
LANGUAGE CONSTRUCTS FOR
DISTRIBUTED REAL-TIME

PROGRAMMING

lnsup Lee
Vijay Gehlot

MS-CIS-85-58
GRASP LAB 55

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

November 1985

Appeared In Proc. Real-Time Systems Symposlum, Dec. 1985.

Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-
K-0018 and NO001 4-85-K-0807, NSF grants DCR-86-07156, DCR8501482, MCS8219196-
CER, MCS-82-07294,l R01 -HL-29985-01, U.S. Army grants DAA6-29-84-K-0061,
DAAB07-84-K-F077, U.S. Air Force grant 82-NM-299, Al Center grants NSF-MCS-83-05221,
U.S. Army Research off ice grant ARO-DAA29-84-9-0027, Lord Corporation, RCA and Digital
Equipment Corporation.

LANGUAGE- CONSTRUCTS
FOR DISTRIBUTED REAL-TIME PROGRAMMING

Insup Lee and Vijay Gehlot

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract
For many distributed applications, it is not sufficient

for programs to be logically correct. In addition, they
must satisfy various timing constraints. This paper
discusses primitives that support the construction of
distributed real-time programs. Our discussion is
focused in two are&: ~ timing specification and
communication. To allow the specifications of timing
constraints. we introduce the lanrmsge constructs for - -
defining temporal scope and specifying meflqsge
deadline. We also identify communication prmtives
needed for real-time pkgremming. he issues
underlying the selection of the primitives are explained,
including handling of timiig exceptions. The primitives
will eventually be provided as part of a ditributed
programming system that will be used to construct
ditributed multi-sensory systems.

Introduction

For many computer applications, such as robot arm
control, missile control, on-line process control, etc., it is
not sufficient for programs to be logically correct. In
addition to being logically correct, the programs must
satisfy certain timing constraints determined by the
underlying physical process being controlled to avoid
possible catastrophic results. Programs whose
correctness depends on the adherence of timiig .
constraints are called real-time programs. Furthermore,
it has been recognized that for certain real-time.
applications, such as multi-sensory robot systems [12], i t
is natural to diitribute control among several connected
processors. This distributed view of the underlying
system allows real-time programs to be implemented as
relatively independent processse which run
mynchronously except for occasional synchronization
and communication. We call such concurrent programs
which are required to respond to external and internal
stimuli within a specified deadline distributed real-time
programs.

The conventional approach to real-time programming ,

has been to write a concurrent program to be logically'
correct while ignoring real-time constraints 3 251. The
scheduling primitiva. are then addel ' by the

programmer to satisfy real-time constraints after the
program has been shown to be logically correct. For
example, Modula-2 provides transfer procedure that
can be called from a program to switch process 1281.
The language proposed by Berry et al. allows the
programmer to write a scheduler separately from a
program to control process switching [3]. The
disadvantage of these two approaches is that the
programmer has to figure out and implement a
scheduling strategy that satisfies the timing constraints
of a program. Although there have been many
languages designed for distributed programming, they
do not allow the specification of timing constraints
except delay or sleep, and timeout. If such languages
are used for real-time programming, it is impossible to
understand whether or not a given program has to
satisfy any timing constraints from the program text.
As Allchin points out [I], it is also diificult and awkward
to write programs with timing constraints using a
language that does not explicitly support the notion of
time. We believe that a language designed for
distributed real-time programming should allow the
specifications of timing constraints. Furthermore, the
underlying scheduler should use timing information to
schedule processes so that as many timing constraints a s
possible are satisfied. That is, the responsibility of
scheduling should be left to the system, removing the
burden from the programmer.

In the next section, we explain the motivation behind
the design of language constructs for distributed real-
time programming. Section 3 explains the assumptions
and basic model of our system. Section 4 identifies
timing constraints useful for real-time programming and
explains how they are specified in our system. Section 5
describes interprocess communication primitives
designed for synchronization and communication among
real-time processes. Our emphasis is on how to control
buffer overflow and how to specify timing constraints.
The last two sections contain an example and discussion
on future work, respectively.

Motivation

The language constructs we describe in this paper are
to be included in DPS to facilitate distributed real-time
programming. The motivation behind the development

of DPS (Distributed Programming System) is to provide
an easy to use programming environment for the
construction of a distributed program born sequential
programa written in C, LISP, e d Prolog [ll]. The
backbone of DPS is a distributed configuration -
specification language (DICON) which is used write the
configuration specifications of a ditributed program
describing resource requirements, process
interconnection, and process assignments. DICON
supports nested configuration specifications to allow the
modular construction of a distributed progsm. The
prototype system of DPS without real-time capability
has been built and is being used for the development of
multi-sensory systems.

The major design goal is to provide language
constructs that can be used to specify the timing
constraints of code execution and interprocess
communication. Rather than designing a complete
language, we extend an existing language, namely C,
with ~rimitives suitable for ditributed real-time
programming. Although our system is to support the
development of multi-sensory systems, it is general
enough to be used for other real-time applications;

Another design goal is to allow the detection and
handling of exceptions caused by timing constraint
violations a t run-time. Although it is desirable to
assume the adherence of all timing constraints during
execution, we believe that such an mumption is not
valid in practice. For example, real-time systems might
miss deadlines due to some hardware failure or
unexpected environmental interference even if software
is assumed to be correct, which is rarely (if not never)
true. So, languages designed for real-time programming
should provide mechanisms to detect and handle tipling
exceptions.

'The last design goal is that the run-time support
system of the language should use timing information
specified within a program to schedule processes. It is
conceivable to treat specified timing constraints as
assertions that a progam has to satisfy during its
execution and to require the programmer to come up
with a scheduling strategy (e.g., static priority)
independent of timing specifications that is likely to
meet all the timing constraints. We believe that

. processes can be scheduled more efficiently when their
timing constraints are considered and that scheduling
should be left to the underlying system.

Although many languages have been designed for real-
time programming, most of them do not allow the
specifications of timing constraints withiin a program
11, 7 . The notable exceptions are PEARL [14J and

EST k REL [4]. PEARL has been succesdully used to
implement a wide range of real-time applications for a
single processor system. It, however, seems that PEARL
cannot easily be extended for distributed systems and
does not allow exception handling for missed timing
constraints. In ESTEREL, time is considered as flow of

events; so, all temporal constructs are eventbased. It
does provide an exception handling mechanism. It is
not clear how processes are scheduled and the designers
of ESTEREL make an unrealistic assumption that
message transmission is instantaneous.

Assumptione and the Basic Model

The distributed program of interest runs on processors
that are connected by a communication network. The
processors communicate with each other only through
the network; in particular, there is no shared memory.
We assume that all clocks on the network are
synchronized within a f i e d small time interval
[8, 10, 15). Granularity of timing constraints involving

different nodes is assumed to be large compared to the
discrepancy among the clock values of different nodes.

A distributed real-time progam is viewed as consisting
of a set of internal processes, external processes, and
shared objects. An (internal) process is defined by the
programmer and represents a logically independent
execution thread of control. An external process
represents part of the external world which the
distributed real-time program is to interact with and
control. An object is an instance of an abstract data
type and provides. operations that can be invoked by
processes. Processes communicate and synchronize with
each other by exchanging messages. A device object
represents the abstraction of attached special purpose
hardware and consists of interrupt and control routines.
These routines are invoked by internal and external
processes. Interrupt routines invoked by an external
process may send messages to other processes for further
processing. Each internal process includes all timing
constraints that have to be satisfied during its operation.
These timiig constraints are with its code segment or
with messages it sends.

In our system, a distributed program is configured off-
line and that all processes are created when the program
starts executing. That is, we do not d o w the dynamic
creation of real-time processes. We believe that this is
not a severe restriction for real-time programming, a t
least for multi-sensory systems as we see now. The
execution of a distributed real-time program consists of
two phases: initialization and operation. The f i t
phase is carried out by the main process of a distributed
program which invokes the initialization routines of
component processes in the order defined by the
programmer and then schedules them for the operation
phase. When the f i t phase is completed, the operation
phase starts. At that time, the main process becomes an
idle process waiting for global timing exceptions.

We note that our approach is not necessarily to
support the fast execution of a ditributed progam.
Rather, it is to allow the programmer to develop a
program knowing exactly what happens when. Our
eventual hope is to be able to verify the correctness of
real-time programs.

Timing Specifications

A process that has timiing constraints and whose
correctness depends on whether its timing constraints
are satisfied is called a real-time process. There are two -

kids of real-time processes: periodic and sporadic [16].
A periodic process becomes ready at regular intervals
and a sporadic process becomes ready a t any time. The
timing constraints of a procew are defined on the whole
process or a part of the proceas. Requirements for real-
time processing can be viewed as when certain
processing has to take place for how long and how soon.
There are two ways to represent time in our system:
relative time and absolute time. The absolute time
refers to a wall-clock time (e.g., Eastern Standard T i e)
and is represented by
(year:month:day:hour:min:sec:msec). The relative time
is specified in units of hours, minutes, seconds, and milli-
seconds and is used to specify timing constraints relative
to the current time, called now.

The kinds of timing constraints useful for the
requirement specifications of real-time programs are as
follows [6]:

1. Maximum - No more than t time units may
elapse between two events.

2. Minimum - No less than t time units may
elapse between two events.

3. Duration - An event or a sequence of events
must occur for t time units.

An event is any action that can change a program state;
e.g., execution of a statement, sending of a message,
receiving of a message. Timing constraints can be
originated from a procesa itself, a communicating
process, or the external world.

To facilitate the programming of the above three
kinds of timing constraints, we provide language
constructs called temporal scopes which identify a
sequence of statements, possibly empty, with timing
constraints. The possible attributes of a temporal scope
are as follows:

deadline - the latest time in which the
execution of a temporal scope can be
completed.
minimum delay - the minimum amount of
time that should pass before starting the
execution of s temporal scope. The
minimum delay is used to specify how long a
process should sleep.
maximum delay - the maximum amount of
time that should pass before starting the
execution of a temporal scope. This delay is
used to specify how long a process is willing
to wait for a message to arrive.
maximum execution time - the maximum
computation time necessary for the
execution of a temporal scope. This is to
ensure that the statements within a temporal
scope do not execute longer than the

required amount of time,
maximum elapse time - the maximum
execution time plus all user-defmed delay
during the execution of a temporal scope.
That is, the maximum elapse time specifieq
how long it would take to execute the
statements of a temporal scope assuming
that they are executed as soon a s possible.
The specfication of the maximum elapse
time gives the scheduler information needed
to find scheduling that satisfies timing
constraints when the earliest-deadlinerit
scheduling fails.

There are three kinds of temporal scopes: global, local,
and communication. A global temporal scope
encapsulates a whole process and is used to define a
periodic process. Local temporal scopes are used to
specify timing constraints within a process.
Communication temporal scopes are used to specify the
timing constraints associated with interprocess
communication.

In the most general form, a local temporal scope
allows the programmer to specify when a sequence of
statements should start executing for how long and how
soon. The (approximate) form of the internal temporal
scope is as follows:

start <d-put> [ce-put> 1 [<dl-put> 1 - <start-body>

[<exception6 I
end

The meaning of the construct is that the current process
is delayed as specified by cd-pare and then the
statements of <start-body> are executed. The execution
must be completed within <dl-put>, the deadline.
Furthermore, the total execution time of the statements
should be less than the amount of time specified in
<a-put>. If any of these timing constraints is not met,
the execution of the construct is terminated and an
exception is raised. The raised exception is handled
within a handler provided at the end of the construct if
it is provided; otherwise, the exception is ignored. In
the latter case, the execution resumes with a statement
following the construct. We discuss exception handling
in Section 6.

The delay-part of the construct can be specified using
an absolute time or relative time as follows:

<d-put,: := now 1 9 <.be-tho> l & crol-time>

.nowm means that there is no delay associated with the
construct. 'at <ae-time>m means that the execution of
crtut-body> should start a t a given wall-clock time.
..itor < r e I - t i ~ > ~ means that the execution of
cstut-body* should start after waiting for the time units
specified in <rt l - the> from the current time.

The optional executepart definea the maximum
amount of execution or elapse time that is required to

complete the construct. I t is specified as follows:
<a-put>: := execute <rel-tima> 1 elrp.. cr.1-time>

The execute time includes only the amount of time -
needed to execute <stut-body>, whereas the elapse time
includes the m o u n t of time to be spent waiting within
crtut-body, in addition to ilu execution time. a
specified timing constraint is violated, the execution of
the construct terminates and an executetime or elapse-
time exception is raised. If the execute-part is omitted,
an execute-time o r elapse-time exception is never raised.

The deadliiepart defines how soon the execution of
the construct has to be completed. As with the delay-
part, a deadline can be specified using absolute time or
relative time and its syntax is as follows:

If relative time is used, it is relative to when the
construct starts executing; that is, immediately after the
delay-part is completed.

As an example, a process can be put into sleep for 10
seconds as follows:

start after 10 sac & g --
An example with a delay-part and a deadline-part is as
follows:

stut at (9h:OO.) 10 sac
/1 Zatenentr to be executed when woken up */

-eption handler for nis~ed deadline */
e nd -

I t means that the process should be delayed until nine
o'clock and the statements within the construct should
be executed between nine o'clock and 10 seconds after
nine o'clock.

Another kind of the temporal scope is the
communication temporal scope. I t is used to specify
timing constraints associated with interprocess
communication. The following timing constraints may
be specified:

1. how soon a message shouId be received and
processed by a receiving process after it is
sent.

2. how long a sending process is willing to wait
lor a reply, if any, after a message has been
sent.

3. how long a receiving process is willing to
wait for a message to arrive.

4. how long it takes a receiving process to
process a message after it has been received.

In our system, (3) and (4) are specified within a
receiving process, whereas (1) and (2) are defiied by a
sending process since a receiving process cannot
determine the deadline without f i t receiving a
message. If any specified timing constraint is violated, 1

I

an exception is raised and handled by an exception
handler attached to the enclosing local temporal scope.
The communication temporal scope is explained in
detail later.

The following defines the general form of yet another
type of temporal scope called the repetitive temporal
scope.

fro. <start time> to <end ti.@> e r r r ~ <period> -
execute <ex<c ti.er- <dadline> <stmts>
[crxcsptions>T
md -

Informally, the meaning of the construct is as follows:
Starting a t <start-time, <stat.> are executed periodically
with a period =<period> and a deadline = <deadline>
until <end-time,. <start-ti.9, and <and-time> may either
be constant or variable.

We distinguish one more type of temporal scope called
consecutive temporal scope. Its general form is as
follows:

. . .

cstart <delay,> [<execute,>] [<deadline,>] -
<st.ts,>

[<exceptions,>]
end -

In general, <delayi>'s are not related nor are
<executei>'s and <deadlinei>'s. Thus, consecutive
temporal scope is a composite temporal scope consisting
of finite sequence of unrelated temporal scopes and
hence the meaning of each of the subscopes is
independent of the others.

We allow temporal scopes be nested but not
overlapped. Inconsistent deadline specifications are
ignored at run-time. For example, a nested temporal
scope with a deadline which is later than that of its
enclosing temporal scope does not change the deadline
of the process. Inconsistent deadlines should be detected
a t compiletime as much as possible; however, they
cannot be detected if deadlines are expressed using run-
time expressions.

In general, the timing constraints of a sporadic process
can be specified using local and communication
temporal scopes. They are, however, not sufficient to
specify periodic processes since the timing constraints of
a periodic process should not depend on when processes
are executed. Otherwise, if a periodic process misses its
period, it may never be scheduled properly again unless
there is a way to determine how many periods it has

missed so far. Furthermore, whether or not a process is
periodic should be stated explicitly to help the scheduler
and the timing verifier since a periodic process has less
demand on resources than sporadic process with similar
timing constraints 1171. A periodic process is scheduled
using the schedule command whose arguments are the
process name, start and end time, period, optional
execution time, and deadline. . For example, a periodic
process Stir is scheduled to be executed for two seconds
within five seconds a t every 10 second interval starting
from the current time plus one minute for the next
twenty minutes as follows:

schedule Stir at nw*lrin lOuec
...cut. 2 8 u - G G b e e ontfl m*208in -

Mter the main process schedules all periodic processes,
it becomes an idle process which handles exceptions
caused by periodic processes. For example, if a periodic
process missed its period or deadline, an exception is
raised and handled by a handler provided within the
main process. Here, a periodic process can be
unscheduled and then scheduled again with different
timing attributes.

Communication

Processes communicate by sending and receiving
messages. Reasons for sending messages in real-time
systems can be distinguished as follows: to forward data
or signal to another process, to synchronize with another
process, or to request an action from another process.
The f i i t case involves sending messages only, whereas
the second and thud cases require sending messages and
then receiving replies. In the f i i t case, a sending
process need not be blocked. Thus the most basic
communication primitive we provide is send-no-wit. In
the second case, a sending process is blocked until a
receiving process is synchronized as in CSP [Q]. In the
third case, a sending process should be blocked only
when a reply is needed to continue its execution rather
than immediately after the send as with Ada1
rendezvoue and remote procedure call 15, 13, 231. For
example, a process may send a message before its reply
is needed to reduce or eliminate the amount of time it
has to wait for a reply. Although the second and thud
cases can be emulated by a pair of ,eendao-waifs, the
resulting program becomes complex and hard to
understand. Furthermore, it is not easy to emulate
many-bone communication if a receiving process hae to
explicitly figure out which process hss sent a message in
order to reply. In addition to one-way asynchronous
communication, our system supports tweway
communication in which the destination of a reply need
not be explicitly mentioned.

A message can be received either explicitly or
implicitly 121). In explicit receive, a process deliberately
receives a message by executing a receive operation.
Here, a receiving process should be able to specify how

l ~ d a is a t.eg+ke t radem~k 91 the U.S. Govern,me,nt

long it is willing to wait for a message to arrive and
what to do with a tardy message. In implicit receive, a
procedurelike body of code is activated automatically

. by the arrival of an appropriate message. Thus, there is
no timeout associated with implicit receive. We believe
both the kinds of receive should be supported as some
applications are programmed naturally with the former
and other applicatiom with the latter. Which receive is
more appropriate usually depends on a hierarchical
relation between a sending and receiving processes 1221.

Although numerous communication primitives have
been developed for distributed programming 12, 21, 221,
none of the existing designs allow the specifications of
timing constraints, except timeout (24, 131. Our
communication primitives are designed to support the
specifications of timing constraints and the detection
and handling of exceptions raised by missed timing
constraints. Besides timing specifications, another
important issue is that of buffer overflow control. For
real-time communication, there should be no unexpected
delay caused by the overflow of message buffers. We
explain how buffer overflow is controlled in our system.
Another important issue in developing communication
primitives is a message type checking issue; it has been
discussed elsewhere [Il l and will not be repeated here.

Naming and Buffer Control
In order to communicate, processes need to be able to

name each other. Names may be established a t
compile-time or created a t run-time. The main
advantage of dynamic creation of names is flexibility;
but, it complicates the static analysis (e.g., deadlock
detection) of a distributed program. In our system,
names are established at compile-time as our goal is to
be able to verify timing constraints statically. The
timing verification becomes impossible if it is not
possible to determine which processes communicate with
each other.

Naming can in general be either direct or indirect (221.
The direct naming can be 1-way or %way. The indirect
naming is based on port or link. In our system,
messages are sent to and received from links. There are
two kinds of links: one-way for unidiiectional
communication and tweway link for bidirectional
communication. Each end of a link is named locally
within a process using a port. Each port has a unique
identifier that distinguishes it within a process; however,
the same port identifier can be used in different
processes. Permitted link types are one-bone, o n e - b
maay, and many-bone. Processes are implemented
using local ports and links between local ports of
communicating processes are defiied within a
configuration specification written in DICON [ll]. The
two advantages of our naming approach are as follows:
(1) it is easier to combine separately developed
sequential programs without having to worry about port
naming conflicts; and (2) buffer overflow control
strategies, which depends on the characteristics of
sending and receiving processes, can be defiied with link

- -
Send (OutPortId, v u) declarations when sequential prqgrams are combined

I

into a distributed program.
After the call, the sending process resumes immediately.

Unlike the communication paradigm for distributed -

programs, where every message sent is expected to be
received by a receiving process, there are three kinds of
real-time communication paradigms:

1. Asynchronous communication with non-
queued message - In this paradigm, processes
execute asynchronously. A process sen& a
message to another process and the message
is never aueued. So. I the other ~rocess is
not waitidg for the message, i t is lkt .

2. Synchronous communication without
message loss - In this paradigm, p ~ e s s y
execute synchronously and execution is
coordinated by the acceptance of a message
and a (possibly null) reply.

3. Synchronous and asynchronous
communication with possible loss of aged
message [18, 201 - In this paradigm, process
interaction assumes that a Tied number of

A process receives a message by executing
(approximately) the following accept statement:

~ccept oa <port-list> [within I by] <timeout>
when Port1 (ug) : /* stl;Lements */
ihm port2 (arg) : I* statements */

when Portn (rrg) : /* rktuanltr */
ihen Theout : /* statements to handle t h o u t */

end Accept

The meaning of the statement is as follows: If messages
have already arrived a t ports in the port list, the most
time critical message is removed first. (A way of
specifying timing constraints with a message will be
explained shortly.) Then, the associated statements are
executed. If no messages are waiting, the process waits
for a message or times out, whichever happens rust. In
the latter case, the process executes a timeout exception
handler if provided.

recent messages of one process is available to
other processes. Message loss results from An accept construct defines a communication temporal
message buffer overflow or the expiration of scope. Possible timing constraints with unidirectional
a message deadline. communication are message deadline (i.e., how soon a

message must be received and processed) and message
Message loss should not be caused by the unreliable
nature of the underlying communication medium;
rather, it should be the characteristics of communicating
real-time processes. If the loss of message is anticipated,
a distributed real-time program must be structured to
function correctly with occasional loss of messages.

T o support the three communication models, we allow
the programmer to specify the deadline of a message
and the size of message buffers for each link and its
overflow control strategy as whether to keep the last N
or the first N messages. The size of message buffers is
statically rued and cannot be changed dynamically to
avoid unexpected delay due to the lack of buffer space.
We do not support the blocking of a sending process
when there is no available buffers as an option. Adding
this feature would require that a sending process be
blocked after every send until an ack is received from a
processor on which a receiving process resides. This
blocking happens for every send since it may not be
possible to determine a priori whether or not there is an
available buffer a t a receiving end without actually
sending a message.

Unidirectional Comm~~nication

time (i.e., the maximum time .to process the
message). The former is specified with an out-port
declaration as it can best be determined by the sender
of a message. The latter is specified with an in-port
declaration as it is the property of a receiving process.
The consistency of timing constraints of the linked o u t
port and in-port is checked when they are l iked a t
compile-time. The slack between message deadline and
processing time defines the deadline of message delivery.
An exception raised by missed deadline or too much
processing time is caught by an handler provided at the
end of the enclosing local temporal scope. Exception
handling is discussed in Section 6.

One limitation of send novrait is that a sender will
not be notified when a message is not received on time.
This unexpected delay might be due to the contention
or failure of hardware or the unwillingness of a receiving
process. We provide two options to the programmer to
handle a message whose deadline expires before it is
read by a receiving process. The f i i t is to define an in-
port to receive only messages whose deadlines have not
yet passed. Here, messages with expired deadlines are
dropped by the run-time support system. The second is
to keep aged messages as long as there are enough
buffers- an3 to raise a deadGe exception when-a The moat basic communication paradigm supported in message with an expired desdline is II a our is an asynchronous communication using a sending process needs to know the success or failure of

oneway link' Oneway link is established by message reception, it can do so using the bidirectional 'OnneCting an outport to an in-port' An out-po* is communication primitives described in the next section. used to send a messam and an in-~ort is used to receive
a message. A sendingprocess sends a message by calling
a send operation with a variable containing a mesage as In real-time programs, it sometimes is necessary to
follows: send a message at known future time rather than now.

Such a message can be sent using the following

operation:

Its effect is as if a normal send c d has been executed a t
a specified time. The number of outstandig time
delayed messages is subject to the buffer size of a link
on which an outport connected. Since a receiving
process has to explicitly wait for a message to arrive, we
do not provide a delayed receive operation as it can be
achieved by putting the process to sleep until the
desired time.

Bidlmctiond Communication
Another form of communication is a pair of

asynchronous communications on a two-way l i k . A
two-way link is established by connecting a call-port
and an entry-port. A call-port is used to send a message
and to receive a reply, whereas an entry-port is used to
receive a message and to send a reply. A typical
scenario of bidirectional communication is as follows:

sender receiver

I I
Call -----------> Accept

I I
norsd execution 1 i procesa meaarg.

I I
v v

Receive <--------- Reply
I I

A sending process executes a Call operation to place a
message into a port and then continues until a reply for
the message is needed. The message is delivered to the
receiver and causes the receiver's execution of an Accept
operation to be completed. The receiver handles the
message and then sends back a reply. The reply causes
the sender's execution of a Receive o~eration to be
completed.

Possible timing constraints with bidirectional
communication are (I) how soon a reply should arrive to
a sending process after a message has been sent
(deadline of a messsge) (2) how long a receiving process
is going to execute to produce a reply after a message
has been received (processing time of a message) (3) how
long a receiving process is willing to wait for a message
to arrive. The deadline of a message is defined with a
call-port declaration and a maximum processing time is
defiied with an entry-port declaration. T i e o u t value
is specified with the Accept construct as it depends on
when the construct is executed. From (1) and (a), the
configurator can determine the deadlines of a message
and a reply delivery. Each delivery deadline is the half
of the difference between the message deadline and
processing time.

The approximate syntax of the call statement is as
follows:

C d l (CdlPortId. wsg)
/* atateamta */

Receive (CdlPortId. ArrayVar, UmOiRepliea)

The meaning of the statement is as follows: A process
sends a message and then resumes its execution until
replies are needed. If less than the number specified in
NumOfReplies of replies have arrived, the process waits
for more replies. If the current deadline is missed while
waiting for more replies, the process executes the
deadline exception handler defiied with the enclosing
temporal scope as discussed in Section 6. A Receive call
includes an array variabIe for replies and specifies how
many replies the process is expecting. This generality is
needed to support a two-way link with many receivers.
The syntax and meaning of the Accept statement is the
same as those for the one-way link except that the last
of the statements associatr?d with an entry-port must be
a Reply statement.

We note that Ada's rendezvous construct can be
emulated by placing a Receive operation immediately
after a Call operation and that synchronous
communication (similar Co .send-wait) can be achieved
by placing Receive and Reply immediately after Call
and Accept, respectively. Send-wait normally means
that a sending process is blocked until a message is
received. The difference between send-wait and
synchronous communication is that the run-time system
can take care of sending an ack to unblock a sending
process in the former, whereas a receiving process has to
explicitly send a reply in the latter. Thus, send-wait
can be implemented with less run-time overhead. We,
however, believe this saving is rather minuscule. Also,
send-wait and multiple destinations do not mix very
well. For example, how long should a sender be
blocked. A sender might be blocked until the message is
received by all the receivers or by any process. If
timeout is allowed, it may not be easy (or is awkward)
to figure out which processes have received the message.

Communicatfon with Shared Objecb
In our system, a shared object (e.g., data, devices) is

supported as a set of procedures that can be called from
other processes. A procedure of an object is invoked by
sending a message to a port which is linked to the
procedure. The syntax of remote procedure call is the
same as that of sending a message and receiving a reply.
Each object declaration identifies a set of procedures
that can be invoked from other processes as in-port and
entry-port depending on whether or not they return
values. So, a link between a port and a remote
procedure can be either oneway or two-way. An
invoked procedure returns a value through the
execution of an explicit return statement. As before, the
deadlines of remote procedure calls are specified with
outport and call-port declarations, whereas the
maximum execution times of remote procedures are
specified with in-port and entry-port declarations.

Unlike explicit message receive, the order in which
remote procedure calls are executed is assumed to be
not important. So, to satisfy the deadlines of as many
remote procedure calls as possible, pending remote calls
are executed in the order of earliest modified deadlines.

A modified deadline is deadline minus execution time if
the latter is specified; otherwise it is equal to deadline.
In our system, a t most one process is dedicated to
handle all remote procedure calls on an object, as -
creating or allocating a different process for each call
will not improve the response time of the calls. To be . able to meet the deadline of a more urgent request, it is
possible to preempt the current procedure execution and
to handle another remote call. Siuce the concurrent
activations of operations can resuii in an inconsistent
state for the object, we allow the programmer to specify
the procedure activations which a procedure call can
preempt. Thus, each procedure contains a list of
procedures that can preempt its activation. This
information is 8180 used to start the next call with a new
stack while the execution of the current call is waiting
for a reply from another node even if the deadline of the
next call is later than that of the current call. This is
permitted only if both can preempt each other. It is the
programmer's responsibility to preserve the consistency
of an object state if concurrent procedure activations
are allowed.

Exception Handling

The language incorporates an exception handling
mechanism in order to cope with timing errors. Issues
in providing exception handlers for timing errors are as
follows: (1) when an exception .should be detected; (2)
which processes should handle the exception; (3) what
recovery actions are meaningful and possible; and (4)
how soon should an exception be handled. Exception
handlers can be attached a t the end of the local
temporal scope and the body of the main process. If a
local temporal scope contains call and accept
statements, their exception handlers are also appended
a t the end of the enclosing local temporal scope. Thus,
the syntax is

r t v t ... - ...
exception

<exception list> .itbin <derdlina> : ...
% <exception lint> .ithin <deadline> : ...

When the deadline or maximum execution time of a
temporal scope is violated, the execution of a process is
stopped imrr~ediately if it is executing. However, its
handler should be executed within the deadline specified
with the handler. Possible actions within an exception
handler is either to resume with modified deadline
and/or maximum execution time or exit the scope and
resume. If anothef exception is raised while handling an
exception, the current exception is nullified and the new
exception is handled.

An exception raised due to the missed deadline or
execution time violation of a periodic process is handled
by an exception handler associated with the main
process. The possible recovery actions are to resume, to
skip this period, or to reschedule with different timing
constraints.

When a message is sent using a one-way link, no
timing exceptions are possible with a sending process.
There are, however, three possible timing exceptions
with a message and a receiving process. If a message
does not arrive a t a receiving process in time, the
receiving process times out and starts its exception
handler if provided. After receiving a message, if a
receiving process cannot process the message within a
deadline, it causes a deadline exception. If a message is
not delivered or received in time, the programmer haa
an option as to throw away the message or to leave it in
the queue of a receiving process. In the latter case, a .
deadline exception is raised when a receiving process
read the message.

When a message is sent using a two-way link, a
sending process starts a temporal scope with a deadline.
Thus, if the scope is not completed within the deadline,
the sending process is forced to execute the handler
associated with the deadline exception. Possible
exceptions for messages and receiving processes are same
as those described in the previous paragraph. Replies
that are not received within their deadlines are dropped.

. . .
md - An Example

A handler
unexecuted
scope when

(when-clause) is executed in place of the
portion of code within the current temporal
an exception is detected.

Built-in. timing exceptions are provided for the
following conditions:

Failure to complete the temporal scope in
time (deadline exception).

@Failure to complete a call or accept
construct in time (port-id.deadline
exception).

,Attempt to .execute the temporal scope
longer than a specified maximum execution
time (execution time exception).
Attempt to execute an accept construct
longer than a speciled maximum execution
time (port-id-execution time exception).

As an illustration, we consider an automated kitchen
equipped with two physical devices, viz. an oven and a
range with on/off control. The kitchen is operated by a
cooking robot and the problem is to bake a chicken for
15 minutes and to make a stir-fry which takes 10
minutes. Both these dishes must be Tinished within 20
minutes. Also, while making the stir-fry, the wok has to
be stirred for at most 10 seconds every 40 second
interval.

We , assume that the oven provides two in-ports,
OvenOn and Ovenoff, and that the range provides two
entry-ports, RangeOn and Rangeoff. The cooking
robot is programmed as folIows:

process cookingrobot;
csll-port Rangeon [deadline 2 arc] ; -
i n - e OvenOn [desdline 2 arc], -

OvenOff [deadline 2 sac] ;
osr ToBeDone : time -
start now .ithin 20 rin do -

call ~ O n , n i l) ; /* turn on the range */
send (0venOr1, ni l) ; /* turn on the oven */
receive ~ ~ O n , a i l , i) ; / * -.it for range on */
/* put chickan in the oven and cook */
ToBoDone := nw 16 .in;
delayadrend (OvenOff. ToBrDone, ni l) ;
/* Hove stuff Into the wok and cook */
from nm nm*lO .in 40 sac -
execute 10 sac rithin 10 see 3 - . Stir . /* s t ir for 10 sac every 40 sac */
end
/.Turn off the rmge */
cs l l mangeoff, ni l) ;
receive (RugeOff ,ni l , 1) ;
/* w r i t until the oven i s turned off */
btrrt rf ter (ToBeDone-now) G; . --

end *

and-' -'

Discussion

This paper discussed issues that arise in the design of
language constructs supporting distributed real - t' me
programs. We have identified two areas: timing
specification and communication. To support timing
specifications, a novel construct called a temporal scope
has been proposed. A temporal scope allows the
programmer to specify timing constraints and exception
handlers to cope with timing errors. Allowed timing
constraints are meant to be general and complete
enough for a wide range of hard real-time applications.
We permit timing constraints to be associated with code
execution and communication. Temporal scopes are
designed to support nesting but not overlapping to
facilitate timing analysis a t compile-time.

In the area of communication, we have discussed what
primitives are needed for real-time programming. We
chose asynchronous and bidirectional communication
primitives that impose as little blocking as possible to
sending processes. We also discussed various aspects of
communication, including buffer overflow control and
message deadline.

The paper discussed our current design on issues under
study; the design is likely to be modified as our
understanding increases. There are issues that we have
not addressed in this paper. For example, given timing
constraints, what is the best way to schedule real-time
processes. It seems that the earliest modied deadline
f i t algorithm is a realistic way of scheduling real-time
processes, where the modified deadline of a temporal
scope is equal to the deadline minus the maximum
execution time, if the latter is specified; otherwise, it is
equal to the deadline. In this way, the programmer can
control the scheduling of processes for temporal scopes
with internal delays. This algorithm is a variation of
the 8preemptive least processor time to go8 which has

been shown to be better than the earliest deadline f i s t
algorithm when scheduling blocks containing internal
delays (19).

Other issues that we have not addressed are as follows:
Can we automate the allocation of processes into
processors based on timing constraint information
specified with processes? b it possible to verify that all
timing-constraints will be satisfied statically? We are
currently investigating these issues and are sure that
insights gained by our study will provide us with
positive feedback to the refinement of the design. The
last issue remained to be addressed is whether or not the
proposed . constructs make distributed real-time
programming easier. Our plan is to gain experience by
writing a number of distributed real-time programs and
to build a run-time system on a network of MicroVAX
Ills.

Acknowledgements

The authors gratefully acknowledge the contributions
made by members of the GRASP group; in particular,
Robert King and Gaylord Holder. This research was
supported in part by NSF DCR 8501482, NSF
MCS-8219196CER, ARO DAA629-84k-0061, AfOSR
82-NM-299, NSF MCS 82-07294, and AVRO
DAABO7-84-K-F077.

References

1. Allchin, J.E. 8Modula and a Question of T i e 8 .
IEEE Tran. on Soft. Eng. SE-6, 4 (July 1980), 390-391.

2. Andrews, G.R., F.B. Schneider. *Concepts and
Notations for Concurrent Programming8. Computing
Sutveys 15, 1 (March 1983).

3. Berry, D.M., Ghezzi, C., Mandrioli, D., and Tiato ,
F. 'Language Constructs for Real-Time Ditributed
Systems8. Computer Languages 7, 1 (1982), 11-22.

4. Berry, G., Moisan, S., and Rigault, J.-P. ESTEREL:
Towards a Synchronous and Semantically Sound High
Level Language for Real-Time Applications. Proc. Real-
Time Systems Symposium, IEEE, 1983, pp. 3-19.

6. Birrell, A.D. and Nelson, B.J. 81mplementing
Remote Procedure Callsm. ACM Trans. on Computer
and Systems 2, 1 (Feb. 1984), 39-59.

8. Dasarathy, B. 8 T i i n g Constraints of Real-Time
Systems: Constructs for Expressing Them, biethods of
Validating Them8. IEEE Tran. on Sojt. Eng. SE-11, 1
(Jan. 1985), 80-86.

7. Gligor, V.D. and Luckenbaugh, G.L. An Assessment
of the Real-time Requirements for Programming
Environments and Languages. Proc. Real-Tie Systems
Symposium, IEEE, 1983, pp. 3-19.

8. Gusella, R. and Zatti, S. TEMPO - A Network
Time Controller for a Distributed Berkeley UNM
System. Proc. USENIX Conference, 1984, pp. 7885.

9. Hoare, CAR. 'Communicating sequential 24. U.S. Department of Defense. MILITARY
processes*. CACM 21,8 (August 1978), 666677. STANDARD Ada Programming Language. 1983.

10. Lamport, L. . T i e , Clocks, g d the Ordering of 26. Wirth, N. .Toward a Discipline of Real-Tiie
Events in a Distributed System.. Comm. o j the ACM .

Programmingm. Comm. o f the ACM 20,8 (Aug. 1977),
21, 7 (July 1978), 558-565. 577-583. .

11. Lee, I. A Programming System for Distributed 26. Wirth, N.. Programming in Modula-2. Springer-
Real-Tie Applications. Proc. Real-Time Systems VerlagD, 1982.
Symposium, December, 1984.

12. Lee, I. and Goldwasser, S.M. A Distributed
Testbed for Active Sensory Processing. IEEE Int. Conf.
on Robotics and Automation in St. Louis, Missouri,
March, 1985.

13. Likov, B., R. Scheifler. 'Guardians and Actions:
Linguistic Support for Robust, Distributed Progams~.
ACM Trans. on Programming Languages and Systems
5, 3 (July 1983), 381-404.

14. Martin, T. Real-Time Programming Language
PEARL - Concept and Characteristics. Proc.
COMPSAC, Chicago, 1978, pp. 301-306.

15. Marzullo, K. and Owicki, S. Maintaining the Time
in a Distributed System. Proc. 2nd Symp. on Principles
of Distributed Computing, 1983, pp. 295-305.

16. Mok, A.K. Fundamental Design Probleme of
Distributed Systems for the Hard Real-Time
Environment. Ph.D. Th., MIT, May 1983.
MIT/IiCS/TR-297.

17. Mok, A.K. The Design of Real-Time Programming
Systems Based on Process Models. Proc. Real-Time
Systems Symposium, IEEE, Dec., 1984, pp. 5-17.

18. Paul, R.P. Communication Primitives for Robot
Control Systems. Private communication.

19. Reghbati, H.K., Chow, F.F.L. and Hamacher, V.C.
Some Implementation Results in Real-Time Operating
Systems. Proc. Canadian Computer Conf, Edmonton,
Alberta, May, 1978, pp. 124128.

20. Schwan, K., Bihari, T., Weide, B.W., and Taulbee,
G. GEM: Operating System Primitives for Robots and
Real-Time Control Systems. Proc. Int. Conf. on
Robotics and Automation, 1985, pp. 807-813.

21. Scott, M.L. A Framework for the Evaluation of
High-Level Languages for Ditributed Computing.
#563, University of Wisconsin-Madison, Oct., 1984.

23. Shin, K.G. and Epstein, M.E. Communication
Primitives for a Distributed Multi-Robot System. Proc.
Int. Conf. on Robotics and Automantion, 1985, pp.
910-917.

23. Spector, A.Z. .Performing Remote Operations
Efficiently on a Local Computer Networka. Comm. of
the ACM 25,4 (April 1982), 248260.

