operation
point for the node with maximal cost savings (i.e., energy)
for every additional unit of resource (i.e., time) consumed
while meeting the quality constraint. MEERA is implemented
in the AP and delivers a bounded sub-optimal performance.
We describe the methodology in more detail by formally
defining the MEERA resource management model and stating
the resource allocation as a convex optimization problem.

A. MEERA Resource Management Model

Consider a wireless network as in Fig. 1 where multiple
nodes are centrally controlled by an AP. Each node (such
as a handheld video camera) desires to transmit or receive
frames at real-time and it is the AP’s responsibility to assign
channel-access grants. The resource allocation scheme within
the AP specifies each user’s system configuration settings for
the next transmission based on the feedback of the system
state from the current transmission. It must ensure that the
nodes meet their performance constraints by delivering their
data in a timely manner while consuming minimal energy. The
problem is now stated formally and a case-specific mapping
is provided in the following section.

1) MEERA Definitions:The network consists ofn flows
{F1, F2, . . . , Fn} with periodic delay-sensitive frames or jobs.
For notational simplicity, we assume a one-to-one mapping of
flows to nodes, but our design methodology is applicable to
more flows per node. Each flowi, 1 ≤ i ≤ n, is described by
the following properties:
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Fig. 2. At design time, a Cost, Resource and Quality profile isdetermined for each set of control dimensions based on the system state. The optimal
Cost-Resource-Quality tradeoff is derived from this mapping to give operating points used at runtime.

1) Cost Function (Ci): This is the optimization objective,
e.g. to minimize the total energy consumption of all
users in terms of Joules/Job. For example, in a video
context, a job is the timely delivery of the current frame
of the video application.

2) QoS Constraint (Qi): The optimization has take into
account a minimum performance or QoS in order to
satisfy the user. As delivery of real-time traffic is of
interest, we describe the QoS in terms of the job failure
rate (JFR) [27]. JFR is defined as the ratio of the number
of frames not successfully delivered before the deadline
to the number of frames issued by the application over
the lifetime of the flow. The QoS constraint is specified
at run-time by useri as a targetJFR∗

i .
3) Shared Resource (Ri,l, 1 ≤ i ≤ n, 1 ≤ l ≤ r): Multiple

resource dimensions,r, could be used to schedule flows
or tasks in the network (e.g., time, frequency or space).
In this paper, we consider the particular case where
access to the channel is only divided in time. Therefore,
time is the single shared resource and the total is denoted
by R. The fraction of resource consumed by nodei is
denoted byRi.

4) Control Dimensions (Ki,j , 1 ≤ i ≤ n, 1 ≤ j ≤ k):
For a given wireless LAN architecture, there arek
control knobs or dimensions, such as modulation, code
rate, output power, etc. that control the system Cost,
QoS and Resource given the current system state. The
control dimension settings are discrete, inter-dependent
and together have a non-linear impact. We define a
setting of all knobsj for node i to be configuration
point K i. We will define a relationship betweenK i to
Qi, Ci andRi in the next section.

5) System state (Si,m, 1 ≤ i ≤ n, 1 ≤ m ≤ s): As we are
operating in a very dynamic environment, the system
behavior will vary over time. There ares environmental
or application factors independent of the user or system’s
control represented by the system state variable,Si,m.
The system cost, resources required and quality offered
all depend on the system state, as determined during
design or calibration-time of the system. In a wireless
environment, with e.g. Variable Bit Rate (VBR) video
traffic, the system state is the current channel state
and application frame size. Application frame size is
translated to Queue Size at the MAC level to allow for
application aware scheduling without explicit communi-
cation with the higher layers. After classification of the

various system states, the calibration step can easily be
performed to take into account implementation-specific
aspects of the device. As the application frame size
is translated to a lower layer metric, the calibration is
specific to the PHY and MAC only, and can hence be
included with the PHY/MAC hardware drivers of prac-
tical systems. This device-specific calibration step may
be executed at design time or during device initialization
as is outlined in Section III. The scheduling algorithm
within the AP is executed with a period based on the
time during which the system state remains stable, i.e.
channel epoch and video frame rate.

To summarize, each flowFi is associated with a set of possible
system statesSi,m, which determines the mapping of the
control dimensionsK i to the Cost (K i, Si,m → Ci), Resource
(K i, Si,m → Ri) and Quality (K i, Si,m → Qi). It is essential
to note that for each user, depending on the current state,
the relative energy gains possible by rate scaling or sleeping
are different and should hence be exploited differently. Each
user experiences different channel and application dynamics,
resulting in different system states over time, which may or
may not be correlated with other users. This is a very important
characteristic which makes it possible to exploit multi-user
diversity for energy efficiency.

2) MEERA Model Properties:The key aspects of MEERA
are the mapping of the control dimensions to cost, resource
and quality profiles respectively, and the generality of this
mapping. A resource (respectively cost, quality) profile de-
scribes a list of potential resource (respectively cost, quality)
allocation schemes resulting from each configuration point.
These profiles are then combined to give a Cost-Resource-
Quality trade-off, which is essential for solving the resource
allocation problem (Fig. 2). The Cost-Resource-Quality trade-
off function represents the behavior of a specific system for
one user in a given system state.

Cost profile properties

• The finite set of discrete control dimension configurations
is ordered by their increasing costs.

• The overall system cost,C, is defined as the weighted
sum of costs of all flows, where each flow can be assigned
a certain weight depending on its relative importance
or to improve fairness [27]. Users may be assigned
higher weights for example when their battery capacity
is low or when they downscale their transmission rate
by decreasing the video quality and get rewarded for
reducing the network congestion. Users with a higher
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weight will typically be allowed to save more energy
compared to other users:C =

∑n
i=1 ωiCi.

Resource profile properties
• The finite set of discrete control settings is ordered by

their minimal resource requirement.
• The system resource requirement,R, is defined as the

sum of the per flow requirements:R =
∑N

i=1 Ri.
Quality profile properties

• The finite set of discrete control dimension configurations
is ordered with quality.

• The system quality,Q, is met when each individual user’s
constraint is met:JFRi ≤ JFR∗

i , 1 ≤ i ≤ n .

B. MEERA Resource Allocation Problem

We recall that our goal is to assign transmission grants
via the AP, resulting in an optimal setting of the control
dimensions to each node such that the per-flow QoS constraint
for multiple users are optimally met with minimal energy
consumption. For a given set of resources, control dimensions
and QoS constraints, the scheduling objective can be formally
stated as:

min
C

n
∑

i=1

ωiCi, 1 ≤ m ≤ s

s.t.

JFRi ≤ JFR∗

i , 1 ≤ i ≤ n (QoS Constraints)
n

∑

i=1

Ri,l ≤ Rmax
l , 1 ≤ l ≤ r (Resource Constraints)

K i, Si,m → Ri,l, 1 ≤ j ≤ k (Resource Profiles)

K i, Si,m → Ci 1 ≤ m ≤ s (Cost Profiles)

K i, Si,m → Qi (Quality Profiles)

The solution of the optimization problem yields a set of
feasible operating points,K = {K i, 1 ≤ i ≤ n}, for the
network which fulfill the QoS target, maintains the shared
resource constraint and minimizes the system cost. While
the profile mapping and pruning is done during a one-time
calibration step, we now describe how, using those profiles,the
optimal configurationK is determined efficiently at runtime.

C. Two-phase Solution Approach

When considering energy-scalable systems, the number of
control dimensions is large and leads to a combinatorial
explosion of possible configurations (e.g.,O(106) for the case-
study in Section III). At design or calibration time, a pruned
set of configurations is determined. This set is represented
in a table-driven structure that allows for a fast handling.At
runtime, based on the system state, the best operating pointis
then extracted efficiently by a simple memory access.

1) Design-Time Phase:A property of our model is that
the finite set of discrete control dimensions can be ordered,
describing a range of possible costs, resources and quality
for the system in each system state. For each additional
unit of resource allocated, we only need to consider the
configuration that satisfies the quality constraint and achieves

the minimal cost for that resource unit. For each system state
(e.g., channel and application loads), a subset of points is
determined by pruning the Cost-Resource-Quality curves to
yield only the minimum cost configurations, which will be
denoted byCi(Ri, Qi).

We define a calibration function , that is computed for every
stateSi,m

pi(Ri, Qi) = min{Ci|(K i, Si,m → Ri) ∧ (K i, Si,m → Qi)

∧(K i, Si,m → Ci) ∧ (K i) ∈ {K i}}

and defines a mapping between the Resource, Cost and the
Quality of a node in a system state,Si,m, as shown in Fig. 2.
{K i} is the set of configuration vectors for nodei. Given the
points after calibration in the Cost-Resource-Quality space,
we are only interested in the ones that represent optimally the
trade-off between energy, resource and quality for our system.
Although the discrete settings and non-linear interactions in
real systems do not lead to a convex trade-off, it can be well
approximated as follows.

We calculate theconvex minorant[26] of these pruned
curves along the Cost, Resource and Quality dimensions,
and consider the intersection of the results. We call this set
the optimal Cost-Resource-Quality trade-off in the remainder
(Fig.3). We show that the maximum segment size of the
convex minorant determines the solution’s deviation from
the optimum1. Configurations on segments that are small
compared to the largest segment size can be pruned away
without affecting the bounds of the solution. As a result, we
can typically expect less than 30 configurations per state. At
run-time, the resource allocation scheme in the AP adapts to
system state by fetching the correct configurations from mem-
ory. This operation is cheap compared to the cost of calibration
that only has to be carried out once. In the next subsection,
we detail how this information can be combined efficiently
into a global curve representing the network Cost-Resource-
Quality tradeoff. Profiling each user separately and combining
the information at runtime is optimal for independent usersor
when the correlation is unknown. When correlation is present,
the number of system states to calibrate and the runtime
combination could be further reduced.

2) Run-Time Phase:As the current system state of all
the users is only known at runtime, a light-weight scheme
is necessary to assign the best system configurations for
each user, while meeting the QoS requirements. We therefore
employ a greedy algorithm to determine the per-flow resource
usageRi for each user to minimize the total costC while
meeting system constraints. The algorithm first constructsthe
optimal local Cost-Resource trade-off curveCi(Ri) by taking
the optimal points in both dimensions that meet the run-time
average quality constraintJFR∗. Next, the scheduler traverses
all flows’ two-dimensional Cost-Resource curves and at every
step consumes resources corresponding to the maximum nega-
tive slope across all flows (taking into account user preference

1To achieve an optimum, it is necessary to retain the set of points that
are Pareto-optimal or dominant in the Cost-Resource-Quality dimensions. A
complex optimization problem with backtracking has to be solved at run-time
to achieve the optimum based on the Pareto-points.
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or weight if appropriate). This ensures that for every additional
unit of resources consumed, the additional cost saving is the
maximum across all flows taking into account the agreements
made at admission time. We assume that the current channel
states and application demands are known by each node and
periodically communicated to the AP. When the node’s state
changes, the allocation is recomputed by the AP during the
next scheduling instance. The exchange of state information
and operating points between nodes and the AP is obtained
by coupling the MAC protocol with the resource manager as
explained in the next section. Our algorithm is based on Kuhn-
Tucker [26, 28] and is described in detail in [29]. In our
implementation, we sort the configuration points at design-
time in the decreasing order of the negative slope between
two adjacent points. The complexity of the runtime algorithm
is O(L.n.log(n)) for n nodes(∼ 20) and L configuration
points per curve. In Section III, we demonstrate that for a
practical system in each possible system state (i.e., channel
and frame size), the number of configuration points to be
considered at runtime is relatively small(∼ 30). Taking into
account that the relationCi(Ri) is convex, we can now prove
that the greedy algorithm leads to the optimal solution for
continuous resource allocation. Following that, we then extend
the proof for systems with discrete working points to show that
the solution is within a bound from the optimal.

Theorem 1: For a continuous resource allocation to be
optimal, a necessary condition is∀i, 1 ≤ i ≤ n, Ri = 0, or
for any flows{i, j} with Ri > 0 and Rj > 0, the cost slopes
C′

i(Rj) = C′

j(Rj).
Proof: For a continuous differentiable function, the Kuhn-
Tucker [26] theorem proves such a greedy scheme is optimal.
Suppose for somei 6= j, let the optimal resources beRi > 0,
Rj > 0, and |C′

i(Ri)| > |C′

j(Rj)|. As the savings in cost
per resource forFi is larger, we can subtract an infinitesimal
amount of resource fromFj and add it toFi. Total system

(rs,cs)
Cost

s

(rs+1,cs+1)

(rc,cc)

Ravl
Resource

Fig. 4. Bounded deviation from the optimal in discrete Cost-Resource curves.

cost is reduced, contradicting the assumed optimality.2

For a real system, however, the settings for different control
dimensions such as modulation or transmit power are discrete.
This results in a deviation,∆, from the optimal resource
assignment. We now show the worst-case deviation from the
optimal strategy is bounded and small.

Theorem 2:∃0 ≤ ∆ < ∞, such thatCOPT ≤ CMEERA ≤
COPT +∆, whereCOPT is the optimal cost (energy consumed
by all users) andCMEERA is the cost in the discrete case.
Proof: For each flow,{F1, F2, . . . , Fn}, the aggregate system
resources consumed are stored in the decreasing order of
their negative slope across all per-flow Cost-ResourceCi(Ri)
curves. Based on this ordering, the aggregate systemC(R)
trade-off is constructed, consisting of segments resulting from
individual flows. The greedy algorithm traverses the aggre-
gate systemC(R) curve, consisting of successive additional
resource consumptions (at maximum cost decrease), until the
first segment,s, is found that requires more resource than the
residual resourceRavl (Fig. 4).

Let the two end points of the final segments be (rs, cs)
and(rs+1, cs+1) in C(R). Let (rc, cc) be the optimal resource
allocation in the optimal combined Cost-Resource curve.

COPT ≥ CMEERA − (rc − rs)(cs+1 − cs)/(rs+1 − rs)

> CMEERA − (rs+1 − rs)(cs+1 − cs)/(rs+1 − rs)

= CMEERA − (cs+1 − cs)

We observe thatcs−cs+1 ≤ ∆, thereforeCMEERA−COPT <
∆. Moreover, we note that a better approximation can be
obtained when more dimensions (Ki,j) are considered.

III. 802.11 TRANSCEIVER CASE STUDY

To demonstrate the usability of the proposed MEERA
scheme, in this section, we apply it to control an Orthogonal
Frequency Division Multiplexing (OFDM) 802.11a modem
[2]. The goal is to show the progressive and substantial energy
savings as each set of control dimensions is included and to
discuss implementation aspects related to this specific instance
of the methodology. The target application is the delivery of
delay-sensitive traffic over a slow fading channel with multiple
users. We associate the systemCostto energy, theResourceto
the time over the shared medium and theQuality is theJFR.

We briefly consider the tradeoffs present across the physical
layer circuits, communication settings and link layer in our
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system. Increasing the modulation constellation size decreases
the transmission time but results in a higher PER for the same
channel conditions and PA settings. The energy savings due to
decreased transmission time must offset the increased expected
cost of re-transmissions. Also, increasing the transmit power
increases the signal distortion due to the PA nonlinearity [33].
On the other hand, decreasing the transmission power also
decreases the efficiency of the PA. Considering the tradeoff
between sleeping and scaling, a longer transmission at a lower
and more robust modulation rate needs to compensate for the
opportunity cost of not sleeping earlier. Finally, as all users
share a common channel, lowering the rate of one user reduces
the time left for other delay-sensitive users. This compels
other users to increase their rate and consume more energy
or experience errors.

A. Top-Down QoS Driven Design

As the system performance requirements are specified at
the application layer and the energy consumption is at the
lower (hardware) layers, it is essential to: (a) translate the
application layer requirements to relevant metrics at each
intermediate layer and (b) to define clean interfaces between
layers for an energy-performance feedback mechanism. This
is to allow for a local calibration of the hardware which makes
implementation more feasible, still enabling translationof to
application specific quality metrics. For delay-sensitivetraffic,
the QoS metric of interest is the targetJFR∗.

At the link-layer, each applicationframe is fragmented into
one or more fixed-sizedfragments. An application frame size
or rate requirements is hence translated into a local Queue
Size. Next, as shown in Fig. 5, theJFR∗ is translated at
the link layer to a PER constraint, which corresponds to
a maximum Block Error Rate (BlER) as a function of the
physical layer low-level knobs. Based on the performance of
the turbo decoder, the BlER is a result of the receive SNR
for given constellation order. The performance target of the
system, on a frame-by-frame basis, is to ensure a probability
that a frame is delivered (which is denoted asSm

p , with m
packets andp retransmissions). This is related to the user’s
QoS requirement by Eq.( 1). This probabilitySm

p is a function
of PER and control dimension settings.

1 − JFRm
p (K) =

p
∑

j=0

Sm
j (K) (1)

P = [1 − (1 − BlER)Lfrag/288] (2)

Every target JFR may be satisfied by one or more control
dimensions,K i, each of which is associated with the energy
consumed (cost) and time required (resource) to complete the
frame transmission in the current system state. The state is
defined by a discrete channel state and traffic requirement (i.e.
current application frame size), which can easily be monitored
as the Queue Size. Channel classification and monitoring is
typically a more difficult problem. At runtime, the current
system state is periodically reported to the AP as described
in detail at the end of this section. Based on a node’s current
system state andJFR∗, the corresponding Cost-Resource

TABLE II

PARAMETER VALUES USED IN OUR EXPERIMENTS

.

Performance
Model

Energy
Model

MAC Model Control Dimensions

W =
20MHz

P T
F E

=
200mW

Lfrag =
1024B

Back-off (dB)
{6to16}

B =
250kBaud

P R
F E

=
200mW

TACK =
52µs

PTx(dBm) {0to20}

N = 48 P T
DSP =

50mW
TPLCP =
20µs

Modulation {BPSK,
QPSK, 16 − QAM,
64 − QAM}

T = 198K P R
DSP =

50mW
TSIF S =
16µs

Code Rate{1/2, 2/3,
3/4}

Nf = 10dB ER
DSP

=
8.7nJ/b

Block =
288

JFR∗ = 10−3

tradeoff curves are fetched from memory at the AP. From
each curve, control dimension operating points are then chosen
using the fast greedy algorithm to determine the current global
Cost-Resource tradeoff such that the total transmission time
for all nodes is less than the deadline.

B. Design-Time Energy-Performance Tradeoff Calibration
and Mapping

1) Energy Consumption per fragment:Four control dimen-
sions have a significant impact on energy and performance
for these OFDM transceivers: the modulation order (NMod),
the code rate (Bc), the power amplifier transmit power (PTX )
and its linearity specified by the back-off (b). We consider
the eight PHY rates supported by the 802.11a standard based
on four modulation and three code rates (Table II). The bit
rate (Bbit) for each modulation-coding pair withNc OFDM
carriers,NMod bits per symbol and symbol rateB is given
by:

Bbit = Nc × NMod × Bc × B (3)

We focus on the power amplifier (PA) as it is generally the
most power-hungry component in the transmitter consuming
upwards of 600mW [32]. The PA efficiency is higher at high
output power but due to non-linearity the signal distortion
increases too. By throttling the bias current, the PA back-
off controls the linearity and directly influences the energy
consumption. The relation between the power amplifier back-
off and the distortion,D(b), has been characterized empirically
for the Microsemi LX5506 [33] 802.11a PA. The PA power
(PPA) can be expressed as the ratio of the transmit power
(PTx) to the PA efficiency (ηPA) that is related tob by an

7−state Channel Model

System Layer

PHY Communication

Link Layer

Application Layer

PHY Circuits

PHY Channel

Job Failure Rate

Packet Error Rate

Block Error Rate

Symbol Error Rate

SNR with distortion

System State

Control Dim. − Sleeping

Control Dim. − Scaling

Control Dim. − Scaling

System State

Case Study ComponentMethodology ComponentQoS Metric

Real−time MPEG−4

Sleep−Aware MAC

Mod, Code, Packet Size

Tx power & PA back−off

Fig. 5. MEERA cross-layer approach spans multiple layers with correspond-
ing performance metrics. The case study describes a systematic and practical
mapping of metrics across layers.
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empirical law fitted on measurements:

PPA =
PTx

ηPA(b)
(4)

We assume the energy consumption of the digital baseband
is a linear function of time and number of iterations for
the turbo decoding at the receiver [34]. Based on current
implementations [32], the frequency synthesizer, ADC, DAC,
LNA and filters are assumed to have fixed front-end power
consumptionPFE (Table II). We obtain the energy needed to
send or receive a fragment of lengthLfrag:

ETx = (
PPA + PT

FE + PT
DSP

Bbit
) × Lfrag (5)

ERx = (
PR

FE + PR
DSP

Bbit
+ ER

DSP ) × Lfrag (6)

wherePT
DSP and PR

DSP are the baseband processor’s power
consumption. Obtaining the actual values for energy consump-
tion and PA non-linearity for each of the configurations only
depends on the fragment size and not on system state. In
practice, this information is obtained very fast by transmitting
an Lfrag packet once (requiring0.1 to 1.3ms depending on
the configuration) using each configuration (hence1.3×10−3×
106 = 1300s or approximately20 minutes worst case for a
complete system profile).

2) Traffic Requirements:We study the impact of both
constant bit rate (CBR) and variable bit rate (VBR) traffic.
For VBR traffic, we employ MPEG-4 encoded video traces
[35] with peak-to-mean frame sizes ranging from3 to 20.
All fragmentation is done at the link layer and we use
UDP over IP. As the maximum frame size is assumed to
be within the practical limit of 50 fragments, we construct
Cost-Resource-Quality curves for1, 2, 3, 4, 5, 10, 20, 30, 40, 50
fragments/frame and interpolate for intermediate values.The
application layer frame size is translated to lower layers Queue
Size and fragment size to facilitate state monitoring and
calibration. As a result, no additional measurements are needed
to model traffic requirements, which can be fully captured in
the mapping.

3) Channel Constraints: We use a 7-state frequency-
selective time-varying channel model to compute the PER for
all transceiver settings. An indoor channel model based on
HIPERLAN/2 [12] was used for a terminal moving uniformly
at speeds between0 to 5.2km/h (walking speed). Based on
our turbo decoder design [34], we describe in detail the
construction of a 7-state channel Markov-model in [29]. A set
of 1000 channel realizations are used to determine the receive
SNR with added distortion (SINAD) and extract the channel.
The samples should be taken over a period larger than the
coherence time of166ms [36]. Assuming that samples should
be taken over a large number of coherence times (e.g.100),
this will take16.6s for channel extraction. Given output power
PTx and channel attenuationA, theSINAD is specified as:

SINAD =
PTx × A

A × Di(b) + kT × W × Nf
, (7)

where the constantsk, T , W and Nf are the Boltzman
constant, working temperature, channel bandwidth and noise

figure of the receiver respectively. Based on the channel clas-
sification, the receive SINAD is mapped to one of 7 discrete
channel states. Following this, we us the BlER models detailed
in [37] to characterize (at design-time) the digital front-end for
a range ofSINAD. This calibration is a routine hardware
characterization in current transceiver design practice.This
BlER-SINAD performance information is mapped to the
set of channel states. This relation of dynamic channel state
(based on hardware implementation) to performance metrics
for higher layers is a key enabler for design-time Cost-
Resource-Quality profiling.

4) Energy, Time and Quality Profile Mapping:For each
combination of feasible control dimensions,K i (which we
will simplify to K ), we compute the total expected energy
consumption, total transmission time and resultingJFR while
using the properties of a sleep-enabled 802.11e MAC. We
assume that during each communication instance, all transmis-
sions use the same configuration to eliminate reconfiguration
costs. All transmissions employ the contention-free mode
with transmit opportunity (TXOP) grants of 802.11e Hybrid
Coordination Function (HCF) [38]. A TXOP is defined as
the time interval assigned when a user has exclusive channel
access and is specified by a start time and duration. Let
EH , EACK andTH , TACK be the constant energy and time
needed to transmit a header and acknowledgement. The energy
and time needed for a successful (i.e. good) and a failed2

transmission is then determined using parameters listed in
Table II:

Egood(K) = EK + EH + (2TsifsPidle) + EACK (8)

Ebad(K) = EK + EH + (Tsifs + TACK)Pidle (9)

Tgood(K) = TK + TH + (2Tsifs) + TACK (10)

Tbad(K) = Tgood(K) − Tsifs (11)

We now include the MAC layer retransmissions. Each frag-
ment is transmitted with configurationK , for which we can
determine thePK , based on Eq. (2). The probability that the
frame is delivered with exactly (m + p) attempts (includingp
retransmissions), is given by the recursion:

Sm
p (K) =

min(m,p)
∑

i=1

(

m

i

)

×

(PK)i(1 − PK)(m−i)Si
p−i(K) (12)

Sm
0 (K) = (1 − PK)m (13)

in which
(

m
i

)

denotes the number of combinations to select
i fragments out ofm. The resulting probability to deliver a
frame in terms ofJFR is given by Eq.( 1). Time and energy
required is given by:

TXOP m
p (K) = [mTgood(K)] + [pTbad(K)] (14)

Em
p (K) =

p
∑

j=0

Sm
j (K) × {mEgood(K) + jEbad(K)}

+Zm
p (K) + Hm

p (K) (15)

2For a failed transmission, we wait the SIFS time and the time needed to
decode the ACK. After that time we can be sure the ACK is not received.
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Fig. 6. The Cost (Energy), Quality (JFR) and Resource (TXOP)mapping for the PA output power and back-off control dimensions for a fixed setting of the
modulation and code rate control dimensions. Values shown for transmission of 10 frames in channel state 1.

The expected energy for a given configuration is the sum
of the probabilities that the transmission will succeed after m
good andj bad transmissions multiplied by the energy needed
for good and bad transmissions. A second termZm

p (K) should
be added to denote the energy consumption for a failed job,
hence when there are less thanm good transmissions, and
(p + 1) bad ones:

Zm
p (K) = JFRm

p (K) × {Ebad(K) +

m−1
∑

j=0

Dj
p+1(K) ×

(

jEgood(K) + (P + 1)Ebad(K)
)

}. (16)

The third termH(K) denotes the cost that has to be added
once every scheduling period. We will show later that this cost
corresponds to a wake-up cost only and no reconfiguration cost
should be taken into account, where we assume that the cost
for each configurationK is constant.

We determine the Energy-Time-JFR tradeoff as a function
of the system state and number of retransmissions for eachK .
This specifies the full profile for the system, and is determined
only once during design or calibration time. The effect of
the PA control knobs on the total expected cost, quality and
resource is illustrated in Fig. 6. Next, the per-flow Energy-
TXOP curves are determined from the3D profiles of the
system. Configuration points that do not meet the targetJFR∗

are pruned. Next, the convex minorant is computed in both
Energy and TXOP dimensions. Segments in the intersection
are kept and sorted for executing the run-time phase. Although
this computation is relatively complex, it runs fast since the
number of points is low (∼ 30). It has to be executed once
for the lifetime of the application, which is typically orders
of magnitude larger than the scheduling period. This cost,
resource and quality profile information is stored in each
node’s device driver.

C. Run-Time State Communication

Based on the Energy and TXOP curves for each node,
the scheduler in the AP can efficiently derive a near-optimal
resource allocation at run-time using the greedy scheme de-
scribed in Section II. The scheduler requires feedback on the
state of each user and then communicates the decisions to the
users.

In order to instruct a node to sleep for a particular duration,
the AP needs to know when to schedule the next packet.

Waking a node earlier than the schedule instance will waste
energy. Buffering just two frames informs the AP of the
current and also the next traffic demand, allowing a timely
scheduling and communication of the next period TXOP. In the
ACK, the AP instructs the node to sleep until the time of the
next TXOP and also the required configuration The AP now
communicates with each node only at scheduling instances
(Fig. 7). As the real-time packets are periodic, we eliminate
all idle enegy consumption by sleeping between transmission
instances.

When a node joins a network, it sends its cost, resource
and quality curves (stored in its driver) to the AP during the
association phase. The AP then stores this and refers to it
during each scheduling instance. By adding just three bytes
in the MAC header for the current channel state and the two
buffered frame sizes, each node updates the AP of its current
requirement in every transmission. Protocols such as 802.11e
provide support for this communication and therefore require
only minor modifications.

A software-based QoS Module within the AP’s network
management layer maintains the Cost-Resource curves of all
associated nodes and processes the current state of each node.
At the beginning of each period, it executes the run-time phase
of MEERA and determines the configuration for each node
during that period. The QoS Module fetches, from memory, the
appropriate cost-resource curve corresponding to each node’s
current state. In the case study, this corresponds to less than
3000 bits per state. The scheduling period requirement is de-
termined by the rate at which the system state varies. Channel
measurements show coherence times of 166ms for stationary
objects and moving scatterers [12]. Given a video frame rate
of 30ms, it is clear that this requires a scheduling period

Time

P1 P2 P3 P4

P1

P1 P2

P2

P3

P1 P2

Packet Arrival

Scheduler Buffer Contents
[Buff1, Buff2]

Channel Activity
Packet Transmitted

ShutdownScheduling Period

Fig. 7. MAC with two-frame buffering to remove data dependencies and
maximize sleep durations. By the third period of the single flow shown, frames
1 and 2 are buffered and frame 1 begins service. As the transmission duration
of frame 2 is known at this time, the sleep duration between completion of
frame 1 until the start of service of frame 2 is appended in theMAC header.
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less than30ms. Since this timing requirement is rather low, a
QoS Module implemented in software suffices. Alternatively,
the QoS Module can be integrated in a light-weight RTOS
present in most embedded devices. We expect the performance
of MEERA to be lower for mobile networks with faster state
dynamics, when it is difficult to feedback the system state
timely. Faster adaptation schemes are needed that integrating
the adaptation module in hardware close to the physical layer
[30].

IV. N UMERICAL RESULTS

We now illustrate the Energy-Performance tradeoff across
a range of practical scenarios. The focus is on real-time
streaming media applications with a reasonable targetJFR∗

set to10−3. In order to evaluate the relative performance of
MEERA, we consider four comparative transmission strate-
gies:

1) Cross-layer:This is the optimal scheme considering the
energy tradeoff between sleep and scaling, exploiting
multi-user diversity. The node configurations are based
on the profiles described in Section III.

2) PHY-layer: This scheme considers only physical layer
scaling knobs. The Energy-TXOP profiles are set to
scale maximally as no sleep mode is available.

3) MAC-layer: In this scheme only sleeping is possible by
the energy-aware MAC-layer. The physical layer is fixed
to the largest constellation and code rate, with maximum
transmit power. This approach is used by commercial
802.11 devices [8]. However, the 2-frame buffering
makes the proposed implementation more efficient as
it eliminates all idle energy consumption between trans-
missions.

4) Fixed: A basic scheme with no energy management and
hence no dynamic range is exploited here. This is similar
to the MAC-layer scheme but the transceiver remains in
idle after transmission.

The Energy-TXOP profiles are computed for each scheme and
used by the scheduling scheme implemented in the Network
Simulator ns-2 [39]. This simulator has been extended with
transceiver energy and performance models, and a slow fading
channel model. Our simulation model implements the func-
tions of the 802.11e with beaconing, polling, TXOP assign-
ment, uplink, and downlink frame exchange, fragmentation,
retransmission and variable super-frame sizing. In all results,
the total energy consumed by a node is over a long duration
to statistically capture the dynamics present in the scenario.

A. Impact of system state variations

Consider the scenario where a single user has to deliver a
fixed size frame every scheduling period. In Fig.??, the energy
consumption (normalized by the maximum energy consumed
by Fixed) is plotted for the four schemes over different channel
states. MEERA outperforms the other techniques in each state,
since it takes advantage of the energy that can be saved by
both sleeping and scaling. The energy needed to transmit the
frame increases from best to worst channel state due to a
combination of (a) the lower constellation needed to meet

Fig. 8. Energy consumption across different channel statesfor 1 fragment.

the PER (hence smaller sleep duration), (b) a higher required
output power to account for the channel and (c) the increased
cost of retransmissions. We observe, for example, that in the
best channel state, the energy consumption is low for both the
Fixed and MEERA approaches, and energy gains primarily
result from sleeping. However, the transmission energy is
more important in the bad channel stateand scaling becomes
more effective. The ratio of fixed to scalable energy varies as
transceivers are designed differently. MEERA takes this into
account during the calibration of system profiles. For a given
platform, as users demand different levels of QoS, MEERA
jointly leverages the MAC and PHY to maximize the energy
saved.

B. Impact of multi-user diversity

We now consider a multiple-user scenario where the TXOP
assignments are based on the user’s application data-rate
requirements and the constraints enforced by other users
sharing the same link. In Fig. 9, we present simulation results
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for MPEG-4 traffic with a peak-to-average frame size ratio
of 7 over a time-varying channel. We study the impact of
increasing the number of users (with an average aggregate load
of 4Mbps) on the energy consumption. MEERA outperforms
the MAC-based scheme by 300% as scaling is efficiently
exploited due to multi-user diversity and the fading nature
of the channel. Compared to the PHY-based scheme, MEERA
gains by shutting down users between transmissions. For the
considered case, MEERA increases system lifetime by a factor
of 3-to-10 compared to traditional approaches.

V. CONCLUSION

In this paper, we presented a methodology for energy-
efficient resource allocation, MEERA, to minimize energy
consumption of a wireless transceiver while meeting the time-
liness needs of multiple users. MEERA is a cross-layer opti-
mization scheme that fully exploits the energy-performance
tradeoffs between RF components, adaptive physical-layer
schemes and a sleep-aware medium access control proto-
col. We have shown that MEERA’s system-wide resource
allocation consumes3 to 10 times less energy than current
schemes. These savings arise from two complementary con-
tributions. First, we outlined a methodology that is platform-
independent and provably near-optimal. We partition the
combinatorial-explosive problem space into a well-specified
design-time phase and a run-time phase which enables a
practical approach where packet-scheduling decisions consider
the users’ throughput requirements, channel state and level
of QoS demanded. The design-time phase derives an energy-
performance representation for each user that captures the
relevant tradeoffs. At run-time, a fast greedy algorithm selects
operating points with a bounded worst-case deviation from
the optimum. Secondly, we verified the performance of our
scheme over a broad range of scenarios with delay-sensitive
constant bit rate and MPEG-4 traffic over a time-varying
channel using RF integrated circuit models. MEERA requires
minimal modification to the 802.11 protocol while enabling
significant energy savings.
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