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Acoustic–Phonetic Features for the Automatic
Classification of Stop Consonants

Ahmed M. Abdelatty Ali, Member, IEEE, Jan Van der Spiegel, Senior Member, IEEE, and Paul Mueller

Abstract—In this paper, the acoustic–phonetic characteristics of
the American English stop consonants are investigated. Features
studied in the literature are evaluated for their information con-
tent and new features are proposed. A statistically guided, knowl-
edge-based, acoustic–phonetic system for the automatic classifica-
tion of stops, in speaker independent continuous speech, is pro-
posed. The system uses a new auditory-based front-end processing
and incorporates new algorithms for the extraction and manipu-
lation of the acoustic–phonetic features that proved to be rich in
their information content. Recognition experiments are performed
using hard decision algorithms on stops extracted from the TIMIT
database continuous speech of 60 speakers (not used in the design
process) from seven different dialects of American English. An ac-
curacy of 96% is obtained for voicing detection, 90% for place
of articulation detection and 86% for the overall classification of
stops.

Index Terms—Acoustic–phonetic, feature extraction, phoneme
recognition, speech recognition, stop consonants.

NOMENCLATURE

ALSD Average localized synchrony detector de-
veloped by the authors [3], [5].

Burst Spectrum Spectral shape during the burst (i.e., re-
lease) of the stop.

BF Burst frequency defined in (1).
DRHF Dominance relative to the highest filters

defined in (4).
Fi th formant.
GSD Generalized synchrony detector devel-

oped by Seneff [36], [37].
LINP Laterally Inhibited MDP defined in (5).
MNSS Maximum normalized spectral slope de-

fined in (2).
MDP Most dominant peak defined as the peak

with the largest amplitude or slope.
Prevoicing Voicing during the closure period of the

stop.
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VOT Voicing onset time: time from the stop re-
lease to the voicing onset of the following
vowel.

VF2 Second formant of the following vowel.

I. INTRODUCTION

DESPITE the long history of research on the acoustic char-
acteristics of stop consonants, current state-of-the-art au-

tomatic speech recognition (ASR) systems are still incapable of
performing accurate fine phoneme distinctions for this class of
sounds. One of the main reasons for this is the dynamic, short,
speaker- and context-dependent nature of these sounds. The in-
formation that exists in the literature is neither sufficient nor
consistent enough to be integrated in an ASR system.

The stop consonants, and and their voiced cog-
nates and , are a class of sounds which is formed
by the greatest degree of obstruction and a complex of move-
ments in the vocal tract. The articulators form an oral occlusion
(closure) behind which pressure is built up. The location of the
oral occlusion, i.e., the place of articulation, could be bilabial
( and ), alveolar ( and ) or palatal/velar ( and

). During the closure period, the vocal cords may or may
not vibrate. If they do, the stop is said to be prevoiced. After the
closure phase comes the release phase. In the release, the oral
occlusion is broken, releasing the air pressure and allowing the
air to resume its flow. When stops are released, an audible burst
of noise results. This burst of noise is different from the frica-
tive noise in being transient and not prolongable. This gives the
stops the property of not being continuants.

In this work, we investigate the acoustic-phonetic character-
istics of stop consonants. We combine expert knowledge and
statistical analysis in a hybrid approach, to gain a better under-
standing of the role of various static and dynamic features in the
recognition process (individually and combined). The designed
system can be best described as a statistically guided knowl-
edge-based system. It uses a new auditory-based front-end that
generates mean-rate and synchrony outputs.

We concentrate here on the characteristics responsible for
classifying the stops (i.e., detecting the place of articulation
and voicing). Extracting the stops, on the other hand, is dis-
cussed in more detail elsewhere [5] as a part of a segmentation
and phoneme categorization system. This system is used in the
present experiments to extract the stops and mark their different
segment boundaries.

In the next section, the acoustic–phonetic features of stop
consonants, which exist in the literature, are discussed. In the

1063–6676/01$10.00 © 2001 IEEE



834 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 8, NOVEMBER 2001

following sections, the results of our research on the character-
istics of stop consonants and their automatic classification are
discussed.

II. A COUSTIC–PHONETIC FEATURES

A. Formant Transitions and Burst Spectrum

The role of the formant transitions and the burst spectrum, and
their relative importance, has been considerably researched and
debated in the literature. However, despite the wealth of infor-
mation that exists in the literature, a considerable amount of am-
biguity and contradiction also exists. A comprehensive survey
of previous research [5] illustrates that the burst spectrum and
the formant transitions are important for the place of articulation
detection. Their role, however, in the voicing detection seems
to be secondary. These two features are actually closely related,
functionally equivalent and complementary [20]. Theirpercep-
tual weightseems to depend on the degree of their salience, such
that the formant transition role becomes more significant when
the transitions involved are sharp and clear. On the other hand,
its role (perceptual weight) becomes negligible when the tran-
sition is slight and ambiguous.

It is also clear after this long history of research that absolute
acoustic invariance is not possible for the stop place detection.
Relational invariance, where the feature depends on the neigh-
boring vowel in a well-defined manner, on the other hand, seems
to be a more plausible and useful approach.

B. Burst Amplitude

Previous research found that labial stops are usually weaker
than alveolars and velars [21], [23], [45]. Perceptual experi-
ments on syllable-initial alveolar and labial stop consonants
also showed that the relative amplitude of the burst can
influence the identification of alveolar and labial place of
articulation [30]. This influence is more profound for voiceless
than for voiced stops and is evident only for stops which have
ambiguous spectra. This indicated that the amplitude does play
a role in the place detection. This role however seems to be
secondary, since the burst spectrum seems to override its effect.

C. Durations and Voicing

The stop consonant consists of a closure interval, a release
(transient, frication and aspiration) interval and a transition in-
terval (from voicing onset to the vowel’s nucleus). The durations
of these different segments, and of the stops as a whole, were in-
vestigated by many researchers [6], [14], [21], [27], [42], [43],
[45]. It was found that the mean voicing onset time (VOT) for
voiceless stops is longer than their voiced cognates. It was also
clear that the VOT could play a major role in the voicing detec-
tion but not in the place of articulation detection, in which its
role is secondary at best. Moreover, in spite of its importance
in voicing detection, it is not expected to be able to perform the
task alone. Other features are needed to resolve the significant
overlap that exists between voiced and unvoiced VOT distribu-
tions especially for stops in different contexts.

Another feature that was investigated by many researchers
is the presence of voicing during the stop closure (prevoicing).
This feature is found to be a sufficient, but not necessary, con-
dition for voicing.

III. A COUSTIC–PHONETIC CLASSIFICATION

In this section, the experiments performed on the stop con-
sonants for the place of articulation and voicing detection are
discussed. We made use of the wealth of information that exists
in the literature, our own acoustic and spectrogram reading
knowledge and different statistical tools to build the resulting
“knowledge-based” system. Statistical discriminant analysis,
histogram analysis, information transmission analysis and
decision trees are some of the statistical tools that helped design
the system (i.e., to determine thresholds, evaluate features,
combine features, etc.).

This system is designed using continuous speech from ten
speakers (five males and five females) from the TIMIT data-
base and then tested on 1200 stops extracted from continuous
speech of 60 different speakers (not used in the design phase)
from seven different dialects of American English in the TIMIT
database. We will concentrate here on the place and voicing de-
tection, the stop manner of articulation is detected by another
system developed to segment and categorize the phonemes in
an utterance [5]. Since the experiments discussed in this work
report the classification results, errors obtained in the detection
and segmentation were excluded from the results. The output
of the segmentation system marks the closure and release seg-
ments of the stop. It also marks the point of voicing onset as
evidenced by the presence of low frequency energy in the F0
and F1 regions. This is explained schematically in Fig. 1.

The front-end signal processing system that is used in
our experiments is an auditory-based Bark-scaled filter-bank
system. It is a modification to the system developed by Seneff
and described in detail in [36], [37]. The block diagram is given
in Fig. 2. The filter bank used is a bank of 36 critical-band
filters (Bark scale) with the distribution given by Zwicker [46].
It is preceded by a 20 dB/decade high-frequency pre-emphasis.
This, and other, auditory-based distributions have proved to
yield better results in ASR applications [7], [15], [24], [25],
[35], [38]. The system gives two outputs, the mean rate and
the synchrony output. The synchrony describes the temporal
pattern and is extracted using the average localized synchrony
detector (ALSD) [3], [5]. This is a modification to Seneff’s
generalized synchrony detector (GSD) [36], [37], developed
by the authors to alleviate some of its limitations. Mainly
it employs a novel spacial averaging technique to enhance
its formant extraction ability while suppressing the spurious
peaks. The synchrony is used for its superior formant extraction
ability, higher response to periodic signals and higher immunity
to noise, while the mean rate is used for its higher sensitivity
and better ability in describing the overall spectral shape. This
is in agreement with auditory neurobiology, where the average
response and the temporal pattern of the neural firings play
complementary rules that are similar to the rules employed in
this work [17], [18].
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Fig. 1. Block diagram of the stop recognition system used.

A. Voicing Detection

Three main features were found to be useful for voicing de-
tection:

1) voicing during closure (prevoicing);
2) voicing onset time (VOT);
3) closure duration.
These three features are combined in the algorithm shown in

Fig. 3 to generate a voicing decision. Prevoicing is found to be
a sufficient, yet not necessary, condition for voicing. Detecting
prevoicing is performed by measuring the ratio between the
low-frequency mean-rate energy (up to 450 Hz) in the last 20 ms
of the closure interval and its maximum value through the whole
utterance. If this ratio exceeds a certain threshold, (obtained sta-
tistically using histogram analysis), the stop is considered pre-
voiced. Durations, (i.e., the VOT and the closure duration), are
measured using the boundaries generated by the segmentation
and categorization system [5] to mark the various segments of
the stop consonant.

As shown in Fig. 3, prevoicing is used as the only voicing
detection feature for stops that are followed by silences or frica-
tives (as detected by the segmentation block). For the rest of
the stops, it is used as a sufficient condition for voicing. On the
other hand, the VOT is usually larger for voiceless stops relative
to voiced ones. Histogram analysis showed that two threshold
values are needed for accurate voicing detection using the VOT.
The choice of the threshold depends on the closure duration as
shown in Fig. 3. All thresholds used for the closure duration and
VOT are statistically optimized, using histogram analysis and
information transmission analysis, to minimize the probability
of error during the design phase.

Using the above algorithm for voicing detection yielded an
accuracy of 96% as shown in the confusion matrix of Table I.
A remark that is worth noting is the interesting role played by
the closure duration. Though it does not play a direct role in de-
tecting voicing (i.e., voiced stops did not show systematic clo-
sure duration variation relative to unvoiced stops), its indirect
role is significant. Attempting voicing detection without the clo-
sure duration caused a drop in accuracy from 96% to 90%.

B. Place of Articulation Detection

The first step in the place of articulation detection is to extract
the flaps. The flap is an allophone of and that is
used in some dialects in certain contexts (like “matter,” “better,”
etc.). Flaps are characterized by a very short drop in the total
energy between two sonorants, which is followed by no release
burst and has phonation in it. The duration of the flaps has to
be less than or equal to 32 ms. Using these criteria, flaps were
recognized correctly with an accuracy of 94%.

The following features are in the place detection of the re-
maining stops ( ):

1) burst frequency (BF);
2) second formant (F2) of the following vowel (VF2);
3) maximum normalized spectral slope (MNSS);
4) burst frequency prominence (DRHF and LINP);
5) formant transitions before and after the stop;
6) voicing decision (using the previous section algorithm).
The burst frequency was statistically found (using informa-

tion transmission and statistical discriminant analyzes [5]) to be
the most important feature for the place detection from the in-
formation content standpoint. It is defined as the most promi-
nent peak in the synchrony output during the stop release. The
synchrony output is used, as opposed to the mean-rate output,
for peak extraction because of its superior ability to extract for-
mants and dominant peaks accurately and its lower sensitivity
to noise. The BF for the whole release was taken to be the min-
imum frequency of the previously mentioned peaks along the
whole release duration. This is defined as follows:

where: and:

(1)

It was found, however, that the burst frequency is highly con-
text dependent. This variability can be significantly reduced by
taking the next vowel height into consideration. Thisrelational
invariance is employed using the second formant location of
the following vowel/semivowel (VF2) at the vowel onset point.
The points of taking the measurements are determined using the
segmentation and categorization program [5]. If there is no fol-
lowing vowel or if the second formant is not clear enough to
be extracted, a value of zero is assigned to VF2. Using these
two features (BF and VF2), a preliminary place detection is per-
formed using the regions shown in Fig. 4. These regions were
designed by the help of unsupervised clustering and Bayesian
decision algorithms which showed clear clusters (especially for
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Fig. 2. Block diagram of an auditory-based front-end system.

Fig. 3. Algorithm for voicing detection of stop consonants.

TABLE I
CONFUSION MATRIX FOR VOICING DETECTION ON 1200 STOPS.

ACCURACY IS 96%

alveolars and velars) of different places of articulation in the
shown regions.

The results of using the BF alone in the place detection are
shown in Table II, while Table III shows the result of using both
BF and VF2 as shown in Fig. 4. The results are for 270 stops
spoken by six different speakers from the TIMIT database. A
significant improvement of 10% in the accuracy is clear. This
indicates the importance of the vowel context and verifies the
concept of relational invariance in the place recognition.

Accounting for the context dependence using Fig. 4 in
the classification process also helps normalize for speaker
variability. Variations due to speaker gender or dialect are
expected to affect the neighboring vowel besides affecting the
stop consonant itself. Therefore, the relation between BF and

VF2 is less speaker-dependent than BF alone, and hence yields
better multispeaker classification results.

It is obvious from Tables II and III and Fig. 4 that the labials
are the most missed class when using the burst frequency and the
vowel formant. This is in agreement with previous researchers
who noted the absence of a prominent peak in labials [23], [45].
They are characterized by a “flat” and weak release spectrum,
which is due to the absence of any resonant cavities in their ar-
ticulation. To improve the detection of labials, the properties of
flatness and weakness of their release spectra need to be ex-
tracted. The authors developed a new feature called the max-
imum normalized spectral slope (MNSS). This feature was used
in the fricative detection and it proved to be very useful in de-
tecting the dentals [1], [4]. It is defined as

(2)

where is the th filter mean-rate (envelope) output at the
th instant, while is a difference function which approx-
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Fig. 4. Two-dimensional space preliminary classification regions for (a) unvoiced stops and (b) voiced stops. Zero VF2 corresponds to the absence ofa following
vowel’s second formant. Alvelars (+), velars (*), and labials (o). It is clear that alveolars and velars show better clustering labials.

TABLE II
CONFUSIONMATRIX FOR PRELIMINARY STOP PLACE DETECTION USING THE BURST FREQUENCY(BF) ALONE. TOTAL NUMBER OF STOPS IS270 FROM SIX

DIFFERENTSPEAKERS. ACCURACY IS 72%

TABLE III
CONFUSIONMATRIX FOR PRELIMINARY STOP PLACE DETECTION USING THE BURST FREQUENCY(BF) AND VOWEL SECOND FORMANT (VF2). TOTAL

NUMBER OF STOPS IS270 FROM SIX DIFFERENTSPEAKERS. ACCURACY IS 82%

imates the derivative with respect to frequency. It could be as
simple as the difference between two neighboring filters, i.e.,

(3)

It is found that a low value of MNSS is a sufficient, but not
necessary, condition for labials. The threshold was statistically
found (using histogram analysis) to depend on the voicing status
of the stop and to be close to the threshold value used in the
fricatives, which indicate that this indeed is a characteristic of
the labial place of articulation. Stops followed by silences or
fricatives, however, do not follow this rule. Those are detected
by the segmentation block and the MNSS is not be used with
them.

Another aspect of the burst spectrum is the burst frequency
prominence. This feature is helpful in discriminating between
velars and alveolars. Based on our experiments and comparative

analysis of numerous features, two features were developed to
describe this property. They are a) the difference between the
most dominant peak (MDP) and the energy of the three highest
filters, i.e., dominance relative to the highest filters (DRHF) and
b) the MDP laterally inhibited by the ten filters above it, call it
LINP. The DRHF is defined as

(4)

Alveolars are usually characterized by a low value of DRHF due
to their high frequency content, and the proximity of their MDP
to the highest filters. Therefore, a small DRHF is a necessary
condition for an alveolar. The other parameter, LINP, is defined
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as

where:

and:

and for if then

where: (5)

This parameter is used to detect the prominence of the BF peak
compared to the filters above it. Large values of LINP were
found to indicate a velar, small values of LINP indicate a non-
velar, and moderate values of LINP are ambiguous.

The last feature needed for the place of articulation detection is
the formant transitionsbeforeandafter thestop.These transitions
are only applicable if the stop is preceded or followed by a sono-
rant,asdetectedby thesegmentationandcategorizationprogram.
Their rolewasfoundtodependonwhether there isareleaseornot.
For released stops (i.e., stops with a release (burst) segment that
is evident in the spectrogram), the formant transitions play only
an auxiliary role, while in unreleased stops, their role is primary.
In the case of released stops, onlysalienttransitions are consid-
ered. For a transition to be salient, it has to be of significant slope
that exceeds a certain threshold and continuous without sudden
jumps or anomalies. Three cases are considered.

1) Clear F2 upward transition to the following sonorant or
downward transition from the preceding sonorant. Then,
the stop is accepted as labial regardless of the other fea-
tures.

2) Clear F2 downward transition to the following sonorant
or upward transition from the preceding sonorant. Then
the stop is accepted as nonlabial regardless of the other
features. It is decided whether it is alveolar or velar based
on the other features, namely the BF, VF2, DRHF, and
LINP.

3) F2 and F3 move away from each other to the following
sonorant, or toward each other from the preceding sono-
rant (velar pinch). In this case, the stop is detected as velar,
regardless of the other features involved.

For unreleased stops, the formant transitions (usually pre-
ceding the stop) are the only available place cue. Some de-
tailed context-dependent rules were developed to handle those
stops [5]. It was not possible, however, to test the correctness of
those detailed rules reliably due to the relatively small number
of unreleased stops in the database, most of which tend to have
clear and strong transitions as explained before and hence do
not need the detailed, sonorant-dependent rules. Nevertheless,
in the cases tested, the algorithm achieved good accuracy as will
be explained later.

This approach is in-line with Dormanet al. [20] who found
that the significance of the transitions in the human percep-
tion process was dependent on their clarity and slope. It also
has a practical advantage. Formant transitions are very difficult
to measure accurately. Therefore, restricting their use to cases

where they are clear, salient and accurately measurable, leads to
an improvement in the place detection.

An algorithm, developed to detect the place of articulation
using the features and techniques detailed above, is shown in
Fig. 5. It gave an accuracy of 90% as shown in Table IV. Per-
forming the same experiment without using the formant tran-
sitions causes a 4% drop in accuracy from 90% to 86%. Com-
bining the voicing detection and the place of articulation detec-
tion into one system, we obtain a stop classification system. The
overall classification accuracy is 86% as shown in Table V.

IV. DISCUSSION

In this work, we developed a new feature-based stop
classification system using an auditory-based front-end. The
feature-extraction system makes use of both the synchrony and
mean-rate outputs. It was clear from our results that the method
used in translating the acoustic abstract feature into a measur-
able parameter has a clear impact on the overall performance.
The synchrony is preferred in format/peak extraction (such as
the BF), while the mean-rate is used for spectral shapes and
amplitudes (such as the MNSS). A new synchrony detector
(ALSD) is used to enhance the formant and peak extraction
ability. Its ability to detect periodicity and extract dominant
peaks accurately is superior to that of the mean-rate envelope
detector (an improvement of 5%), and to other synchrony
detectors [5]. Repeating the above experiments using the GSD
(instead of the ALSD) showed a consistent deterioration of
3% in the place detection on clean and noisy speech. This is
attributed to the ALSD’s ability to robustly extract the formants
while suppressing the spurious peaks [3].

Various acoustic-phonetic features are evaluated for their in-
formation content individually and in combination with other
features. Some new features were also proposed to describe var-
ious aspects of the release spectrum, such as the burst frequency,
the spectral flatness, amplitude, compactness, etc. New knowl-
edge-based algorithms were developed to combine the chosen
features in the decision making process. These algorithms are
designed using a relatively small database (ten speakers) and
tested on a much larger database (60 speakers) that was not used
in the design process, which demonstrates good generalization
ability. They are similar to decision trees, but describe complex
interactions between the various features that may be multiple
dimensional at some nodes and may depend on the salience of
the feature at other nodes. Unlike data-driven approaches, these
statistically guided knowledge-based algorithms help improve
our understanding of the acoustic–phonetic characteristics of
the stop consonants and the complex relation and interaction
among various features.

To put the obtained results in perspective, we had to com-
pare them with data-driven systems that rely on huge training
databases. Since the databases used in the experiments are dif-
ferent, caution should be exercised when interpreting these com-
parisons especially when the difference in accuracy is small.

Searleet al. [34], in one of the most successful stop con-
sonant recognition experiments, used an auditory-based filter
bank and statistical discriminant analysis to detect the place
of articulation. They obtained an accuracy of 77% on 148
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Fig. 5. Hard-decision algorithm for the place of articulation detection of stops. Condition A in the figure is (LINP>LINP_THHI), condition B is
(LINP<LINP_THLO), and condition C is [NOT (A OR B)]. MNSS_TH, DRHF_TH, LINP_THHI, and LINP_THLO are the threshold values.

TABLE IV
CONFUSIONMATRIX FOR THE PLACE OF ARTICULATION DETECTION ON1200 STOPS. ACCURACY IS 90%

stops. In our experiments, we obtained an accuracy of 90%
on 1200 stops. Bushet al. [12] obtained classification results
ranging between 72% and 81% on 216 stops in syllable initial
positions for three male and three female speakers. The results
obtained in our experiments show a clear improvement for
a much larger database using continuous speech in various
syllable positions.

De Mori and Flammia [16] performed phoneme recognition
experiments on stops and nasals using back propagation neural

networks as classifiers. The stop classification performance was
about 82%. This is comparable to the 86% we obtained using a
knowledge-based approach.

Nathan and Silverman [29] used time-varying features in a
statistical framework to perform place of articulation detection.
Their results ranged between 72.3% to 89.1%. On the other
hand, Rangoussi and Delopoulos [32] obtained results ranging
between 90% and 94% for the place of articulation detection on
a smaller testing data set using time-frequency analysis and the
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TABLE V
CONFUSIONMATRIX FOR THE CLASSIFICATION OF 1200 STOPS. OVERALL ACCURACY IS 86%

LVQ classifier. Both results are comparable to the 90% obtained
in our work.

Samuelian [33] performed phoneme-level recognition of
stops, nasals and liquids using decision trees. He obtained an
83%-90% accuracy for recognition of stops on three speakers.
This is comparable to the 86% obtained in this work on a
larger number of speakers (60 from seven different dialects).
He used statistical tools (namely the C4.5 inductive inference
algorithm) to build a decision-tree system. His system however
suffered from the inherent traditional limitations of the decision
tree algorithms, especially their limited ability to capture
multidimensional complex interactions among features like
the ones described previously in the place detection algorithm.
Moreover, his frame-level recognition did not use the context
information as was performed in this work.

V. CONCLUSION

In this work, we investigated the acoustic–phonetic feature-
based classification of stop consonants in speaker-independent
continuous speech. We used a new auditory-based front-end
processing system to generate a dual mean-rate and synchrony
representation that combines the advantages of both outputs.
Based on the previous research and our own statistical anal-
ysis and spectrogram reading experiments, we created a new
set of static and dynamic features that are rich in their infor-
mation content and useful in specific classification tasks. New
knowledge-based algorithms were developed to extract the ar-
ticulatory gestures from these features. Classification experi-
ments were performed on stop consonants extracted from the
continuous speech of 60 speakers from seven different dialects
of American English in the TIMIT database. The results yielded
a 96% and 90% for the voicing and place of articulation detec-
tion, respectively. The overall stop classification had an accu-
racy of 86%. These results demonstrate the importance of using
multiple interacting features, context dependence, and relational
invariance of features (as opposed to absolute invariance), and
emphasize the significance of developing new parameters and
algorithms to account for speech variability.
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