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Abstract 

Research on biped locomotion has focused on sagittal plane walk- 
ing in which the stepping path is a straight line. Because a walking 
path is often curved in a three dimensional environment, a 3D locomo- 
tion subsystem is required to  provide general walking animation. In 
building a 3D locomotion subsystem, we tried to utilize pre-existing 
straight path (2D) systems. The movement of the center of the body 
is important in determining the amount of banking and turning. The 
center site is defined to be the midpoint between the two hip joints. An 
algorithm to obtain the center site trajectory that realizes the given 
curved walking path is presented. From the position and orientation 
of the center site, we compute stance and swing leg configurations 
as well as the upper body configuration, based on the underlying 2D 
system. 



1 Introduction 

The workspace of a human figure would be quite restricted if the lower body 
were fixed. Locomotion provides a tremendous extension of the workspace 
by moving the body to places where other activities may be accomplished. 

A locomotion system should provide the configuration of the figure at 
each time of the walk along a path specified by the input. There have been 
many efforts to make this process more realistic and automatic. 

If the initial, final, and several intermediate keyframe configurations are 
given, a simple way of animating a jointed figure is interpolating the joint 
angles. When there are any constraints to be satisfied during the motion, 
this keyframe method may have some difficulties. This was pointed out 
by Girard and Maciejewski [I]. Even though the keyframe configurations 
themselves satisfy the constraints, the simple interpolation may make the 
inbetweens violate them. 

Bruderlin and Calvert solved this problem by building a keyframeless 
system to simulate human locomotion [3, 41. In doing animation they gen- 
erated every single frame based on a dynamics and kinematics computation. 
Their system could generate a wide gamut of walking by changing the three 
primary parameters: step length, step frequency, and speed. 

There have been many other studies on locomotion in robotics, biome- 
chanics, and computer graphics [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 161. But 
most of them concentrated on 2D locomotion, in which walking is restricted 
to the sagittal plane. In a 3D animation system, one of the most impor- 
tant roles of the locomotion subsystem is to send the human figure from 
any position and orientation to any other arbitrary position and orientation 
whenever upper body adjustment alone cannot achieve such a posture. A 
straight locomotion path is very rare. In this point of view, 2D locomotion 
lacks the usefulness as a subsystem of general animation system, and the de- 
velopment of 3D locomotion subsystem seems inevitable to simulate general 
human behaviors. Unfortunately, simply treating a complex walking path as 
sequence of straight-line paths does not work. The problems of turning and 
coordinating the limb motions at the turns is frequently neglected and the 
rigid appearance of the resulting abrupt mid-air turns is clearly unacceptable 
animation. 

In his paper [2], Girard discussed general concepts (time, position, veloc- 
ity control, etc.) encountered in animating legged animal 3D motion. He also 



mentioned turning . He interprets stepping (liftoff) as a way to give impulse 
to the human body in running. Each impulse contributes some acceleration 
to the whole body movement. He computed the impulse that is required to 
drive the center of the body along a given curve. By the impulse at  the liftoff 
(this impulse includes rotational torque as well as upward force), the body 
gets a rotational torque and the whole body rotates in the air. So turning is 
basically done while the body stays in the air. 

In walking, however, everything that turning entails is done while at least 
one of the feet is on the ground. So there are more constraints to be satisfied 
than in running. The whole body doesn't turn by the same angle: the body 
is rather twisted during the turning motion. And the ankle and hip joints 
have an important role in generating a natural turning motion. 

In building a 3D locomotion system, we tried to utilize pre-existing 2D 
systems, that is, a 2D locomotion system is used as a subsystem to our 3D 
system. For every 3D step, we will consider its underlying 2D step, and the 
2D system will provide some needed information. 

Our generalization algorithm from 2D to 3D was based on the intuition 
that there should be a smooth transition between linear and curved loco- 
motion. If the curvature is not large, the 3D walk generated by our system 
should be close to the 2D walk given by the underlying 2D system. In partic- 
ular, if the given curve is actually a straight line, the walk by the 3D system 
should be exactly the same as the walk produced by the underlying 2D sys- 
tem. No assumptions were made about the underlying 2D system, therefore 
most 2D locomotion systems can be generalized into 3 0  ones by applying our 
algorithm. Clearly the underlying 2D system will determine the stylistics of 
curved path walking. In this paper, a 2D locomotion system will be assumed 
to exist already and so its details will not be discussed. 

2 OurModel 

At a certain moment, if a leg is between its own heelstrike (beginning) and the 
other leg's heelstrike (ending), it is called the stance leg. If a leg is between 
the other leg's heelstrike(beginning) and its own heelstrike (ending), it is 
called the swing leg. For example, in Figure 1, left leg is the stance leg 
during the interval 1, and right leg is the stance leg during the interval 2. 
Thus at each moment we can refer to a specific leg by either stance or swing 
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Figure 1: The Phase Diagram of Human Walk 

Figure 2: The Hypothetical Structure of Human Body 
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leg with no ambiguity. The joints and segments in a leg will be referred to 
using prefixes swing or stance. For example, swing ankle is the ankle in the 
swing leg. 

The structure of the body used in our locomotion is shown in Figure 2. 
There are 14 joints J;, (i = 1,.  . . ,14), and joint angles O;, ( i  = 1, .  . . ,14) at 
each joint. Even numbered joints J2, J4, J6, and J8 are the joints in the stance 
leg, and corresponding odd numbered joints are in the swing leg. 013 is the 
angle of the torso with respect to the vertical line. 07, 68, 011, 012, and 014 are 
measured with respect to the torso. Let the center site be the center of the 
two hip joints, J7 and J8. In general, 0; can be a scalar or a vector according 
to the degree of freedom at that joint. For example, O7 is a three dimensional 
vector, which is interpreted as the Euler angles at  the swing hip joint. In 
human locomotion, the rotations at  the joints after all produce translational 
movement of the whole body. To compute the translational movement, we 
need a reference point somewhere in the body, which we will call the root 
site. To specify the configuration of the body at  a moment, we should have 
the position 015 and orientation Ol6 of the root site, as well as all the 14 joint 
angles. Let O = [O1,. . . , Ol6]. 

On the other hand, consider what affects the value of 0. The step length 
s l  and the step frequency sf are considered to be the most important factors 
that determine the style of the locomotion. In 3D walking, however, the 
walking depends also on the relative direction of the next foot. And the 
definition of step length is not clear any more. Instead of sl, we will use the 
position and orientation of each foot. Here, the position of the foot is the 
position of the heel of the foot, and the orientation of the foot is the direction 
of the foot when the foot is put flat on the ground. So the orientation of 
the foot is always parallel to the ground. Let & and & be the position and 
orientation of the ith foot, respectively. Let sf; be the step frequency of 
the ith step. (s fo does not have any meaning.) Let C be the sequence of 

+ + 
(hi, d;, sf;, lorr;), i = 0,1, . . . , n, where lorr; is 0 when the ith foot is left foot 
and 1 otherwise. 

The shape and the mass distribution of the body also have something to 
do with the type of walking. Let ll,. . . , 114, 115 be the description of the links 
of the model. ll is the swing toe, l2 is the stance toe, . . ., 114 is neck and 
head, etc. lI5 represents the pelvis (not shown in the Figure) and 17, ,and 
113 are connected to 115. Let A = [ll,. . . , l15]. 



Generally, the locomotion problem in computer graphics is to find the 
function f that relates A, C with O at each time t. 

Usually the function f is not simple, and we try to devise a set of algorithms 
that computes the value of O for the given value of (A, C,t) ,  depending on 
the case. 

At every joint, there are 2 underlying local coordinates, both of which 
can be represented by 3 x 3 matrices, 

where v",, v",, and < are unit vectors along x, y, and z directions in the local 
coordinates, respectively. Let the upper local coordinate of J; be T?, and 
the lower one be Tp. For example, at J6, T: is the local coordinates at  
the lower end of the stance thigh, and T: is the upper end of the stance 
shin. Let R: and Rf be the global rotation matrices (orthogonal) that are 
given by resolving the local coordinates T? and TF in the global coordinates, 
respectively. 

3 The Specification of Walk 

The specification of a walk in 2D can be done by giving a sequence of 
(sl;, s f;), i = 1,. . . , n. Each (sl;, sf;) affects the type of current step, starting 
from the current heelstrike to the next one. In 3D, however, even defining s l  
is not easy, and we need another way of specifying the steps. 

As discussed in the previous section, the direct input to our locomotion 
subsystem is a sequence C of 4-tuples, 

-. + 
a; = (hi, d;, s f;, lorr;), i = 0 , .  . . , n ( 2 )  

which will be called the step sequence. Each tuple a; is called the ith foot 
description. The pair of adjacent two foot descriptions (a;-l, a;) is called the 
ith step description or simply the ith step. Even though we can get maximum 
control of locomotion by using the step sequence, generating such a sequence 
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Figure 3: The Two Ways of Input Specification 

might be a tedious job. Most of the users may not be interested in each 
step it takes, but just want to send the human figure to a goal position and 
orientation along a curved path, to avoid any possible objects in the way. To 
provide this kind of userfriendliness, we have 2 types of input, curves and 
step sequences (Figure 3). 

If a curve is given as input, it is automatically transformed to a step 
sequence by the algorithm below (Figure 4): X is a constant whose value is 
the distance from the center site to either of the hip joints. p is a variable, 
and its value is given by the user. At every point on the curve whose linear 
distance is p,  say P2 the derivative is computed and the normalized vector 
of it is assigned to d;. The point whose distance from P is X is given as the 
value of &. Whether & should be in the left or right side of P is determined 
by tracking from the first step by alternating the feet. The value of lorr; is 
also given from this consideration. 

For every step description (a;-l, a;) in 3D, we consider its underlying 2D 
step. The step frequency of this 2D step is given by sf; of a;. We can 
draw 2 lines al, a 2  on the horizontal plane as shown in the Figure 6. a1 is -. 
in the direction of didl displaced by X from hti-1. a 2  is in the direction of 
d: displaced by X from &. Let 6 be the arc length of the spline curve from 
Ei-1 to E;, where Ei-l and E; are the projections of the heel positions to 
the lines al, and a2, respectively. (The derivatives at the end points of this 

-. 
spline curve are given by d;-l and &.) The step length slzD of the underlying 



Figure 4: Getting a Step Sequence from a Curve 

2D step is given by this 6. 
The overall structure of our algorithm is depicted in Figure 5. The un- 

derlying 2D step of the current step is sent to the 2D locomotion system. 
The 2D system provides the 2D step information to the 3D system. In our 
3D system, we first compute the center site trajectory.  from the center site 
location (position and orientation), we obtain the locations of both hips. The 
locations of the feet are computed based on the 2D step information and our 
assumptions. Because we have the locations of hip and foot of both legs, the 
configurations of the stance leg and the swing can be computed. The bank- 
ing angle is computed, and the upper body is adjusted to move the center of 
mass until such a banking is achieved. The parameters O that determine the 
configuration of the whole body is now sent to the graphics system to draw 
the human figure on the screen. 

The details of the algorithm will be given in the following two sections. In 
Section 4, higher level concepts are discussed such as center site trajectory, 
stance and swing hip locations, banking, and turning, etc. Section 5 deals 
with lower level ideas, including the computation of the joint angles in the 
legs, the computation of banking angles and the subsequent upper body 
adjustment, etc. 
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Figure 6: The Step Length of the Underlying 2D Step 
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Figure 7: The Trajectory of the Center Site (Top View) 

4 Path of the Center Site 

In our model, the center site is assumed to move along a straight line from 
the heelstrike moment of the stance leg (HSM) to the toe off moment of 
the swing leg (TOM), as shown in the Figure 7. For the time being we will 
restrict ourselves to the planar movement (top view) of the center site. The 
height component will be discussed later in this section. The trajectory of the 
center site during this double stance phase (DS) is given by the underlying 
2D step, and it is a straight line at top view. The direction of this straght 
line is determined from the direction of the current stance foot direction di-l. 

From the TOM to the next HSM, the center site moves along a spline 
interpolation(Figure 7). At the both ends of the spline, the derivative of the 
curve is the same with that of the adjacent line segments, to maintain the 



Figure 8: The Position of Center Site at Heelstrike Moment 

first order continuity. Through the whole locomotion, the pelvis is assumed 
to face the derivative direction of the center site path, and be vertical to the 
ground. The torso can be bent in any direction, a part of which is given 
by the underlying 2D algorithm, and another part is given from the banking 
computation which will be discussed later in this section. + 

To derive the spline curve, we need the position CNHsM and derivative 

eNHSM of the center site at the next HSM, as well as CTOM7 eTOM at TOM 
which are provided by the underlying 2D system (Figure 8). The assumptions 

+ + -. 
above imply that CNHsM = dk, and CNHsM should be put somewhere on the 
line a2. Let X be a point on a2. 

Let 720 and 720 be the length of the center site trajectory from HSM to 
TOM, and from TOM to the next HSM, respectively, during the underlying 
2D step. Let 730 of corresponding 3D step be similarly defined as 7720. Let 
T , ~ ( X )  be the arc length (top view) of the spline from eToM to X + in the 
Figure 8, which is a function of X .  Now the position of the center site CNHsM 
at the next HSM is set to the point X on the line a2 such that 

-. 
This definition of CNHsM is based on the smooth transition assumption from 
the 2D locomotions to the 3D ones. By a mapping which preserves arc length 
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Figure 9: Banking of the Center Site 

ratio [2, 17, 191, we can find the correspondence between the 3D trajectory of 
the center site and underlying 2D one. Note that this definition also makes 
the degenerate case of 3D walk exactly same with the corresponding 2D walk. 
Bisection method can be used in computing such X. 

The displacement of the curved path from the underlying linear path 
is produced by banking as shown in Figure 9. In the figure, C3D is the 
position of the displaced center site in 3D step, and H,, is the position of 
the swing hip. This banking mostly results from the ankle joint adjustment. 
The computation of the ankle angle is presented in the next section. Even 
though the center site is put on the spline curve by the ankle angle, the upper 
body has not bent yet to generate the overall correct banking of the whole 
body. The banking should be considered in terms of the center of mass of 
the body. The overall banking is given by 

where v is the velocity, g is the gravity, and K is the curvature of the curve 
[2]. Here we use the spline curve of the center site as an approximation to 
get the curvature. (The center site is not far away from the center of mass, 
specially when it is seen from the top.) The upper body should be bent so 
that the center of mass (which is in the upper body) may make the angle 4 
around the stance ankle with respect to the ground. Iterative methods can 
be used to compute the current center of mass and reduce the difference from 
the current one and the desired one. 

The amount of turning is measured with respect to the direction of the un- 
derlying 2D locomotion, as shown in Figure 10. Turning is produced mostly 
at the stance hip joint. More details of it will be explained in the next section. 
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Figure 10: Turning of the Center Site 

Figure 11: Dynamic Leg Length w 

The dynamic  leg length w at a certain moment is defined to be a hy- 
pothetical length of the stance leg from the ankle to the hip, and here the 
position of ankle comes from the foot which was flat on the ground, as shown 
in Figure 11 [3, 41. 

We assume that the dynamic leg length w in 3D locomotion at a moment 
t ,  is same with w at the corresponding moment in the underlying 2D step. So 
the displaced center site C3D will be lower than the corresponding 2D center 
site C2D. The position ( x l ,  y l ,  z l )  of the hypothetical ankle is available from 
the old foot location. Let ( x 2 ,  y2,  z2)  be the position of the swing hip H,, 
in Figure 9. The horizontal components 2 2  and 2 2  can be computed from 
the derivative at CJD and A: note that the horizontal components of CJD are 



already available at this point by the discussion above. In Figure 9, X is the 
distance between H,, and &, and this distance is along the perpendicular 
direction of the derivative. 

Because we assumed that w is the same in 2D and 3D locomotions, we 
have 

I (XI,  Y1,~l) - ( ~ 2 ,  Y2,~2) I =  W ( 5 )  

where w is given by the underlying 2D system. The value of y2 that satisfies 
the above equation is the height of both H,, and C3D. Because the pelvis is 
assumed to be straight up all through the steps, the height of the stance hip 
H is also y2. 

As a summary of this section, note that if the locomotion path is actually 
a straight line, the path of the center site will be the same as that of the 
underlying 2D locomotion. 

Lower Level Details 

5.1 Stance Leg 

The center site movement of 3D locomotion during DS is the same as that of 
the 2D one, including the height component, so the stance leg configurations 
are given by the underlying 2D system. During the single stance phase, we 
still use 2D system to get the joint angle at the ball of foot. But because the 
center site begins to deviate, the other joint angles should be computed. 

Meaningful twist is defined to be a rotation at a joint (not in the swing 
leg), which can kinematically affect the position of the swing leg, and there- 
fore affects the next stance foot. Thus a meaningful twist can change the 
planar direction of the locomotion. For example, the twist at the spine 
(rooted at the stance foot) doesn't affect the position of the swing leg. But 
the rotation of pelvis around the stance hip affects the later walk because 
the swing leg will be displaced accordingly. There are 3 possible joints in 
the stance leg that can generate meaningful twist of the body during the 
turning motion. They are the ball of foot, ankle, and hip. (There is also 
the possibility of sliding in the case of tough curvature. But it will not be 
considered in this paper.) 

From the locomotion point of view, the worst discrepancy between the 
real body and our model lies at the ball of the foot. In a real body, the toe 



group is flexibly attached to the hind foot, and the flexion axis tends to vary 
according to the direction of lifting during the heel off. That is how it can 
contribute to turning. But that kind of joint is difficult to model, because 
the foot is usually modeled by 2 rigid segments connected by a revolute 
joint. So we rule out the ball of foot. Thus in our model, the rotation of 
the pelvis relative to the stance foot comes from the ankle and hip joints. 
Even though each of them contributes to the turning, rotation around ankle 
is much more restricted than around the hip. So the potential redundancy 
can be eliminated by considering the ankle as a joint of 2 degrees of freedom. 
Actually, in most of the human anatomy books, ankle is regarded as a joint 
of 2 degrees of freedom, flexion-extension and inversion-eversion [18]. 

In the stance leg, after the foot is put flat on the ground, the toetip is 
regarded as the root (fixed point) because that point is not moved until the 
next toe off. Because the joint angle at the ball of foot is provided by the 
2D algorithm, we have the position A and global rotation matrix R t  of the 
ankle. From the distance between the stance hip H and stance ankle A, 
and the lengths of thigh and shin, we get the stance knee angle 06, and the 
opposite angle Ofhigh  of the thigh, by applying the cosine law to the triangle 
formed by A, H, and the knee. Let p'be the vector from H to A. The local 
coordinates a t  the joints in the stance leg are shown in Figure 12. We use 
the convention that x axis is forward, y axis is to the right side, and z axis 
is downward when the body is straight up. In this section, components of 
every vector are resolved in the global coordinates. At each joint, let G ~ ,  
G ~ ,  and zL be the unit vectors along x, y, z axis of the local coordinates 
corresponding to the global rotation matrix RL, respectively, that is, cL is 
the first row of R;, and so on. The unit vectors zU, cU, and z';' associated 
with Ry are similarly defined. Let 

Let u', be a unit vector that is normal to both cf and u',, whose direction is 
given by 

Let 
-. -. -. 
U y  = U ,  X U ,  



Figure 12: Local Coordinates at Ankle and Hip Joints 

We construct R: by 

(9) 

Then the joint angle(s) O4 = (O,", O z ,  0,") at the ankle is given by comput- 
ing the Euler angles associated with the rotation matrix R~(RY)-', where 
O:, O i ,  0; are the Euler angles around the local x, y, z axis, respectively. 

0; should be incremented by Othigh, because p'is not in the same direction 
with shin. The definition of R: above always ensures that 0; is 0. In this 
way, the redundancy along p' is eliminated. 

By the computations above, we can determine the configuration of the 
stance leg from the toe group to the thigh. So the global rotation matrix 
Rk at stance hip is now available. By the assumption that the pelvis always 
faces the derivative direction and is vertical to the ground, we already have 
the global rotation matrix R: of the pelvis: if we let y' be the unit vector 



along the derivative direction, we have 

From these 2 matrices we compute Euler angles to get the joint angle(s) d8 
between the pelvis and the hip. Thus we now have all the joint angles in the 
stance leg. 

5.2 Swing Leg at the Double Stance Phase 
Because a revolute joint is assumed at the ball of foot, if we exclude the 
possibility of sliding, the toe group of the swing foot should stay fixed on 
the ground during the DS. Because there are 3 links between the swing hip 
J7 and the ball of foot J1,  we should resolve the redundancy in a reasonable 
way. If we use the joint angle in 2D algorithm at  J1, this redundancy goes 
away. This approximation works well in most of the cases. But when both 
the direction change and the step length (the distance between the adjacent 
steps) are extremely large, the distance 1 &, I from Haw to A,, becomes too 
long to be connected by the lengths of thigh and shin. (A,, H,,, and A,, 
are similarly defined in the swing leg as in the stance leg.) This problem was 
solved by increasing the angle at the ball of foot until I I becomes less 
than the sum of thigh and shin. Once this condition is satisfied, we can use 
p',, to get the joint angles at ankle, knee, and hip, similarly as in the stance 
leg. 

5.3 Swing Leg at the Single Stance Phase 

The trajectory (top view) followed by the swing ankle is approximated by 
a second degree Casteljau curve [19]. The 3 control points are given by the 
position Dl of the current swing ankle at TOM, D2 which is symmetric point 
of the stance ankle with respect to the line a, and the ankle position Dg at 
the next heel strike point, as shown in Figure 13. 

The height component of the ankle is determined by the underlying 2D 
algorithm. So now we have A,, and H,,, and should determine d,", d,Y, 05, 
I!?;, B y ,  and 0;. We use the underlying 2D locomotion system to get 0:. O5 
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Figure 13: The Path of the Swing Foot 

is given by the triangle formed by H,,, A,,, and the swing knee. Note that 
Ry is given by the computation in the section 5.1, because R; = Rf .  Let 
the vector p',, be from H,, to A,,.  from the relationship between Ry and 
+ p,, we can compute 0," and 0: in similar way as in the section 5.1. Now only 
0,", 0: remain to be computed. 

At the moment of heelstrike, the swing leg should have been prepared for 
the next step. Because linear walking is assumed from HSM and TOM, the 
hip and ankle angles in swing leg should become 0 except for the bending 
direction (around the y axis). That is, the values of OF,  a;, and 83" should get 
to 0 at the heelstrike moment. So we should somehow adjust the swing leg 
and foot from the chaos configuration (at TOM) to the ordered configuration 
(at the next HSM). By the stance leg movement and the ankle trajectory 
given above, 0; becomes 0 automatically at the heelstrike moment. At toe 
off, the displaced (rotated around the x axis) foot gets to the normal position 
very quickly and it is approximated by an exponential function that decreases 
rapidly to 0. That is, for some positive constant G, we let 0; at time t be 

-Gt 
O:(t) = 0z(O) - exp t.w (11) 



where t is the elapsed time after TOM, and t,, is the duration between 
the TOM and the next HSM. The z component of the hip joint angle is 
approximated by a parabola given by 

As a summary of this section, note that if the 3D locomotion path is actu- 
ally a straight line, the walk generated by the computations above is exactly 
the same as the walk given by the underlying 2D system. For example, in the 
consideration of swing leg motion during the single stance phase, Dl ,  D2, and 
D3 will be collinear and parallel to the walking path. Also in the equations 
(8) and (9), both 0,"(0) and Oq(0) will be 0 and the trajectory of the swing 
leg will be exactly the same as that of 2D walking. 

Results and Conclusion 

Figure 14 shows the foot steps generated by the interactive s t ep  edi tor  de- 
veloped for our walking animation. Steps can be added, deleted, moved, and 
rotated interactively on the screen, and finally we can get the step sequence. 

Figure 15 shows the walking path generated by the interactive path editor. 
A curve can be edited by adding (at the ends), inserting, deleting, moving the 
control points. If p values are given by the user, the foot steps are generated 
according to the algorithm in section 3. 

The curved path walking algorithm is implemented in JackTM [20]. Fig- 
ure 16 shows the snapshots during a turning step. The torso of the human 
figure in Jack  is modeled by 17 segments. It allows the torso to bend in 
the forwardlbackward, lateral, and axial directions [21]. During walking, we 
could bend the torso to avoid simple obstacles. At the end of a walk, walk- 
ing motion could be connected to a stepping motion [20], which is useful in 
generating local locomotion. 

This method is a robust and effective way to produce curved path loco- 
motion. 
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~ k u r e  14: Steps Generated by the Step Editor 



Figure 15: Steps Generated by the Path Editor 



Figure 16: Snapshots during a Turning Step 
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