
E. Klavins
Computer Science Department
California Institute of Technology
Pasadena, CA 91125, USA
klavins@caltech.edu

D. E. Koditschek
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109, USA
kod@umich.edu

Phase Regulation
of Decentralized
Cyclic Robotic
Systems

Abstract

We address the problem of coupling cyclic robotic tasks to produce a
specified coordinated behavior. Such coordination tasks are common
in robotics, appearing in applications like walking, hopping, run-
ning, juggling and factory automation. In this paper we introduce a
general methodology for designing controllers for such settings. We
introduce a class of dynamical systems defined over n-dimensional
tori (the cross product of n oscillator phases) that serve as reference
fields for the specified task. These dynamical systems represent the
ideal flow and phase couplings of the various cyclic tasks to be co-
ordinated. In particular, given a specification of the desired connec-
tions between oscillating subsystems, we synthesize an appropriate
reference field and show how to determine whether the specifica-
tion is realized by the field. In the simplest case that the oscillating
components admit a continuous control authority, they are made to
track the phases of the corresponding components of the reference
field. We further demonstrate that reference fields can be applied to
the control of intermittent contact systems, specifically to the task of
juggling balls with a paddle and to the task of synchronizing hopping
robots.

KEY WORDS—coupled oscillators, hopping robots, jug-
gling robots, behavior composition

1. Introduction

Many tasks in robotics require that cyclic actions be coordi-
nated. A walking or running robot must coordinate its legs,
which repeatedly convert motor torque into forward thrust,
according to some desired gait—a schedule for the delivery
of leg thrusts. Thus, the legs must deliver their thrusts accord-
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ing to some rhythm: whether simultaneously; in alternating
groups of three; or some other pattern. If each leg is supposed
to have some degree of independence—for example, to deal
with terrain variations local to it—then, in the absence of some
coordination mechanism, the phase relationships between the
legs will surely destabilize. In this paper we address the prob-
lem of modifying the controller of an individual cyclic sub-
system (e.g., a leg, or motor subunits corresponding to some
modular constituent of an ensemble) so that it uses informa-
tion obtained from other subsystems (e.g., the other legs) in
such a manner that the entire system (e.g., the robot) stabilizes
around a desired phase relationship (e.g., a gait).

In more formal terms, the paper addresses the problem of
composing, “in parallel,” limit cycles. Namely, we assume we
are presented with a number of independent controlled sys-
tems that each, separately, exhibit a limit cycle—an attracting
periodic orbit. We seek a procedure for yoking together their
controllers in such a fashion that the resulting coupled closed
loop system exhibits a single limit cycle corresponding to a
specified relationship among the original decoupled systems.
The procedure should ideally be formal—relying simply on
the presence of the individual attractors, independent of the
details of the mechanisms that stabilize the individual subsys-
tems. It should also be correct—accompanied by a proof that
the coupled system does indeed exhibit the specified periodic
attractor.

Our goal is to introduce tools that rely on feedback, in-
troduce a minimum number of communications links among
components and depend as little as possible on any central
control element. Our hypothesis is that these tools are best
thought of compositionally (Klavins and Koditschek 2000;
Klavins 2000; Klavins, Koditschek, and Ghrist 2000)—that
is, that components or groups of components that behave cor-
rectly in isolation may be composed by altering their control
algorithms in a formulaic fashion to achieve coordination. The
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resulting modularity should give rise to scalability, enabling
the design of large, complex nonlinear and robust controlled
systems.

1.1. Motivation

Formal techniques for building decentralized control architec-
tures with provable properties will become increasingly im-
portant as robots and, more generally, physically embedded
computing systems, become more and more complex (Ten-
nenhouse 2000). A simple, three degree of freedom juggling
robot (Rizzi, Whitcomb, and Koditschek 1992), for example,
may contain several processors which acquire sensory data,
compute estimates and deliver control commands. A complex
automated factory may require the coordination of hundreds
of robots each performing processing, sensing and actuating
locally (Rizzi, Gowdy, and Hollis 1999; Park, Tilbury, and
Khargonekar 1999). If MEMS devices for distributed manip-
ulation (Donald et al. 1999) can be used for assembly then
possibly thousands or millions of microscopic actuators will
require coordination. Ideally, to design controllers for such
systems, we desire a provably correct method for controlling
each component, using local information as well as informa-
tion from neighboring components, so that some global task
is performed by the entire collection of components. Simi-
lar goals have been realized, to some extent, in distributed
computing (Lynch 1996). However, in physically embedded
computing systems, any control methodology, distributed or
otherwise, must account for real-world mechanical forces, in-
accurate sensing and a partially actuated environment. Ad-
dressing these latter complications is the main challenge to
decentralized, modular control.

We are convinced that compositional methods of this kind
are possible. Previous work by the second author and collab-
orators has led to several functioning (laboratory) robots that
possess relatively sophisticated dexterous behaviors formed
by coupling previously working simpler constituents in an
analogous manner. For example, robot “batters” have been
constructed in compositions involving a one degree of free-
dom “vertical” limit cycle controller inspired by Raibert’s
hoppers (Koditschek and Bühler 1991). A planar version of
the batter is composed of the Raibert vertical cycle with a
one degree of freedom (Bühler, Koditschek, and Kindlmann
1990) “horizontal” fixed point controller that might be loosely
construed as a nonlinear P-D (that is, a variant on the tradi-
tional proportional-derivative design (Koditschek 1989)). A
subsequent spatial version is composed of the same Raibert
vertical cycle with a two degree of freedom horizontal gener-
alized P-D (Rizzi, Whitcomb, and Koditschek 1992).

This approach to the parallel composition of cycles with
point attractors can claim some degree of generality. For ex-
ample, the controller for a functioning two degree of freedom
brachiating robot (Nakanishi, Fukuda, and Koditschek 2000)
may be interpreted as the parallel composition of a repeti-

tively swung simple pendulum with a nonlinear P-D. Work
in progress suggests that similar parallel compositions of a
repetitively swung pogo stick with a nonlinear P-D may yield
effective controllers for multi-jointed (Saranli, Schwind, and
Koditschek 1998) and even multi-legged (Altendorfer et al.
2000) running. These last examples, moreover, begin to hint
at a hypothetical explanation of how running animals exhibit
ground reaction forces characteristic of pogo sticks (Full and
Koditschek 1999). We stress the qualification “some degree”
of generalization, since no formal stability proofs have yet
been carried through for these follow-on examples of cycle-
with-point attractor compositions. For the original batting ex-
amples the necessary correctness proofs have been developed:
there is indeed an attracting invariant “vertical” submanifold
whose restriction dynamics exhibits the form of the Raibert
vertical hopper (Rizzi and Koditschek 1994). But for none
of these examples has a general and formal coupling proce-
dure been articulated; a compositional “recipe” common to
the batters, the brachiator and the runners is not yet evident.

Several desirable consequences quickly follow when a
composition technique for embedded controllers is defined.
The “sequential composition” of point attractors enjoys a for-
mal and completely general control theoretic semantics via
graphs that locate attractors relative to their neighbor’s basins
(as delimited, for example, by their Lyapunov functions) (Bur-
ridge, Rizzi, and Koditschek 1999). Although this notion is
conceptually simple, it is nevertheless quite useful: a well
established tradition of sequential composition in AI—pre-
image backchaining (Lozano-Perez and Mason 1984)—can
be rendered formally and correctly in this manner. Formal
composition methods can also ensure scalability. For exam-
ple, the first author has developed methods for composing hy-
brid factory robot programs into concurrent, multi-robot sys-
tems (Klavins and Koditschek 2000). Based on this method,
a provably correct compiler (Klavins, Koditschek, and Ghrist
2000) has been built for (a simplified, simulated version of) a
modular factory (Rizzi, Gowdy, and Hollis 1999).

In contrast to the compositions just cited, the parallel com-
position of cycles, the focus of this paper, remains a less
developed area. We have some experience with successful
empirical efforts of this kind. The batters, above, have been
joined to produce “jugglers”—again, both planar (Bühler,
Koditschek, and Kindlmann 1994) and spatial (Rizzi, Whit-
comb, and Koditschek 1992) versions—by properly “inter-
leaving” the two constituent vertical cycles. However, no cor-
rectness proof has heretofore existed, much less a clear report
of any formal coupling principles suitable for applications in
other domains. It is toward such a formal coupling principle
that this paper is addressed.

1.2. Specific Contributions

Parallel compositions of the sort described above, involving
point attractors or points and one cyclic attractor, satisfy the
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following steady state behavior: the attractor of the coupled
system is the cross product of the component attractors. In
contrast, the obvious first complication arising from paral-
lel constructions of several cyclic attractors is that their cross
product is not directly related to any of the components, defin-
ing, instead, an n-torus, which does not in itself correspond
to any natural robotic task that we have encountered. A com-
position of limit cycles resulting in a limit cycle, therefore,
must also specify the limiting phase relationships desired of
the components. The central contribution of the paper is to
propose a simple but general formalism for specifying these
phase relationships along with a general method for realizing
the specification with a reference dynamical system. We then
introduce a number of example problems to suggest how these
reference dynamics might eventually be the basis of a formal
composition technique for a large class of physically relevant
cyclic systems.

We begin in Section 2 with the observation that any cyclic
component system can be described in terms of phase coor-
dinates consisting of phase and phase velocity, thus giving
each system the same “interface” and introducing the model
space of the composition—the n-torus. We then propose a
simple means of specifying the desired phase relationships
with a connection graph, whose nodes denote the component
cyclic systems and whose edges, labeled “in phase” or “out of
phase,” denote their desired phase differences at steady state.
Next, we present a general procedure for building a gradient-
like vector field on the model space whose coupling functions
are governed by the connection graph. Finally, we identify
algebraically the entire forward limit set of the closed loop
coupled system, affording, thereby, a check that the desired
limit cycle is essentially globally asymptotically stable.

We use the reference dynamics to compose several one
degree of freedom cyclic components in three progressively
more complicated examples evocative of the physically func-
tioning juggling and running robots introduced above. These
examples are chosen to suggest the range of control affordance
that a more general composition procedure must encompass.
It is well established in control theory that differences in ac-
tuation structure present radically different opportunities for
point stabilization, ranging from arbitrarily achievable dy-
namics (e.g., in the case of fully actuated first order systems),
to systems that are smoothly unstabilizable (e.g., in the case of
nonholonomically constrained mechanisms (Brockett 1983)).
The corresponding stabilizability classification for limit cy-
cles is far less established, hence we select examples that
correspond to physical settings of interest. The examples il-
lustrate how the same abstract connection graph can serve as
the basis for compositions of cyclic systems of various types,
each type corresponding to an intuitively different affordance
over the subsystems’ phases.

In our first example we consider highly abstracted com-
ponents, each taking the form of a first order fully actu-
ated subsystem—in phase coordinates, θ̇i = fi(θi, vi), i =

1, . . . , n, where fi is invertible with respect to the control, vi ,
for each phase, θi ∈ S1. Since appropriate “inverse dynamics”
style state feedback, vi = f −1

i (θi, ui), can arbitrarily reshape
the vector field, θ̇i = ui , it is clear that the phase θ of each com-
ponent of the system is directly controllable. Such models are
not uncommon in the coupled oscillator literature, and, for the
purposes of this paper, offer a simple setting in which to illus-
trate the application of the proposed composition technique.
Specifically, in Section 2.4 we construct coupling controllers
arising from two different connection graphs (Figure 1) for a
set of six first order cyclic components. We use the algebraic
characterization of the forward limit set on the cross product
space,

T 6 = S1 × S1 × . . .× S1︸ ︷︷ ︸
6 times

to discover that the first connection graph is effective while
the second is not.

In general, physical systems will not offer such direct affor-
dance over phase velocity. For example, in action-angle coor-
dinates (Arnold 1991), (Ei, θi)—the classical representation
of phase for the one degree of freedom mechanical systems of
present interest—a lossless closed loop component exhibits
the dynamics θ̇i = ωi(Ei) and Ėi = 0. Physically realizable
control inputs act on the acceleration variable of such a system
and typically enter both the action and the angle dynamics in
a complicated manner,

θ̇i = ωi(Ei, ui)

Ėi = fi(θi, Ei, ui).

However, many cyclic component systems of interest in
robotics—in particular, all of those mentioned in the moti-
vation section above—are regulated by means of periodically
applied changes in “stiffness” or some similar physical vari-
able that adjust the action on a cycle-by-cycle basis because
they can be actuated only intermittently. The term intermittent
means that during certain periods, there is no affordance at all.
Thus, fi ≡ 0, and ∂ωi/∂ui ≡ 0 except when θi is contained
in some contact set A. When such a subsystem operates in
isolation, it is sufficient to verify that the “stiffening sched-
ule” stabilizes a specified periodic orbit with respect to any
convenient coordinate system. However, when conceived as
a component, the subsystem’s stiffening schedule on the con-
tact set must be altered with the dual purpose of regulating
its own limit cycle as well as its phase relative to its specified
neighbors.

In Section 3 we introduce two different examples of
this situation, evocative, respectively, of the batting (Büh-
ler, Koditschek, and Kindlmann 1994) and hopping robots
(Koditschek and Bühler 1991) discussed above. In both cases
we begin by introducing variants of the component subsystem
controllers that were deployed on the physical machines: they
yield asymptotically stable limit cycles for the component one
degree of freedom systems with user-specified steady state
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total energy. We next address the parallel composition of two
such cyclic components, defining the identical reference dy-
namics (on the two-dimensional torus) as a model for juggling
in the first example, and for bipedal hopping in the second. For
both examples, we show how to compute the phase coordi-
nate transformations required to implement the composition.
The reference dynamics then serves to guide modifications
in the subsystem controllers that confer sensitivity to relative
phase in addition to the prior affordance over individual en-
ergy (now interpreted as phase velocity, through the action
variable, in the new coordinate systems). We finally show,
in both cases, that the resulting coupled systems do indeed
achieve the desired closed loop behaviors.

Similar though they are, these two settings introduce a fur-
ther distinction in subsystem actuation structure: the recourse
to deadbeat as opposed to asymptotically stabilizing control.
For the juggling example, because the contact set is a lower
dimensional surface visited instantaneously each cycle, it is
easy to build a subsystem controller that works in a “deadbeat”
manner, achieving the desired ball height for an isolated sin-
gle ball after one hit. In contrast, for the hopping example,
the component controllers for the two isolated subsystems
achieve asymptotic stability with convergence in infinite time.
Despite this difference in input structure, the composition pro-
cedures are quite similar. A comparison of eqs. (29) and (31),
which define the return maps of these systems near equilib-
rium, shows that the second system incorporates a delay term,
g, which marks the difference (and complicates the analysis).
That our method applies equally well to each example is a
hint of its possible generality.

A second key difference between these two examples un-
derscores an additional feature of the composition method
whose proper consideration lies beyond the scope of the
present paper. The gradient-like reference dynamics on the
two-dimensional torus entails two invariant cycles—the de-
sired (essentially global) 180◦-out-of phase attractor and an
in-phase repellor. The latter structure can be considered a dy-
namical “obstacle” to be avoided by the coupled system. In
synchronized hopping, there is a dedicated actuator for each
cyclic system (each hopper can control itself) , while in jug-
gling, a single actuator must switch its attention from each ball
in the system necessitating a sort of interleaving control. Sep-
arating the phase of the balls thus becomes an important part
of the composition and is naturally encoded by the presence
of the repellor.1

In summary, the present paper addresses a small, next step
toward the general goal introduced at the beginning of the
paper. We introduce a general formalism for specifying the
steady state cyclic behavior of a collection of cyclic com-
ponents. Treating the component subsystems as oscillators
suggests how to compose them using feedback terms based

1. We accomplish the change of attention of the paddle among the balls using
an attention function (see eq. (25)), the details of which are beyond the scope
of this paper but can be found in Klavins (2000).

on the phases of neighboring oscillators to achieve the spec-
ified coupled behavior. If the components of the system are
continuously actuated (i.e., they have direct control over their
phase), the method is straightforward. If, on the other hand,
the components have intermittent control over their phases
(as with a paddle bouncing a ball or a leg delivering thrust to
a robot), applying our method is less obvious. Nevertheless,
we demonstrate that it is applicable to this important class
of problems. The similarity of method in the different exam-
ples strongly suggests that a general formalism of the kind we
desire should be possible to define and practice.

1.3. Related Work

1.3.1. Decentralized Control

By decentralized control of a system ẋ = f (x, u) we
mean first that x can an be broken into a number of sub-
systems x = x1; . . . ; xn where the semicolon means vec-
tor concatenation. Second, we require that controllers can
be found so that for each subsystem i we have that ẋi =
fi(xj1 , . . . , xjk

, ui(xj1 , . . . , xjk
)) where the set {j1, . . . , jk} of

neighbors of i is a proper subset of {1, . . . , n} (i.e., the con-
trol law for the ith system depends only on the neighbors of
i). Various decentralized control schemes for legged locomo-
tion (Beer et al. 1997; Calvitti and Beer 2000) are inspired by
biological models of the stick insect (Cruse 1990) and other
animals (Delcomyn 1980). In such schemes, each leg of a
six-legged robot is considered to be animated by a separate
processor and actuator, deciding what to do based on the state
of certain neighboring legs. Of course, the state of the robot’s
mechanical body depends upon the positions and velocities
of its center of mass frame as well as the states of all the legs
and thus the system is decentralized only in the sense that the
control of actuated components is decentralized. In Klavins
et al. (2001) we present a simulation study suggesting that
the methods in the present paper can exhibit behaviors sim-
ilar to those observed in a simple model (Calvitti and Beer
2000) of this kind of coordination. We believe, but have not
yet explicitly demonstrated, that the framework introduced
here promotes a parsimonious view of the stick insect mod-
els, and one for which correctness of coordination proofs will
be tractable. In the present paper we prove that similar co-
ordination strategies are robust and stable, albeit in a vastly
simpler setting. We believe such a parsimonious and sound
foundation is a necessary precursor to the widespread adop-
tion of any walking or coordination strategies.

Our general approach to building decentralized systems,
inspired by the traditions of computer science (Abadi and
Lamport 1993; Charpentier and Chandy 1999), is composi-
tional (Burridge, Rizzi, and Koditschek 1999; Klavins and
Koditschek 2000; Klavins 2000). That is, we seek methods
for composing previously isolated subsystems into more com-
plex systems via adjustments of their individual controllers as
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we have already illustrated in our earlier remarks about “se-
quential” (Burridge, Rizzi, and Koditschek 1999), “parallel”
(Bühler, Koditschek, and Kindlmann 1990), and “interleaved”
(Rizzi, Whitcomb, and Koditschek 1992) control. There are
many other informal uses of composition in robotics as well,
such as the bottom up generation of flocking behaviors (Reif
and Wang 1999), for which formal compositional treatments
could be quite useful as well.

Our simple characterization of a “decentralized” system
suffers from the same sort of ambiguity that afflicts some com-
puter science characterizations of distributed systems. That is,
in their simplest forms the available formalisms, differential
equations and computational complexity, are blind to the is-
sues of information flow and communication costs (of course,
many of these problems in computer science have been ad-
dressed (Lynch 1996)). We do not address these problems
here, although we believe they are of tremendous importance
as systems become more complex. In Klavins et al. (2001)
we begin to address the trade-off between centralized control
structures, such as used in our hexapod robot (Saranli, Bueler,
and Koditschek 2000), with decentralized control.

1.3.2. Coupled Oscillators

The study of the nervous system has inspired a significant
volume of work on coupled oscillators. The goal has been
to devise analytically tractable models of the neuron and of
collections of neurons for the purpose of explaining observed
neurophysiological phenomena. The typical approach is to
treat neurons as oscillators of some kind and introduce var-
ious coupling terms (Guckenheimer and Holmes 1983). Re-
searchers have examined various regular topologies of such
couplings as well, as for example in Kopell (1995) and Er-
mentrout and Kopell (1994).

Oscillators appear in robotics whenever coordinated cyclic
movements are required. As robotics researchers increasingly
turn toward biology for inspiration, coupled oscillators are
used synthetically, to engineer control algorithms, rather than
as modeling tools. Generally one finds two apparently com-
plementary approaches: feedforward shape generators and
feedback driven networks of coupled oscillators. The first
approach is inspired by the discovery of biological central
pattern generators—oscillating groups of neurons that have
been shown to produce rhythmic movements originating in
the central nervous system (Pearson 1973; Cohen, Rossignol,
and Grillner 1988; Cohen, Holmes, and Rand 1982) that seem
associated with a feedforward style of control. In robotics,
pattern generators are generally used to control repetitive
movements. In the RHex hexapod robot (Saranli, Bueler, and
Koditschek 2000), a simple, first order linear oscillator is used
as a “clock” to generate an alternating tripod gait. Similar
mechanisms are used to control the shape of snake like robots
(Ostrowski, Desai, and Kumar 1998; Bloch et al. 1996) and in
an underactuated two degree of freedom suspended leg (Lewis

et al. 2000) to produce feedforward locomotion. In contrast,
feedback methods, for example those inspired by the previ-
ously mentioned study of the slow-moving stick insect (Cruse
1990) which have begun to be analyzed (Calvitti and Beer
2000), couple internal oscillators with mechanical oscillators
such as legs. The internal oscillators are then synchronized via
some coupling function, yet are constantly disturbed by sig-
nals from the legs. In Hu (2000) a nonlinear oscillator model
with feedback is used to coordinate leg motions in a biped.

In this work, synthesis of coordination control algorithms
(rather than, say, modeling and analysis of complex biolog-
ical systems) remains the primary goal, hence we take the
view that oscillators should be abstracted to phase and phase
velocity coordinates. Thus, instead of using a complex, non-
linear oscillator to generate motions we explicitly use simple
gradient-like reference fields and concentrate on the means by
which variously composed controllers may be introduced into
variously configured control systems to produce coordinated
movement in mechanical systems. A similarly synthetic view
was used by, for example, Pratt and Nguyen (1995) to syn-
chronize clocks in a mesh-connected network of processors.

2. Reference Fields: First Order Cyclic Systems

In this section we suppose that a task is represented as a limit
cycle—an isolated invariant periodic attractor—on a torus of
some dimension. For now, we examine model systems, whose
subsystems are all first order actuated oscillators and suppose
that a suitable computationally effective measure of phase—
an abstraction to this model space from the state space of the
robot system in question—can be found.2 We also assume that
all degrees of freedom are actuated. Later, in Section 3, we
relax this assumption. We call the vector fields correspond-
ing to the model dynamical systems we construct Reference
Fields, roughly comparable to the target dynamics (Nakan-
ishi, Fukuda, and Koditschek 2000) or templates (Full and
Koditschek 1999) introduced in allied papers. We will use
these fields to construct feedback controllers that attempt to
make actual systems behave like the model systems we con-
struct by referring to the value of the field at each point in
configuration space.

Given a configuration space X with dynamics ẋ = F (x, u),
we define a task for this system to be a submanifold M ⊆ X

with a dynamical system of the form ẏ = G(y) ∈ TyM defined
over it. A control law u = g(x) performs the task (M, G) if

1. M is an attractor (i.e., an asymptotically stable invariant
set) and

2. the restriction dynamics on M is given by G.

In this paper, we wish to control n one-dimensional oscil-
lators each of whose phase φi(t) can be thought of as a point

2. In Section 3.1, in which we consider intermittent contact systems, we
actually show how to construct phase coordinates.
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in the circle S1. We take as a representation of the circle the in-
terval [0, 2π ]with its end points identified. Thus, all values of
φi are considered modulo 2π . We frequently consider smooth
2π -periodic functions of R and smooth functions on S1 equiv-
alently. Each oscillator also has a phase velocity φ̇i(t) ∈ R

which, as discussed in Section 1.2, we consider to be the con-
trol input for the oscillator. Thus, φ̇i = ui .

The configuration space of n such oscillators is the n-
dimensional torus,

T
n = S1 × . . .× S1︸ ︷︷ ︸

n times

.

The tasks over the torus that we consider in this paper are
constant flows on subtori. They thus have the form (Tm, G)

where 0 < m ≤ n and for θ ∈ T
m, G(θ) = a, a ∈ R

m.
Since we are presently only interested in limit cycles, we take
m = 1 so that T

m = S1. In Section 2.2, we show how to
construct reference fields over T

2 and in Section 2.3 we extend
the idea to a particular task in n dimensions: the problem
of coordinating the oscillators so that they exhibit particular
phase relationships in a decentralized manner.

2.1. Specifying Phase Relationships

As mentioned in Section 1.2, composing some number of
cyclic tasks requires a specification of the desired phase re-
lationships between them. We also would like to specify the
communication structure to be used by the system, by stipu-
lating which other oscillators are neighbors of any particular
oscillator. To proceed, we define a connection graph as fol-
lows. Define C to be an n× n symmetric matrix over the set
{0, 1,−1} where Ci,i = 0 for all i. We interpret C as follows.
If Ci,j = 1, then it is desired that oscillators i and j be in
phase: φi − φj = 0(mod 2π). If Ci,j = −1, then it is desired
that i and j be out of phase: φi−φj = π(mod 2π). If Ci,j = 0
then no phase difference is specified—although one may be
implied transitively via other connections.3

We describe two examples. The first is a specification suit-
able as the basis for the control of a six legged robot. It consists
of six oscillators, one for each leg, connected so that there are
two disjoint, fully connected in-phase tripods and one out-of-
phase connection between a representative from each tripod.
The second is a specification which produces an unintended
behavior—that is, one where the connection matrix does not
give a system that performs the task associated with it over the
entire domain of the system. In Section 2.4 we demonstrate
how to check these systems using the results in Section 2.3.

Let φ1, . . . , φ6 represent the phases of each of six oscilla-
tors and suppose that oscillators one through three correspond

3. The restriction to 0 or π phase differences is not limiting: if we desire that
φ1 − φ2 = α mod 2π , then we set φ′2 = φ2 + α and require φ1 − φ′2 =
0 mod 2π instead. For clarity of presentation, we avoid such coordinate
changes.

to the first tripod and four through six, the second. And sup-
pose one and six are connected out of phase. The connection
matrix that realizes this scheme, illustrated in Figure 1(a), is

Calt =




0 1 1 0 0 −1
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
−1 0 0 1 1 0




. (1)

Another seemingly natural way to specify an alternating
tripod is to suppose that the six legs are arranged in a ring,
with each out of phase with its neighbors (Figure 1(b)). It
turns out that this specification cannot be realized with our
method, as is shown in Section 2.4.

Cbad =




0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 0 0 −1 0




. (2)

2.2. Two Dimensions

To illustrate our idea, we consider the task of regulating
two oscillators with phases φ1 and φ2 so that (1) the rate of
change of each phase is some desired value and (2) the phases
are maximally separated. This is specified by the connection
matrix

C2 =
(

0 −1
−1 0

)
. (3)

To define a reference system for this task, we proceed in
two steps. First, we define a potential energy function V on
the phase difference φ1 − φ2 which has a unique minimum at
φ2 = φ1 + π(mod 2π). Then we take the negative gradient
∇V and add a drift term (1, 1)T which suspends the gradient
system in the two-dimensional torus. We define the potential
energy function V over T

2 by V (φ1, φ2) = cos(φ2 − φ1).
This function, shown in Figure 2(a), has the set

{(φ1, φ2) | φ1 − φ2 = π(mod 2π)} as its minimum. We next
take the negative gradient and add a “drift” term, defining the
reference field, to be

R(φ1, φ2) = κ1

(
1
1

)
− κ2∇V (φ1, φ2) . (4)

Here κ2 is an adjustable gain which controls the rate of conver-
gence to the limit cycle. The circles φ2 = φ1 and φ2 = φ1+π

are equilibrium orbits (see Figure 2(b)). The first is unstable,
the second is stable. Thus, this field performs the task spec-
ified by C2. Speaking compositionally, we say that the two
separate tasks φ̇1 = κ1 and φ̇2 = κ1 have been composed by
adding to the system the coupling term κ2∇V (φ1, φ2).
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(a) (b)
Fig. 1. Two different connection graphs. The system (10) obtained from (a) results in an “alternating tripod” behavior whereas
the system (11) obtained from (b) does not.
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Fig. 2. The dimensional reference fields. (a) The artificial energy function V on the phase difference φ1−φ2. (b) The reference
field (4) obtained by suspending the negative gradient of V in the torus.

2.3. Multiple Oscillators and Arbitrary Connections

In this section we consider multiple oscillators and the further
constraint that the reference fields we construct be in a certain
sense decentralized. In particular, we build systems ẋ = R(x)

such that Ri depends only on a subset of the phases in the
system—a set of “neighbors” that has been designated by
the designer. We examine only systems whose task dynamics
have φ̇i = a ∈ R for all i and concentrate on the decentralized
aspect of the problem. In particular, we propose the following
method.

1. Identify the connections desired in the reference field.
That is, specify with which neighbors the controller of
a given oscillator must communicate.

2. Label the connections as either “in phase” or “out of
phase.”

3. Construct an energy function that respects these
constraints.

4. Suspend (a generalized version of) the gradient of this
function to complete the reference field and check that
it meets the specifications given by the labeling.

The last step arises because the third step may not be able
to realize the phase relationships specified in the second step
while respecting the connections enforced in the first step.
However, we supply an easy criterion to check this property.

DEFINITION 1. The task specified by a given connection
matrix C is given by the set

MC = {(φ1, . . . , φn) | ∀i, j Ci,j �= 0 ⇒ φi−φj = π

2
(1−Ci,j )}

with the dynamics

(φ̇1, . . . , φ̇n) = κ1(1, . . . , 1) .

We will give a reference field R based on C that performs this
task in some instances, depending on the structure of C. As
we have stated, however, we supply an easy criterion to check
that a given reference actually performs the specified task.
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From C we define a reference field RC(φ1, . . . , φn) by
setting

φ̇i = κ1 − κ2

n∑
j=1

Ci,j sin(φi − φj ), (5)

where κ1 and κ2 are constant gains. The term sin(φi − φj ) is
similar to a simpler error term φi−φj , except it is continuous
modulo 2π , simplifying the analysis. We will show that RC

arises from the suspension of a gradient-like system on the
subtorus defined on the differences between the oscillators.
In particular, let Vi,j = −Ci,j cos(φi −φj ) and set V to be the
energy function

V =
∑
i<j

Vi,j . (6)

To simplify our analysis, we will transform eq. (5) to a more
convenient form. To this end we introduce the following no-
tation and definitions.

DEFINITION 2. For each n > 1 we define the n(n−1)

2
× n di-

mensional difference matrix Ln recursively as follows. First,
set L2 = (1,−1). Then, for each n > 2 set

Ln =
(

1 −In−1

0 Ln−1

)
,

where In is the n× n identity matrix, the upper left hand part
of the matrix is an (n − 1) × 1 vector of ones and the lower
left hand part of the matrix is an (n−1)(n−2)

2
× 1 vector of zeros.

Let x = (φ1, . . . , φn)
T . We will first define the system

y = Lnx obtained from the phases of the oscillators to be
all possible differences between phases, corresponding to
the connections in the graph. We express the reference field
(eq. (5)) in this notation.

DEFINITION 3. Suppose the n × n dimensional connection
matrix C is given. Let C̃ be the n(n−1)

2
× n(n−1)

2
dimensional diag-

onal matrix whose diagonal is (C1,2, C1,3, . . . , Cn−1,n). Also,
let 1 = (1, . . . , 1)T be a vector of n ones. Then the reference
field associated with C is

RC(x) = κ11− κ2L
T

n
C̃s(Lnx), (7)

where x = (φ1, . . . , φn)
T and s(y) = (sin(y1), . . . ,

sin(yn(n−1)/2))
T .

The reference field RC induces a vector field on the connec-
tions y = Lnx given by

ẏ = G(y) � Lnẋ = κ1Ln1− κ2LnL
T
n
C̃s(y)

= −κ2LnL
T
n
C̃s(y),

(8)

since Ln1 = 0.
To understand the dynamics of eq. (8), and therefore of

RC , we show that they are gradient-like. That is, its equilib-
rium states are the minima of some energy like-function. A

function U : X → R is a LaSalle Function (Lasalle 1961) (a
generalized Lyapunov function) for the vector field ẋ = F (x)

if its image is compact and if U̇ (x) � DU · F (x) ≤ 0. We
have

LEMMA 1. The energy function V : R n(n−1)
2 → R defined by

eq. (6) is a LaSalle function for G.

Proof. Since V (y) = −∑
i<j

Ci,j cos(yi,j ), taking derivatives

gives DV = s(y)T C̃. Then

DV ·G(y) = −κ2s(y)T C̃LnL
T

n
C̃s(y) = −κ2||LT

n
C̃s(y)|| ≤ 0,

since C̃ is symmetric. Finally, the image of V is contained in
[− n(n−1)

2
, n(n−1)

2
], proving the lemma. �

Let ω(Y ) be the forward limit set of the set Y � R
n(n−1)

2

under the dynamical system ẏ = G(y). Our first result is then:

THEOREM 1. The forward limit set ω(Y ) of G is equal to
{y | G(y) = 0}, the zeros of G.

This is the criterion for checking that the specifications given
by C are met by RC—we will discuss this after we prove the
theorem.

Proof (of Theorem 1). We will first show that LnL
T
n
v = 0

if and only if LT
n
v = 0. The result then follows from set

equalities. So suppose that LnL
T
n
v = 0. Let w = LT

n
v. Then

Lnw = 0 implies that w1 = w2, w1 = w3, . . . , wn−1 = wn.
Thus, w = α1 for some α ∈ R. Also, taking the transpose of
Ln1 = 0 gives 1T LT

n
= 0 from which we can conclude that

1T LT
n
v = 0. This means that 1T α1 = 0 which implies that

α = 0. Thus, LT
n
v = 0. We conclude that LnL

T
n
v = 0 ⇔

LT
n
v = 0.
Now we have

ω(Y ) ⊆ {y | V̇ (y) = 0}
= {y | s(y)T C̃LnL

T

n
C̃s(y) = 0}

= {y | LT

n
C̃s(y) = 0}

= {y | LnL
T

n
C̃s(y) = 0}

= {y | G(y) = 0} .

The first inclusion is by Lemma 1 and LaSalle’s Invariance
Principle. The second to last equality is because LnL

T
n
y =

0 ⇔ LT
n
y = 0. Finally, by definition, {y | G(y) = 0} ⊆ ω(Y )

and thus, {y | G(y) = 0} = ω(Y ). �
Since the ẏ system is not full rank, we work with the smaller

system obtained by taking the first n−1 elements of y, to ana-
lyze particular systems. From these differences, all other dif-
ferences may be defined as long as the graph associated with
the matrix C is connected. To this end, we define a projection

Pn =
(

In−1 0
)

,

where the right part is an (n − 1) × (n−1)(n−2)

2
dimensional

matrix. Then set z � Pny = (φ1−φ2, φ1−φ3, . . . , φ1−φn)
T .
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We will also need a pseudoinverse of Pn, namely

P †
n
=

(
In−1

Ln−1

)
.

Then the z system is

ż = H(z) � −κ2Pnẏ = −κ2PnLnL
T

n
C̃s(P †

n
z). (9)

Note that Ṽ � V ◦ P †
n

is a LaSalle function for this system.
From the dynamical system defined on the connections

between the oscillators, we can deduce the behavior of the
total system ẋ = RC(x). We have

COROLLARY 1. The limit set ω(Tn) of the system ẋ = RC(x)

is equal to the set {x | H(PnLnx) = 0}. The dynamical system
restricted to this set is simply ẋi = κ1 for each i. Furthermore,
if z∗ is a stable fixed point of H , then the set {x | PnLnx = z∗}
is a stable orbit of RC .

Thus, to check that the reference field RC performs the task
specified by C, we check that the stable orbits of ẋ = RC(x),
which are given by the stable fixed points of ż = H(z), cor-
respond to the task.

2.4. Examples

In this section we apply the above criterion to the examples
in Section 2.1.

2.4.1. Example 1: An Alternating Tripod

Start with the connect graph Calt defined in eq. (1) and let
x = (φ1, . . . , φ6)

T . The system is then

ẋ = κ11− κ2L
T

6 C̃alt s(L6x),

where C̃alt is defined as in Definition 3. To understand this
system, we use Theorem 1 and examine the system in eq. (8),
given in this case by

ẏ = −L6L
T

6 C̃alt s(y),

where y = L6x (without loss of generality we let κ2 = 1).
Now take the projection z � P6y to the first five elements of
y to get the system

ż = H(z) � (10)


2 sin(z1)+ sin(z1 − z2)+ sin(z2)− sin(z5)

sin(z1)− sin(z1 − z2)+ 2 sin(z2)− sin(z5)

sin(z1)+ sin(z2)+ sin(z3 − z4)+ sin(z3 − z5)− sin(z5)

sin(z1)+ sin(z2)− sin(z3 − z4)+ sin(z4 − z5)− sin(z5)

sin(z1)+ sin(z2)− sin(z3 − z4)− sin(z4 − z5)− 2 sin(z5)


 .

Setting ż = 0 and solving for z gives 72 fixed points. Straight-
forward calculation of the eigenvalues of the Jacobian of H at
each of these points shows that only one fixed point, namely

(0, 0, π, π, π) is stable and the rest are unstable. Using Corol-
lary 1, we conclude that the task performed by this system is
given by

Malt = {(φ1, . . . , φ6) | φ1 − φ2 = φ1 − φ3 = 0 and φ1 − φ4

= φ1 − φ5 = φ1 − φ6 = π}

with the task dynamics φ̇i = κ1, which is equivalent to the
task specified by the connection matrix Calt .

2.4.2. Example 2: An Unintended Behavior

Now consider the specification given by Cbad and defined by
eq. (2). In this case, ż = −P6L6L

T
6 C̃bads(P

†
6 z) is given by

ż = H(z) � (11)


sin(z1 − z3)+ sin(z4)+ sin(z1 − z5)+ sin(z5)

sin(z2 − z3)+ sin(z2 − z4)+ sin(z4)+ sin(z5)

− sin(z1 − z3)− sin(z2 − z3)+ sin(z4)+ sin(z5)

− sin(z2 − z4)+ 2 sin(z4)+ sin(z5)

sin(z4)− sin(z1 − z5)+ 2 sin(z5)


 .

The desired fixed point of this equation is (π, 0, π, 0, π)

which is indeed stable. However, the fixed points
(± 2π

3
,∓ 2π

3
, 0,± 2π

3
,∓ 4π

3
) are also stable fixed points. Thus,

the system (eq. (11)) does not perform the task specified by
Cbad because it has five distinct, stable limiting behaviors.
The fixed points of ż = H(z) need not be hyperbolic. In such
cases, simple linearization around the fixed point is not suf-
ficient to determine its stability and other methods must be
used.

3. Application to Intermittent Contact Systems

To demonstrate the relevance of reference dynamical systems
to robot control, we show in this section a means of construct-
ing controllers for a kind of intermittent control problem, that
is, where there is at least one degree of freedom which may
only be actuated under certain circumstances. For example,
we consider in this section the task of bouncing a ball on a
paddle (a kind of juggling), wherein the robot may only ac-
tuate the ball during collisions. The rest of the time the ball
is under the influence of gravity alone. The other example
we consider is the control of hopping robots where there is
a flight phase. While on the ground, the robot has some af-
fordance over its trajectory while in the air it does not. The
problem we address is whether the assumption of continuous
actuation, made in Section 2, can be relaxed, allowing us to
use the cyclic reference fields we have defined as the basis of
control algorithms for these systems.

In Section 3.1 we describe how to change from the body
coordinates of these systems to phase coordinates. In Sec-
tion 3.2 we describe the tasks of bouncing a single ball and
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hopping a single leg. Then we show how to juggle two balls
with one paddle and how to synchronize two hopping robots,
using as a basis the two-dimensional reference field (eq. (4)),
and analyze the stability of each control algorithm. The anal-
yses in this section assume a particular connection strategy
(eq. (3)) and do not address the question of coupling n ar-
bitrary intermittent contact oscillators. Furthermore the two
systems considered require substantially different treatments
(although we attempt to show their similarities). Presently, a
formal treatment of arbitrary networks of arbitrary intermit-
tent contact oscillators does not exist. However, simulations
such as shown in Figure 8, suggest that many such stable
couplings can be designed.

3.1. Phase Coordinates for Intermittent Systems

We first show how to obtain phase coordinates for intermittent
cyclic dynamical systems, by which we mean systems for
which a global cross section can be found. Let f t : R ×
X → X be a flow on X. Formally, a global cross section 3 is
a connected submanifold of X which transversely intersects
every flowline. For any point x ∈ X, define the time to return
of x to be

t+(x) = min{t > 0 | f t(x) ∈ 3} (12)

and define the time since return of x to be

t−(x) = min{t ≥ 0 | f −t (x) ∈ 3} . (13)

The first return map, σ : 3 → 3, is the discrete, real valued
map given by σ(x) = f t+(x). Let s(x) = t+(x)+ t−(x). s is
the time it takes the system starting at the point f t−(x) ∈ 3

to reach 3 again. Now, define the phase of a point x by

φ(x) = 2π
t−(x)

s(x)
. (14)

Notice that the rate of change of phase, φ̇, is equal to 2π/s.
The relationship of these functions to 3 is shown in Figure 3.
Therefore, φ̇ is constant or piecewise constant, changing only
when the state passes through 3.

In the examples we give in Section 3.2, the function
h : X → Y , defined by h(x, ẋ) = (φ, φ̇), is actually a
change of coordinates where X is the space of position and
velocity pairs and Y = S1 × R

+. In juggling, we use the
section 3 ⊆ X defined by x = 0 which corresponds to the
set of states where the robot may contact (and thereby actu-
ate) the system. In hopping we use the section in X defined
by ẋ = 0 and x < 0 which corresponds to the lowest point
in a hop (see Sections 3.2.1 and 3.2.2 for the definitions of
these systems). By construction, h(3) will be given by the set
C = {(0, φ̇) | φ̇ ∈ R

+} in both examples. In these intermit-
tent control situations, it is only in C that φ̇ may be altered
by the control input u. That is, we change φ̇ according to a
control policy u to get the return map in phase coordinates

Fig. 3. The relationship between t−(x), t+(x) and x.

σ ′ : C → C given by σ ′(0, φ̇) = (0, u(φ̇)). We design the
controller so that there is a unique and stable fixed point at
some desired phase velocity φ̇∗ = ω.

We want to control the system so that the return map σ has
a stable fixed point at some x∗. Whether or not h−1(0, ω) =
(0, ẋ∗) depends on the dimension of 3. If dim 3 = 1, as it
will be in the examples we supply, then the preimage of ω is
indeed a point.

The main point of this section concerns the composition or
interleaving of two such cyclic systems. That is, we suppose
we have the system (x1, ẋ1, x2, ẋ2) ∈ X2 with corresponding
phase coordinates (φ1, φ̇1, φ2, φ̇2) ∈ Y 2. As before, system
i may only be actuated when φi = 0. In the examples we
consider, we suppose that it is undesirable for the systems
to be actuated simultaneously. Thus, the set of states where
φ1 = φ2 = 0 should be repelling. One task that realizes these
goals is (M, G) where

M � {(φ1, φ̇1, φ2, φ̇2) | φ1 = φ2 + π(mod 2π)}
G(φ1, φ2) � (φ̇1, φ̇2) = (ω, ω) . (15)

The constraint φ1 = φ2 + π(mod 2π) encodes our desire to
have the pair of phases as far from the situation φ1 = φ2 = 0
as possible.

To analyze and control such a system, we restrict our atten-
tion to the sections 31 ⊆ Y 2 and 32 ⊆ Y 2 defined by φ1 = 0
and φ2 = 0, respectively. For now, suppose that the flow al-
ternates between the two sections. Let gt = H ◦ F t ◦H−1 be
the flow in Y 2 conjugate to the flow in X2 where F = (f, f )

and H = (h, h) and

τi(w) = min{τ > 0 | gτ (w) ∈ 33−i} .

Start with a point w ∈ 31. Let w′ = gτ1(w) and w′′ = gτ2 (w′).
We have w′ ∈ 32 and w′′ ∈ 31, so we have defined the return
map on 31. Now since g is parameterized by the control inputs
u1 and u2 we get

w = (0, φ̇1, φ2, φ̇2) �→ w′ = (71, u1, 0, φ̇2)

�→ w′′ = (0, u1, 72, u2) .
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Thus, the phase velocity updates u1(w) and u2(w
′) must be

found so that eq. (15) is achieved.
In Section 3.4, we will show that simply choosing u1 =

R1(71, 0), the first component of a 1 : 1 reference field as
in eq. (4), and u2 = R2(0, 72) for well chosen values of κ1

and κ2 results in a controlled system that realizes the task
(Definition 1).

3.2. Two Examples of Intermittent Contact Tasks

In Section 3.2.1 we consider as an example of a cyclic, inter-
mittent contact problem, the task of bouncing a ball vertically
on a piston to a desired height. In this fairly simple task, the
paddle can hit the ball at just the right velocity to achieve the
desired height in one collision (assuming such actuation is
within the torque limits of the paddle), as described in Büh-
ler, Koditschek, and Kindlmann (1994). In Section 3.2.2 we
describe a model of a one degree of freedom hopping robot
inspired by Raibert’s hopper (Raibert, Brown, and Cheppo-
nis 1984), similar to that studied in Koditschek and Bühler
(1991). In this model, the robot hops on a spring loaded leg
and has control over the stiffness of the spring. We assume
that it may instantaneously change the stiffness of the spring
just before the decompression phase, at the point of max-
imal compression, thereby roughly simulating the effect of
a pneumatic piston. With the control algorithm we give for
this task, the robot may only approach the desired hopping
height asymptotically, so that the discussion at the end of
Section 3.1 only approximately applies. Nevertheless, when
regulating two such hoppers, the same control idea—to “sam-
ple” the reference field at the cross section—applies in this
situation as well. In Section 3.3 we describe how to juggle
two balls at once and how to synchronize two hoppers. Then
in Section 3.4 we give analytical and numerical evidence that
this method is correct.

3.2.1. Juggling

Consider a system wherein a paddle with position p controls
a single ball with position x to bounce, repeatedly, to a pre-
specified apex. Suppose the paddle always strikes the ball at
p = x = 0 and instantaneously changes its velocity accord-
ing to the rule

ẋnew = −αẋ + (1+ α)ṗ. (16)

The constant α is the coefficient of restitution. We suppose
that the velocity of the paddle is unchanged by collisions.
Evidently, a paddle velocity of ṗ = (α − 1)/(α + 1)ẋ will
set ẋnew = −ẋ. Now define η = 1

2
ẋ2 + γ x to be the total

energy of the system, where γ ≈ 9.81 describes the force due
to gravity (assume the mass of the ball is 1). By conservation
of energy, η̇ = 0 between collisions. Set η∗ to be the desired
energy (corresponding to a desired apex). Define a reference

trajectory for the paddle to follow by µ = cx where

c = α − 1

α + 1
+ k(η − η∗)

is constant between collisions. µ is called a mirror law be-
cause it defines a distorted “mirror” of the ball’s trajectory. As
the ball goes up the paddle goes down and vice versa. The gain,
k, adjusts how aggressively the controller minimizes the en-
ergy error. If we assume that the paddle follows the reference
trajectory very closely, the dynamics of the paddle are then a
function of the ball position so that the system is effectively
two-dimensional (the position and velocity of the ball). The
mirror law controller can be shown (Bühler, Koditschek, and
Kindlmann 1994) to drive the ball to the height corresponding
to the energy η∗.

Using eq. (14) we define the phase φ of the ball so that
φ = 0 when it leaves the paddle, φ = π at the highest point
of its flight, and φ = 2π as it hits the paddle again. Suppose the
ball rebounds from a collision with the paddle with velocity
ẋ0. By integrating the dynamics ẍ = −γ and noting that
collisions occur when x = 0, we obtain the time since the
last impact and the time between impacts, a computationally
effective instance of eqs. (12) and (13), as

t− = ẋ0 − ẋ

γ
and s = t− + t+ = 2ẋ0

γ
, (17)

respectively. The change of coordinates h : (R+ × R) −
(0, 0) �→ S1 × R

+ from ball coordinates to phase coordi-
nates is given by h(x, ẋ) = (φ, φ̇) where, following the recipe
(eq. (14)), we take

φ = π(ẋ0 − ẋ)

ẋ0

and φ̇ = πγ

ẋ0

. (18)

In Figure 4(a) we illustrate the relationship between phase,
phase velocity and the orbits of the juggling model.

3.2.2. Hopping

We model a single, vertical hopping leg, a mass m = 1 at-
tached to a massless spring leg, by a dynamical system with
three discrete modes: flight, compression and decompression.
The latter two modes each have the dynamics of a linear,
damped spring. Flight mode is entered again once the leg has
reached its full extension. The equations of motion are

ẍ =


−g

−ω2(1+ β2)x − 2ωβẋ

−ω2
2(1+ β2

2 )x − 2ω2β2ẋ

if x > 0 flight
if x < 0 ∧ ẋ < 0 compression
if x < 0 ∧ ẋ > 0 decompression,

(19)

where ω and β are parameters which determine the spring
stiffness ω2(1 + β2) and damping 2ωβ during compression.
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Fig. 4. The relationship between phase, phase velocity and the orbits of the (a) juggling and (b) hopping systems. Shown with
black lines are typical one-cycle orbits, corresponding to a certain phase velocity, and with dashed lines, the curves φ = π/2
and φ = 3π/2.

This model is similar to that studied in Koditschek and Bühler
(1991) where a period of thrust at the beginning of decom-
pression was used to stabilize the hopper. We abstract the
dynamics of thrust and suppose that, during decompression,
thrust simply results in a change in spring stiffness and damp-
ing. Thus, ω2 and β2 are control inputs in our model.

Let xb be the lowest point that the robot reaches in a given
hop, just before decompression. In the appendix we show that
choosing β2 = β and ω2 = ων(xb) where

ν = (1− kb)e
βπ/(1− xb)

results in a feedback controller that stabilizes the system to
have its maximal compression point at kb. In fact, it can be
shown that the discrete, real-valued return map f : R− → R

−

that takes the maximal compression point of cycle k to the
maximal compression point of cycle k + 1 is

xb,next = f (xb) = (1− kb)xb

1− xb

. (20)

To determine the phase of this system, it suffices to de-
rive the period, s(xb), of a cycle starting at (xb, 0). The value
of s is obtained by summing the decompression time td , the
flight time tf , and the compression time tc. It is shown in the
appendix that

s(xb) = td + tf + tc

= (π − θl)e
βπ(1− xb)

1− kb

(21)

− 2

γ
ω(1− kb)

√
1+ β2eβθl

(
xb

1− xb

)
+ θl

ω
,

where θl � tan−1( 1
β
). Given the period corresponding to a

particular xb, we define the phase of a point (x, ẋ) to be

φ(x, ẋ) = 2πt−(x, ẋ)/s(xb). In Figure 4(b) we illustrate the
relationship between phase, phase velocity and the orbits of
the hopping model.

It can be shown that s is a diffeomorphism on (−∞, 0). We
may, therefore, work equally well with the conjugate map,

g(T ) � s ◦ f ◦ s−1(T ), (22)

representing each orbit of the system (eq. (19)) uniquely by
its period.

3.3. Implementing the Reference Dynamics

Knowing how to juggle one ball, or control one leg, should
somehow lead us to a way of juggling two balls or synchro-
nizing the controllers of two legs. We now show how to use
the reference field (eq. (4)) in the case that A : B = 1 : 1 to
accomplish both of these tasks with only slight modifications
to the control algorithms presented above.

3.3.1. Juggling Two Balls

For a two ball system with ball positions x1 and x2, we obtain
two phases φ1 and φ2. The velocity φ̇i is reset instantaneously
upon collisions, corresponding to the update rule (eq. (16)).

We next take advantage of the fact that the flow Gt = H ◦
F t◦H−1, described in Section 3.1 and instantiated here, has the
very simple form (y1, ẏ1, y2, ẏ2) �→ (y1+ ẏ1t, ẏ1, y2+ ẏ2t, ẏ2)

between collisions. For each ball i we define a mirror law, µi

which the paddle should follow when it is about to hit ball i.
First, define 7 to be the phase of ball two when the next ball
one collision occurs. Then

71 = φ̇2

φ̇1

(2π − φ1)+ φ2.
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Now, for the first ball we require that, after its next collision,

φ̇1,new = −πγ

ẋnew

= −πγ

−αẋ1 + (1+ α)c1ẋ1

= R1(71), (23)

where c1 is the coefficient in the mirror law trajectory µ1 =
c1x1 and R1(φ) is the first component of the reference field
(eq. (4)). Let η1 be the energy of the first ball. Solving for c1

and using the fact that when x1 = 0, the potential energy is 0
so that ẋ1 = √2η1, gives

c1 = 1

(1+ α)
√

2η1

[
α
√

2η1 − πγ

R1(71)

]
. (24)

A similar expression for c2 can be obtained in terms of
R2(72). This gives us a mirror law for each ball. Combin-
ing these trajectories into a single trajectory of the form

µ = q(Q1, Q2)µ1 + (1− q(Q1, Q2))µ2 (25)

that allows the paddle to manage both systems requires an
attention function q : T2 → [0, 1] which is 1 before ball one
hits and 0 before ball two hits. This is beyond the scope of
this paper, but is discussed in Klavins (2000). We will assume
in Section 3.4 that, away from the situation where both balls
strike the paddle simultaneously, the paddle can service both
mirror laws in an interleaved fashion.

3.3.2. Synchronized Hopping

Now suppose we have two physically unconnected hoppers,
operating simultaneously, with states (x1, ẋ1) and (x2, ẋ2). We
will show how to control both hoppers so that they are kept
out of phase (one is at its highest point while the other is at its
lowest point) and so that they stabilize at a desired hopping
height x∗

b
(or period T ∗). We do this essentially by changing

the set-points, now denoted kb,i , for each hopper according to
the phase of the other hopper. This corresponds to changing
the period and thus allows us to regulate the relative phase of
the hoppers.

To apply our phase regulation algorithm we reset the gains
kb,i , each time a leg reaches its lowest point, according to the
reference field (eq. (4))

kb,i ← R(φj ) � kb − ks sin(φj ), (26)

where j = 3−i and ks is a gain about which we will have more
to say later. The parameter kb sets the desired lowest point in
a cycle (which defines the hopping height and, equivalently,
the period). Recall that kb corresponds to period. It appears
in the first term of the phase regulation expression instead of
phase velocity because it is convenient to later analysis. Using
the fact that changing xb,i is equivalent to changing the period
Ti , this amounts to a period adjustment scheme for each leg
that pushes them out of phase with each other. However, a
leg does not respond immediately to the reset because control

is asymptotic and not deadbeat. It must, therefore, be shown
that this simple method indeed achieves the desired result.

We have defined a system that may be described by the state
vector x = (φ1, φ2, T1, T2) ∈ T×R

+ ×R
+ which evolves as

follows. We have φ̇i = 2π/Ti until some φi becomes 2π ≡ 0.
At this point, its desired hopping height is changed according
to eq. (26) and the period is reset according to the assignment
Ti ← gkb,i

(Ti). The system then continues similarly.

3.4. Analysis

We now analyze the local stability of the controlled systems
described in Section 3.3. To analyze such systems, we derive
the return map of each, as described in Section 3.1. That is,
we let 31 = {(φ1, φ2, φ̇1, φ̇2) | φ1 = 0} and define a map
F : 31 → 31 that gives the phase of oscillator two, and
the phase velocities of both oscillators, just before the first
oscillator’s phase becomes zero. We assume that zero phase
crossings alternate. That is, start with a point w ∈ 31, integrate
the system forward to obtain a point in 32, then integrate again
to get a point in F (w) ∈ 31. Then, compute the Jacobian Jw∗

at the fixed point w∗ of F corresponding to the out of phase
situation given by eq. (15). If the eigenvalues of the Jw∗ lie
within the unit circle in the complex plane, then w∗ is a stable
fixed point of F . In both models we show this to be the case
for certain parameters of the system.

Notice that when A : B = 1 : 1, then R(0, φ2) =
R(φ1, 0). To simplify notation in this section, we redefine
R : S1 → R to be the reference field restricted to φ1 = 0.
Therefore, with A :B = 1 :1,

R(φ) = κ1 − κ2 sin(φ). (27)

3.4.1. Local Analysis of Juggling

Supposing that the paddle in the juggling system exactly
tracks the reference trajectory (eq. (25)), we may consider the
juggling system as equivalent to the system (φ1, φ2, φ̇1, φ̇2) ∈
T

2 ×R
2 where φ̇i is constant except for discrete jumps made

when φi = 0. These jumps are governed by the reference field
(eq. (4)). That is, when φi = 0, φ̇i instantaneously becomes
R(φ1, φ2).

A point in 31 has the form w = (0, φ2, φ̇1, φ̇2). This
maps to the point w′ = (71, 0, R(φ2), φ̇2) ∈ 32 where 71

is the phase of the first system when the trajectory of the to-
tal system first intersects 32. w′ in turn maps to the point
f (w) = (0, 72, R(φ1), R(71)) where 72 is the phase of the
second system when the trajectory next intersects 31. The
phases 71 and 72, which can be obtained via the point-slope
formula for a line (in the φ1, φ2 plane), are given by

71 = R(φ2)

φ̇2

(2π − φ2) and 72 = R(71)

R(φ2)
(2π −71) .

(28)
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Let (x, y, z) = (φ2, φ̇1, φ̇2). Then, expanding f (w), we obtain
a discrete, real valued map on 32 given by

xk+1 =
R

[
R(xk)

zk

(2π − xk)

]
R(xk)

[
2π − R(xk)

zk
(2π − xk)

]
yk+1 = R(xk)

zk+1 = R
[
R(xk)

zk
(2π − xk)

]
.

(29)

Since none of the functions depend on y, we can treat y as an
output of this system. Thus, analytically, it will suffice to treat
eq. (29) as an iterated map of the variables (x, z) ∈ S1 × R

+

given by F (xk, zk) = (xk+1, zk+1). We have the following fixed
point conditions:

PROPOSITION 1. F (x, z) = (x, z) if and only if R(x) =
R(2π − x) = z.

We omit the proof, which is straightforward algebra (note
that the values of x are always taken modulo 2π since x =
φ2 ∈ S1). For the reference field we are using, we have:

COROLLARY 2. If R(φ) = κ1−κ2 sin(φ), then the only fixed
points of F are (π, κ1) and (0, κ1).

We wish to show that the first fixed point, (π, κ1), is stable,
since it corresponds to the situation where the two subsystems
are out of phase and at the desired velocity. To do this, we
examine the Jacobian:

J(π,κ1)F =



κ2
1 − 3κ1κ2π + κ2

2 π 2

κ2
1

κ2

(
κ2π
κ1
− 1

)
π(κ1 − κ2π)

κ2
1

−κ2π
κ1


 .

(30)

Values of κ1 and κ2 which guarantee that the eigenvalues of
eq. (30) lie within the unit circle are not difficult to find. For
example, if the desired phase velocity κ1 is given, then we
can choose κ2, which adjusts how aggressively the balls are
pushed out of phase, to be κ2 = 1

2
κ1/π :

PROPOSITION 2. If κ2 = 1
2
κ1/π then the eigenvalues of

J(π,κ1)F are both 1/2. The point (π, κ1) is a stable fixed point
of F under these conditions.

The proof is just a calculation: simplify eq. (30) using the
constraint and compute the eigenvalues. In practice, it is not
difficult to find other parameters which make F stable. For a
given κ1, we first choose κ2 to be quite small and increase it
slowly while the controller remains aggressive, yet still stable.
It is also simple to show

PROPOSITION 3. The eigenvalues of J(0,κ1)F are 0 and 1 +
4πκ2

κ1
. The point (0, κ1) is an unstable fixed point of F .

This follows from the fact that κ1 and κ2 are both positive.
Proposition 3 shows that the situation in which the two balls

collide with the paddle simultaneously is repelling: the system
is driven away, locally, from this “obstacle.”

3.4.2. Local Analysis of Synchronized Hopping

In deriving the return map of the juggling system (eq. (29)) we
used the fact that the paddle can strike the ball at just the right
velocity to realize the reference field directed updates to phase
velocity. In the hopping system, however, adjusting the spring
stiffness in decompression does not allow for this. That is, in
the juggling system, after a ball one hit, the phase velocity is
adjusted according to φ̇1 ← R(φ2). However, in the hopping
system, when leg one reaches the bottom-most part of a cycle,
the spring stiffness is adjusted so that the period of the hopper
is reset according to T1 ← gkb

(T1) where g is eq. (22) and
kb = R(φ2) is obtained from the reference trajectory.

3.4.3. Derivation of the Return Map

Define to be 3 = {(φ1, φ2, T1, T2) | φ1 = 0}. Assuming
that resets of the legs alternate, we construct the return map
F : 3 → 3. We begin with a point (0, φ2, T1, T2) just before
resetting the period of hopper one. This evolves until a reset of
hopper two. If we suppose that 71 is the phase of hopper one
just before hopper two is reset, then, just after the reset we
have the point (71, 0, g(R(φ2), T1), T2), where g(xb, T ) =
gkb

(T ) is as in eq. (22). This point evolves back to 3 so that
the state just before hopper one is reset for a second time is
(0, 72, g(R(φ2), T1), g(R(71), T2)) where 72 is the phase
of the second hopper just before the second reset of the first
hopper. Calculating 71 and 72 we have

71 = T2

g(R(φ2), T1)
(2π − φ2)

72 = g(R(φ2), T1)

g(R(71), T2)
(2π −71).

Letting x = T1, y = φ2 and z = T2 we obtain that the three
dimensional, discrete, real-valued return map F (x, y, z) =
(x ′, y ′, z′) corresponding to the oscillating system (eq. (19))
is defined by

x ′ = g(R(y), x)

y ′ = g(R(y), x)

g[R( z

g(R(y),x)
(2π − y)), z][

2π − z

g(R(y), x)
(2π − y)

]

z′ = g

[
R(

z

g(R(y), x)
(2π − y)), z

]
. (31)

It is instructive to compare these equations with the return map
(eq. (29)) for juggling—the difference being the appearance of
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g which accounts for the lag between the assertion of control
and its effect.

3.4.4. Local Stability of the Return Map

It can be shown that the point (T ∗, π, T ∗) is a fixed point of
this system, where T ∗ = skb

(kb) is the period corresponding
to the set-point kb. We now wish to show

PROPOSITION 4. The point (T ∗, π, T ∗) is a stable fixed point
of the system defined by eq. (31) when the synchronization
gain ks is chosen to be

1

bπkb

(a + c − bkb)

[
2kb − 2+

√
1− 4kb + 3k2

b

]
. (32)

The proof is given in the appendix.

3.4.5. Numerical Studies and Simulations

We have simulated various combinations of hoppers and jug-
glers with various couplings and observed that our method
stabilizes each system as expected. Figure 5 shows a simula-
tion of the 1 :1 juggling system described in Section 3.3.1. Be-
sides the relationship on the synchronization gain κ2 required
to show Proposition 2, other settings of the gains are satisfac-
tory as well. Increasing κ2 increases the response time of the
system. However, a higher setting results in eq. (29) becoming
period two stable, then period four and so on. Eventually, too
high a setting apparently gives chaotic behavior.

Although Proposition 2 requires a 1 :1 coupling, we have
in fact observed in simulation that any ratio A :B that we tried
could be stabilized provided that κ2 is small enough. Figure 6,
for example, shows the “hit-points” (the phase of ball two for
a ball one collision and vice versa) in a simulation of a system
with A :B = 3 :4 which stabilizes after only a few ball/paddle
collisions.

In Proposition 4, constraining the value of ks to a func-
tion of kb achieves analytical simplicity but is hardly neces-
sary. Numerical simulations of the synchronized hopper sys-
tem suggest a wide interval of ks settings around the guaran-
teed values in eq. (32) yield stability. In Figure 7, we show a
simulation starting from arbitrarily chosen initial conditions
which eventually stabilizes at the desired hopping height and
phase relationship. In our simulations, with ks suitably small,
we could not find initial conditions that did not eventually
stabilize—leading us to believe that the system is in fact glob-
ally asymptotically stable.

Of course, the general theory laid out in Section 2, and par-
ticularly in Section 2.3, may be applied to intermittent contact
systems with more than two oscillators. Figure 8 shows a six-
hopper system as an example of this. The connection matrix
for the system is eq. (1) and thus specifies an alternating tripod
wherein two groups of three are synchronized out of phase.

4. Conclusion

In this paper we have explored a means of coupling cyclic
systems. Our approach has been to develop a class of refer-
ence systems with first order dynamics which serve as model
systems for controlling more complex types of systems, such
as the intermittent contact systems presented in Section 3.
The model systems are constructed using a specification of
the phase relationships desired among the component sys-
tems as well as the communication, or neighbor structure
to be used. It is our belief that developing such specifica-
tion/implementation methods for robotics is crucial to de-
veloping formal methods and dynamical-systems-based pro-
gramming languages for robotics. These in turn would address
scalability and modularity problems that prevent robotics
from benefitting from the “recursive explosion” that, for ex-
ample, computer science has enjoyed.

There are several issues that were beyond the scope of the
present paper or which remain to be explored. The classifica-
tion of which connection graphs give rise to reference systems
that perform the tasks specified by the graphs will eliminate
the need for checking the Jacobian of each equilibrium orbit.
We hope to develop tools for recursive compositions of cyclic
systems: a coupled system, at equilibrium or not, has a phase
which can be coupled to the phase of yet another system to pro-
duce yet another cyclic system. Finally, we have implemented
these control ideas in our hexapod robot (Saranli, Bueler, and
Koditschek 2000). Tuning certain gains allows us to exam-
ine a design space described by the degree of decentralization
as well as the amount of feedback from the environment the
control algorithm uses. The results suggest that performance
may improved by occupying a suitable portion of this space.
We have begun to report on our results (Klavins et al. 2001),
and a more thorough treatment is forthcoming.

Appendix

Single Hopper Return Map

To integrate the system in eq. (19), we change coordi-
nates in the compression and decompression phase (Bühler,
Koditschek, and Kindlmann 1994) so that the system

A =
[

0 1
−ω2(1+ β2) −2ωβ

]

is in real canonical form (Hirsch and Smale 1974). The change
of basis is given by

W =

 ω

√
1+ β2 β√

1+β2

0 1√
1+β2


 .

In the new coordinates we have the system[
ẏ

ÿ

]
= B

[
y

ẏ

]
, B = WAW−1 = ω

[ −β 1
−1 −β

]
.



272 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / March 2002

2 4 6 8 10 12 14
t

1

2

3

4

5

6

position

position of ball one

position of ball two

position of paddle

Fig. 5. A simulation of the 1 :1 juggling system described in Section 3.3.1. The positions of the balls and paddle are shown as
functions of time.
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Fig. 6. A simulation of the juggling system for A :B = 3 :4. Each dot corresponds to a ball-paddle collision in a simulation
with 40 collisions. (a) The first 20 collisions are scattered around the equilibrium orbit. (b) The second 20 are at the equilibrium
orbit, showing 3 ball one hits for every 4 ball two hits.

Fig. 7. A simulation of the 1 :1 synchronized hopping system described in Section 3.3.2. The positions of the leg masses are
shown as functions of time.
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Fig. 8. A simulation of six hopping robots synchronized into two out of phase groups. The two groups consisting of robots
one, two and three and robots four, five and six respectively, are forced to be in phase with other members of their groups.

We define energy and angle to be

Ec � [x, ẋ]W T W

[
x

ẋ

]

θc � tan−1

(
ẏ

y

)
= tan−1

(
(1+ β2)−1/2ẋ

ω(1+ β2)1/2x + β(1+ β2)−1/2ẋ

)
.

The subscript c denotes “compression.” In these coordinates,
the compression phase becomes

Ėc = −2ωβEc

θ̇c = −ω.

A similar expression is obtained for θd and Ed where the d

stands for “decompression”:

Ėd = −2ω2β2Ed

θ̇d = −ω2.

Thus, both θc and θd have a constant rate of change (and de-
crease in time).

Now, starting at a point (xb, 0) corresponds to starting at a
point (E0, π). The lift-off point is (El, θl) and the touchdown
point is (Etd, θtd). Since energy is conserved in flight, we have
that (Etd, θtd) = (El, θl−π). Now, integrating eq. (A1) gives

El = E0e
2β2(θl−π)

and we know Etd = El . Finally, let Eb be the energy at the
next bottom point. Then

Eb = Etde2β(θb−θtd ) = Etde2β(−π−(θl−π)) = Ele
−2βθl

= E0e
2β2(θl−π)e−2βθl = E0e

2[θl (β2−β)−β2π ].

Now, E0 = ω2
2(1 + β2

2 )x2
b

and Eb = ω2(1 + β2)x2
b,next

and
θl = tan−1(1/β2). Therefore,

xb,next = ω2

√
1+ β2

2

ω
√

1+ β2
xbe

tan−1(1/β2)(β2−β)−βπ . (A1)

Substituting β2 = β and ω2 = ων with ν = (1− kb)e
βπ/(1−

xb) results in eq. (20).

Derivation of the Period of a Hop

Let t0, tl , ttd and tb be the initial time at bottom, the lift-off time,
the touchdown time and the next bottom time. Then tl = td

is the time of decompression,ttd = td + tf is the sum of the
decompression time and the flight time, and tb = td + tf + tc.

Now, integrate θ̇d = −ω2 to get θl = θ0 − ω2td so that

td = 1

ω2

(θ0 − θl) = 1

ωτ

[
π − tan−1(1/β)

]
.

We next need the velocity ẋl at lift-off. This can be found
using the equation

El = (0, ẋl)W
T W(0, ẋl)

T = ẋ2
l
.

Thus,
ẋl =

√
El = −ωτ

√
1+ β2xbe

β(θl−π).

Now integrating the flight phase gives that

tf = 2ẋl

γ
= − 2

γ
ωτ

√
1+ β2xbe

β(θl−π).

Lastly, integrating θ̇c = −ω from θtd to−π and solving for tc

gives

tc = 1

ω
tan−1(1/β).

Summing the three times and substituting the value for τ given
in the main text yields the desired result (eq. (21)).

Proof of Proposition 4

We describe the salient points of the proof of this theorem.
Essentially, we linearize F and show that the linearized system
is stable at (T ∗, π, T ∗). To compute the Jacobian of the map
F , first, define

a � (π − θl)e
βπ

b � 1

γ
2ωeβθl

√
1+ β2

c � θ/ω

δ � kbksπb

(1− kb)(a − bkb + c)
.
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Straightforward computation of partial derivatives yields that
the Jacobian evaluated at (T , π, T ) is equal to




1
1−kb

T δ

π
0

π(2+δ)

T (1−kb)
1+ 3δ + δ2 π(2−kb+δ(1−kb))

T (kb−1)
δ

kb−1
− T δ(1+δ)

π

1
1−kb

+ δ


 . (A2)

Finding the characteristic polynomial of eq. A2 and substitut-
ing eq. (32) for ks gives

−λ3 + ξ1λ+ ξ0, (A3)

where

ξ0 = 1
(kb − 1)2 and

ξ1 = kb

(kb − 1)2 (6− 7kb − 4
√

1− 4kb + 3k2
b).

We may now show the following:

LEMMA A1. The roots of eq. (A3) all have magnitude less
than one whenever kb is negative.

Proof. Suppose ρ1, ρ2 and ρ3 are the roots of eq. (A3). Then

(λ− ρ1)(λ− ρ2)(λ− ρ3) = λ3 − ξ1λ− ξ0.

Thus,

ρ1 + ρ2 + ρ3 = 0

ρ1ρ2 + ρ1ρ3 + ρ2ρ3 = −ξ1

ρ1ρ2ρ3 = ξ0. (A4)

Now, it can be shown that when kb < 0 the coefficients of
eq. (A3) satisfy the conditions 0 < ξ0 < 1 and −1 < ξ1 < 0
giving the following conditions on the roots

ρ1 + ρ2 + ρ3 = 0
0 < ρ1ρ2 + ρ1ρ3 + ρ2ρ3 < 1

0 < ρ1ρ2ρ3 < 1
.

Using these conditions it is straightforward to show that two of
the roots are complex conjugates, the other is real and negative
and all have magnitude less than one.

Now, since the eigenvalues of eq. (A2) all have magnitudes
less than one, we can conclude that (T ∗, π, T ∗) is a stable fixed
point of the system (eq. (31)).
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