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Abstract. We illustrate a process that constructs martingales from raw ma-

terial that arises naturally from the theory of sampling without replacement.
The usefulness of the new martingales is illustrated by the development of

maximal inequalities for permuted sequences of real numbers. Some of these

inequalities are new and some are variations of classical inequalities like those
introduced by A. Garsia in the study of rearrangement of orthogonal series.
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1. Introduction: A Motivating Question

Let X = {x1, x2, ..., xn} be a fixed set of real numbers, and let X1, X2, ..., Xn

be the successive values of a sample of size n that is drawn sequentially without
replacement from the set X . We are concerned here with a systematic process by
which one can construct martingales with respect to the sequence of sigma-fields
σ(X1, X2, ..., Xk), 1 ≤ k ≤ n. For example, we consider the partial sums

Sk = X1 +X2 + · · ·+Xk, 1 ≤ k ≤ n,

and ask: Is there an {Fk : 1 ≤ k ≤ n} martingale where the values {S2
k : 1 ≤ k ≤ n}

appear in an simple and explicit way? What about the values {S3
k : 1 ≤ k ≤ n},

or the partial sums of X2
i , etc. We show that there is a practical, unified approach

to these problems. It faces some limitations due to the burden of algebra, but one
can make considerable progress before those burdens become too cumbersome.

We first illustrate the construction with two basic examples. These lead in turn
to several martingales whose usefulness we indicate by the derivation of permutation
inequalities — both old and new.

2. First Example of the Construction

To begin, we consider Tk = X2
1 + X2

2 + · · · + X2
k for 1 ≤ k ≤ n, and we ask for

a martingale where Tk (or a deterministic multiple of Tk) appears as a summand.
The set X is known before sampling beings, and the only source of randomness is
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the sampling process itself. The totals are known, deterministic, values which we
denote by

(1) M = Sn and B = Tn.

We first compute the conditional expectation of S2
k+1 given the immediate past,

E[S2
k+1|Fk] = E[(Sk +Xk+1)2|Fk]

= E[(S2
k + 2SkXk+1 +X2

k+1|Fk]

= S2
k + 2Sk

M − Sk
n− k

+
B − Tk
n− k

=
n− k − 2

n− k
S2
k +

2M

n− k
Sk −

1

n− k
Tk +

B

n− k
.

To organize this information, introduce the vector-column ξk = (S2
k, Sk, Tk, 1)>,

and note that we also have

E[Sk+1|Fk] = Sk +
M − Sk
n− k

=
n− k − 1

n− k
Sk +

M

n− k
, and

E[Tk+1|Fk] = Tk +
B − Tk
n− k

=
n− k − 1

n− k
Tk +

B

n− k
.

These observations can be combined into one matrix equation for the one-step
conditional expected values

E[ξk+1|Fk] = Ak+1ξk,

where here the deterministic 4× 4 matrix Ak+1 is given explicitly by

Ak+1 =



n− k − 2

n− k

2M

n− k
− 1

n− k

B

n− k

0
n− k − 1

n− k
0

M

n− k

0 0
n− k − 1

n− k

B

n− k

0 0 0 1


.

The matrices {Ak : 1 ≤ k ≤ n− 2} are invertible and deterministic, so the vector
process

(2) Mk = A−11 A−12 · · ·A
−1
k ξk

is well-defined and adapted to {Fk : 1 ≤ k ≤ n − 2}. To check that it is a vector
martingale we only need to note that

E(Mk+1|Fk) =E(A−11 A−12 · · ·A
−1
k+1ξk+1|Fk)(3)

=A−11 A−12 · · ·A
−1
k+1E(ξk+1|Fk)

=A−11 A−12 · · ·A
−1
k+1Ak+1ξk = A−11 A−12 · · ·A

−1
k ξk = Mk.

Now, to extract the benefit from the martingale {Mk}, one just needs to make it
more explicit.
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Here one is fortunate; an easy induction confirms that A−11 A−12 · · ·A
−1
k is given

by the upper-triangular matrix:

1

n− k



n(n− 1)

n− k − 1
− 2knM

n− k − 1

kn

n− k − 1

k(k + 1)M2 − knB

n− k − 1

0 n 0 −kM

0 0 n −kB

0 0 0 n− k


.

Now, the coordinates of the vector martingaleMk = (M1,k,M2,k,M3,k,M4,k)> are
martingales in their own right, and it is worthwhile to examine them individually.

The fourth coordinate just gives the trivial martingale M4,k ≡ 1, but the other
coordinates are much more interesting. The second and third coordinates give us
two useful — but known — martingales,

(4) M2,k = (nSk − kM)/(n− k) and M3,k = (nTk − kB)/(n− k).

Actually, we have only one martingale here; one gets the martingale {M3,k} from
the martingale {M2,k} if one replaces X with the set of squares X ′ = {x21, x22, ..., x2n}.

The martingale {M2,k} is given in Serfling (1974) and Stout (1974, p. 147). The
earliest source we could identify for the martingale {M2,k} is Garsia (1968, p. 82),
but it is hard to say if this was its first appearance. The martingale {M2,k} is a
natural one with few impediments to its discovery.

To get a martingale that is more novel (and less transparent), we only need
to consider the first coordinate of the vector martingale Mk. One can write this
coordinate explicitly as

M1,k =
n(n− 1)

(n− k)(n− k − 1)
S2
k −

2knM

(n− k)(n− k − 1)
Sk

+
kn

(n− k)(n− k − 1)
Tk +

k(k + 1)M2 − knB
(n− k)(n− k − 1)

.

This may seem complicated at first sight, but there is room for simplification. In
many situations it is natural to assume that M = Sn = 0, and, in that case, M1,k

reduces to the more manageable martingale sequence that we denote by

(5) M̃k =
1

(n− k)(n− k − 1)

[
(n− 1)S2

k − (B − Tk)k
]
, 1 ≤ k ≤ n− 2.

We will give several applications of this martingale to permutation inequalities,
and, in particular, we use it in Section 6 to get a new bi-quadratic maximal inequal-
ity for permuted arrangements. We should also note that this martingale also has
a potentially useful monotonicity property. Specifically, Tk is monotone increasing,
so by a little surgery on Tk (say by replacing Tk by kαTk) will yield one a rich
family of submartingales or supermartingales.

The device used here to get the 4-vector martingale {Mn : 1 ≤ k ≤ n− 2} can
be extended in several ways. The most direct approach begins with S3

k in addition
to S2

k. In that case, linearization of the recursions requires one to introduce the
terms SkTk and Uk = X3

1 +X3
2 +· · ·+X3

k . The vectors {ξk} are then 7-dimensional,
and, the matrix algebra is still tractable through symbolic computation, but it is
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unpleasant to display. One can follow the construction and obtain seven martin-
gales. Some of these are known, but many as four may be new. The ones with S3

k

and SkTk are (almost) guaranteed to be new.
Nevertheless, we do not pursue the seven-dimensional example here. Instead, for

our second example, we apply the general construction to a simpler two-dimensional
problem. In this example, the algebra is much more attractive, and the martingale
that one finds has considerable flexibility.

3. Second Example of the Construction

As before, we assume that X1, X2, ..., Xn is a sequential sample taken without
replacement from X , and we impose the centering condition Sn = M = 0. Further,
we consider a system of “multipliers” ak, 1 ≤ k ≤ n where each ak is assumed to
be an Fk−1 measurable random variable. Since our measure space is finite, these
non-anticipating random variables are automatically bounded.

The basic building block for our next collection of martingales is the sequence
of random variables defined by setting

Wk = a1X1 + a2X2 + · · ·+ akXk for 1 ≤ k ≤ n.

The immediate task is to find a martingale that has Wk (or a deterministic multiple
of Wk) as a summand.

As before, we begin by calculating the one-step conditional expectations:

E[Wk+1|Fk] = Wk −
ak+1

n− k
Sk and E[Sk+1|Fk] =

n− k − 1

n− k
Sk.

If we introduce the vector ηk = (Wk, Sk)> we have

E[ηk+1|Fk] = Ak+1ηk where Ak+1 =


1 − ak+1

n− k

0
n− k − 1

n− k

.
Inversion is now especially easy, and we note that for

Ak =


1 − ak

n− k + 1

0
n− k

n− k + 1

 we have A−1k =


1

ak
n− k

0
n− k + 1

n− k

 ,

so induction again confirms the critical inverse:

A−11 A−12 · · ·A
−1
k =


1

a1 + a2 + · · ·+ ak
n− k

0
n

n− k

 .

The general recipe (3) then gives us a new martingale:

(6) Mk = Wk +
a1 + a2 + · · ·+ ak

n− k
Sk 1 ≤ k < n

Once this is martingale is written down, one could also verify the martingale prop-
erty by a direct calculation. In this instance, linear algebra has served us mainly
as a tool for discovery.
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Some of the benefits of the martingale (6) are brought to life through interesting
choices for the non-anticipating factors {ak : 1 ≤ k ≤ n}. For, example, if we take
a1 = 0 and set ak = Xk−1 for k ≥ 2, we find a curious quadratic martingale

Mk = X1X2 +X2X3 + · · ·+Xk−1Xk +
(X1 + · · ·+Xk−1)(X1 + · · ·+Xk)

n− k
.

One is unlikely to have hit upon this martingale without the benefit of a systematic
construction. For the moment, no application of this martingale comes to mind,
but it does seem useful to know that there is such a simple quadratic martingale.
Perhaps a nice application is not too far away.

Out main purpose here is to expose the general construction (3), but, through the
illustrations just given, we now have several martingales that speak directly to per-
mutation inequalities — an extensive subject where martingales have traditionally
been part of the toolkit. As we explore what can be done with the new martin-
gales (5) and (6), we will also address some of the classic results on permutation
inequalities.

4. A Permutation Inequality

In the first application, we quickly check what can be done with the martingale
M2,k = (nSk − kM)/(n − k) given by (4) in our first construction. To keep the
formulas simple, we impose a standing assumption,

(7) Sn = M = 0,

so, Sk/(n− k) is an {Fk} martingale with expectation zero. The Doob-Kolmogorov
L2 maximal inequality (see e.g. Shiryaev (1995, p. 493)) then gives us

E max
1≤k≤n−1

∣∣(n− k)−1Sk
∣∣2 ≤ 4ES2

n−1.

This can be simplified by noting that

ES2
n−1 = E(M −Xn)2 = EX2

n = EX2
1 = B/n,

so, in the end, we have

(8) E max
1≤k≤n−1

∣∣(n− k)−1Sk
∣∣2 ≤ 4B/n.

One could immediately transcribe this as a permutation inequality, but first we put
it in a form that seems more natural for applications.

For any fixed permutation σ, the distribution of the vector (X1, X2, . . . , Xn)
is the same as distribution the vector (Xσ(1), Xσ(2), . . . , Xσ(n)) (cf. Feller (1971,
p. 228)), so, in particular the distribution of (X1, X2, . . . , Xn) is the same as the
distribution of (Xn, Xn−1, . . . , X1). By the centering assumption (7), we know

(X1 +X2 + · · ·+Xk)2 = (Xk+1 +Xk+2 + · · ·+Xn)2,

so applying both observations gives us the identity

E max
1≤k≤n−1

∣∣(n− k)−1Sk
∣∣2 = E max

1≤k≤n−1
|Sk/k|2 .

Using this bound in (8) then gives us

(9) E max
1≤k≤n−1

|Sk/k|2 ≤ 4B/n,
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so by the sampling model and the definition of B, we come to an attractive inequal-
ity for the maximum of averages drawn sequentially from a randomly permutated
sample.

Proposition 1 (Max-Averages Inequality). For real numbers {x1, x2, ..., xn} with
x1 + x2 + · · ·+ xn = 0, we have

(10)
1

n!

∑
σ

max
1≤k≤n

{
1

k

k∑
i=1

xσ(i)

}2

≤ 4

n

n∑
i=1

x2i .

This bound is so natural, it is likely to be part of the folklore of permutation
inequalities, but we have been unable to locate it in earlier work. Still, even if the
inequality is known, it seems probable that it has been under appreciated. In two
examples in Section 8 we find that it provides an efficient alternative to other, more
complicated tools.

This inequality also bears a family relationship to an important inequality that
originated with Hardy (1920). Hardy’s inequality went through some evolution
before it reached its modern form (see Steele (2004), pp. 169 and 290 for historical
comments), but now one may write Hardy’s inequality in a definitive way that
underscores the analogy with (10):

(11) max
σ

n∑
k=1

{
1

k

k∑
i=1

xσ(i)

}2

≤ 4

n∑
i=1

x2i .

It is well known (and easy to prove) that the constant in Hardy’s inequality is best
possible, and it is feasible that the constant in (10) is also best possible. We have
not been able to resolve this question.

5. Exchangeability and a Folding Device

One also has the possibility of using exchangeability more forcefully; in par-
ticular, one can exploit exchangeability around the center of the sample. For a
preliminary illustration of this possibility, we fix 1 ≤ m < n and note that the

martingale property (5) of M̃k gives us

ES2
m =E

m

n− 1
[B − Tm] =

m

n− 1
[B − ETm].

The martingale property (4) of M3,k also gives us ETm = (m/n)B, so we have

(12) ES2
m =

m(n−m)

n(n− 1)
B,

a fact that one can also get by bare hands, though perhaps not so transparently.
We can also use the martingale M2,k = (nSk − kM)/(n − k) = nSk/(n − k)

here. Since we have M = 0, the L2 maximal inequality for this martingale and the
identity (12) give us

(13) E max
1≤k≤m

∣∣∣∣ Sk
n− k

∣∣∣∣2 ≤ 4ES2
m

(n−m)2
=

4mB

n(n− 1)(n−m)
.

Since (n− k)2 ≤ n−1(n− 1) for 1 ≤ k ≤ m, the bound (13) implies the weaker, but
simpler, bound

(14) E max
1≤k≤m

S2
k ≤

4mB

n−m
for 1 ≤ m < n.
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The idea now is to use symmetry to exploit the fact that (14) holds for many choices
of m. To begin, we note that we always have the crude bound

(15) E max
1≤k≤n

S2
k ≤ E max

1≤k≤m
S2
k + E max

m<k≤n
S2
k.

Typically this is useless, but here it points to a useful observation; we can use the
same bounds on the second terms that we used on the first. This is the “folding
device” of the section heading.

Specifically, since M = 0 we have

|Sk| = |Sn − Sk| = |Xn +Xn−1 + · · ·+Xk+1|,

so, by exchangeability, we see that the second summand of (15) is bounded by
4(n−m)B/m. Thus, we have for all 1 ≤ m < n that

(16) E max
1≤k≤n

S2
k ≤ E max

1≤k≤m
S2
k + E max

m<k≤n
S2
k ≤ 4B

(
m

n−m
+
n−m
m

)
.

Here, if we just consider n ≥ 8 and choose m as close as possible to n/2, then we
see that the worst case occurs when n = 9 and m = 4; so we have the bound

(17) E max
1≤k≤n

S2
k ≤ E max

1≤k≤m
S2
k + E max

m<k≤n
S2
k ≤ (41/5)B for n ≥ 8.

On the other hand, Cauchy’s inequality gives us S2
k ≤ kB ≤ nB, so the bound

(17) is trivially true for n ≤ 7. Combining these ranges gives us a centralized
version of an inequality originating with A. Garsia (cf. Stout (1974, pp. 145–148)).

Proposition 2 (A. Garsia). For any set of real numbers {x1, x2, ..., xn} with sum
x1 + x2 + · · ·+ xn = 0 we have

(18)
1

n!

∑
σ

max
1≤k≤n

|
k∑
i=1

xσ(i)|2 ≤ (8 +
1

5
)

n∑
i=1

x2i ,

where the sum is taken over all possible permutations of {x1, x2, ..., xn}.

Here we have paid some attention to the constant in this inequality, but already
from the crude bound (15) one knows that the present approach is not suited to the
derivation of a best possible result. Our intention has been simply to illustrate what
one can do with reasonable care and robust approach that uses the tools provided
by our general martingale construction.

Nevertheless, the constant in this inequality has an interesting history. The
bound seems first to have appeared in Garsia (1968, Theorem 3.2) with the constant
9. Curiously, the inequality appears later in Garsia (1970, eqn. 3.7.15, p. 91) where
the constant is given as 16, and for the proof of the inequality one is advised
to “following the same steps” of Garsia (1964). In each instance, the intended
applications did not call for sharp constants, so these variations are scientifically
inconsequential. Still, they do make one curious.

Currently the best value for the constant in the Garsia inequality (18) is due
to Chobanyan (1994, Corollary 3.3) where the stunning value of 2 is obtained.
Moreover, Chobanyan and Salehi (2001, Corollary 2.8)) have a much more general
inequality which also gives a constant of 2 when specialized to our situation.

Here we should also note that in all inequalities of this type have both a central-
ized version where M = 0 and non-centralized version where M is unconstrained.
One can pass easily between the versions (see e.g. Stout (1974, p. 147) or Garsia
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(1970, p. 93)). The centralized versions are inevitably simpler to state, so we have
omitted discussions of the non-centralized versions.

6. Quadratic Permutation Inequality

To apply the L2 maximal inequality to the martingale {M̃k : 1 ≤ k ≤ n − 2}
that was discovered by our first construction (5), one needs a comfortable estimate

of the bounding term 4E[M̃2
n−2] in the Doob-Kolmogorov inequality. There are

classical formulas for the moments for sampling without replacement that simplify
this task. These formulas were known to Isserlis (1931), if not before, but they are
perhaps easiest to derive on one’s own.

Lemma 3. If X1, X2, X3, X4 are draw without replacement from X = {x1, x2, ..., xn}
where x1 + x2 + · · ·+ xn = 0, then we have the moments

E(X1X2X3X4) =
3B2 − 6Q

n(n− 1)(n− 2)(n− 3)
, E(X2

1X2X3) =
2Q−B2

n(n− 1)(n− 2)
,

E(X2
1X

2
2 ) =

B2 −Q
n(n− 1)

, E(X3
1X2) = − Q

n(n− 1)
, and E(X4

1 ) = Q/n,

where, as usual, we set B = x21 + x22 + · · ·+ x2n and Q = x41 + x42 + · · ·+ x4n.

Now, to calculate 4E[M̃2
n−2], we first note that

Sn−1 = −Xn and Sn−2 = −Xn−1 −Xn,

so just expanding the definition of M̃n−2 gives us

4E[M̃2
n−2] =E

[{
(n− 1)S2

n−2 − (n− 2)(B − Tn−2)
}2]

=E
[{

(n− 1)(Xn−1 +Xn)2 − (n− 2)(X2
n−1 +X2

n)
}2]

=E
[
X4
n−1 +X4

n + (4n2 − 8n+ 6)X2
n−1X

2
n

+ 4(n− 1)X3
n−1Xn + 4(n− 1)Xn−1X

3
n

]
.

By Lemma 3 and exchangeability, one then finds after some algebra that the L2

maximal inequality takes the form

(19) E max
1≤k≤n−2

M̃2
k ≤ 4E[M̃2

n−2] =
4n2 − 8n+ 6

n(n− 1)
B2 − 4n2 − 2n

n(n− 1)
Q.

The only task left is to reframe this inequality so that it easy to apply as a permu-
tation inequality. Here it is useful to observe that

(20)
4n2 − 8n+ 6

n(n− 1)
< 4 and

4n2 − 2n

n(n− 1)
> 4 for n ≥ 2,

moreover, these are not wasteful bounds; they are essentially sharp for large n.
When we apply these bounds in (19) we get the nicer bound,

(21) E max
1≤k≤n−2

∣∣∣∣ (n− 1)S2
k − k(B − Tk)

(n− k)(n− k − 1)

∣∣∣∣2 ≤ 4[B2 −Q].
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This brings us closer to our goal, but further simplification is possible if we note
that by reverse sampling the left side of (21) can also be written as

E max
1≤k≤n−2

∣∣∣∣ (n− 1)S2
k − k(B − Tk)

(n− k)(n− k − 1)

∣∣∣∣2 =E max
2≤k≤n−1

∣∣∣∣ (n− 1)S2
k − (n− k)Tk

k(k − 1)

∣∣∣∣2
=E max

2≤k≤n

∣∣∣∣ (n− 1)S2
k − (n− k)Tk

k(k − 1)

∣∣∣∣2 .
In permutation terms, the bound (21) establishes the following proposition.

Proposition 4 (Quadratic Permutation Inequality). For any set of real numbers
{x1, x2, ..., xn} with x1 + x2 + · · ·+ xn = 0 we have

1

n!

∑
σ

max
2≤k≤n

∣∣∣∣∣∣∣
(∑k

i=1 xσ(i)

)2
− n−k

n−1
∑k
i=1 x

2
σ(i)

k(k − 1)

∣∣∣∣∣∣∣
2

≤ 4

(n− 1)2


(

n∑
i=1

x2i

)2

−
n∑
i=1

x4i

,
where the first sum is taken over all possible permutations of {x1, x2, ..., xn}.

At first glance, this may seem complicated, but the components are all readily
interpretable and the inequality is no more complicated than it has to be. The main
observation is that our general construction (2) brought us here in a completely
straightforward way. Without such an on-ramp, one is unlikely to imagine any
bound of this kind — and relative simplicity. Moreover, the inequality does have
intuitive content, and this content is made more explicit in the next section.

7. The Discrete Bridge and Further Folding

Here we set xi = 1 for 1 ≤ i ≤ m and take xi = −1 for m + 1 ≤ i ≤ 2m. We
then let Xi, 1 ≤ i ≤ 2m, denote samples that are drawn without replacement from
the set X = {x1, x2, . . . , x2m}. If we put S0 = 0 and denote the usual partial sums
by Sk, 1 ≤ k ≤ 2m, then S2m = 0 and the process {Sk : 0 ≤ k ≤ 2m} is a discrete
analog of the Brownian bridge. Alternatively, one can view this process as simple
random walk that is conditioned to return to 0 at time 2m.

For {M̃k}, the martingale from the first construction (5), we now have Tk ≡ k,
so we have the simple representation

(22) M̃k =
(2m− 1)S2

k − (2m− k)k

(2m− k)(2m− k − 1)
, 1 ≤ k ≤ 2m− 2.

By Lemma 3 with B = Q = 2m and by (12), we also find that at the (left) mid-point
m of our process we have the nice relations

(23) E[S2
m] = m2/(2m− 1) and E[S4

m] =
3m4 − 4m3

4m2 − 8m+ 3
.

These give us a rational formula for E[M̃2
m], but for the moment, we just use the

partial simplification

E[M̃2
m] = E

∣∣∣∣ (2m− 1)S2
m − (2m−m)m

(2m−m)(2m−m− 1)

∣∣∣∣2
=

1

m2(m− 1)2
[
(2m− 1)2ES4

m −m4
]
.
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For 1 ≤ k ≤ m we have the trivial bound

1 ≤ max
1≤k≤m

∣∣∣∣ (2m)(2(m− 1))

(2m− k)(2m− k − 1)

∣∣∣∣2 ,
so the L2 maximal inequality applied to the martingale (22) gives us

(24) E max
1≤k≤m

∣∣(2m− 1)S2
k − (2m− k)k

∣∣2 ≤ 64
[
(2m− 1)2ES4

m −m4
]
.

We can now take advantage of a symmetry that is special to the discrete bridge.
Since S2m = 0 we have (X1 + · · ·+Xk)2 = (X2m + · · ·+Xk+1)2, and by exchange-
ability the vectors (X1, . . . , Xm) and (X2m, . . . , Xm+1) have the same distribution.
Also, the value (2m− k)k is “invariant” in the following sense: if we substitute for
k (the number of summands in X1+X2+ · · ·+Xk) the value 2m−k (the number of
summands in X2m +X2m−1 + ...+Xk+1), then the symmetric quantity (2m− k)k
is unchanged. As a consequence, the random variables

max
1≤k≤m

∣∣(2m− 1)S2
k − (2m− k)k

∣∣2 and max
m≤k≤2m−1

∣∣(2m− 1)S2
k − (2m− k)k

∣∣2
are equal in distribution.

We can then apply (24) twice to obtain

E max
1≤k≤2m−1

∣∣(2m− 1)S2
k − (2m− k)k

∣∣2 ≤ 128
[
(2m− 1)2ES4

m −m4
]
.

From this bound and the formula (23) for ES4
m, we then have

E max
1≤k≤2m−1

∣∣∣∣S2
k − k

2m− k
2m− 1

∣∣∣∣2 ≤ 128
4m3 − 8m2 + 4m

8m3 − 20m2 + 14m− 3
m2,

and, for any m ≥ 2 we have (4m3 − 8m2 + 4m)/(8m3 − 20m2 + 14m− 3) < 1. In
the end, we have the following proposition.

Proposition 5 (Quadratic Permutation Inequality for Discrete Bridge). For the set
X = {x1, x2, . . . , x2m} with xi = 1 for 1 ≤ i ≤ m and xi = −1 for m+ 1 ≤ i ≤ 2m
one has

1

(2m)!

∑
σ

max
1≤k≤2m−1

∣∣∣∣∣∣
(

k∑
i=1

xσ(i)

)2

− k 2m− k
2m− 1

∣∣∣∣∣∣
2

≤ 128m2,(25)

where the first sum is taken over all possible permutations.

For the terms of the squared discrete bridge process {S2
k : 0 ≤ i ≤ 2m} have the

expectations ES2
k = k(2m− k)/(2m− 1), so (25) gives us a rigorous bound on the

maximum deviation of the square S2
k of a discrete bridge from its expected value

ES2
k . Here, the order O(m2) of the bound cannot be improved, but, if necessity

called, one may be able to improve on ungainly constant 128.

8. Permuted Sums with Fixed Weights

In Section 3, we considered the weighted sums

Wk = a1X1 + a2X2 + · · ·+ akXk for 1 ≤ k ≤ n.
and we found that the process

(26) Mk = Wk +
a1 + a2 + · · ·+ ak

n− k
Sk 1 ≤ k < n
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is a martingale whenever the multipliers are non-anticipating random variables (i.e.
whenever ak is Fk−1-measurable for each 1 ≤ k ≤ n). Here we will show that this
martingale has informative uses even when one simply takes the multipliers to be
fixed real numbers.

First we introduce some shorthand. For 1 ≤ k ≤ n we will write

(27) α1(k) = a1 + a2 + · · ·+ ak and α2(k) = a21 + a22 + · · ·+ akk.

Also, we will be most interested in multiplier vectors a = (a1, a2, . . . , an) for which
we have some control of the quantity

(28) Vn(a)
def
= max

1≤k≤n−1
α2
1(k)

/
α2(n),

which is a measure of cancelation among the multipliers. A leading example worth
keeping in mind is the sequence ak = (−1)k+1, 1 ≤ k ≤ n, for which we have
Vn(a) = 1/n. We will revisit the measure Vn(a) after we derive a moment bound.

Lemma 6. For the martingale {Mk} defined by equation (26), we have

E[M2
k ] =

1

n− 1
α2(k)B +

1

(n− 1)(n− k)
α2
1(k)B.(29)

Proof. Simply squaring (26), we have

|Mk|2 = W 2
k +

α2
1(k)

(n− k)2
S2
k + 2

α1(k)

n− k
WkSk,

so we just need to find EW 2
k , ES2

k and EWkSk. We know ES2
k from (12), and we

have EX2
i = B/n and EXiXj = −B/(n(n− 1)) so

EW 2
k =E

[ k∑
i=1

a2iX
2
i +

∑
1≤i,j≤k,i 6=j

aiajXiXj

]
=α2(k)

B

n
+
[
α2
1(k)− α2(k)

] [
− B

n(n− 1)

]
= α2(k)

B

n− 1
− α2

1(k)

[
B

n(n− 1)

]
.

Similarly, we have

EWkSk =E
[ k∑
i=1

aiX
2
i +

k∑
i=1

ai
∑

1≤j≤k,j 6=i

XiXj

]
=α1(k)

B

n
− (k − 1)α1(k)

[
B

n(n− 1)

]
= α1(k)

(n− k)B

n(n− 1)
,

so summing up the terms completes the proof of the lemma. �

From this lemma, the L2 maximal inequality gives us

E max
1≤k≤n−1

M2
k ≤4E[Mn−1]2 = 4[α2(n− 1) + α2

1(n− 1)]
B

n− 1
,(30)

but to extract real value from we need to relate it to the weighted sum Wk. Using
(26) we can write Wk as the difference between Mk and α1(k)Sk/(n− k), so from
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the trivial bound (x+ y)2 ≤ 2x2 + 2y2 we have

max
1≤k≤n−1

|Wk|2 ≤ 2 max
1≤k≤n−1

|Mk|2 + 2 max
1≤k≤n−1

α2
1(k)

∣∣∣∣ Sk
n− k

∣∣∣∣2
≤ 2 max

1≤k≤n−1
|Mk|2 + 2 max

1≤k≤n−1
α2
1(k) · max

1≤k≤n−1

∣∣∣∣ Sk
n− k

∣∣∣∣2 .
The second step may look wasteful, but now we can apply both (30) and the Max-
Averages inequality (8) from Section 4 to obtain

E max
1≤k≤n−1

|Wk|2 ≤ 8
[
α2(n− 1) + α2

1(n− 1)
] B

n− 1
+ 8 max

1≤k≤n−1
α2
1(k)

B

n
.

Note that we also have

max
1≤k≤n

|Wk|2 = max

(
max

1≤k≤n−1
|Wk|2 , (Wn−1 + anXn)2

)
≤ max

(
max

1≤k≤n−1
|Wk|2 , 2W 2

n−1 + 2a2nX
2
n

)
≤ 2 max

1≤k≤n−1
|Wk|2 + 2a2nX

2
n,

and the bottom line is that

(31) E

{
max

1≤k≤n
|Wk|2

}
=

1

n!

∑
σ

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

aixσ(i)

∣∣∣∣∣
2

is bounded by the lengthy (but perfectly tractable) sum

(32) 16
[
α2(n− 1) + α2

1(n− 1)
] B

n− 1
+ 16 max

1≤k≤n−1
α2
1(k)

B

n
+ 2a2n

B

n
.

To make this concrete, note that for ak = (−1)k+1 the bound on (31) that we get
from (32) is simply (16n/(n− 1) + 18/n)B. The ratio 16n/(n− 1) + 18/n decreases
to 16, and for n = 18 the upper bound is equal to (17 + 16/17)B. By Cauchy’s
inequality, we have |Wk|2 ≤ kB for all k, so the bound (17 + 16/17)B also holds
for all n ≤ 17. When we assemble the pieces, we have a permutation maximal
inequality for sums with alternating signs.

Proposition 7. For real numbers {x1, x2, ..., xn} with x1 + x2 + · · · + xn = 0 we
have

(33)
1

n!

∑
σ

max
1≤k≤n

|
k∑
i=1

(−1)ixσ(i)|2 ≤
(

17 +
16

17

) n∑
i=1

x2i

where the sum is taken over all permutations of {x1, x2, ..., xn}.

The argument that leads to (33) is useful for more than just alternating sums;
it has bite whenever there is meaningful cancelation in a = (a1, a2, . . . , an). Specif-
ically, the bound (32) is always dominated by

16α2(n) + 32 max
1≤k≤n−1

α2
1(k),

so our proof also gives us more general — and potentially more applicable — bound.
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Proposition 8. For sets of real numbers {a1, a2, ..., an} and {x1, x2, ..., xn} such
that x1 + x2 + · · ·+ xn = 0 we have

(34)
1

n!

∑
σ

max
1≤k≤n

|
k∑
i=1

aixσ(i)|2 ≤
16

n− 1
{1 + 2Vn(a)}

n∑
i=1

a2i

n∑
i=1

x2i ,

where the sum is taken over all permutations of {x1, x2, ..., xn} and where Vn(a)
defined in (28).

This inequality shows that there are concrete benefits to introducing V (a). For
example, by a sustained and subtle argument, Garsia (1970, 3.7.20, p. 92) arrived
at a version of our inequality where the coefficient 16{1 + 2Vn(a)} is replaced by
80. Now, for uniform multipliers, one has Vn(a) = O(n) and Garsia’s inequality
is greatly superior to our bound (34). On the other hand, for multipliers that
satisfy the cancelation property Vn(a) → 0, the present bound eventually meets
and beats Garsia’s bound. In particular, for multipliers given by alternating signs,
the constant of (34) is just 17 + 16/17.

9. Weighted Sums and Folding

By many accounts, the permutation maximal inequality of Garsia (1970, p. 86)
is the salient result in the theory of permutation inequalities, so it is a natural
challenge to see if it can be proved by the robust martingale methods that follow
from our martingale constructions. We give a proof of this kind — without appeal
to Vn(a). Once the proof is complete, we address the differences between Garsia’s
inequality and the present bound with its curious constant.

Proposition 9. For real numbers {a1, a2, ..., an} and real numbers {x1, x2, ..., xn}
such that x1 + x2 + · · ·+ xn = 0 we have

(35)
1

n!

∑
σ

max
1≤k≤n

∣∣ k∑
i=1

aixσ(i)
∣∣2 ≤ (80 +

4

205

) n∑
i=1

a2i

n∑
i=1

x2i
/

(n− 1),

where the sum is taken over all possible permutations of {x1, x2, ..., xn}.

Proof. First, for all 1 ≤ k ≤ n, Cauchy’s inequality gives us α2
1(k) ≤ kα2(k).

Trivially one has α2(k) ≤ α2(n), so by Lemma 6 we have the bound

(36) E[Mk]2 ≤
(

1 +
k

n− k

)
α2(n)B

n− 1
for 1 ≤ k ≤ n− 1.

Now, just from the definition (26) of Mk, we can write Wk as a difference between
Mk and α1(k)Sk/(n− k). We can then use the crude bound (x+ y)2 ≤ 2x2 + 2y2

and Cauchy’s inequality to get

max
1≤k≤m

|Wk|2 ≤ 2 max
1≤k≤m

|Mk|2 + α2
1(k)

∣∣∣∣ Sk
n− k

∣∣∣∣2
≤ 2 max

1≤k≤m
|Mk|2 + 2 max

1≤k≤m
α2
1(k)

∣∣∣∣ Sk
n− k

∣∣∣∣2
≤ 2 max

1≤k≤m
|Mk|2 + (2m)α2(n) max

1≤k≤m

∣∣∣∣ Sk
n− k

∣∣∣∣2 .
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Long ago, in (12), we calculated ES2
m, so here we can apply the L2 maximal

inequality to both martingales {Sk/(n− k)} and {Mk} to get the bound

(37) E max
1≤k≤m

W 2
k ≤ 8

(
1 +

m

n−m
+

m2

n(n−m)

)
α2(n)B

n− 1
.

Such an inequality for 1 ≤ m < n suggests the possibility of folding. To pursue this
we first note

max
1≤k≤n

W 2
k = max

[
max

1≤k≤m
W 2
k , max

m<k≤n
W 2
k

]
= max

[
max

1≤k≤m
W 2
k , max

m<k≤n
|Wm + am+1Xm+1 + · · ·+ akXk|2

]
≤ max

[
max

1≤k≤m
W 2
k , 2W 2

m + 2 max
m<k≤n

|am+1Xm+1 + · · ·+ akXk|2
]

≤ 2

[
max

1≤k≤m
W 2
k + max

m<k≤n
|am+1Xm+1 + · · ·+ akXk|2

]
.(38)

By exchangeability, one expects the second maximum has a bound like the one
derived in (37). To make this explicit, one simply needs to replace m by n−m in
the upper bound of (37). Doing so gives us the sister bound

E max
m<k≤n

|am+1Xm+1 + · · ·+ akXk|2 ≤ 8

(
1 +

(n−m)

m
+

(n−m)2

nm

)
α2(n)B

n− 1
.

By our bounds on the two addends of (38), we then have

E max
1≤k≤n

W 2
k ≤ 16

(
2 +

m

n−m
+
n−m
m

+
m2

n(n−m)
+

(n−m)2

nm

)
α2(n)B

n− 1
.

It only remain to take m = bn/2c and to attend honestly to the consequences.
If n is even, the constant that multiplies α2(n)B/(n− 1) is exactly 80. For odd n,
the constant approaches 80 from above as n increases to infinity, and for n = 81
the constant is 80 + 4/205. Furthermore, Cauchy’s inequality gives us

W 2
k ≤ α2(k)B ≤ α2(n)B for all 1 ≤ k ≤ n,

and we have α2(n)B ≤ (80 + 4/205)α2(n)B/(n− 1) for all n ≤ 81. So, in the end,
we come to (35), our permutation maximal inequality with general weights. �

We would greet this result with some fanfare except that Garsia (1970, 3.7.20,
p. 92) gives this bound with the constant 80. Still, one needs to keep in mind that
we have pursued this derivation only to illustrate the usefulness of the martingales
that are given by our general linear algebraic construction. Perhaps it is victory
enough to come so close to a long-standing result that was originally obtained by
a delicate problem specific, argument.

Compared to Garsia’s argument, the proof of (35) is straightforward. It is also
reasonably robust and potentially capable of further development, even though
there seems to be no room to improve the constant. In spirit the proof is close
to the elegant argument of Stout (1974, pp. 145–148) for his version of the easier
unweighted inequality (Proposition 2). In each instance, the heart of the matter is
the application of the maximal L2 inequality to some martingale. Here we have the
benefit of ready access to the martingales (4) and (6) that were served up to us by
our general construction.
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10. Observations and Connections

Our focus here is on methodology, and our primary aim has been to demonstrate
the usefulness of a linear algebraic method for constructing martingales from the
basic materials of sampling without replacement. Through our examples we hope
to have shown that the martingales given by our general construction have honest
bite. In particular, these martingales yield reasonably direct proofs of a variety of
permutation inequalities — both new ones and old ones.

Among our new inequalities, the simple Hardy-type inequality (10) seems par-
ticularly attractive. If we had to isolate a single open problem for attention, then
our choice would be to determine if the constant of inequality (10) is best possible.
This problem seems feasible, but one will not get any help from the easy arguments
that show that the corresponding constant in Hardy’s inequality is best possible.

The other new inequality that seems noteworthy is the Garsia-type inequality (8)
where we introduce V (a), the measure of multiplier cancelations. This inequality
may be long-winded, but it isolates a common situation where one can do sub-
stantially better than the classic Garsia bound (35). The quadratic permutation
inequality (Proposition 4) and the discrete bridge inequality (25) are more special-
ized, and they may have a hard time finding regular employment. Still, they are
perfect for the right job, and they also illustrate the diversity of the martingales
that come from the general construction.

We have developed several results in theory of permutation inequalities to test
the effectiveness of the permutation martingales given by our construction, but
permutation inequalities have a charm of their own, and one could always hope
to do more. We have already mentioned the remarkable maximal inequalities of
Chobanyan (1994) and Chobanyan and Salehi (2001) that exploit combinatorial
mapping arguments in addition to martingale arguments. It would be interesting
to see if our new martingales could help more in that context. Finally, we did not
touch on the important weak-type (or Levy-type) permutation inequalities such as
those studied in Pruss (1998) and Levental (2001), but it seems reasonable to expect
that the martingales (4) and (6) could also be useful in the theory of weak-type
inequalities.
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