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ABSTRACT

HIGH-DIMENSIONAL DESIGN EVALUATIONS FOR SELF-ALIGNING

CONNECTOR GEOMETRIES

Nick Eckenstein

Mark Yim

Physical connectors with self-aligning geometry aid in the docking process for many

robotic and automatic control systems such as robotic self-reconfiguration and air-to-

air refueling. This self-aligning geometry provides a wider range of acceptable error

tolerance in relative pose between the two rigid objects, increasing successful docking

chances. In a broader context, mechanical alignment properties are also useful for

other cases such as foot placement and stability, grasping or manipulation. Previ-

ously, computational limitations and costly algorithms prevented high-dimensional

analysis. The algorithms presented in this dissertation will show a reduced compu-

tational time and improved resolution for this kind of problem.

This dissertation reviews multiple methods for evaluating modular robot connec-

tor geometries as a case study in determining alignment properties. Several metrics

are introduced in terms of the robustness of the alignment to errors across the full

dimensional range of possible offsets. Algorithms for quantifying error robustness

will be introduced and compared in terms of accuracy, reliability, and computational

cost. Connector robustness is then compared across multiple design parameters to

find trends in alignment behavior. Methods developed and compared include direct

simulation and contact space analysis algorithms (geometric by a ’pre-partitioning’

method, and discrete by flooding). Experimental verification for certain subsets

is also performed to confirm the results. By evaluating connectors using these al-

gorithms we obtain concrete metric values. We then quantitatively compare their

alignment capabilities in either SE(2) or SE(3) under a pseudo-static assumption.
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Chapter 1

Introduction

Modular self-reconfigurable robotic systems hold the promise of low cost, versa-

tility, and robustness. The aim of research on these types of systems is to find a

sort of ’universal robot’ which can perform any task simply by reconfiguring itself.

Modular self-reconfigurable robots, however, present a wide array of challenges in

terms of design and implementation.

A modular robot is defined as one that is “built from several physically inde-

pendent units that encapsulate some of the complexity of their functionality” [63].

A reconfigurable modular robot is defined as one where the module’s connectivity

can be changed. These systems are classified according to three criteria: lattice-style

denoting systems which nominally sit on a lattice and reconfigure by changing con-

nections with neighbors, chain-style denoting systems which form and reform into

chains, and mobile denoting systems which are capable of movement independent

of other modules [64]. Reconfiguration for each of these systems is accomplished by

repetition of a process known as docking, the physical connection of two modules.

One of the key challenges in modular self-reconfigurable robotics is ensuring that this

docking process is stable and reliable, without requiring too much design overhead.
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In chain-style modular robots in particular, positioning errors accumulate exponen-

tially for the number of modules in the chain. These errors must be corrected by the

system if it is to dock and reconfigure successfully.

The docking process is divided into two parts: alignment, in which the mod-

ules obtain a sufficiently accurate relative position, and latching where the physical

connection between the modules is made or forces put in place which maintain the

alignment.

In general, docking between two modules occurs at special docking faces on a

module also called a connector. Faces can be gendered or ungendered. Gendered

faces have male and female features which must be matched, and thus must be care-

fully controlled to ensure connections are formed from one of each face. Ungendered

faces do not have this restriction. Hermaphroditic faces have both male and female

features on each face. Whereas single gendered faces can only mate with their op-

posite gender, hermaphroditic and/or ungendered faces can mate with any other

face.

Another requirement for reconfigurable connectors is the ability to undock suc-

cessfully as well as dock. If mechanical connection is being used, either the docking

or the undocking requires some actuation capabilities. One or the other of these

processes can proceed passively but in order for the connection to be stable un-

der all possible force/torque conditions, there needs to be an active state change.

Historically this has been accomplished by Shape Memory Alloy (SMA) or small

motors [34] [75].

Beyond modular reconfigurable robots, the docking problem has applications to

many different problems in controls and robotics. Quick-change end-effectors and

pick-and-place operations in automated assembly lines often have to solve the related

’peg-in-hole’ problem [14]. Mid-air plane refueling makes use of a conical ’probe-and-

drogue’ shape to ensure that slight misalignment between aerial vehicles does not

result in a failed refuling operation [71].
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Robot assembly has long made use of ‘remote center of compliance’ (RCC) devices

at the end effector to ensure good alignment between parts during insertion tasks.

These devices simulate rotational and translational springs at the point of insertion

of parts, by use of multiple flexible components in the end effector [13]. This allows

for more beneficially flexible motion of the part in response to the surface it contacts,

resulting in greater alignment abilities. Design and analysis of these type of systems

are well understood [15], and reveal that the location of the center of compliance is

an important factor to consider in alignment problems. Variable RCC systems have

been developed using elastomer shear pads and insertion of a stiffness adjusting rod

to control the stiffness level [38]. Compliance at the end effector can also be added

by using soft servos, though the evidence suggests it may be inferior to force control

methods for insertion tasks [12].

In order to build the most capable robotic systems possible, we seek as our main

goal to maximize the allowable error in position and orientation that two connecting

members can have yet still dock correctly. Satisfactory multi-dimensional metrics

for this error do not yet exist, nor do practical methods by which to determine the

ranges of these errors. New metrics should fairly balance position errors with orien-

tation errors, as well as attempt to find a good match between a robotic system’s

likely errors and the errors we can correct. New methods for evaluating the range

should take into account not only approach angle between connectors but also their

relative compliance and the behavior and possible outcomes that follow during con-

tact. Accomodations and adjustments should be made to allow for fair comparison

between connector geometries of different height and width. Once practical met-

rics and methods exist, we would look to identify trends in connector design that

will help us maximize the allowable error. Finally, a practical connector should be

constructed and tested to prove the viability of the method.

In this dissertation, we present metrics, assumptions, and techniques to capture

the capabilities of these geometries and answer the above questions. We then use our
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metrics to compare different types of self-aligning geometries, and describe patterns

in design parameters which can lead to improved self-aligning geometries. Finally,

we inform the development of a docking mechanism which passively establishes a

physical connection without interfering with the self-alignment of the geometry.

1.1 Connection Types

Essential to the act of reconfiguration is the mechanism by which modules are physi-

cally mated together. There are many different ways to characterize these connection

mechanisms. Table 1.1 shows many of the MRR systems and their connection mech-

anisms.

Several qualitative terms used here to categorize these connectors are explained

below as first introduced in [22].

Self-Aligning Degree represents the degree to which the connector passively

aligns the two faces, such as magnetic or mechanical forces. A ’High’ Rating in-

dicates self-alignment capability in one offset direction approximately greater than

20% of the characteristic size of the module face. ’Low’ rated systems have some self-

alignment capability but less than 20%. ’None’ rated systems have no self-alignment

capabilities and must be aligned carefully either by active robotic mechanism or by

hand.

Gendering represents whether connectors are interchangeable or must be paired

in a particular manner. Gendered connectors have a ’male’ and ’female’ face - male

faces can only pair with female faces, and vice versa. Ungendered connectors do not

have this restriction - any face can pair with any other face.

Connection Activity and Disconnection Activity indicate whether the act

of connection/disconnection requires an action on the part of a module. Connec-

tion Agency and Disconnection Agency indicate which modules are required to

be operational/active for the respective action. Double End Agency requires both

4



faces to cooperate to accomplish the connection/disconnection, Single End Agency

requires only one functioning face (either one), and Male/Female requires the indi-

cated (single) face.

Connection Type indicates the mechanism by which connections are accom-

plished. Most systems use either magnetic mechanisms or mechanical latching with

a few systems using electrostatic forces or pressure to maintain the connection.

Connection Maintenance indicates the extent to which power is required to

maintain a connection. Generally speaking, it is undesirable to have a system require

power simply to maintain its shape. This is especially true in modular systems which

often have a limited power budget.

Compliance indicates the flexibility of the connection. ’Rigid’ connections have

a mechanically rigid connection between module frames. ’Compliant’ systems have

some flexibility to external forces, either from springs/compliant parts or magnetic

compliance.

Approach Angle indicates the direction of approach that the system most

regularly encounters. Systems with a direction of approach perpendicular to the

face are generally more responsive to self-alignment design features.
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Table 1.1: Connector Systems Classification; Various Systems by Year
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Chapter 2

Area of Acceptance

When these connectors’ relative self-alignment or error correction capabilities are

described, they are typically given as one dimension at a time i.e. (±5mm, ±8◦).

However, it behooves us to look at combined errors in multiple dimensions as is often

true in real-world applications.

In order to be more precise about the offset positions which result in successful

alignment, we have defined the term area of acceptance. Area of acceptance is

defined as “the range of possible starting conditions for which mating will be suc-

cessful” [20]. Practically speaking, what this means is that if the docking procedure

is executed given some initial misalignment offset between connectors, the alignment

features of the connector will correct the offset. The range over which this occurs is

the area of acceptance. Note that while we call this ’area’ of acceptance, in higher

dimensions it is actually a volume or hypervolume. Area of acceptance can be dif-

ficult to determine; for three-dimensional systems it contains two positional offsets

and three orientation offsets (we consider all points along the approach direction to

be the same, removing one translational DOF). Area of acceptance is always scaled

to the characteristic width of the connector D in translational dimensions, and has

a range from π
2

to π
2

in rotational dimensions. This ensures fair comparison between

connector geometries - it would not be fair to compare larger connectors of one
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geometry to smaller connectors of another.

The concept of area of acceptance is important because alignment and connection

systems need to be error-tolerant in order to be successful. Long module chains in

particular have a tendency to accumulate errors quickly resulting in failed connec-

tions if connectors are not sufficiently corrective. These errors could be in multiple

dimensions at once, so it is best to measure the area of acceptance over as many

dimensions as is feasible. We seek through multiple methods to determine the condi-

tions under which alignment will be successful, and analyze these conditions to tell

us which connectors are most useful under specific or general error conditions.

This chapter is dedicated to explaining what area of acceptance is and how it can

be measured. We present several new ways for determining area of acceptance in the

following chapters, including novel numerical methods which enable quick analysis

of high-dimensional area of acceptance.

2.1 Types of Area of Acceptance

We can classify AA (area of acceptance) domains into different types with respect

to the DOFs of one docking element relative to the other. Each DOF is either

constrained, unconstrained, or the approach DOF. In the 2D X-face, for example, the

docking elements are constrained to be in a plane, and one face has two translation

DOFs and one rotational DOF relative to the other (3 DOF equivalent to SE(2)).

However, one of those translation DOFs is the mating direction. That DOF can

be considered to be constrained while the other two are able to move freely, albeit

pseudo-statically (to simplify analysis). In the more general 3D case, one face has

six DOFs relative to the other (SE(3)) with one DOF as the approach. While

this approach DOF is typically a pure translation, it could be any trajectory that

leads to lower kinematic pair relationships - including screws. In 3D, subtracting

the approach DOF leaves five other DOFs that are unconstrained. For the sake of
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clarity, throughout this document we use ’constrained’ in the sense that those DOFs

will always be locked in the state corresponding to the perfectly aligned state.

In some cases, where the faces have a symmetry (e.g. a round peg in a round hole)

one or more DOF may be in a “don’t care” state. Whereas the end mating condition

in all other cases has the state of all DOFs defined, this one has the other symmetric

DOFs make no functional difference and so do not need to match to satisfactorily

mate. In these cases we exclude the “don’t care” DOF from analysis entirely.

2.1.1 Zero Rotation Area of Acceptance

A simple concept of area of acceptance is called the Zero Rotation Area of Accep-

tance (ZRAA) which assumes that all rotational degrees of freedom are removed or

constrained and the approach direction is perpendicular to the face. Simply put,

this means that the orientation is locked for both faces in the correct position, and

we are only considering translation errors. For systems in SE(2), this is equivalent

to Nilsson’s self-alignable offsets [48] - simple analytically defined bounds based on

the representation of a 2D connector face as a function. In the 3D/SE(3) case it

represents a two-dimensional set of points (over x and y in the plane). ZRAA is

much easier to compute than other types of AA, and often is immediately obvious

from visual inspection of connector geometries. This gives us a relatively simple,

quick picture of the acceptance potential of the given connector. Some diagrams of

this ZRAA are shown in Figure 2.1, and were determined analytically based on given

dimensions of the connectors in question obtained from the literature.

For purely mechanically actuated self-alignment (e.g. no magnets) we have re-

viewed many connectors from the literature and characterized a large set of active

and passive connectors in Table 2.1 as a sum total of the positions corrected normal-

ized with respect to the connector cross-sectional area. These ZRAAs are determined

based on the size and shape of the alignment features (pegs and holes, etc.) given

by the authors as well.
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From Table 1.1, we can see that the first modular robot system to use a 3D

self-aligning docking connector is the cone-shaped dock on CEBOT [26], which was

a simple cone-and-funnel alignment system. Other systems have used this connector

shape since then, including the AMOUR underwater robot system [68], which called

it a probe-and-drogue shape since it in fact had a ’probe’ end that would be latched

into the receptacle on the adjoining module. This gendered connector geometry has

a relatively wide ZRAA (see Table 2.1)given the space it takes up, however the cone

feature does not align offsets in the yaw direction; that is, around the axis of the

face. Polybot [74] used a self-aligning connector to bridge the gap over fine resolutions

where sensing failed, typically at the end of a long chain where errors accumulate.

As a result, the 4 connecting pin/hole pairs on each face cover a very small area

compared to the size of the face (4mm pin diameter, 50mm face width). Due to the

pairing, this connector is hermaphroditic (containing both male and female parts),

allowing faces to connect to any other face. Nilsson [49] was the first to use the

geometry of the connector as a design feature for robotics. The DRAGON connector

was designed specifically for high-strength, high-acceptance applications, both of

which are important for modular robotic applications as the number of modules

in the system grows. Nilsson characterizes the viable offsets which the connector

is capable of correcting, both linear and angular (15mm=�/5 linearly and 45 deg

angular). The DRAGON connector uses 4 cone-funnel pairs, alternating in a circle,

with the latch on an outer ring. The values for these and other connectors in this

table were determined by measurements given on the alignment geometries either

in the text or in figures. Passive mechanisms are analyzed by the areas of the two

aligning connector components, and active mechanisms from correction ranges given

in the text.

Many modular systems are not included because they are not explicitly compa-

rable; either the connection mechanism is not 3D, or they rely on magnetic forces

to align. The systems in the table utilize either active or passive mechanical forces
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to align the modules for docking. Connectors utilizing active mechanisms do so as

a combination alignment and attachment mechanism. The other named connectors

presented here (Cone, Polybot, DRAGON, X-Face) are all passive alignment, allow-

ing us to do remove the design resources required for actuation, power, and control

in the connector face.

Also worth noting are the interesting alignment geometries on many of Lipson’s

robots [27] [76]. These are mechanical alignment faces which augment either a

pressure-driven or magnetic alignment force. Here we evaluate only the alignment

geometry, not the other forces.

Table 2.1: Table of ZRAA metrics, normalized relative to characteristic length of

the face. These are exact where possible from the data available in the literature,

otherwise estimated from available data. Entries marked with a * indicate estimated

ZRAA rather than exact. Table reproduced from [21]

System Normalized ZRAA Sum

GENFA Connector 0.00353

Polybot 0.00503

M-TRAN III 0.00592

JHU 0.00592

I-Cubes* 0.0187

CONRO* 0.0425

Vacuubes 0.0555

ACOR(unpaired) 0.0711

SINGO Connector 0.306

DRAGON 0.353

amour 1.57
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Connector
Cross-Section 

D
DRAGON Rendering Courtesy

 Martin Nilsson, SICS

Cone/Probe and Drogue

Connector Example 
or Rendering

DRAGON AA: 0.173D2

SINGO AA: 0.306 D2 

Cone/P+D AA:0.785D2

D

Zero Rotation
Area of Acceptance 

D

D

D

DRAGON Connector
D

SINGO Connector

SINGO Data from [59]

Figure 2.1: Comparison of ZRAAs. The leftmost column shows the connector geome-

try, the middle column compares connector cross-sections viewed from the approach

direction. The rightmost column shows the ZRAA. All values assume the shapes

scale to maximum width D to keep comparisons size-invariant
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2.1.2 Full Area of Acceptance

In most cases, we want to characterize connectors based on all possible error states.

The full AA is the AA given no exclusion of possible starting conditions and no

constraints. For 2D connectors the full AA is two-dimensional (x and θ). For 3D

connectors it is five-dimensional (x,y,pitch,roll,yaw). We have not seen any con-

nectors in the literature where the Full AA is calculated. There currently exist no

analytic methods to find the Full Area of Acceptance, though we propose several

new fully developed numerical methods confirmed by experiment in Chapters 3-5.

These methods have some computational limitations, however those limitations vary

depending on the desired quality of results.

2.1.3 Other Areas of Acceptance

In order to effectively visualize the Full AA without exhaustively exploring the five

dimensional space, we sometimes take two dimensional slices. These slices are ob-

tained by starting with all DOFs aligned, except the two being explored. Those two

are sampled at high resolution to obtain an intuitive 2D plot of the AA for those

DOFs. Note that the other non-approach DOFs are not constrained in these slices.

These two dimensional subsets we call the X-Y Slice, X-Roll Slice, X-Pitch Slice,

and X-Yaw Slice Areas of Acceptance. The X-Roll Area of Acceptance is the subset

of the Full AA with initial offsets in the x and roll dimensions. The other two areas

of acceptance are similarly named. These results still represent a system which is

able to move fully in 6DOF, but shows the relationships between two dimensions of

offset if the others have none.

In further cases, it is useful to restrict the motion of a system and examine what

acceptance is achieved when a 3D system is only capable of motion in a limited set

of dimensions eg. (x, y, roll (as well as the approach direction z ). This kind of area

of acceptance is called eg. X-Y-Roll or X-Roll-Pitch, etc. These spaces are very

different from the Slice AAs, since they exist in SE(3) but are restricted to move
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in only the specified dimensions. The Slice AAs however, are slices sampled from a

space where the connectors are free to move in SE(3).

2.2 Figure of Merit

Now that we have enumerated the possible areas of acceptance in terms of the

spaces they occupy, we turn to the methods by which we measure these spaces.

Not all measurements are created equal - depending on the relative likelihood of the

system errors we might prefer a shape which is smaller but better suits those errors.

Aside from the naive measurement (simply summing the points) we present a more

refined single-figure quantitative metric appropriate to general robotics platforms.

Additionally, we compare these two metrics in this section.

Note that in all cases, the linear dimensions are normalized to the connector size

i.e. a width or diameter, to avoid giving an advantage to connectors which are simply

larger.

2.2.1 Sum Metric

The Sum metric is found by simply adding up the total area that is accepted.

This gives a simple figure of merit of all possible configurations without giving any

information as to the shape of this area. The Sum Metric with the ZRAA is used

in Table 2.1. This metric is reasonably informative for the ZRAA, where concavities

are unlikely to occur and shapes are typically not complex.

However, it has been our experience that concavities and irregular shapes do

occur, in particular when orientation offsets are introduced. For example, the ZRAA

for the SINGO connector, seen in Figure 2.1, takes up a sizeable area, but is not as

robust to high error solely in x or solely in y. Additionally, we may find in some

instances that while the Sum Metric for a particular connector is reasonably high,

it could be highly robust to errors in one dimension, but less robust in another. In
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order to better measure the connector acceptance in a way that is more consistent

to characteristic robot error, we have developed an alternative figure of merit that

reflects error range in each dimension.

2.2.2 Oriented N-Cube Metric

While adding the total area of an AA is useful, it does not always resemble the

most practical fit to a practical robotic application. Typically, each dimension has

some range over which error ranges can be expected based on the specific robotic

platform. One would like to match the positioning error of the robot with the AA.

Concavities and narrow areas or holes in an AA can limit this matching - errors

are typically convex in nature. If the error space of a specific platform has been

characterized to determine the likely error, this could be paired with the AA to

determine the likelihood of misalignment. However, it is more likely that this kind

of connector-robot matching data is not available since it requires conclusive testing

of the error.

Besides the cost of testing the robot error, we seek a generally more accepting

geometry for use in multiple applications - the aim is to maximize alignment for

all robot platforms by assuming a convex error space with decoupled dimensions.

Thus we introduce a new metric that is system-neutral but more representative of

capabilities with respect to typical robotic platforms.

The Oriented N-Cube Metric, as a figure of merit is more likely able to

match with positioning errors that typically are defined as distances from an ideal

position or orientation. We define it to be a measure of the AA found by the edge

size (characteristic length) of the largest axis-oriented N-Cube which fits within the

normalized AA. An N-Cube is a cubic shape existing in N dimensions; e.g. an

N-Cube in R2 is a square, an N-Cube in R3 is a cube. We only consider N-Cubes

which are axis-oriented, meaning that its edges are parallel to the (x,y,...) axes. For

the metric we find the largest axis-oriented N-Cube which can fit fully within the
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normalized AA; that is, the largest N-Cube which contains only offsets that result

in successful alignment. This N-Cube has a diameter (characteristic length) which

we then use as our single-number metric. The normalized AA is the AA with

each dimension divided by its maximum feasible limits. For angular offsets this

will typically be −π/2 to π/2, and for positional offsets it will be the maximum

offset before connectors are no longer touching. So on a connector with maximum

positional offset of 5 mm and maximum angular offset of π/2 radians, the offset

(2mm,π/4 radians) would become (0.4,0.5). Normalizing in this fashion allows us to

compare angular and positional offsets and define an N-cube with unit-less measures.

The N-cube metric is also relatively simple to calculate from an AA shape. Im-

plementation details for how to do this depend on the representation, see Section

5.3.1.

As a further example we can see in Fig. 2.1 that the largest oriented N-Cube (or

square, in the case of the ZRAA) for the DRAGON or Probe and Drogue would be

nearly the same area as the full sum (as the square inscribed in the circular AA),

but only a small square can fit in the center of the SINGO ZRAA due to the highly

concave ’X’ shape. This shows how the shape of the AA can have a large effect on

the Oriented N-Cube Metric compared to the Sum Metric.
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2.3 Assumptions and Problem Statements

x

y

(a) 2D case example, X-Face connec-

tor

(b) 3D case example for offsets in

(x,y,pitch), Pyramid connector

Figure 2.2: Robot and arm connector setups

Alignment in the real world is influenced by many different factors: not only the ge-

ometries in question, but also the static and dynamic forces, friction and restitution,

and system characteristics. It is important then to ensure that we have defined the

exact nature of the problem before starting work. We call the combination of these

relevant factors (excepting the geometry, which is the element being compared) the

Alignment Problem Specification (APS). As an example, for many 2D connectors’

analysis (as in Chapter 3) we look at an idealized scenario. Example Alignment

Problem Specifications are presented in Table 2.2 for the two cases where no degrees

of freedom are restricted.

If we wish to restrict one or more degrees of freedom as we will later in Section

5, we simply specify the remaining free degrees e.g. Table 2.4.

These restricted spaces are useful if we want to know either how a restricted

system would behave, or for some intuitive notion of how a full system might move
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Condition State

Forcing Direction: x = x0

Frictional: Zero Friction

Damping: Critically damped

Restitution: Zero

Initial Offset Dimensions: 2 linear(x & y) and 1 angular (θ)

Free Dimensions: x, y, & theta

Table 2.2: Simple 2D Alignment Problem Specification

Condition State

Forcing Direction: z = z0

Frictional: Zero Friction

Damping: Overdamped

Restitution: Zero

Initial Offset Dimensions: 2 linear(x & y) and 3 angular (roll, pitch, and yaw)

Free Dimensions: 2 linear(x & y) and 3 angular (roll, pitch, and yaw)

Table 2.3: Full 3D Alignment Problem Specification used in Gazebo simulations

in the degrees left free, if those are what we care about.

It is important to specify not only the physical assumptions with regards to

friction etc. but also the free and fixed dimensions for each of the two parts be-

ing aligned. This gives us the clearest possible picture of the problem and avoids

confusion that could result from testing connectors under inequivalent conditions.

Problems within this work assume a linear forcing condition perpendicular to the

plane of alignment, zero friction and restitution, and critical damping. Diagrams of

the physical forcing conditions for a 2D case and a 3D case can be seen in 2.2.
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Condition State

Forcing Direction: z = z0

Frictional: Zero Friction

Damping: Overdamped

Restitution: Zero

Initial Offset Dimensions: 2 linear(x & y) and 1 angular (yaw)

Free Dimensions: 2 linear(x & y) and 1 angular (yaw)

Table 2.4: Alignment Problem Specification for X-Y-Yaw AA, a three-dimensional

AA

2.4 Design Parameters Affecting Acceptance

AR: 1/2 AR:2 COR:-1 COR:1
D

D/2
 

2D

D

D

Figure 2.3: Examples of the two design parameters, AR and COR with the 2D X-

Face connector [20]. Note that the arm is ‘virtual’ and would not collide with the

other connector.

We have found two relevant design parameters (Fig. 2.3 that significantly affect the

area of acceptance, and thus should be taken into consideration when comparing

geometries. First the aspect ratio (AR) - measured as the height of the connector

geometry H relative to the width of the base D, meaning AR = 1 = H/D is a

connector with height equal to its width. For 3D connectors we assume a square

base, with width D as one side of the square.
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Next is the remoteness of the center of rotation (COR). Center of rotation has a

significant effect on the AA. The COR parameter is quantified as the distance from

the center of the connector to the rotation point with positive values in ‘front’ of

the connector (more remote) and negative values ‘behind’ it. These are normalized

by the characteristic width of the connector D. For example in Fig. 2.3 the COR

value on the 3rd figure is -1, while the COR value on the 4th figure is +1. It is well

known from research on the ’peg-in-hole’ problem that alignment systems with a

remote (positive, as defined above) center of compliance [14] have good passive error

correction.

2.5 Combining Areas of Acceptance

In some cases where there are two different connectors with a certain method of

connection, we can find the area of acceptance by using convolution to combine two

other areas. For example, the DARPA TEMP system [50] has an active gendered

connector. The connector is composed of a male hook end and a female loop end.

These two connectors each sweep out a separate volume, but only need to cross at one

point for connection to be successful. We can then compose the area of acceptance

for the two robots by combining the two swept volumes, as a convolution. The

convolution of the 2D representation of the two connector areas is shown in Figure

2.5. This area of acceptance was approximately validated by experiment. Some

discrepancies exist due to additional dynamic constraints of the robot system and

interactions between robots.
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Figure 2.4: Diagram of DARPA TEMP hook and loop docking actuation. Both ends

of the loop string are fixed to the one winch, resulting in a single DOF for the female

loop connector.

Figure 2.5: The docking connector 2D area of acceptance (right) is obtained by

convolution of the shape swept out by the hook (left) and the shape swept out by

the loop (center).
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Figure 2.6: Experimental data collected to show the actual 2D area of acceptance

(boats not drawn to scale).
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Chapter 3

2D Connector Types and

Alignment Limits

We begin by examining 2D connectors and positing a new connector geometry, in

an effort to find and test a simple method for determining and comparing 2D con-

nectors. Our first method is a simple iterative kinematic analysis intended to step

through the alignment process and find the AA for a few 2D connectors. We com-

pare the performance of the new 2D connector to the best-case bounds of other

known connectors from the literature to show that the new connector has increased

performance over other standard connectors.

Two-dimensional connectors and their limits have been studied briefly in the

literature. In [48], Nilsson proves that for single-piece faces (faces which can be

written as a function y = f(x) in a plane, where y is the direction of motion to mate

two matching faces), a face that gives the largest bi-directional offset correction

possible for identical connectors is D/3 where x(ymax) = D/3, x(ymin) = 2D/3. He

also proves that for gendered faces this relationship is D/2 where x(ymax)) = D/2

for the male and correspondingly x(ymin) = D/2 for the female. We call these the S-

Face and the V-Face respectively. The Alignment Problem Specification for Nilsson’s

analysis is shown in Table 3.1.
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Condition State

Forcing: x = x0

Frictional: Zero Friction

Damping: Critically damped

Restitution: Zero

Initial Offset Dimensions: 2 linear(x & y)

Free Dimensions: 1 linear(x )

Base Face Free in x and y

Table 3.1: Nilsson Alignment Problem Specification

Figures 3.1 and 3.2 show the simplest example of the identical faces (left), gen-

dered faces (center) and a newly proposed geometry (right).

Figure 3.1: A graphical representation of the face geometries. All three faces shown

here have the same ’profile area’, represented by H and D, the height and width.
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H

S-Face V-Face X-Face

DD/2D/3

x
y

x0

Figure 3.2: A representation of the maximum lateral offset for which self-alignment

can occur, for each of the S, V, and X-Faces.

The S-Face is the name we give to the identical face geometry analyzed by Nilsson.

In this example we will use the simplest profile of the face (four vertices connected

by straight line segments). Other geometries that have the same max and min

conditions exist and similar analysis will apply without loss of generality. If the

profile is viewed horizontally (as in Fig. 3.2) with horizontal width D, one vertex

is at one-third of the way across the face, and the other is at two-thirds. The two

middle vertices are symmetrically offset from the vertical, one up and one down.

This shape gives the maximum lateral offset that still yields self-alignment for a

2D ungendered profile [48], an offset of D/3 in either direction.

The V-face is the 2D equivalent of the cone and hole shape or probe and drogue

as seen in Fig. 2.1, a shape representing the maximal lateral offset for 2D profiles

if we allow for the connectors to be gendered. The male profile is essentially an

isosceles triangle. The maximum lateral offset is D/2.

The X-Face [20] is a new face geometry designed to maximize acceptance range

for real-world robots aligning in a SE(2) plane. It is composed of two layers, with the

top a mirror image of the bottom, so it is no longer purely 2D, though the motions are

still constrained to be planar. These faces will self-align in the lateral case as Nilsson

examines it up to the full width D of the connector away, an improvement threefold

over the S-face. Additionally, the X-Face does not suffer from the drawback of being
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gendered, meaning we do not have to check genders of faces before mating them.

Since the self-alignment process is defined by contact of the two pieces, this is the

theoretical maximum lateral offset for planar constrained motions of self-alignment.

In the previous case we have assumed: planar constrained motion, the same size

(D) for both connectors, no rotations when docking and the vertical axis as the

docking direction.

3.1 Simplified Kinematic Analysis

For the 2D faces above, the mating problem can be divided into three phases: the

approach phase, the alignment phase, and the slide phase.

During the approach phase, the parts approach along the direction of forcing until

the first contact point is made. In the alignment phase, the parts rotate and slide

relative to each other, maintaining contact until either the parts are either aligned

with the same angle, or have misaligned beyond recovery. The final phase is the

sliding phase, in which the parts that have the same rotational alignment slide into

lateral agreement.

This phase structure results because of the assumptions on the condition of the

robots: namely, the connectors have an arbitrarily small inertia compared to the

mass of the robot, there is no friction, critical damping and no bouncing.

In all cases, we exclude initial conditions where the faces do not come close enough

to mate. When the forcing direction is vertical, this is equivalent to x0 > 2D∗rp+H.

We call this the ”distance condition”, and it applies to all connectors.

3.1.1 2D Kinematic Analysis: X-Face

We start by analyzing the conditions on the 2D X-Face. The approach phase can be

handled simply by applying a priori collision detection. This gives us the point of

first contact.
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The alignment phase is next. When the first point contact is made, generically

we will assume a vertex on one side contacts a line segment on the other side. The

next step is to determine how the parts will rotate; towards alignment or away from

alignment. We model this by building a simplified system seen in Fig. 3.3.

The direction of relative rotation can be determined by the geometry; the location

of each rotation point (where the robot arm is applying translational forces but no

torques) call them PM and PB, the location of the point of contact PC and the normal

to the line segment at the point of contact. Connector inertia I1 = I2 is arbitrarily

small but nonzero.

We are modelling the system without friction, and so the only forces on both

bodies at PC must be in the direction normal to the line at PC and in equal and

opposite directions and the reaction forces at the rotation point (PM or PB). Since

the moving face must rotate about PM the force at PC will cause a torque about PM

which will indicate its rotation direction. Similar analysis can be used for the base

face. In addition to this torque, a slip occurs at PC . The complication comes from

the fact that both the contact slope and the location of PC changes as motion occurs

and in some cases the motion can reverse.

We numerically integrate this system to simulate the alignment phase. We only

care about the path and not the rate, so the actual magnitudes of I and F are

irrelevant and are excluded by setting them to 1.
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Figure 3.3: Alignment path

q2 = d+ l cos(θ2)

θ̈1 = −q1 (3.1)

(θ̈1 − θ̈2) = − sin(θ2)l

Together with the forcing condition x = x0, this defines a one-DOF system.

The final equation we need is a motion constraint on the rotation point of the

point side relative to the edge side. This is valid under the earlier assumption of

arbitrarily large robot mass. We use the equation directly from the Mating Problem

Conditions, and transform it to the new coordinate system Q:
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x = x0

x = d cos(θ1) + q1 sin(θ1) + l cos(θ1 − θ2)

Solving for θ2, we get the differential equations:

I

f
θ̈2 = sin(θ2)l −

x0 − d cos(θ1)− l cos(θ1 − θ2)
sin(θ1)

I

f
θ̈1 = −x0 − d cos(θ1)− l cos(θ1 − θ2)

sin(θ1)

Rather than attempt to solve this system of ODEs analytically, we adopt a nu-

merical solution here, timestepping through the system until the alignment condition

is satisfied:

I

f
θ̈1i+1 = −x0 − d cos((θ1)i)− l cos((θ1)i − (θ2)i)

sin((θ1)i)

I

f
θ̈2i+1 = sin((θ2)i)l

− x0 − d cos((θ1)i)− l cos((θ1)i − (θ2)i)

sin((θ1)i)

˙(θ1)i+1 = ˙(θ1)i + dtθ̈1i+1

˙(θ2)i+1 = ˙(θ2)i + dtθ̈2i+1

(θ1)i+1 = (θ1)i + dtθ̇1i+1

(θ2)i+1 = (θ2)i + dtθ̇2i+1

The alignment condition is:

θ2 = βp + αe (3.2)
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αe

βp

Figure 3.4: Angles for aligned faces. The V-Face is shown as an example.

where βp and αe are constant angles determined by the face geometry as shown in

Fig. 3.3. βp is the angle between the point face lever arm and its vertical. αe is the

angle between the edge normal and the edge face vertical. Misalignment conditions

occur if θ2 < 0. This represents a failed mate, which we will talk more about shortly.

Once the faces are aligned, we move into the sliding phase. During the sliding

phase, the two pieces are aligned (that is, θmoving = θfixed), but there remains some

(x,y) offset. Since we have excluded those situations which do not meet the ”distance

condition”, we know that these two faces will at some point be close enough to dock.

We also know that the derivative of the distance is negative, so the faces can only

get closer. Aligned faces represent a stable equilibrium, so the only way for them to

get closer is by sliding into the mating position. Thus, if we satisfy the alignment

condition and the distance condition, we have a successful mate.

Likewise, a pair of faces which has failed to meet the alignment condition must

necessarily be a failure. Even if it gets close enough, we will only get a ”failed

mate”, which the system will not be able to recover from if the forcing condition is

a constant.
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Figure 3.5: Examples of failed mates. Failed mates are unrecoverable for constant

forcing conditions.

3.1.2 V-Face and S-Face

The earlier collision model is fine when only one-point and sliding contact cases are

possible, as in the case of the X-Face. The S-face and V-face are slightly more com-

plicated; there exists for these models a two-point contact case, as seen in Fig. 3.6.

Rather than attempt to solve these cases, we establish bounds for these faces beyond

which they will certainly fail. These characteristics give us an outer bound or ”best

case” on area of acceptance to compare to the X-Face simulation.

Figure 3.6: Example of two-point contact case.

The ”best case” bounds for these faces are defined as follows. The path of the

maximal point (e.g. the tip) of the moving face must contact one of the faces on

the mating shape which would be adjacent to it in the mating minimal point. For

the V-Face, this is mathematically equivalent to:|xtip| < D/2. The other condition

is that the initial angular offset does not already break the misalignment condition;
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meaning |θ0| < pi
2
− |αe|. Additionally, the V-Face and S-Face are subject to the

same ”distance condition” as the X-Face.

3.1.3 Simulation Results and Area of Acceptance Compari-

son

We ran the numerical simulator on the X-, S-, and V-Faces over a range of parame-

ters. The relevant parameters here are H
D

and rp. We tested each face over the same

subset of the feasible set of initial states {−D < x0 < D,−pi
2
< θ0 <

pi
2
}. The subset

of initial conditions is a combination of 41 x0 values and 41 θ0 values, giving us 1681

discrete points evenly spaced over both dimensions of the feasible area. Running

the simulation on each of these points gives us a set of initial conditions paired with

their successful/failed state. We use the number of these values which are successful

as a metric M for that particular connector.

These metrics were generated for several values of the design parameters H
D

and

rp. M serves as a scalar discretized approximation of the area of acceptance we can

use for comparison. We present the these metrics and their ratios in the Tables

3.2-3.4.

For the X-Face, the simulator was run once for each layer, comparing distances

to see which layer collides first.

We can see that the X-Face generates a larger area of acceptance for most values

in the design space. Some parameter values give better results with the ”best case”

of V or S-Face, but only in a specific narrow range. If we take the mean across the

design space, we find that the mean X-Face/V-Face ratio is 1.8838, and the mean

X-Face/S-Face ratio is 2.3846. In almost every case of H
D

and rp the X-Face has

significant improvement over both S-Face and V-Face area of acceptance. The few

exceptions are near rp = 0 and H
D

= 1.

Looking at the data, we see some unintuitive results. As the rotation point comes

closer to the face, the area of acceptance increases as we expect, however it drops off
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Table 3.2: Full ZRAA for X-Face by Direct Simulation

for rp = 0. This is because of the distance condition; Once the rotation point is that

close, significant offsets will result in failed mates simply because the faces do not

come close enough together. As the H
D

ratio increases, the area of acceptance across

all faces decreases. As mentioned for the ”best case”, there is some angular offset

limit beyond which docking cannot succeed. Increasing the slope H
D

, reduces this

limit, naturally depressing the area of acceptance. More extreme values of H
D

and rp

were examined, but the area of acceptance ”plateaus” and ceases to be interesting.

Each design has 1681 (412) initial conditions that are checked for acceptance, for

100 different combinations of design parameters for each face type. Additionally,

some conditions (no friction, coef. of restitution) are impractical to replicate in the

lab.

Simple experimental validation was performed by constructing small models of

the faces and manually driving them together. Offsets (translational, and angular

measured by tangent) are measured by use of grid paper beneath the models. Fig. 3.7
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Table 3.3: Full ZRAA for V-Face by Direct Simulation

shows a typical run. The validation generally agreed with the model, except in cases

where static friction became significant. In these cases the models were observed to

”stick” and not move along the prescribed path. To find M for the equivalent real-

world case models, we would need to add friction to our model. In general however,

this serves as a useful point of comparison for connector geometries.

The X-Face and the analysis as presented thus far are limited in some regards.

For example, the possibility exists in the real world case for some misalignment in

the out-of-plane direction. A small design change can fix this misalignment. Taller

layers and a gap between layers adds some tolerance to out-of-plane misalignment by

keeping the appropriate layers in contact. This prevents small misalignments from

causing complete failure to engage the connectors correctly. However, the model

remains sound as a method of comparing these simple 2D connectors.
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Table 3.4: Full ZRAA for S-Face by Direct Simulation

(a) Before align-

ment

(b) During align-

ment

(c) After align-

ment

Figure 3.7: Example of experimental validation procedure for X-Face with x0=2cm,

θ0 = arctan(1
3
) ' 0.32. The grid pattern behind the transparent pieces has a 0.5cm

spacing.

35



Chapter 4

3D Connector Alignment and

X-Face

With the 2D connectors analyzed, we seek to move on to 3D alignment geometries.

These are more useful for modular robotic applications in a 3D workspace. We start

by describing existing 3D alignment geometries and a novel 3D connector design

before working to compare them. We are able to show that the novel connector is a

significant improvement over existing designs according to the metrics from Chapter

2.

4.1 3D Connector Designs

4.1.1 Existing Designs

Existing 3D alignment faces are common but generally limited in terms of capabilities

- the most capable examples are the amour robot [68] and the DRAGON connector

[49]. The ZRAAs are typically quite low as can be seen in Table 2.1, and so far have

peaked at 1.57 for the amour connector. Their ZRAA comparisons can also be seen

in Fig. 2.1.
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4.1.2 3D X-Face Designs

Front/Rear View

Left/Right View
Top View

3D X-Face

3D Locking X-Face

Figure 4.1: 3D X-Face Designs. A single connector is shown for each design- the full

connector pair is 2 identical connectors.

Expanding on the design advantages of the 2D X-Face Connector we have de-

signed the 3D X-Face connector. If we think of the design as a function over a 2D

plane, it appears as a function with a ’saddle’ point, two minima, and two maxima.

The basic geometry of the 3D X-Face connector can be seen in Figure 4.1. We do

not have the advantage we had on the original X-Face design of an extra dimension

to be utilized, but by extending the aligning faces along the full length of the sides

we still improve the effective AA of the connector, as we will show. This design has

the advantage of being ungendered (that is, the docking faces have identical geome-

try), which helps with the operational flexibility of any resulting modular system by

making every site eligible for docking. The design is also capable of correcting for

some offsets in the yaw direction; that is, the rotational DOF about the direction

of facing. The 3D X-Face connector has a ZRAA of exactly 2, a 27% increase over

the amour connector, the next largest. For the entirety of this section, we use the

X-Face geometry which has an angle of π
6
, that is, H

D
= tan π

6
= 0.57735.
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Circumscribed Cone/Probe and Drogue

Circumscribed
Probe and Drogue

AA

Area of Acceptance

3D 
X-Face AA

Circumscribed 
Probe and Drogue

Cross-Section

D

D

3D X-Face AA: 2D2

Circumscribed Cone/P+D AA:1.57D2

Inscribed Cone/Probe and Drogue

Inscribed 
Probe and Drogue

AA

Area of Acceptance

Inscribed 
Probe and Drogue

Cross-Section

3D X-Face
AA

D
D

3D X-Face AA: 2D2

Inscribed Cone/P+D AA:0.785D2

Figure 4.2: Comparison of ZRAAs for Cone/Probe-and-Drogue vs 3D X-Face con-

nectors

38



The ZRAA Sum of a 3D face is usually readily apparent based on the maxima and

minima. Comparison of the 3D X-Face to the Probe and Drogue shape is somewhat

difficult because the cross sections have different geometries - the X-Face is square

while the Probe and Drogue is a circle. We can choose either to circumscribe the

X-Face with the Probe and Drogue cross-section or inscribe it. The circumscribed

Probe and Drogue has a ZRAA of 1.57 compared to the 3D X-Face ZRAA of 2.0

- this represents a 27% increase of the X-Face over the the best existing gendered

connector. Previously, the ungendered connector with the greatest ZRAA Sum was

the DRAGON connector with 0.353, which the 3D X-Face improves on by 467%.

Using the Oriented N-Cube Metric, the ZRAA is measured as 1.0, equivalent to the

Circumscribed Probe and Drogue. The DRAGON measured using the same metric

is 0.474, so the X-Face 3D still represents an improvement of 111% for ungendered

connectors in this metric.

Another is the Locking X-Face geometry, which is a variant on the X-Face. The

Locking X-Face is more robust to disturbance once connected since the addition of

a lip feature at the saddle point prevents the connectors from coming apart in any

direction other than the facing direction. Specifically, this lip feature is the addition

of a vertical (z -oriented) mating face at the center lines along each edge, meeting at

the saddle point. Theoretically any geometry can add a lip feature such as this one

without affecting offsets in that plane (x,y,θ).

Twisting forces about z (or shear forces in x and y) on the 3D X-Face without

the locking feature causes the two faces to separate in the z direction. The speed

of this separation is linear with the tangent of the normal of an 3D X-face surface

to z -axis (note that all four faces have the same value). Rotations about the z -axis

yield a separation motion in proportion to the self-alignment behavior. When the

surface normals are perpendicular to the z -axis, the tangent is infinite, and so are

the separation velocities. This also corresponds to requiring infinite twisting force

(up to material strength) to achieve separation. The Locking 3D X-face exploits this
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principle by adding vertical faces in a lip feature, preventing twisting separation.

Unfortunately the lip feature introduces the possibility of jamming due to pitch

or roll misalignments or foreign material. To combat the disadvantage, the mating

face of this lip feature can either be given a ’draft angle’ as one would in mold

making. Adding a draft angle reduces the locking force from infinite, and can help

prevent total failure due to dirt or other foreign object and reduce the possibility of

jamming.

From a design standpoint, the locking feature also means we only have to add

features to limit the approach DOF if we wish to ensure rigid connection once the

connectors are docked successfully.

4.2 Analysis by Simulation

The area of acceptance for the 3D X-Face was first analyzed by direct simulation;

that is, beginning a simulation with some offset and allowing it to run until the con-

nector is either fully rejected or accepted. The simulation is detailed in the following

sections. This setup uses the problem specification in Table 2.3 but only samples

certain two-dimensional axes ’slices’ for analysis due to the heavy computational

cost.

4.2.1 Simulation Environment

Since we are now working in SE(3), the Full AA has five dimensions . This increase

in dimensionality not only makes it more difficult to analytically determine the AA

as we did in Section 3.1, but also increases the cost factor of numerical computation.

Beginning our work in this simulator with the ZRAA, we found that two-dimensional

Slice areas of acceptance for unconstrained connectors were testable at a reasonable

resolution within 12-18 hours on a standard laptop. We utilize the Gazebo dynamic

simulation environment to evaluate and verify the X-Face connector’s AA. We chose
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Gazebo because it is relatively easy to set up and automatically repeat a simulation,

and because it is capable of changing physics parameters relatively easily. This

simulation environment is also highly capable of implementing friction, coefficient of

restitution effects, multi-body systems, etc., making the simulation expandable to

more of the dynamic and design space in which these connection problems occur.

Gazebo also has multiple tools that can we used to ensure that the simulation’s

dynamic parameters (i.e. center of mass, inertia matrix) are correctly set and visible

directly in the simulation. The default ODE physics engine was used.

Parameters, models and environment are determined by creating a standard

Gazebo world file. A custom C++ plugin for Gazebo logs the results from repeating

the simulation with different offsets. Alignment or failure to align was determined

by measuring the distance between the ’saddle points’ of the two X-Face connector

models. If the two connectors are perfectly aligned, these two points are the same.

In simulation this distance was checked every few frames. If the distance became

less than a small threshold the parts were recorded as ’aligned’, but if they become

too far apart (more than the width of the connector) or if the simulation runs un-

usually long, the parts were recorded as ’failed to align’. Models were constructed in

SolidWorks and exported in STL format then imported to Gazebo to form the visual

and collision models for the 3D X-Face. To ease computation, the simulation was

made essentially quasi-static with high forces and large global damping. Friction and

coefficient of restitution are set to zero. While this condition is not one that occurs

realistically, we are attempting to evaluate the alignment geometry, without choos-

ing a material or robot. Thus it would represent an improper effect on the results to

make any assumptions about the dynamics or material characteristics of the system.

Additionally, we seek to isolate only the most basic mechanical interactions of the

geometries in the scope of this experiment. This quasi-static condition is therefore

the most system-neutral. The test performed to evaluate AA for the connectors in
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each case is a simple ’drop test’. The parts are placed over one another with ini-

tial offset and dropped under gravitational force. One part rests on a ground plane

so that it does not fall away from the other part under gravity. Center of mass is

placed at the connector’s center of mass, so gravity forces act through that point.

The constant gravity force imposed in simulation is equivalent to an arm with force

control on the end effector in that same direction, demonstrating a real-world case

in which these results are directly applicable.

Numerical Limitations

While checking the results of the tests, regions were occasionally observed to have

acceptance properties that are incorrect according to the properties of areas of ac-

ceptance (ie. asymmetric where they should be symmetric, holes or disconnected

regions of acceptance. However, this was rare (≤ E where E ≈ 0.08%). These errors

were determined to be due to a combination of systematic floating point rounding

error in the physics engine, and an edge case that caused collision checking to fail

catastrophically. This effect appears more often near the boundary of the AA due to

the more extreme angles involved. One set of initial conditions near the boundary

was simulated ≈ 12, 000 times with 9 failures, while a set of initial conditions near

the absolute center of the AA resulted in 0 failures after over 100,000 trials. Since

the simulations sometimes consisted of upwards of 5,000 trials (ie. X-Pitch Slice

with 712 = 5041 trials), occasionally this problem resulted in a disruption of the

results. To combat this, we reimplemented the simulation plugin to perform each

trial 3 times, with the majority result being accepted. This reduces the probability

that a given data point is incorrect to ≈ 1.92 × 10−6, but triples the computation

time required.
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Figure 4.3: Results of Simulation Testing across four selected Areas of Acceptance.

Inner rectangles represent feasible range of acceptance conditions, which is the range

over which acceptance was tested.

4.2.2 Simulation Results

A mechanically simplified version of the simulation verified the ZRAA. This was

performed in Gazebo as described above. As a way to prevent rotation, the mass

properties were altered. By increasing the inertia five orders of magnitude, position

changes took extreme precedence over rotational changes. The numerical simulation

results are presented side-by-side with the analytical diagram in Figure 4.4. The

results show a nearly perfect match between the simulation and the expected results.

This verifies both that our simulator is capable of reproducing the ideal situation

and that the ZRAA results are as expected.

The X-Y Slice, X-Pitch Slice, X-Roll Slice, and X-Yaw Slice AA an be seen in
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Predicted 3D 
X-Face AA

Theoretical
Maximum

Predicted Area of Acceptance

Figure 4.4: ZRAA Comparison. Left: Theoretical ZRAA based on geometry. Right:

Simulated ZRAA using Gazebo

Figure 4.3. For these AA the inertia was returned to the correct form, but dynamic

effects were reduced. To that end the gravity force was amplified (g=9000m/s2) as

well as adding a high degree of damping. To accomplish the damping, we set the

exponential velocity decay term α for both angular and linear velocity to 0.99. While

Figure 4.5: A stable configuration possible when rotations are permitted. Both

connectors are in contact with the ground plane.

the ZRAA simulation results are straight forward, the other areas of acceptance have

a more irregular shape. First, because we allow rotations in these cases, the position

range is reduced, as in the X-Y Slice AA. Second, unaligned but stable configurations

arise which are the cause of the concavities visible in the other AAs. An example of

a stable configuration can be seen in Figure 4.5. The geometry of the faces allows

for a considerable range of angular offsets to be successful. Even when rotated π
2

in

pitch or roll, the shape of the edges in conjunction with the location of the center of
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mass causes forcing conditions to be favorable for the connector.

Results show a relatively high acceptance for the 3D X-Face, taking up a large sec-

tion of the available space. The Sum metric measurements from the simulation data

for X-Y Slice, X-Roll Slice, X-Pitch Slice, and X-Yaw Slice are 0.336, 0.527, 0.481,

and 0.504, respectively1. It is difficult to accurately predict the full-dimensional Sum

value from these values, though we will show other methods in Chapter 5 that allow

us to get closer to the Full Sum.

We also seek to estimate the Full Oriented N-Cube Metric introduced in Sec-

tion 2.2.2. An optimistic estimate is the largest n-cube that can be formed that is

consistent with the given two dimensional slices. This is found by the maximum

circumscribed cube about the minimum of maximum inscribed squares of each slice.

For orthogonal slices, this reduces to finding the n-cube as the one with a side length

equal to the smallest of the Oriented N-Cube Metrics for each slice. The Oriented

N-Cube Metric side lengths for X-Y Slice, X-Roll Slice, X-Pitch Slice, and X-Yaw

Slice are 0.390, 0.536, 0.415, and 0.524 respectively. So the optimistic Oriented N-

Cube metric is estimated to be 0.390. We can also use this as an optimistic estimate

for the Full Sum AA.

A conservative estimate of the Full Sum can be made by assuming a ’diagonal’

linear relationship between 2D planes; this results in a sort of five-dimensional ’dia-

mond’ shape. We solve this by creating a hyperplane in the positive orthant with the

corner points from each of the four squares we have solved for in simulation (plus an

extra point relating y and yaw ; symmetry means X-Yaw Slice is identical to Y-Yaw

Slice). We then solve for the point on that hyperplane that crosses the vector from

the origin along (1,1,1,1,1). This gives us a vector (d,d,d,d,d) where d is the size

of our n-cube. This can best be visualized as the cube centered at the origin that

1Note these slice AAs are on a 0-1 scale rather than scaling with π as in many later cases where

rotation is present. In general the maximum value depends on the number of rotation DOFs ie.

0-π for 1 rotation DOF,0-π2 for 2 rotation DOFs, etc.
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fits within this ’diamond’ shape. For the simulation data, we found the conservative

value to be 0.204. This means the actual Full Sum Metric is likely between 0.204

and 0.390.

4.2.3 Prototype Construction and Testing for ZRAA

To verify our simulation results and make use of this design to dock our modular

robots, prototypes of the 3D X-Face were constructed. These prototypes were con-

structed on the 65.5 mm x 65.5 mm scale, corresponding to the face size of the

present version of CKBots [16]. The prototypes were 3D-printed on an Objet30

Photopolymer Printer out of VeroBlack material. This 3D-printing process has the

advantage of giving a smoother finish than fused-deposition modeling. The lack of

friction in our prototypes aids in matching the conditions in the simulation.

The full testing setup can be seen in Figure 4.6. An overhead arm composed

of CKBot modules carries out a a simple up-and-down vertical trajectory while the

cart on casters on the bottom is free to move in the plane for alignment. The arm

trajectory moves the top connector up to a height that allows the connectors to clear

each other and slide apart for different positions, and then down to the height at

which fully aligned contact normally occurs. The face with the top connector does

not rotate during this trajectory and maintains a level orientation. Grid paper below

the cart and a positioning jig let us change and measure the offset by hand to an

estimated error range of ±1mm. This test serves to experimentally verify the ZRAA

to within our error range.

Testing was carried out at select points on the boundary, in 0.5cm increments as

seen in Figure 4.7. All points inside the expected boundary were observed to align

successfully, despite the degree of proximity to the boundary. Several points were

tested that were presumably ’on’ the boundary - these points aligned successfully

as well. Points outside the expected boundary all failed to align successfully - the

bottom connector was ’rejected’ - pushed away. This testing confirms that the ZRAA
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Figure 4.6: Alignment test setup. Overhead arm composed of CKBots. Jig aids in

setting exact position.
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Figure 4.7: Results from testing on CKBot arm platform in Fig. 4.6. Natural

symmetry of the geometry means testing requires only a single quadrant without

loss of accuracy.
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performs as expected on a real platform.

This testing was also able to demonstrate yaw correction for a few simple cases,

including mixed correction of yaw with x and y offsets. Fig. 4.8 shows an example

of the correction behavior.

Figure 4.8: Motion sequence showing alignment correction of offsets in x, y, and

yaw simultaneously. Yaw rotation is the first major motion visible, followed by

translation in x and y simultaneously.
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Chapter 5

Numerical Methods for

Determining Area of Acceptance

While the simulation method gives passable results and resulted in a measurement

of area of acceptance within some level of statistical error, it would be better to

have a more precise numerical analysis method to determine AA. We have found

two (2) processes by which we can obtain a more consistent and precise result which

is detailed in the following sections. These two methods share some foundational

concepts but are in many ways very different in terms of implementation.

The same assumptions used in the simulation approach are necessary here, namely;

zero friction, pseudostatic interactions, zero coefficient of restitution. The forces in-

fluencing the system are still purely mechanical interaction forces with no dynamic

interactions. Since many robotic systems can be run almost arbitrarily slowly, this is

a good starting point for robust acceptance; we assume that any given robotic system

can be run sufficiently slowly to approximate the pseudostatic condition. Frictional

interactions can in many cases be overcome by sufficient effort from the robot, so we

also exclude the consideration of friction as a measure of simplification. Addition-

ally, in practice there are many processes by which we can reduce surface friction -

ie. lubricants, surface treatments. For the prototypes of the 3D X-Face (printed on
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an Objet30 desktop 3d printer) choosing a polished surface finish from the printer

is all that is necessary to reduce the friction to a negligible level for alignment on

our testing platforms. Additionally, as in the previous case, all area of acceptance

metrics are normalized by the width D of the connector. This ensures that we can

compare geometries fairly - larger connectors (that is, those with a wider base D)

would naturally have higher area of acceptance for the same geometry.

For the purposes of this chapter, we use some standard Alignment Problem Spec-

ifications as in Section 2.3. The 2D problems are the same as in Table 2.2, and an

example 3D problem specification with restricted DOF can be found below in Table

5.1. Similar specifications apply to other problems i.e. (x,y,yaw) or (x,roll,pitch)

when they are analysed.

Condition State

Forcing Direction: z = z0

Frictional: Zero Friction

Damping: Overdamped

Restitution: Zero

Initial Offset Dimensions: 2 linear(x & y) and 1 angular (pitch)

Free Dimensions: 2 linear(x & y) and 1 angular (pitch)

Table 5.1: Alignment Problem Specification for X-Y-Yaw AA, a three-dimensional

AA with only 3 free DOF

5.1 Generating Configuration Space Obstacles for

Watershed Segmentation

These approaches use the concept of configuration space (C-space) to determine

how the system might behave under contact forces. This concept originates from
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motion planning, and is the space of all possible states for which the robot is not in

collision with any obstacles. The robot can be shrunk to a point and the obstacles

grown (C-obstacle) so that collision-free motion can be examined as a point moving

through the space [40]. The resulting obstacle geometry contains on its boundary all

possible contact states for the robot and obstacle. Methods for finding these obsta-

cles are well-developed thanks to their uses in collision checking and path planning.

Depending on the accuracy required, fully-dimensional configuration-space represen-

tations can be computationally costly. A survey of methods for constructing these

obstacles can be found in [72]. Since the outer boundary of the configuration space

obstacle represents the set of points in which the connectors are in contact, we can

analyze the shape of this surface (with some assumptions) to find a presumptive area

of acceptance for two rigid connectors.

Similar concepts have been presented in works on stability analysis and robotic

grasping. Rimon and Burdick [43] analyze grasp mobility and stability in terms of

the configuration space representation of the system. Contact forces are represented

within the configuration space using screw theory. Further analysis characterises

mobility of a grasp using 1st and 2nd order analysis to show lower bounds on the

number of contacts required to effectively grasp an object [54] [55]. The outer bound-

ary of the configuration space is known as the contact space, a useful manifold for

determining grasp quality [39] or finding configurations to perform caging [2].

The watershed of a point in an image (or height map) is defined as the set of all

points in the image with a downstream in which that point is a member [8]. In other

words, the watershed of a point is the set of all points which flow downhill to it. The

watershed of our target configuration is therefore equivalent to the AA where the

downhill direction vector is defined to be the approach vector. Many methods exist

for determining the watersheds of an image developed by the image segmentation

community [56] [69]. The AA is also a specific case of the ‘pre-image’ of the target

configuration as defined by Lozano-Perez, Mason, and Taylor [41].
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Each of the two processes used to numerically determine AA requires a) generat-

ing some representation of the contact space, and then b) searching for the watershed

on that contact space (which represents the AA).

For each method, the geometric functions have been implemented in Matlab

with the use of the Multi-Parametric Toolbox [36], which enables computation and

operations on sets of polytopes. Final analysis is implemented in Matlab in an

original code base.

The first method has five steps, which are each detailed and discussed in Sections

5.1.1, 5.1.2, and 5.3.

� Define connector geometries

� Generate Surface Collision Shape

� Reduce to Sub-manifold of interest (Contact Space)

� Generate Poly-vector pairs

� Follow pairs to generate AA

5.1.1 Defining Connector Geometries

We define a connector pair as (C, C ′) where each of C and C ′ are P-collections. A

P-collection is defined as in [4]:

Definition: A P-collection C is a finite collection of full-dimensional polytopes

in Rn, i.e.,

C = {Ci}NCi=1 (5.1)

whereNC = card(C) <∞,Ci := {x ∈ Rn|Cix ≤ ci},Ci full-dimensional, i=1,...,NC .

A polytope is defined as

Definition (Polyhedron and polytope): A convex set

P = {x ∈ Rn|Px ≤ p}, (5.2)
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with P ∈ Rnp×n,p ∈ Rnp ,np < ∞, is called polyhedron. A bounded polyhedron is

called a polytope. The vector in 5.2 is considered component-wise. A polytope P is

full-dimensional if it is possible to fit a non-empty n-dimensional ball in P , i.e.,

∃x0 ∈ Rn, ε > 0 : B(x0, ε) ⊂ P , (5.3)

where

B(x0, ε) := {x ∈ Rn|‖x = x0‖ ≤ ε}. (5.4)

For C and C ′, each polytope in each of the sets should be full-dimensional in either

R2 or R3. The nth dimension in the space, either y in R2 or z in R3, is assumed to be

the ’approach direction’; for the sake of generality I will refer to this dimension as ep.

Note here that each of C and C ′ should be given in the orientation with the mating

faces pointed in the positive approach direction ep, and not in an orientation where

they would normally mate. This prevents any confusion when performing the set

operations necessary to the rest of the process. Examples of appropriate orientations

can be seen in Figures 5.1 and 5.2.

Figure 5.1: Two-dimensional connectors represented as P-collections C and C ′
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C and C' for the 3D X-Face

Figure 5.2: Three-dimensional connectors represented as P-collections C and C ′

If the underlying sets of C and C ′ are equal or there exists some offset x such that

the two are equivalent, then we say that the connectors are ungendered. If no such

equivalence exists, the connectors are gendered.

Definition (Ungendered Connectors): A connector pair (C, C ′) is said to be

ungendered iff, given C = {Ci}NCi=1, C ′ = {C ′i}
N ′
C

i=1, ∃x ∈ Rn

∃x ∈ Rn|
NC⋃
i=1

Ci :=

N ′
C⋃

i=1

C ′i + x (5.5)

The addition operation above is the translation of the set, i.e ,(P+x) = {p+x ∈

Rn|p ∈ P}.

5.1.2 Generating Surface Collision Shapes

In alignment we are interested in surface interactions. In order to obtain an idea

of where the parts interact, I construct a surface collision shape for a given pair

of connectors. This collision shape construction involves the Minkowski-Addition

operation [36]:

Definition (Minkowski Addition): The Minkowski-Addition of two polytopes

P and W is a polytope

P ⊕W := {x+ w ∈ Rn|x ∈ P , w ∈ W} (5.6)
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Specifically, we perform the operation C ⊕C ′ to get the surface collision shapes. The

Minkowski Addition operation constructs a shape representing relative positions that

would be in collision. Any coordinate point in the resulting shape, if it were given

as a relative position of the two connectors would result in an overlap. On the

boundary of this shape the two connectors are just barely in contact. It is these

cases where interaction forces would come in in the real world, so these are the ones

we are interested in.

L

x
y

L/2

H

L/3

AA:L/3 AA:L/2 AA:L

Figure 5.3: Surface Collision Shapes (P-collections) from Minkowski difference for

strictly translational 2D cases, with typical connector types

To visualize why this works, we recast the system as an example system from

path-planning. We let the ’robot’ be R = −C ′, and the ’obstacle’ B = C. If we were

to construct a configuration-space representation of this obstacle, we would perform

the Minkowski difference (aka Pontryagin Difference) [36] on B and R:
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3D Pyramid
AA

3D X-Face
AA

Figure 5.4: Surface Collision Shapes (P-collections) for strictly translational 3D

cases, with typical connector types
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Definition (Minkowski/Pontryagin Difference): The Minkowski Difference

of two polytopes P and W is a polytope

P 	W := {x ∈ Rn|x+ w ∈ P ,∀w ∈ W} (5.7)

It is true that if P ,W are subsets of some affine space (in this case, Rn); so then

P 	W = P ⊕ (−W) [37], so we can see that B 	 R = C ⊕ −(−C ′), meaning these

problems are equivalent.

This Minkowski operation gives us a shape that represents the full set of relative

coordinates for which the two connectors have a non-empty intersection, or in other

words, are in collision.

Strictly Translational Areas of Acceptance

For a strictly translational areas of acceptance, the aforementioned C ⊕ C ′ operation

in our numerical toolbox is sufficient to get the collision shape. A few of the collision

shapes generated in this manner are shown in Figures 5.3 and 5.4 along with the

corresponding connectors and areas of acceptance.

Note that the areas of acceptance correspond to a watershed connected to a local

minima, specifically the one that contains the target mating configuration. The area

of acceptance therefore is the region of attraction to the minima corresponding to the

target location (that target location being the ’zero offset’ or ’fully aligned’ position).

Translational and Rotational Areas of Acceptance

When adding rotational offsets, the problem becomes more complicated. Not only

does the problem dimensionality increase, but also the degrees added are continuous

rather than discrete, so in practical situations we are usually approximating the exact

collision shape with some level of accuracy.

In the two-dimensional case with rotations (offsets in x, y, and θ) we can ap-

proximate the collision shape by taking slices at a subset of values in θ and then
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compositing them together. This can be implemented in one of two ways: by first

finding the Minkowski sum of each slice and then compositing them together, or

by generating a representation of one of the connectors that includes θ - Cfull - and

then performing a Minkowski sum. We take the second approach in order to make

composition easier and ensure the preservation of the critical concavities.

Figure 5.5: Rotation inclusive representation of C, Cfull for the 2D V-Face with center

of rotation at the centroid of C

To generate a representation of C that includes θ, we must first generate represen-

tations of the connector at different orientations θ. This is done by a simple rotation

matrix operation through a rotation matrix R. Since rotation matrices rotate about

the origin, we first translate the connector so that the connector is offset correctly

the correct amount for the specified center of rotation to be at the origin. If the
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center of rotation changes, this translation must be adjusted for the new center of

rotation.

We then have several slices Cθi = R(θi) ∗ C, i = 1, 2, ..., n, where n is the ’reso-

lution’ or number of slices. Each of these slices is only a representation of a single

connector, rotated - we do not yet perform the Minkowski operation to bring the

slice into configuration-space. We then composite these slices together into a fully-

dimensional representation of the connector - e.g. one existing in (x, y, θ) ∈ R3 Each

slice is placed at a z position according to the corresponding θ, and then under-

goes a composition process we call Corresponding Polytopal Composition(CPC) to

obtain a full-dimensional P-collection, which I explain below. The full composite

representation of the V-Face 2D connector Cfull can be seen in Figure 5.5

This composite approximation to the full shape is created in such a way as to

preserve concave features (approximate to the slice resolution), which is what we are

interested in. To the best of our knowledge there exists no other method to perform

this kind of rotational composition approximation operation on polytopes.

Given a desired resolution (number of slices), Corresponding Polytopal Composi-

tion combines two slices at a time, each time adding to a full-dimensional P-collection

until the desired resolution has been reached. To do this we select a polytope from

the P-collection of slice 1 and a vertex from the P-collection of slice 2. A polytope

is generated from the set of this polytope and vertex, which is added to the new,

full-dimensional P-collection. Since the polytope from slice 1 is convex and we are

adding only a single out-of-plane point, the new polytope is also convex. This process

is repeated for all combinations of polytopes in slice 1/vertices in slice 2, and then

for vertices in slice 1/polytopes in slice 2. The full process is repeated for all slices.

This results in a P-collection Cfull in the full dimension of interest that represent an

approximation to the interstitial volume for the slices of the connector orientation.

This method can be used on higher dimensional P-collections with no real change to

the basic method - to combine two slices we only need combine the polytope/vertex
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sets from the slices in the same manner.

function combine slices (C, div)

Input : P-collection C ∈ R2, div ∈ N

Output: P-collection Cfull ∈ R3

Cfull ← Empty P-collection

for Polyhedron Pi ← C1 to CN do

for θ ← −π
2

: π
div

: (π
2
− π

div
) do

R(θ)←
( cos(θ) −sin(θ)
sin(θ) cos(θ)

)
;

R(θ + π
div

)←
( cos(θ+ π

div
) −sin(θ+ π

div
)

sin(θ+ π
div

) cos(θ+ π
div

)

)
;

Slice P(θ)
i =R(θ)Pi;

Slice P(θ+ π
div

)

i =R(θ + π
div

)Pi;

for j ← 1 to νPi (# of vertices in Pi) do

// Polyhedron formed by all vertices in P(θ)
i and

one from P(θ+ π
div

)

i

Cfull += Polyhedron(P(θ)
i , V j

P
(θ+ π

div
)

i

);

// Polyhedron formed by all vertices in P(θ+ π
div

)

i

and one from P(θ)
i

Cfull += Polyhedron(P(θ+ π
div

)

i , V j

P(θ)
i

);

end

end

end

Algorithm 1: Corresponding Polytopal Composition - 2D connector case
Applied to multiple slices for the resolution of interest, we get the final Cfull.

We then perform the Minkowski Sum Cfull ⊕ C ′3 to get the Surface Collision Shape,

SCS, which is also a P-collection. The Surface Collision Shape is an approximation

in terms of div that represents the closed full-dimensional set of all points where the

connectors would overlap, even if this is not physically possible.

Note that C ′3 = {c ∈ R3|(x, y) ∈ C ′, z = 0}. In other words, C ′3 is the original,

60



Figure 5.6: A surface collision shape for the V-Face Connectors given a resolution of

15 slices
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lower-dimensional version of C ′ as a flat (zero-thickness) polytope at z=0 in the

Minkowski sum, and not a full-dimensional or composite version. The z dimension

represents rotation, so this prevents us from including excess rotation points that do

not belong to the SCS. Another way to understand this is to consider Cfull as an

approximation to a large stack of slices, each of which would be Minkowski-added to

the C ′ to get the collision shape; the Minkowski operation can only be applied along

the x -y plane in reality, so to do this in the approximation a flat representation of

C ′ is necessary.

For a 3D connector, the process to obtain Cfull is similar - composition of poly-

topes into a higher-dimensional P-collection that includes the possible rotations.

The first difference is that we can specify different resolutions or slice numbers for

each of the three rotational degrees of freedom (θroll, θpitch, θyaw), although in gen-

eral it is likely to bias the results unless the three resolutions are the same. The

second difference is that we must repeat the process for each of these DOFs. So first

we generate a 4-dimensional composite Cfull,θr by CPC. We then generate a five-

dimensional composite Cfull,θrθp from Cfull,θr by CPC again, then a six-dimensional

composite Cfull,θrθpθy from Cfull,θrθp by applying CPC a third and final time. The

final shape Cfull,θrθpθy ∈ R6 is Minkowski-added with the original C ′ in the same way

as the 2D case to generate SCS ∈ R6.

Aside from having a different representation for the rotation matrices correspond-

ing to roll, pitch, or yaw, the 3D process for CPC (each of the three times) is the

same.

5.1.3 Reduction to Contact Space

While this gives us an approximation of the full set of colliding configurations, we do

not need all of these points to find the area of acceptance. Specifically, we only need

the surface sub-manifold of the full Surface Collision Shape. We obtain this by taking

the intersection of the Surface Collision Shape with the closure of its complement.
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Finding the surface sub-manifold S ∈ Rn:

S := SCS
⋂

cl(Rn \ SCS) (5.8)

In the implementation, the complement is found with the regiondiff operation [4]

( a set subtraction of the Surface Collision Shape with the full space Rn. This

implementation automatically returns the closure rather than the open set. With

these two closed sets intersecting only along the surface, the intersection operation

gives us the surface sub-manifold as a union of convex polyhedra. This surface sub-

manifold is the (approximated) contact space. This signifies that the space represents

only those points where the objects are just touching. In real terms these are the

possible offsets of the two objects that represent any contact, since larger overlaps

between the two regions are physically unrealisable for rigid bodies and would be in

the interior of the Collision Shape.

Furthermore for our analysis of the area of acceptance, we only require a single

watershed. The watershed of the docking configuration represents the area of accep-

tance. We can reduce the region of interest then to only those with a height value

in the approach direction ep greater than that of the docking configuration :

So = S
⋂
{x ∈ Rn|ep > 0} (5.9)

where ep is y in the 2D case and z in the 3D case. This ensures two characteristics

about the set of surface polytopes for the next set. First, there are fewer polytopes

in the set, reducing computational complexity. Second, the polytopes which remain

in the set correspond to faces with positive outward normals to the Surface Collision

Shape. To acquire the outward normal first we take a cross product, then multiply

by some number h to ensure the vector is positive in the approach direction.
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5.2 Pre-Partitioning and Graph Traversal Method

The first method for obtaining the area of acceptance from the surface collision shape

we call the ’Pre-partitioning’ method [23].From this contact space sub-manifold So

we next make use of a custom watershed algorithm implementation. The algorithm

has two parts performed in sequence, which are described below. First however, we

need to define a height function h(x) on the space. This height function tells us in

which direction to assume a point will lead. To visualize this, think of a drop of

water placed on a surface. The drop will flow downwards along the surface based

on gravity in the direction of steepest descent. The height function then tells us the

’height’ of each point in the space, allowing us to find which points ’flow’ towards

the same minimums. The set of all points which ’flow’ towards the same minimums

are referred to as catchment basins, basins of attraction, or watersheds. In Figure

5.1, the height function is simply the z coordinate, so h(x) = z. Note that in some

figures ie. Figure 5.6 the height function is instead the y coordinate.

5.2.1 A Note on Watershed Algorithms

For the partitioning of a set of polyhedra into watersheds, research has focused

mostly on partitioning of relatively high-resolution triangular meshes [42] [62] [66]

by some variation of Meyer’s flooding algorithm [7], using the curvature as the height

function. This particular method does not suit the cases here; for one the data is not

natively presented as a triangular mesh but rather as a polyhedral mesh, where each

polyhedron may have more than 3 vertices. A triangular mesh could be obtained by

triangularization of the existing mesh, but this could potentially be computationally

less efficient than the polygonal representation.

The second reason is that there exist cases where the watersheds cannot be

accurately represented by the set of available vertices, and thus a re-segmentation of

the mesh is necessary. Figure 5.7 shows an example of a case where this is true; the

64



available set of vertices are insufficient to provide the correct watersheds. Even if the

polygonal mesh is decomposed into a triangular mesh, there is no guarantee that the

flooding algorithm will provide the correct watersheds. This happens because the

traditional forms of the flooding algorithm are limited in their choice of partitions;

the watershed border line must join some set of the vertices given in the polyhedra

specification.

For large meshes with high vertex density this is acceptable; errors will only occur

at the borders and be relatively small in area. However, the vertex density of many

of the shapes generated by the CPC algorithm above are relatively low vertex density

relative to the size of the area under investigation. Increasing the vertex density is

possible by increasing the resolution in terms of number of slices, but this increases

both the time required and the size of the data. In the case of 3D connectors, this is

made significantly worse by the 3 dimensions of the resolution (roll, pitch, and yaw)

which must all be increased, so the factor of increase is cubed.

Figure 5.7: Split watershed problem demonstrating situation in which the watershed

algorithm result is inaccurate

5.2.2 Pre-Partitioning Algorithm

The first step in the algorithm is proper pre-partitioning of the contact space. Each

polytope should have all points in it ’flow’ downhill towards no more than one other

polytope. This means each polytope corresponds to a node in a directed graph,
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specifically a directed pseudoforest. In a directed pseudoforest, all nodes have outde-

gree of at most one.

In order to ensure the polytopes are flowing towards one single polytope each, we

first pre-partition the polytopes in the P-collection so that no polytope flows towards

more than one other polytope. This ensures we get the correct solution to the split

watershed problem in Figure 5.7. Each polyhedron is bounded and has a direction

of steepest descent, and thus a (possibly empty) set of neighboring polyhedra to

which points strictly descending along the polyhedra in this direction will go. To

partition, we split polyhedra until each polyhedron has no more than one downhill

polyhedron for all points inside it. This step can be computationally intensive, as it

requires the determination of neighboring relationships for these polyhedra, a process

that requires O(N2
p ) time, where Np is the number of polyhedra. The neighboring

relationships must also be checked again for the new polyhedra after the split, though

using only the subset of previous neighbors. This must also be run several times, as

a polyhedron that is partitioned may result in the necessary partitioning of its uphill

neighbors as well.

The procedure to partition the polyhedrons is as follows. First, we find a poly-

hedron’s shared edges with neighbors by intersection. Next, we find the downhill

edges by shifting any point on the edge some small value ε ≈ 10−13 along the direc-

tion of steepest descent. If this point is outside the polyhedron, the corresponding

edge is a downhill edge. Downhill edges are divided according to which neighbor

they intersect. Then we compare the set of shared edges with neighbors to the set

of ’downhill’ edges. The original polyhedron is then split into multiple polyhedra

upwards along the direction of steepest ascent according to the various neighbor

edges. This process is repeated multiple times since partitioning of downhill poly-

hedra changes the neighbors and requires more partitioning to ensure no more than

one downhill polytope.
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5.2.3 Graph Traversal Algorithm for Watersheds

As each polyhedron leads to no more than one other, we now have our directed

pseudoforest. Since each polyhedron represents a node on a graph with no more

than one outgoing edge, we can follow the paths on this graph structure to find a

watershed, with a few extra rules specific to the geometric conditions.

Ravine Condition

When two polyhedra point to one another, they have some line connecting them that

must be ’downhill’ of both. The points on these polyhedra then would normally flow

down along this ’ravine’ line until they reach another polyhedron. In the case where

two polyhedra point to one another, we must go back to the geometry and find the

new polyhedron they then point to. We call this a ravine condition. In order to

determine the result of the ravine condition, we use the lowest point on the ’ravine’

line r−. If this point is contained in one other polyhedron, the two polyhedra then

have their corresponding outward graph edges reassigned to this new polyhedron.

It is possible that this point will be contained in more than one polyhedron and

one must be chosen to proceed. We choose the polyhedron with the steepest downhill

slope, as it represents the most likely direction for the motion to proceed in should

some instability be introduced (as it often is in real cases).

Base Watersheds

After applying ravine conditions, certain geometric cases present base watersheds

by having no further polyhedra to which they will flow. There are two cases in which

we can declare a base watershed reached. The first case is one in which the polyhe-

dron points to nothing, or equivalently the vertex on the graph has no outgoing edge.

Polyhedra which satisfy this condition are assigned to a single ’outside’ watershed.

The second occurs when polyhedra point to each other in a loop containing more

than two polyhedra. In this case we have reached a set around a single watershed
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point, and in this case these polyhedra are sides of a single minima.

Once the base watersheds and ravine conditions have been integrated into the

graph, each remaining polyhedron is assigned to a watershed.

At this point all but the base watersheds are unassigned. For each unassigned

polyhedron, we traverse down the graph along corresponding nodes until we reach

a base watershed, or a polyhedron (node) that is already assigned. We assign this

polyhedron and each polyhedron along its path to the corresponding watershed.

Once all polyhedra have been assigned, we can easily check to find the set of

polyhedra in the same watershed as our target configuration. This set of polyhedra

represents the 3D surface corresponding to the area of acceptance. To find the final

AA in the correct dimensions, we project this down into the free DOF - in the 2D

case, x and θ.

5.2.4 Results: Pre-Partitioning Method

As a tool to evaluate connector shapes, the method is broadly applicable to any

connector shape. However, we chose two 2D connectors - the V-Face and X-Face (Fig.

3.1) which were analyzed using this method. We examine the two design parameters

mentioned in Section 2.4 - Aspect Ratio (height of the connector geometry) and

Center of Rotation (location of the point about which the connector rotates).

These results are listed as an area value in Tables 5.2 and 5.3, with the plots

showing the final shapes in Figures 5.8. We can see that most of the areas of

acceptance for the X-Face are larger than the V-Face by a factor of up to two, as

expected. This shows preservation of relative areas of acceptance between the two

connectors as found in Section 3.1. Contrary to expectations, four values in the

upper right section of the table are larger for V-Face than X-Face.

This may be due to the change from dynamic to quasi-static analysis. Several

large patches reach critical points which in the dynamic case would pass into the

area of acceptance, but in the quasi-static case do not. The results show that this
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method is capable of determining the area of acceptance within a certain level of

accuracy.

Several trends are observable in terms of the design parameters. More remote

(positive) COR tends to correspond to larger AA, as does smaller aspect ratio. We

desire lower aspect ratio in order to keep connector size small for a given module

width, so we find this result encouraging.

Computational complexity is difficult to determine exactly, though it was ob-

served that the most expensive part of the operation was building a graph detailing

which polyhedra were neighbors. To determine if two polyhedra are neighbors, we

simply perform an intersection operation and check to see if it is empty. However

this operation must be performed once for each pair, resulting in O(P 2) intersection

operations where P is the number of polyhedra on the surface. The number of poly-

hedra on the surface is proportional to the number of edges of the two connectors

E and the number of slices N. We therefore estimate the computational complexity

of the pre-partitioning method is at least O((EN)2). Note that including more ro-

tational degrees of freedom makes this worse, as the number of polyhedra becomes

EN (r), where r is the number of rotational degrees of freedom. In the full SE(3)

with 3 rotational degrees of freedom, the computational complexity would likely be

at least O(E2N6).

Some limitations to the method exist. Complexity scales up very quickly with the

number of rotational degrees and resolution, as well as the number of connector edges.

Geometrically complex connectors with lots of edges will take longer to analyze.

Higher rotational resolution and increasing the number of rotational dimensions also

increases the time required, making the method somewhat impractical at higher

dimensionality.
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(a) Areas of acceptance for V-Face

(b) Areas of acceptance for X-Face

Figure 5.8: Results of the Pre-Partioning Method. All AAs are transformed such

that the y-axis lines up with the center of the face at each angle
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Table 5.2: Pre-Partitioning Method AA computed for V-Face

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.38279 0.36586 0.85202 3.01069 3.14159

AR:1/2 0.40842 0.41129 0.86089 1.70012 2.77135

AR:1 0.43884 0.41643 0.87031 1.84022 3.14159

AR:2 0.45084 0.88724 0.84957 1.34941 3.14159

AR:4 0.46520 0.93465 0.88223 1.24182 3.14159

Table 5.3: Pre-Partitioning Method AA computed for X-Face

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 1.09399 1.13635 1.28541 1.48352 1.84839

AR:1/2 0.97134 1.71965 1.99431 2.09141 2.27377

AR:1 0.92277 0.92203 1.79100 2.90494 3.13473

AR:2 0.88932 1.74696 1.66098 2.79853 4.09213

AR:4 0.89578 1.76955 1.65310 2.29481 4.65092

In practice, runtime for this method turned out to be prohibitively long. For

the V-Face connector with a resolution of 12 slices on an average desktop machine

(3.40GHz), a runtime of 48.6 minutes was observed. Higher resolutions were observed

to take even longer, with resolutions of 21 taking nearly 8 hours to complete. Higher

dimensional tests with the 3D connectors were attempted (i.e. checking errors in

(x,y,roll) or (x,roll,pitch)) but these were found to be prohibitively long - calculations

had to be terminated after a day and a half of runtime.
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5.3 Discrete Representation Method

(a) Planar V-Face and X-Face at maximum x -offset. Note the X-Face is

a connector composed of two separate mating layers.

(b) Pyramid connector pair geometries: concave on left, convex on right. Pyramid

flipped upside-down for visibility.

Figure 5.9: Three tested connector geometry sets for the discrete method

The discrete method [24] for determining area of acceptance differs from the pre-

partitioning method in several ways. First, rather than representing the contact

space as a set of polytopes in space, we build a grid of points sampled directly from

the configuration space slices. This saves us time calculating the higher-dimensional
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Figure 5.10: Full process for determining AA using discrete method. From left

to right: V-face connector geometry, Configuration space height map (color corre-

sponds to representative height), initial flooding results(color by initial watershed

assignment), post-merge watershed/AA (final AA in yellow, outside area truncated)

obstacle, since we do not have to perform the CPC algorithm (Algorithm 1 or do

the other operations on polytopes in that high-dimensional space. Second, the

grid does not require partitioning or processing prior to a graph search for the

watersheds. Third, we can employ proven watershed algorithms such as Meyer’s

flooding algorithm [45] to determine the watersheds and thus the area of accep-

tance. This method has five steps, which are each detailed and discussed below.

D.1 Define connector geometries

D.2 Generate Contact Space grid from Minkowski sum of slices

D.3 Initial watershed assignment by flooding

D.4 Merge watersheds by depth

D.5 Assign dam points to get final assignment

Defining connector geometries works the same as in 5.1.1. While the method

in Section 5.2 allowed us to use exact (not sampled) representations of each slice,

runtime was prohibitively long for higher dimensional cases or slice resolutions. In

this method we instead use a discrete method common within image segmentation

which runs faster at the cost of inexact representations of each slice. In the first
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method, the partitioning required multiple calculations on large sets of convex poly-

hedra, significantly increasing computational cost. Even simple geometries like the

V-Face and X-Face generated a very large number of polyhedra when using the CPC

method for representing rotations. Computational run-time constraints limited prac-

tical time analyses to no more than three error dimensions with standard desktop

computers. The flooding method used on the grid surface, however, is known to be

O(N2), and in practice was observed to be many times faster than the partitioning

method. Exact measures of time saved are detailed below in Section 5.3.2. This

method uses a grid-based sampling of the configuration space obstacle rather than

the complete polyhedral representation. This has two major advantages. First, we

no longer have to approximate the space between slices or keep track of the full

obstacle geometry. Instead, we can generate each slice, sample the requisite points,

and then discard the exact geometry. Second, we determine the watersheds by use

of well-understood flooding algorithms on these discrete grids developed for image

segmentation. Collectively these advantages lead to an apparent savings in terms of

computation time over the previous geometric methods.

For ease of use and adaptability, we again used the Multi-Parametric Toolbox

[36] to generate the slice P-collections as well as perform the Minkowski operation

necessary to generate the obstacles.

A configuration space obstacle (C-obstacle) for a robot capable of only translation

is generated by the Minkowski difference (	) of the robot and obstacle. In order to

analyze the configurations including rotations as in the pre-partitioning method we

rotate our robot A, successively through a range of possible rotations [θ1, θ2, . . . , θN ]

and generate ‘slices’ A	B(θi) for i = (1, . . . , N) at each discrete rotation.

Each θi slice is then sampled by taking it’s ‘top’ value at a set number of points

[x1, x2, . . . , xN ] in the translation dimensions (ie. x for 2D, x and/or y for 3D). These

‘top’ values are placed into a matrix grid of the appropriate dimension to form a

height map over the potential offsets. If we consider the entire ‘top’ surface of a slice
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for a given rotation to have the label Sθ, then in SE(2), the grid height values are as

h(x, θ) = Sθ(x) and in the constrained 3D set R3 × SO(3) as h(x, y, θ) = Sθ(x, y).

Example slices at θ = 0 for the 3D connectors are shown in Fig. 5.4. For the sake of

simplicity we assume the connectors are not capable of successful alignment beyond

rotational errors of [−π
2
, π
2
]. The set of θ values for N slices is therefore θi = i

N
π− π

2

for i = (1, . . . , N).

Watershed Flooding Algorithm

Watershed methods on 2D discrete grids have been widely studied as part of the

morphological segmentation problem in computer vision and other fields. Meyer’s

flooding algorithm [45] is the paradigm for initial segmentation - though other vari-

ations on the method exist [58] such as Priority-Flood [5] for improved speed.

We can use any flooding algorithm from the literature to determine the wa-

tersheds. Neighbors are considered 8-connected in the two-dimensional case and

26-connected in the three dimensional case. We chose in this work to focus on de-

termining of the practicality and performance of this type of algorithm, so we use an

implementation based on Meyer’s flooding algorithm, due to its relative simplicity of

implementation. Other algorithms appeared to be more difficult to implement and

carried no other uniquely helpful attributes in this case.

Our implementation of flooding works as follows:

1. The grid is searched for local minima, points which are strictly lower than or

equal to their neighbors.

2. Unique neighbors of each minima are placed into a priority queue based on

height.

3. The lowest point in the queue is assigned a label based on its neighbors - if all

have been assigned the same watershed value that point is assigned that value,

otherwise it is labeled with the ‘dam’ value.
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4. All non-marked neighbors are added to the queue.

5. Continue to assign values to the points as in 3 until all points have values

assigned.

This algorithm completes quickly as each point only needs to be checked once,

regardless of grid size or dimensions.

Merging Watersheds

Identification of watersheds is often insufficient. Due to the discretized nature, the

representation of the configuration space obstacle geometry is not perfect. It is

possible for paths to a minimum (e.g. docking condition) to be lost as a result of

unfavorable sampling locations. For example, a narrow canal on the surface oriented

diagonally with respect to the sampling dimensions can appear as multiple smaller

watersheds when sampled in a grid (See Fig 5.11). Higher resolutions result in fewer

sampling errors, but there is no point where errors are guaranteed to vanish for an

unknown shape. A sufficiently narrow and steep ’ravine’ will still generate small

artifacts of the type seen in Fig 5.11.

This problem is similar in nature to the ‘over-sampling’ problem from the morpho-

logical segmentation literature. Multiple methods exist for automatically merging

over-sampled regions, such as metric-based merging [8] [42] and hierarchical or multi-

scale segmentation [6]. In metric-based merging, a metric value is assigned to each

watershed (based on depth, volume, surface area, or some mix thereof). Watersheds

below some threshold are then merged with their neighbors. Hierarchical methods

construct a higher-level graph of the oversegmented watersheds and perform another

flooding algorithm on this graph to determine the higher-level watersheds, resulting

in regions that are nearly homogenous but still clearly separate.

We have chosen to use a metric-based merging technique, again for simplicity,

wherein watershed regions of sufficiently low depth are merged with a neighboring
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Figure 5.11: Example of sampling artifacts. Each color shade is labelled a separate

‘watershed’ after flooding. The true shape of the C-Space has a curve as indicated

by the arrows.

region. Watershed depth is defined as the vertical distance between the lowest point

in the watershed and the lowest boundary point. The neighboring watershed to be

merged is chosen as the one that water would ‘flow into’ if the low depth watershed

overflowed. This is the watershed neighboring the lowest boundary point. If a water-

shed has a depth value below the ‘depth tolerance’ it will be merged. In practice the

depth tolerance value is found manually, by looking at the resultant depth values for

each initial watershed and finding a clear dividing line. Acceptable depth tolerance

values were observed to scale with height of the connector and the resolution. We

found that a depth tolerance value of ∼ 0.1×AR worked well for most of our testing.

As a finishing step, points labeled ‘dam’ are assigned to the watershed of the

neighboring point that is in the direction of steepest descent from the dam point. The

total number of points assigned to the watershed of the target docking configuration,

multiplied by the area of each point gives the final AA number.
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Figure 5.12: AA geometry for the same set of connectors found by partitioning (top)

and discrete method (bottom). Higher resolution in the discrete method allows better

determination of borders between watersheds, revealing a reduced AA compared to

partitioning.

5.3.1 Determining ONAA

If you are sampling numerically, as we are in simulation and this discrete method, it

is sufficient to assign each successfully docked point a number corresponding to the

largest n-cube of successful points around it and take the maximum. An algorithm
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for finding the largest n-cube within a sampled grid is included below. The only

input that is required is a truth matrix T, on the same scale as the watershed data,

where T = 0 at points not in the AA, and T=1 at points in the AA.

function Find ONAA (T )

Input : N-dimensional truth matrix T ∈ Id1Xd2...Xdn

Output: ONAA in I

for i1 ← 2 to d1 do

for i2 ← 2 to d2 do
...

for in ← 2 to dn do

PrecedingIndices ← All combinations of (ij, ij−1) for j=1 . . . n

T (i1, i2, . . . , in)=min(T (PrecedingIndices))

end

end

end

ONAA ← max(T )

Algorithm 2: Algorithm for determining ONAA, runs in O(N) time, where

N is the number of elements in the grid

5.3.2 Results

We used this method to analyze several sets of connectors - both in 2D and con-

strained subsets of SE(3). Matrix resolution for the 2D connectors is 100× 100, and

for the 3D connectors is 30 × 30 × 30. AR and COR values tested are the same as

for the pre-partitioning method;AR:[1/4 1/2 1 2 4], COR:[-1 -1/2 0 1/2 1] .

With the improved runtime of this new method we can now feasibly examine 3D

connectors in higher dimensional error spaces, and 2D connectors at much higher

resolutions. We found the AA of four different sets of connectors. Two of the sets

(the V-Face and X-Face seen in Fig. 5.3) are defined in 2D and are allowed to move

in SE(2). This represents a significant improvement in resolution over the previous
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method while still saving computational time. Another set (the 3D Pyramid in Fig

5.4) is defined in 3D and analyzed in a constrained subset of SE(3). This constrained

subset consists of the approach direction z and combinations of three of the possible

offsets(x, y, roll, pitch, and yaw). Comparisons of typical results from the Pre-

Partitioning Method vs. the Discrete Method can be seen in Fig. 5.12.

We tested and timed each method on a 3.30GHz processor for the same con-

nector pairs and offsets in 2D. The partitioning method was observed to take 48.6

minutes with a resolution of 12 rotational slices for the V-Face connector. The dis-

crete method was observed to take 3.18 minutes for a resolution of 100x100 points

(translation and rotation, respectively). The discrete method was therefore 14 times

faster and allowed an 8 times improvement in rotational resolution. As the effect of

resolution on the results was not yet known, we initially selected a high resolution

identical in each dimension for initial testing. A full analysis of the improvement

in computational complexity is planned for future work. Points sampled are spaced

evenly - in translation along the range of positions where the connectors might make

contact (determined below), and in rotation between [−π
2
, π
2
].
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Table 5.4: Sum AA computed for V-Face

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.444 0.557 0.971 3.332 3.33

AR:1/2 0.444 0.615 0.936 3.03 3.33

AR:1 0.622 0.738 0.966 2.17 3.06

AR:2 0.0339 0.881 0.896 1.57 3.23

AR:4 0.0465 0.0440 0.886 1.15 3.28

Table 5.5: Sum AA computed for X-Face

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.776 0.936 1.22 1.60 3.15

AR:1/2 0.768 0.899 1.40 1.97 2.58

AR:1 1.04 1.20 1.35 2.52 3.76

AR:2 0.730 1.35 1.76 2.51 4.77

AR:4 0.0767 1.07 1.95 2.31 5.17
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COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.21237 0.28274 0.40715 0.60821 0.7854

AR:1/2 0.15205 0.21237 0.3217 0.60821 0.84949

AR:1 0.10179 0.15205 0.21237 0.40715 0.84949

AR:2 0.061575 0.080425 0.12566 0.28274 0.84949

AR:4 0.031416 0.045239 0.061575 0.15205 0.84949

Table 5.6: ONAA computed for V-Face

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.66476 0.7854 0.66476 0.66476 0.66476

AR:1/2 0.50265 0.66476 0.91609 1.0568 1.0568

AR:1 0.28274 0.45365 0.66476 1.2076 2.0106

AR:2 0.15205 0.2463 0.40715 0.84949 2.5447

AR:4 0.061575 0.10179 0.18096 0.45365 2.5447

Table 5.7: ONAA computed for X-Face

2D Results

In Tables 5.4 & 5.5, values are in dimensionless units. Translation units are frac-

tions of the connector width D and rotational units are in radians, so AA units are

equivalent to (connector widths × radians). While exact methods for finding the

AA to test our method against are currently unknown, we can compare to results

from the pre-paritioning method to determine if they are somewhat in agreement.

With few exceptions, the new results are within 80% of the results from partitioning,

and typically larger. More than half are within 20%. The exceptions are results in

blue in the high-AR\negative-COR range which are < 10% of partitioning results.

This combination of parameters is particularly bad for the 2D connectors. The AA

is so small that it is difficult to accurately measure at the resolution used for the
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partitioning method (N=12). Since it was not able to represent these AAs in sections

less than the N=12 resolution, the result ends up larger than is accurate.

The discrete method is more accurate than the partitioning method for two rea-

sons. First, we make no assumptions about the nature of the surface between slices.

Second, errors are a function of resolution and computational savings allow for us to

run the method at higher resolutions.

If we look at the ONAAs we can notice a few points of interest. First, the AR and

COR trends are mostly preserved compared to the Sum AAs. The largest values are

still at the highest AR and COR, though most of the COR columns are best suited

with low AR. Second, the ONAA is (as expected) smaller than the Sum AA, to

a large degree. In each case, the ONAA is limited by the maximum translation

acceptance, as a result reaching a maximum in the right hand column.

3D Results

Results for 3D sets (x,y,pitch), (x,pitch,roll), (x,pitch,yaw), and (x,roll,yaw) can be

seen in Tables 5.8-5.11 As in the 2D case, the following values are in dimensionless

units. Translation units are still fractions of the connector width D and rotational

units are in radians. So for example in the (x, y, pitch) case, units are (connector

widths × connector widths × radians). The largest AA in each table is highlighted

in green, while the lowest is highlighted in red.

Tables for (x, y, yaw) results are not necessary as they are not affected by the

design parameters. AR acts only on relative heights and so only scales the C-Space

obstacle without changing the shape or watersheds. COR is measured along the

yaw axis of rotation and so it also has no effect. The AA for the 3D Pyramid is

2.47. Some combinations of offsets have been omitted due to symmetry - for the two

connectors chosen (x, y, pitch) is symmetric with (x, y, roll), and (x, pitch, yaw) is

symmetric with (y, roll, yaw) for example.

The tables show that a more positive COR generally means a higher AA. This is
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COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.123 0.248 0.55 1.23 1.56

AR:1/2 0.187 0.424 0.663 1.54 1.77

AR:1 0.211 0.531 0.761 1.51 1.98

AR:2 0.476 0.626 1.23 1.8 2.08

AR:4 0.579 0.795 1.23 1.99 2.01

Table 5.8: AA for (x,y,pitch)

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 0.134 0.785 3.14 3.31 1.14

AR:1/2 0.486 0.873 2.52 4.06 3.80

AR:1 0.126 0.333 0.908 3.91 5.19

AR:2 0.0331 0.0888 0.266 1.49 6.05

AR:4 0.00398 0.00398 0.0199 0.325 6.65

Table 5.9: AA for (x,pitch,roll)

COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 2.12 2.65 3.62 3.91 3.71

AR:1/2 1.06 1.65 2.34 3.91 4.03

AR:1 0.576 0.649 1.25 3.52 3.74

AR:2 0.13 0.335 0.603 1.17 3.74

AR:4 0.0994 0.111 0.121 0.649 4.31

Table 5.10: AA for (x,pitch,yaw)
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COR:-1 COR:-1/2 COR:0 COR:1/2 COR:1

AR:1/4 2.1 2.45 2.71 2.95 2.59

AR:1/2 0.892 1.44 1.68 3.74 2.96

AR:1 0.563 0.873 1.33 2.19 2.88

AR:2 0.368 0.421 0.706 1.83 3.1

AR:4 0.0437 0.0557 0.209 0.904 3.69

Table 5.11: AA for (x,roll,yaw)

not surprising since it is a more remote center of rotation, a known desirable property

for docking systems. Higher AR often increases AA for high COR but decreases AA

for negative COR. Lower AR values yield AA that vary less with COR. The (x,

y, pitch) case is different from the others in that the minimum occurs at low AR

rather than the high AR. Higher AR corresponds to faces that point more in the

x and y directions, so they are likely better suited to cases focused on translation.

In Table III, (x, y, pitch) the highest AA value is not the highest COR and AR (in

the bottom right corner). This appears to be within the discretization error. If a

point is sampled on one side or another of the border it can affect the AA slightly

at that point. The difference between the bottom-right value and the largest value

is equivalent to 42 points, which is within our margin of error. These areas are a

few thousand points in size, with borders on the order of several hundred. When the

geometry changes with the design parameters, sampling may cause a shift in how the

‘dam’ values are assigned. These can produce a sort of cumulative sampling error in

the final values.
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5.3.3 Convergence and Computation Cost

(a) AA vs. Resolution convergence. (b) CPU Time vs. Resolution

Figure 5.13: Convergence tests, 2D V Face AR 1/4 COR -1/2

Test runs were performed at multiple resolutions to determine the effect on AA and

computation time. We can see from Figure 5.13 that for the 2D connectors, as the

resolution N increases, the AA slowly converges and CPU time goes up approximately

as a factor of N2. The CPU time result is as expected - the watershed algorithm is

well known to be on the order of the number of points, or in this case, O(N2). Note

that the AA starts larger and slowly decreases due to a characteristic of the method

- points normally used as ’dams’ are assigned based on steepest descent - often being

assigned to the AA, resulting in slightly higher values. Since the size of these cells

is larger at lower resolutions, the AA is slightly higher. As the resolution increases,

the estimation nears the true value.
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5.3.4 Experimental Testing and Validation

Figure 5.14: Connector testing stage and Sawyer robot arm with attached connector.

Base connector window contains sensor

Testing of the (x, y, yaw) results for the 3D Pyramid was performed on a Sawyer

7-DOF robot arm. The testing setup can be seen in Fig. 5.14. The Sawyer arm

is accurate to within +/- 0.1 mm [1], and the connectors were built at a scale of

2”x2”x2”. The top connector has a white stripe on two of the four pyramid faces

to help sense successful alignment. The bottom (base) connector was on a sliding

stage capable of separate movements in x, y, and yaw. Each degree of freedom has a

spring return to ensure a successful return to the zero position. Additionally, a single

CKBot servo module [18] was placed at the edge of the stage to perform perturbations

between tests. The perturbations allowed the sliding stage to overcome static friction,

easing return to the zero position when lubrication alone proved insufficient.

An infrared (IR) emitter-detector pair is placed inside the base connector, facing

a clear plastic window to the alignment site of the connector attached to Sawyer

robot. This sensor was in turn connected to an Arduino Micro board, which read the
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value of the sensor and recorded the value to a connected laptop PC which was also

issuing instructions to the Sawyer robot and CKBot module. Testing determined

very different IR values resulted depending on the final state: high values if the

white section of the connector faces the sensor, low for black, and low-middle if the

connector is not in the aligned position. During testing the black faces never reached

the sensor but as this is a possible final condition (results from more than 45 degrees

yaw misalignment), we must be able to detect it to distinguish it from the other

states.

The arm was programmed to attempt alignment at offset points inside the AA to

just outside the boundary, such that the tests would terminate at the first expected

failed alignment. These tests were restricted to yaw offsets of 30 degrees or less. With

yaw conditions beyond that friction and material deformation caused the connectors

to jam rather than successfully align.

We used this system successfully to test 150 points (cube with 5 points in x, 5 in

y, and 6 in yaw) on the interior of the AA up to the boundary for the (x, y, yaw)

set. Points were tested only in the positive octant due to natural symmetry of the

AA.

These results show an agreement between the expected and actual results on the

robot platform. The boundary appears at 1 inch from the center (as expected given

the connector size of 2”x2”x2”). Results not taken beyond 30 degrees of yaw due to

the jamming of the connectors. These results confirm the results of our method for

the (x,y,yaw) case within the bounds we are able to test.
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Figure 5.15: Results from stage testing plotted in 3D

Figure 5.16: Connector testing stage and CKBot arm with attached connector.

Testing of the (x, pitch, yaw) results for the 3D Pyramid was performed on simple

arm made from CKBot [18] robots, using a similar sliding stage to the previous test.

The testing setup can be seen in Fig. 5.16. The connectors are identical to the

previous test. The arm was calculated to be accurate to within ± 1.2 mm. A simple

89



script was writen to move the arm up and down along the rotation point of the end

module. As a result, the angle of the end module corresponds to a change in both x

and pitch. Testing was performed at 20 different angles from 0 to 45 degrees, with

2.25 degrees between each step.

This process was performed at yaw angles of 0 and 20 degrees, respectively. Be-

yond 20 degrees, the connectors have a tendency to jam; though the simulation data

shows that they would still succeed almost as readily if the friction were less signifi-

cant. The plots in Figure 5.17 show the accepted points for each ‘yaw slice’ in both

simulation and experiment. Points which failed in the experiment are provided as

well, for reference. These plots show that the alignment process fails where predicted

to within the resolution of points tested. As a result, we can say that the discrete

method appears to be verified by these experimental results.

(a) First test (b) Second test

Figure 5.17: Testing results with simulation for comparison
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Chapter 6

Design and Control of Attachment

Mechanisms for High-Alignment

Connectors

In order to have a useful docking connector, we must not only look at alignment,

but also the process of attachment and detachment. As we saw in Chapter 1 here

are many different ways of attaching two modules or rigid components including

fasteners, latches, magnetic forces, and electrostatic forces [32] [29] [61]. Electrostatic

and magnetic connections often have a relatively low ultimate strength, which can

limit their capabilities to form large or extended conglomerates. Fasteners are very

strong but often difficult to use autonomously. Autonomous attachment by fasteners

has been accomplished [44], however presently each fastener requires its own framing

and actuator. Latching or mechanical capture systems such as DARPA TEMP

(See Figures 2.6 and 2.4) or M-TRAN [34] tend to be strong, and reliable in use

once alignment is established. We believe we can combine strengths and achieve

robustness by composing alignment with latching.

We extend the idea of the X-Face connector to include a passive latching mech-

anism for reconfiguration. It is in general desirable for a latching system to require
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not only a small force to latch, but a large force to induce failure - the more modules

a latch can support, the more configurations are available to the system. We start

with a two-dimensional connector, the 2D X-Face, as a proof of concept.

In order to obtain a relatively high ultimate strength while making attachment

and detachment easy, we performed an examination of latching mechanisms. These

mechanisms were examined in combination with high-alignment geometry in order to

maintain the advantages of those mechanisms. Several prototypes were constructed

and tested to collect data about the relevant properties of these latching mechanisms.

6.1 The 2D Latching X-Face

(a) Single sided pro-

totype

(b) Three-sided prototype.

ModLock [16] (shown on top)

connects to CKBots.

Figure 6.1: Latching X-Face prototypes, close view.

A mechanism for use on in-plane (2D) modular robotics applications was presented

at IROS 2014 [19], and can be seen in Fig. 6.1. We present here both a one-sided

version of the connector in order to better understand the working principles, as well

as a three-sided version for practical use with a CKBot chain.

The design goals for this new connector include: a latching functionality, low

required force to actuate, and high strength when latched. Therefore, the connector

has no actuated components per se; energy for the latching operation must be added
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externally; often by the motion of the modules that hold it. Likewise, we keep

the force required for latching low while retaining high bonding strength. To that

end we will use as a performance metric, the bonding ratio, which is the force

required to disconnect (in this case, material failure) divided by the force required

to connect. This metric permits the evaluation of performance of connectors with

different designs or parameters.

Figure 6.2: Connection sequence. Top layer-solid, bottom layer-dashed. Bottom

layer is removed for clarity in the 3rd image.

As in the 2D X-Face, two layers are attached to a face of a module and then

moved by the modules to be adjacent to a target module, forming a connection.

One layer is a mirror image of the other. Faces are curved in order to change the

direction of the contact forces slightly, allowing the compliant latches to open. The

docking process for this design can be seen in Fig. 6.2 and follows:

1. Modules move in the plane to the target locations.

2. Connectors align by combination of module actuation forces and the mechan-

ical connector interaction forces.

3. Modules are pressed closer together, forcing the compliant features outward.

4. Compliant features snap into the latched position to hold the docking connec-

tion together.
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When the connector is used on a chain of cube or square-shaped modules such

as CKBot [16] that is moving in a plane, we might wish to have connectivity to

neighboring modules in all four adjacent locations (front, back, left, and right).

However, in an articulated chain, at least one degree of freedom is required between

two faces. Rigidly connecting all four sides would prevent this. Therefore, for our

planar connector prototype we use three latching faces and a profile swept out to

allow relative motion.

One layer of one side of the design is shown, with important components labeled,

in Fig. 6.3. These layers are rigidly attached to each other and the module below (in

the y direction) the compliant features so that they still function as intended. This

combination of features results in an ungendered connector which creates a strong

mechanically latched connection without requiring actuators, but still has a high

area of acceptance.

Prototypes can be seen in Fig. 6.1. The prototypes have a small separator layer

between the X-Face layers to prevent interactions between those layers due to small

deformations or misalignments. If the separator layer is equal to or greater than

the width of the X-Face layers, the connectors can easily be disconnected manually

by displacing them in the out-of-plane direction. The separator layer also prevents

incidental interaction between layers due to small manufacturing defects or bending.

We used 1/4” ABS lasercut plastic for all three layers on the prototypes. Proto-

types for bonding ratio testing have one latching face while those used for recon-

figuration demonstrations have three latching faces. These will be referred to as

the ’one-sided’ and ’three-sided’ prototypes, respectively. We built the prototypes

at a scale on par with CKBot, our target platform [16]. CKBot modules measure

65.5mm×65.5mm×90.4mm. The distance between rotors in a chain is 95mm, setting

the center-to-center distance between the connectors. It is unclear what effect the

additional compliance has on the area of acceptance, since that concept does not in-

corporate forces or compliance. Empirically however, we saw no significant changes
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in the AA - when pushed together by hand the connectors docked as expected, even

with significant errors in position and rotation.

Therefore on the three-sided prototype (Fig. 6.1b), the distance from the center

of the overhang to the center of the shape which is placed over the rotor is 47.5mm,

with the width of a latching face for the connector, 65.5mm.

6.1.1 Design Principles and Parameters

There are several qualitative design principles and corresponding quantitative design

parameters which are essential to the function of this latching mechanism (refer to

the labeled components of Fig. 6.3).

Shape profile
(with curvature )

Overhang 

Stop Slit
Compliance

Cut-out

Compliance Neck

x

y

Connector width = L

P
t

o

Figure 6.3: Latching X-Face with important design features.

Profile Maximum. Like the 2D X-Face, the highest point on the shape profile is

at the outer edge. If we let the full width of the connector be L, and the width of the

overhang be o, we can view the shape profile as a function (f(x)|x ∈ [0, L
2

+ o
2
]). Then

the function is at its maximum at f(0). Furthermore, the profile function should be

decreasing at all points: f ′(x) < 0∀x ∈ [0, L
2

+ o
2
] to prevent jamming. The two layers

permit full alignment in either direction. These characteristics ensure high area of

acceptance, similar to the 2D X-Face. Note that the shape profile is rotationally

symmetric about the overhang, so the male and female features of mating faces nest

properly.

Overhang. Represented by the value o, the overhang prevents the connector from
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becoming disconnected up to material failure; with the previous X-Face design, de-

tachment was not prevented by separating motions along the mating axis. The width

of the overhang determines how much deformation of the connector is necessary to

perform latching, and thus affects the maximum force required.

Compliance. The shape and location of the compliant cut-out as well as the

distance from the stop slit (which we designate t) determines the compliance. This

distance t, is the thickness at the narrowest point of the section, which we call the

compliance neck.

Curvature. We found that if the curvature κ is concave (which we will call

positive curvature) or straight, the connectors had a tendency to jam.This was due

to an interaction with the bent position of the latch arm with the shape. Once the

arm begins to bend, forces change their direction and begin pointing away from the

inwards alignment direction provided the curvature is non-negative. If the curvature

is negative the rotation due to bending has a reduced effect on the direction of the

interaction forces, ensuring a good alignment.

Mechanical Stop. Not only does the stop slit allow rotation of the necessary

features, it prevents undesired rotation in the opposite direction. Without the me-

chanical stop section of the connector, the compliance would work in both directions,

preventing rigidity under tension. The relevant quantities for the stop slit are the

depth (y distance down from the curved face) and width (gap size in x ). Width

should be small. A wider stop slit allows too much deflection in tension. The stop

slit should be fairly deep, ending below the geometry of the compliance cut-out as

the thin section at the neck is essential for deflection. The location of the stop slit

should be located sufficiently far in x distance from the rightmost end to ensure

sufficient rigidity under tension. A distance of 15mm was found to be sufficient. A

depth of 20.3mm was found to be sufficient for the compliance to work correctly.

The gap width for the stop slit is equal to two times the laser cut kerf, or 0.36mm.

We model the compliant section by a pseudo-rigid body model (PRBM) [30].
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This method equates the compliant mechanism to two rigid bodies connected by a

torsional spring with an equivalent spring stiffness, and for simple cantilevers predicts

the deflection path accurately within 0.5 percent [31]. The torsional stiffness for a

simple PRBM model of this type is k =
EI

leq
where E is the Young’s Modulus of the

material (our prototypes use ABS, E=2.1GPa), I is the area moment of inertia of the

cross-section (assumed to be equivalent to a thin rectangular beam), and leq is the

equivalent length. This model can be used to scale the system or adapt to changes

in material properties and thickness. The equivalent stiffness for our three-sided

prototype is approx. 4.99 Nm/rad . Since the corresponding relationship between

deflection and moment is M = kθ, overhang increases result in an increase in the

maximum moment (thus force) required. The compliance neck thickness t affects

directly the area moment of inertia I, as does the material thickness.

6.2 Force Testing

The parameters above are subject to design variation; as such it would be best to

know how they influence the properties of the connector. To determine this relation-

ship, we tested multiple versions of the prototypes with varying design parameters.

In order to accurately measure the bonding forces of the connector, the prototypes

were tested using an MTS Criterion� Model 43 Testing System. Single-sided pro-

totypes (including both layers) were mounted to a central piece which was then

clamped into place on machine base and crosshead, respectively. Two types of ex-

periments were performed; compression to determine the force required to perform

latching, and latched extension until material failure to determine the load strength.

Two typical tests are shown in Fig. 6.4. The latching for each of the two layers is

visible in Fig. 6.4a. When a layer latches, a sudden dip in force can be seen. In this

test the two layers latch one at a time allowing us to see both latchings at approx-

imately 46 and 48 seconds. Force then quickly increases again as the assembly is
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visible before failure.

Figure 6.4: Force test plots

compressed.

For the prototypes constructed and tested, the profile maximum was kept at

x = 0 primarily due to the 2D X-Face, which relies mostly on this feature for high

area of acceptance. Prototypes were observed to have no difficulty correcting errors

over approximately the same range of linear errors as the 2D X-Face when the one-

sided prototype was connected by hand. This design parameter was not viable for

testing in the MTS machine due to the lack of compliance.

The final design curvature was defined by an interpolated spline. The outermost

end of the spline (at x = 0) was set to an angle of 350 with the x -axis seen in Fig. 6.3.

Smaller angles tended to deflect without alignment; this counterproductively changes

the direction of the force vector. It was found in testing of various angles that larger

angles require more force to successfully latch.

To increase the torque applied throughout the curvature, the spline at the end

touching the overhang was defined so as to ’point’ directly to the rotation point
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of the compliant section. In other words, if the spline was extended in a straight

line from the overhang at the same angle it would intersect the midpoint of the

compliance neck, labeled P in Fig. 6.3. This point is assumed to be the center of

rotation for the flexure above based on observation of the flexing behavior. Other

forces are approximately tangent to that line.

Since they both effect the force required for latching and thus the bonding ratio,

six different connector designs with varying o and t, were tested. Results including

compressive/extensive forces and spring constants as well as the bonding ratio can

be seen in Table 6.1. We expect increases in o and t measurements to increase the

forces required to connect. Increasing o requires increased deflection. Increasing

compliance neck thickness t gives us a stiffer member. Both of these would result in

larger forces. Prototypes with an overhang o of 1.27mm were constructed, but found

to be too difficult to get a good latch - often the overhang would overlap less than

1mm, resulting in unstable connections. These prototypes were therefore excluded

from testing.

The mechanical stop features were found to be sufficient to allow for compliance

and rigidity, and not examined here.

TABLE OF STRESS TESTING RESULTS

o (mm) t (mm) Compression Force - Latching (N) Extension Force - Failure (N) kC(N/mm) kE(N/mm) Bonding ratio

2.5 2.3 6.18 489.11 9.674 84.76 79.1

2.5 3.0 8.56 666.39 44.19 92.63 77.8

2.5 3.8 10.42 669.48 27.58 125.7 64.2

2.5 4.6 19.57 512.32 69.37 141.8 26.2

3.8 3.8 14.55 824.03 25.20 147.8 56.6

5.1 2.3 9.32 508.77 7.526 86.02 54.6

5.1 3.0 16.36 646.74 26.01 108.0 39.5

5.1 3.8 22.34 813.09 30.78 149.2 36.4

5.1 4.6 46.58 960.10 91.22 134.6 20.6

Table 6.1: Varied Parameters Force Testing Results. Forces shown are the highest

recorded during the relevant activity, which may be ± 1N. kC and kE are the spring

constants in compression and extension respectively, starting from zero deflection.
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Results in the table are somewhat unintuitive, but testing observations reveal

more information. Designs with the smaller overhang (o <= 2.5mm) and a large

neck (t = 3.0 or t = 4.6mm) were observed to have a different failure mechanism from

the other connector prototypes. Most of the prototypes failed at the narrow band

between the compliance cut-out and the stop slit (the compliance neck), breaking

into two large pieces. The prototypes with o = 2.5mm and t = 3.0mm or greater

failed at the tip of the overhang, deforming the material until the parts slipped apart.

This change in failure characteristic is responsible for the seeming discrepancies in

the Extension Force numbers. Note that the extension spring constant kE increases

even when the maximum force decreases for the fourth prototype. The change in

failure characteristic causes failure at less force and distance, effectively weakening

the material without effecting the spring constants.

Due to the change of the mode of failure, the effect of the compliance neck

thickness t changed. With failure at the neck, a thicker neck predictably improved

the strength of the connector. However, with failure at the overhang, a thinner (i.e.

more compliant) neck improved the strength.

Greater compliance leads to greater deflection for a given force as expected.

Deflection of the connector (now clockwise about P) helps prevent deformation at

the overhang tip by changing the angle of the overhang relative to the force, allowing

a stronger portion of the layer to take on the extension forces. The deflection also

pushes the tips of the overhangs into the corresponding trench on the opposing

connector, effectively acting like reciprocal hooks. When the overhang is held more

rigidly (less compliance), the tips deform more easily as they share a greater portion

of the force.

Otherwise, the data fits expectations - greater thicknesses increase both the force

required to latch and the force required to break by extension. Effective spring

constants increased with increased thickness as well. Interestingly, the bonding ratio

decreased as the material got thicker - the force to connect increased faster than the
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force to break.

For the three-sided prototype some alterations to the compliance cut-out were

necessary to fit the 90o profile as seen in Fig. 6.1b. These include narrowing the

width of the compliance cut-out and changing the angle to fit the shape. As a result,

the shape is slightly more compliant than would be expected of the same o and t

measurements tested. So despite using the parameters o = 5.1mm and t = 3.0mm,

this connector requires 9.61 N to latch and 584 N to disconnect, giving a bonding

ratio of 60.9:1.

6.3 Reconfiguration testing

Verification of assembly as part of reconfiguration started from a preassembled pla-

nar chain of CKBot [16] modules. The three-sided version of the Latching X-Face

Connector attached to one face of each module, with casters below to reduce friction.

Reconfiguration was performed in a one-way fashion, that is the chain was able

to attach faces but not detach. Detachment between experiments were performed

by manually unlatching the connectors.

Three different reconfiguration sequences were tested and are shown in Fig. 6.5.

The first example simulates a single lattice-type operation, which we call the ’P’

shape. The second, called the ’Block’ (essentially a 3×2 cluster of modules) starts

with a straight 1×6 preassembled chain using ModLock connectors. It demonstrates

a continuation of the ’P’ shape lattice style reconfiguration; showing progressive

latching (one module after another). This also demonstrates the capability to per-

form latching on mid-chain modules. Inductively, we assume more modules are

capable of as much latching as required, done sequentially in a zipper-like fashion.

The third shape, a large square demonstrates chain style reconfiguration. This

12-module chain was assembled similarly to the others, but with connectors only

at the chosen docking site. This is an important configuration because long chains
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(a) P-shape (basic) reconfiguration

(b) Block-shape (lattice style) reconfiguration

(c) O-shape (chain style) reconfiguration

Figure 6.5: Reconfiguration sequences detail. Diamond-end white lines indicate latch

connection sites.

of modules accumulate positional errors requiring large area of acceptance. When

performing the attachment, we select kinematic arrangement that allows a large

application of torque at the connection site.

The attachment process itself is a series of open-loop position commands. This

command sequence requires some tuning to ensure a good latching connection, but

once tuned correctly, completed 6 trials for each reconfiguration with 100% reliability.

The CKBot system uses EX-106+ Dynamixel Servos. with a stall torque of 10.9

Nm. The reconfiguration command sequences were optimized for speed; as such

the actual application of force is not defined. However, the data has shown that any

system which can provide a sustained force over 9.61 N should be able to successfully

latch.
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6.3.1 Latching Sequence

The latching sequence includes a set of positional commands to the servos as shown

in Tab. 6.2. The servos use position control so while performing reconfiguration

testing, commands go slightly beyond the nominal position of latching in order to

apply appropriate force to engage the compliant members. For the two 6-module

reconfiguration sequences, we refer to the modules in positional order starting from

the closest to the control computer (i.e. module 1 is closest, module 6 is furthest).

In Tab. 6.2, for the single attachment in the ’P’ shape reconfiguration, the first

step of module 4 (at second 1) converts the chain to an L-shape that is slightly less

than π
2
. This means the connector will be slightly off-center in the next step at

second 3 - the connector then only requires force to overcome the latch on a single

layer, rather than both if it were centered. Once the first layer is latched by driving

module 5 well past −π
2

at second 3, both modules are commanded to ’go slack’, that

is, apply no force. This allows the connectors to realign from the structural forces in

the connector flexure. Before this slack motion, the two connectors are not aligned.

Module 5 is then commanded past −π
2

once more to ensure the second layer latches.

The configuration then goes slack once more to realign the faces.

A plot of the motions as sensed by the encoders in modules 4 and 5 is shown in

Fig. 6.6. At second 3, the module moves past the nominal −π
2

corresponding to the

latch of a single layer. At second 4, both modules go slack, allowing the connector

forces to take over and realign both modules closer to the −π
2

position. Finally at

second 5, module 5 uses the second motion command that completes the final latch.

Second 6 makes both modules slack, to draw no power. The same sequence was

repeated for the relevant modules in the ’Block’ shape reconfiguration, and a similar

procedure for the chain reconfiguration. This latching sequence demonstrates that

these connectors are feasible for use with a modular system.

Here we have presented a new design for 2D latching in modular robots includ-

ing high self-alignment and reliable latching. Design principles used to create the
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CONTROL SEQUENCE TABLE

Time(s) M4 Pos. Comm. (rad) M5 Pos. Comm. (rad)

0 0 0

1 -1.67 0

3 -1.67 -1.74

4 GS GS

5 GS -1.74

6 GS GS

Table 6.2: Control sequence for latching. GS stands for the ’go slack’ command.
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Figure 6.6: Latching sequence positions of modules 4 and 5.

connector are presented and explained, along with the corresponding quantitative

measurements. Force testing to determine the impact of design parameters was pre-

sented, along with analysis of the corresponding behaviors. Bonding ratios were

obtained for connector prototypes in the range from 20.6 to 79.1. While ABS plastic

was the only material tested, different materials such as metals with sufficient elastic

regions may yield much higher bonding ratio.

Reconfiguration on a 2D CKBot chain was performed and demonstrated to show

simple attachment as well as progressive attachment of multiple connectors. Re-

configuration also demonstrated capabilities for lattice-style as well as chain-style

104



attachment. Finally, the latching control sequence taking advantage of the natural

forces present in the connector was presented.
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Chapter 7

Conclusion and Future Work

Connector performance is essential to docking, a core function of modular robotic

systems. This dissertation presents multiple evaluation methods for self-aligning

geometry to aid in finding high-performance designs. With the aid of the evaluation

systems in this dissertation, we are able to design passive mechanical alignment

connectors to reduce or remove elements such as actuation, sensing, etc., that would

otherwise burden the design constraints of the system. These evaluation methods

benefit from being neutral to system configuration and physical parameters.

7.1 Contributions

The new evaluation methods presented in this dissertation are defined over spaces

which we call areas of acceptance for these connectors - a new concept which

enumerates the limits of their passive error correction capabilities. These areas of

acceptance come in many forms depending on the space of errors under examination

and can be measured by either a Full or Oriented N-Cube metric. The methods

we have detailed in this dissertation allow for enumeration of the acceptance for the

first time in multiple dimensions simultaneously. These methods have been applied

to connectors in this work up to the set of SE(3).
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We have detailed a direct kinematic analysis method for incrementally and pseudo-

statically moving a set of 2D connectors from the unaligned position to a final po-

sition. This method worked suitably well, but was ultimately very slow and has

difficulty with more than one point of contact. Next we applied direct physical sim-

ulation with engines like ODE and Bullet. This works reasonably well at higher

dimensions, but is even slower than the previous method, generally on the order of

days.

By using the concept of configuration space and constructing ‘obstacle’ shapes

based on connector geometry, we get a high-dimensional geometric model corre-

sponding to the set of points where the two connectors are in contact. We presented

a pre-partitioning method using polyhedral operations to analyse the surface of this

shape and find the watershed corresponding to the area of acceptance, reducing the

time required from days to hours.

By taking this method one step further and discretizing the obstacle shape, we

were able to apply a ‘flooding’ algorithm from computer vision to find the watershed

corresponding to the area of acceptance even faster. The discrete method reduces the

amount of computational time required to get an answer by two orders of magnitude

over the pre-partitioning method, allowing full-dimensional answers on the order of

minutes. This computational savings also makes it practical to perform the analysis

in more than 3 dimensions, a first in this kind of analysis. This is a leap forward

in terms of methods to evaluate self-aligning connector pairs and determine their

acceptance/error correction capabilities numerically. The results of these methods

were verified on multiple robot platforms, in order to show that they have real-world

applicability.

In order to consider also the method of physical connection after alignment, we

also present a 2D instance of a high acceptance self-aligning connector with compliant

latching for reconfiguration of a 2D modular chain robot in the plane. This connector

was designed, constructed, implemented, and tested with an existing modular robot
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system. along with force testing results and a latching command sequence.

It is our hope that these methods will be useful for the future design of robotic

connectors and enhance the capabilities of modular robotic systems.

7.2 Future Work

In future, we would like to see more complex analysis as it pertains to real connectors,

meaning the addition of friction, dynamic effects, etc. The addition of friction would

be as simple as not allowing a point on the watershed to ’flow’ downhill unless

it meets a certain steepness of slope requirement - a gentle slope represents less

contact forces in the directions of offset, meaning friction could cause a complete

lack of motion in these cases. Dynamic effects would be trickier to manage, as the

way in which one contact proceeds to another becomes less predictable, making the

watershed analyses less helpful. Nonetheless, if the effects can be characterized as a

probability, it may be possible to say the likelihood the pieces will land within the

capture region, thus giving a successful dock.

Additionally, future work would include a more comprehensive look at connector

geometries, testing multiple parametrically defined geometries in an attempt to find

a definitive maximum for a specific use case. If a 3d connector is characterized as a

height function of 2 variables, that function could be altered repeatedly and tested

to find a ’best case’ (possibly even using learning techniques), although I suspect the

geometries presented within this thesis are very close to the maximum.

It is also possible that we could maximize the area of acceptance by changing the

configuration space geometry and then reversing the Minkowski operation to find

the resultant connectors. This would require one connector geometry assumed and

perhaps a loosening of the requirement that they mate cleanly along a shared face,

but nonetheless holds promise for potential future configurations of connectors that

would improve alignment performance.
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The docking process is not complete without physical connection. While the

latching connector presented herein serves as a proof-of-concept for 2D cases, real

systems usually require some method of undocking, perhaps by shape memory alloy

or other low-profile actuation. A method of creating a passive physical connection

(latching or otherwise) for 3D connectors would also be highly desirable for many

robotic applications, though this would be potentially be more difficult to fabricate

than the 2D latching connector.

A common issue when fabricating components is design for tolerancing; it can

be assumed that any given dimension will very likely be off by some fraction, with

a random distribution. Selecting the appropriate tolerances is a common design

challenge [11]. This fabrication error can contribute to positioning errors within the

system, though it can generally be reduced at increased cost. Since we are seeking to

correct for positioning errors during docking, there could be a cost savings in terms

of mechanical tolerances given a large enough area of acceptance. Future work might

include an analysis of how relaxed tolerancing could ultimately result in cost savings

for robotic systems with high self-alignment.

The discretized watershed method holds promise for other applications beyond

docking - for example this serves as an easy way to determine the stability of a grasp

as proposed by Rimon et al. [55]. It could also be used to analyse nearly any kind of

contact mechanics between two objects such as for caging, pushing an object, using

the environment to adjust object position, etc.

Finding the depth threshold is tricky and often has to be done manually by

inspecting the values given. I believe it would be worth investigating hierarchical

segmentation [6] to see if this step can be automated in that way.
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