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ABSTRACT

STRATEGIC AND SECURE INTERACTIONS IN NETWORKS

Jinsong Tan

Michael Kearns

The goal of this dissertation is to understand how network plays a role in shaping cer-

tain strategic interactions, in particular biased voting and bargaining, on networks; and to

understand how interactions can be made secure when they are constrained by the network

topology. Our works take an interdisciplinary approach by drawing on theories and models

from economics, sociology, as well as computer science, and using methodologies that include

both theories and behavioral experiments.

First, we consider biased voting in networks, which models distributed collective decision

making processes where individuals in a network must balance between their private biases

or preferences with a collective goal of consensus. Our study of this problem is two-folded.

On the theoretical side, we start by introducing a diffusion model called biased voter model,

which is a natural extension of the classic voter model. Among other results, we show

in the presence of biases, no matter how small, there exists certain networks where it takes

exponential time to converge to a consensus through distributed interaction in networks. This

is a stark and interesting contrast to the well-known result that it always takes polynomial

time to converge in the voter model, when there are no biases. On the experimental side, a

group human subjects were arranged in various carefully designed virtual networks to solve

the biased voting problem. Along with analyses of how collective and individual performance

vary with network structure and incentives generally, we find there are well-studied network

topologies in which the minority preference consistently wins globally, and that the presence

of “extremist” individuals, or the awareness of opposing incentives, reliably improve collective

performance

Second, we consider bargaining in networks, which has long been studied by economists
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and sociologists. A basic premise behind the many theoretical study of bargaining in net-

works is that pure topological differences in agents’ network positions endow them with dif-

ferent bargaining power. Complementary to these theories, we conduct a series of controlled

behavioral experiments, where human subjects were arranged in various carefully designed

virtual networks to playing bargaining games. Along with other findings of how individual

and collective performance vary with network structures and individual playing styles, we

find that the number of neighbors one can negotiate with confers bargaining power, whereas

the limit on the number of deals one can close undermines it, and we find that competitions

from distant parts of the network, though invisible locally, also play a significant and subtle

role in shaping bargaining powers.

And last, we consider the question of how interactions in networks can be made secure.

Traditional methods and tools from cryptography, for example secure multi-party compu-

tation, can be applied only if each party can talk to everyone else directly; but cannot

be directly applied if interactions are distributed over a network without completely erad-

icating the distributed nature. We develop a general ‘compiler’ that turns each algorithm

from a broad class collectively known as message-passing algorithms into a secure one that

has exactly the same functionality and communication pattern. And we show a fundamen-

tal trade-off between preserving the distributed nature of communication and the level of

security one can hope for.
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Chapter 1

Introduction

Commercial aviation based international travelling can make an outbreak of flu in a distant

village a worldwide pandemic in a matter of weeks, the word-of-mouth campaign run on

friendship based social networks can have significant influences over the success of a new

product or the outcome of an election, the interconnectedness of a country’s power grid can

expose it to the kind of vulnerability where the failure of a single power line can knock out

power supply and wreak havoc in millions of people’s lives.

All these phenomena share a common structural underpinning: Our modern society is

connected in myriad and complex ways through technology, and such connectedness often

comes with profound implications not yet fully understood. A particularly life altering ex-

ample is the proliferation of the Internet during the past decade: The Web democratizes the

creation of information and makes its dissemination faster than ever before, the populariza-

tion of social networking sites like Facebook transforms our notion of privacy, and online

shopping sites such as eBay and Amazon revolutionize the way sellers interact with buyers.

These networks are often inherently technological, social and economic at the same time,

therefore to fully understand them one needs to draw on theories, models and methodologies

from economics, sociology, as well as computer science.

In response to the increasingly important role network plays in our modern life, one line

of efforts that is generally known as social network theory has undergone fast development
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in the past decade. Social network theory has traditionally been mainly concerned with the

observation and measurement of structural properties and patterns of naturally occurring

networks, and in turn having the empirical understanding thus gained inform the invention

of generative models that can reproduce various kind of structural properties that seem to

be ubiquitous in these naturally occurring networks.

Properties as such include for example having a giant component, meaning the vast

majority of nodes in a network are connected, either directly or through other nodes; and

small diameter, which means the average distance between any two nodes in a given network

tends to be extremely small when it is compared to the size of the network; and scale-

free distribution, meaning that the degree distribution of the nodes follows a power law

distribution. Correspondingly, generative models have been invented in social network theory

to reproduce these properties: Erdös and Rényi proposed the random graph model [29, 30,

13], probably the simplest probabilistic model one can think of where edges between nodes

are generated independently with a constant probability, that explains how giant component

can suddenly emerge from a network if the edge density across certain threshold; the small-

world model developed by Watts and Strogatz [83], which starts with a ring lattice and then

rewire some of the local connection to random distant nodes, naturally generate networks

with small diameters; and the preferential attachment model invented by Barabási and Albert

[7], where new nodes are introduced to the network sequentially and randomly attached to

existing nodes with probability proportional to their degrees, generates networks with a

power law degree distribution.

Despite the success of these and many other generative models in reproducing many of the

statistical properties and patterns observed in naturally occurring networks, they in general

do not model the nodes in the networks as intelligent and strategic beings who act in their

own interests, but mindless automatons who only make decisions in a purely probabilistic

or mechanical fashion.

This hampers our ability in modeling and analyzing the dynamics of interactions that
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occur in the networks we are interested in, which are often inherently social and economic. It

is thus natural for one to turn to economics, and in particular game theory, for the languages

and tools to describe and analyze these networks.

Game theory is a branch of applied mathematics that attempts to model strategic in-

teractions between rational and self-interested beings, which in game-theoretic terminology

are known as agents. Traditional models in game theory consider situations where there are

n agents, and each agent interacts directly with everyone else and has to take into account

the actions everyone else might take when making his own in order to maximize his own

benefit. Although in principle one can use models like this to describe strategic interactions

in a network where only local interactions matter, it quickly becomes extremely cumbersome

as the population size grows larger because it takes space exponential in n to just describe

the game. To circumvent this problem, Kearns, Littman and Singh in their seminal work

[54] introduced graphical games as a succinct language to describe strategic interactions in

networks. In a graphical game, a network is imposed exogenously on the n agents, and each

agent, still being fully rational and self-interested, can now only interact with his immediate

neighbors in the network and only have to take into account his neighbors actions in order

to optimize his own. The graphical game model not only offers tremendous efficiency in

describing games in networks by reducing descriptional complexity from exponential in n to

exponential in k, where k is the degree of the graph and can be extremely small compared

to n, but also provides us with a fresh perspective in looking at and understanding social

and economic networks.

Subsequent and related works have taken a step further to try to blend the two fields

of social network theory and game theory. One line of research generally known as network

formation games [34, 4, 2, 32, 72, 47, 31, 43, 33, 64, 65, 5, 8] sought to understand how the

topology of social and economic networks could have arisen from and shaped by various kind

of strategic interactions between self-interested agents. Another line takes networks as given

exogenously, and focus on implications of network topology on dynamics, e.g. diffusion
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of information or disease (see [79] for an overview of the topic), and games, e.g. trading

[50, 33, 12], bargaining [27, 15, 63, 20, 51], on networks.

The first part of this dissertation continues the line of research that study games and

dynamics in networks. We consider two kinds of strategic interactions, namely biased voting

and bargaining in networks, which we give a brief overview in Section 1.1.

1.1 Strategic Interactions in Networks

1.1.1 Biased Voting in Networks

Many collective decision-making or voting processes in politics, business, and other arenas

must balance diverse individual preferences with a desire for collective unity. Such processes

often take place in social or organizational networks, in which individuals are most influenced

by, or aware of, the current views of their network neighbors. A recent, if approximate,

example of this phenomenon is the 2008 Democratic National Primary race in the United

States. On the one hand, individual voters held opposing and sometimes strong preferences

that were apparently very nearly balanced across the population; on the other hand, there

was a strong and explicit desire among them that once the winning candidate was identified,

the entire party should unify behind that candidate.

We formalize such settings as a biased voting problem over an undirected graph, whose

local structure models the social influences acting on individual voters. Our model contrasts

with the significant literature on diffusion of opinion in social networks as it is the first to

study this topic in the presence of both private bias and strong incentives toward collective

unity. The theoretical analyses of our model yielded an interesting insight: No matter how

infinitesimal the bias is, a broad class of stochastic opinion diffusion processes, which includes

natural generalizations of the well-studied voter model, takes exponential time to converge to

consensus on some networks. And this is in stark contrast to the well-known result that the

voter model, which is studied in the absence of private biases, always takes polynomial time
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to converge to consensus on any network. On the other hand, we propose a simple and local

stochastic updating protocol that provably converges to the collectively preferred consensus

in polynomial time on any network even in the presence of biases. And we further extend

this protocol to a strategic setting where individual may have incentives to deviate from the

prescribed protocol, and showed the new protocol is an approximate Nash equilibrium of the

resulting game.

Complementary to the theoretical work, an extensive session of behavioral experiments on

biased voting in networks of individuals were conducted. In each of 81 experiments, 36 human

subjects arranged in a virtual network were financially motivated to reach global consensus

to one of two opposing choices. No payments were made unless the entire population reached

a unanimous decision within 1 minute, but different subjects were paid more for consensus

to one choice or the other, and subjects could view only the current choices of their network

neighbors, thus creating tensions between private incentives and preferences, global unity,

and network structure. Along with analyses of how collective and individual performance

vary with network structures and incentives generally, our key findings include the following:

• There are well-studied network topologies in which the minority preference consistently

wins globally;

• The presence of “extremist” individuals, or the awareness of opposing incentives, reli-

ably improve collective performance;

• Certain behavioral characteristics of individual subjects, such as “stubbornness” and

“stableness”, are strongly correlated with earnings.

We develop the theoretical work on biased voting in networks in Chapter 2 and the

corresponding behavioral experiments in 3.
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1.1.2 Bargaining in Networks

In Chapter 4 we consider an extensive session of behavioral experiments on bargaining in

social networks.

Bargaining has been studied extensively in economics and sociology, and the popular

setting is of two parties negotiating a single deal. The deal yields a fixed total wealth if

the two parties can agree on how to split it and otherwise both parties receive nothing.

Bargaining in a network is the setting where nodes represent agents, who can close a limited

number of deals, and edges represent bilateral opportunities for deals between neighboring

agents. There has been a long line of previous theoretical work which tried to relate wealth

to network topology, and a notable feature of these theories is the prediction that there

may be significant local variation in splits purely as a result of the imposed deal limits and

structural asymmetries in the network. Our experiments constitute a test of human subjects’

actual behaviors in this game and are among the first and largest behavioral experiments on

network effects in bargaining conducted to date.

Our key findings pertaining to existing network bargaining theory include the following:

• Deals are often struck with unequal shares, though more than one-third of the deals

are equally shared;

• Higher degree tends to raise bargaining power, while higher deal limits tend to decrease

bargaining power; on the other hand, higher deal limits in the first neighborhood tend

to raise bargaining power whereas higher degrees in the first neighborhood tend to

lower it;

• Local topology affects bargains, but invisible competition in other parts of the network

also affects it, even when the local topologies are indistinguishable.

Other findings that speak to no existing theory are the following:
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• Social efficiency is positively correlated with inequality of the deals;

• Social efficiency is higher in the presence of uncertainty;

• Deals left unclosed due to failure to agree form the greater part of missing efficiency.

• People who are patient bargainers tend to make more money.

These findings are in need of theoretical development and they are among the future

research areas I will pursue. The nature and the potential implications of these findings argue

for the further need to integrate the fields of economics, game theory, sociology, psychology,

and computer science.

1.2 Secure Interaction in Networks

In the second part of the dissertation, we turn our attention to security issues arising from

interactions on networks.

1.2.1 Network Faithful Secure Computation

As the use of technology permeate through our modern life, sharing details of personal or

other sensitive information in social networks is becoming an increasingly prevalent practice.

Through an important class of highly distributed protocols on graphs known broadly as

message-passing algorithms, which only requires direct information sharing between local

neighbors in a network, each node in the network can compute sophisticated aggregated

global functions of the whole population. While doing so has the benefit of allowing one

to obtain useful information without directly revealing sensitive information to the entire

population, it is almost always the case that one reveals information beyond what is intended

during the process.

Consider, for example, a large social network in which each node represents an individual

and each edge represents a relationship between individuals. Imagine that each party in this

network would like to compute his or her own probability of having contracted a contagious
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disease, which depends on the probabilities that each of his or her neighbors in the network

have been exposed to the disease, and that in turn depend on the exposure probabilities of

the neighbors’ neighbors, so on and so forth. This could be accomplished by running the

standard belief propagation algorithm on the network. However, if the network participants

engage in standard belief propagation, each party will learn much more than his own con-

traction probability. In particular, each party could potentially learn information about the

contraction probabilities of their neighbors, as well as more global information (such as the

fraction of the population that has been infected). Such leakage of information can be highly

undesirable.

Besides belief propagation [78, 85], message passing algorithms comprises of a broad class

of distributed algorithms or protocols that are of great interest in areas such as artificial in-

telligence, machine learning, statistics, and signal process. Notable examples include Gibbs

sampling [18, 37], Nash propagation in graphical games [54, 76], gossip algorithms [14],

survey propagation [16], constraint propagation [28], and many others. Message-passing for-

malisms have long been studied in distributed computing. With rising interest in large-scale,

decentralized networks such as the Internet, message-passing algorithms are of increasing

importance due to their localized communication and their lack of any need for non-local

topological information; in most instances parties do not even need to know the overall size of

the network, yet they can compute sophisticated global functions, such as joint distributions

and Nash equilibria.

The growing prevalence of message-passing algorithms in computation related to social

and economic interactions raises security concerns as mentioned above. To tackle this, one

approach would be to simply apply classic and powerful cryptography tool called secure

multi-party computation [84, 39] to the message-passing algorithms, preserving their input-

output functionality while imbuing them with very strong privacy properties. Unfortunately,

secure multi-party computation requires each party being able to talk directly to everyone

else, which is often impossible due to the enormous size of the population and the lack of
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sufficient communication resources. Even if such communication resources were available, by

requiring all parties to maintain and communicate distributed shares of every computation

even with very “distant” parties in the network, this straightforward approach would largely

eradicate the benefits of the message-passing framework in the first place.

In the second part of this dissertation, we seek to ask the question: Can we design

algorithms that get the best of both worlds? On the one hand, these algorithms need

to preserve the highly distributed, local communication pattern of the original message-

passing algorithms. On the other hand, it comes with (at least some of) the traditional

privacy assurances of secure multi-party computation. We call this network faithful secure

computation.

We answer this question in the affirmative. In Chapter 5, we develop secure versions of

belief propagation and Gibbs sampling by drawing on secure multi-party computation and

other classic tools from cryptography. We then further generalize this result

In Chapter 5 we show not only belief propagation, but also any message-passing algo-

rithms can be made secure. Specifically, we have the following results

• We construct a general compiler that turns any message-passing protocol into one

computing the same functionality, but that is secure against single-party adversaries

(1-privacy).

• We propose a simulation-based definition of what it means for a secure protocol to be

faithful to the original network structure and protocol, and a proof that our compiler

produces extremely faithful 1-private protocols.

• And last we give an impossibility result showing a trade-off between faithfulness and

security against coalitions. In particular, we show that for certain functionalities, any

highly faithful protocol must be vulnerable to collusion by small coalitions, thus proving

the optimality of our compiler with respect to this trade-off.
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Chapter 2

The Networked Biased Voting Prob-

lem

2.1 Introduction

The tension between the expression of individual preferences and the desire for collective

unity appears in decision-making and voting processes in politics, business, and many other

arenas. Furthermore, such processes often take place in social or organizational networks,

in which individuals are most influenced by, or aware of, the current views of their network

neighbors.

The 2008 Democratic National Primary race offers a recent, if approximate, example of

this phenomenon. On the one hand, individual voters held opposing and sometimes strong

preferences that were apparently very nearly balanced across the population; however, there

was a strong and explicit desire that once the winning candidate was identified, the entire

party should unify behind that candidate [86]. Obviously primary voters could be influenced

by many global factors (such as polls and mainstream media) outside the scope of their

individual social and organizational networks, but presumably for many voters these local

influences still played an important and perhaps even dominant role.

Although there is now a significant literature on the diffusion of opinion in social networks
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[62, 42, 81], the topic is typically studied in the absence of any incentives toward collective

unity. In many contagion- metaphor models, individuals are simply more or less susceptible

to “catching” an opinion or fad from their neighbors, and are not directly cognizant of, or

concerned with, the global state. In contrast, we are specifically interested in scenarios in

which individual preferences are present but are subordinate to reaching a unanimous global

consensus.

In this chapter, we formalize such scenarios as the “Networked Biased Voting Problem”

(NBVP) over an undirected graph, whose local structure models the social influences acting

on individual voters. In this model, each voter i is represented by a vertex in the network

and a real-valued weight wi ∈ [0, 1] expressing their preference for one of two candidates or

choices that we shall abstractly call red and blue. Here wi =
1

2
is viewed as indifference

between the two colors, while wi = 0 (red) and wi = 1 (blue) are “extremist” preferences for

one or the other color.

Our overarching goal is to investigate distributed algorithms in which three criteria are

met:

1. Convergence to the Global Preference: If the global average W of the wi is even slightly

bounded away from
1

2
(indifference), then all members of the population should even-

tually settle on the globally preferred choice (i.e. all red if W <
1

2
, all blue if W >

1

2
),

even if it conflicts with their own preferences (party unity).

2. Speed of Convergence: Convergence should occur in time polynomial in the size of the

network.

3. Simplicity and Locality: Voters should employ “simple” algorithms in which they com-

municate only locally in the network via (stochastic) updates to their color choices.

These updates should be “natural” in that they plausibly integrate a voter’s individual

preferences with the current choices of their neighbors, and do not attempt to encode

detailed information, send “signals” to neighbors, etc.
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The first two of these criteria are obviously formally precise. While it might be possible

to formalize the third as well, we choose not to do so here for the sake of brevity and

exposition. However, we are explicitly not interested in algorithms in which (for instance)

voters attempt to encode and broadcast their underlying preferences wi as a series of binary

choices, or similarly unnatural and complex schemes. In particular, in our main protocol

it will be very clear that voters are always updating their current choices in a way that

naturally integrates their own preferences and the statistics of current choices in their local

neighborhood.

We note that the formalization above clearly omits many important features of “real”

elections. Foremost among these is the fact that real elections typically have strong global

coordination and communication mechanisms such as polling, while we require that all com-

munication between participants be entirely local in the network. On the other hand, our

framework does allow for the presence of high-degree individuals, including ones that are

indifferent to the outcome (wi =
1

2
) and can thus act as “broadcasters” of current senti-

ment in their neighborhood. Variation in degrees can also be viewed as a crude model for

the increasing variety of global to local media sources (from “mainstream” publications to

influential blogs to small discussion groups).

There is a large literature on the diffusion of opinion in social networks [42, 81, 62],

but the topic is usually studied in the absence of any force towards collective unity. In

many contagion-metaphor models, individuals are more or less susceptible to “catching” an

opinion or fad from their neighbors, but are not directly concerned with the global outcome.

In contrast, we are specifically interested in scenarios in which individual preferences are

present, but are subordinate to reaching a unanimous global consensus.

Our main results are:

• An impossibility result establishing exponential convergence time for the NBVP for a

broad class of local stochastic updating rules, which includes natural generalizations

of the well-studied “voter model” from the diffusion literature (and which is known to
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converge in polynomial time in the absence of differing individual preferences).

• A new simple and local stochastic updating protocol whose convergence time is prov-

ably polynomial on any instance of the NBVP. This new protocol allows voters to

declare themselves “undecided”, and has a temporal structure reminiscent of periodic

polling or primaries.

• An extension of the new protocol that we prove is an approximate Nash equilibrium

for a game-theoretic version of the NBVP.

Chapter Outline: In the next section, we give a formal definition of the Networked Biased

Voting Problem. In Section 2.3, we review the classic voter model, which is an extremely

simple and natural opinion diffusion process and well studied in the literature. We extend

this model to what we call the biased voter model in Section 2.4, which encompasses a

broad class of protocols or diffusion processes, and show that no protocol from this class

can solve the NBVP. By making slight relaxations to the biased voter model, we give a

protocol in Section 2.5 that efficiently solves NBVP, and another protocol in Section 2.6

that approximately solves a game-theoretic version of NBVP.

2.2 The Networked Biased Voting Problem

The networked biased voting problem (NBVP) is studied over an undirected graph G =

(V,E) with n nodes and m edges, where each node i represents an individual voter. Denote

by N (i) the neighbors of i in G; we always consider i as a neighbor of himself.

There are two competing choices or opinions, that without loss of generality we shall call

blue and red (or b and r for short). A voter i comes with a real-valued weight wi ∈ [0, 1]

expressing his preference for one of the two opinions; without loss of generality, let wi(b) = wi

and wi(r) = 1− wi denote his preference for blue and red, respectively.

Throughout, we make the assumption that one opinion is always collectively preferred to

the other. More formally, we assume there exists a constant ε > 0, which is independent of
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the size of G, such that ∣∣∣∣∣∑
i∈V

wi(b)−
∑
i∈V

wi(r)

∣∣∣∣∣ > ε.

We also assume that which opinion is preferred is not known a priori to the nodes and the

goal of the networked biased voting problem is for the entire population to actually figure

this out through a distributed algorithm, or protocol, that is simple and local, and converges

in time polynomial in n to the collectively preferred consensus. Because of the stochastic

nature of the protocol we consider, it is implausible to require that it always converges

to the collectively preferred consensus. Instead, we require the protocol does so with high

probability, by which we mean the probability can differ from 1 by an amount that is at most

exponentially small in n. We summarize the definition of networked biased voting problem

in the following.

Networked Biased Voting Problem (NBVP)

Instance: Given an undirected graph G = (V,E) with n nodes, two opinions {b, r}, and

for each i ∈ V , a preference (wi(b), wi(r)) where wi(b), wi(r) ∈ [0, 1] and wi(b) + wi(r) = 1.

Assume there exists an opinion α ∈ {b, r} such that
∑

iwi(α) >
n

2
+ ε for some constant

ε > 0. α is not known a priori.

Objective: Design a simple and local distributed protocol that in time polynomial in n

lets V converge to α with high probability.

We will consider protocols of the following form:

1. (Initialization) At round 0, each node i in V independently and simultaneously initial-

izes to an opinion in α ∈ {b, r} according to I, a randomized function that maps i’s

local information to an opinion in {b, r}.

2. (Stochastic Updating) At round t ≥ 1, a node i is chosen uniformly at random from V ;

i then picks a neighbor j ∈ N (i) according to a possibly non-uniform distribution over
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N (i); this distribution is determined by function F , which is a randomized function

whose arguments are i’s local information. i then converts to j’s opinion.

Therefore a protocol is specified by a pair of functions, (I,F). This framework by itself

does not forbid “unnatural” coding behaviors as discussed in the Introduction; however in

the spirit of emphasizing algorithms that are simple and local, we restrict I and F to be

functions that only depend on simple and local information of a node i. In particular,

only the following arguments to either functions are considered: 1) fi, the distribution of

opinions in the neighborhood, where fi(b) and fi(r) represent the fractions of neighbors

currently holding opinion blue and red, respectively; 2) i’s intrinsic preferences wi; 3) i’s

degree di = |N (i)|.

2.3 The Classic Voter Model

The voter model, which was introduced by Clifford and Sudbury [24] and Holley and Liggett

[45], is a well-studied probabilistic stochastic process that models opinion diffusion on social

networks in a most basic and natural way. It consists of a class of protocols that satisfy our

criterion of being simple and local. In fact, this class of protocols is the simplest that we

examine in this paper. A voter model protocol is one where in each round, a node i is picked

uniformly at random from V , and i in turn picks one of his neighbors uniformly at random

and adopts his opinion; it does not specify how the initialization is done. More formally,

Definition 1 (Voter Model). The voter model is a class of protocols of the form (I,F) where

F(fi) = α with probability fi(α), ∀ α ∈ {b, r}.

Importantly, the voter model is a class of protocols in which there are no individual

preferences present at all, and the only concern is with reaching unanimity (to either color).

This is in sharp contrast to the networked biased voting problem that we consider here,

where not only individual preferences are explicitly modelled and reaching the collectively

preferred opinion is desired, but any preferences are subordinate to reaching the collectively
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preferred consensus. Nevertheless, we shall make use of some known results on the voter

model, which we turn to now.

Let Cvm denote the random variable whose value is the time at which a consensus is

reached in a voter model protocol. It can be shown that E(Cvm) = O(log(n) max
i,j

hij), where

hij is the expected hitting time of node j of a random walk starting from node i (see [3] for a

proof of this). This result is established by making an observation that makes a connection

between the voter model protocol and another stochastic process called coalescing random

walk on the same undirected graph G.

Coalescing random walk works as follows: Initially there is a particle on each node, each

following an independent simple random walk (i.e. move to a neighbor uniformly at random)

on G. In each round one particle is picked uniformly at random to make one move, if the

neighboring node it moves to is already occupied by another particle, then these two particles

coalesce into a new particle that is identical to any of the two parent particles and still follows

the same simple random walk on G. It is shown in [3] that coalescing random walk is the

dual process of voter model protocol in the sense that for any t ≥ 0 and for any node i ∈ V ,

the following two probabilities are always the same

1. The probability that a consensus is reached and the consensus color originates from

node i1 after t rounds in the voter model protocol on G;

2. The probability that all the n particles have coalesced into a single particle and this

particle lands on node i after t rounds in the coalescing random walk on G.

On the other hand, it is also well-known that for any graph G with self-loops (i.e. i ∈

N (i)), hij = O(n3) for any node i, j [73], so E(Cvm) = O(n3 log(n)). We summarize this in

the following theorem.

1Note different nodes may have the same initial color, in this case we still treat them as distinct by
differentiating them by their originators — in the voter model protocol it is possible to trace an eventual
consensus back to a node where that color originates from.

17



Theorem 1 ([3]). For any initialization, it takes O(n3 log(n)) time in expectation for all the

n nodes to converge to a consensus opinion in a voter model protocol.

This leads to the following corollary.

Corollary 1. For any initialization, for any small constant θ > 0,2 after O(n3+θ log(n))

rounds into the voter model protocol, the probability that a consensus has not been reached is

O(1/2n
θ
).

Proof. By Theorem 1, there exists a constant C such that for any initialization, E(Cvm) ≤

Cn3 log(n). Therefore, by Markov’s inequality (see Theorem 11 in Appendix A.1), after

2Cn3 log(n) rounds the probability that a consensus has not been reached is at most 1/2.

Since this is true for any initialization, running the protocol for 2Cn3+θ log(n) rounds can

be view as running the protocol in nθ independent segments, each running for 2Cn3 log(n)

rounds. Therefore, the probability that a consensus is not reach after 2Cn3+θ log(n) rounds

is at most
1

2nθ
.

Denote by π the stationary distribution of a random walk on G, i.e. π(i) =
di

2m
for

all i ∈ V and π(S) =
∑
i∈S

di
2m

for all S ⊂ V . The next theorem also largely follows from

established results in literature.

Theorem 2. Let S ⊂ V be the set of nodes initialized to opinion α in a voter model protocol,

then after O(n3+θ log(n)) rounds the probability that an α-consensus is reached differs from

π(S) by O(1/2n
θ
).

Proof. Note the duality of voter model protocol and coalescing random walk tells us that

the probability that an α-consensus is reached in the voter model protocol is the same as the

probability that all the n particles have coalesced and land on a node from set S. This duality

combined with Corollary 1 shows that there exists constant C such that after Cn3+θ log(n)

2Throughout the rest of the paper, θ will be used as a parameter to the running time of the voter model
protocol and share the same meaning as defined here. It is also assumed that θ < 1.

18



rounds the probability that not all n particles have coalesced is exponentially small in n.

Suppose after Cn3+θ log(n) rounds, all the n particles do coalesce, then from this point on

the coalesced particle will follow a simple random walk on G. If we run for another n rounds,

the probability that the particle lands on a node from set S differs from π(S) by O(cn), for

some constant c ∈ (0, 1) by the convergence theorem on Markov chain (see Theorem 13 in

Appendix A.3).

Therefore after Cn3+θ log(n) + n rounds in coalescing random walk the probability that

all the n particles have coalesced into a single particle and this particle lands on a node from

S is

(1−O(1/2n
θ
))(π(S)±O(cn))

= π(S)±O(cn)− π(S)O(1/2n
θ
)∓O(cn)O(1/2n

θ
)

= π(S)−O(1/2n
θ
),

where the last step follows from θ < 1, an assumption made in the interest of making all the

algorithms discussed in this chapter have a faster running time (note making θ larger can

only decrease the difference between the probability of interest and π(S)).

Now if we apply duality again, it translates to that after Cn3+θ log(n)+n = O(Cn3+θ log(n))

rounds in the voter model protocol the probability that an α-consensus is reached differs from

π(S) by O(1/2n
θ
), an amount that is exponentially small in n.

Theorem 1 and 2 allow us to conclude that after O(n3+θ log(n)) rounds into a voter model

protocol, with high probability some consensus is reached. In particular, let B,R ∈ V be the

set of nodes initialized to blue and red respectively, the probability of reaching a b-consensus

(resp., r-consensus) differs from π(B) (resp., π(R)) by an amount that is exponentially small

in n. Recall our goal in solving the NBVP is to find an efficient protocol that converges to

the collectively preferred consensus with high probability. Since the voter model does not

even consider wi, it is clear that it does not solve the NBVP. (The voter model does not

specify how initialization is done, however it is easy to prove that even if I is allowed to

depend on wi in an arbitrary way, no voter model protocol solves the NBVP.)
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Therefore, the logical next thing to consider in order to solve the NBVP is to allow F

to in addition depend on wi. And this leads us to the natural extension of the classic voter

model that we are going to define in the next section: the biased voter model.

2.4 The Biased Voter Model

Discussion from the previous section reveals that in order to solve the NBVP, it is necessarily

to allow F to depend on wi in addition to fi, so that how an individual changes his opinion

is influenced by his neighbors as well as his own intrinsic preferences. A natural class of F

that reflect an individual’s preference (or bias) are those that let him assume his preferred

opinion α with probability higher than fi(α), which is the probability he assumes opinion α

in the voter model. We call the resulting model the biased voter model and define it formally

as follows.

Definition 2 (Biased Voter Model). The biased voter model is a class of protocols of the

form (I,F) where for some constant ε > 0,

P{F(fi, wi) = α}


≥ min{fi(α) + ε, 1} if wi(α) >

1

2
;

≤ max{fi(α)− ε, 0} otherwise.

and I is allowed to depend on wi in an arbitrary way.

Definition 2 is a generic one which only defines biased updating function F qualitatively

without specifying how exactly it is computed. A natural choice is where each agent plays α

with probability proportional to the product fi(α)wi(α) [8]. In this model an agent balances

their preferences with the behavior of their neighbors in a simple multiplicative fashion and

we call this the multiplicative biased voter model.

We note the extension to the biased voter model in Definition 2 is fairly general in that

F is allowed to include a broad class of local stochastic updating rules that reflect a node’s

preferences; and I is allowed to be arbitrary although it has to be independent of G. These
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seemingly provide us with a lot of power in the design of protocols; but perhaps surprisingly,

in this section we prove that even this broad class of biased voting rules is insufficient to

solve the NBVP:

Theorem 3. No biased voter model protocol (I,F) solves the NBVP in the following sense:

If I initializes a node to its preferred opinion with positive probability, then there exists

graphs where it takes exponential time in expectation for any biased voter model protocol to

reach a consensus; otherwise, there exists settings where it converges to the non-preferred

opinion with probability 1.

Note by our definition, the biased voter model constitutes of only simple and local pro-

tocols where I can only depend on a node’s local information. In particular, I cannot be

a function of n. Therefore, although Theorem 3 shows that no protocol from the class that

we are interested in (i.e. the biased voter model) can solve the NBVP, it does not rule out

more complicated protocols where I can be dependent on more global information.

The rest of this section is organized as follows. In Section A.1, we prove a technical lemma

about a certain Markov chain that can be represented by a line graph. We then use this

lemma to prove Theorem 3 in 2.4.2, by constructing an example on a line graph where for

any voter model protocol (I,F), it either takes exponential time to converge to the globally

preferred color, or convergence is to the globally non-preferred color, both violations of the

NBVP requirements. A similar result is proved for a clique graph in Section 2.4.3.

2.4.1 A Markov Chain Lemma

Consider a Markov Chain on a line graph of n nodes, namely s1, s2, ..., sn, where transition

does not happen beyond adjacent nodes. In this subsection we want to show that if at any

state si (1 < i < n), the Markov chain is more likely to go ‘backward’ to state si+1 than

to go ‘forward’ to state si−1, then starting from state si (where i ≥ 2), it takes exponential

time in expectation to hit state s1. While this is perhaps intuitive, we will need this result

to be in a particular form for the later reduction.

21



Here are a couple of notations: Let pi,j (i, j ∈ [n]) be the transition probability from

node i to j, by construction pi,j = 0 if |i − j| > 1. Simplify notation by writing pi = pi,i−1

and qi = pi,i+1, which are the ‘forward’ and ’backward’ transition probability, respectively.

Define hi to be the expected number of rounds for the process to hit state s1 for the first

time, given that it starts from state si. Let

γmax = max
i∈{2,3,...,n−1}

qi
pi

γmin = min
i∈{2,3,...,n−1}

qi
pi

We have the following lemma.

Lemma 1. If γmin ≥ 1 + ε for some constant ε > 0, then hi (i ≥ 2) is exponential in n.

Proof. We first claim that hi − hi−1 >
γn−imin

pn
. To prove this claim, note hi satisfies the

following linear system

hi =


0 (i = 0)

1 + pihi−1 + qihi+1 + (1− pi − qi)hi (2 ≤ i ≤ n− 1)

1 + pnhn−1 + (1− pn)hn (i = n)

It is clear hj−hj−1 > 0 for all j > 1 as a process starting from state sj has to hit sj−1 before

hitting s1. Let hj − hj−1 = λj, combining it with hj−1 = 1 + pj−1hj−2 + qj−1hj + (1− pj−1−

qj−1)hj−1 gives hj−1−hj−2 =
1 + qj−1λj

pj−1

, which in turn implies λj−1 >

(
qj−1

pj−1

)
λj > γminλj.

Repeating this inductively gives λi > γn−iminλn. Since λn =
1

pn
, this proves the claim.

Immediately following from this claim, we have h2 = h2 − h1 >
γn−2
min

pn
≥ (1 + ε)n−2 if

γmin ≥ 1 + ε. Since hi > h2 whenever i > 2, this completes the proof.
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2.4.2 Exponential Time Convergence on a Line

Our goal in this subsection is to prove Theorem 3. To this end, first consider the biased

voter model on the following 3-regular line graph.

A Line Graph. G is a line graph of 2n nodes, where the left half prefers blue and the right

half prefers red. The leftmost and rightmost node each has two self-loops and all the other

nodes have one self-loop.

We prove two lemmas (Lemma 2 and 3) about this particular setting, as a preparation

for the proof of the main theorem.

Lemma 2. For any biased voter model protocol (I,F), given that I results in an initializa-

tion where all nodes initialized to blue are to the left of all nodes initialized to red, it takes

exponential time in expectation to reach a consensus on the line.

Proof. We prove this by reducing this stochastic process to the Markov process described in

Section A.1. First observe that since we start with a coloring where all blues are to the left

of all reds, this will hold as an invariant throughout the evolution of the whole process and

the only way for the coloring to evolve is for the blue node adjacent to a red neighbor to

convert to red, or for its red neighbor to convert to blue.

Therefore, we can always describe the state by a pair of integers (b, 2n − b), where b is

the number of blue-colored nodes. Now if we lump two states, (b, 2n − b) and (2n − b, b),

into one, this model is exactly the Markov process (with n + 1 states) described in Section

A.1 with si = {(i, 2n− i), (2n− i, i)} for i = {0, 1, ..., n}.

And by definition of biased voter model and the way the Markov chain is constructed in

the above, we have pi ≤
1/3− ε

2n
and qi ≥

1/3 + θ

2n
(i ∈ {1, 2, ..., n − 1}) for some constant

ε > 0. Therefore, γmin ≥
1/3 + θ

1/3− ε
= 1+δ, for some constant δ > 0. Invoking Lemma 1 shows

that it takes exponential time to hit s0 starting from state si (where i ≥ 1). Therefore, it
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takes exponential time to reach a consensus given that one starts with a coloring where all

nodes initialized to blue are to the left of all nodes initialized to red.

Lemma 3. For any biased voter model protocol (I,F), if I initializes a node i to his preferred

opinion with positive probability, then it takes exponential time in expectation to reach a

consensus on the line.

Proof. Note I is independent of G, therefore whenever it initializes with positive probability,

the probability is independent of n. In particular, the probability that I initializes the

leftmost node to blue and the rightmost node to red is not exponentially small in n. Therefore

we are through if we can show that given the leftmost node is initialized to blue and the

rightmost to red, it takes exponential time to reach a consensus.

Lemma 2 does not differentiate between a b-consensus and a r-consensus. If we concern

ourselves only with the outcome of, say a b-consensus, it can be shown that it still takes

exponential time to reach given that we start from the same initialization described in

Lemma 2 (i.e. all blues are to the right of all reds). We prove this by first observing that,

conditioning on that a b-consensus is reached, the time taken is distributed exactly the same

as in the modified stochastic process on the same 2n-node line graph, with the only difference

being making the leftmost node extremely biased towards blue so that it always votes for blue

regardless of his neighbor’s opinion. Therefore we only need to prove it takes exponential

time for this modified process to reach a consensus (which can only be a blue one), and this

follows from Lemma 2.

Of course by a similar argument we can show that starting from an initialization where

all blues are to the left of all reds, it takes exponential time to reach a r-consensus.

Now consider the initialization where the leftmost node is blue and rightmost node is red

and call this the case of interest. Compare it with the initialization where the leftmost node

is blue and all the other n−1 nodes are red, the r-consensus time of this case is clearly upper

bounded by that of the case of interest. By the above discussion, it takes exponential time to
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reach a r-consensus even when we start with only the leftmost node blue; therefore, it takes

exponential time to reach a r-consensus for the case of interest. By the same argument, it

also takes exponential time to reach a b-consensus for the case of interest. In sum this allows

us to conclude that it takes exponential time to reach a consensus given that I initializes

the leftmost node to blue and the rightmost to red.

We are now ready to give a proof for Theorem 3.

Proof. (of Theorem 3) In Lemma 3, we have already shown that any biased voter model

protocol (I,F) fails to solve the NBVP (taking exponential time to converge) if we restrict

I to the kind of initialization functions that initializes a node to its preferred opinion with

positive probability. It is easy to see that (I,F) also fails for any I that does the opposite,

in which case I initializes a node to his not-preferred opinion with probability 1: Simply

construct a graph consists solely of nodes that prefer blue, and I initializes it to a r-consensus.

Therefore, we conclude that any biased voter model protocol (I,F) fails to solve the NBVP.

Note since the line graph we construct above is 3-regular, we have actually shown a

stronger version of Theorem 3: Even if we allow both I and F to depend on di, no protocol

(I,F) can solve the NBVP. We also note that a similar exponential convergence result can

be shown for clique in certain settings.

2.4.3 Exponential Time Convergence on a Clique

In this section, we show that it takes exponential time for any multiplicative biased voter

model protocol to converge on a clique in the following setting.

A Clique. G is a clique of 2n nodes, of which n prefer blue, n prefer red and each node has

a self-loop. Denote by si,j (i, j ∈ {0, 1, ..., n}) the state where out of the n (resp. n) nodes
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who prefer blue (resp. red), i (resp. j) of them are colored blue and n − i (resp. n − j) of

them are colored red. Denote by f =
i+ j

2n
the blue fraction.

We state our result in Theorem 4, which says that starting from an initialization with f

bounded away from both 0 and 1, in expectation it takes exponential time for any biased

voter model protocol to reach a consensus on G.

Theorem 4. For any multiplicative biased voter model protocol (I,F) where all nodes share

the same strength of bias w ≥ 1

2
+ ε (i.e. for any i ∈ V , if i prefers α ∈ {b, r}, then

wi(α) = w), it takes exponential time in expectation to reach either a blue-consensus or a

red-consensus starting from any state with blue fraction f in the interval [δ, 1− δ], for some

constant δ > 0.

Proof. To prove this, we show any uniformly-biased multiplicative protocol (I,F) on a clique

can be viewed as a biased voter model protocol (I ′,F ′) on the line graph described in Sec.

2.4.2 (i.e. a line graph of 2n nodes where left half prefers blue and right half prefers red),

therefore invoking Lemma 2 and 3 establishes the result.

First observe that the stochastic process on the clique can be reduced to a Markov chain

on a (n + 1)× (n + 1) 2-dimensional grid, where a node (i, j) corresponds to state si,j. We

arrange the grid so that the northwest node corresponds to s0,0 and the southeast node

corresponds to sn,n. Denote by pn(i, j) the probability of a transition from state si,j to state

si−1,j (i.e. going north), and define ps, pw and pe analogously. We have

pn(i, j) =
(1− f)(1− w)

fw + (1− f)(1− w)
· fb

ps(i, j) =
fw

fw + (1− f)(1− w)
·
(

1

2
− fb

)
pw(i, j) =

(1− f)w

f(1− w) + (1− f)w
· fr

pe(i, j) =
f(1− w)

f(1− w) + (1− f)w
·
(

1

2
− fr

)
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where fb =
i

2n
, fr =

j

2n
and f = fb + fr. Now define new state s′k = {si,j | i + j = k},

k ∈ {0, 1, ..., 2n}. This reduces the Markov chain on the clique to the Markov chain on the

line. Now to establish our above claim that the Markov chain on the clique can be viewed

as a biased voter model protocol on the line, all that we need to show are the following:

1. The transition probability from s′k to s′k−1 is greater than the transition probabil-

ity from s′k to s′k+1 by at least a constant gap when f is bounded away from 1 and

1

2
, i.e. pn(i, j) + pw(i, j) − ps(i, j) − pe(i, j) ≥ ζ for some constant ζ > 0 whenever

1− δ ≥ f ≥ 1

2
+ δ for some constant δ > 0.

2. The transition probability from s′k to s′k−1 is less than the transition probability from

s′k to s′k+1 by at least a constant gap when f bounded away from 0 and
1

2
, i.e. pn(i, j)+

pw(i, j) − ps(i, j) − pe(i, j) ≤ ζ for some constant ζ > 0 whenever δ ≤ f ≤ 1

2
− δ for

some constant δ > 0.

We give proof for the first part in the following, and the proof of the second part is

essentially the same.

pn(i, j) + pw(i, j)− ps(i, j)− pe(i, j)

= fb

[
(1− f)(1− w)

(1− f)(1− w) + fw
+

fw

fw + (1− f)(1− w)

]
+fr

[
(1− f)w

f(1− w) + (1− f)w
+

f(1− w)

f(1− w) + (1− f)w

]
−1

2

[
fw

fw + (1− f)(1− w)
− f(1− w)

f(1− w) + (1− f)w

]
= f − 1

2

[
fw

fw + (1− f)(1− w)
− f(1− w)

f(1− w) + (1− f)w

]
=

(
f − 1

2

)[
1− w(1− w)

f 2w(1− w) + f(1− f)(1− w)2 + f(1− f)w2 + (1− f)2w(1− w)

]
=

(
f − 1

2

)
f(1− f)(4w2 − 4w + 1)

≥ 4ε2δ2(1− δ)
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where the last inequality follows form the face that w ≥ 1

2
+ ε, and

1

2
+ δ ≤ f ≤ 1− δ.

2.5 A Protocol for NBVP

Previous discussions establish the limit of the classic voter model protocol and its natural

extension to the biased voter model when it comes to solving NBVP. We are thus interested

in the question: What are the (ideally minimal) extensions to the biased voter model needed

to obtain a simple, efficient and local protocol for solving the NBVP?

In this section, we give one answer to this question by providing a provable solution to

the NBVP that employs the following extensions:

1. Make the degree of G , d(G) = maxi∈V di, an input to F . This allows each node to

increase its influence by adding d(G)− di self-loops.3

2. Allowing initialization and evolution of a node’s opinion be dependent on its degree in

G;

3. Allowing multiple identical copies of the protocol to be run in G and having each node

vote for the opinion converged to more frequently among the multiple runs. This can be

implemented by having a slightly more powerful schedule that after every n3+θ log(n)

steps, re-initializes each node.

We give the protocol in Algorithm 1. This protocol consists of T = poly(n) phases. In

each phase, each node simultaneously and independently initializes his opinion to either blue

or red with probabilities exactly proportional to his preferences of these two opinions. And

then the standard voter model protocol is run on the augmented d(G)-regular graph, where

each node has added d(G)− di extra self-loops. The reason for adding self-loops is to allow

3We note that in a strategic or game-theoretic setting, a node, among other deviations that he can make,
might of course choose to add more self-loops than this to further increase its influence. We examine this
topic in Sec. 2.6

28



Algorithm 1 A Simple and Local Voting Protocol

1: Each node i maintains an array Ri of size T
2: Each node i adds d(G)− di self-loops
3: for phase = 1 to T do
4: Each node i simultaneously and independently initializes its color to b or r with prob-

ability wi(b) and wi(r), respectively;
5: Run the (standard) voter model protocol for n3+θ log(n) rounds
6: Each node i records his last round opinion of this phase of the voter model process in

Ri[phase]
7: end for
8: // Each node now has his local ‘outcomes’ of all T phases
9: Each node i identify a majority between b and r in Ri; breaking ties arbitrarily

10: Each node i vote for this majority identified as his final vote

individuals of otherwise different degrees to have equal degree, and thus ‘influence’, in the

voter model protocol. At the end of each phase, the standard voter model protocol is run for

n3+θ log(n) rounds and each node records his opinion in the last round as the ‘outcome’ of

this phase. After T phases, each node identifies the majority between blue and red among

the n outcomes; he then vote for this majority as his final vote.

We now proceed to prove that Algorithm 1 indeed solves the NBVP.

Lemma 4. Each of the T phases of Algorithm 1 leads to a blue-consensus (resp. red-

consensus) with probability that differs from

∑
i∈V wi(b)

n

(
resp.

∑
i∈V wi(r)

n

)
by O(1/2n

θ
).

Proof. We give proof for the case of a blue-consensus, and the proof for red-consensus follows

a similar argument.

Denote by p(B) the probability that B ⊆ V is the set of nodes initialized to blue, and

p(b | B) the probability that there is a blue-consensus after a single phase of Algorithm 1

given that B is the set of nodes initialized to blue. So

Pb =
∑
B∈2V

p(B)p(b | B)
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is the probability that a single phase of Algorithm 1 results in a b-consensus. By Theorem

2 we have |p(b | B)− π(B)| = O(1/2n
θ
), or p(b | B) = π(B)±O(1/2n

θ
), therefore

Pb =
∑
B∈2V

p(B)(π(B)±O(1/2n
θ

))

=
∑
B∈2V

p(B)π(B)±O(1/2n
θ

)
∑
B∈2V

p(B)

=
∑
B∈2V

p(B)π(B)±O(1/2n
θ

)

=

∑
B∈2V

p(B)|B|d(G)

nd(G)
±O(1/2n

θ

)

=

∑
i∈V wi(b)

n
±O(1/2n

θ

)

Therefore, we conclude that

∣∣∣∣Pb − ∑i∈V wi(b)

n

∣∣∣∣ = O(1/2n
θ
) is exponentially small in n.

Recall our goal is to let V converge to the collectively preferred consensus. And by defi-

nition of the NBVP one opinion is significantly preferred than the other, i.e. |
∑

i∈V wi(b)−∑
i∈V wi(r)| ≥ ε for some possitive constant ε; this assumption turns out to be sufficient for

Algorithm 1 to achieve this goal if we set T = n2+τ for any constant τ > 0. We prove this

in the following theorem.

Theorem 5. Setting T = n2+τ (for any constant τ > 0) in Algorithm 1 solves the NBVP.

Specifically, Algorithm 1 let V converge to the collectively preferred consensus with probability

1−O(cn
τ
) (for some constant c ∈ (0, 1)) and it runs in O(n5+θ+τ log(n)) time.

Proof. Without loss of generality, we assume blue is the collectively preferred color. By

Lemma 4 we have Pb ≥
∑

i∈V wi(b)

n
−O(1/2n

θ
) and Pr ≤

∑
i∈V wi(r)

n
+O(1/2n

θ
). Therefore

the gap between Pb and Pr is at least
ε

n
−O(1/2n

θ
), so there exists a positive constant δ < ε

such that the gap between Pb and Pr is at least
δ

n
whenever n is sufficiently large.

Let Tb and Tr be the number of b-consensuses and r-consensuses among the T trials,

the bad event happens when Tb ≤ Tr. For this bad event to happen, the event Tb <
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(
Pb −

1

3
· δ
n

)
T has to happen. We now use Chernoff-Hoeffding bound (see Appendix A.2

for details) to show that when T = O(n2+τ ), this happens with probability exponentially

small in n.

P

(
Tb < (Pb −

δ

3n
)T

)
= P

(
Tb < TPb −

δ

3n
T

)
= P

(
Tb − E(Tb) < −

δ

3n
T

)
≤ e−2T (δ/3n)2

Therefore, setting T = n2+τ makes P
(
Tb < (Pb − δ

3n
)T
)

= O(cn
τ
) for some constant c ∈

(0, 1). Since P (Tb ≤ Tr) < P
(
Tb < (Pb − δ

3n
)T
)
, we have shown that Algorithm 1 converge

to blue with probability 1 − O(cn
τ
). Also it is obvious to see that the running time is

O(n5+θ+τ log(n)). This completes the proof.

We note that the above analysis in fact suggests that the running time of Algorithm 1

can be expressed as a product of the mixing time of the voter model protocol on G and

n2+τ , so that on graphs where random walk mixes faster (e.g. expanders), Algorithm 1 has

a running time better than O(n5+θ+τ log(n)).

Before closing this section, we note that there is an alternative protocol that is a natural

variant of Algorithm 1. In this variant, we do not need to let each node know d(G), instead

we introduce a third opinion u that we call undecided.4 We then modify Algorithm 1 so

that at the beginning of each of the T phases, each node initializes its opinion to blue, red,

and undecided with probability
wi(b)

d(i)
,
wi(r)

d(i)
, and

d(i)− 1

d(i)
, respectively. These initialization

probabilities are properly chosen so that the probability of reaching an α-consensus (α ∈

{b, r}) is proportional to
∑

i∈V wi(α). After the initialization phase, the alternative protocol

does the same thing as Algorithm 1 by running the classic voter model protocol for n3+θ log(n)

rounds. And using essentially the same analysis it can be shown that this alternative protocol

also solves the NBVP in polynomial time.

4It is interesting to note that this extension of giving nodes the ability to temporarily declare oneself
undecided has obvious analogue in many real political processes. And the same can be said about the
extension of allowing multiple runs in an election.
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2.6 An ε-Nash Protocol for the Networked Biased Vot-

ing Game

Our protocol for solving NBVP assumes that each individual will actually follow the protocol

honestly. However in a strategic setting, an individual may have incentives to deviate from

the prescribed protocol. For example, a node i who prefers blue may deviate from Algorithm

1 in a way that increases the chance of reaching a blue-consensus, even when this consensus

is not collectively preferred.

This naturally leads us to consider the Networked Biased Voting Game (NBVG), which

is an extension of NBVP to the strategic, or game theoretic, setting. In NBVG, a node with

preference (wi(b), wi(r)) receives payoff wi(b) (resp., wi(r)) if the game results in an unani-

mous global blue-consensus (resp., red-consensus) and payoff 0 if no consensus is reached. A

solution to NBVG is a protocol that solves the NBVP (which must be simple and local and

in polynomial time converge to the collectively preferred consensus with high probability)

and at the same time constitutes a Nash equilibrium of the game. We note that NBVG may

also be viewed as a distributed, networked version of the classic “Battle of the Sexes” game,

or as a networked coordination game [68].

In the rest of this section, we show the existence of a protocol that is an ε-approximate

Nash equilibirum, or ε-Nash for short, of NBVG. This means although a node can deviate

unilaterally from this protocol and increases his expected payoff, the amount of this increase

is at most ε and we show ε is exponentially small in n and can be made arbitrarily small.

To this end, we need to make the following mild assumptions.

1. The removal of any node from G leaves the remaining graph connected. Formally, let

G−i be the graph induced by V \{i}, we assume G−i is connected for all i ∈ V .

2. The exclusion of any node does not change the collectively preferred consensus, and

moreover, it still leaves a significant (constant) gap between
∑

j∈V (G−i)
wj(b) and
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∑
j∈V (G−i)

wj(r).

3. Each node i is identified by a unique ID, ID(i), which is an integer in {1, 2, ..., n}.

Our ε-Nash protocol consists of n runs of the non-Nash protocol Algorithm 1, each on

a subgraph G−i. Each run of Algorithm 1 polls the majority opinion of V \{i}, which by

assumption is the same as that of V ; however by excluding i from participating, we prevent

him from any manipulation of this particular run of the non-Nash protocol. When all the

n runs of non-Nash is done, each node ends up with n− 1 ‘polls’ and with high probability

they should all point to the same collectively preferred consensus. In case it does not, it is

strong evidence that some run(s) of the non-Nash protocol had been manipulated and the

contingency plan is for each node to ignore all the polling results entirely and toss a (private)

fair coin to decide whether to vote for blue or red — and this turns out to be a sufficient

deterrent of unilateral deviation from the non-Nash protocol.

We note conceptually we are making yet another simple extension in the protocol’s ex-

pressiveness by allowing it to be run on a subgraph G−i. To implement this, it is important

for each node i to be uniquely identified by his neighbors so that they know when to ignore

i; and this is the reason we need assumption 3 listed above. We give this ε-Nash protocol in

Algorithm 2 and claim the following theorem.

Theorem 6. Algorithm 2 constitutes an ε-Nash equilibrium of the NBVG. Algorithm 2 runs

in O(n6+θ+τ log(n)) time and ε = O(ncn
τ
) for some constant c ∈ (0, 1).

Proof. Suppose each node follows the protocol faithfully, by our assumption that the exclu-

sion of any node does not change the collectively preferred consensus, say blue, each of the

n runs of Algorithm 1 results in a b-consensus with probability 1 − O(cn
τ
) by Theorem 5

(for some constant c ∈ (0, 1)). So by union bound the probability that all the n runs of

Algorithm 1 have all resulted in a b-consensus is at least 1 − O(ncn
τ
). Therefore the final

votes result in the collectively preferred b-consensus with high probability.
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Algorithm 2 A Simple and Local Protocol that is ε-Nash

1: Each node i maintains an array Ei of size n− 1
2: for episode = 1 to n do
3: Let i be the node such that ID(i) = episode
4: Run Line 1 - 8 of Algorithm 1 on G−i
5: Each node j ∈ V \{i} records in Ej[episode] the majority between b and r he identifies

on Line 8 of (this run of) Algorithm 1
6: end for
7: // Each node has now participated in n− 1 runs of Algorithm 1
8: for all i ∈ V do
9: if both b and r are present in the n− 1 entries of Ei then

10: Tossing a private fair coin to decide between b and r, and vote for it as i’s final vote
11: else
12: Vote for the only opinion present as i’s final vote
13: end if
14: end for

Now we examine why faithfully executing this protocol is an ε-Nash strategy for each

node, where ε = O(ncn
τ
). For a node i that prefers red (i.e. the opinion not collectively

preferred), assuming everyone else is following Algorithm 2, the expected payoff to i for doing

the same is at least his payoff in a b-consensus minus a number exponentially small in n,

i.e. O(ncn
τ
), because of the exponentially small probability that a b-consensus may not be

reached even if every node follows Algorithm 2 faithfully. Now we consider what happens if

it deviates. There are two stages during which i can deviate: the first or the second for-loop

in Algorithm 2. i’s effort during the first for-loop is obviously immaterial if none of the n−1

runs of Algorithm 1 is turned into a r-consensus, and in this case, with high probability all

the n runs of Algorithm 1 result in a b-consensus. Therefore, i will have no incentive to

deviate during the second for-loop because everyone else is going to vote for b.

Next consider the case where i successfully turns some of the global outcomes of Algorithm

1 into a r-consensus (i.e. all nodes identify r as the majority on Line 8 of Algorithm 1),

then with high probability (at least 1 − O(cn
τ
)) the n runs of Algorithm 1 result in both

r-consensus and b-consensus because the single run of it without i participating results in a

b-consensus with probability 1−O(cn
τ
). In this case, at least n− 2 nodes out of V \{i} see
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both blue and red as outcomes from the n − 1 runs of Algorithm 1 they each participated

in and will vote for either b or r by tossing a private fair coin, which means the probability

of reaching a b-consensus or r-consensus among them, independent of whatever strategy i

adopts in the second for-loop, is

(
1

2

)n−2

. Therefore, no matter what strategy i adopts in the

second for-loop, his expected payoff is exponentially small and obviously worse than what

he would have gotten by not deviating. Therefore, we conclude that executing Algorithm 2

faithfully is actually a Nash strategy for i.

Now consider a node j who prefers a b-consensus. By the same discussion as above,

Algorithm 2 results in a b-consensus in the final voting with probability at least 1−O(ncn
τ
),

therefore the expected payoff to j is at least his payoff in a b-consensus minus an exponentially

small number of O(ncn
τ
). Therefore by deviating j can only hope to improve his expected

payoff by O(ncn
τ
). And this allows us to conclude that each node following Algorithm 2

faithfully constitutes an ε-Nash equilibrium for the game, where ε = O(ncn
τ
). Also it is easy

to see that Algorithm 2 runs in O(n6+θ+τ log(n)) time. This completes the proof.
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Chapter 3

A Behavioral Study on Biased Voting

in Networks

3.1 Introduction

In recent years there has been much research on network based models in game theory, in both

the computer science and economics communities. Topics receiving considerable attention

include the effects of network topology on equilibrium properties [46, 50, 55, 49, 61], price

of anarchy analyses of selfish routing and other networking problems [80], game-theoretic

models of network formation (see [31] and citations therein), equilibrium computation in

networked settings (see [52, 77] and citations therein), and many others. This large and

growing literature has been almost exclusively theoretical, with few accompanying empirical

or behavioral studies [21, 36] examining the relevance of the mathematical models to actual

behavior.

In this chapter and the next, we report on two series of highly controlled human subject

experiments in networked biased voting and networked bargaining, respectively. We focus

on networked biased voting in this chapter, which is modelled exactly the same as the

theoretical problem of the same name considered in Chapter 2, and is similarly motivated by

distributed collective decision-making processes where balances have to be struck between
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Figure 3.1: Screenshot of the user interface for a typical experiment.

diverse individual preferences and a desire for collective unity.

In each experiment, 36 subjects each simultaneously sit at workstations and control the

state of a single vertex in a 36-vertex network whose connectivity structure is determined

exogenously and is unknown to the subjects. The state of a subject’s vertex is simply one

of 2 colors (red or blue), and can be asynchronously updated as often as desired during the

1-min experiment. Subjects are able to view the current color choices of their immediate

neighbors in the network at all times but otherwise have no global information on the current

state of the network (aside from a crude and relatively uninformative “progress bar”; see Fig.

3.1. No communication between subjects outside the experimental platform is permitted.

In addition, each subject is given a financial incentive that varies across the network, and
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specifies both individual preferences and the demand for collective unity. For instance, one

player might be paid $1.25 for blue consensus and $0.75 for red consensus, whereas another

might be paid $0.50 for blue consensus and $1.50 for red consensus, thus creating distinct and

competing preferences across individuals. However, payments for an experiment are made

only if (red or blue) global unanimity is reached, so subjects must balance their preference

for higher payoffs with their desire for any payoff at all. A screenshot for a particular subject

in a typical experiment is shown in Fig. 3.1.

We note that our experiments may also be viewed as a distributed, networked version

of the classic “Battle of the Sexes” game, or as a networked coordination game [68]. Com-

pared with the traditional analyses of these games, we are particularly interested in the

effects arising as a result of the interactions of varying network structure and varying incen-

tive schemes. We note that although our experimental framework deliberately omits global

“broadcast” mechanisms for consensus (other than the aforementioned progress bar) that

are common in many public electoral processes – such as media polls, “mainstream” media

reports and analyses – many other real-world sources of both small and large-scale influence

can be modeled via network structure. For instance, individuals whose opinion reaches an

inordinately large number of others (such as might be expected of some political bloggers)

can be modeled by high-degree vertices. Cohesive or close-knit groups of like-minded indi-

viduals can be modeled by subsets of vertices with similar incentives and dense connectivity.

Our experiments deliberately introduce such structures and others. We also remark that

our demand for complete unanimity before any payoffs are made is an abstraction of most

real decision-making and voting processes, where a sufficiently strong consensus is typically

enough to yield the benefits of unity. Although we expect most of our findings would be

robust to such weakening, we leave its investigation to future research.

Our methodology and experiments mix recent lines of thought from algorithmic game

theory, behavioral economics and social network theory, and are among the first and largest

behavioral experiments on network effects in collective decision making to date. We adopt
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many of the practices of behavioral game theory [17], which has tended to focus on two-

player or small-population games rather than larger networked settings. The experiments

described here are part of an extensive and continuing series that have been conducted at

the University of Pennsylvania since 2005, in which collective problem-solving from only

local interactions in a network has been studied on a wide range of tasks, including graph

coloring [56], trading of virtual goods [48], and several other problems. An overarching goal

of this line of research is to establish the ways in which network structure and task type and

difficulty interact to influence individual and collective behavior and performance.

Our results include a detailed examination of how network structure and incentives influ-

ence collective and individual outcome, as well as how individual behavior, or style of play,

can be related to his performance. The networks imposed are drawn from models common

in social network theory, including preferential attachment graphs, random (Erdös-Rényi)

networks, and some carefully designed structures. Among our most striking findings are the

following:

• We find that there are well-studied network topologies in which the minority preference

consistently wins globally;

• We find that the presence of “extremist” individuals, or the awareness of opposing

incentives, reliably improve collective performance;

• We find that certain behavioral characteristics of individual subjects, such as “stub-

bornness”, are strongly correlated with earnings.

All of the above results and almost all others reported in this chapter are highly statis-

tically significant.
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3.2 System and Experiment Methodology

3.2.1 System Description

Experiments were conducted using a distributed networked software system we have designed

and built over the past several years for performing a series of behavioral network experiments

on different games. This section briefly describes the user’s view of that system in our biased

voting experiments.

Fig. 3.1 shows a screenshot of the user interface for a typical experiment. Each subject

sees only a local (“ego network”) view of the global 36-vertex network, showing their own

vertex at the center and their immediate neighbors surrounding. Edges between connected

neighbors are also shown, as are integers denoting how many unseen neighbors each neighbor

has. Vertex colors are the current color choices of the corresponding subjects, which can

be changed at any time using the buttons at the bottom. The subject’s payoffs for the

experiment are shown (in this case $0.75 for global red consensus, $1.25 for blue), and

simple bars show the elapsed time in the experiment and the “game progress”, a simple

global quantity measuring the fraction of edges in the network with the same color on each

end. This progress bar is primarily intended to make subjects aware that there is activity

elsewhere in the network to promote attention, and is uninformative regarding the current

majority choice.

The system logs fine-grained temporal data on the exact sequence of events in each

experiment. This log contains every color-change event, along with vertex or subject number,

the color selected, and a time stamp with 1 millisecond resolution. We also administer an

exit questionnaires to each subject.

3.2.2 Human Subject Methodology

We give in this section some further details of our experimental and human subject method-

ologies. The human subject methodology that we used was approved by Penn’s Institutional
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Review Board process.

This chapter describes one session of experiments conducted in May 2008. The session

consisted of 81 individual networked biased voting experiments, each lasted up to 1 minute in

time. The session was held in a laboratory containing 38 workstations, of which 36 are used

in the actual experiments with the other 2 as spare ones. This determined the number of

subjects for each experiment as 36, who were recruited from a Penn undergraduate computer

science class on a topic related to the experiments.

Each of the 81 experiments had a fixed network and incentive structure, and the system

assigned each of the 36 subjects randomly to one of the 36 network positions at the start of

each experiment, thus assuring there was no systematic bias in the position of subjects in

the networks. To prevent the establishment of social conventions that could trivialize the

experiments (such as all subjects playing red for the remainder of the session following a

successful global consensus to red), the system used a local randomization scheme on the

colors, which might make what appeared red to one player appear blue to another.

Prior to the main session of experiments, subjects attended a compulsory briefing session

in which they were instructed about the networked biased voting problem, and the work-

ing of the system. We also ran a preliminary set of experiments to ensure the subjects’

understanding of the game and the working of the software system.

Before the experiments, physical partitions were set up to prevent subjects from viewing

other subjects or their screens. The whole session of experiments were carefully proctored

to ensure that the only kind of communication that takes place between the subjects is

through the experimental software platform. Each experiment ended either after 1 minute

or when the 36 subjects successfully reached a unanimous consensus, whichever came first.

At this point, the session proceeded to the next voting experiment. The whole session lasted

between 2 and 3 hours.
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Figure 3.2: Visualization of network and incentive structures.

3.2.3 Experiment Design

There are two main design variables underlying our experiments: the connectivity structure

of the underlying network and the financial incentives and their placement in the network.

In each experiment, the network structure and the incentives were chosen in a coordinated

fashion to examine specific scenarios or hypotheses. We now describe these choices and
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hypotheses in greater detail.

The 81 experiments fell into 2 broad categories that we call the Cohesion experiments

(54 experiments) and the Minority Power experiments (27 experiments), named for the

phenomena they were designed to investigate. All of the networks used had 36 vertices and

nearly identical edge counts (101 ± 1), thus fixing edge density; only the arrangement of

connectivity varied, and not the amount.

In the Cohesion experiments (named in part for a particular measure of inter- and intra-

group connectivity [71]), vertices were divided into 2 groups of 18. Vertices in one group

(the “red” group) were given incentives paying more for a red global consensus, whereas

vertices in the other group (the “blue” group) were given incentives paying more for a blue

global consensus. The relative strengths of these incentives were varied, as were the amount

and nature of the connectivity within and between the two groups. In particular, we varied

whether the typical vertex had more or fewer inter-group than intra-group edges, thus con-

trolling whether local neighborhoods were comprised primarily of individuals with aligned

incentives (high cohesion), competing incentives (low cohesion), or approximately balanced

incentives. We also varied the nature of this connectivity; half of the Cohesion experiments

used networks whose edges were generated (subject to the inter/intra group constraints) by

a random or Erdös-Rényi process [13] (in which all edges are chosen randomly and indepen-

dently with some fixed probability), the other half by the preferential attachment process

[7] (which is known to generate the oft-observed power law distribution of connectivity).

These two network formation models are well-studied and together provide significant vari-

ation over a number of common structural properties, including network diameter, degree

distribution, and clustering.

The overarching goal of the Cohesion experiments was to systematically investigate how

collective and individual performance and behavior varied with neighborhood diversity and

the strength of preferences. Although it is perhaps most natural to hypothesize that increased

inter-group connectivity should improve collective performance – this would be consistent
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with several mathematical network theories and metrics, including the aforementioned cohe-

sion, and notions of expansion from the graph theory literature [13] – the degree of improve-

ment, and how it might be influenced by the detailed structure (Erdös-Rényi vs. preferential

attachment), the variability of individual human behavior, and so on, are difficult to predict.

In the Minority Power experiments, all networks were generated via preferential attach-

ment [7]. A minority of the vertices with the highest degrees (number of neighbors) were then

assigned incentives preferring red global consensus to blue, whereas the remaining majority

were assigned incentives preferring blue global consensus. The size of the chosen minority

was varied (6, 9, or 14), as were the relative strengths of preferences.

For each of the different network structures in the Cohesion and Minority Power families,

we ran experiments in which there were “strong symmetric”, “weak symmetric”, and “asym-

metric” incentive structures. By “symmetric” we mean that the incentives of those players

preferring blue and those preferring red were symmetrically opposed (such as $0.75/$1.25

for consensus to red/blue vs. $1.25/ $0.75); by “weak” and “strong” we refer to the relative

magnitudes of the preferred and non-preferred payments ($1.25 to $0.75 for weak, $1.50 to

$0.50 for strong). In the asymmetric incentives experiments, the group preferring one color

would be given strong incentives, whereas groups preferring the other color would be given

weak incentives. We thus imposed scenarios in which 2 opposing groups “cared” equally but

mildly about the global outcome, equally and strongly, or in which one group cared more

than the other.

Fig. 3.2 shows a visualization of the network and incentive structures in our design. For

each of the 9 network and incentive structures there is a diagram consisting of 36 rows of

colored dots. Each row corresponds to a single subject or vertex in the network, and the dots

in that row represent that subject and his or her network neighbors. The color of the central

dot indicates the preferred (higher payoff) color for the corresponding subject, according to

the incentives. The dots to the left of center indicate the number of neighboring subjects with

the same preference; the dots to the right indicate the number with the opposite preference.
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Vertices are ordered within groups by their overall degree.

The top three designs are Cohesion experiments with Erdös-Rényi connectivity in which

there is more intra- than inter-group connectivity between the two groups (specifically a 1:2

inter:intra ratio) in the design on the left; balanced connectivity (1:1 ratio) in the design on

the center; and more inter- than intra-group connectivity (2:1 inter:intra ratio) in the design

on the right. This is demonstrated by the migration of dots from left of center to right of

center as we move from column 1 to 2 to 3.

The middle row corresponds to Cohesion experiments with preferential attachment con-

nectivity in the same inter:intra ratios as the coER row above. Comparison with the first

row reveals clear differences in the overall degree distributions, because the variance in the

total number of neighbors of subjects is much higher for preferential attachment and those

diagrams reveal the presence of subjects with very large numbers of neighbors.

The bottom row corresponds to Minority Power experiments, where again we see the

heavy-tailed degree distributions typical of preferential attachment but in which now the

blue-preferring vertices are selected to be a minority of varying sizes (14, 9, and 6) with the

highest degrees. Each of these 9 network structures was combined with payoff amounts that

were weak symmetric, strong symmetric and asymmetric, yielding 27 distinct scenarios that

were each executed in 3 trials, for a total of 81 experiments.

The overarching goal of the Minority Power experiments was to systematically investigate

the influence that a small but well connected set of individuals could have on collective

decision making – in particular, to investigate whether such a group could reliably cause

their preferred outcome to hold globally and unanimously.
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Figure 3.3: Visualization of the collective dynamics for all 81 experiments.
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3.3 Results

3.3.1 Collective Behavior

Overall the subject population exhibited fairly strong collective performance. Of the 81 ex-

periments, 55 ended in global consensus within 1 min (resulting in some payoff to all partic-

ipants), with the mean completion time of the successful experiments being 43.9 s (standard

deviation 9.6 s). We now proceed to describe more specific findings quantifying the impact of

network structure, incentive schemes, and individual behavior. Network structure influenced

collective performance in a variety of notable ways. The Cohesion experiments were consid-

erably harder for the subjects than the Minority Power experiments; only 31 of 54 of the

former were solved compared with 24 of 27 of the latter (difference significant at P < 0.001).

Furthermore, in all 24 of the successfully completed Minority Power experiments, the global

consensus reached was in fact the preferred color of the well-connected minority. Together

these results suggest that not only can an influentially positioned minority group reliably

override the majority preference, but that such a group can in fact facilitate global unity.

Within the Cohesion experiments, generating connectivity according to preferential attach-

ment (20/27 solved) yielded better collective performance than generating it via Erdös-Rényi

(11/27 solved; difference significant at P≈ 0.013). When combined with the high success rate

of the preferential attachment Minority Power experiments (the difference between the 44/54

solved instances of all preferential attachment networks and the 11/27 solved Erdös-Rényi

networks is significant at P < 0.001), this finding indicates that, for this class of consensus

problems, preferential attachment connectivity may generally be easier for subjects than

Erdös-Rényi connectivity, an interesting contrast to problems of social differentiation such

as graph coloring [56], where preferential attachment networks appear to create behavioral

difficulties. Independent of the method for generating connectivity, Cohesion performance

improved systematically as within-group connectivity was replaced by between-group con-

47



nectivity, with the strongest performance coming from Cohesion networks in which most

subjects might have a preferred color different from those of a majority of their neighbors.

Across all Cohesion experiments, the success rate on the networks with the highest level of

inter-group connectivity (14/18 solved) and the success rate when connectivity was either

mainly intra-group or balanced (17/36 solved) are significantly different (P < 0.03). Thus,

increased awareness of the presence of opposing preferences improves social welfare. In terms

of behavioral collective dynamics, it appears that this awareness leads to early “experimen-

tation” with subjects’ non-preferred colors, resulting in more rapid mixing of the population

choices. Across all network structures, asymmetric incentives yielded the strongest collec-

tive performance (the overall asymmetric success rate of 22/27 differs from the combined

weak/strong symmetric success rate of 33/54 at P < 0.05), and, indeed, the extremist’s

preferences were dominant, determining the consensus outcome in 18 of the 22 successful

asymmetric experiments. Strong symmetric incentives (14/27 successes) yielded worse per-

formance than weak symmetric ones (19/27 successes). Thus, it appears most beneficial to

have extremists present in a relatively indifferent population, and most harmful to have 2

opposing extremist groups.

The results on collective behavior described so far have focused on the final outcomes of

experiments. The collective dynamics within individual experiments is also revealing, and

shows notable effects of network structure.

In Fig. 3.3 we provide visualizations of the collective dynamics in each of the 81 experi-

ments, grouped by network structure and incentive scheme. For each network and incentive

structure there is a set of axes with 3 plots corresponding to the three trials of those struc-

tures. Each plot shows the number of players choosing the eventual collective consensus

or majority color minus the number of players choosing the opposite color (y axis) at each

moment of time in the experiment (x axis). All plots start at 0 before any color choices

have been made;plots reaching a value of 36 within 60 s are those that succeeded in reaching

unanimous consensus. Negative values indicate moments where the current majority color
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is the opposite of its eventual value. Plots are grouped by network structure first (Cohesion

experiments with Erdös-Rényi connectivity in A; Cohesion experiments with preferential

attachment connectivity in B; Minority Power experiments in C), and then labelled with

details on the network and incentive structure. Within the Cohesion experiments, inter-

group connectivity increases from left to right; within the Minority Power experiments, the

minority size is decreasing from left to right. Several distinctive effects of network structure

on the dynamics can be observed. Many Cohesion experiments spend a significant period

“wandering” far from the eventual consensus solution. In contrast, Minority Power exper-

iments invariably experience an initial rush into negative territory as the majority select

their preferred color, but are then quickly influenced by the well-connected minority. Several

instances of rather sudden convergence to the final color can also be seen, even after long

periods of near consensus to the opposite color (e.g., blue plot in lower left corner axes of B

at about 50 s). Fig. 3.4 below provides a visual summary of some of the qualitative effects

of network structure on these dynamics.

Notable features include a ritual initial flurry of activity away from the minority prefer-

ence in the Minority Power experiments, followed by an inevitable assertion of the minority

influence over the population. There are also many instances in which a significant frac-

tion of the experiment is spent quite far away from the eventual consensus choice, including

near-total reversals of the collectively chosen color; see Fig. 3.3 and for further details.

Although these visualizations of the dynamics are rich in detail, it is difficult to extract

meaningful structural effects from them. In Fig. 3.4 we thus show the results of fitting

simple 2-segment random walk models to the experimental dynamics within each family of

experiments (fixed network and incentive structure).

For each of the 81 individual experimental plots in Fig. 3.3, we fit a 2-segment random

walk model to the data – one segment for the first 20 s of the experiment, and one for the

remainder of the experiment (similar findings result from different cut points between the

two segments). Within each segment, we simply compute the fraction p of “upwards” moves
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Figure 3.4: Visualization of biased random-walk model fits to the dynamics of Fig. 3.3.

(the number of moves toward the eventual majority color, divided by the total number of

moves within the segment). This can be interpreted as modeling the collective dynamics by

a random walk with probabilities p and 1−p of upwards and downward moves, respectively;

we refer to p as the bias of the model. Permitting independent bias values in the two

segments allows us to separately model the dynamics in the early and later portions of

each experiment. This yields a 2-parameter model for each of the 81 plots. Above we
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show the result of averaging over all incentive schemes and all repeated trials within the

9 families of network structures (Cohesion with Erdös-Rényi connectivity and 3 settings of

inter- vs. intra-group connectivity; Cohesion with preferential attachment connectivity in

3 inter- vs. intra- settings; and Minority Power with 3 different minority group sizes). For

each of these 9 families, we plot a point showing the average bias in the two segments, along

with a shaded rectangle delimiting the standard deviation in both bias parameters for that

family. The dashed lines show p = 0.5, where the model is unbiased (equal upward and

downward probability). Several qualitative effects of network structure are apparent. For

instance, Cohesion experiments tend to begin slowly (bias only slightly larger than 0.5), but

preferential attachment connectivity leads to more rapid convergence in the later portion

than does Erdös-Rényi connectivity. Increasing inter-group connectivity speeds the later

dynamics regardless of the connectivity type. Minority Power experiments tend to conclude

rapidly, but their early dynamics are strongly dependent on the minority size, with smaller

minorities slowing the early progress toward the eventual majority choice. When the minority

size is only 6, the first 20 seconds typically have a downward drift (bias p < 0.5).

These models clearly show the effects of structure on collective dynamics: In terms of

the rate of approach to the eventually favored color, Cohesion experiments with Erdös-Rényi

connectivity tend to both begin and end slowly, whereas those with preferential attachment

connectivity begin slowly but end more rapidly. Higher inter-group connectivity consistently

increased late-game speed toward consensus. The Minority Power dynamics ended relatively

fast, but early speed was heavily influenced by the size of their minorities.

3.3.2 Individual Behavior

It is natural to investigate the extent to which different human subjects exhibited distinct

strategies or styles of play across the experimental session, and the degree to which such

stylistic differences did or did not influence individual earnings. For any measure M of

individual subject behavior within an experiment (such as the number of color changes
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Figure 3.5: Illustration of the “random observer” method for detecting meaningful variation

in subject behavior.

made by the subject), we can compute the 36 average values for M obtained by taking

the 81-game average for each subject, and compare these to the distribution of “random

observer” averages, obtained by picking a random subject to observe in each experiment,

and averaging the resulting 81 M values. Because subjects were in fact randomly assigned

their network positions and incentives at the start of each experiment, if the variance of

the 36 actual subject averages significantly exceeds that of the random observer distribution

(according to a standard variance test), we can conclude that subjects exhibited meaningful

(greater than chance) variation on measure M .

Fig. 3.5 is an illustration of the “random observer” method for detecting meaningful

variation in subject behavior. The figure on the left shows in blue empirical cumulative dis-

tribution function (CDF) of total player wealth, in which wealth (x axis) is plotted against

the fraction of the 36 subjects earning at least that amount (y axis). It is very well-modeled

by the theoretical expected CDF generated by choosing a random player’s wealth indepen-

dently in each experiment (which is shown in orange), so we may conclude that the variation

in player wealth is explained by the random assignments to network position. In contrast,

the CDFs of the number of color changes taken by each player in the first several seconds

(the middle figure) and the total amount of “stubborn” time (the right figure) are poorly

modeled by the random observer CDF, showing considerably greater variance in both cases.

We note that it is particularly noteworthy that when the measure is wealth, subjects
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did not exhibit meaningful variation – thus the disparity in average or total wealth across

the session (which ranged from $46.50 total earnings to $58.75, with a mean of $52.76

and standard deviation of $2.46) is already well-explained by the random assignment of

subjects to positions. However, this finding in no way precludes the possibility that subjects

still display distinct “personalities”, nor that these differences might strongly correlate with

final wealth. For instance, subject “stubbornness” – as measured by the amount of time a

subject is playing their preferred color, but is the minority color in their neighborhood –

varies meaningfully (Fig. 3.5) and is positively correlated with average wealth (correlation

coefficient ≈ 0.43, P < 0.01). Being stubborn at the outset of an experiment (during the first

9 s) shows even stronger correlation with wealth (correlation coefficient ≈ 0.55, P < 0.001).

The number of color changes made by subjects in the opening seconds of an experiment

also varies significantly (Fig. 3.5) and is strongly negatively correlated with wealth (−0.58,

P < 0.001). Together, these results suggest that stubborn and stable players set the tone of

an experiment early.

Player stubbornness warrants further investigation, because it strikes at the heart of the

tension that is a focal point of the experiments – by being stubborn, one might improve the

chances of swaying the population toward one’s preferred color, but one also risks preventing

global consensus being reached in time (and thus forgoing any payoff). It is clear that no

subject was infinitely stubborn: The wealthiest player had their preferred color 28 times

out of 55 successful games but acquiesced to group dynamics and accepted the lower payoff

27 times. All other players acquiesced more often – up to as many as 40 times out of 55.

In the 26 games that failed to achieve unanimity, there were only 30 individual cases of

players defying all of their neighbors as time expired, and only 5 games ended in failure

due to players that defied all neighbors for more than the last 2 seconds of play. Only 3

individual players ever caused this kind of failure; one did it 3 times, but also acquiesced

38 out of 55 times and garnered relatively poor overall earnings. These facts combined with

the aforementioned correlation of stubbornness with wealth suggest that successful players
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managed to be “tastefully” stubborn, and that overall behavior was quite acquiescent.

In addition to the raw experimental data, subjects were given an exit survey in which they

were invited to comment on their own and others’ strategies, and these surveys provide a

rich and often consistent source of insight into individual styles of play. Twenty four subjects

explicitly mentioned starting off by choosing the color that would give them the higher payoff

upon consensus. Twenty seven subjects mentioned either trying to signal others, or noticing

others trying to signal; however, many also found this behavior annoying and said that it

did not help. Twenty-one subjects noticed others being irrationally stubborn, or expressed

suspicion that others were being irrationally stubborn. (Here we use the term “stubborn”

in the informal way it was given in the surveys, as opposed to the formal measure discussed

above.) Three subjects mentioned being stubborn themselves because they did not want

small payoffs. Seven subjects mentioned using different strategies depending on whether

their incentives were weak ($0.75 vs. $1.25) or strong ($0.50 vs. $1.50). Three subjects

mentioned changing their behavior as the night progressed, 1 subject developed a strategy,

and 2 subjects simply became tired. We note that there is no evidence in the data of the

collective performance improving or degrading significantly as the session progressed; for

instance, plotting the accumulated collective wealth vs. the progression of experiments in

the order they were conducted yields an almost perfectly linear curve.

Finally, 27 subjects mentioned following the action choices of their high degree neighbors

and/or being more stubborn when they themselves had high degree. It is interesting to

note that the average degree of subjects is much more weakly correlated with their wealth

(0.38, P ≈ 0.09) than the stubbornness and stability properties discussed above, despite

these reports of conditioning behavior on degrees. There is no inherent contradiction here,

because conditioning on degrees may appear primarily in the decision on how stubborn and

stable to play.

Despite the observed and reported variations in individual subject strategies, it is in-

teresting that one can approximately reproduce salient aspects of the collective behavior
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with rather simple and homogenous theoretical models of individual behavior. For example,

consider a “multiplicative” model in which a player who is paid w(c) for global convergence

to color c, and a fraction f(c) of whose neighbors are currently playing c, plays c in the

next time step with probability proportional to w(c)f(c) [60]. Such agents combine their

preferences (as given by the values w(c)) with the current trend in their neighborhoods (the

f(c)) to stochastically select their next color in a natural manner. If such agents are simu-

lated using the same networks and incentives as in the 81 human subject experiments, and

the number of simulation steps is capped (as it effectively is by the 1-min time limit of the

human experiments), there is rather strong correlation (0.60, P < 0.001) between subject

and simulation times to consensus.

3.4 Discussion

A number of further investigations are suggested by the findings summarized here. In partic-

ular, the variations in individual behavior and the apparently helpful presence of “extremists”

raise the question of whether certain mixtures of behaviors and attitudes are required for

optimal collective problem-solving. It would also be interesting to use the data from our ex-

periments to develop richer statistical models of individual and population behavior, whose

predictions in turn could be tested on further behavioral experiments.
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Chapter 4

A Behavioral Study on Bargaining in

Networks

4.1 Introduction

In this chapter, we continue our effort in bringing behavioral experiments to the study of

games in networks. We report on a series of highly controlled human subject experiments

in networked bargaining.

Networked bargaining is modelled as follows: players are the nodes of the networks, and

each edge in the network represents some fixed amount of money that can be realized by its

endpoints if they agree on how to split the amount. This agreement shall be referred to as

closing a deal. In addition, there is a deal limit on each node, which is the maximum number

of deals a player at that node is allowed to close, which could be less than its degree.

We were partly inspired by a long line of previous theoretical work which tried to relate

wealth to network topology in bargaining settings [27, 35, 10, 69, 15, 63, 6, 20]. A notable

feature of these theories is the prediction that there may be significant local variation in splits

purely as a result of the imposed deal limits and structural asymmetries in the network. One

can view our experiments as a test of human subjects’ actual behavior at this game in a

distributed setting using only local information. Our experiments are among the first and
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largest behavioral experiments on network effects in bargaining conducted to date.

As we did for the behavioral experiments in networked biased voting described in Chapter

3, we adopt many of the practices of behavioral game theory, which has tended to focus on

two-player or small-population games rather than larger networked settings. In each of our

experiments, three dozen human subjects simultaneously engage in one-to-one bargaining

with partners defined by an exogenously imposed network. Our work continues a broader

line of research in behavioral games on networks at the University of Pennsylvania[56, 48, 53].

Closest in spirit to the current work is that investigating networked exchange economies [48],

but the experiments here and the theories underlying networked bargaining differ signifi-

cantly from networked trading models.

In an extensive and diverse series of behavioral experiments, and the analysis of the

resulting data, we address a wide range of fundamental questions, including: the relationships

between degree, deal limits, and wealth; the effects of network topology on collective and

individual performance; the effects of degree and deal limits on various notions of “bargaining

power”; notions of “fairness” in deal splits; and many other topics.

The networks used are inspired from common models in social network theory, including

preferential attachment graphs, and some specifically-tailored structures.

In all our experiments, the number of deals that were closed was above 85% of the

maximum possible number. This is high enough to demonstrate real engagement, and low

enough to demonstrate real tension in the designs.

Most of the deeper findings can be related to existing network bargaining theory. Al-

though deals are often struck with unequal shares, more than one-third of the deals are

equally shared, thus indicating that people, while behaving as self-interested actors, also

have an aversion towards inequality.

Network topologies have enough of an effect that they can be distinguished statistically

via individual wealth levels and other measures. Higher degree, for example, tends to raise

bargaining power while higher deal limits tend to decrease it. But while local topology
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affects bargains, invisible competition also affects it, even when the local topologies are

indistinguishable. We find the expected effects of higher deal limits in the first neighborhood

and higher degrees in the first and second neighborhoods, but neither degree distribution

nor deal limit distribution is sufficient to determine the inequality of splits. In sum, there is

a rich interaction between network and wealth that needs more study.

Other findings that speak to no existing theories but might provoke some new ones are

the following:

• There is a positive correlation between inequality and social efficiency.

• Failures to agree on a split (as opposed to failures to find the best global trade config-

uration) form the greater part of missing efficiency.

• Social efficiency was higher when some uncertainty existed about a partner’s costs.

Finally, there are two curios that seem more about psychological dynamics than eco-

nomics: People who are patient bargainers tend to make more money; and an incidental

asymmetry in our protocol for closing a deal is correlated with a bias in the split.

In the ensuing sections, we review relevant networked bargaining theories, describe our

experimental design and system, and present our results.

4.2 Background

Networked bargaining with deal limits on the nodes, also known in the sociology literature as

networked exchange with substitutable or negatively connected relations (eg. [15]), has been

studied for decades. Several theoretical models have been designed to predict or propose

how wealth should be divided [35, 69, 27, 82], and human subject experiments have been

conducted on a few small graphs (up to 6 nodes) [25, 26, 82], albeit with different interfaces

and mechanisms than ours. Some of the theoretical models are based on limited experimen-

tation, along with simulated human behavior on slightly larger graphs [26]. A few models
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are based strongly on notions of game-theoretic rationality and are natural extensions of

standard economic literature to social networks. Two models that belong to this class were

introduced by Cook and Yamagishi [27] and by Braun and Gautschi [15]. We shall mainly

focus on these two models.

The model given by Cook and Yamagishi, sometimes referred to as equidependence the-

ory, is the most recognized theoretical model, and has received a lot of recent focus from

the theoretical computer science community [63, 6]. Though Cook and Yamagishi[27] con-

sidered only unique exchange networks (that is, where each vertex may close only a single

deal), the model is easily extendable to networks with varying deal limits. Every node is

assumed to play strategically with selfish game-theoretic rationality. An outcome describes

the division of wealth on various edges of the network. The outside option of a node is the

highest offer it can rationally receive from any of its neighbors, such that closing that deal

would benefit both parties, compared to the given state. An outcome is said to be stable

if every player’s earning is more than its outside option. Game-theoretic rationale suggests

that an outcome should be stable if the players act in a myopically selfish manner. Cook

and Yamagishi propose that the achieved outcome must be stable; moreover, they propose

that the achieved outcome should be balanced, that is, two parties that close a deal should

have equal additional benefit from this edge, where additional benefit is measured as the

amount by which the earning of a player exceeds its outside option. Kleinberg and Tardos

[63] showed that a stable and balanced outcome exists on all bipartite networks, but may not

exist in all networks, and if it does, the closed deals in a stable outcome form a maximum

matching. This equal division of surplus is stipulated by standard two-player bargaining

solutions such as the Nash Bargaining Solution and Proportional Bargaining Solution, for

players with linear utilities [75, 11].

Though a balanced outcome seems to be the most robust theoretical model, it has several

drawbacks, first and foremost that it does not exist on even simple networks such as a

triangle; and when it exists, there is a balanced outcome for every maximum matching
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in the network. This makes it computationally hard to even enumerate all the balanced

outcomes in a network, and non-uniqueness reduces the predictive value of such a model.

Another drawback is that the model often suggests that some edges will be shared so that

one party gets an infinitesimal share, and the other party gets practically the entire amount.

For example, a node that has at least two leaves (nodes of degree 1) as neighbors always

ends up with maximum possible profit, due to competition between the leaves. However,

even previous small-scale experiments [82] have suggested that such a phenomenon does not

happen, and in our experiments, players rarely close a deal that extremely favors one of the

players. Thus, when human subjects are involved, perfect local rationality seems to be an

incorrect assumption.

The model given by Braun and Gautschi [15] defines a “bargaining power function” on

nodes that depends only on the degree of the node and degrees of its neighbors. This function

increases with increase in degree of the node, and decreases with increase in degrees of its

neighbors, and is independent of all other network aspects. On each edge, the division of

wealth, if a deal is made, is stipulated to be proportional to the bargaining power of the

adjacent nodes. The bargaining power functions do not distinguish between different limits

on nodes, and generally assume that relations are negatively connected: that is, for any

given player, closing one deal reduces the maximum value that can be obtained from other

edges deals. This makes the model quite inadequate as a predictor for our experiments.

The other feature of this model is that network effects are quite local in nature, since even

slightly distant properties such as the degrees of neighbors of neighbors do not have an effect

on the bargaining power function. However, the model attempts to capture the notion that

the earning of a player depends positively on its own degree and negatively on the degree

of its neighbors. We test this notion on fairly large graphs for the first time, and we also

show that the degrees of neighbors of neighbors do affect a node positively. Such alternating

effects were predicted in previous theoretical models such as that by Markovsky et. al. [69],

which said that odd length paths from a node enhance its earning, while even length paths
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reduce it.

The most significant set of previous experiments were done by Skvoretz and Willer [82],

who conducted experiments on 6 small networks (each has at most 6 nodes), with only

unit deal limits in 4 of them. They found that some common intuitions held true in those

networks. For example, players who have deal limit one and multiple leaves as neighbors

gets the bigger fraction of a closed deal, and that this fraction reduces if the limit of the

player is raised. Among other results, we test such hypotheses extensively on much larger

graphs with much more variance in their degree and limit distributions, and establish these

hypotheses with very high statistical significance. Larger graphs also allow us to study the

effects of network topology aspects that are more involved than the degree or limit of the

player.

Recently, Chakraborty et. al. [20] designed an extension of the Cook-Yamagishi model,

in the setting where there are no limits on the number of deals. In this case, the model

predicts that all deals should be closed, and if players have linear utility (which is assumed

in the Cook-Yamagishi model), all deals should be shared equally. Unequal splits may occur

only if players have non-linear utility.

4.3 Experiment Design Overview

Although we mostly report the results of one session of experiments, we actually ran net-

worked bargaining games in 2 sessions, and one of them had 2 parts.

The first session entirely consisted of networked bargaining games where there was no

limit on the number of deals a vertex can close (in other words, a player at a vertex can

close deals on all edges incident on it). The first part of the first session involved no cost for

closing deals. The second part of the first session had a cost, specific to each vertex of the

network, that the player had to pay for each closed deal. We refer to these two settings as

basic setting and cost setting respectively.

The second session, which we refer to as the main session in the sequel, is the focus of
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this chapter. In this session, there were never any costs involved, but there was a limit on

the number of deals a particular vertex could close. We refer to this setting as the limit

setting. Note that a game in the basic setting can be viewed as a game in the limit setting,

but only if the limit of every node is equal to its degree.

Figure 4.1: Screenshot of player’s interface for bargaining.

4.3.1 Basic Setting

Fig. 4.1 shows a screen shot of the game interface used by each subject in our experiments

in the basic setting. The elements of it will be described roughly from top to bottom. The

game status shows “pending”, “in progress”, or “completed”, which helps the player stay

62



synchronized as a series of different games start, stop, and change. The elapsed time shows

the fraction of a minute (the length of each individual experiment) that has elapsed since

active play started.

The large section in the middle contains multiple elements. First, neighbor bands are

green vertical bands that show data about individual neighboring vertices or players in the

network; this example has 3 such vertical bands, indicating the presence of 3 neighboring

bargaining partners.

In the top line is a row of degree numbers, which indicate the number of other neighbors

each one of the user’s neighbors has in addition to himself.

Within the green band there are 2 pieces of data: the offer asked by the user from the

neighbor, and the counter-offer made by the neighbor to the user (the fraction that the user

would receive if he agrees to the neighbor’s offer). Each offer is shown as a horizontal bar in

the green band, with a number above it, ranging from 0.00 to 1.00, indicating the fraction

of the offer. The user can move the offer bar, which appears darker than the counter-offer

bar, which changes only upon the action of the neighbor, and simply conveys information to

the user.

The user can alter her offer to a particular neighbor by mouse-clicking on the green band.

The range of offers is divided into 50 equal parts, so that every offer must be a multiple of 2

%. Initially, the offer bar is set to the highest point in the neighbor band, that is, each user

is assumed to be demanding the entire value of the deal. Moving the mouse over the green

band also indicates the offer that would be made if the user clicks at that point, so that the

user can easily determine the place to click on, to make a particular offer.

Closing of a Deal When a player makes an offer to a neighbor, and the neighbor matches

the offer (which is accomplished by making the offer bar coincide with the counter-offer bar),

then the deal is ready to be closed. We refer to the former player as the proposer, while

the neighbor who matches the offer is called the acceptor. A button labelled close now

appears on the screen of the proposer below the appropriate neighbor band, while a wait
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Figure 4.2: Screenshot of player’s interface for bargaining in the cost setting.

sign appears on the screen of the acceptor below. The proposer can now close the deal by

clicking on the close button. Once the deal is closed, the money on that edge is realized

and split according to the offer that both parties agreed upon, with no negotiations possible

in the future. The neighbor bands on both users’ interfaces corresponding to this deal then

switches color to a faded green, and the offer bars become immovable. The bands also get

labelled as “closed”.

If either party changes his offer away from the agreed split before the close button is

pushed, then negotiations continue.
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Figure 4.3: Screenshot of player’s interface for bargaining in the limit setting.

4.3.2 Cost Setting

The interface in the cost setting (Figure 4.2 shows a screen shot) had all the features as

that in the basic setting, as well as a section at the bottom of the green band that could be

colored red. The height of the red band indicates the cost of closing the deal for that user.

Since there is only one cost for every vertex, the height of the red part is the same on all

neighbor bands in a single user’s interface. Note that a player can actually lose money in

this game, if he closes a deal where the offer bar lies in the his region.
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4.3.3 Limit Setting

The interface in the limit setting (Figure 4.3 shows a screen shot) had all the features as that

in the basic setting, and some added features related to the introduction of limits. Because

fewer deals could be made due to the limits compared to the first session, we increased the

value of each deal to 2 dollars. At the bottom of the screen, a message tells the user how

many more deals she can close. This number is initially equal to the limit of that vertex, and

is reduced by one whenever this user closes a deal. We call this number the residual limit. A

neighbor band is active only if both the user and the corresponding neighbor have positive

residual limit, else the band is faded out and is labelled “voided”. Further, there is more

information on the neighbor band. On each neighbor band, there are dots indicating the

offers that the respective neighbor is receiving at that time from all its neighbors who have

positive residual limit. Offers on closed deals are not shown. This information is valuable,

since the user is in a sense competing with these offers. If a particular neighbor has residual

limit k at some point of time, then intuitively, at that time, the neighbor can be expected

to close its top k offers. Thus the top k offers received by the neighbor is shown in the

corresponding neighbor band as red dots, while the remaining offers are shown in black.

Intuitively, the user should place her offer so that it lies among the red ones, if she wants to

get considered for a deal closure by that neighbor.

As mentioned the main session of experiment that we focus on in this chapter is the one

of limit setting, and we go on the describe it in detail in the next section.

4.4 Experimental Design of the Main Session

For our main session of experiments, we designed 18 different experimental scenarios (con-

sisting of specific choices of networks and arrangement of deal limits; each such scenario

received 3 trials, for a total of 54 short experiments). These scenarios were based on 8 differ-

ent graphs with a wide variety of details. The sole property they share is that they all have
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a b c

Figure 4.4: (a) PLP network with with LOH = 0.9294. (b) PL0 network with LOH =

0.0013. (c) PLN network with LOH = −0.8461.

36 nodes. We are thus casting our experimental nets wide here regarding network topology,

as in much of our previous behavioral work. This section describes all the scenarios, at least

at a high level.

The networks fall into 2 categories: regular graphs (to isolate and explore the effects

of variations in deal limits), and irregular graphs (which contain an assortment of different

degrees).

4.4.1 Irregular Graphs

We were interested in how bargaining behavior changes with changes in local network struc-

ture, and especially with differences in degree. Out of the huge space of such networks, we

chose four. The first three we describe all had a common degree sequence, but differed in

the way that nodes of each degree connected to nodes of other degrees. We generated a

single degree sequence with a distribution that approximately follows a power law, and used

it to build three graphs with different patterns of degree-to-degree profiles. We refer to these

graphs as PL (for Power Law) graphs.
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Figure 4.5: Schematic for a network with (a) positive LOH, (b) zero LOH, and (c) negative

LOH

Power Law Graphs

Since we suspected that degree might have a large influence on bargaining power (to be

confirmed below), it matters to the success of any node what the degrees are of other nodes

they need to bargain with. Hence it was important to manipulate the degrees of neighbors

as well.

By connecting nodes in different ways, we generated 3 graphs that differ in this manner

but have the same basic degree distribution (each has 2 nodes of degree 6, 3 of degree 5, 4

of degree 4, 5 of degree 3, 8 of degree 2 and 14 of degree 1). The difference in connection

pattern across these 3 graphs is measured by what we call level of homophily (LOH), and it

is defined as follows: For each of the edges in a graph, give it a pair of numbers being the

degree of its two ends arranged with the smaller one first. The correlation between the pairs
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is the LOH of the graph.

• PL with positive LOH (PLP). This network has a large variance in degree distri-

bution but low variance within each neighborhood. This models a ‘segregated’ world.

No edge bridges two nodes whose degrees differ by more than 2. On the other hand,

the graph is highly connected in the sense that there are considerable connectivity

between adjacent classes and within high-degree classes.

PLP is shown in Fig. 4.4a and it has a level of homophily of 0.9294. A schematic of

this network is shown in Fig. 4.5a, where nodes of the same degree are clustered into

a single node, and numbers on the links indicate the count of edges across the two

clusters in the original network.

• PL with zero LOH (PL0). PL0 has the same degree distribution as PLP but has

LOH = 0.0013. This network is shown in Fig. 4.4b and a schematic of it is shown

in 4.5b. PL0 models a world where nodes of different degrees mingle freely with each

other.

• PL with negative LOH (PLN). PLN has the same degree distribution as PLP and

PL0, but has LOH = −0.8461. This network is shown in Fig. 4.4c and a schematic of

it is shown in 4.5c. PLN models a world where the poor are likely to be ‘captivated’

by the connection-rich.

With each of the PL graphs above, we used each of the following 3 deal limit schemes to

obtain 3× 3 = 9 different scenarios. The first is the well-studied unique exchange situation

(uniq): all nodes have deal limit 1. The other 2 are neither unique exchange nor unlimited,

but represent two points in another large space of possibilities in between those notions.

They are best thought of as having random deal limits drawn uniformly between 1 and the

degree of the node. We call them limA and limB, and the difference is just that they are

different randomizations.
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Figure 4.6: The 2ndHood graph for testing second neighborhood effects.

Identical First Neighborhoods

The final irregular graph was designed specifically to test if structure outside the immediate

neighborhood of a node would affect its behavior. The network used for this test has two sets

of three identical nodes, which are colored blue and red in Figure 4.6. Both sets have degree 6,

and each of their neighbors have degree 7, so the local neighborhoods are indistinguishable

in our GUI views. Any differences in behavior must be due to the second neighborhood

or aspects even more distant. The second neighborhood of these two sets of nodes are

drastically different; the second neighbors of the red nodes includes the 20 leaves while the

second neighbors of the blues does not. This graph helped us identify the effects of second

neighborhood when the first neighborhoods of two nodes were identical. We used it only

with all nodes having deal limit 1. We refer to this scenario as 2ndHood.

4.4.2 Regular Graphs

The 8 remaining scenarios were all based on regular graphs. This allowed us to test effects

other than degree, like differing deal limits or large-scale market imbalances. One graph is

a 36-node cycle shown. Four of them are identical tori with different deal limit schemes.
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Figure 4.7: The edges running off the top and bottom denote wrap-around connections, as

do those off the sides. (a) Torus Uniform. (b) Torus Checkerboard. (c) Torus Rows. (d)

Torus Diamond.

Finally, three other graphs were used to observe the effects of a global supply imbalance,

and are described in the following.

Tori

The 4 tori are topologically the same, and are differentiated only through deal limits:

• Torus Uniform (torUniq). In this network all nodes have deal limit 1. It is shown

in Fig. 4.7a.
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• Torus Checkerboard (torChkb). In this network all white nodes have deal limit

1, the others have deal limit 3. It is shown in Fig. 4.7b.

• Torus Rows (torRows). In this network alternating rows have deal limit 1 and deal

limit 3. It is shown in Fig. 4.7c.

• Torus Diamond (torDiamnd). In this network some vertices have deal limit 1 and

some have deal limit 3. It is shown Fig. 4.7d.

Imbalanced Supply Networks
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Figure 4.8: The top line is a template for interpreting the others. Xdeals means external

demand. The “supply” in the 3 names refers to the number deals that the right side wants

versus the number available.

The supply networks are 3 regular graphs which were designed to study the effect of a

capacity issue which is not apparent at the node, but becomes apparent when contrasting

the deal limits of two groups of nodes. Let the external demand of a group be the sum of
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deal limits of the nodes in the group minus the maximum number of deals that can be closed

within the group.

In the supply networks, we defined the groups as the left group and right group as shown

in Figure 4.8. All nodes have degree 4. All vertices in the left group have deal limit 2, and

all vertices in the right group have deal limit 3. In each network, the right group has two

different types of neighbors: those that belong to the right group, and those that belong to

the left group. It is their differential treatment of the two types that was of interest. Nodes

on the left have only one kind of neighbor; they exist just to set up the market conditions

for those on the right.

The three graphs share the fact that all deal limits are either 2 or 3, and the ones on the

right have both types of neighbours. They are different in the ratios of external demands

between the left and right groups; in the Undersupplied case the right nodes are somewhat

starved for deals (seeking 39 when only 30 could be forthcoming), in Equisupplied they are

just balanced, and in Oversupplied they have more offers than they can use.

4.5 System Overview

Experiments were conducted using a distributed networked software system we have designed

and built over the past several years for performing a series of behavioral network experiments

on different games. This section briefly describes the user’s view of that system in our

bargaining experiments.

Like most microeconomic exchange models, the model described in Section 4.2 does

not specify an actual temporal mechanism by which bargaining occurs, but of course any

behavioral study must choose and implement one. At each moment of our experimental

system, and on each edge of the network, each human subject is able to express an offer that

is visible to the subject’s neighbor on the other end of the edge. See Figure 4.1. The offer

expresses the percentage of the benefit that a player is asking for.

When the portions on either end of an edge add up to exactly 100%, one of the players is
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able to close the deal by pressing a special button. Individuals can always see the offers made

to them by their neighbors, as well as some additional information (including the degrees

and limits of their neighbors, and the current best offers available to their neighbors). When

a deal is closed, or when one of the partners has used up his limit of deals, the relevant edge

mechanisms are frozen and no further action is allowed on them. Every game is stopped

after 60 seconds. Any money riding on deals not closed within that time is simply “left on

the table”, i.e. the players never get it.

All communication takes place exclusively through this bargaining mechanism. Actions

of a user are communicated to the central server, where information relevant to that action

is recorded and communicated to the terminals of other users.

4.5.1 Human Subject Methodology

Our methodology for the recruitment, treatment and compensation of human subjects has

Institutional Review Board approval at the University of Pennsylvania and broadly follows

established practices in behavioral economics.

36 undergraduate Penn students were recruited from a related course taught by author

Kearns. Subjects were familiar with simple graph concepts and their role in various real-life

situations, but had no prior knowledge of the particular games to be played.

A single lab with enough Linux workstations for all 36 subjects was used. Each one ran

a browser in a common account that was devoid of the students’ personal distractions. The

computer screens were arranged facing in opposite directions along long tables, so that it was

difficult or impossible to see any other screen. In addition to the authors, several graduate

student proctors were present during the experiments. All players were visible to proctors

at all times, so any attempt to communicate via sight or sound would have been detectable.

No books or electronics or any other materials were allowed anywhere but on the floor.

All players were let into the room together, and instructed to act as though they were

taking an exam. No private conversation was allowed. We gave a presentation explaining
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the game to be played. In the first session, we started with games in the basic setting. It

involved a review of the GUI, the mouse and keyboard controls, the goals of the players, the

fact that graphs were generated according to different schemes not divulged, and the fact

that players would be assigned to vertices in those graphs in an unbiased random fashion at

the start of each experiment. We emphasized that players had no information on the global

topology of any network used.

It was stressed that players’ physical neighbors in the room were not necessarily neigh-

bors in the graph, that the graph neighborhood would change with every game, and that the

identities of players would not be made known during the game or at any time afterward,

including all publications. Then all players logged into their machines. We did ask players to

provide their name, but made it clear that the sole use of that information was to compute

and distribute payments at a later date. One player’s screen was temporarily projected on a

large display at the front of the room while examples of play dynamics were demonstrated.

Questions were taken and answered aloud. When all players were satisfied that they under-

stood the purpose, mechanics, and semantics of the game and interface, we provided two

sample games for them to play in which cash rewards were not given but questions were

solicited.

We then started the sequence of 18 paying games in the basic setting. Each one was

preceded by an empty screen saying “waiting for game”, then the game GUI appeared on the

players’ screens, and we announced this aloud in the room in order to verify that everyone’s

machine was functioning properly. Players became familiar with the local structure of their

neighborhoods in the upcoming game. Their interfaces were live and would take inputs, but

the server would not yet process orders. After a few seconds, we announced the beginning

of the game and pressed a key on the server to enable play. A small bell rang on each

computer, followed by a silent 2 minute period, whose progress was displayed on the elapsed

time display at the top of every players’ applet GUI. A small bell rang when time was up,

and we also announced the end of play aloud. The screens remained frozen in their final
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game state so that players could take note of it. After a moment, at a command from the

server console, the screens reverted to the “waiting” display. On average, less than half a

minute was spent waiting for the next game to be ready.

After these games were completed, we gave a presentation describing the game in the

cost setting, with a review of the GUI and the features added to that of the basic setting.

We then started the sequence of 57 games, in the same way as we did for the games in the

basic setting.

The second session was arranged in the same fashion. After the initial presentation that

described the game the GUI for the limit setting, we followed it up by two demo games to

familiarize the students with the GUI, and then conducted the sequence of 54 games.

At the end of either session, we asked players to fill out an online survey form to record

observations, strategies, complaints, and suggestions about the games, the preparation, the

equipment, and the general event. On average, players earned about $70 in 3 hours.

As noted early in this chapter, this report shall always be describing the second session

(the main session) of experiments unless mentioned otherwise.

4.6 Results

Our results come under three broad categories. The first is about collective performance

and social efficiency. The second category examines questions about the differential fates of

nodes, depending on their position in the networks and the deal limits they each had. The

third category is about the general performance of humans summarizing behavior across all

the games they played. This is an area that no economic theory attempts to cover.

4.6.1 Social Welfare

Humans were quite effective at playing these games, but they paid a surprising price for

their refusal to close some deals.

To quantify how well humans did on this problem, we implemented a greedy algorithm
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for comparison. Given a graph and deal limits, it first generates a random permutation of

the edges, and then checks the edges one by one to close deals on them if this is possible, i.e.

if both endpoints have not already saturated their deal limits. This process is repeated many

times to obtain an average number of deals closed by the greedy algorithm. To normalize

both the human and greedy systems we divide by the Maximum Social Welfare, which is

the maximum number of deals that can close in each network, subject to both topology and

deal limits. The social welfare is the number actually closed, and the ratio between this and

the max is the social efficiency.

The observed human efficiencies are rendered in blue dots in Fig. 4.9, and the corre-

sponding data are shown in Table . In 6 of the networks (those below the diagonal), the

humans did worse than the greedy algorithm. Full efficiency is rare in both systems. One

might view this as the behavioral price of anarchy due to selfish players operating with only

local information. The greedy algorithm obtained an average of 92.14% of the maximum

welfare in our networks. In comparison, human subjects achieved an average social welfare

of 92.10% of the maximum welfare when averaged over all 3 trials, a surprisingly similar

figure.

There are two parts to this story, though, because solving these problems involves both

selecting edges and closing deals on them. The greedy algorithm does not address the deal-

closing issue and perforce never leaves a potential deal unclosed; the humans often did. In

36 of the 54 experiments, the solution found by the human subjects was not even maximal

– there were adjacent vertices that both could have closed another deal. Presumably this

was because they simply could not agree on a split. However, the humans left the system

in a state that could be improved post facto. We started the greedy algorithm in the final

state the humans reached and allowed it to attempt to find more deals, thus producing a

new state with no further unclosed deals. In all cases, this new state had a higher social

efficiency than the greedy algorithm achieved alone. This is shown in the orange dots of

Figure 4.9. A line connects the human performance to the potential human performance,
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Figure 4.9: Blue dots are what the humans actually achieved. Orange dots are the result of

applying the greedy algorithm to the final state of human play, which is what the humans

could have achieved without obstinacy. Vertical lines thus show the price of obstinacy. The

dotted line indicates equality of the two scales. The open circles represent the average values

over all scenarios.

and we might dub this difference the price of obstinacy. In total, 7.9% of the money was

“left on the table”, but 4.5% was due to obstinacy (more than half the lost value).

We conclude that the humans found better matchings in the graph, and hence their

behavioral price of anarchy is lower (better) than the greedy algorithm. But due to their

additional obstinacy, their overall performance was no better.

4.6.2 Nodal Differences

There was much evidence that nodal income depends on its deal limit, its degree, and

properties of the non-local neighborhood.
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network M trials Gr Hu Po
PLPlimA 27 26,24,26 0.94 0.94 0.99
PLPlimB 28 25,24,26 0.95 0.89 0.98
PLPuniq 16 14,12,15 0.9 0.85 0.94
PLNlimA 26 24,25,25 0.96 0.95 0.99
PLNlimB 26 24,22,22 0.95 0.87 0.99
PLNuniq 10 10,10,10 0.93 1. 1.
PL0limA 26 25,24,22 0.91 0.91 0.97
PL0limB 26 22,25,23 0.94 0.9 0.99
PL0uniq 13 12,13,13 0.86 0.97 0.97
cycle 18 16,17,14 0.86 0.87 0.93
Equisup 48 40,45,44 0.91 0.9 0.93
Oversup 49 43,46,46 0.92 0.92 0.95
Undrsup 42 41,41,42 0.96 0.98 0.98
2ndHood 10 10,10,9 0.9 0.97 0.97
torChkr13 18 18,18,18 1. 1. 1.
torDiamnd 23 23,21,22 0.86 0.96 0.97
torRows13 36 32,32,31 0.88 0.88 0.94
torUniq 18 15,18,16 0.91 0.91 0.96

Table 4.1: M is the maximum social welfare possible. Trials lists the number of deals closed

in each of the 3 replications. Gr is the average efficiency of a greedy algorithm. Hu is the

average efficiency of the humans. Po is the average potential of the humans.

Unequal Splits

Most theoretical models (for example, the Yamagishi-Cook model) that apply game-theoretic

rationality to bargaining suggest that deals in some networks will be split in an unequal

fashion. We will report the splits using their inequality value (Ineq), defined as the absolute

difference between the two fractional shares. It ranges from 0 (equal sharing) to 1 (one player

gets everything).

A total of 1271 deals were closed in all the 54 experiments, and 423 of them were split

equally (inequality=0). But most were not split equally, every possible granular division

was used for some splits, and 6 edges even had inequality=1 (which is surprising in itself

since one partner gains nothing by signing the deal). The histogram in Figure 4.10 shows

the inequality values. For comparison, we also show the histogram (in orange) from our
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preliminary session, which had no deal limits and produced an overwhelming portion of

deals that split 50:50. The average inequality value over all games in our main session was

0.2097, which is a ratio of about 60:40, It thus seems clear that deal limits are invoking a

significant increase in imbalanced splits.
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Figure 4.10: The orange distribution was from our preliminary session, and the bar at 0

(equal shares) goes to 82%. The blue bars are from our main session, where we obtained a

much greater spread of unequal splits.

Inequality and Efficiency

There is a significant correlation between average inequality value and the social efficiency

achieved in each scenario — that is, when the subjects collectively tolerate greater inequality

of splits, social welfare improves. These data are plotted in Fig. 4.11 and shown in Table

4.2. The correlation coefficient is 0.52 with a confidence level of p = .027.

Interestingly, in an earlier session of experiments without deal limits, the same correlation

is highly negative.
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Figure 4.11: The 9 PL networks are plotted in orange, and the 8 regular networks are plotted

in blue.

Degree Distribution and Equality

How well does degree distribution predict wealth distribution? We examined the PL networks

to answer this. The average inequality value in closed deals is 0.23 over the 3 PLPuniq

games (where nodes tend to be adjacent to nodes of similar degree), while it is 0.36 for both

PLNuniq (where nodes tend to be adjacent to nodes of very different degree) and PL0uniq

(where nodes tend to be adjacent to nodes of various degrees).

The inequality values of the PLPuniq experiments are less than the joint PL0uniq and

PLNuniq outcomes with a one-sided p < 0.02. This indicates that nodes that have an

opportunity to bargain with at least one other of similar degree have more power than one

that is forced to bargain only with higher-degree nodes. (These are all unique-exchange games,

so deal limit is not playing any distinguishing role.)

These three networks all have the same degree distribution. Hence, degree distribution is

not sufficient to predict inequality of wealth, even in unique-exchange networks.
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network
social
efficiency

average
inequality

PLPlimA 0.94 0.19
PLPlimB 0.89 0.17
PLPuniq 0.85 0.23
PLNlimA 0.95 0.38
PLNlimB 0.87 0.33
PLNuniq 1. 0.36
PL0limA 0.91 0.27
PL0limB 0.9 0.27
PL0uniq 0.97 0.36
cycle 0.87 0.08
Equisup 0.9 0.11
Oversup 0.92 0.09
Undrsup 0.98 0.15
2ndHood 0.97 0.5
torChkr13 1. 0.36
torDiamnd 0.96 0.27
torRows13 0.88 0.13
torUniq 0.91 0.09

Table 4.2: Inequality and social efficiency of each network, averaged over 3 trials.

Deal Limit Distribution and Equality

A similar story holds for deal limit distribution. Even if the distribution of deal limits for

two networks are identical, the experimental results can differ widely based on whether a

node bargains with nodes of similar deal limits or differing deal limits.

In Torus-Uniform, all vertices have the same deal limit. In Torus-Rows, all vertices have

two neighbors with the same deal limit (1 or 3) and two neighbors with a different deal limit

(3 or 1). In Torus-Checker, all nodes are bargaining with nodes of a different deal limit.

The average inequality values are 0.086, 0.13, and 0.36 for Torus-Uniform, Torus-Rows

and Torus-Checker respectively. A means test shows these are all pairwise distinct with

p < .03. These networks all have identical topologies. Thus, when network topology is not

playing any distinguishing role, if vertices bargain with vertices of similar deal limits, the

deals are on more equal terms compared to when vertices with differing deal limits bargain.
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High Degree Confers Power

Over all closed deals in the PL graphs, the fractional take per closed deal of each node has

a correlation of 0.47 with the degree of that node. If, to reduce the confound of differing

deal limits, the study is confined to just the PL*uniq graphs, then the correlation coefficient

is 0.59. Both these correlations are highly statistically significant. Thus, bargaining power

increases with the size of the local market , at least in the setting where deal limits constrain

behavior.

High Deal Limit Undermines Power

While higher degree confers bargaining power, higher deal limits had the opposite effect.

The Torus-Rows graph was designed specifically for testing the effect of deal limit on

a node’s bargaining power. In this graph, all nodes are identical up to relabeling, but

half of them have deal limit 1 and half have deal limit 3. So if there is any systematic

difference between two nodes’ bargaining power, the difference in their limits can be the

only explanation.

In the deals closed by limit-1 nodes, their mean fraction of the deal is 0.57. The limit-3

nodes obtained an average of 0.48. The difference was highly significant. (The two fractions

do not add to unity because not all deals were between the two groups.) If only those deals

between the two groups are considered, the fractions are 0.57 vs 0.43 and the difference is

even more significant. The summary is that a higher deal limit confers less bargaining power.

Effect of Global External Demand

The supply networks were designed to study the effect of external demand. This property

is not apparent at the node, but becomes apparent when contrasting the deal limits of two

groups of nodes. In each supply network, the supply of deals from the left group (recall

Figure 4.8) was manipulated to starve or overfeed the right group. How does the split of a

deal depend on that relative supply?
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In the Undersupplied case the right nodes must compete among themselves for the at-

tention of nodes in the left side, so we might expect their shares to be smaller than the left

side’s. In the Equisupplied case, the external demands are equal, so we might expect no

differential in bargaining power. In the Oversupplied case, the left nodes must compete for

deals from the right side, so we might expect their share of the deals to be smaller than the

right.

external demand avg shares
left right left right

Undersupplied 30 39 0.57 0.43
Equisupplied 24 24 0.55 0.45
Oversupplied 20 14 0.52 0.48

Table 4.3: The average splits shown are for edges between left and right nodes. Edges

between right nodes have an average share of 0.5 by definition.

Table 4.3 shows the results. There is a correlation of −0.19 (p = 0.01) between the

external demand ratio and the deal share of the left nodes. The divisions favor the limit-2

nodes in all cases, consistent with the results of the previous section. However, that local

property of relative limits is modulated by the global supply and demand ratio.

First Neighborhood Effects

We examined the three PL*uniq scenarios to find effects attributable to the degrees of first

(one-hop) neighbors. For both nodes in all deals in the PL*uniq games, compute the fraction

of the node’s take and the average of the degrees of its neighbors. The correlation between

these quantities is −0.60 and is highly significant. Similar results occur when the data are

restricted to just those nodes with some fixed degree.

The clear and consistent story in unique-exchange games is that the share obtained de-

creases as the average degree of the neighboring nodes increases .

The opposite story holds when the first neighbors have higher deal limits. We compared

the 4-regular networks torRows and torChkr. In torRows, a vertex of deal limit 1 has two
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neighbors of deal limit 1 and two neighbors of deal limit 3, while in torChkr, a vertex of

deal limit 1 has all four neighbors with deal limit 3. The mean share of the former was 0.57

while the latter obtained 0.68. The difference is statistically significant with p = .0001. The

bargaining power of a vertex is enhanced when neighboring vertices have higher deal limits.

Second Neighborhood Effects

How does the network effect propagate beyond the immediate neighborhood? The 2ndHood

structure has two sets of 3 nodes, each of which have identical degree and first neighborhood

degrees. The results of the previous section will be mute about how these nodes fare.

However, the second (two-hop) neighborhood of these nodes are drastically different: the

neighbors’ neighbors are leaves for 3 of them, and part of a clique for the other 3. The mean

share of the first group was 0.347, the mean share of the second was 0.571, and the 2-sided

p value was 0.027. The bargaining power of a vertex is enhanced if its neighbors’ neighbors

have higher degree.

4.6.3 Comparison with Theoretical Models

We shall now point out some structural differences in solutions given by theoretical models

and those found by human subjects. For our main session, where nodes have limits, we

narrow our attention to the PL*uniq networks, since the Cook-Yamagishi model [27] was

originally designed for unique exchange networks, and fails to make a stable prediction on the

2ndHood network. The model predicts that maximum social welfare (maximum matching)

will be achieved on all the PL*uniq networks, which is rare in the experiments, as reported

in Section 4.6.1.

Further, the model predicts that a node with at least two leaves (nodes of degree 1)

as neighbors always ends up with 1 − ε fraction of a deal. This is due to myopic, rational

competition between the leaves, where ε is the smallest non-zero amount that can be received

by a node by signing a deal (this is the granularity of offers available in the GUI, and we

let ε = 0.02). Accordingly, the model predicts that there should be at least 30 such skewed
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deals in our experiments with the PL*uniq networks. In contrast, we find that there is 1 deal

where one node gets 100%, 5 deals where one node gets 98%, and only 10 deals where one

node gets more than 90%. Further, all but one of these deals are between a leaf node and a

node of degree 5 or 6. This indicates that extremely skewed deals are much rarer than what

game-theoretic rationale suggests, and is more likely when the degree differences are larger.

In our preliminary session, where nodes have no limits, unequal splits are rare, as reported

in Figure 4.10. Chakraborty et. al. [20] designed a model for this setting. It predicts that

all deals will be shared equally if the players ate the nodes have linear utility functions,

and network effects may arise only due to non-linearity of player’s utility. So the results of

the experiments can be explained in this model if we assume that in our range of payoffs,

the players have near-linear utility functions. This is not very surprising, since a player can

make only a few dollars in each experiment.

4.6.4 Human Subject Differences

Humans were randomly assigned to nodes in each experiment and randomly reassigned in

each replication of a scenario. Hence none of the results above could be ascribed to human

differences. However behavioral literature is replete with examples of how human subjects

leave their stamp, and some traits emerge in our data too.

Patience

The correlation between the average time for each human to close a deal and the average

gain from closed deals, aggregated over all deals in all games, is 0.6664 (p = 0.00). See data

in Figure 4.12. Apparently, patience pays off.

Proposer vs. Acceptor

The user interface mechanism involved the following protocol for completing a deal: one

player (proposer) makes an offer, the other player (acceptor) accepts that offer by matching it,

and then the proposer closes the deal. This was not designed to provoke any asymmetry, but
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Figure 4.12: There are 36 dots here, corresponding to the 36 human players.

was intended to avoid unintended closed deals due to accidental mouse-clicks. Nevertheless,

by looking only at what the shares of the two parties were, can we say which party is more

likely to have been the proposer? We find that indeed we can, and the party which gets

the higher share is more likely to be the proposer. The mean proposer share across all

experiments was 53.6%, and the acceptor share was 46.4%. The Kolmogorov-Smirnov test

rejects the hypothesis that these shares come from identical distributions with p < 10−14.

Some psychological effect is clearly being expressed by this subtle asymmetry in protocol.

All possible split ratios in closed deals were at least once proposed by someone (and

accepted by someone), with the sole exception of 0:100%. The six cases where all the money

went to one player were all proposed by the high-share side. It may be “irrational” for

someone to agree to get 0, but it would have been even odder to see someone propose that

he get 0.
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The Effect of Uncertainty in Costs

This last section is strictly about our preliminary experimental session, in which there were

no deal limits imposed–so the limit on each node was effectively its degree. Here we found

that social efficiency was higher when the players were simply uncertain about a particular

detail regarding their neighbors.

In the latter half of the preliminary session, we imposed varying transaction costs on

nodes, which a node must pay for every deal it closes. The first half of the experiments had

no costs. Occasionally during the latter half, we quietly imposed zero cost on every vertex.

This allows us to compare those games to the setting without costs.

This cost was specific to each vertex. Only the player at that vertex, but not its bargaining

partners, knew how much this cost was. We varied the costs significantly, from 0 up to 40%

of the value of the deal. This generated enough uncertainty that in the few instances where

every vertex had zero cost, no one could infer the costs of his partner. This 0-cost setting can

be directly compared to the basic non-costed setting where every player knows that there are

no costs involved. Hence the two situations were distinguished only by a lack of certainty.

Players closed more deals in the (uncertain) 0-cost case than in the (known) no-cost case.

The efficiency columns of table 4.4 show the fraction of possible deals that were closed in the

two cases. The fraction went up in all 5 networks; the difference is significant with p = .004.

Evidently, the level of obstinacy rises when people know for certain that their partner has no

costs .

The average inequality values of the deals and the standard deviations are also shown in

the table. We expected the splits to be more uneven in the zero-cost case, but no consistent

story was found.

88



efficiency average
inequal-
ity

std. dev.
of inequal-
ity

non zero non zero non zero

PLP 0.85 0.96 0.012 0.01 0.033 0.037
PL0 0.84 0.93 0.009 0.009 0.025 0.029
PLN 0.72 0.93 0.027 0.012 0.057 0.051
CWC 0.84 0.95 0.015 0.023 0.035 0.076

2ndHood 0.84 0.97 0.014 0.009 0.040 0.044

Table 4.4: The CWC (short for cycle with chords) network was used only in session 1; all its

nodes had degree 2 or 3. The others were as described for our main session.

4.7 Conclusions

The background theory is not yet prepared to describe all the phenomena we have observed

here. Some bargaining theory suggests one party to a deal might get an infinitesimally small

share, but our mechanism does not allow this. Hence our results cannot be exactly matched,

but the scarcity of splits that are 98% or above seems to hint that the notion of “rationality”

used by these theories needs to be adjusted. Other aspects of our results support theoretical

models, notably the finding that phenomena at odd and even-length distances from a node

alternately enhance and detract from the node’s earnings.

The findings peculiar to people –namely the prevalence of obstinacy, the value of patience,

the effect of protocol in the closing of a deal, and the state of knowledge about the partners–

are all in need of theoretical development. It seems these findings argue for the further

need to integrate the fields of economics, game theory, sociology, psychology, and computer

science.
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Chapter 5

Network Faithful Secure Computation

5.1 Introduction

Within artificial intelligence and machine learning, statistics, and signal processing, there has

been great recent interest in an important class of highly distributed protocols on graphs

known broadly as message-passing algorithms. Notable examples include belief propaga-

tion [78, 85], Gibbs sampling [18, 37], Nash propagation in graphical games [54, 76], gossip

algorithms [14], survey propagation [16], constraint propagation [28], and many others. More

generally, message-passing formalisms have long been studied in distributed computing.

With rising interest in large-scale, decentralized networks such as the Internet, message-

passing algorithms are of increasing appeal and importance due to their highly localized

communication and their lack of any need for non-local topological information; in most

instances parties do not even need to know the overall size of the network, yet they can

compute sophisticated global functions, such as joint distributions and Nash equilibria.

In many applications of such algorithms, privacy may be an important consideration.

Consider, for example, a large social network in which each node represents an individual

and each edge represents a relationship between individuals. Imagine that each party in this

network would like to compute his or her own probability of having contracted a contagious

disease, which depends on the probabilities that each of his or her neighbors in the network
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have been infected. This could be accomplished by running the standard belief propagation

algorithm on the network. However, if the network participants engage in standard belief

propagation, each party will learn much more than their own probability of contracting the

disease. In particular, each party could potentially learn information about the exposure

probabilities of their neighbors, as well as more global information (such as the fraction of

the population that has been infected). Obviously, such leakage of non-local information

may be highly undesirable.

One approach would be to simply apply classic and powerful tools from secure multi-party

computation [84, 39] (SMPC in the sequel) to the message-passing algorithms, preserving

their input-output functionality while imbuing them with very strong privacy properties.

Unfortunately, this straightforward approach would largely eradicate the benefits of the

message-passing framework in the first place. Most importantly, classic SMPC would im-

mediately “centralize” the computation, requiring all parties to maintain and communicate

distributed shares of every computation in the original protocol — even if these computations

are very “distant” in the network.

In this chapter we seek to get the best of both worlds — the highly distributed, local

communication of message-passing, along with (at least some of) the traditional privacy

assurances of SMPC. Our main results establish that essentially any message-passing pro-

tocol can be compiled into an “equally distributed” protocol that is secure with respect to

individual parties misbehaving (1-privacy), and that security against even small coalitions

is impossible without the cost of some centralization. Thus we demonstrate a fundamental

trade-off between decentralization and security against coalitions that is tight.

We note that if all we ask is that the secure protocol take place on the same graph as the

original protocol, with no attempt to pair states between the original and secure, there are

trivial and uninteresting (and very inefficient) ways of obeying the network structure that

inject security but still effectively centralize the computation. For instance, the network

could simply be used as a global broadcasting mechanism for public keys, and then one

91



could simulate the centralized solution of classical SMPC. For this reason it is important to

have a more demanding definition of “faithfulness” to the original protocol, which indeed

our 1-privacy compiler will obey. On the other hand, our notion of faithfulness is also quite

general in that all we require is a matching of informational states for subsets of vertices

between the original and secure protocols; yet we will show that any protocol obeying this

very general definition is fundamentally limited in its immunity to collusion by coalitions.

The main contributions of this chapter are:

• A general formalization of message-passing algorithms on distributed networks that

includes all of the examples mentioned above.

• A general compiler turning any message-passing algorithm into a protocol that is prov-

ably secure with respect to single parties (1-privacy). At a high level, this compiler

carefully distributes and propagates the shares of each step of the computation over

just those parties directly involved in it in the original protocol, as well as some of

their neighbors.

• A (parameterized) definition of faithfulness to the original distributed protocol, and

a proof that our compiler produces highly faithful 1-private protocols. The notion of

faithfulness is information-theoretic and simulation-based, asking that views of sets of

parties in the original be computable from views in the secure, and vice-versa.

• Impossibility results showing that the results above are essentially tight — namely,

that protocols that are highly faithful to the original protocol must, in general, be sus-

ceptible to collusion by small coalitions. The generality of the definition of faithfulness

shows that this trade-off is fundamental.

Related Work. To our knowledge, there are relatively few works that attempt to find

constructions of SMPC that preserve more refined properties than just the computational

complexity of the original (insecure) protocol (i.e. polynomial-time overhead). One exception
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is research attempting to preserve or minimize communication complexity [74]. The work

most closely related to ours is that of Kearns et al. [59], who examine limited versions of

the type of results presented here, giving secure protocols without proof for private belief

propagation and Gibbs sampling. Here we generalize their results considerably, and also

provide the aforementioned faithfulness notion and impossibility results.

5.2 Message-Passing Algorithms

Message-passing algorithms have been studied for decades in the distributed computing, ar-

tificial intelligence, signal processing, statistics, and information theory communities, among

others. Several general definitions of message-passing algorithms have been proposed over

the years. Aji and McEliece’s generalized distributed law[1] generalizes many “sum-product”

style message-passing algorithms including belief propagation, the Baum-Welch “forward-

backward” algorithm, the Viterbi algorithm, fast Fourier transform, and others. The defini-

tion we provide here is strictly more general, and additionally includes any algorithms that

fit into the general “message-passing model” of distributed computing.

Let G be a graph with vertices X . For any node Xi ∈ X , we denote by N (Xi) the set

of neighbors of Xi. Loosely speaking, a message-passing algorithm on G is an algorithm in

which information is passed from nodes to their neighbors, propagating through the graph

over time through a series of local interactions. These messages generally include some local

information pertaining to nearby nodes, but may also depend on information that originated

at arbitrarily distant nodes. Formally, we define a message-passing algorithm on G as follows.

Definition 3 (message-passing algorithm). A distributed algorithm on a graph G is a message-

passing algorithm if it can be abstracted in the following way. Each node Xi ∈ X maintains

a current state σ(Xi) which at all times contains its initial input and the content of the

messages it has been passed.1 The algorithm runs in a sequence of rounds. At each round t,

there is a single distinguished node Xν(t) that is central to computation, where the (possibly

1The state is akin to the idea of a view in cryptography, but may also contain additional information.

93



randomized 2) schedule ν is fixed before the algorithm is run and is thus independent of the

computation.

Each round t consists of two phases:

1. Message Passing Phase: Let {U1, U2, ..., Ud} be the neighbors of Xν(t). In the message-

passing phase of the algorithm, each neighbor Uj passes a (possibly empty) message

µ(Uj) to Xν(t) where µ(Uj) may depend on σ(Uj) in an arbitrary way.

2. Computation Phase: After receiving all of the messages µ(Uj) from its neighbors, Xν(t)

computes some (possibly vector-valued) function Ft(σ(Xν(t)), µ(U1), µ(U2), . . . , µ(Ud))

and sets his own current state to the output of this function.

After the algorithm has been run for T rounds, each node computes its own local output based

on its current state.

On the surface, this definition appears to differ from the standard message-passing model

of distributed computing, where it is generally the case that at each round of computation,

every node sends messages to all of its neighbors based on its view of the computation,

and every party updates its view based on the messages it has received. However, note

that any algorithm that fits into this framework also meets Definition 3 and vice versa, so

we lose no generality by defining message-passing algorithms in this way. Our definition is

more appropriate for algorithms such as belief propagation or Nash propagation in which

information is propagated over time from one part of the graph to another and back again,

with only a small set of vertices active at any time.

5.3 Secure Computation

Typically, a multi-party protocol is considered private in the semi-honest model of cryptog-

raphy if anything a set or coalition of semi-honest parties could efficiently compute after

2Randomized update schedules are common, for instance, in applications of Gibbs sampling.
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participating in the protocol could have been computed efficiently from their joint input and

output alone. The difficulty of applying such a strong definition to distributed protocols is

demonstrated in Section 5.5.1. Throughout this chapter, we consider the weaker notion of

k-privacy, which requires privacy only against coalitions of size k or smaller. For example,

1-privacy requires that anything a single party could compute after participating in the pro-

tocol could be computed efficiently from that party’s own input and output alone. More

formally, k-privacy is defined as follows.

Definition 4 (k-privacy in the semi-honest model). Let f : ({0, 1}∗)m → ({0, 1}∗)m be an

m-ary function, where fi(y1, . . . , ym) denotes the ith element of f(y1, . . . , ym). Let Π be an

m-party protocol for computing f . The view of the ith party, denoted viewΠ
i (~y) is defined as

(yi, ri, ~mi) where yi is the private input of i, ri is i’s random string, and ~mi is the sequence

of incoming messages to i throughout the protocol. The joint view of a set I = {i1, . . . , i`},

denoted viewΠ
I is defined as (I,viewΠ

i1
, . . . ,viewΠ

i`
). We say that Π k-privately computes

f if for every set I such that |I| ≤ k, there exists a polynomial-time algorithm S (referred to

as the simulator) such that

{(S(I, (yi1 , . . . , yi`), (fi1 , . . . , fi`)), f(~y))}~y∈({0,1}∗)m
c≡ {(viewΠ

I (~y),outputΠ(~y))}~y∈({0,1}∗)m

where outputΠ(~y) denotes the output sequence of all m parties after the given execution of

Π and
c≡ denotes computational indistinguishability.

We will make use of the following remarkable and important theorem, which states that

any m-ary function that can be computed efficiently by m parties can be jointly computed

efficiently with arbitrary restrictions on who learns what. The two-party version of this result

(abbreviated S2PC) was first developed by Yao [84] and was later extended to the multi-

party case by Golreich et al. [39] Similar results have also been developed in the private

channel model [9, 22].

Theorem 7 (Secure Multi-Party Computation (SMPC)). Let f(y1, . . . , ym) be any (possibly
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randomized) m-input, m-output functionality that can be computed in polynomial time. Then

under standard cryptographic assumptions,3 there exists a polynomial time protocol Π that

m-privately computes f (that is, a protocol in which party i or coalition I learns nothing not

already implied by their private input and private output).

The proof of Theorem 7 is constructive, providing a method to transform any polynomial

circuit into a polynomial-time m-private protocol for m parties. Using this theorem, we

could immediately infer the existence of a centralized algorithm for privately computing the

output of a message-passing algorithm. We will show that our highly distributed protocol also

maintains privacy. Our general protocol will rely on local applications of secure multi-party

computation, each limited to only two parties.

5.4 The General Secure Propagation Protocol

In this section we describe the Secure Propagation protocol for securely executing any

message-passing algorithm in the semi-honest model. We discuss how to extend this protocol

to the malicious model in Appendix B.3.

Like the standard protocol for secure multi-party computation, Secure Propagation main-

tains the invariant that shares of each computation are distributed among multiple nodes in

such a way that no one node can learn the values being computed. However, unlike standard

SMPC, each computation in Secure Propagation is distributed among only a small number

of nodes (in particular, a pair of neighbors), thus requiring that the shares be propagated as

the center of computation moves around the graph from round to round. In particular, the

state of any given node is always split between itself and each of its neighbors. The shares

held by the neighbors must be updated each time the state itself is updated, effectively

propagating the new information one step further in the graph.

Assume without loss of generality that the specification of the message-passing algorithm

provides the schedule ν, that each node Xi knows the form of the function Ft it must calculate

3An example would be the existence of trapdoor permutations [38].
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on all rounds t such that ν(t) = i, and that each node knows how to properly calculate

an outgoing message from its current state depending on which neighbor is requesting the

message.4 Let D(Xi) ∈ N (Xi) denote a special distinguished neighbor of Xi, and assume

that this neighbor has already been chosen for every i. The role of the distinguished neighbor

will be to help maintain security whenever Xi is required to perform a computation.

Before the main protocol begins, each node Xi generates a public key pk(Xi) and corre-

sponding secret key sk(Xi) using a key generation function G from any semantically secure

public key encryption scheme and its random tape. Xi then distributes its public key to

each of its neighbors, who in turn distribute it to each of their neighbors. The necessity of

distributing keys to nodes two hops away in the graph is discussed in Section 5.5.1.

Throughout the execution of Secure Propagation, we will maintain the invariant that the

state σ(Xi) is split between Xi and each of its neighbors. More specifically, we assume that

Xi is in possession of σ0(Xi) and that each neighbor of Xi is in possession of σ1(Xi), where

σ(Xi) = σ0(Xi) ⊕ σ1(Xi). Thus, at the beginning of the protocol, each node Xi must split

its initial state (i.e. its input) between itself and each of its neighbors. It can do this by

generating σ0(Xi) uniformly at random from all strings of the appropriate length, setting

σ1(Xi) = σ(Xi)⊕ σ0(Xi), and distributing σ1(Xi) to each neighbor.

Now, at each round t of the message-passing algorithm, there will be some node Xi

with neighbors {U1, . . . , Ud} that needs to compute Ft(σ(Xi), µ(U1), µ(U2), . . . , µ(Ud)). This

first requires computing each of the incoming messages. For each Uj ∈ N (Xi), Xi and Uj

together have enough information to compute the message µ(Uj) since this depends only on

σ(Uj) which is split between them. Thus by Theorem 7 we know it is possible to construct

a protocol for them to perform this computation in such a way that Xi learns only a value

µ0(Uj) and Uj learns only a value µ1(Uj), where µ0(Uj) and µ1(Uj) are each distributed

uniformly at random and µ(Uj) = µ0(Uj)⊕ µ1(Uj).

4This information should all be specified in the description of the particular message-passing algorithm.
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Algorithm 3 The Secure Propagation protocol for the semi-honest model

// Input: Schedule ν, functions Ft for all t ∈ {1, . . . , T},
// and a protocol for computing messages at each rounds
// Generation and distribution of public keys
for all nodes Xi do
Xi generate public key pk(Xi) and secret key sk(Xi) using generation function G
Xi passes pk(Xi) to each Uj ∈ N (Xi), who in turn passes it to each node in N (Uj)

end for
// Initial distribution of state information
for all nodes Xi do
Xi generates σ0(Xi) uniformly at random
Xi sets σ1(Xi)← σ(Xi)⊕ σ0(Xi) and sends σ1(Xi) to each Uj ∈ N (Xi)

end for
// The main protocol
for t = 1 to T do

Set i← ν(t)
for all Uj ∈ N (Xi) do
// Calculate the incoming messages for Xi

// Here µ(Uj) = µ0(Uj)⊕ µ1(Uj)
Xi and Uj engage in S2PC; Xi learns µ0(Uj); Uj learns µ1(Uj)
if Uj 6= D(Xi) then
Uj sets µ∗1(Uj) = Encpk(D(Xi))(µ1(Uj)) and sends µ∗1(Uj) to Xi

Xi sends µ∗1(Uj) to D(Xi)
D(Xi) learns µ1(Uj) = Decsk(D(Xi))(µ

∗
1(Uj))

end if
end for
// Privately calculate the updated state for node Xi

// Here σ(Xi) = σ0(Xi)⊕ σ1(Xi) = Ft(σ(Xi), µ(U1), µ(U2), . . . , µ(Ud))
Xi and D(Xi) engage in S2PC; Xi learns σ0(Xi); D(Xi) learns σ1(Xi)
for all Uj ∈ N (Xi)\D(Xi) do
// Redistribute shares of Xi’s state to all of its neighbors
D(Xi) sets σ∗1(Xi) = Encpk(Uj)(σ1(Xi)) and sends σ∗1(Xi) to Xi

Xi sends σ∗1(Xi) to Uj
Uj learns σ1(Xi) = Decsk(Uj)(σ

∗
1(Xi))

end for
end for
// Final calculation and distribution of output
// The final output for Xi is assumed to depend only on σ(Xi)
for all nodes Xi do
Xi and D(Xi) engage in S2PC; Xi learns its final output; D(Xi) learns nothing

end for
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Now that µ(Uj) is split between Xi and Uj for each Uj ∈ N (Xi), it would be simple to

again invoke Theorem 7 to show that there is a protocol for Xi and all of its neighbors to

together securely compute the value of the function Ft. However, we would like to limit the

applications of secure two-party computation to only take place only between pairs of nodes

that are neighbors on the graph, and not require that it is applied to entire neighborhoods.

We will accomplish this by transferring shares of information about the messages of each of

Xi’s neighbors to the distinguished neighbor D(Xi). Specifically, each Uj ∈ N (Xi) such that

Uj 6= D(Xi) encrypts µ1(Uj) using the public key of D(Xi). It sends this encrypted share of

its message to Xi who passes it on to D(Xi). D(Xi) can decrypt the share using its secret

key and obtain µ1(Uj).

Once D(Xi) is in possession of these message shares for each neighbor, it is easy to see

that Xi and D(Xi) will together be able to compute the value of the function Ft securely

and calculate the new value of Xi’s state, σ(Xi) ← Ft(σ(Xi), µ(U1), µ(U2), . . . , µ(Ud)). By

Theorem 7, there is a way for them to compute it such that Xi learns only the new value

σ0(Xi) and D(Xi) learns only the new value σ1(Xi), where σ0(Xi) and σ1(Xi) are each

distributed uniformly at random and σ(Xi) = σ0(Xi)⊕ σ1(Xi).

Finally, to maintain the invariant, the new value of σ1(Xi) must be distributed to the

other neighbors of Xi. This can also be accomplished using public key encryption; D(Xi)

encrypts σ1(Xi) using the public keys of each of Xi’s neighbors and passes the encrypted

shares to Xi who in turn passes them to the neighbors.

Once all T rounds have been completed, each node Xi and its distinguished neighbor

can engage in S2PC one last time in order to allow Xi to learn its final output based on its

current state. A complete formal description of the Secure Propagation protocol is given in

Algorithm 3.
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5.4.1 Proof of 1-Privacy

Theorem 8. The Secure Propagation protocol 1-privately computes the output of a general

message-passing algorithm in the semi-honest model. Furthermore, all communication takes

place only between nodes that are neighbors on the original graph, and SMPC is never invoked

on more than two parties.

Proof. First, it is easy to see that Secure Propagation does in fact compute the same output

as the original message-passing protocol; the proof of this, which is quite straight-forward,

is omitted.

In order to show that Secure Propagation is 1-private (i.e. that it meets Definition 4 with

k = 1), we must show that it is possible to simulate the view of any individual party given

only this party’s private input and output. The argument used here relies on the standard

notion of an oracle-aided protocol. (See, for example, Volume II of Goldreich’s Introduction

to Cryptography [38].) For each node Xi, we will first show that Xi’s view of the protocol

can be simulated if each invocation of secure two-party computation is treated as a black box

or oracle call. Then, using the fact that any application of secure two-party computation

involving m parties is known to be m-private, we will show that the full view of Xi in Secure

Propagation can also be simulated.

Imagine an oracle-aided protocol ΠO in which each application of S2PC is replaced with

an oracle call where the values returned to each node by the oracle are the output values the

nodes would have received from a real application of S2PC. We must show that it is possible

to simulate the view of any node Xi during this oracle-aided protocol. Recall that the view

of Xi consists of Xi’s input, random bits, and incoming communication from other parties;

we must then show that given Xi’s input and randomness, we can simulate the incoming

communication in such a way that the simulated view is computationally indistinguishable

from the true view. We show how to simulate each message received by Xi during the

protocol.
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First, it is necessary to simulate the initial key generation and swapping phase. Since

each node in the graph is assumed to generate its public and private keys from a fixed

generator G, Xi can simulate this phase by generating public and private key pairs for itself

and for every other node within two hops using G. Xi can simulate the one-time messages

received from the nodes two hops away using the generated public keys; the secret keys can

be discarded.

Throughout the remainder of the protocol, Xi will receive two types of messages: those

which (by design) appear to be distributed uniformly at random (i.e. the shares of states and

messages that are the results of local applications of S2PC), and those that are encrypted

by its neighbors or its neighbors’ neighbors (i.e. the encryptions of the message shares and

the encryptions of the state shares). The former can clearly be simulated by drawing values

uniformly at random; by design, these new values will be computationally indistinguishable

from the shares returned by the S2PC applications.

To simulate a message that is encrypted using the public key of node Xj, the simulator

simply generates a random string m and uses the value Encpk′(Xj)(m) where pk′(Xj) is the

simulated public key for Xj that was generated during the simulation of the key distribution

phase above. As discussed in Appendix B.1, it is the case that for any semantically secure

encryption scheme, for any two strings m and m′, the encryption of m is computationally

indistinguishable from the encryption of m′. Since the simulated value pk′(Xj) is drawn from

the same distribution as the public key pk(Xj) used in an actual execution of the protocol,

Encpk′(Xj)(m) will be computationally indistinguishable from the true message received by

Xi.

Note that on rounds in which Xi plays the role of the distinguished neighbor, it will be

necessary to deal with the case in which Xj = Xi. In this case, we additionally need to

make sure that the decryption of Encpk′(Xj)(m) is computationally indistinguishable from its

counterpart in a real execution of the protocol. Because m was chosen uniformly at random,

the decryption of Encpk′(Xj)(m) will of course yield a value that is distributed uniformly –
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but this will also be the case in the real execution, since the decrypted values will be message

shares that are distributed uniformly at random from the perspective of Xi.

We have shown how to design a simulator SOi to simulate the view ofXi in the oracle-aided

protocol ΠO. Let f1, . . . , f` be the functions computed by the ` applications of S2PC in which

Xi is involved. By Theorem 7, we can construct private two-party protocols Πf1 , . . . ,Πf` to

execute each of these computations. Furthermore, from Definition 4, we know there must

exist polynomial-time computable functions Sf1i , . . . , S
f`
i that simulate the view of Xi in each

of these protocols.

Let Π be the Secure Propagation protocol. By definition, this protocol is simply the

oracle-aided protocol ΠO with the protocol Πfi plugged in for each application of S2PC for

computing fi. Consider a simulator Si designed as follows. Run the simulator SOi as defined

above, but in place of each oracle call, run the appropriate simulator Sfii with the input and

output produced by SOi . We will show that the view of Xi in Π must be computationally

indistinguishable from the output of the simulator Si using a hybrid argument.

For j = 1, . . . , `, let Hj
i be a hybrid simulator defined in the following way. Start by

generating the view of Xi in a real execution of the protocol Π. Now, in place of the first j

applications of S2PC in this view, substitute the simulated view of Xi using the simulator

Sfki for k = 1, . . . , j. (Note that the view of Xi in the execution of the real protocol will

specify the input and output of each S2PC invocation and so the simulators can be run on

this real input and output.)

Suppose that the view of Xi in Π is not computationally indistinguishable from the output

of the simulator Si. By a standard hybrid argument (see, for example, Goldreich [38]), it

must be the case that either simulated view of Xi using H1
i , the simulated view of Xi using

Si is distinguishable from the simulated view of Xi using H`
i , or for some j ∈ {1, . . . , `− 1},

the view of simulated view of Xi using Hj
i is distinguishable from the simulated view of

Xi using Hj+1
i . The second and third scenarios cannot occur due to Theorem 7. The first

scenario cannot occur due to the above proof that the output of SOi is computationally
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indistinguishable from the view of Xi in ΠO. Thus it must be the case that the view of Xi

in Π is computationally indistinguishable from the output of the simulator Si, and Secure

Propagation is secure.

5.5 Faithfulness vs. Privacy

In this section, we illustrate the fundamental trade-off between the extent to which protocols

are “faithful” to their (insecure) distributed message-passing sources, and the extent to

which privacy against coalitions can be achieved. In particular, we give impossibility results

showing that, at least for certain simple functionalities, faithfulness implies vulnerability to

small coalitions.

Let us begin by observing that the Secure Propagation protocol is not secure against

even coalitions of size two. In particular, at any point in the protocol, a vertex Xi and

its distinguished neighbor D(Xi) can together compute the incoming messages from all of

N (Xi). In turn, there are specific instantiations of (say) belief propagation in which such

messages will reveal information about the private inputs of parties arbitrarily distant in the

network.

On the other hand, we would like to argue that Secure Propagation is very faithful to its

message-passing source. But what exactly does it mean for a protocol to be faithful? At a

high level, a faithful protocol should follow the same general communication pattern as the

corresponding insecure protocol. Computations should occur (approximately) in the same

order, and should involve (approximately) the same parties as in the original protocol. We

would not, for example, say that a secure protocol is faithful to the message-passing source

if it utilizes centralized computation rather than allowing the computation to take place in

a distributed manner over the graph. Before giving our formal definition of faithfulness, we

briefly examine some alternatives.

• Proposal 1: A secure protocol Πp is faithful to the protocol Πo if communication occurs
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between the same parties.

While it is clearly desirable that the secure version of a message-passing protocol limit

communication to occur between adjacent nodes on the graph, this simple definition is

not enough to rule out centralized computation. For example, consider the following

secure message-passing protocol. To begin, a special pair of neighboring nodes Xi

and Xj generate public and private key pairs, and pass their public keys to each of

their neighbors. Their neighbors then pass these public keys to each of their own

neighbors and so on, until the keys have propagated all the way to the leaves of the

network. Each node Xk in the network then generates its own public and private key

pair and splits its initial state σ(Xk) into two pieces, σ0(Xk) and σ1(Xk), such that

σ0(Xk) ⊕ σ1(Xk) = σ(Xk). Next, Xk encrypts σ0(Xk) using the public key of Xi and

σ1(Xk) using the public key of Xj, and propogates these encrypted state shares along

with its own public key back through the network to Xi and Xj. At this point, Xi

and Xj together can compute the private input of every node in the graph. As such,

they can engage in S2PC and calculate shares of the private output of each node Xk,

encrypted using Xk’s public key. Finally, they can propogate these encrypted private

outputs back through the graph, and each node can decrypt its own output.

It is easy to verify that this protocol is 1-private, and it does limit direct communica-

tion to occur only between nodes who communicated in the original message-passing

algorithm. However, by centralizing all computation, it violates our notion of what it

should mean for a protocol to be faithful.

• Proposal 2: A secure protocol Πp is faithful to the protocol Πo if it requires a constant

multiple of the number of steps or rounds used in Πo.

In an attempt to disallow such centralized solutions, we could instead define faithfulness

based on the relationship between the number of steps required by the secure protocol

and the number of steps required by the original. For example, we might say that a
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private protocol is faithful to the message-passing protocol if it requires a number of

steps that is linear in the number of rounds of the original protocol. However, such

a definition is still susceptible to many of the same problems as the first proposal.

Many message-passing protocols such as belief propagation, Gibbs sampling, Nash

propagation, already require a number of rounds that is linear in the size of the network.

Thus the same centralized protocol described above would also meet this definition of

faithfulness.

We instead choose to provide a much more general or weaker definition of faithfulness that

we believe captures the right essential spirit — namely, correspondence of local information

states or views during execution. Furthermore, a more general definition is a merit when

proving impossibility results trading off faithfulness for privacy.

The basic idea behind our definition is as follows. We ask that there be two simulators

— one for translating views in the secure protocol to views in the original, and another

for the reverse direction. For any set Y of vertices in the network, given the view of Y in

the original (respectively, secure) protocol, the corresponding simulator can exactly recon-

struct the view in the secure (respectively, original) protocol given unbounded computation

time. The reason for allowing unbounded computation time is that the secure protocol

may of course employ various encryption or other information-hiding mechanisms during

its simulation of the original (as ours does), but with unbounded computation time these

operations can be “undone” to reveal the “real” computation taking place underneath. We

wish to demand that these revealed computations be exactly those in the original. Thus an

information-theoretic definition is appropriate.

Definition 5 (Faithfulness). Let Πo be any multi-party protocol on a network and Πp be a

private protocol for executing this algorithm. Let M be the total number of messages passed

in Πo, and let τ(m) be the point in the execution of Πo right after the mth message has been

passed. We say that protocol Πp is faithful to Πo if there exist a mapping τ ′ from messages
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{1, . . . ,M} to points in the execution of Πp and simulators So→p and Sp→o such that for

every subset of nodes Y ⊆ X and for every m ∈ {1, . . . ,M},

1. With unbounded computation time, Sp→o can perfectly reproduce the joint view of Y in

Πo at time τ(m) from the joint view of Y in Πp at time τ ′(m) and set of random tapes

used by Y in Πp. In other words, nodes in Πp have enough information to emulate the

computation in Πo.

2. With unbounded computation time, So→p can perfectly reproduce the joint view of Y in

Πp at time τ ′(m) from the joint view of Y in Πo at time τ(m) and the random tapes

used by Y in Πp. In other words, nodes in Πp don’t have too much information.

As we shall see, it turns out that the right definition to establish the trade-off we seek is

actually slightly more general, permitting views of Y and all vertices within some distance

` in the secure/original to be used in reconstructing views of Y in the original/secure. We

now give the formal definition.

As before, let Πo be the original, insecure distributed algorithm, and let Πp be the

privacy-preserving one. It will be convenient to think of Πo as deterministic; of course any

probabilistic algorithm can be converted into a deterministic algorithm by giving each party

a random tape as part of their input. For a given set of nodes Y , let N`(Y) be the set

containing Y and all nodes within ` hops of Y on the graph. For example, N0(Y) = Y ,

N1(Y) = Y ∪N (Y), and N2(Y) = Y ∪N (Y) ∪N (N (Y)).

Definition 6 (`-Faithfulness). Define Πo, Πp, M , and τ as in Definition 5. We say that

protocol Πp is `-faithful to Πo if there exist a mapping τ ′ from messages {1, . . . ,M} to

points in the execution of Πp and simulators So→p and Sp→o such that for every subset of

nodes Y ⊆ X and for every m ∈ {1, . . . ,M},

1. With unbounded computation time, Sp→o can perfectly reproduce the joint view of Y in

Πo at time τ(m) from the joint view of N`(Y) in Πp at time τ ′(m) and set of random

tapes used by N`(Y) in Πp.
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2. With unbounded computation time, So→p can perfectly reproduce the joint view of Y in

Πp at time τ ′(m) from the joint view of N`(Y) in Πo at time τ(m) and the random

tapes used by N`(Y) in Πp.

It is not difficult to show that the trivial centralized solutions we have discussed — for

instance, using the network to broadcast public keys to establish secure pairwise channels,

then using these channels to simulate classical SMPC computation in which every party has

a share of every circuit wire — are not `-faithful even for values of ` proportional to the

number of vertices. This is because a centrally located vertex X may see encrypted messages

between distant pairs of parties, and the unbounded computation time allows these messages

to be read by X. In contrast, we have:

Theorem 9. The Secure Propagation protocol is 2-faithful to the general message-passing

algorithm.

The proof involves showing that conditions 1 and 2 of Definition 6 are satisfied by Secure

Propagation with ` = 1 when Y consists of any individual node. Since the view of any indi-

vidual node can be perfectly reproduced independently (with unbounded computation time),

the joint views of any set of nodes can also be reproduced. Building Sp→o is straight-forward;

since messages in the original protocol are shared by a node and one of its neighbors in the

secure protocol, only the views of a node and its neighbors in the private protocol are re-

quired to reconstruct any incoming messages in the original protocol. Building So→p requires

more care, and relies upon the availability of the random bits used in Secure Propagation

by the nodes within a local neighborhood. We now give the proof in the following.

Proof. We define the mapping τ ′ that is required for Definition 6 in the following natural

way. Suppose that message m is sent to node Xi by its neighbor Uj. Unless m is the last

message sent in the current round, define τ ′(m) to be the point at which Uj has already

finished engaging in a secure two-party computation with Xi to compute the shares µ0(Uj)
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and µ1(Uj), and has just sent the encrypted version of µ1(Uj) to Xi who has passed it along

to D(Xi). If m is the last message of a round, define τ ′(m) to be the point at which D(Xi)

has finished redistributing the encrypted versions of σ1(Xi) to each of the neighbors of Xi

through Xi. For the final message m that is passed, define τ ′(m) to be the very end of the

execution of Πp.

We can then prove 2-faithfulness by showing that both conditions of Definition 6 are

satisfied for ` = 2 given this mapping.

Proof of Condition 1. We first show that for any node X ∈ X , the view of X in Πo at any

time τ(m) can be perfectly reproduced by Sp→o from the views of N2(X) in Πp at time τ ′(m)

and the random bits of N2(X). (In fact, only the views of X and N (X) will be necessary; the

views of N (N (X)) and random bits are not needed.) This immediately implies Condition

1 is satisfied by any set Y , as the joint view of Y in Πo can be perfectly reproduced by

reproducing the view of each individual node in Y separately and combining the simulated

views. To this end, it is sufficient to show inductively that any changes to the view of X in

Πo between time τ(m− 1) and time τ(m) can be computed from the view of X and N (X)

in Πp at time τ ′(m) along with the necessary random bits.

To do this, it is sufficient to consider the single node Xi who receives the mth message in

Πo; the views of the other nodes in Πo do not change between τ(m− 1) and τ(m). Suppose

this message µ(Uj) is sent by Uj ∈ N (Xi). In the secure protocol, nodes Uj and Xi engage

in an application S2PCin which Xi learns the value µ0(Uj) and Uj learns the value µ1(Uj).

Because the simulator Sp→o has access to the views of both Xi and Uj, it can learn both of

their shares of µ(Uj) and calculate the value of µ(Uj) itself, which is precisely what is needed

to update the view of Xi in Πo.

Proof of Condition 2. We need to show that for any set Y ⊆ X and any m, the view of

Y in Πp at time τ ′(m) can be perfectly reproduced from the views of N2(Y) in Πo at time
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τ(m) and the random bits used by N2(Y) in Πp by a simulator So→p with no computational

constraints. (Again, the views of N (N (Y)) will actually be unnecessary, though the random

bits will be needed.) It is again sufficient to show that this holds for individual nodes X,

and as before, we prove this by induction on the messages sent.

The base case is trivially satisfied. Now suppose the hypothesis is true for time τ ′(m−1).

It is sufficient to show the view of X in Πp from time τ ′(m − 1) to τ ′(m) can be perfectly

simulated from the view of {X} ∪ N (X) at time τ(m) in Πo.

Suppose ν(t) = i. Assume without loss of generality that the neighbors of Xi are indexed

according to the order in which they send messages to Xi in the current round, i.e. U1 sends

the first message, U2 sends the second, and so on.

We first discuss how to simulate the basic changes in the views of each node between

τ ′(m−1) and τ ′(m) that occur for every message m. We then go on to discuss the additional

view changes that occur when m is the last message of the current round. For any message

m that is not the last to be sent in the current round, only the views of of Uj, Xi, and D(Xi)

change in Πp between τ ′(m− 1) and τ ′(m). We discuss how to simulate the view of each of

these nodes in turn. Note that when Uj = D(Xi), it is necessary to combine the simulation

techniques for neighbors Uj and the distinguished neighbor to produce the new simulated

view.

The change in the view of Uj stems from the application of secure two-party computation

with Xi, in which Uj provides input σ0(Uj), Xi provides input σ1(Uj), and both receive shares

of the message µ(Uj). Since σ0(Uj) is part of the view of Uj in Πp at time τ ′(m − 1), it is

known inductively to the simulator. σ(Uj) is also known, since this is essentially just the

view of Uj in Πo. Thus the simulator for Uj can obtain σ1(Uj) = σ(Uj) ⊕ σ0(Uj). Since it

has access to the random bits used by both Uj and Xi in this application of S2PC, the view

of Uj can be perfectly reproduced.

Now consider the change in the view of Xi. As in the previous case, the simulator for Xi

has already computed σ1(Uj) (which is part of the view of Xi in Πp at time τ ′(m− 1)) and

109



knows σ(Uj) (which is essentially the view of Uj in Πo). Since the simulator also has access

to the random bits used by both Xi and Uj in Πp, it can perfectly reproduce the views of

both Xi and Uj in the S2PC application, and thus also µ0(Uj) and µ1(Uj). With the ability

to calculate µ1(Uj), the simulator for Xi can use the random bits of D(Xi) to compute its

public key, enabling it to simulate the encrypted message that is passed from Uj to Xi as

well.

µ1(Uj), and can reproduce its appropriate encryption by first computing the public key

of D(Xi) using its random bits.5

Now consider the case in which m is the last message of the current round. When

this occurs, it is necessary to simulate the additional changes in the views of Xi and all

Uj ∈ N (Xi) that occur when the new state of Xi is redistributed.

First, when the simulator is simulating either the view of Xi or the view of D(Xi), it must

be able to simulate the appropriate view during the invocation of S2PC that computes the

value of Ft. The simulators for both Xi and D(Xi) have access to the view of Xi in Πo at time

τ(m) which contains σ(Xi) and µ(U1), . . . , µ(Ud). As previously discussed, the simulator for

Xi can compute both shares of the messages passed to Xi from each of its neighbors, while

the simulator for D(Xi) can compute µ1(U1), . . . , µ1(Ud), and thus can now also calculate

µ0(U1), . . . , µ0(Ud). By induction, σ0(Xi) and σ1(Xi) are known by the simulators of Xi and

D(Xi) respectively since they belong to the respective views at time τ ′(m − 1). Given one

of these values and σ(Xi), the simulators can perfectly reproduce the views of both Xi and

D(Xi) in the application of S2PC.

Next, when simulating the view of Xi, it is necessary to simulate the view when Xi is

passed the new shares of its state from D(Xi), encrypted using the public keys of each of its

other neighbors. Since we already know that the simulator for Xi is able to simulate σ0(Xi)

and σ1(Xi), and since it is able to calculate the public key of Uj using the randomness of Uj,

5Here we are being somewhat imprecise about how the simulator for D(Xi) is able to calculate µ1(Uj).
This will depend on the precise details of how the shares µ0(Uj) and µ1(Uj) are calculated in the application
of S2PC, which we have not discussed in detail here.
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this case is straight-forward.

It remains to show that the simulator for any Uj ∈ N (Xi)\D(Xi) can simulate the

appropriate change in view when this node receives its new share of Xi’s state, encrypted

using its own public key. Since the simulator can compute the new state σ(Xi) of Xi from

the view of Xi in Πo, and has access to the random bits of Xi and D(Xi) that were used in

the S2PC in which this new state was split into two shares, the simulator can reproduce the

new value σ1(Xi).
6 Reproducing its encryption simply requires the random bits of Uj that

were used to generate the public key.

5.5.1 The Impossibility Theorem

The Secure Propagation protocol requires each node to distribute its own public key to

every node within two hops on the graph, and fails to guarantee privacy with respect to

coalitions of size two or greater. We now present an impossibility result that shows that

such requirements are unavoidable. Specifically, we show that any protocol that is `-faithful

to the general message-passing algorithm cannot be `-private. Thus no 2-faithful protocol

can guarantee security against coalitions of size 2, and furthermore it is not possible to create

a 1-faithful protocol that is private even with respect to individual parties.

Theorem 10. Any protocol Πp that is `-faithful to the original (insecure) general message-

passing algorithm is not `-private.

Proof. We will first show that any protocol that is 1-faithful to the general message-passing

algorithm is not private with respect to individual nodes, and then discuss how to extend

this proof to the case of general `-faithfulness.

Consider a graph with only three nodes, Xi, Xj, and Xk, and suppose that edges exist

only between Xi and Xj and between Xj and Xk. Consider the following (insecure) message-

passing protocol Πo. Node Xi starts with input z, while Xj and Xk start with null input.

6Again, to be more precise here, we would need to go into more detail about how the shares are split in
each S2PC based on the randomness of the nodes. This will be addressed in the full version of the paper.
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In the first round, Xi passes z to Xj. In the second round, Xj passes z to Xk. Finally, Xk

outputs the value z while Xi and Xj output null.

It is clear that if Xj learns the value of z during the execution of a protocol for imple-

menting this algorithm, then the protocol is not 1-private; there cannot exist a simulator

that consistently guesses the correct value of z after observing only the null input and output

of Xj. We will show that during the execution of any 1-faithful protocol Πp, Xj will learn

the value of z, and therefore no 1-faithful protocol is private.

It will be useful to think explicitly about the view of each node at the end of the Πp.

Recall from Definition 4 that the the view of a party consists of the party’s private input,

private randomness, and all of the messages the party has been passed during the execution

of the protocol. Let ri, rj, and rk denote the random strings of Xi, Xj, and Xk respectively,

and let ~mi→j, ~mj→i, ~mj→k, and ~mk→j denote the sets of all messages passed between each

pair of nodes.

Because we have assumed that Πp is 1-faithful to Πo, by definition of faithfulness it

must be possible to perfectly reconstruct the view of Xi at the end of an execution of Πp

from z (which is the full view of Xi in Πo), ri, and rj, given unbounded computation time.

Consequently, it must be the case that any messages passed between Xi and Xj in Πp can be

constructed perfectly from z, ri, and rj, and thus we can assume without loss of generality

that all interaction between Xi and Xj in Πp occurs before any interaction between Xj and

Xk.

At the point when Xi and Xj have finished interacting, the view of Xj consists of rj and

~mi→j, while the view of Xk is still simply rk. Note that rk is independent of rj and ~mi→j

since ~mi→j can be reconstructed from ri, rj, and z. Suppose that there exists an efficient

protocol for Xj and Xk to exchange message in such a way that Xk is able to learn the value

of z. Since rk is simply a random string, this implies that Xj could simulate the role of Xk

in this protocol and efficiently compute the value of z alone. Thus if Πp allows Xk to learn

the appropriate output, Πp cannot be secure; Xj will be able to calculate the value of z too.

112



This proof can easily be extended to show that `-faithfulness implies no privacy against

coalitions of size ` or larger for any `. The node Xj is now replaced by a chain of ` colluding

nodes, X1
j , . . . , X

`
j . The message-passing algorithm Πo now involves passing a single value z

from Xi to X1
j , who in turn passes it to X2

j , and so on, until finally X`
j passes z to Xk. Xk

outputs z, and all other nodes output null.

Assuming that the secure protocol Πp is `-faithful to Πo, it must be the case that the

view of Xi at the end of an execution of Πp can be perfectly reconstructed with unbounded

computational power from z (which is the full joint view of Xi and X1
j , . . . , X

`−1
j in the

original protocol), along with ri and the randomness of the ` middle nodes. Thus we can

again assume without loss of generality that any interaction between Xi and X1
j occurs

before X`
j interacts with Xk.

As before, after the interaction with Xi is complete, if there is a protocol for X1
j , . . . , X

`
j

and Xk to exchange messages such that Xk learns the value of z, then X1
j , . . . , X

`
j could

together simulate the exchanges with Xk and learn the value of z themselves. Thus any

`-faithful protocol cannot be `-private.
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Chapter 6

Summary of Contributions

This dissertation addresses several fundamental and important questions encountered in

understanding the strategic and secure aspects of interactions in networks.

In our study of secure interactions in networks, we show how to make any kind of in-

teraction over networks secure, while at the same time preserving the local and distribution

nature of these interactions. We give a powerful ‘compiler’ that for each message-passing

algorithm, produces a corresponding secure version that preserves exactly the same function-

ality and communication pattern. We also show a fundamental trade-off between preserving

the local and distributed communication pattern of message-passing algorithms and the level

of security that one can hope to achieve.

In our study of strategic interactions in networks, we examined two types of strategic

interactions in networks that are of fundamental importance, networked biased voting and

networked bargaining, using a variety of different techniques ranging from theoretical mod-

eling and analysis, to behavioral experimentation.

The networked biased voting problem that we study aims to capture the tension between

the expression of individual preferences and the desire for collective unity that is common

in decision-making and voting processes, which often take place in social or organizational

networks. In Chapter 2 we study this problem by modeling it as a biased opinion diffusion

process, we then analyze the model to show that there exists networks where even a most
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minute amount of biased is enough to prevent the whole population from reaching a consensus

in polynomial time, and demonstrate how this can be remedied by a carefully designed

protocol that constitutes an approximate Nash equilibrium for the underlying biased voting

game. In Chapter 3, we take this game to laboratory to conduct human subject behavioral

experiments. We find that there are well-studied networks in which the minority preference

consistently wins globally; and the presence of individuals with stronger preferences and the

mixing of individuals of opposing preferences both reliably improve the chance of reaching a

consensus. At the individual level, we find that striking the right balance of being stubborn

in sticking to one’s preference is highly correlated with one’s earnings.

We continue our behavioral study of networked games in Chapter 4 with controlled human

subject experiments on the networked bargaining game. Our experiments constitute the first

large scale controlled experiments on bargaining game as a complementary to the large body

of theoretical work on this subject found in the economics and sociology literature, where the

most important premise for this line of study is that sheer topological differences of different

location in a network play an important role in shaping bargaining power. Our experiments

show that degree in general improves one’s bargaining power whereas the limit on the number

of deals one can get into does the opposite. As opposed to what many theoretical models

suggest, we find that not only local structure, but also distant topology also affects one’s

bargaining power significantly in some networks. Our experiments also result in interesting

findings that call for future theoretical development. For example, we find that network

effect as disparity in bargaining power is largely muted when there is no limit imposed, i.e.,

when each individual can get into as many deals as his degree. Other examples include

the observed positive correlation between inequality and social efficiency, and the fact that

human subjects, through only local interactions, actually found significantly more efficient

outcomes than what a centralized greedy algorithm can do.

Our study of strategic interactions in networks continue a recent line of research that

aims to bring together economics, game theory, social science, and computer science to
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better understand how social and economic networks may play a role in shaping important

strategic interactions in networks. In particular, the two sets of behavioral experiments that

we describe in this dissertation are part of an extensive and continuing series that have been

conducted at the University of Pennsylvania since 2005, in which collective problem-solving

from only local interactions in networks has been studied on a wide range of tasks. The study

of strategic interactions in networks is of significant importance because our modern life has

become increasingly inter-connected in myriad ways, be it social, economic, technological and

informational. And this is especially the case in the past fifteen years as the proliferation of

the Internet has made the interaction of self-interested agents almost ubiquitous. Looking

forward, we expect this line of investigation to continue to produce fruitful results that are

of great interest to the economics, sociology and computer science community.
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Appendix A

Some Tools from Probability Theory

A.1 Markov’s Inequality

In probability theory, Markov’s inequality gives an upper bound on the probability of a

non-negative random variable X deviating from its expected value.

Theorem 11. (Markov’s Inequality) Let X be a random variable that only takes non-

negative values, then for any λ > 0,

P (x ≥ λ) ≤ E(X)

λ
.

A.2 Chernoff-Hoeffding Bound

In probability theory, Chernoff-Hoeffding bound provides an upper bound on the probability

for the sum of random variables to deviate from its expected value. It is first published in

[23] and [44].

Theorem 12. (Chernoff-Hoeffding Bound) Let X1, X2, ..., Xn be independent and

bounded random variables such that Xi ∈ [ai, bi] for i = 1, 2, ..., n, let X =
∑n

i=1Xi be the
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sum of these random variables. Then

P (X − E(X) ≥ tn) ≤ exp

(
− 2t2n2∑n

i=1 (bi − ai)2

)
, and

P (E(X)−X ≥ tn) ≤ exp

(
− 2t2n2∑n

i=1 (bi − ai)2

)
.

Note it is not required that X1, X2, ..., Xn be identically distributed, they only need to be

independent. And when Xi ∈ [0, 1], the inequalities are simplified to

P (X − E(X) ≥ tn) ≤ e−2t2n, and

P (E(X)−X ≥ tn) ≤ e−2t2n.

A.3 A Convergence Theorem of Finite Markov Chains

In this section, we state a convergence theorem that quantifies the speed of convergence of

finite Markov Chains. To this end, we need to be able to measure the distance between

distributions. We consider a measure called total variation distance. The total variation

distance between two probability distribution µ and ν over the same space Ω is defined by

||µ− ν||TV = max
A⊂Ω
|µ(A)− ν(A)|

The convergence theorem says that the total variation distance between the distribution

of an irreducible and aperiodic Markov chain and its stationary distribution approaches 0

exponentially fast.

Theorem 13 (Convergence Theorem). Denote by P t
x the probability distribution of a finite

Markov chain over state space Ω at time t given it starts in state x ∈ Ω. If the Markov chain

is irreducible and aperiodic, with stationary distribution π. Then there exists constants
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c0 > 0 and c1 ∈ (0, 1) such that

max
x∈Ω
||P t

x − π||TV ≤ c0c
t
1

For detailed discussion on mixing properties of Markov chains, we refer readers to [3, 67,

66].
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Appendix B

Additional Backgrounds for Chapter 5

B.1 Public-Key Encryption Schemes

A public-key encryption scheme consists of a triple (G,Enc,Dec) of probabilistic polynomial-

time algorithms. G is a key-generation algorithm which outputs a random pair consisting of

a public key pk and secret key sk, Enc is an encryption algorithm, and Dec is a decryption

algorithm. We use Encpk(x) to denote the encryption of a string x using public key pk, and

Decsk(y) to denote the decryption of a ciphertext y using secret key sk.

Informally, any public-key encryption scheme should satisfy the following properties.

First, for any n-bit input x, Decsk(Encpk(x)) = x; that is, decryption is the inverse of en-

cryption. Additionally, for any n-bit x, it is computationally hard for a party knowing only

the public key pk and the encryption Encpk(x) to compute x. There are two fundamental

ways to formalize this property [41]. At a high level, semantic security states that it is

infeasible to obtain any information about the plaintext (decrypted message) from the ci-

phertext (encrypted message). In other words, anything one could efficiently compute about

the plaintext from the ciphertext could also be computed efficiently without the ciphertext,

given only the length of the plaintext. For the results presented in this paper, it will be

more convenient to consider the second formalization of security, which requires that it is

infeasible to distinguish between the encryptions of two distinct ciphertexts. In other words,
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the collections of encryptions of the ciphertexts are computationally indistinguishable, even

if the public key is given.

Goldwasser and Micali [41] and Micali et al. [70] proved that these two definitions of

security are equivalent. Thus for any semantically secure encryption system, the encryptions

of two distinct ciphertexts are computationally indistinguishable. For more information on

encryption schemes and security, see Chapter 5 of Goldreich [38].

B.2 Public-key Signature Schemes

A public-key signature scheme consists of a triple (G,Sg, V f) of probabilistic polynomial-

time algorithms. G is a key-generation algorithm that outputs a random pair consisting of

a signing key sgk and verification key vfk; the verification key can be made publicly known

while the signing key is kept secret. Sg is an signing algorithm, and V f is a verification

algorithm. We use Sgsgk(x) to denote the signed message produced from string x and signing

key sgk, and V fvfk(x, y) ∈ {0, 1} to denote whether y is a properly signed message produced

from x and the signing key corresponding to vfk.

A public-key signature scheme is useful because it satisfies the following properties. First,

for any input x of the appropriate length, Pr[V fvfk(x, Sgsgk(x)) = 1] = 1. Second, it is

computationally infeasible for any party without knowledge of sgk to forge a properly signed

message, even if the party has access to vfk and messages already signed with sgk.

For detailed discussion on public-key signature scheme, we refer readers to Chapter 6 of

Goldreich [38].

B.3 The Malicious Model

Until this point, we have been interested only in the semi-honest model in which it is assumed

that all parties obediently follow the protocol and only potentially “cheat” by attempting to

learn more information than they should from the messages they receive. This assumption

cannot be enforced in many settings. However, standard tools from cryptography, such as
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zero-knowledge proofs of knowledge, can be used to ensure that any party who deviates from

the protocol is caught.

At a high level, an interactive proof system is zero-knowledge if the prover is able to

convince the verifier to accept a statement with high probability if and only if the statement

is true, and furthermore if the proof gives away no additional information other than the

truth of the statement. Goldreich et al. [40] showed that it is possible to construct a zero-

knowledge proof system for every language in NP; in other words, it is possible to construct

a zero-knowledge proof of any statement for which there exists a short, efficiently verifiable

proof or certificate. Furthermore, efficient zero-knowledge proofs exist whenever the prover

is in possession of the certificate.

We say that a protocol is secure in the malicious model if it is privacy-preserving and

any party who attempts to deviate from semi-honest behavior is immediately caught. It is

assumed that once a cheater is caught, the protocol halts.1 A privacy result analogous to

Theorem 7 can be proved in the malicious model, stating that under standard cryptographic

assumptions, for any m-input, m-output functionality, there exists a (centralized) protocol

that securely computes the functionality in the malicious model.

In order to extend the Secure Propagation protocol to the malicious model, we make

use of both public-key encryption and public-key signature schemes. As before, we first

need nodes to be able to distribute their keys (both pk and vfk) to their neighbors and

the neighbors of their neighbors. However, since we are now in a malicious model, it is no

longer the case that a node cannot rely on its immediate neighbor to relay such information to

neighbors two hops away. Therefore, a “preprocessing” key-distribution phase involving some

communication mechanism extraneous to the given network is needed to achieve this. For

example, this can be implemented by setting up a one-time direct communication between

nodes two hops away. Such communication extraneous to the network is possibly expensive,

1The assumption that it is possible to halt when a party is caught cheating may seem strange in our
distributed setting, but is often justifiable, for example if there exists an “expensive” broadcast mechanism
that could be used to notify everyone on the network to halt the execution if a cheater is detected.
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but is needed only for the key-distribution phase; the main protocol we describe below limits

communication to parties connected by an edge on the underlying network.

In the semi-honest model, each time a S2PC is invoked between two parties, say Xi and

Uj, the resulting outputs are distributed between them so that their shares sum up to some

meaningful information (i.e a message or a state) in the original protocol. We then rely on

Uj to honestly encrypt its share of the information and distribute it to the other neighbor(s)

of Xi via Xi itself. In the malicious model, we cannot expect Uj to follow this honestly, nor

can we trust that Xi will relay the true encryptions as opposed to alternate forged messages.

Indeed, we will require both public-key encryption and public-key signature to be part of the

S2PC so that Xi in addition obtains as output an appropriate signed and encrypted version

of Uj’s share of the information, and this signed and encrypted messages is then sent to Xi’s

other neighbor(s). This way, we prevent Uj from sending messages that are encrypted from

anything other than his share of the information and we also prevent Xi from forging such

encryptions.

Along with the above modifications, we need both parties in the S2PC to prove that

any inputs they supply to the S2PC are the legitimate ones. This is enforced by applying

zero-knowledge proofs in a standard way.
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