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The average annual rate of return on equity exceeds the average annual rate of
return on short-term riskless bills by several hundred basis. There are two components to
this equity premium: a risk premium and a term premium. The risk premium reflects the
fact that equity is claim on sfochastic payoffs, whereas a short-term riskless bill is a
fixed-income security that is a claim on a known payoff. The term premium reflects the
longer maturity of equity relative to short-term bills.

The literature on the equity premium has typically focused on the overall equity
premium rather than on the separate components.' In the most influential quantitative
application of the Lucas (1978) fruit-tree model of asset pricing, Mehra and Prescott
(1985) found that this model was incapable of producing an equity premium of more than
35 basis points when they confined attention to parameter values that they deemed
plausible. With such a small overall equity premium implied by the model, it did not
much matter how much was a risk premium and how much was a term premium.
However, subsequent research has produced models that can account for an equity
prenium of several hundred basis points per year. 1 will show in this paper how the
equity premium in a general equilibrium model can be decomposed into a risk premium
and a term premium. This decomposition provides helpful insights about the source of

the equity premium and provides guidance in choosing appropriate parameter values.

'Recently, Jermann (1998) has examined term premia and payout uncertainty premia in a model with
preferences that exhibit habit formation rather than catching up with the Joneses as in the current paper.
Boldrin, Christiano, and Fisher (1995) also examine asset pricing with habit formation, and Lettau and
Uhlig (1995) examine asset pricing behavior with a form of catching up with Joneses utility, but unlike

Jermann (1996) neither of these papers examines term premia.



The most basic application of the Lucas fruit-tree model can be used to price
unlevered equity in an economy with i.i.d. consumption growth and a representative
consumer with time-separable isoelastic utility. The literature has extended this basic
model in many ways, and I will adopt two of these extensions, though I will combine
them in a way to obtain fresh insights. First, I will specify preferences to have the
catching up with the Joneses feature introduced in Abel (1990) and used more recently by
Campbell and Cochrane (1994) and Carroll, Overland, and Weil (1997). Second, I will
introduce a novel tractable formulation of leverage. Despite the additional richness
introduced by these extensions, [ derive closed-form solutions for expected rates of
return, term premia, and risk premia for a general class of assets.

The catching up with the Joneses feature of the utility function was originally
introduced to help account for the high average value of the equity premium observed
empirically. However, when this form of the utility function was specified to imply a
realistic value of the equity premium in Abel (1990), the model produced a riskless rate
of return that was far too volatile. Campbell and Cochrane (1994) developed a form of
catching up with the Joneses preferences that yielded, as in actual data, a large equity
premium and low variability of the riskless rate. They achieved this low variability of the
niskless rate by specifying a complicated recursive function for the determination of the
benchmark level of consumption. Here I adopt a simpler formulation of the benchmark
level of consumption that produces, with the inclusion of leverage, low variability of the
riskless rate along with a large equity premium.

The analysis of leverage arises naturally from the formulation of the canonical

asset introduced in this paper. The payoff in period  on the canonical asset is specified to



be proportional to y*, where y, is an observable random variable and A is a constant. I use
this formulation in order to include fixed-income securities and equities as special cases.
For fixed-income securities, A = 0 so that payoffs are nonstochastic. Unlevered equity in
the Lucas fruit-tree model is modeled by setting A = 1 and y, equal to aggregate output
(which equals consumption) per capita. Although the form of the canonical asset was
initially developed with only the values of A =0 and A =1 in mind, it became apparent
that much of the analysis can be conducted, and closed-form solutions derived, for
arbitrary values of 1. Indeed, values of A greater than one provide a good approximation
to levered equity.

Although closed-form solutions are derived for various moments of asset returns,
many of these expressions are too cumbersome to clearly illustrate the effects of various
parameters on the moments of returns. To make these effects transparent, I derive first-
order approximations to the exact solutions. Numerical calibration demonstrates that
these approximations yield values close to the values calculated using the exact solutions.
More importantly, I use these approximations to develop a simple algorithm for choosing
parameter values that allow the approximate unconditional means and variances of the
riskless rate and the rate of return on equity to match the corresponding historical sample
values.

Section [ develops the model ‘with catching up with the Joneses preferences and
mtroduces the canonical asset. Asset pricing is discussed in Section IT which includes a
discussion of risk premia and term premia without restricting the distribution of growth
rates. Beginning in Section III, T assume that growth rates are lognormal. The

interpretation of the parameter A as a measure of leverage is discussed in Section V. In



Section V, I derive closed-form expressions for the means and variances of the riskless
rate and the rate of return on equity. I calibrate the model in Section VI and develop the
algorithm for choosing parameter values that allow the model’s predictions of the
unconditional means and variances of the riskless rate and the rate of return on levered
equity to match the corresponding empirical moments. Concluding remarks are presented

in Section VII.

I. The Model

Consider a closed economy populated by a continuum of identical infinitely-lived
consumers. Qutput in this economy is a homogeneous good that is completely
perishable. In equilibrium, all output is consumed in the period in which it is produced
so that, as in the Lucas (1978) fruit-tree model, consumption equals output. The amount
of output per person in period ¢ is C, > 0, which equals the consumption of the

representative consumer.

L.A. Preferences
In period 7 an individual consumer chooses a level of consumption c, to maximize
utility U, which is given by the function

w j e
U;E,{Z(ﬁ) u(c,,,j,v,ﬂ.)}, where u(c,,v,):%(f'—) ,a>0,8>0 (1)

Jj=0 —a\v,



and v is a benchmark level of consumption which is exogenous to an individual
consumer.” The curvature parameter « is the coefficient of relative risk aversion. If v is
a fixed constant, then the utility function is the standard time-separable utility function
with a constant coefficient of relative risk aversion o and a constant rate of time
preference 4.

The benchmark level of consumption, v, tends to grow over time as the standard

of living in a country rises. Specifically,
v, =CrCry (G 2)

where G>land 0 <y <1 fori=0, 1, and 2. The dependence of the benchmark level of
consumption on current and lagged aggregate consumption per capita, C,and C,;, 1s a
generalization of the "catching up with the Joneses" specification of utility introduced in
Abel (1990), and captures the notion that the benchmark level of consumption is an
increasing (homogeneous) function of current and recent levels of consumption per
capita. The special case with y, >0 and y, = y, = 0 corresponds the simple formulation of
catching up with the Joneses in Abel (1990). The case with y, >0 and , =%, =0
corresponds to Gali's (1994) specification of consumption externalities. The dependence
of the benchmark level of consumption on G* allows for the possibility that the

benchmark level of consumption grows simply with the passage of time.

*Campbell and Cochrane (1994) assume that the representative consumer's utility depends on the difference
between ¢, and v, rather than on the ratio of ¢, to v,. Specifically, they assume that u(c, v,) ={(c, - v,)l‘a/( 1-
@). With the formulation in Campbell and Cochrane, care must be taken to prevent ¢, from falling below

v,. The formulation in equation (1) makes this consideration unnecessary.



Equilibrium asset prices and returns depend on the marginal rate of substitution of
the representative consumer. For the utility function in equation (1) and the benchmark
level of consumption in equation (2) the marginal rate of substitution between period ¢

and pertod #+1 is

e Yo l a-1
M:H 1 uc(cz+1 » Vt+l) - 1 Crel C‘r+l CI ' G . (3)
1+ uc(ct,v‘) 1+ c, C; Cr—l

The marginal rate of substitution can be expressed more conveniently in terms of the

growth rate of consumption. Let x,,, be the ratio of consumption in period ¢+1 to

consumption in period ¢ and observe that in equilibrium

i+l . (4)

Substituting equation (4) into equation (3) gives an expression for the equilibrium

marginal rate of substitution

M, = B ix] (Sa)

G}’z(“‘l)
here = >0, 5b
v p 1+4 (5b)
A=a-y,(a-1)>0, (5¢)
and 0=y (a-1). (5d)

Although the specification of preferences involves six parameters—3§, &, 7, 7, ¥,, and
G—and all six of the parameters affect the marginal rate of substitution, there are only
three independent parameters that determine the marginal rate of substitution. Thus,

relative to the standard time-separable isoelastic specification of preferences, which has



two independent parameters—the rate of time preference and the coefficient of relative
risk aversion—the current specification of preferences introduces only one additional
degree of freedom. The fact that there are six parameters but only three independent
parameters allows for a variety of interpretations of preferences. However, from the
perspective of fitting empirical data on asset returns, there are only three preference

parameters: f, A, and 8’

I. B. The Canonical Asset

Rather than proceed with separate derivations for the prices and rates of return for
different assets such as equity, short-term bills and long-term bonds, I will introduce a
canonical asset that includes all of these assets as special cases. The canonical asset is an

n-period asset. From the standpoint of period ¢, the terminal period of an n-period asset is
period t+n. This asset pays a, V. ; in the period that is j periods before the terminal
period forj =0, ..., n-1, wherey, ;>0 is a random variable, a, > 0 is a constant,

a,>20,j=1,..,n—1 are constants, and A is a constant that indexes the variability of

*These three parameters can be used to state the condition for utility in equation (1) to be finite.

Specifically, if x, is i.i.d. over time, then utility in equation (1} is finite if and only if ﬁE{x'*"*" }< 1. To

© J
thi it i -V wherez 1 _
prove this result, rewrite equation (1) as {7 = ;”zm where 7 =, {(m‘,) u(ch,VHj )} In

equilibrium,

Ty 1,0, =107 M1+ 8N, fCiACo W ECACE L b= BE it Ol W E (i el

1+-1

Ifx,is iid. over time, then forj > 1, @,

/El.lq-j = GE, {xl—A+6 } Therefore, U, = igm}_ is finite if and
J=0

only if /;?E{x"“g }< 1.



future payoffs. Thus, for instance, in the terminal period, the asset pays @,y ; and in
period 7+1 the asset pays a,_,y;., .

The canonical asset introduced here includes equities and fixed-income securities
of all maturities. Fixed-income securties such as bonds and bills are represented by A =
0 which implies that the payoff in period +n+j is the known amount @, . A standard
coupon bond with face value # and coupon d is represented by o, =F + 4, and
a, =--=a, , =d>0; in this formulation, a pure discount bond is represented by d = 0.

Securities with risky payoffs have nonzero values of A. For instance, in the Lucas
(1978) fruit-tree model, the dividend (per capita) on unlevered equity equals consumption
per capita C,. In terms of our canonical asset, unlevered equity in the Lucas model is an
infinite-period asset that pays C, in period ¢. Using the notation for canonical assets,
n=cw,q;=1forallj>0,y,=C,and 2 =1. As discussed in section IV, levered equity
can be represented by values of A greater than one.

Let p(n,A) be the ex-payment price of the canonical n-period asset in period ¢.

The price of this asset also depends on the sequence of constants a,,/=0, . .., n-1, and

on the stochastic specification of y , but this dependence is not reflected in the notation.

The gross rate of return on the canonical asset between period ¢ and period ¢+1 is

P (n - Lﬂ“) + an—lyt};—l
2,(n,4)

R, (n,A)= ,forn>1. (6)

The moments of the rate of return on the canonical asset can be determined after

specifying the stochastic structure of the economy.



I.C. The Stochastic Structure

=C

t+1

Recall that x / C, 1s the growth rate of aggregate consumption per capita.

t+1
Define z,,, = y,,,/ y, to be the growth rate of y,. As noted earlier, in the specification of
unlevered equity in the Lucas fruit-tree model, y, = C, so that z,,, = x,,,. More

generally, x,,, and z,,, are distinct random variables and are elements of a random vector

of growth rates W,,, which is observable at the beginning of period 1. I assume that

W, is iid.

II. Asset Pricing

In this section I use the marginal rate of substitution in equation (5a) to determine
the price of the canonical asset. As will become evident, the price of the canonical asset

can be expressed as
p.(n,A)=w(n,A)xly} (7)

where ax{n, A) is a function to be determined. Substituting equation (7) into equation (6)

and recalling that z,_ =y, /y, yields

o(n-1,A)x0 +a,,

1+1

o(m A)x°

R, (n,A)= z,, forn>1. (8)

It is well-known that the product of the gross rate of return and the intertemporal
marginal rate of substitution has a conditional expectation equal to one. In the notation of

this paper

E{R.(n )M }=1. ©)



Substituting equations (5a) and (8) into equation (9), and using the assumption that ¥,

is i.1.d., yields the following difference equation for @(n,A)

w(n,A)=x(A)a(n-1,A)+ fa, E{x;\z},}, forn > 1 (10a)

where (A} = BE{xE 2L ). (10b)
I will assume that £ and the distribution of the vector W,,, are such that 0 < x(4) < 1.
This assumption guarantees that the difference equation converges as » grows,*
The boundary condition for this difference equation is provided by the fact that
after the asset has yielded its last payment, and is formally a zero-period asset, its price is

zero. Thus the boundary condition is p,(0,4) =0 which implies @(0,1)=0.

Substituting this boundary condition into equation (10) yields

o(1,A)= fa,E{x; 1z}, } > 0. (11

* The assumption that x(1) < 1 also leads to a sufficient condition to guarantee that utility in equation (1) is
finite in the case in whichz=x and In x is N(z,o?), which is widely considered in the literature and is

considered in sections V and V1. In this case, x(},) = ﬂE{x“‘“"} which implies that

ﬁE{xl_A+a} ﬂE{ A-M’}epr: (,I—l)[/.u(ﬂ A+1-J;—'1]02J]=ic(l)exp{-(ﬂ )( (9 A+%)a‘2):|

Therefore, the assumption that x(4) < 1 implies that ﬂE{x""’”} <1 if (,}_“1{#+[9 A+ﬂ] ZJZ 0
2

Thus, the assumption that «(4) < 1 implies that (; - ( u +(9 A+ ""_’?“ja-2 } >( is a sufficient condition
2

for utility in equation (1) to be finite when z =x. Sece footnote 3.

10



It is straightforward to verify that the following expression for a(n,4) satisfies the

difference equation (10a) and the boundary condition (11)

@(1,A) &

> a[x(A)] (12)

i=1

w(n,A) =

a,

The function axn,A) can be either increasing or decreasing in the maturity .

o For a pure discount security, which is characterized by a, =--=a,_; =0, equation
(12) implies @(n,1) = a)(l,}.)[/c(/?,)]""l which is strictly decreasing in 7. Thus, for
given values of x, and y,, the price of an #-period discount security, p(n,4) =

aXn,)x%, is strictly decreasing in maturity ».

s For a security with a, =a, =--=a,_, >0, equation (12) implies

1- [K(/l)]"

w(n,A) = w(1,4) ()

, which is strictly increasing in n.

e For a coupon bond with face value F and coupon d, a, =F +dand

a, =--=a_ =d>0. Inthis case, equation (12) implies
1 n—1

o) ) e LG

d |, which is increasing in maturity » if
d /! F>(1-x(4))/x(A) but is decreasing in n if d / F <(1-x(4))/ x(4). Thus, the

price of an n-pericd coupon bond is an increasing, decreasing, or constant function of

the maturity » depending on whether d/F is greater than, less than, or equal to (1-

(A K(A).

II.A. The Expected Rate of Return on the Canonical Asset

Empirical and theoretical studies of asset pricing commonly focus on the expected

rates of return on various assets such as equities and fixed-income securities. Before

11



computing the expected rate of return on the general canonical asset, it is easiest to begin
with the expected rate of return on one-period assets. Taking the expectation of both

sides of equation (8), setting » =1, and using equation (11) yields

E{ZHI}
E{R.H-l )}—ﬁE{x;’: tﬁl}x (13)
It can be shown that’
o(1,2)
n—l
E{Rr+l )} ["P (1 LP) a a)(n,,l) E{Rrﬂ )} (143)
where
E{xf-l-i r+1}E{xr+l 2
P = 14b
{ :+1}E{xtg+1A l‘{-l} ( )

Equations (14a,b) present the expected rate of return on the canonical asset for

any maturity » and any value of the parameter A. I will use this equation to examine term

3Taking the expectation of both sides of equation (8) for maturity equal to » and then for maturity equal to

1 yields E{RH‘("’A)} wfn - i,l)E{xi,zil} +a E{ ’*'} (L, 4) which can be rewritten as
E{R,.,(LA)} a(n,A) a E{z

1+l

E{R’”(n’i)} = ofn -1 l)E{ i'z’i‘} (1"1.) + a,,2(L4)  Now use equation (10a) to obtain
E{R,H(l,/l)} a{n,A)a, E{ M} ago(n, A)

. Next use equation (11), the

E{Rm("vi)} 1 l:l Pa,., E{ tei ra-l}:‘E{valz.il}w(l’ﬂ') a,,_,w(l,/l)
)

aln, A) a E{ m} ¥ a,ofn, 1)

definition of x{1) in equation (10b), and the definition of ‘¥ in equation (14b) to obtain

E{RM(H’A)} =[1- a"“w(l’ﬂ') W an-la’(l”z’) which is equivalent to equation (14a).
E{RM(I,A)} a,o(n,A) a,a(n, )

12



premia by comparing expected rates of return for different values of #, and then T will

examine risk premia by comparing expected rates of return for different values of A.

II.B. Term Premia

For any given value of A and any given choice of the variable y, (which
determines the payoff a, i ;)» there is a term structure of expected one-period rates of
return on assets of various maturities. The term premium is the excess of the expected
one-period rate of return on a n-period asset over the expected one-period rate of return

on a one-period asset with the same value of A. Formally, the term premium on an n-

period asset is

E{Rul(n”l)} _

TP(n,A) = E{R,,,(1,2)}

(15)
Using the definition of the term premium in equation (15), it follows from equation (14a)

that the term premium is

TP(n,A)=(¥ -1)['(n,4) (16a)

where

T(n,A)=1-2xt oLAd) _, -t (16b)

. ;L 2 n-i
% ohd) e <)
i=1
According to equation (16a), the term premium is the product of two factors: ‘¥ -1

and I"(n, A). The first factor, ‘¥ -1, is independent of the maturity » and of the sequence

of payoff coefficients a,, j =0,...,n—1. Thus, I will call '¥'-] the "term premium scale

13



factor" because a change in this factor changes the term premia at all maturities by the
same proportion. Inspection of the definition of ¥ in equation (14) reveals that when &=
0, ¥ = 1 and hence the term premium scale factor is zero. Since & = y(« - 1), the term
premium will be zero if utility is logarithmic (= 1) or if ¥, = 0.° Thus, the term
premium will be nonzero only if the consumption externality, i.e., the dependence of an
individual's utility on aggregate consumption per capita, has a lagged component as
reflected in y, > 0. The contemporaneous component of the consumption externality
parameterized by y, does not affect whether the term premium is nonzero. Therefore, in
the formulation of consumption externalities used by Gali (1994) with , >0 and 7, =0,
there will be no term premium.
The second factor, I'(r, 1), captures the shape of the term structure for given A.

Notice that T(1, 4) =0, and I'(n, ) >0 forn > 1.7
e For an n-period security that makes no payments until the final period, such as an n-

period discount bond, a, =--=a,_, =0, and hence I'(n,4) = 1 for » > 1. Thus, the

term premium is independent of the maturity # for discount securities with a given 4

and with more than one period to run.

°In a somewhat different model, Backus, Gregory, and Zin {(1989) show (Proposition 1, p. 382) that term
premia will be identically zero if the marginal rate of substitution is independent over time. In the model
presented here with x, i.i.d. over time, if 8= 0, the marginal rate of substitution, M., = Bt s

independent over time; the term premium will be zero as in Backus, Gregory, and Zin.

7 Since (< a,, < iai—l[x(l)]n_i , equation (16b) implies that 0 <T'(n,A) < 1.
i=l

14



e For a security with g, =a, =-=a,, >0, I'(n,4) =

increasing in #.

¢ For a standard coupon bond with face value F and coupon d, q,=F +d and

a,==a, =d>0,s0 I’(n,}{)=1—- — . The term premium

[«(A)] " F+

is decreasing in maturity n if @/ F <(1-x(4))/ k(1) and is increasing in maturity »

if d/F>(1-x(4))/ x(A).

II. C. Risk Premia

The risk premium is the expected excess rate of return on a risky asset relative to
the rate of return on a riskless asset of the same maturity. I will define the risk premium
in terms of one-period assets. A riskless one-period security is characterized by » = 1 and
A =0, and has a known return R, ,(1,0), so the risk premium is

E {RH-I }
TR0 4

RE(1,4)

The rate of return on a one-period riskless security is easily calculated by setting A =0 in

equation (13) to obtain

R, {1,0)= (18)

ﬁE {x:+1 }x

Now substitute equations (13) and (18) into equation (17) to obtain

15



E -A E i
RE(1,2)= j{;{x}z{} -
t t+1%t+1

1. (19)

This risk premium in equation (19) equals —Cov,{x.1,z},}/ E {x;{z},} so that the sign
p t (23 At S} 4

+1%e+1

of the risk premium is the opposite of the sign of the conditional covariance of x| and

z! . In the standard Lucas fruit-tree model where z,,, = x,,, , this conditional covariance

el ?

is negative and the risk premium is necessarily positive.®

II1. Lognormality

So far [ have examined the expected rate of return on the canonical asset without

imposing restrictions on the distribution of growth rates (W,. ) except that

x(A)= PE{x{;"z}, } <1. Many contributions to the asset pricing literature assume that

t+1

the distribution of growth rates is lognormal, and I will adept this assumption for the

remainder of the paper. Specifically, I assume that

ln ‘xt+l . /ux Gi o-xz
iIsN , S - (20)
In Zt+1 /uz O'R O-z
Under the distributional assumption in equation (20), the term premium scale

factor ‘¥ defined in equation (14b) simplifies to

¥ = exp(@do?). 1)

This statement is based on the assumption that A > 0. Unlevered equity in the fruit-tree model is
represented by A =1, and, as we show in section IV, levered equity is represented by 1 > 1. Of course, if A

=), the asset is riskless and the risk premium in equation (19} is zero.

16



Although ¥ is defined in terms of the joint conditional distribution of z,,, and x,.,, the
value of ¥ depends only on the conditional variance of x,, ; it is independent of the
parameters of the marginal conditional distribution of z,,, and is also independent of the
parameter 4 which measures the variability of future payoffs. Thus, the term premium
scale factor, ¥ — 1, depends on the preference parameters ¢ and 4 and the vanance of
consumption growth &, ’, but it is independent of the payoff characteristics of the asset.

Substituting equation (21) into equation (16a) yields
TP(n,4) =T(n, A)exp(640?) 1| =T (n, )40 . (22)

Equation (22) presents an exact expression for the term premium as well as an

approximation. According to the approximation, the term structure of term premia is

proportional to #4o , which is approximately equal to the term premium scale factor.

Recall that I'(n, 2) > 0 for n > 1 so that the term premium has the same sign as the term
premium scale factor. The sign of the term premium scale factor is the same as the sign
of & Thus for 8> 0, the term premium is positive for » > 1. However, if <0 (for
instance, if >0 and a<1), the term premium is negative for alln > 1.°

The assumption of conditional lognormality also leads to a simple expression for
the risk premium. Under the distributional assumption in equation (20), the expression

for the risk premium in equation (19) becomes

*These findings are consistent with the result in Backus, Gregory, and Zin (1989, p. 382) that the sign of
the term premium will be the opposite of the sign of the autocorrelaticn of the marginal rate of substitution.
In the current model with x, i.i.d, equation (5a) implies that the sign of this autocorrelation is the opposite

of the sign of & Therefore, the term premium has the same sign as 6.

17



RE(1,A)=exp(4ic,)-1= Aic,, (23)

According to the approximation in equation (25) the risk premium equals A multiplied by
the covariance of In x,,, and Aln z,,, where In x,_, is the (logarithm of the) growth rate of
consumption and Aln z,_, is the (logarithm of the) growth rate of the risky payoff on the
asset. In the special case of the Lucas fruit-tree model, the payoff on unlevered equity is

simply per capita consumption, so that z,,, =x,,,. Inthiscase, A=1and o, = o, s0

that the risk premium is approximately equal to Ao .

IV. Leverage
Having shown in equation (23) that the (approximate) risk premium is
proportional to A, [ will now show that the parameter A provides a convenient way to
model leverage. Recall that if A = 0, future payoffs are deterministic and are given by

the sequence of constants a pd = 0,1,...,n—1. Thus, with A = 0, the canonical asset is a

fixed-income security such as a bill or a bond. Alternatively, if A=1and if y, =C, so

that z,,, = x,,, , the canonical asset is unlevered equity in a fruit-tree model. Twill show

below that levered equity can be represented approximately by values of A greater than

one, with higher values of A representing higher degrees of leverage.

IV.A. A One-Period Levered Asset
Consider a one-period security in period ¢ that offers a stochastic payoff £, in
period r+1. Call this security L (for "levered equity") and let PL, denote the price of this

security in period r. The gross rate of return on security L is R, = &,,/PL,. In order to
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make security L correspond to (one-period) levered equity, specify the future payoff as
&, =max[0, x,,, - B]C,, where B > 0 is a constant. Observe that x,,,C,=C,,, is per
capita output in period ¢+1, and B C, is interpreted as a fixed payment in period +1
promised to bondholders. Applying equation (9) along with the expression for the
equilibrium marginal rate of substitution in equation (5a) yields

E {max[0,x,,, - B]}

EARL B = B T a5~ B)

(24)

where the notation for the expected rate of return on the left-hand side emphasizes the

dependence on B.

IV.B. An Approximation to a One-Period Levered Asset

Now I will use the canonical asset with » = 1 to approximate the expected return
on security L. Consider a one-period canonical asset that pays C, f o= (x,,,C )'1 in period

t+1 t+1

t+1. Under the assumed lognormality of x,,,, the coefficient of variation of (x,,,C,)* 1s

exp(/lzof]—- 1. For security L, the coefficient of variation of &, is

. Therefore, the payoffs (x,,,C,)*and £, will have equal

\/ Var{max[O,x - B]}
(E{max[O,x - B]})2

coefficients of variation if A = A, where

7= U, Var{max[0,x - B]}

o, (£{max[0,x~ B]})’ )
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Even with the simplifying assumption of lognormality, the analytic expression for 4, in
terms of the parameters of the distribution of x is cambersome. This expression is
relegated to Appendix A where it is also shown that for values of B that are small enough

that the probability of default, Pr{x < B}, is negligible, the coefficient of variation of {'is

approximately equal to the coefficient of variation of x** where

1
AZE-—‘—B—. (26)
1—

E{x}

For values of B small enough that the probability of default, Pr{x < B}, is
negligible, the introduction of B > 0 is essentially a leftward translation of the distribution
of payoffs in which the mean payoff is reduced to a fraction 1 - B/ E{x} ofits original
value and the standard deviation of the payoff is unchanged. This reduction in the mean
payoff increases the coefficient of variation of the payoff to 4, times its value when B = 0.

Figure 1 shows the values of 4, and A, as functions of B/E{x}. The distributional
assumption underlying Figure ! is that In x is ¥(0.018, (0.036)%) where the mean and
variance of the distribution were chosen to match the historical behavior of the annual
growth rate of consumption per capita in the United States as reported by Mehra and
Prescott (1985). For values of B / E{x} small enough that Pr{x < B}, the probability of
default shown in Figure 2, is close to zero, 4, is an excellent approximation for A,. As
B/E{x} increases toward 1.0, the probability of default increases noticeably and the
values of 4, and A, diverge somewhat.

To see how well the canonical asset approximates levered equity, I compute the

expected rate of return on the one-period canonical asset, and compare this expected rate
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of return with that on one-period levered equity in equation (24). The rate of return on
the one-period canonical asset is easily computed from equation (13) by setting z = x and

using the lognormality of x to obtain

E{R,H(l,z)}:Ex}?exp[Aw Aaz(ﬂv—%A):l. (27)

Figure 2 shows the effect of leverage on the expected rate of return and assesses
the quality of the approximation offered by the one-period canonical asset for the case in
which 4 = 10." Because the purpose of the calculations reported here is to examine the
role of leverage on expected rates of return, I have simply set ﬂx,g =1 in calculating the
rates of return. Increasing ﬂx,g slightly would decrease the expected rates of return
reported in Figure 2, thereby making these rates look more realistic." Figure 2 illustrates
two important points. First, leverage can have a substantial effect on the expected rate of
return even when the probability of default is essentially zero. In the absence of leverage
(B = 0), the expected rate of return on security L is 13.67%, but when B/E{x} = 0.6, the
expected rate of return on security L increases to 15.94%, even though the probability of
default is smaller than 10"*. Second, Figure 2 s:hows that the expected rates of return

calculated using the canonical asset with 4 = 1, or A = 4, are excellent approximations to

"®The calculation of the expected rate of return on security L requires the calculation of moments of a
truncated lognormal distribution. See Appendix A.

"' In fact, in section VI, #= 1.085 and &= 1.575, so that evaluating fx,® at the median value of x, = 1.018
yields A, = 1.12, which would reduce the expected rates of return in Figure 2 by about 12 percentage

points.
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the exact expected rate of return calculated from equation (24), provided that the

probability of default is sufficiently small.

Y. Moments of Returns

In this section I focus on the moments of returns on a one-period riskless asset and

on levered equity. To simplify the resulting expressions, I assume that z,,, = x,, asis
standard in applications of the Lucas fruit-tree model.”* This assumption implies that
p, =u,=pand o> =0_=0’ =0’ Inaddition assume that ¢, =1,j=0,...,n—-1,

where n may be infinite.

The aim of this section is to understand how the unconditional means and
variances of asset returns depend on the underlying preference parameters and payoff
characteristics. I derive exact expressions for these moments of asset returns but some of
the resulting expressions are too cumbersome to clearly reveal the effects of parameter
values and payoffs on moments of returns. A common approach when facing such
cumbersome analytic expressions is to calibrate the model and simulate it for various
choices of parameter values. Rather than pursue a numerical strategy, I will pursue an
analytical strategy by deriving first-order approximations that clearly illustrate the
relationships between the underlying parameters and the moments of returns. It is worth
emphasizing that I do not derive the solution to a problem in which the objective function

and/or constraints have first been linearized.” Instead, I first obtain exact solutions to the

2The Lucas fruit-tree model also restricts A equal to one. I do not impose this restriction here.
3Campbell (1994) and Restoy and Weil (1995) (log) linearize the budget constraint of a representative

consumer and use the approximate budget constraint to derive and analyze asset returns.
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nonlinear problem, derive closed-form expressions for the moments of equilibrium
returns, and then approximate the moments. The quality of these approximations is

shown to be excellent in Table 1.

V.A. Exact Solutions
The unconditional riskless rate is calculated using equation (18) and the

lognormality of x,,, to obtain
{800} 5 e (4- 0L (4 -)o7 ) 2

The unconditional expected rate of return on equity is calculated by setting n =co in

equations (12) and (14a), and then using equations (21}, (23), and (28) to obtain

E{R, (=, A)} =
. 29
ﬁ"[l + fc(ﬂu)(exp(é?AO'2 )- 1):“:exp(AﬂLcr2 )]exp((A -Q)u-— %(A2 -& )0'2) (29)
To get an explicit expression for the term premium, sete;=1,i=0, 1, 2, ... in equation
(16b) and use equation (21) to rewrite equation (16a) as
A)-[x(D)]
TP (n,4) = M[exp(@fl o?)-1]. (30)

1-[x(2)]

According to equation (30), the rnagﬁitude of the term premium increases monotonically
in z; the term premium is positive and monotonically increasing in » if >0 and is
negative and monotonically decreasing in n if <0,

Exact expressions for the unconditional variances of rates of return are more

complicated and are contained in Appendix B.
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V.B. First-Order Approximations to Moments of Returns

In this section I present first-order approximations to moments of returns.
Specifically, I treat the moments of returns as functions of 4, o2, and £, and linearize the
functions around (x,o02, ) =(0,0,1).

The approximate unconditional mean of the riskless rate is calculated by

linearizing equation (28) to obtain

E{R,H(I,O)}z2—,8+(A—9),u—%(A2~92)0'2. G1)

The approximate unconditional mean of the rate of return on equity is calculated

by linearizing equation (29) to obtain'

E{R,,(,2)} = 2—,6’+(A—9)y—[% 4 —%92 —(6?+/1)A:lcrz : (32)

It follows immediately from equations (31) and (32) that the first-order approximation to

the unconditional equity premium E{R,,,(s0,4)-R,.,(1,0)} is
E{R,(,A)- R, (10)} =(9+2) 40" . (33)

The approximate equity premium is the sum of the approximate risk premium 242 (see

equation (23)) and the approximate term premium* 84 o 2.

l“Note that k(1) = £ =1 at the point of linearization.

15To calculate the term premium for levered equity, set 2 =c0 in equation {30) to obtain
TP(oo, ,l) = ;c(it)[exp(“_‘)Ao'2 )— 1]. The approximate term premium is derived by linearizing this expression,

noting that k{4) = 1 at the point of linearization, to obtain TP(w, 1)=0dc* .
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The approximate unconditional variances of returns are calculated in Appendix B.

The approximate unconditional variance of the riskless rate (see equation B.20) is
Var{R, (10)}=&c’. (34)

and the approximate unconditional variance of the rate of return on equity (see equation

B.22) is

Var(R, (w0, A)} 2 [(0+2)" +6*|o”. (35)

V1. Matching Sample Means and Variances of Rates of Return

In this section I show how to choose values of the preference parameters 4, £, and
6, and the leverage parameter A so that the unconditional means and variances of the
riskless rate and the rate of return on equity in the model match the sample values of
these means and variances. The unconditional moments of returns depend on the four
parameter values, 4, 5, 8, and A, and on the parameters of the lognormal distribution of
the growth rate of consumption x,. I will choose values of this lognormal distribution to
match the sample moments of the growth rate of aggregate consumption per capita
reported by Mehra and Prescott (1985) for annual data during the period 1889-1978.
Specifically, I will set the mean growth rate, 4, equal to 0.018 and the standard deviation
of the growth rate, o, equal to 0.036.

Let m, and m, represent the sample means of the riskless rate and the rate of return
on levered equity, respectively. Similarly, let s, and s, represent the respective sample

standard deviations of these rates of return. The values of these four sample moments, as
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reported by Mehra and Prescott (1985), are shown in the last column (labeled “Empirical
Values”) in Table 1. I will match the four sample moments with the corresponding
approximate unconditional moments implied by the model using equations (31), (33),
(34), and (35). Given the sample values of the four moments to be matched, this set of
equations is a recursive system of four equations in four parameters to be determined. I
will use a circumflex (*) to denote the values of the parameters that solve this system of
equations.

First, choose @ to match the variability of the riskless rate by setting the
approximate unconditional variance of the riskless rate in equation (34) equal to s and

5

solving for & to obtain
~ S

Second, choose the leverage parameter A to match the approximate variability of the rate
of return on levered equity by setting the approximate unconditional variance of this rate

2

of return in equation (35) equal to s,” and solving for A to obtain'

-~ 2 -~
A:{ % —1}9. (37
St

Third, choose the preference parameter A to match the equity premium by setting the

approximate unconditional mean of the equity premium in equation (33) equal to m, - m,

to obtain

“Note that 1 will be real if and only if 5, 2 5,, and A will be positive if and only if 5, > 5 fﬁ . Both of

these conditions are satisfied in the sample used in this paper.
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me—mf

e

(38)
Finally, choose the value of # to match the average riskless rate by setting the

approximate unconditional mean of the riskless rate in equation (31) equal to m, to obtain

p=2-m +(A-0)u— (4 -8, (39)

Given the empirical values of 4, o, m,, m, s,, and s, the values of
8, j,, A, and IB’ implied by equations (36) - (39) are shown in the top panel of Table 1.
The leverage parameter that allows the model to match the sample moments of returns is

A =274 Interpreting B/E {x  } as the leverage ratio, and setting 4, = 2.74 in equation
(26) implies that the leverage ratio is 0.64, which is in the middle of the range reported by
Masulis (1988) for leverage ratios based on book value, but is above the values of the
leverage ratio based on market value.'” An alternative way to gauge the plausibility of
= 2.74 is to observe that dividends in the model are proportional to y,* = ¢,*, where y, is
output per capita and c, is consumption per capita. Therefore, the (gross) growth rate of
dividends is x,* where x, is the growth rate of output and consumption, and the standard
deviation of the growth rate of dividends is approximately A times the standard deviation
of the growth rate of output and consumption.”® Using the standard deviations of growth

rates reported in Cecchetti, Lam and Mark (1990, Table 1, p. 402), the standard deviation

"Masulis (1988), Table 1-3, pp. 8-9 reports leverage ratios for U.S. corporations. The leverage ratio based
on market value ranged from 0.13 to 0.44 during the period 1929-1986, and the leverage ratio based on

book value ranged from 0.53 to 0.75 during the period 1937-1984.
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of the growth rate of dividends is 2.5 times the standard deviation of the growth rate of
output, and 3.6 times the standard deviation of the growth rate of consumption. Thus the
dividend variability implied by A = 2.74 seems consistent with the data.

The general formulation of preferences introduced in Section I has six parameters,
but this set of parameters is under-identified. In addition to the moment conditions in

equations (36), (38), and ((39), three restrictions are needed to obtain unique values of the
six parameters. [ will use the following three restrictions: 3, =0, +y, 7, =1,and G
= 1+ . The values of the five nonzero preference parameters implied by these
restrictions are reported in the second panel of Table 1. The coefficient of relative risk
aversion « is slightly above 11, which is a little higher than the upper bound of the range
considered by Mehra and Prescott (1985), but is much smaller than values reported by
Kandel and Stambaugh (1990) and Campbell and Cochrane (1994). The value of 7 is
much smaller than the value of 1.0 used in Abel (1990) and allows the value of & to be
relatively low even though « exceeds 10. The relatively low value of 8 keeps the
implied unconditional variance of the riskless rate from being too high, while the
relatively high value of & allows for a substantial equity premium. The rate of time
preference & is almost 7% per year, even though S exceeds 1.08. Because G is greater
than one and 7 is not negligible, this positive rate of time preference is consistent with
the value of £ greater than one.”” As noted by Benninga and Protopapadakis (1990) and

Kocherlakota (1990), a value of f greater than one can improve the empirical fit of fruit-

®Since In x, is My,0%), Var(x) = exp(24u + A ) [exp(A*c’)-1] = A*a>. Therefore s.d (x) = Asd(x).
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tree asset-pricing models, in particular by reducing the otherwise high implied value of
the riskless rate. The introduction of , in this formulation offers a rationale for £> 1.

The third panel of Table 1 reports the unconditional moments of rates of return.
Two values are presented for each moment implied by the model. The first value is
computed from the exact solution, and the second value is computed from the first-order
approximation. The first-order approximations are generally close to the exact values—
in some cases, remarkably so. The approximate values of the means and standard
deviations of the riskless rate and the rate of return on equity are equal to the
corresponding sample moments by construction. The exact values of these moments are
generally quite close to the sample values because the approximations are so close to the
actual values.

The empirical column in Table 1 also contains an estimate of the average term
premium. Over the period 1926-1993 the (arithmetic) average return on long-term
government bonds was 5.4% per year compared to an average return on U.S. Treasury
bills of 3.7% per year,” implying a term premium on fixed-income securities of 170 basis
points per year. With the parameter values in Table 1, the model predicts a term premium
on perpetual securities of 226 basis points per year which is 56 basis points higher than
the sample average term premium on long-term government bonds. However, the
implied term premium in Table 1 applies to an asset of infinite maturity with risky

payoffs (1 = 2.74), whereas the empirical term premium is for long-term government

®*Although > 1, the value of the utility function in equation (1) is finite. Recall from footnote 3 that the
utility function will be finite if E {x'**®} < 1. For the parameters values in Table 1, SE{x"*'%} = 0.9759.

P[bbotson Associates (1994), Exhibit 9, p. 31.
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bonds, which are assets of finite maturity with inown payoffs (4 =0). As it turns out,
however, the quantitative impact of these differences in risk and maturity on the term
premium is smail. Reducing A from 2.74 to zero reduces the annual term premium on an
infinite-maturity canonical asset by 5 basis points.”’ The effect of maturity on the term
premium depends on the ratio of the coupon to the face value. Reducing the maturity
from infinite to 20 years has virtually no effect if the coupon-face ratio is 0.03, reduces
the term premium by about 2 basis points if the coupon-face ratio is 0.06, and reduces the
term premium by about 4 basts points if the coupon-face ratio is 0.09. Thus, a small part
of the 56-basis point gap in Table 1 between the implied term premium on equity and the
sample term premium on long-term government bonds 1s due to the finite maturity of
bonds and to the variability of payoffs to equity. These effects imply that the gap
between the term premium predicted by the model and the sample average term premium
is smaller than 56 basis points per year.

Now consider the risk premium. The model predicts yields a risk premium of 4%
per year. There is no direct empirical counterpart to the risk premium defined in equation
(17). The value of 4.48% of the risk premium reported in parentheses in the final column
of Table 1 is simply the empirical value of the equity premium minus the empirical value
of the term premium.

The question that motivated the research in this paper was how much of the equity
premium is a term premium and how much is a risk premium. According to the model,

about one third of the equity premium is a term premium, and according to the empirical

The first-order approximation for the term premium (see footnote 15} indicates that A does not have a

first-order effect on the term premium.
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values in Table 1, the term premium accounts for about one fourth of the equity premium.
Taken together, these results suggest that the risk premium is about 2 or 3 times as large

as the term premium.

VIIL. Concluding Remarks

I have developed a simple model of asset pricing that can account for the
unconditional means and variances of the rates of return on the riskless asset and on
levered equity. In addition to providing closed-form expressions for the exact values of
these moments, I have derived first-order approximations to these moments. These
approximations permitted the development of an algorithm that allows the values of these
unconditional moments in the model to match historical sample moments. In addition,
these approximations provide a clear view of how the parameters of the model affect the
moments of returns implied by the model. The approximate equity premium is the sum
the approximate term premium @40 and the approximate risk premium JAS . The term
premium and the risk premium are both proportional to 4%, where 4 is a curvature
parameter in the utility function and ¢ is the standard deviation of consumption growth.
However, there is an interesting difference in the factors that multiply Ac”: in the case of
the term premium, this factor is & which depends only on preferences and is independent
of the characteristics of the asset; in the case of the risk premium, this factor is A which 1s
independent of preferences and is directly related to the volatility of the payoff on the
asset.

The equity premium in this framework is (#+A)4o* compared with 40 in a

standard model without catching up with the Joneses preferences (&= 0) and without
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leverage (A =1). With §=1.58 and A = 2.74, the model used here yields an equity
premium that is +1 = 4,32 times as high as the equity premium in a standard model
(where &+ 1 = 1) for given values of the coefficient of relative risk aversion® 4 and
consumption growth variance o®. Thus, the model can match the equity premium with a
value of 4 equal to 11.05 rather 4.32 x 11.05 = 47.74. The increase in the equity
premium relative to a standard model is due in about equal amounts to the change in
preferences, which contributes 1.58 4¢%, and the increase in the variability of the payoff,
which contributes 1.74 Ac”.

By using a high enough value of 8, the term premium 64 ¢* could be made large
enough to account for the empirical equity premium without appealing to leverage.
However, such a high value of & would make the implied riskless rate too volatile. The
unconditional standard deviation of the riskless rate is &o, so there is an intimate link
between the term premium and the standard deviation of the short-term riskless rate: both
are proportional to £ In economic terms, it is the volatility of the short-term niskless rate
that gives rise to a term premium. If the riskless rate were constant over time, there
would be no variability in the price of fixed-income securities, and there would be no
term premium.

Because an increase in & increases the volatility of the riskless rate, one cannot
rely on catching up with the Joneses preferences alone to match both the expected equity
premium and the volatility of the short-term riskless rate in an 1.1.d. framework. Here is

where leverage plays an important role. Increasing the value of the leverage parameter 4

2The parameter A is defined as « - y(a-1}. Under the assumption that y, = 0 as in Table 1, A = a which is
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directly increases the risk premium and hence the equity premium implied by the model,
without increasing the implied volatility of the short-term riskless rate.

The formulation of leverage in this paper is perhaps the most novel modeling
aspect, and further research along this line is needed. Although Section IV demonstrates
that A captures the effect of leverage on the expected return on a levered asset, this
analysis 1s restricted to one-period assets and one-period senior claims against the payoffs
to these assets. Additional research is needed to determine how best to moedel infinite-
horizon assets that have issued multi-period fixed claims. This research would shed light
on the role of leverage in asset pricing and also help to determine the appropriate
empirical counterpart to be used to calibrate the degree of leverage in the model.

The analysis in this paper was confined to a fruit-tree framework in which
equilibrium consumption per capita is an exogenous stochastic process. This framework
1s a useful initial testing ground for the asset pricing implications of leverage and
catching up with the Joneses preferences. Since the model is capable of producing
moments of returns that match the corresponding sample moments, the next step is to
extend the model to allow the economy to transfer goods across time by capital
investment. This richer framework will permit analysis of the implications for business

cycles and growth as well as for asset returns.

the coefficient of relative risk aversion.
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Figure 1
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Table 1
Matching the Moments of Returns
(£ =0.018, o= 0.036)

Parameters Chosen to
Match Sample Moments

i 2.7411
i 11.0483
) 1.5750
F 1.0888

Implied Values of Preference Parameters
(with 3 additional restrictions:

=0ty t+tyn=1,G6=1+u

o 11.0483
y, 0.1567
, 0.8433
5 0.0683
G 1.018
Implied Unconditional Moments Empirical
(percent per year) Values
riskless rate: mean 1.15 0.80
approx 0.80
risky rate: mean 7.57 6.98
approx 6.98
term premium 2.26 1.70
approx 2.26
risk premium 4.00 (4.48)
approx - 3.92
riskless rate: standard deviation | 5.74 5.67
approx 5.67
risky rate: standard deviation 17.86 16.54
approx 16.54

Note: The period utility function is u(c, v) = (¢/v)""* where v, = C/°C! '1(G’)r2 . The

72{a-1)

1+4

marginal rate of substitution is M, ,, = Bx.,ix] where f=

>0,

A=a-y,(a-1)>0,and 0=y (a-1).
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Appendix A: Moments of Truncated Lognormal Distributions

Proposition A.1: If x=Iny is N(x,07)and B> 0, then

InB - ? -
y>B}=%{1—CD( (g+aa )HE{y”}wherepsl—(D[lni_ ,u) and @( ) is

the standard normal c.d.f.

E{y“

Proof: Notethat e* =y=e¢* =y’ and y2B=Iny=>InB=x2InB. Therefore,

E{y”

1 p= 1 1 2
y > B} = ;Lna gy exp(— 5 (x - ,u) )exp(ax)dx ) (A1)

Combining the terms to be exponentiated, completing the square, and rearranging yields

1 1 1 © 1
y>B}=;exp(,ua+Ea20'2]O_ P Laexp(—ﬁ((x-(,u+a0'2))2])dx. (A.2)

E{y”

Recognizing that £{y"} = exp(au + Y%a *o?) yields

E{yaly>B}=%{1_q{ln3—(f;‘+ac )HE{)/“} ged (A3)
Corollary:
E{y”’ rnax[O,y—-B]} _ l:l__d)[lnB—(ﬂ**o-(l—A)o-z)):iE{yl_A}_Bll_q)[lnB—(;;—- AO_I)J]E{}}_A}_

Proposition A.2: Let &= max{y - B, 0] where x = In y is Mu,c?). Then
2
varle) E{ly>B}-(Epy>B)) 1 [1113_ ﬂ)

+——1, where p=1-®

(E{8Y  AEldy>B)-B) P

o

Proof:

varle) _E{E}-(E{8)) _ E{S} 1 (A4)

(E{g) (Bl (el
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E{&} = E{max[0,y - B]} = o E{»]y > B} - B). (A.5)
(E{g})z = pz((E{ My > B})2 -2BE{yly > B} + 32) . (A.6)

E{g} = E{(max{0,y - B)'} = pE{(y- By > B} = o E{y*|v > B} ~2BE{ )|y > B} + B*) (AT)

B{}= o Elyly> B} (0> B )+ S(£(8) (A9

Substituting (A.6) and (A.8) into equation (A.4) and using equation (A.5) yields

Var{g} _ E{yzly>B}—(E{y|y>B})2 +_l__1

S > .e.d. (A9
(£{s}) AE{»y > B}~ B) p e !
Corollary: If pis approximately equal to 1, then Var{é‘}z = ! 5 Var{y}z .
) 1o e
E{y}

Proof: For p sufficiently close to one, realizations of y < B are of negligible importance.
Therefore, Proposition A.2 implies
EVE
Var{cf} - E{yz}“(E{y})z _ (E{y})z o 1 E{yz}"(E{y})z _ 1 Var{y}
(Ele) (E}-3) [1 __B_J’ [1 B ) (D)) [1 -i}z (EG))

epy) U ED} E{y}

g.e.d.
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Appendix B: Moments of Rates of Return
This appendix calculates the first and second moments of rates of return on
riskless bills and levered equity under the assumption that Inz,,, = Inx,,, is M(x, o*). For

equity, ;=1 forj =0, .., n-1, so @(n,4) = &(1,A)(1-x")/(1-«). Using this expression for

ax1,4) in equation (8), the realized rate of return on the canonical asset can be written as

R, (n,A)=x°H(x,,;n,A) (B.1)
where
1 n- + -«
H(X,H;",/"L)E(I_K,, j[(l—’f l)xif +mxﬁl} (B.2)

and x(A) is written simply as k.
Using the fact that In x,,, is M(¢, & ?) it can be shown that

E{H(x,_;n.A)}= ( ][(1 - exp[(8+ A +%(9 + l)zo-z]Jr

1
1-x"

K Lesl| B3
w(l’l)exp(ﬂ.‘u+2lo' H (B.3)

and
(1- zc“")z exp(2(0+ Au+(0+ A)zcr’)(exp((6’+ ay o-z) - 1)
(B.4)

-{—a%%} exp(2Au+ A’az)(exp(lza’ )- I)

(=x~1-x)
|_Jr2 (L, A)

Var{H(x,+a;n,i)}={ ] ")2

l-x

exp((6‘+ 2),),u+%((6‘+ Ay +lz)crz](exp((6+;£)la'l)— 1)

For riskless one-period bills, » = 1 and A = 0. The first and second moments of H(x , ; n
A) are

E{H(x,.110)} =m (B.5)

and
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Var{H(x,,,;1,0)} = 0. (B.6)

For levered equity, n =0 and the first and second moments of H(x _ ; n A) are

11’

E{H(x,.;;%, ﬂ)}—exp((8+l)y+ (0+2) o ) a:(?;)exp(/ly-a-%fUZJ (B.7)

and
exp(2(6+ )y +(6+4) o*)(exp((6+ 2) o7} - 1)
Var{H X139, /1)} -r—( 1( )J exp(ZZp + ,120'2)(exp(lzo'2) - 1) -(B.3)
+ o {1 ol )) exp((6'+ 24)u +—((9 +2) 4 2)o? J(exp((9+ 2)ic?)-1)

Unconditional moments. The assumption of i.i.d. growth rates implies that x;° and

H(x,.,; n,A) are independent. I will use the following identities that hold for independent

random variables u and v:

E{uv}=E{u}E{v} (B.9)

Var{uvy= Var{u}Var{v} + [E{u}*Var{v} +[E{vi]*Var{u} (B.10)
Therefore

E{R, (n,A)} = E{x;}E{H(x,,;;n,4)} (B.11)

and

Var{R,. (n,A)} = Var{x'g}Var{H(x,H;n,/l)}

+[E{x 0}] Var{H(pr }+[E{H(x,+1;n,,1)}]2 Var{xt-a} .

(B.12)

The mean and variance of H{x,,,; n,4) have already been calculated in equations (B.2)

and (B.4). The mean and variance of x;° are
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E{x[5}=exp(—9y+%9"‘azjz1—0y+%920'2 (B.13)

and

Var{x;’} = exp(-260u+ &’ )[exp(@zo'z) - 1] =80, (B.14)

Linearization. Recall that @, =1 so that under conditional lognormality equation (11)
implies

1/ a(l,2)=p" exp(—(/l—A)p—%(/l—A)zoJ]. (B.15)

Linearizing equation (B.15) around the point (¢ ,02, §) =(0,0,1) yields

1 ?
w(Ll)=2—-ﬁ—(ﬂ—A)u-—2—(/l—A) o, (B.16)

Under normality with x,,, = z,.;, equation (10b) implies

Jc=ﬁexp[(9+;{—A)/J+%(9+A—A)2O'2)‘ (B.17)

Linearizing equation (B.17) around (¢ ,o2, §) =(0,0,1) yields

KE,B+(9+Z.—A)#+%G’2(0+/1—A)2. (B.18)

The approximate unconditional mean of the riskless rate is calculated using the identity in

equation (B.11) along with equations (B.5), (B.16) with 4 =0, and (B.13) to obtain

E{R, (10)}=2-p+(4-6)u+ %(92 - Ao’ (B.19)

The approximate unconditional variance of the riskless rate is calculated using the

identity in equation (B.1210) along with equations (B.6) and (B.13) to obtain
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Var{R,,(1,0)} = ¢*c* . (B.20)

The approximate unconditional mean of the rate of return on equity is calculated by
substituting equations (B.13) and (B.7) into equation (B.11), then using equations (B.15)

and (B.17) and linearizing to obtain

E{R,. (x,A)} = 2—ﬂ+(«4-9)#+%(92 — Aot +(f+ 1) A0’ (B.21)

The approximate unconditional variance of the rate of return on equity is calculated by
substituting equations (B.7), (B.8), (B.13), (B.14), into equation (B.12), and linearizing to

obtain

Var{R,,,(w, )} =[(6+2)' +6*]o* . (B.22)
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