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Multiple species of noninteracting molecules adsorbed on a Bethe lattice
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A simple method, previously used to calculate the equilibrium concentration of dimers adsorbed on a Bethe
lattice as a function of the dimer activity, is generalized to solve the problem of a Bethe lattice in contact with
a reservoir containing a mixture of molecules. The molecules may have arbitrary sizes and shapes consistent
with the geometry of the lattice and the molecules do not interact with one another except for the hard-core
restriction that two molecules cannot touch the same site. We obtain a set of simultaneous nonlinear equations,
one equation for each species of molecule, which determines the equilibrium concentration of each type of
molecule as a function of the (arbitrary) activities of the various species. Surprisingly, regardless of the number
of species, the equilibrium concentrations are given explicitly in terms of the solution of a single equation in
one unknown which can be solved numerically, if need be. Some numerical examples show that increasing the
activity of one species need not necessarily decrease the equilibrium concentration of all other species. We also
calculate the adsorption isotherm of an “annealed” Bethe lattice consisting of two types of sites which differ-
ently influence the activity of an adsorbed molecule. We prove that if the reservoir contains a finite number of
molecular species, regions of two different polymer densities cannot simultaneously exist on the lattice. The
widely used Guggenheim theory of mixtures, which can also be construed as a theory of adsorption, assumes
for simplicity that the molecules in the mixture are composed of elementary units, which occupy sites of a
lattice of coordination number g. Guggenheim’s analysis relies on approximate combinatorial formulas which
become exact on a Bethe lattice of the same coordination number, as we show in an appendix. Our analysis
involves no combinatorics and relies only on recognizing the statistical independence of certain quantities.
Despite the nominal equivalence of the two approaches, the easily visualized properties of the Bethe lattice

enable one to solve some apparently difficult problems by quite elementary methods.
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I. INTRODUCTION

Many calculations of the properties of a liquid mixture of
several species of molecules, each of which may consist of
multiple elementary units (‘“monomers”), are based on mod-
els in which it is assumed that the monomers can only live
on the sites of some discrete lattice with the restriction that
two monomers cannot occupy the same site [1]. If other in-
teractions are ignored, the calculation of the grand partition
function becomes strictly a combinatorial problem. Identical
mathematics can describe a somewhat different physical situ-
ation, namely, a reservoir of molecules with specified chemi-
cal potentials, in contact with a lattice (usually a collection of
sites on a surface) which can adsorb molecules. Such a
model is relevant to problems in chemical engineering, met-
allurgy, and cell biology.

In this paper we study a particularly simple lattice, the
Bethe lattice, in equilibrium with a reservoir containing (pos-
sibly) many different types of molecules of various sizes and
shapes which can be adsorbed on the lattice and do not in-
teract with each other on the lattice. Using quite simple rea-
soning based on the simple structure of the lattice, we make
an exact calculation of the number of adsorbed molecules of
each species, as a function of the activities of the various
species. The calculation of this “adsorption isotherm” is our
main goal and most important result. In a subsequent paper
we shall discuss the adsorption of molecules which interact
on the lattice, via interactions between atoms (belonging to
different molecules) occupying adjacent lattice sites.

The equations most commonly used to describe a mixture
of various molecules which live on the sites of a lattice are
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those given by Guggenheim [2-4]. His analysis is based on
some approximate combinatorics and estimates of probabili-
ties, which (for reasons which we discuss in Appendix C)
become exact on the Bethe lattice. Guggenheim obtained an
approximate formula for the number of distinct arrangements
of N, molecules of type 1 (each molecule occupying n;
sites), N, molecules of type 2 (each molecule occupying n,
sites), etc., on a lattice in which each site has ¢ nearest neigh-
bors. The formula also involves a set of numbers [5] 7,
which is the number of distinct arrangements of a molecule
of type i on an empty lattice, when one monomer is pinned to
a particular site, divided by the symmetry number of the
pinned molecule.

Guggenheim’s reasoning is applicable to molecules which
are chains and branched chains, but specifically excludes
molecules which include closed loops. Guggenheim appears
to assume that all sites of the lattice are occupied, but his
formula is equally valid if one defines a type 0 molecule as a
vacancy. From Guggenheim’s combinatorial formula one can
derive formulas for the thermodynamic properties of the
mixture as a function of Ny,N,,... and the internal partition
functions of the individual molecular species. In Ref. [2]
Guggenheim ignores interactions (except hard-core restric-
tions) among the molecules, as we shall in the present work.
He includes some interactions in another paper [4] which
was published simultaneously with Ref. [2].

Somewhat earlier, Chang [6] applied the analog of
Bethe’s approximation, [7,8] which was derived for the study
of binary alloys and the Ising model, to the problem of
dimers on a planar lattice. Miller [9] extended Chang’s
method to trimers. Guggenheim’s combinatorics yields
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Chang’s and Miller’s results as special cases. Only consider-
ably later was it recognized that the Bethe approximation is
exact when the lattice is the central portion (far from the
boundary) of a Cayley tree, which came to be known as the
Bethe lattice (see footnote 12 of Ref. [10]). At least in the
case of the dimer problem, the numerical relation between
the dimer coverage and the dimer activity z on the Bethe
lattice is very close to the corresponding relation on real
lattices with the same coordination number [10-13]. Almost
certainly, the agreement becomes worse when one considers
larger and more complex molecules.

Locally, the Bethe lattice may not appear markedly differ-
ent from other lattices with the same coordination number.
On a larger scale, a striking difference (which makes exact
solutions possible) is that there are no closed paths on the
Bethe lattice. Thus, if one wishes to consider the sol-to-gel
transition in polymers, in which the jello-like texture of the
gel is due to the formation of a huge network of polymers
cross linked to each other, a model in which the polymers are
constrained to lie on a Bethe lattice would seem to prohibit
much of the important connectivity.

Nagle [11] and Gaunt [12] have developed systematic ap-
proximations to the density of noninteracting dimers on vari-
ous regular lattices, when the dimer activity z is specified.
Van Craen and Bellemans [ 14] have studied the adsorption of
trimers on regular lattices, using a generalization of Nagle’s
method. The leading term in Nagle’s and Van Craen and
Bellemans’s series is the Bethe approximation, and the diffi-
culty of calculating succeeding terms increases rapidly.

It is doubtful that with a reasonable amount of labor one
can develop a useful series, more accurate than the Bethe
approximation, to deal with the problem of a lattice which
can simultaneously adsorb several or many species of mol-
ecules whose activities are specified and which do not inter-
act (except for hard core restrictions) on the lattice. Assum-
ing that the lattice is a Bethe lattice, we use quite simple
reasoning to derive a set of coupled equations, one for each
molecular species, relating the activities to the numbers of
adsorbed molecules of each species. These equations are ex-
act on the Bethe lattice, and the derivation does not utilize
any combinatorics. Our set of coupled equations is easily
soluble.

Graham et al. [15] have shown that the Bethe approxima-
tion [13] and Guggenheim’s combinatorial approach yield
identical equations when the reservoir contains only mono-
mers and dimers (y,,=1 and y,=¢q/2 for all lattices, where
the subscripts m and d refer to monomers and dimers). In
Appendix C we show that if the reservoir is a dilute solution
with concentrations C; of the various species and if we cal-
culate the numbers of adsorbed molecules {N;} in terms of
the {C;} and mass action constants empirically determined by
experiments at very low concentrations, then all dependence
on the v; disappears and Guggenheim’s equations become
identical with ours. Thus, if one accepts Guggenheim’s
method of counting and the consequences thereof, one is
tacitly agreeing that it is reasonable to replace the lattice
under study by a Bethe lattice of the same coordination num-
ber.

Ryu and Gujrati [16,17] have analyzed a lattice model of
a mixture of polymers, in which all the constituent “mono-
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mers” of each polymer live on sites of a Bethe lattice. Their
model includes nearest-neighbor interactions, and the result-
ing equations are exact, but increasingly difficult to solve as
the number of species increases. Our equivalent set of equa-
tions are also difficult to solve when interactions are present
(except for one important special case). However, our
method of reasoning is quite different from that of Gujrati
and coworkers, and, in our opinion, considerably simpler.
The difference will be briefly discussed in Sec. II of this
paper.

More specifically, as we see in Appendix C, Guggen-
heim’s calculation of W(N,N,,...) (the number of distinct
configurations on the lattice with N; molecules of type 1, N,
molecules of type 2, etc.) is based on an estimate of the
probability P,({N;}) that a given connected set of n sites are
all vacant for arbitrary values of {N,}. The estimate is exact
only on the Bethe lattice, and it is difficult to make a better
estimate for a general lattice.

Our equations, and Guggenheim’s equivalent set, give the
activities z; of the various molecular species as explicit func-
tions of (N{,N,,...), the numbers of each species on the
lattice. If one is interested in calculating the thermodynamic
properties of a mixture containing known amounts of the
various constituents, this form of the equations is useful.
However, this form is not so useful for obtaining properties
as a function of the activities z;. Accordingly, our goal, and a
main result of this paper, is to give N; as a function of the
activities. We are not aware that explicit formulas for
Ni(z;,25,...) have been previously exhibited.

We use the term “polymer” to denote any molecule which
occupies more than one site on the lattice, but do not claim to
describe molecules with closed loops, since these cannot oc-
cur on the Bethe lattice. Our discussion assumes that we
have a list of all the types of polymers in the reservoir, their
activities, and their multiplicity factors . By adopting this
assumption we avoid any discussion of the polymerization
processes by which simple units coalesce to form more com-
plicated objects [18,19].

In Sec. II of this paper we present our calculation of the
polymer densities on the lattice when the polymer activities
are specified. All densities are expressed in terms of the so-
lution of a single equation, which is easily solved numeri-
cally for an arbitrary number of species. Section III discusses
some applications of our results: (i) when all possible (on the
Bethe lattice) polymers are present, and the activity of a
polymer having n bonds is z”; (ii) when only one species of
polymer is present; and (iii) when the reservoir contains
three types of polymers with specified activities, in which
case we exhibit numerical results. Section IV discusses the
adsorption of dimers on a Bethe lattice with two types (x and
y) of adsorption sites, with different activities for a dimer
adsorbed on two x sites, two y sites, or an x site and a y site.
For the case of an annealed lattice an explicit solution is
obtained in terms of the solution of the dimer problem on a
lattice with only one type of adsorption site. In Sec. V we
discuss the adsorption of arbitrary polymers on the annealed
two-component Bethe lattice, with a particular assumption
about the form of the dependence of the activity of an ad-
sorbed polymer on the types of the underlying sites. Techni-
cal issues are treated in the Appendices. Appendix A shows
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FIG. 1. Small section of a Bethe lattice with coordination num-
ber g=3. The seed site is labeled “S.”

that there is no separation of phases on the one- or two-
component lattice, provided that the number of polymer spe-
cies in the reservoir is finite. Appendix B discusses flexible
chain polymers on the one- and two-component Bethe lat-
tices. In Appendix C we discuss the relation between our
method and Guggenheim’s combinatorial analysis.

II. METHOD OF CALCULATION

The Cayley tree is a structure constructed recursively as
follows. From a central “seed” site one introduces connec-
tions (which we call [20] “edges”) to a shell of g nearest
neighboring sites. Then, recursively one adds g—1 edges to
each site to obtain additional shells of sites. Thereby one
obtains a structure in which all sites except boundary sites
are connected to ¢ nearest neighbors. Even in the limit of a
large number of sites, the fraction of sites on the boundary of
the Cayley tree remains of order unity. Consequently, the
global properties of a Cayley tree are affected by the prop-
erties of boundary sites even in the limit of large system size.
To overcome this undesirable property one usually considers
the associated “Bethe lattice” in which only properties far
from the boundary of the asymptotically large Cayley tree
are considered. Figure 1 shows a section of a Bethe lattice
with g=3.

The most important property of the Bethe lattice, which
makes it tractable to analysis, is that it is a recursive structure
which contains no closed loops of edges. If the lattice is in
equilibrium with a reservoir containing dimers (a dimer is an
object which covers the edge between two adjacent lattice
sites), and if dimers on the lattice do not interact with each
other, [1] it is possible to make an exact calculation of the
relation between the dimer coverage and the dimer activity
z (see Refs. [10-13] and references cited therein). As we
have noted above, the Bethe lattice and the periodic lattices
of the same coordination number exhibit almost the same
numerical relation between the dimer coverage and the dimer
activity z.
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FIG. 2. (Color online) Panels (a) and (b) show two differently
shaped polymers (represented by heavy solid lines) consisting of
three monomers on a lattice of coordination number 4. If the energy
is independent of the angle between adjacent bonds, then we treat
the two polymers shown as different configurations of the same
polymer. Otherwise, they are treated as different polymers.

The analysis of Gujrati and coworkers is based on writing
recursion relations which allow one to work one’s way in
from the (remote) boundary of the lattice toward the central
region. If the lattice consists of M generations (where M
> 1 and the seed site is the zeroth generation), one can define
partial partition functions on the sublattice L,,_,) between an
edge in the (M —n)th generation and the boundary, subject to
various information about what is occupying that edge. Re-
cursion relations express the partial partition functions on the
sublattice L_,-) in terms of partial partition functions on
Ly-n)- Physical quantities (densities and probabilities) are
ratios of partial partition functions and can be expected to
approach definite limiting values when n> 1. By examining
the fixed points of the recursion relations, Ryu and Gujrati
calculate physical quantities, or equations relating physical
quantities.

We entirely circumvent the above program, as well as
Guggenheim’s combinatorics, by invoking some simple con-
siderations of statistical independence (induced by the very
weak connectivity of the Bethe lattice, which becomes two
disconnected lattices if any edge is removed) and homoge-
neity (equivalence of all sites in the central region).

Let us consider a lattice (not necessarily a Bethe lattice) in
equilibrium with a reservoir containing various species of
polymers. A polymer is a group of atoms (“monomers”) con-
nected by lines (“bonds”). When a polymer is adsorbed onto
the lattice its bonds cover edges of the lattice and its atoms
cover sites of the lattice. To model short-range repulsive
atom-atom interactions of real polymers, we impose the rule
that a site cannot be covered by more than one atom. We
label the species of polymer by an index a and assume that
polymers adsorbed on the lattice do not interact with each
other [1]. The “activity” of the species « is z,=ePFeZ,,
where u, is the chemical potential of species « and Z,, is the
partition function of the adsorbed polymer (including any
internal degrees of freedom and interaction energy with the
lattice). For simplicity (especially when counting the number
of configurations of a given species of polymer), it is fre-
quently convenient to assume that the activity of the polymer
depends only on the topology of the polymer, and not on the
angles between intrapolymer bonds [21]. Figure 2 shows
some simple polymers on a lattice of coordination number 4.

The (unnormalized) probability of finding a particular
configuration C of polymers on the lattice is
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H ZZQ(C)’ (1)

where N,(C) is the number of a-polymers in the configura-
tion C. Usually one starts the discussion of the statistics of
adsorption by considering the grand partition function, Q,
defined as

Q(Zl,Zz,Z3 )

=2 X D L WINLNy Ny, ) ()
N=0 N,=0 N3=0

where W(N,;,N,,Ns,...) is the number of configurations
having N, polymers of type 1, N, polymers of type 2, etc.
Then the average number (indicated by an overline) of ad-
sorbed a-polymers (polymers of type «) is given by

N,=2,0InQldz,. (3)

A principal result of the present paper is that we can obtain
the statistics of polymer adsorption on a Bethe lattice without
having to perform a direct calculation of the grand partition
function.

In Ref. [10] we discussed several statistical problems aris-
ing from consideration of dimers adsorbed on a Bethe lattice,
and have also discussed a systematic procedure for calculat-
ing “loop corrections” to the dimer adsorption isotherm
when the Bethe lattice is replaced by a periodic lattice (e.g. a
square or triangular lattice) with the same coordination num-
ber. (Reference [10] also includes references to much of the
previous work relating to dimers.) Section ITA of Ref. [10]
presents what we believe to be the simplest derivation of the
dimer adsorption isotherm (density of adsorbed dimers vs. z)
on the Bethe lattice. It is to be noted that this derivation does
not require calculation of the grand partition function. More-
over, as the present paper shows, the method is quite easily
generalized to construct an exact solution (again, without
calculating the grand partition function) when the Bethe lat-
tice is in contact with a reservoir containing many species of
polymers with arbitrary activities.

We consider a large finite lattice (not necessarily a Bethe
lattice) which can adsorb various species of polymers (which
do not interact with each other on the lattice) [1]. The prob-
ability P(N,,N,,...N,...) of finding N, polymers of type 1,
N, polymers of type 2, etc., on the lattice is proportional to
the summand in Eq. (2), so that

P(N,,Ns, ... N,...)
= Q(ZhZz,Z} e )_IW(NI,Nz,N3, ce. )111\71212\[2213\[3 oo
4)

If the lattice is large, the summand in Eq. (2) is a sharply
peaked function of each N,. If we vary N, holding the other
N;’s constant, then the most probable value of N, is propor-
tional to the number of lattice sites N, and thg half-width of
the function P(...,N,,..) is proportional to VN. Accordingly
we need not distinguish between the most probable value of

N,, and the average value N,,. Since P is stationary when we
vary any N, around its most probable value, we have
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W(NLN, ... NN N
=W(]V1,]V2...]Va+l,...)zll\"zlzv?..zg"“... (5)
and thus, for every «

W(N,Ny...N +1, ... 1
( 12 Vo )=_. ©)
W(N|,N,...N,, ...) Za

Consider the set of configurations C(N;,N,,...) which
have N; polymers of type 1, N, of type 2, etc. We define an
a-VACANCY to be a set of n, empty sites on the lattice,
where n,, is the number of monomers in the a-polymer (the
polymer of type ) which are arranged in such a way that the
set can accommodate an adsorbed a-polymer. We now con-
sider the entire set of configurations C’ which are obtained
from the set of configurations C by placing an a-polymer
on one of the V,(C) a-vacancies in C. By this construction
we generate the complete set of configurations
C'(N,,N,,..,N,+1,..). However, each configuration C’ is
generated N,+1 times, since any of the N,+1 type a poly-
mers in C’ could have been the one newly added. Thus we
have

W(N,,N,...N,+1,...)
Vo N,.Ny...N,, ...)

=W(N,Ny...Ng, ... .
(N1,N, ) N+ 1 (7)
Strictly speaking, V, does not have the same value
for all configurations C(N;,N,,..,N,,..). But when
Ny,N,,..,N,, .. are large, the width of the distribution of V,,

(consistent with this set of N’s) is negligible compared to the
average value V, and we may replace the N,’s by their av-
erage values N, to obtain

W(N\,N,...Ny+1,...)

=W(N,Ny... Ny, ...) ——_ (8

Here we also replaced N,+1 by N, in the denominator of

Eq. (8).
Combining Egs. (6) and (8) we obtain, in equilibrium,

V,N,=1/z, 9)

for every polymer species «. We note that Egs. (6), (8), and
(9) are valid for any large lattice. However, because of the
simple recursive structure of the Bethe lattice we can calcu-

late V,, explicitly as a function of N{,N,,...N,..., so that
Eq. (9) becomes a set of simultaneous equations in

N{,N,,..,N,,.... Fortunately, this system of equations is
easily soluble.

In Eq. (9) V,, and N,, are, respectively, the average values
of the total number of a-vacancies and a-polymers on the
lattice. In the treelike structure whose central portion is the
Bethe lattice, a finite fraction of the sites are at the boundary.
Therefore one might worry about the correctness of replacing
Eq. (9) by the local equation
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where py is the density of a-vacancies (the number of
a-vacancies per site) and p, is the density of a-polymers in
the central portion of the tree [22]. In equilibrium, the im-
portant set of configurations are the most probable ones. Let
us consider two subregions of the lattice, R and R,, and
suppose that

Pva(Rz) Pva(R 1)
pa(RZ) pa(Rl) .

Then the reasoning leading to Eq. (8) implies that we will
obtain a more probable set of configurations by transferring
an a-polymer from R; to R, [23]. Consequently we can
infer that py /p, has the same value in all regions, and thus
the global formula (9) implies the local formula (10).

Another, perhaps simpler, way to derive the local equation
(10) is to focus our attention on a particular lattice site S. If
C, is a configuration in which S is occupied by a monomer of
an a-polymer, removal of the a-polymer from C; will create
a configuration C, in which S is part of an @-vacancy. If, in
the configuration C,, the site S is part of n distinct
a-vacancies, then there are n distinct configurations C;, in
each of which S is occupied by a monomer of an a-polymer,
which generate C, when that a-polymer is removed. Since
each of these configurations contains one more a-polymer
than C,, it follows from Eq. (1) that Pva(S)/ p(8)=1/z, for
every site S. Thus the local equation (10) is proved.

If the average number of a-polymers per site is p,, then
the probability f, that a site is occupied by one of the mono-
mers in an a-polymer is f,=n,p,, where n, is the number of
monomers in an a-polymer. Far from the boundary of the
lattice, all sites are equivalent and thus f, and p, are not site
dependent. The probability that a site is occupied is f
=2>,f. and the probability that a site is vacant is 1—f.

An occupied edge is defined as an edge which is covered
by a bond of a polymer. A vacant edge is defined as an edge
which has empty sites on both ends. A vacant edge is neces-
sarily unoccupied, but an unoccupied edge is not necessarily
vacant, since a monomer may sit on one or both of the sites
at the ends of the edge. If boundary effects can be neglected,
then the probability g, that an edge is occupied by a bond of
an a-polymer is

8a= (Naba)/(Nq/z) = (Z/Q)pabav (12)

where b, is the number of bonds in an a-polymer. Since
boundary effects on the Cayley tree are potentially relevant,
we give a more careful derivation of the last equality of Eq.
(12). We look at a particular site S far from the boundary and
note that in equilibrium all nearby sites are equivalent. The
average number of a-polymers touching S is f, and the total
number of bonds in those polymers is f,b,. Each bond
touches two sites and each polymer touches n, sites. There-
fore the average number of a-bonds touching S is
2fbo/n,=2p.b,. The number of edges touching S is g, and
thus the number of a-bonds per edge (which is equal to the
probability that an a-bond lies on the edge, since an edge can

(11)
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FIG. 3. Symmetry numbers for sites of a polymer. The symme-
try numbers of sites a, b, and ¢ are 2, 4, and 8, respectively, and the
associated values of W are Q, 20, and 4Q, respectively, where Q
=q(g—1)%(g-2)%/2°. Thus y for this polymer is Q/2.

accommodate at most one bond) is 2p,b,/q. Thus Eq. (12) is
proved.

The preceding is valid for any lattice. We now specialize
to the Bethe lattice. Fortunately, for this case we can give an
explicit formula for py in terms of py,ps,...p4,.... Then
Eq. (10) becomes a closed set of equations which determines
P1>P2s---Pgs--- as functions of z;,z,,.... The development
will involve “multiplicity factors” 7,, which we now define.
In words, 7, is the number of a-vacancies per lattice site on
the empty lattice. To calculate y, we proceed as follows.
Each atom i in the a-polymer is characterized by a symmetry
number &,(i), which is the number of sites into which site i
can be mapped via symmetry operations which leave the
topology of the polymer invariant. Some examples of sym-
metry numbers are shown in Fig. 3. Now fix atom i of the
polymer to cover the seed site and count the number of ways,
W,(i), that an a-polymer can be placed on the empty Bethe
lattice with the seed site so fixed. Then 7y,=W,(i)/&,(i).
(The quantity 7y, does not depend on i.) This algorithm is
illustrated in Fig. 3 [24].

Now we can state the theorem which is the crux of our
calculations.

Theorem. On a Bethe lattice

pv, = Yol = f)'al(1 = g)"a", (13)

where
=2 =2 1P (14)
and

§=280=21Q) 2 paba=(219) 2 (ny—1)p,.  (15)

In writing Eq. (15) we have used Eq. (12), replacing b, by
n,—1.

For the case when the only polymers are dimers (n,=2)
we have proved this theorem in Ref. [10] (Sec. ITA) and thus
derived the explicit formula for the dimer density as a func-
tion of z. Now we give a general proof of the above theorem.
First we write
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FIG. 4. The set () containing n+ 1 sites decomposed into a set
Q' (inside the rectangle) containing n sites, plus a site B (which is
not in )’) connected to only a single site (A) of Q'.

pVU(= YaPa» (16)

where P, is the probability that all n, sites of the vacancy
structure are actually vacant. The theorem will be proved if
we can establish that for any connected set of n sites on the
Bethe lattice, the probability that all the sites are vacant is

P,=(1-"(1-g"". (17)

We establish this relation by induction on n, the number
of sites in the structure. Equation (17) is clearly true for n
=1, since 1—f is the probability that a site is vacant. If () is
a connected set of n+1 sites on a Bethe lattice, there are at
least two sites which are at the end of a tail (i.e., the site is
connected to the rest of the set by only one edge). Let B be
such a site and let A be the site to which B is connected. In
Fig. 4 the set )’ (which includes site A) is the set of all sites
in (), excluding B. With the notation that P( ) is the prob-
ability of the event in parentheses we can write

P(all sites in () are vacant)
= P(all sites in ()’ are vacant)

X P(B is vacant|all sites in ()’ are vacant),

(18)

where we define P(E,|E;) to be the conditional probability
that E, occur given that E; is known to occur. In other words

P(E,|E,) = P(E, and E,)/P(E,). (19)

The value of the first factor on the right side of Eq. (18) is
given by the induction hypothesis, since )’ contains n sites.
On a Bethe lattice the only path from )’ to B is through the
edge AB. The edge AB divides the set of all the sites of the
lattice into two disjoint sets S; (which contains A) and S,
(which contains B). Define {); as S; plus all edges connect-
ing sites in S plus edge AB. Define (), as the set of all sites
in S, and edges connecting sites in S,. The only information
about (), which is relevant to determining the set of possible
configurations of (), is whether or not edge AB is unoccu-
pied. In particular, the additional information that A is vacant
(i.e., not only is edge AB unoccupied, but all the other edges
touching A are unoccupied) does not affect the conditional
probability that B is vacant. Consequently
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P(B is vacant|all sites in ()’ are vacant)
= P(B is vacant|edge AB is unoccupied)
= P(B is vacant and edge AB is unoccupied)
/P(edge AB is unoccupied). (20)

But if B is vacant the edge AB must be unoccupied, and thus
the numerator of the last member of Eq. (20) is just the
probability that B is vacant. Therefore the second factor in
Eq. (18) is (1—=f)/(1—g) (recall that g, is the probability that
AB is occupied by a bond of an a-polymer, and g=> g, is
the probability that edge AB is occupied). Since the first
factor in Eq. (18) is, by the induction hypothesis, (1
- (1-g)™!, it follows that

P(all sites in Q are vacant) = (1 — /)""/(1 - g)", (21)

which proves that the probability that any connected set of n
sites are all vacant is (1—£)"/(1—-g)"'. Thus Eq. (17) is
proved and consequently we have established Eq. (13).

Equation (13) enables us to make a simple calculation of
In W(p;,ps,...) and therefrom the entropy S=k In W. Equa-
tions (13) and (7) imply

(UN)3In W(py.pa. . )/ dpa=In[y,(1 = f)"e/py(1 = g) "],
(22)

If we introduce a parameter \, which will vary from O to 1,
then

In W[()\ + d)\)pl,()\ + d)\)pz, .. ] —In W()\pl,)\p2, .. )

=d\, p,dIn W/dp,,, (23)

where the partial derivatives are evaluated at (Ap;,\p,,..).
Using Egs. (14) and (15) and noting that W(0,0,..)=1 we
obtain after elementary integrations

(UN)In W(py,ps, . )= 2 poIn(¥a/p,) = (1= fln(1 - f)

+(g/2)(1 = g)In(1 - g). (24)

This result was also obtained by Ryu and Gujrati and agrees
with Guggenheim’s expression for In W [see Appendix C,
Eq. (C1), and use Stirling’s formula].

Since, by Eq. (10),

(I=f)"
Pa=ZaPv, =ZaVYa{  n-1 (25)
e gyt
and f,=n,p, Eqs. (13)-(15) imply that
F= 2 2o vall = f)'el(1 = g)"e! (26)

and
§= Q292 (ng=Dzay(1=H"al(1-g)"t. (27)

If we define u=1-f and w=1-g, then Eq. (26) becomes
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I-u= Wz naza'}’a(u/w)”a, (28)

and Eq. (27) becomes

1=w=Q2g)w> (ng— 1)z yo(u/w)"a. (29)

If u/w has been determined, this equation can be used to get
w by

Uw=1+2/q)2, (n,— 1)z, y,(ulw)"e. (30)
To determine u/w we combine Egs. (28) and (29) to obtain
u 2 u\" 2 u \"e
1=_+<1__)2nazaya(_) +_2Za7a<_) .
w q/ w q o w
(31
Equation (31) can be solved numerically (or, in simple cases,
algebraically) for u/w. Then Eq. (30) can be used to obtain w
(and thence f and g). Equations (13) and (10) then yield Py,
and p,.

If the densities p, are known, one can calculate pair cor-
relations. Let p,,+ be the probability that one end of an edge
AB is occupied by a monomer of an a-polymer and the other
end is occupied by a monomer of an a’-polymer (if a=a’,
we define p,, as the probability that the two ends are occu-
pied by monomers of different a-polymers). We write

P(Ais a and B is o)
= P(A is a and AB is unoccupied)

XP(B is a'|AB is unoccupied and A is «).
(32)
On a Bethe lattice, the information that A is « does not

affect the conditional probability [the second factor in Eq.
(32)] and can be omitted. Since

P(A is a and AB is unoccupied)
+ P(A is a and AB is occupied) = P(A is @) =n,p,
(33)
and the second term on the left side of Eq. (33) is just the

fraction of all edges which are occupied by bonds of
a-polymers, i.e. p,(n,—1)/(g/2), we find that
P(A is « and AB is unoccupied) = p [n,— (2/q)(n, - 1)].
(34)

Similarly, the second factor in Eq. (32) is py[ng
-(2/q)(nyy—1)]/(1-g) and we obtain

Paa’ = (2= 84a)palna = (2/g)(n, = 1)]
2/g)(ny =D -g),  (35)

where 8, . is the Kronecker delta and the prefactor comes
from the fact that the &’ could have been on A and the « on
B. If we let @=0 denote vacancies (with ny=1 and py=f,
=1-f), Eq. (35) is valid for a,a’ =0.

Xpa’[na’ -
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III. SPECIAL CASES

A. Reservoir contains all possible polymers, with z,=z"«"1

In this section we show that the above formalism gives
the exact result for the case when the reservoir contains ev-
ery type of polymer which can fit onto a Bethe lattice and the
activity of a polymer which has n, monomers is

Zg=2"l (36)

For this case one can associate an activity z independently to
each bond, in which case the probability that a given edge is
occupied is z/(1+z). Since each connected set of bonds on
the lattice is a polymer, our analysis is applicable and should
yield the results

l-g=—o (37)
and

1-f= (L)q (38)

We now show that the above formalism reproduces these
results. Note that for any F we may write

> YaF(ng) = 2 F(n)W(n), (39)
e} n=2

where W(n) is the number (per site) of connected clusters of
n sites that can be formed on a Bethe lattice. Thus we may
write Eq. (31) as

-1
r=1- T (27 - D(z7), (40)
g+ 1 (c+1)z
where o=¢g—1, 7=u/w, and
d(x) = >, W(n)x". (41)

n=2

In Ref. [10] we used the exact expression for W(n) given by
Fisher and Essam [25] to evaluate ®(x) as

o—1
B(x) == x+y9= "~

Yo (42)
where y,=y,(x) is the implicit solution of
yo=x(1+y0)” (43)

which, for small x, is asymptotically equal to x. From these
two equations one can also obtain the result that

D' (x) == 1+ (yo/x)(1 +y). (44)
Then Eq. (40) yields
-1
r= 1= T (1 )]
2 o-1 5

where yo=yo(z7)=z7 1+yy(z7)]°. Equation (45) yields
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z=yo(z7), (46)
ie. z=z7(1+z)” and thus
r=(1+2)"7. (47)
Then Eq. (29) is
i:l+ﬁ{7®’(zr)—%®(zr)]. (48)
Using Egs. (42) and (44), we then find that
w=(1+2)" (49)
and
u=wr=(1+z)"@D, (50)

in agreement with Egs. (37) and (38), in accord with our
expectations. We also find that the number of polymers per
site with n bonds is W(n+1)z"/(1+z)Do+,

B. Reservoir contains only one type of polymer

If the reservoir contains only one type of polymer, which
has n monomers, multiplicity , and activity z, then the pre-
vious mathematics can be somewhat simplified. Equations
(10) and (13)—(15) yield

[1-np]"
2/g)(n-1)p]"™"!

PEIY (51)
which determines p.

More generally, one can easily show that if the activity of
one species (a polymer containing n monomers) approaches
infinity, then the density p of that species approaches 1/n
(i.e. every lattice site is occupied by a monomer belonging to
a polymer of that species) and the fraction of edges which
are covered is g=(2/g)[1-(1/n)]. If f is the fraction of sites
occupied by the dominant species, and 7y and z are respec-
tively the multiplicity and activity of that species, then

1-f=a(n.q)/(y)"", (52)
where
2 2 n—1|1/n
a(n,q) = [i(l —;+%> ] . (53)

If the reservoir contains several species of polymer (enu-
merated by the index «) all having the same number n of
monomers, but with multiplicities vy, and activities z,, then
Egs. (10) and (13)—(15) imply

Pa=2ZaYoF (p), (54)

F(p)=[1-np]"[1 - (2/g)(n—1)p]"". (55)
Since p=2,p,, we find that p=(2 ,z,Y.)F(p) which deter-
mines p, and also find p,/p=2,Ya/ ZaZaYa
If the reservoir contains only dimers (n=2, y=¢q/2,
activity=z), Eq. (51) is quadratic in p and yields
_q|2qz+1-\1+4(g-1)z
4 1+4¢%2
which was derived in Ref. [10], Sec. IIA.

= B(2), (56)
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C. Numerical examples

For specified values of the vy, and z,, a simple computer
program yields the values of the f,. We prefer to exhibit the
f., which are all in the range [0,1], rather than p,=f,/n,.
The presence of a large number of species presents no com-
putational difficulties, but it is difficult to exhibit the results
in a form which is enlightening to the reader.

We exhibit some results for the case where the reservoir
contains three species: trimers (n=3), tetramers (n=4), and
pentamers (n=5). In Fig. 5(a) we exhibit f3, f4, and f5 as
functions of yszs5, with y3z3, and y,z4 held constant. In Fig.
5(b) we vary vy,z4, with 323 and 7ysz5 held constant. In Fig.
5(c) we vary 7y3z3, with y,z4 and yszs held constant.

We note that, in Fig. 5(a), f5 is an increasing function of
Zs, and f3 and f, are decreasing functions of zs. Similar re-
marks apply to Figs. 5(b) and 5(c). The fact that [in Fig. 5(a)]
f5 is an increasing function of z5 follows from the form of the
grand partition function, which implies that z,dN,/ &za=lel
—-N,2>0. It seems reasonable that, in the absence of any
interactions except the hard-core restriction that at most one
monomer can occupy a site, f3 and f, should decrease as zs
increases. We investigated a large number of numerical ex-
amples involving three species of molecules (A, B, and C)
with a variety of sizes and activities and in each case found
that, if zp and z are held constant, f and f~ decrease as z4
increases.

Nevertheless, one could imagine the following scenario:
(i) A and B are small molecules and C is a large molecule;
(ii) the activities zz and z. are such that, in the absence of
A’s, most of the lattice sites are occupied by C’s; (iii) as z,
increases from zero, an increasing number of type C vacan-
cies are partially occupied by A’s, decreasing the number of
C’s and making room for B’s. Thus, for fixed zz and z. there
might be a range of values of z, within which f5 is an in-
creasing function of z,.

A very simple example suffices to show that there is no
general prohibition against this scenario. Consider a lattice
consisting of A clusters of sites, each cluster consisting of
five sites arranged linearly (Fig. 6). The lattice is in equilib-
rium with a reservoir containing dimers, linear trimers, and
linear tetramers with activities z,, z3, and z,. An adsorbed
molecule must lie entirely on a single cluster, and at most
one monomer can occupy a lattice site. The grand partition
function of the lattice is {N , where

[=1+4z,+ 3Z§ + 22923+ 323+ 224. (57)

The average numbers of tetramers and trimers on the lattice
are Ny/N=2z,/{ and N3/ N=z3(2z,+3)/{. We assume that
74> 73 and z,> 1; thus, if z,=0, almost all clusters are occu-
pied by tetramers. If z,>0, a dimer will displace a tetramer
from some of the clusters and (depending on the location of
the dimer) will create a vacancy which can be occupied by a
trimer. Simple algebra yields N3/ 812|Z2:0>0 if 7,>2.5,
and JN;/dz,>0 for 0<z,<X, where X~ (2z,/3)"> when
743> 1. When z, is sufficiently large (with z; and z, held
constant), dimers dominate the lattice.

In Fig. 5, and in our other early calculations we assigned
the value 6 to ¢, the number of nearest neighbors of a lattice
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FIG. 5. (Color online) Fraction of sites occupied by trimers (f3), tetramers (f), and pentamers (fs) as (a) the pentamer activity, (b) the
tetramer activity, and (c) the trimer activity is varied with the other activities held constant.

site, and found no cases in which dfy/dz, > 0. The previous
example makes it clear that we should do some numerical
calculations on the Bethe lattice with g=2 (linear chain),
since a short molecule is most effective in blocking out a
long molecule in one dimension. Figure 7 exhibits results for
a linear chain in contact with a reservoir containing dimers,
trimers, and 12-mers. There is clearly a region in which
df3/ 9z, >0. It is harder to find a clean example when ¢=3.
Figure 8 exhibits results for a g=3 Bethe lattice in contact
with a reservoir containing dimers, trimers, and 20-mers.
These examples show that, even in the absence of attrac-
tive interactions and in the presence of hard-core repulsions,
an increase in the activity of one species of molecule may
also increase the number of another species adsorbed on the

FIG. 6. A portion of a lattice consisting of linear clusters of five
sites. An adsorbed molecule must lie entirely on a single cluster.

lattice. These examples also illustrate the calculational use-
fulness and simplicity of our exact solution.

IV. DIMERS ON AN ANNEALED
TWO-COMPONENT LATTICE

We now consider a lattice which has two types of sites, x
sites and y sites. Dimers can be adsorbed on a pair of adja-
cent sites with activities z,,, zy,, Or z,, depending on the
types of the two sites [26]. The numbers of sites of type x
and y, N, and Ny, respectively, are specified, but it is as-
sumed that the time scale of adsorption measurements is long
enough to permit the lattice to anneal (i.e., the sites can per-
mute until the thermodynamically most favorable configura-
tion is attained). In this case the grand partition function
(GPF) of the two-component lattice is readily expressed in
terms of the GPF of the one-component lattice, and the ad-
sorption isotherms of the two systems are simply related.

It is mathematically convenient to draw the sites from a
“site reservoir,” with activities §, and &, whose values are so
chosen that the average numbers of x and y sites assume the
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FIG. 7. (Color online) Fraction of sites occupied by dimers,
trimers, and 12-mers as the dimer activity is varied with the other
activities held constant. Note that near log;o(y,z,)=0.5 there is a
region in which an increase in the dimer activity increases the
trimer coverage.

specified values N, and N,, respectively. Since, as usual, this
ensemble yields negligible fractional fluctuations in the num-
bers of x and y sites when N (the number of lattice sites) is
large, it is equivalent to an ensemble in which the numbers of
x and y sites are exactly fixed. It may already be obvious that
the only relevant parameter is &,/§,.

We assume that the geometry of the lattice is already
specified. Let G’ denote a “labeled graph” on the lattice, in
which dimers cover some pairs of adjacent sites and every
site is labeled as an x site or a y site. The grand partition
function is

Nj(G')_Ny(G’ N”G
EZXXD( ) [)( ) ( gN(G)gNN(G)

’(\

(58)

where Nj5(G') is the number of dimers in G’ which cover an
s and a ¢ site, where s and ¢ assume the values x and y, and
N(G’) is the number of x sites in G'. The probability of
occurrence of the configuration G' is the summand of Egq.

0.8

0.6

0.4

0.2

0

-2 -1 0 1 2

(a) log1g (Y227 )
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(58) divided by Q. Defining ¢= &/€,, we have that 0
=&/ O(€.240:20y-7yy)» Where

_ N NG NG NE (G N (G
Q=2 2P P I, (59)
The average number of x sites is
N,=&.01n Q19é, = £71n Q19¢ (60)

and the average numbers of dimers covering specified types
of sites are

Ny =2,01n 010z, (61)
Ny = 2,40 In Q/dz,,, (62)
Ng’ =2,,01n Q/dzy,. (63)

The grand partition function of a one-component (only
one type of adsorption site) lattice in contact with a reservoir
of dimers, whose activity is z, is

0y(2) = >, 209, (64)
G

where G is an unlabeled graph with dimers on the lattice (the
sum also includes a term 1 from the graph in which there are
no dimers on the lattice). When we label the sites as x or y,
each unlabeled graph G becomes the parent of 2V labeled
graphs G'.

Let us consider a particular graph G. The term in Qy(z)
associated with G contains a factor z for each dimer and a
factor 1 for each empty site. Suppose we now associate a
factor £z, + &2, + &2y +2,,, (Where z,,=z,,) with each dimer
in G and a factor £+1 with each empty site in G. Then the

product
(E24 + &gy + &2, + 2, O(E+ DVDE - (65)

is equal to the sum of the contributions to Q [Eq. (59)] from
all the graphs G’ whose parent is G. If this is not obvious,

0.1

0.05

ol |
2 1

0
(b) logg (Y22)

FIG. 8. (Color online) Left: Fraction of sites occupied by dimers, trimers, and 20-mers as the dimer activity is varied with the other
activities held constant. Right: Detail of f3, showing that there is a region in which an increase in the dimer activity increases the trimer
coverage. Note that it is harder for dimers to block large polymers on a ¢g=3 lattice than on a g=2 (linear) lattice.

041116-10



MULTIPLE SPECIES OF NONINTERACTING MOLECULES...

define A=(&z,,+ &z, + &2y, +2,,) and B=(£+1) and write the
expression (65) as AA...A BB...B, where each factor of A is
associated with a particular dimer in G (the terms in A cor-
respond to the dimer sitting on two x sites, an x site and a y
site, or two y sites) and each factor in B is associated with a
particular empty site (which may be type x or type y). Then,
if we make a complete expansion of the product AA...A
BB...B there will be 4Vp(GN-2Np(G) =N terms, each equal
to the contribution to Eq. (59) from one of the graphs G’
whose parent is G.

Thus we obtain

0= (£+1)VQy(s), (66)
where
§2z + 287, + Zyy
_ XX Xy Yy
RETITE 7

The preceding formulas are valid for dimers on any lattice
and include edge effects.
The average number of dimers on the lattice is

Np =s[dIn Qy(s)/ds]. (68)
If we define F,=N,/N, then Eq. (60) becomes

2N - + 20— 2y
F.= '3 [ 14+ p(s) f(zgx ny) Zxy T Zyy ] . (69)
1+¢& N E7+ 282+ 2y,

Thus, for the two-component Bethe lattice with a specified
fraction of x sites, ¢ is determined by the equation

Fx=i{1+28(s)

1+¢
where B(s) is given by Eq. (56). For given values of F,, g,
Zyr Zay» and zy, the computer easily solves Eq. (70) for ¢&.
Then, defining p** as the number of dimers per site which

cover a pair of x sites, and with similar definitions of p® and
p”Y we obtain from Egs. (61)—(63)

g(Zxx - ny) + Zxy ~ Zyy
1+ 280,412y,

} . (70)

P2 = B(5) 20l (2 + 282, + 24y, (71)
pY= B(S)zgzxy/(gzzxx + 282+ Zy,\') ’ (72)
P = B(S)Zyy/(fzzxx +28z, + Zyy). (73)

From Eq. (68) [and consistent with the sum of Egs.
(71)—(73)] we identify B(s) with p, the number of dimers per
site.

For arbitrary z,,, 2, and z,,, if F,=1, then Eqgs. (69) and
(67) yield £== and s=z,,, and we recover the results of the
one-component lattice.

If z,,=2,,=2,y, Eq. (67) yields s=z,, and we obtain p
=B(z,,), as expected. In this case we also expect that the
presence of dimers does not induce any correlations between
x sites and y sites on the lattice; i.e., the probabilities that a
pair of nearest neighbors are both x, both y, or an x and a y
are F2, (1-F,)%, and 2F,(1-F,), respectively. We note that
in this case Eq. (70) yields &/(1+&)=F, and Egs. (71)—(73)
yield
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p=pF, pY=2pF(1-F,), p”=p(1-F)>
(74)

which is consistent with the absence of correlations between
sites on the lattice [27].
If z,,=z,,=0, then s=z,,[£/(1+£)]* and Eq. (70) becomes

F .= £ 1+ gB(zxxfz/(l +&7) . (75)

1+¢ &

It is interesting to examine Eq. (75) when z,,>1 and F,
< 1. First, we suppose that & remains finite as z,,— %. Under
that assumption, if s, which is the argument of B, becomes
very large, then B(s)—1/2 and Eq. (75) becomes F, =1,
which is not true. We therefore conclude that & must be pro-
portional to z_* and s=z,,&. Thus, when z,,> 1, we find
that F,=2B(s). Since p=B(s) we obtain p=F,/2. This result
is exactly what we would have expected. The x sites pair off
with each other, and a dimer sits on each pair [28].

V. ARBITRARY POLYMERS ON AN ANNEALED
TWO COMPONENT BETHE LATTICE

We now consider an annealed two-component lattice in
contact with a reservoir which contains arbitrary polymers
whose types are enumerated by an index a and whose shapes
are consistent with the geometry of the lattice. The activity
Z, of an adsorbed polymer of type a will, in general depend
on the types of sites (x or y) which the polymer covers. With
a reasonable assumption about the form of this dependence,
we can express the grand partition function (GPF) of the
two-component lattice in terms of the GPF of a one-
component lattice in contact with a similar reservoir.

Let zo, be the activity of an « polymer (containing n,
monomers) adsorbed on n, sites, all of type x. We assume
that the nature of the underlying sites does not affect the
internal degrees of freedom of the polymer, but that there is
an interaction energy (e, or €,) between each monomer and
the underlying site. Then the activity of an a polymer ad-
sorbed on m sites of type x and (n,—m) sites of type y is
Z0a7'@ ™, where n=exp[—B(e,—€,)]. We have assumed that
all monomers of an « polymer are of the same type, and will
further assume that the same type of monomer is present in
all polymers (otherwise 7 depends on « and the subsequent
analysis becomes excessively complicated).

As in Sec. IV, we associate a factor £ with each x site, and
the value of ¢ will eventually be chosen so as to yield the
desired number of x sites. A labeled graph G’ is one in which
all sites are labeled x or y and polymers of various types
occupy some of the sites. Each unlabeled graph G on the
one-component lattice is the parent of 2V labeled graphs G'.

The term in the GPF contributed by a particular graph G’
is a product of factors associated with each polymer in G’
and factors associated with each empty site in G'. The factor
associated with a polymer of type « sitting on m x sites and
(n,—m) y sites is &"zy,7"«"™. The factor associated with an
empty site is & or 1, depending on whether the site is type x
or y. Thus, the total contribution to the GPF from the 2N
labeled graphs G’ which are the descendents of the unlabeled
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graph G, which contains N;(G) polymers of type 1, N,(G)
polymers of type 2, etc., is

[z01(€+ )" 1Oz, (£ + 7)2V2@)

. [§+ l]N—nlNl(G)—nzNz(G)—“' (76)
and the GPF of the two-component annealed lattice is
0,=(£€+ DY0,(Z1.%. ...), (77)
where
_ £+ 77)”“
= S 78
Za ZOa( §+ 1 ( )

and Q, is the GPF of the one-component lattice, defined
(without the subscript “1””) by Eq. (2).

The average number of x sites is N,=&d In Q/ €, and thus
we have

N JdlIn 107
g € Es . ~Q1(~_ﬁ)
N*, 0z, \Z, 0

& &1 -7 s =
Tleg (1 o(E+ n)%)napa(zl,zb...), 7

where p,(Z},Z,...) is the number of a polymers per site on
the one-component lattice when the activities of the species
are 7;,2,.... T'he preceding discussion is valid for every lat-
tice, but now we specialize to the Bethe lattice. We use the
notation of Sec. II, with z, replaced by Zz, Thus, f
=f(Z1,2,..) and g=g(Z,25,..), u=1—-f, and w=1-g.

We define
F(y) = 2 NaZ0aYa)"" (81)
G(y) = 2 20aYaY" (82)
and
H) =1+ fI[F(w ~GW)1. (83)
Then Eq. (30) becomes
w=1/H(y) (84)
and Eq. (31) becomes
L FG)=HO). (85)

E+m
Instead of using & as a basic unknown, it is convenient to
introduce N=(&+1)/(é+m). Then &/(E+1)=(n—-1/N)/ (7
—1) and (1-7)/(é+m)=N—1. Then Eq. (85) becomes
1
A= ;[H(y) - F(y)] (86)

and Eq. (79) becomes
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-1/ F
F,=2 [1+(>\—1)—]. (87)
n—-1 H
For a given value of F,, a computer easily solves Eq. (87)
for y, since the functions A(y), F(y), and H(y) are known.
The average number (per site) of polymers of type « is

pa:ZQYauna/wna_l =20a7’ay"“/H()/)- (88)

From the definition of A we find that £&=(1—7\)/(\—1). The
probability distribution for the number of x sites under a
single a polymer is the binomial distribution

P(th N O T S
e number of x sites=m) = m)\e+y &+
(89)

and the average number of x sites under a single a polymer
is n,&l(§+7).

VI. SUMMARY

We have studied a Bethe lattice in contact with a reservoir
containing an arbitrary number of molecular species, of vari-
ous sizes and shapes, which can be adsorbed on the lattice.
The molecules do not interact [1]. Assuming that the activi-
ties of the various species are specified, we make an exact
calculation of the number of adsorbed molecules of each
species. The calculations are simple and essentially instanta-
neous on a desktop computer. One slightly surprising result
is that, if more than two species are present, an increase in
the activity of one species can in some cases increase the
number of adsorbed molecules of another species.

We also considered adsorption of molecules on a two-
component Bethe lattice which contains two types of sites (x
and y) whose numbers are specified and which anneal into
the thermodynamically most favorable configuration. The
exact solution of the adsorption problem on this lattice is
expressed in terms of the exact solution on the one-
component lattice for two cases: (i) when the reservoir con-
tains only dimers, with arbitrary values of the activities z,,,
Zyy» and z,,; (ii) when the reservoir contains arbitrary (per-
haps many) species of molecules, with a reasonable assump-
tion about the form of the dependence of the activity of an
adsorbed molecule on the types of the underlying sites.
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APPENDIX A: ABSENCE OF COEXISTENCE
OF TWO PHASES

We show here that, if the reservoir contains only a finite
number of species of polymers, then for any values of the
activities z, the one-component lattice does not separate into
regions with different densities of polymers or different den-
sities of any species of polymer. Furthermore, we shall show
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that the two-component lattice does not separate into regions
with different fractions of x sites, or different densities of any
polymer species [29].

We first discuss the one-component lattice. The grand par-
tition function Q,(z,,z,...) is given by Eq. (2) (the subscript
“1” indicates that there is only one type of site on the lattice).
If the reservoir contains only one type of polymer with ac-
tivity z, the work of Lee and Yang [30] shows that two dif-
ferent densities can coexist if and only if the limit, as N
— o, of (1/N)d In Q,(z)/dz exhibits a finite jump (disconti-
nuity) at some value z;. The magnitude of the jump, multi-
plied by z, is the difference in the densities of the coexisting
phases. The analysis is readily extended to a system in con-
tact with a reservoir containing many species with activities
Z1,22,.... Since the density of species a is p,
=N"'z,01n Q,/dz,, different densities can coexist only if one
or more of the p, is not a continuous function of (z;,z,,...).

From Egs. (10) and (13) we have

Po=ZaYaW(ulw)"e, (A1)
(where u=1-f and w=1-g). We shall show that u and w are
continuous functions of (z;,z,,...).

Since we have assumed that only a finite number of spe-
cies of polymers are in the reservoir, the right side of Eq.
(31) is a finite series. All terms are non-negative and are
increasing functions of u/w. Equation (31) has a unique
positive root (u/w),. Since the right side of (31) is a continu-
ous function of u/w, it is clear that (u/w), is a continuous
(and decreasing) function of every z,. From Eq. (30) we see
that w is a continuous function of every z,, and thus u is also
a continuous function of every z,. Finally, from Eq. (A1) we
see that p,, is a continuous function of (z;,z,,...) and there-
fore there is no region of coexistence of different densities of
polymers (or different densities of some species).

Thus, even without exhibiting Q,(z;,z,...) we have
proved that if the number of species of polymer is finite, the
limit as N— <0 of (1/N)d In Q,/dz, is a continuous function
of (z;,22,...).

The argument is readily extended to the two-component
lattice, whose grand partition function, Q,, is given by Egs.
(77) and (78). The density of polymers of type « is

Z, 0
o= 1im ———1In 215205 «ns A2
p N 0,(621,2, ...) (A2)
. Z4 0 -
=11m N 111 QI(ZI’ZZ’ ) (A3)

N—» N d7,

The right side of Eq. (A3) is a continuous function of
(Z1,Z3,...) and since £€>0, Eq. (78) shows that Z,, is a con-
tinuous function of ¢ and zg,. Furthermore, Eq. (79) shows
that F, is a continuous function of (£,Z},Z5,...). Thus, the
densities of all polymer species and the fraction F, of x sites
are continuous functions of (&,zy;,zp2,...) and there is no
possibility of the coexistence of two phases with different F,
and/or different p,, [31].
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APPENDIX B: LINEAR POLYMERS
ON THE BETHE LATTICE

We consider a one-component (only one type of site) Be-
the lattice (coordination number g=o+1) in equilibrium
with a reservoir containing only linear polymers which are
simply chains of n bonds, with n=1,2,3,.... Each bond con-
nects two monomers and the activity of a polymer with n
bonds (and n+1 monomers) is taken to be z". It is not nec-
essary to impose an upper limit on 7.

The multiplicity y associated with a chain of n bonds is
(1/2)(o+1)c" L. [If we fix one end to the seed site, then the
first bond can point in o+ 1 directions and each succeeding
bond can point in ¢ directions. But since the two ends of the
chain are equivalent we have the factor of (1/2).] Thus, Eq.
(31) (with n,=n+1) becomes

©

+1 -1
== 4 () =3, (ozuw) + (uw) —— 3, n(ozulw)".
w

n=1 0 =1
(B1)

Equivalently, if we set r= ozu/w, this equation (which fixes
r as a function of z) is

3 1+0'+1 r +0'—1 r (B2)
oe=r 20 1-r 20 (1-7)?
Similarly, we obtain w by writing Eq. (30) as
1 1
—=1+— B3
w a7z (1-r)? (B3)

For the special case of a one-dimensional lattice (o=1)
we have the solution that

r=—— (B4)
1+z
so that
1
g:l—w:l——:—Z (B5)
1+z 14z
and
=1 f_; (B6)
- T (1+2)%

Since the only possible polymers on a one-dimensional lat-
tice are chains, our calculation in Sec. III A covers this case
and Egs. (B5) and (B6) indeed agree with the results of Sec.
T A when o=1.

Now we treat the case when o> 1. Since the right side of
Eq. (B2) is an increasing function of r and approaches infin-
ity as r— 1, this equation has a unique solution for r in the
range 0<r<<1. Now we obtain explicit results when z is
very large. In this case, we expect f—1 and g—2/(o+1),
since every site should be covered by a very long chain
which thereby (neglecting end effects) covers two of the o
+1 edges which touch that site. If z is large, r is close to 1
and the last term on the right in Eq. (B2) is dominant and one
finds that
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1 o—-1
r=1-—
o

+0O(1/7). (B7)
If one uses Eq. (B3) as it stands, one needs the coefficient gf
1/z in Eq. (B7) in order to calculate w through order in 1/+z.

Accordingly we use Eq. (B2) to rewrite the last term of Eq.
(B3) and obtain

|4 20 o+1 r? (BS)
— = - —-ri.
w A (o-1)z o< 20 1—r
We then find
1 2 +1
—=1+ - (o , o +O(1/z)
w o-1 o*z(oc-1)\(o-1)/(22)
g+ 1 1 2z
=—{1—— }+(’)(1/z), (B9)
o-1 oz Vo-1
so that
2 2 o-1 O(1/2)
=l-w= - 1/ + ).
& v o+l o(o+1) 2z ¢
(B10)
We also find
-1
u=1-f=——— + O/, (B11)
olo+1)z
The average length of the polymer chains is
ﬁEEnpn/Epn=1/(1—r). (B12)
n n
Thus for large z and 0>1 we have
i~ oz7'"*\2/(o-1). (B13)

In these results the appearance of factors of (o—1) indicates
that the asymptotic behavior at large z for =1 differs from
that for 0> 1. For o=1, n=1+7 for all z.

The right side of Eq. (B2) is a continuous function of r,
and the r which satisfies this equation is a continuous func-
tion of z. Therefore u/w is a continuous function of z. Equa-
tion (30) implies that w is a continuous function of z. It
follows from Eq. (B3) that the densities of all polymer spe-
cies are continuous functions of z, and therefore there is no
region of coexistence of different phases.

If the polymers are adsorbed on a two-component an-
nealed lattice, and if the dependence of the activity of the
adsorbed polymers on the types (x or y) of the underlying
sites has the form assumed in Sec. V, there is still no coex-
istence of different phases. The proof relies on Egs. (77) and
(78). We enumerate the species by the index 7, the number of
bonds in the polymer. Thus z,,=z" and

_ n(g_*__n)iﬁl
n=z £+l .

If the exponent in the second factor of Eq. (B14) were n
instead of n+1, the GPF of the two-component system
would be (1+&" times the GPF of the one-component sys-

(B14)
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tem evaluated at a renormalized value of z. Since this is not
the case, the argument is slightly more tedious.

Equation (85) yields
o—-1 R }
+ 9

E+1 R|o+1 R
2 1-R 2 (1-R)?

oz =
+7 g

(B15)
where R=0z[(é+7)/(E+1)][u/w]. Thus we see that R is a

continuous function of ¢ and z, and u/w is a continuous
function of ¢ and z. Equation (84) becomes

(B16)

which is identical in form with Eq. (B3) [32].

Therefore, u and w are continuous functions of ¢ and z
and [from Eq. (88)] the densities of all species are continu-
ous functions of £ and z. Finally, Eq. (79) becomes

o & {1 1—770'+IK< R R? )}
Tlvel Terp20 \U-R2ETI-R/]

(B17)

The right side of Eq. (B17) is a continuous function of & and
z. Therefore, there is no coexistence of phases with different
densities of x sites and/or different densities of any polymer
species.

APPENDIX C: RELATION OF PRESENT METHOD
TO GUGGENHEIM’S COMBINATORIAL METHOD

Guggenheim’s method is equivalent to finding the largest
term in the grand partition function [Eq. (2)], using his ap-
proximate form for W(N,,N,,...) [4]. He uses logarithmic
differentiation with respect to N;, and we (equivalently) set
the ratio of adjacent terms (differing in the value of only one
of the N;) equal to unity. If the activities {z;} are specified,
this procedure determines the {N;}. If the {N;} are specified,
this procedure determines the {z;}.

As we have noted in the introduction, Guggenheim as-
sumes that all lattice sites are occupied. His analysis applies
equally well to a lattice with vacancies if we define the
species i=0 as a vacancy (with activity 1) which occupies
one site (ny=1, zo=1). Thus W=W(N,y,N;,N,,...) and
2=0;N;=N, where N is the number of sites on the lattice. In
the following, 2 means X,~, and 2’ means X;~;. Guggen-
heim’s (approximate) combinatorial formula, which assumes
that the adsorbed molecules have no closed loops, is

In WN,N,, ...) = %q 1n[(2 Q,N,-)!] -3 (v,

- (% - l)ln(N!) + S Ny, (Cl)
where

(C2)
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If (N;,N,,...) are the N; which are associated with a set
of activities (z;,z,,...), the bars in Eq. (9) are redundant, we
can write

(C3)

and can use Eq. (7) to evaluate V,/N, [we ignore the differ-
ence between N, and N,+1 in the denominator when N
>1 and recall that Egs. (1)-(12) are valid on any lattice]. If
we increase the number of type a molecules by 1 we must
decrease the number of vacancies by n,. Thus Eq. (C3) be-
comes

VJN,=1/z,, fora=1

In W(No—na,Nl,Nz, "'Nuz+ 1, )
—In W(N(),NI,N2, "'Nm ...)=—1nza. (C4)
Using Eq. (C1) we evaluate the left side of Eq. (C4) as

q m({[l —2/gIN +[2/g][(EN) + 1 - na]}!>
2 [(1=2/g)N+ (2/qg)(EN)]!

((No_na)!
-In| ————
Ny!

Using N=Ny+2'n;N;, we find that
(1-2/g)N+ (2/g) 2 N;=No+ 2 NL(1 = 2/g)n; + (2/g)]
=N-(2/9)X (n;= DN;.  (C6)

Since all the terms in Eq. (C6) are proportional to N and
(1-ny) is of order unity, the argument of the first logarithm
in Eq. (C5) is

[N— ZE'(n,»— N;
q

Similarly, the argument of the second logarithm in Eq. (C5)
is

) —In(N,+1)+1In y,. (C5)

~-(2/g)(ny—1)
(c7)

EETV (C8)
Thus Eq. (C4) becomes
[N - E,”iNi]"“ 1 1
—=— (C9)

T IN= 1) (= DNT Na 20

Dividing the numerator and denominator of Eq. (C9) by N"«
we find that

L, e
Pa= a‘ya(]_g)”a‘l’

where p,=N,/N and f=2'n,p; is the probability that a site is
occupied and g=(2/¢)2'(n;—1)p; is the probability that an
edge is occupied by a bond (provided that the molecules are
chains or branched chains, with no closed loops).

Equation (C10) is identical to Eq. (25) and leads immedi-
ately to Eqgs. (28)—(31). Furthermore, as we showed in Sec.
11, the preceding argument can be inverted. Equations (7) and
(13) can be used to generate Guggenheim’s formula, Eq.
(C1), for W(Ny,N,N,,...).

We define p¢ as the density of (noninteracting) type a
molecules adsorbed on a lattice, calculated from Guggen-

(C10)
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heim’s combinatorics. Similarly, pﬁ is the density on the Be-
the lattice. For a given coordination number ¢ and given
activities z;, the only difference between pg and pﬁ is due to
the difference in the lattice-dependent multiplicity factors 7y,,.
In particular, Guggenheim’s approximations and our exact
solution on the Bethe lattice yield the same formula [Eq.
(17)] for P,({N,}), the probability that a connected set of n
sites are all vacant when (N,,N,,...) are all specified.

Depending on the structure of the molecule a and the
structure of the lattice, the multiplicity y, may or may not
differ significantly from 'yg, the multiplicity on a Bethe lat-
tice of the same coordination number. For example, y=¢/2
for a dimer on any lattice. For a spider with n legs, each leg
being a single bond, y=g!/[(g—n)!n!] on any lattice. For a
flexible linear chain of n bonds on a planar square lattice
(g=4), y=7vp for n<4 and, for n=4, y/y#=25/27. If the
chain is on a planar triangular lattice (¢=6), then y=1+# for
n<3 and y/y?*=23/25 for n=3.

In order to make contact with experiments, let us assume
that the reservoir is a dilute solution in which the concentra-
tions C,, (number of type & molecules per unit volume) of the
various molecular species are sufficiently low to justify ne-
glecting interactions between molecules of the same or dif-
ferent species. Then the grand partition function of the solu-
tion is the product of the grand partition functions Q%.° of the
various species, where

o

] 1
o = 2 ;enﬁ,ua[vga(T)]” = exp[Ve’B“"Za(T)]-
n=0 "*-

(C11)

In Eq. (C11), VZ,(T) is the partition function of one type «
molecule. The factor V (the volume of the reservoir) arises
from the overall translational degree of freedom. If interac-
tions with the solvent are important, then {,(7T) should in-
clude these interactions averaged over all configurations of
the solvent atoms appropriately weighted with Boltzmann
factors. Fortunately, as we shall see, this calculation can be
circumvented by introducing an empirically determined fac-
tor.

The average number of type a molecules in the reservoir
is

Noy=B7"91n Q" du, = Vi (T)ePra (C12)

and thus

Co=NJV=_,(T)ePHa, (C13)

Recalling that z,=eP*eZ (T), where Z,, is the partition func-
tion of an adsorbed a molecule, we find that

2a= CoZo(T)I,(T).

We can combine Egs. (10) and (C14) to obtain a law of mass
action, in which the rate of adsorption (which involves a type
a-molecule in solution impinging on a type « vacancy and is
proportional to Cana) is equated to the rate of desorption
(which is proportional to p, if interactions between mol-
ecules on the lattice and solute molecules are negligible),

(C14)
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ﬁ;’va = % (C15)
Finally, Eq. (C10) can be written as
Pa=KTICo(1 = f)'el(1 = g)"", (C16)
where
KT) = YoZoT){(T) (C17)
and
YVoia= K (T)C,. (C18)

If one can perform an adsorption experiment in which
only type a molecules are present in the solution, then as
C,—0, Eq. (C16) becomes

pa=Ko(T)C,. (C19)

Thus, if we introduce the measured slope K,(7) into our
equations and replace 7y,z, by K (T)C, in Egs. (28)-(31),
then Egs. (25) and (C10) are identical. The coordination
number ¢ still appears in Eqgs. (28)—(31) which determine f
and g; but vy,, Z,, and ¢, are all contained in the empirically
determined K (7).

Accordingly, we consider it accurate to state that the exact
equations for adsorption of noninteracting molecules on a
Bethe lattice yield an adsorption isotherm identical with that
calculated from Guggenheim theory on a lattice of the same
coordination number, provided we introduce the empirically
determined parameters K,(7T) into the equations.

Since Guggenheim [2] frequently does not distinguish be-
tween formulas which are exact and formulas which are only
approximately true, some effort is required to identify asser-
tions which are true only on the Bethe lattice. His formula
for W(Ny,N;,N,,...) is derived by extending his analysis of
a lattice on which every site is occupied by a monomer
(which we will take to mean a vacancy) or by an element of
an r-mer (in this discussion the word “monomer” excludes
the elements of an r-mer). Clearly, the probability that a
particular site is occupied by a monomer is N,/(N,+rN,).
However, his expression for the probability that a chosen
pair of adjacent sites are both occupied by monomers is ex-
act only on the Bethe lattice.

Considering a particular r-mer occupying a group of r
sites, Guggenheim [33] defines Qg (our notation) as “the
number of pairs of neighboring sites of which one is a mem-
ber of the group occupied by the given r-mer and the other is
not.” He states that if the r-mer is a simple chain or a
branched chain without closed rings

Qq=(q-2)r+2

and that, as a consequence of the “completely random” ar-
rangement of the molecules “if a site is occupied by a mono-
mer, then the chances that a given neighboring site is occu-
pied by another monomer or by an r-mer are as N; to ON,.”
If we label the two sites as a and b and let M(a), M(b), and
R(b) denote respectively the events “site a is occupied by a

monomer,” “site b is occupied by a monomer,” and “site b is

(C20)
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FIG. 9. (Color online) Tetramer which violates Eq. (C20).

occupied by an r-mer,” then the previous assertion (using the
language of conditional probabilities) is

PIM(®)M(a)] N,

PIRBIM@] ~ OV, (c21)

Equation (C20) is true on the Bethe lattice, but not on
periodic lattices of two or higher dimensions. For example,
the definition of Qg yields Qg=8 for the tetramer of Fig. 9
on a planar square lattice, whereas Eq. (C20) yields Qg
=10. However, one can go back to the definition of Qg and
insert the correct value for any particular r-mer. Equation
(C21) presents a more serious problem. Recalling that on the
Bethe lattice

P(M(b)[M(a))=(1-1)/(1-g)
=[1=rNJNY[1 = (r= 1)N,/(Ng/2)],
(C22)

where N=N,+rN,, and noting that

PIR(b)[M(a)] =1~ P[M(b)|M(a)], (C23)

we find that Eq. (C21) [using Eq. (C20) for Q] is true on the
Bethe lattice. However, Guggenheim evidently has another
way of thinking about Eq. (C21), which leads him to write
the equation directly without the algebra involved in our cal-
culation. The most direct argument we can construct which
leads to Eq. (C21) is the following.

Let E be the set of all unoccupied edges (i.e., edges which
are not covered by a bond of an r-mer) which terminate on
two monomers or on a monomer and an r-mer, or on ele-
ments of two different r-mers. The set E does not include
unoccupied edges both of whose ends are elements of the
same r-mer. We look at both ends of each edge ab in the set
E and count the number of ends (¢N,) touching a monomer
and the number of ends (QgN,) touching an r-mer. We use
the symbol e to denote membership in a set, and find

P[M(b)|ab € E]J/P[R(b)|ab € E]=N,/(QN,). (C24)

As we have discussed earlier, if the only path from a
to b is through the edge ab (i.e., if there are no closed
paths on the lattice, in which case E is the set of all un-
occupied edges), then P[M(b)|ab € E]=P[M(b)|M(a)] and
P[R(b)|ab € E]=P[R(b)|M(a)] and Eq. (C24) implies Eq.
(C21). The “completely random” arrangement of the mol-
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ecules is not sufficient to justify Eq. (C21), which may be
a reasonable approximation but is exact only on a Bethe
lattice. The essential step in deriving Eq. (C1) is the exten-
sion of Eq. (C21) to calculate the probability that a group
of r contiguous sites are vacant. Foreman and Freed [34]
have discussed a number of possible ways to “improve”

PHYSICAL REVIEW E 78, 041116 (2008)

the Guggenheim theory (which they call the “Huggins-
Guggenheim-Miller theory”), including a more accurate cal-
culation of the “surface fraction” Qg, and find that simple
“improvements” generally diminish the accuracy of the
theory, when compared with the results of Monte Carlo
simulations.
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