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ABSTRACT 
 

NEIGHBORHOOD CANCERIZATION: NEW APPROACHES LINKING SOCIAL AND 

BIOLOGICAL MECHANISMS OF CANCER  

 

Shannon M. Lynch 

Timothy Rebbeck 

 

Novel multidisciplinary and multilevel approaches are required to link biologic and social 

mechanisms with cancer.  We propose a new biosocial concept, “neighborhood cancerization,” 

which postulates that residents of the same geographically-defined regions can be exposed to 

common unfavorable circumstances.  These common neighborhood-level exposures can in turn 

have biological consequences that may result in an increased risk of cancer.  Just as common 

“molecular signatures” can differentiate tumor types, “neighborhood signatures” can identify 

neighborhoods at increased risk for cancers of similar etiologic origins.  Under a shared chronic 

stress hypothesis, we test the neighborhood cancerization theory by first determining the effect of 

neighborhood circumstances on telomere length (TL), a cellular marker of oxidative stress often 

implicated in cancer development at the population level.  After addressing common 

methodologic concerns often cited in TL studies, we tested neighborhood and TL associations in 

a multi-racial, multi-center setting and in the context of individual-level stressors using quantile 

regression.  We then developed and conducted a neighborhood-wide association study (NWAS) 

using all available U.S Census variables and the Pennsylvania State Cancer Registry in order to 

empirically identify common neighborhood factors related to prostate cancer.  Our novel NWAS 

approach demonstrates how agnostic, high-dimensional data analyses can be used to identify 

neighborhoods and people at risk for high grade/high stage, aggressive prostate cancer. Our 

work has implications for health disparities research, and provides evidence to support the 

neighborhood cancerization hypothesis. 
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CHAPTER 1  

SOCIO-BIOLOGIC CONCEPTS IN CANCER 

 

The Complex, Multilevel Etiology of Cancer 

 

     Cancer is a disease of abnormal and dysregulated cell growth[1].  A combination of 

genetic and environmental factors (e.g. cigarette smoking) can initiate cancer 

development[2-4], suggesting that cancer is etiologically complex.  Thus, cancer 

research has evolved from focusing on single risk factors to studies of complex 

interactions 

between 

social, 

behavioral, 

molecular, 

and 

environmental 

risk factors.    

     Multilevel 

conceptual 

frameworks 

have been 

developed to 

address the 

complex nature of cancer etiology and allow for the simultaneous assessment of the role 

of two or more etiological agents within a hierarchical or nested structure [5, 6], [7], 
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[8],[3, 4, 9-14](Appendix A). Multilevel models are generally characterized by 1) The 

macro-environment (or “eco-level” [3, 4]); 2) the individual; and 3) biology (Figure 1).  

Each of these levels is further characterized by sub-levels that define domains of 

variables involved in cancer etiology or outcomes (Appendix A).  This framework 

supports two main hypotheses: 1) factors at the macro-environment and individual levels 

can directly affect biological events and result in cancer; 2) factors may interact in a 

hierarchal fashion, such that biologic-level effects are affected by behaviors or 

exposures of the individual, and individual level effects are affected by the macro-

environment [15].  The ability to address these hypotheses is complex at each level of 

analysis, and even more complex when crossing levels.   

Methodologic challenges in the Multilevel Framework 

     The biologic level is described here as single biomarkers at the cellular sub-level that 

have been implicated in cancer development at the population level.  Some examples 

include telomere length and other oxidative stress markers, like cortisol levels[16]. 

Regardless of biomarkers used for study, inconsistent results (i.e. statistical effects vs no 

association) are often noted across biomarker studies[17].  Inconsistencies in biomarker 

research might be due in part to differences among study populations(e.g., age, gender, 

race, etc.), laboratory approaches(e.g., how blood and DNA is collected, extracted or 

stored)[18], or statistical methods used [17].  These issues are of particular concern in 

multicenter research settings where data collection and population demographics often 

differ, but analyses are combined as if center data comes from a single study.  While a 

number of quality control checks are available to assess validity and reliability of 

biomarkers prior to associations, there is little consistency in analysis and reporting 

across study samples[16].  Standardized assessments of biomarker data are lacking, but 
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would likely improve the acceptability of biomarker findings and lead to a more 

widespread use of biomarkers in the multilevel context.  

     Macro-environment is described here in terms of the neighborhood sub-level.   

Neighborhoods can be defined as the area or place in which a person lives[5], although 

technical definitions of exact neighborhood polygon boundaries are numerous.  

Neighborhoods have certain characteristics such as degree of deterioration, 

urbanization, poverty, educational attainment and percentage of low-income residents 

that have been correlated with increasing disease rates, risk behaviors, and unfavorable 

health outcomes [19-23].  Neighborhood effects have been implicated in cancer 

development[24, 25], even after controlling for individual-level factors[26].   

     Current methodologic approaches in neighborhood research call for a priori selection 

of neighborhood variables from publically available U.S. Census data or self-

administered questionnaires[5, 27].   The problem with this approach is that findings are 

not easily replicated due to a lack of consistency in defining neighborhood variables and 

geographic boundaries [27-29]. This has limited the causal inferences that can be made 

about neighborhood and disease research[27-29] and has likely contributed to fewer 

studies with a multilevel focus, particularly investigations centered on neighborhood and 

biology (Appendix B).  Animal studies have demonstrated that unfavorable neighborhood 

exposures, including social isolation from peers, can influence biological parameters 

related to apoptosis and inflammation[30].  However, few human observational studies 

have investigated the effects of unfavorable neighborhood characteristics on biological 

markers related to disease[31]. For example, one multilevel study investigated etiologic 

effects of all three levels on a cancer outcome[32]; 5 studies investigated macro-

environmental effects (namely neighborhood effects) on biomarkers implicated in cancer 
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at the population level[31, 33-35](Appendix B).  Thus, studies linking biologic and social 

mechanisms in cancer are limited, despite wide-spread acceptance of these multilevel 

frameworks.   

Neighborhood Cancerization: Principles 

       Current multilevel approaches lack shared pathways and methodologies that can be 

used to frame the relationship between biologic and macro-environmental factors[5].  

Thus, the creation of joint socio-biologic concepts and novel methodologies could open 

doors for more multidisciplinary cancer investigations.  The concept of field cancerization 

is a pathobiologic theory that was originally proposed to explain synchronous or 

metachronous tumors of the oral 

mucosa[36].  Field cancerization came to refer to the propensity of a field of tissue to 

become malignant based on either pathological observations or molecular markers[37].  

In theory, field cancerization occurs from simultaneous wide-spread, unfavorable 
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exposures acting on cells and tissues within organs and organ systems (such as the 

effect of cigarette smoking on the lung), as well as the migration of “patches” of 

molecularly altered cells into larger tissue fields or territories that become predisposed to 

cancer development[37].  Common molecular signatures in pre-malignant cells and 

primary, malignant tumors provide evidence of the cancer field effect since they can be 

used to identify tumor types of similar etiologic origins(Figure 2).  Molecular markers for 

field cancerization have been related to epigenetic changes[38-40], tissue micro-

environment[41, 42], and telomere function[43] across different tissue types(Figure 2).  

     Analogous to a field of tissue for which unfavorable exposures may lead to 

carcinogenesis, residents of neighborhoods may experience common stressors that can 

lead to unfavorable biological consequences including heightened cancer risks(Figure 

2).   Under the proposed “neighborhood cancerization” concept, we hypothesize that 

residents of geographically-defined regions can be exposed to common unfavorable 

circumstances.  These common neighborhood-level exposures can in turn have 

biological consequences that may result in an increased risk of cancer.  Further, just as 

common “molecular signatures” can differentiate tumor types, “neighborhood signatures” 

can identify neighborhoods at increased risk for cancers of similar etiologic origins[44].  

Thus, neighborhood cancerization concepts at the social level are parallel to field 

cancerization concepts at the molecular level (Figure 2).   

     Further, “top-down and bottom-up” mechanisms linking neighborhood and field 

cancerization processes under similar biologic pathways are possible, but likely 

complex, involving multilevel approaches, as well as complicated systems 

approaches[45] (i.e, approaches that incorporate positive and negative feedback loops 

among multilevel variables, which is outside the scope of this dissertation).  Here, we 
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operate under the hypothesis that unfavorable social and economic environments at the 

neighborhood-level may act in concert with biological, behavioral or psychosocial 

factors(i.e., depression[46] and perceived stress[47]) at the individual level [5] to cause 

chronic stress[48, 49] .  In turn, biological processes related to oxidative stress are 

affected by neighborhood and individual-level exposures in a way that limits the body’s 

ability to fight disease processes like cancer.  Thus, chronic stress is related to constant 

“wearing down” of the body that can affect biological processes, accelerate the rate of 

decline in physiological functioning, and ultimately affect the body’s ability to fight 

disease processes such as cancer [17, 50-54](Figure 2). 

 

Dissertation Synopsis 

     To address the issues described above, this investigation focuses on linking biologic 

mechanisms and social mechanisms (at the macro-level) in cancer by proposing a novel 

socio-biologic neighborhood cancerization framework.  This concept will be tested under 

a biologic pathway common to both social and biologic sciences, chronic stress.  The 

chronic stress model postulates that constant exposure to unfavorable stressors at the 

neighborhood level can lead to cellular oxidative stress at the biologic level and 

ultimately cancer initiation and progression[5] [17, 50-54].  These hypotheses can be 

tested by applying methodologic approaches from biology to social science and from 

social science to biology.  Shared socio-biologic concepts and methods can serve as a 

common “language” across disciplines, which can encourage the facilitation of the 

multicenter, multilevel investigations that are needed to address the complex, 

multifactorial nature of cancer among individuals who will always be nested within a 

variety of ambient neighborhood landscapes and risk environments. In directly changing 
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these environments we may be able to profoundly influence the burden of cancer, 

perhaps more so than medical care or direct attempts to modify lifestyle[55]. 

     Each chapter of this dissertation addresses a methodologic challenge associated with 

testing the neighborhood cancerization hypothesis.  Chapter 2 focuses on common 

methodologic concerns often cited in multicenter, biomarker studies.  In Chapter 3, we 

determine the effect of neighborhood circumstances on telomere length (TL), a biological 

marker of oxidative stress often implicated in cancer development at the population 

level.  We test neighborhood and TL associations in a multi-racial, multi-center setting 

and in the context of individual-level stressors by applying a social science method, 

quantile regression, to a biologic outcome.  Borrowing methodologies from genome-wide 

association studies(GWAS), in Chapter 4, we develop and conduct a neighborhood-wide 

association study (NWAS) using all available U.S Census variables and the 

Pennsylvania State Cancer Registry in order to empirically identify common 

neighborhood factors related to prostate cancer.  We demonstrate that NWAS can be 

used to identify common neighborhood signatures that relate to high grade/high stage 

prostate cancer.  The socio-biologic concepts and methods discussed in each chapter 

have the potential to serve as a common language across disciplines.  These concepts 

and methods can encourage the facilitation of multicenter, multilevel investigations that 

are needed to address the complex, multifactorial nature of cancer.  
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Abstract 
 

Background: Leukocyte telomere length (LTL) has been associated with age, self-

reported race/ethnicity, gender, education, and psychosocial factors, including perceived 

stress, and depression.  However, inconsistencies in associations of LTL with disease 

and other phenotypes exist across studies.  Population characteristics, including 

race/ethnicity, laboratory methods, and statistical approaches in LTL have not been 

comprehensively studied and could explain inconsistent LTL associations. 

Methods:  LTL was measured using terminal restriction fragment assays in 1,510 

participants from a multi-center study combining data from 3 centers with different 

sample characteristics and DNA processing methods.  The association between LTL 

measures, psychosocial factors, and race/ethnicity was evaluated using linear 

regression and generalized estimating equations, accounting for population 

characteristics including age, gender, cancer status and center, as well as DNA 

extraction, a type of laboratory method. 

Results:  After considering sources of potential bias and confounding in multicenter 

data, longer LTL was associated with African American race (p-value=0.04) and 

Hispanic ethnicity (p-value=0.02), and less than a high school education (p-value=0.04).  

There was an inverse relationship between LTL and perceived stress (p<0.001) overall, 

and between LTL and high school education among African Americans (p-value<0.001).   

Conclusions:  With proper evaluation and statistical adjustment for center and 

laboratory effects, combining data from multiple centers is valid and may resolve some 

inconsistencies in reporting of LTL associations.  Biologic effects on LTL may differ 

under certain psychosocial and racial/ethnic circumstances and could impact future 

health disparity studies.  
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Introduction 
 

     Telomere DNA consists of long stretches of (TTAGGG) repeat DNA located at the 

ends of chromosomes[1] and are required for the replication and stability of 

chromosomes[1].  These repeats naturally shorten with age in all replicating somatic 

cells[2] due to the inability of the cell to copy the ends of DNA and maintain length over 

time[3].  Beyond chronological age, telomeres can also shorten prematurely in response 

to cellular oxidative stress[4, 5].  In normal cells, telomere shortening results in cell 

senescence or apoptosis[6, 7].  Senescence and apoptosis can function as tumor 

suppressor mechanisms but can also disrupt normal tissue microenvironments and 

contribute to aging phenotypes[8-11]. Cells with critically short telomeres that escape 

apoptosis or senescence [12], and continue to replicate, have unstable genomes and 

are believed to mark a critical step on the pathway to malignant transformation[2, 13] 

[14, 15] [4, 16].   

     Leukocyte telomere length (LTL) has emerged as a potential biomarker of aging, 

cumulative oxidative stress, and disease, and represents a promising intermediate trait 

linking chronic cellular stress with disease pathogenesis.  Several psychological and 

social conditions have been associated with both an increase in cellular oxidative 

stress[5, 17] and subsequent LTL shortening[5, 18-21].  Depression[22], perceived 

stress[23], and educational attainment[5] are associated with LTL attrition.  However, 

elucidating the complex relationship between  psychosocial factors and LTL[24] has 

been difficult, and inconsistent results have been reported in the literature [5].   

     While previous studies have demonstrated that membership in certain race/ethnic 

groups may be associated with a range of socioeconomic and psychosocial factors that 

could result in shorter LTL [25], namely educational level[5] and perceived stress[23], 

reports on the effects of race/ethnicity on LTL especially are limited and inconsistent.  
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Most association studies of LTL have been conducted in female and Non-Hispanic White 

populations[4, 5].  Studies that include racial/ethnic minorities suggest that Non-Hispanic 

Whites have shorter LTL compared to African Americans(16, 17) and Hispanics[4].  

However, one study suggested that African Americans and Hispanics have shorter LTL 

than Non-Hispanic Whites[25].  Given the implications for disease prevention, as well as 

the potential insights into common mechanisms affecting cellular oxidative stress and 

aging, it is important to better understand both the racial and psychosocial contexts in 

which changes in telomere biology occur using more diverse samples.   

     Inconsistencies in telomere research might be due in part to differences among study 

populations, laboratory approaches, or statistical methods used, sometimes across 

multiple study sites [4].  Beyond older age and male gender, there is little consensus 

about the population characteristics that are associated with shorter LTL[4].  The effects 

of biosample source and laboratory methods on telomere length measurements have 

been studied, but are still being realized[4, 5, 14, 15, 26].  Differences in cell types used 

to measure telomere length (i.e. buccal, blood leukocyte, tissue), DNA extraction 

methods[27], and type of telomere length assay used can affect the validity and reliability 

of telomere length measurements [4, 5, 14, 15], and ultimately reported LTL 

associations.   

     Statistical approaches employed in LTL studies are often chosen based on the 

characteristics of available study populations and customary laboratory methods. Yet, 

the type of telomere length assay selected could affect the reporting and statistical 

analysis of LTL outcome variables.  Terminal restriction fragment(TRF) assays, known 

as the gold standard for measuring LTL[26, 28], measure (TTAGGG)n lengths directly by 

analysis of Southern blots of restriction digests of genomic DNA with frequently-cutting 

enzymes;  telomere length is reported in terms of the average size of the undigested 

telomere fragment (which lacks sites for palindrome-dependent restriction enzymes) in 
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base pairs or kilobases(kb) for each leukocyte DNA sample. Quantitative polymerase 

chain reaction (qPCR), a high-throughput technique often used in large, population-

based studies[4, 29, 30], outputs LTL in terms of T/S ratios. Here, a PCR-generated 

signal that is dependent upon the total (TTAGGG)n content of the sample (T) is 

compared to the PCR signal from a known gene present only once in the genome (S). 

T/S ratios of experimental genomic DNA samples are then each compared with those of 

a reference genomic DNA sample, determined under identical experimental conditions, 

to arrive at a value describing the telomere content of each unknown sample, which is 

assumed to correlate closely with the average telomere length from TRF (24,25).  

Additionally, some studies account for the potential effects of population characteristics 

on telomere length outcomes and convert T/S ratios or LTL kb into standardized Z-

scores that are adjusted for age and gender[31, 32].  These differences in reported 

telomere length metrics (e.g. kb, ratios, or Z-scores) can make comparisons  across 

studies difficult, and the implications of using various data transformations and statistical 

approaches on observed LTL associations has yet to be formally evaluated.  

     In this study, we use data from a multicenter, multi-racial/ethnic, cross-sectional study 

designed to investigate the effect of psychosocial factors on cancer-related biomarkers.  

The study sample includes centers that used different LTL laboratory methods and had 

different population characteristics.  The purpose of this analysis is two-fold.  First, we 

conduct a comprehensive investigation of the collective effect of laboratory procedures, 

study participant characteristics, and statistical measures in order to better understand 

telomere length associations and any potential inconsistencies in observed associations 

across multiple study sites.  Second, once these factors have been considered, we 

evaluate the effect of race/ethnicity on the relationship between psychosocial factors and 

telomere length. 
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Methods 

 

     Prior to assessing our primary data, we undertook a review of multicenter association 

studies of LTL in order to ascertain laboratory factors and statistical approaches 

commonly used in this setting (Supplementary Data File and Supplementary Table 1 in 

Appendix C).  These approaches could serve as methodologic factors that could 

contribute to inconsistencies in reported associations(4).  

 Study Sample.  Our primary study sample was drawn from three centers: the 

University of Pennsylvania (Penn), the Ohio State University (OSU), and the University 

of Texas Medical Branch (UTMB).  These centers were originally part of the larger 

Centers for Population Health and Health Disparities[33] whose main disease focus was 

on the study of cancer.  All study participants were recruited between 2004 and 2012.  

Each center had its own protocol for recruitment and data collection that has been 

described previously [34-36], and inclusion/exclusion criteria for each study are listed in 

Table 1.  Study participants agreed to donate a blood sample to extract genomic DNA, 

and they completed a standardized questionnaire at the time of study enrollment. Study 

participants were followed-up for cancer status.  Informed consent was received from all 

participants, and study protocols were approved by the Institutional Review Boards of 

each center.           

     Covariates.  Variables common to all 3 centers included: gender(male/female), age 

at enrollment (continuous); race/ethnicity(White/Non-Hispanic, African American/Non-

Hispanic, and Hispanic), educational status (less than high school or less than 12 years 

of schooling; high school education or 12 years of schooling/GED); >high school 

education or >12 years of schooling), disease status (cancer; yes/no), as well as other 

behavioral factors, including smoking status (ever/never).  The psychosocial factors in 

this study were defined by perceived stress and depression.  To evaluate stress, we 
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used the validated perceived stress scale (PSS)[37, 38].  This is a 10-item global 

measure of perceived stress where higher scores indicate greater perceived stress(total 

score range: 1–40).   Total PSS was normally distributed in this sample, and we 

dichotomized this variable to compare high (above median) to low (below median) 

stress[39, 40].   Questions from the validated Center for Epidemiological Studies-

Depression (CES-D) scale[41] and the CES-D revised(R) scale[42] were used to 

ascertain depressive symptoms. Both the CES-D and CES-DR are 20-item scales (total 

score range: 0-60).  Higher scores, particularly those above 16, suggest more 

depressive symptoms[41].  The combined total scores from CES-D and CES-DR were 

positively skewed; we dichotomized at the clinical cut-point of 16[41] to compare those 

with higher and lower levels of depressive symptoms.   PSS, CES-D, and CES-DR 

scales have been validated in multiethnic studies [43, 44].   

     Laboratory Methods.    

     Tissue Source for DNA: Here, All centers followed the same standardized blood draw 

protocol and used the same tissue source to extract DNA, peripheral blood leukocytes.  

Twenty milliliters of blood were drawn from each subject by a trained phlebotomist.  

Samples were centrifuged and buffy coats were stored at -70°C until DNA extraction and 

telomere assay.       

            DNA Extraction:  Genomic DNA was extracted from each center individually and 

sent to the Wistar Institute for analysis of LTL.  OSU and UTMB samples were 

processed using the QIAamp DNA Extraction Kit (Valencia, CA).  Penn DNA samples 

were extracted using Chemagen Magnetic Bead technology (n=61) and phenol-

chloroform extraction (n=40). 

               Terminal Restriction Fragment (TRF) assay:  TRF length assays were used to 

measure  LTL from extracted DNA on all study samples (using duplicate samples), as 

described previously by Kimura et al[45] and detailed in Supplementary Laboratory 
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Methods(Appendix C). Briefly, genomic DNA samples were digested with restriction 

enzymes Hinf I (10 U) and Rsa I (10 U; Roche), and  mean LTL in kb was determined 

using Telorun software[45].     

               Quantitative Telomere PCR (qPCR):  For a subset of Cross-Center samples 

(Penn, n=101 and OSU, n=111), LTL was also measured using  the quantitative PCR 

method developed by Cawthon, modified for  compatibility  with the Applied Biosystems 

7900 HT instrument [30](Supplementary Laboratory Methods-Appendix C).  Assays 

were carried out in triplicate, and center samples were batch analyzed to minimize inter-

assay variation.  The T/S ratios of each experimental sample relative to the reference 

sample were generated using the comparative CT (cycle threshold) method[30].  T/S 

ratios and LTL kb were compared for quality control comparisons.  

            Coefficient of Variation Percentages (CV%):  CV% were calculated for duplicate ( 

TRF measurements) or triplicate(qPCR measurements) samples using the pooled 

standard deviation of the duplicates or  triplicates divided by the overall mean of all 

measurements.  The TRF overall CV was 1.25%.   The qPCR intra- and inter-plate CV% 

were 4.9% and 12.9%, respectively.  

     Statistical Analysis.  Data quality control measures were undertaken to identify any 

potential measurement errors or inconsistencies.  Box plots of LTL measurements were 

generated to identify outlier points or data errors.  LTL is described using means, 

medians, standard deviations and ranges.  The distributions of LTL were not normal, and 

data transformations were conducted for statistical analysis.  Methods used in past 

multicenter studies were used to investigate inconsistencies and LTL associations 

(Supplementary Methods/Supplementary Table 1-Appendix C).  We evaluated 

correlations between log-transformed LTL from TRF, and qPCR measurements overall, 

by center, and by DNA extraction method[27]using[4, 26, 28-30] linear regression.  
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     Relevant study population characteristics overall and by center are summarized by 

medians and frequencies.  Comparisons of population characteristics across center and 

by LTL were conducted using nonparametric tests (Kruskal-Wallis and Wilcoxon ranked 

sum) for primary evaluations of population characteristics.   

     Associations between LTL and age and LTL and psychosocial factors were assessed 

using the two common telomere length metrics reported in multicenter settings 

(Supplementary Table 1-Appendix C), log-transformed telomere length(kb) and LTL Z-

score.  Inverse-weighted variance Z-scores were calculated by subtracting the log-

transformed LTL sample mean from the original sample values and then divided by the 

sample standard deviation[31, 32].  Z-scores were also adjusted for age, gender, and 

cancer status by estimates within strata and then taking the weighted average across 

strata[46-51] [52, 53].   Multivariable linear models were used to assess associations 

with age and psychosocial factors that included relevant population and laboratory 

factors.  Relevant factors (identified from previous multicenter studies; Supplementary 

Methods/Supplementary Table 1-Appendix C) were chosen for final inclusion in our 

models using stepwise forward and backward variable selection approaches, with a 

liberal variable inclusion cut-off of p<0.25.  GEE models (using an independence 

correlation structure and robust standard errors) [54]) were also fit in order  to account 

for correlation of observations within centers.  Interactions between age, gender and 

psychosocial factors were evaluated using appropriate cross-product terms within the 

regression model.   Subgroup analyses were further conducted by race/ethnicity and in 

those without cancer and within the UTMB cohort.  All P-values were two-sided.  All 

statistical analyses were conducted using STATA version 9.1.  

 

Results 
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      Laboratory Methods Evaluation.  Applying proper quality control measures by 

accounting for documented laboratory factors known to affect LTL measurements (i.e. 

DNA extraction protocol, type of telomere assay, etc) ensures lab methods are not prone 

to error that can subsequently affect LTL associations.  In pilot experiments, we found 

that TRF assay results consistently yielded excellent measurement CVs <2%, so these 

assays were carried out on all samples. qPCR measurements  for the OSU and UPenn 

samples had higher CVs than the TRF assays(UPenn:  qPCR 12.0 CV% and TRF 0.93 

CV%; OSU: qPCR 0.12 CV% and TRF 0.01 CV%--consistent with the literature)[14], 

whereas qPCR measurements of the UTMB samples yielded  unacceptably high 

measurement CVs (27 CV%), possibly due to an unknown analyte affecting the qPCR 

reaction (24)), and were therefore excluded from the analysis.  qPCR and TRF 

comparisons were made with OSU and UPenn samples[14].  The relationship between 

log-transformed TRF measures and T/S ratios for 211 samples with both TRF and T/S 

ratio data showed an overall R2 of 0.60(Figure 1a).  The R2 within centers was 0.71 for 

Penn (Figure 1b) and 0.93 for OSU (Figure 1c).  Comparing log-transformed TRF to T/S 

ratios by DNA extraction method, the R2 for QiAmp DNA extraction was 0.81; for 

Chemagen, 0.69 and for phenol-chloroform, 0.90.  The mean (standard deviation) LTL 

across all centers was 6.55kb (2.86).  Within center, mean LTL was 8.42kb (4.50) for 

Penn, 6.34kb (1.95) for OSU, and 6.42kb (2.71) for UTMB.  Median LTL was significantly 

different by extraction method (p-value<0.001)(Figure 1d). However, median LTLs were 

not significantly different between Qiagen and Chemagen methods (p-value=0.48).   

    Study population evaluation.  Baseline characteristics of the study overall (n=1510) 

and by center were evaluated to determine potential clustering and confounding effects 

by center (Table 2).  The overall study population was 58.8% female.  15.7% had a 

cancer diagnosis, and 51% had ever smoked cigarettes.  The average age was 50.6 

years, with a standard deviation of 15.6.  All population characteristics, except for 
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smoking, were significantly different across centers.  Baseline study population 

characteristics of the combined study population (includes all 3 centers) were compared 

on median LTL and log-transformed LTL(kb) in order to compare our results to literature 

and to identify factors related to LTL that could be tested in forward and backward 

regression models with age and LTL(Table 3).  Only cancer status had a significant 

association with median LTL; cancer cases had longer LTL than those without cancer (p-

value=0.02).  There was no statistical relationship between LTL and gender (median 

LTL(kb), interquartile range (IQR): men=6.43, 4.14-8.39; women=6.33, 4.39-8.27; Table 

3) in the overall cohort and when restricting the population to those without 

cancer(median TRF(kb), IQR: men=6.01kb, 4.10-8.00; women=6.33, 4.48-8.27, p-

value=0.12; Supplementary Table 2-Appendix C).   

     Association of laboratory factors, population covariates, and LTL.  There was no 

correlation between age and log-transformed (R2= -0.08, p-value=0.45) and Z-score 

LTL(R2= -0.10, p-value=0.49).  The best fitting linear regression and GEE model for 

continuous age and log-transformed LTL or Z-score were the same and included the 

following: gender (GEE p-value<0.001), cancer status (GEE p-value<0.001), a gender-

cancer status interaction (GEE p-value<0.001), and DNA extraction method (GEE p-

value<0.001).  The gender-cancer status interaction remained when using 

OSU/UTMB(p-value=0.01) or UTMB data only(p-value=0.02). 

     Association of Race, Education, Psychosocial Factors and LTL.  The distribution of 

psychosocial factors differed significantly across centers (Table 2).  The sample was 

comprised of 45.6% non-Hispanic Whites, 45.0% Hispanics, and 9.4% African 

Americans.  The Penn and OSU study participants reported higher levels of education 

than UTMB (p-value<0.001).  OSU, which included only females, reported the highest 

levels of stress and depression (p-value=0.03).    There were no statistically significant 

associations between psychosocial factors and LTL (Table 3).  However, African 
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Americans had the longest median LTL (6.61kb, IQR=4.56-8.82), and Non-Hispanic 

Whites the shortest (6.11kb, IQR=4.19-8.23).  Patterns were consistent when restricting 

the study population to those without cancer (Supplementary Table 2-Appendix C) and 

UTMB only.  No significant interactions between population characteristics and 

psychosocial factors were observed.   

     Associations with log-transformed LTL and Z-scores with race and psychosocial 

factors were estimated using both using linear regression (Model 1) and GEE models 

(Model 2)(Table 4).  Regardless of LTL measure or statistical model, there was a 

significant, direct relationship between LTL and race/ ethnicity.  For both LTL outcome 

measures (log-transformed LTL and Z-score), GEE models presented a significant 

relationship between lower levels of education (less than high school) (log-transformed 

LTL p-value=0.02) and higher levels of perceived stress(log-transformed p-value<0.001).  

Associations were similar when limiting the study population to those without cancer and 

UTMB only (data not shown).  Since both LTL measures resulted in similar association 

results, and we thought it was important to account for cluster effects of center, the final 

model was chosen to be a GEE models with log-transformed LTL .   

     No statistically significant associations between log-transformed LTL and 

psychosocial factors were reported for Caucasians or Hispanics (Table 5).  Compared to 

those with more than a high school education, having only a high school education was 

significantly related to shorter LTL (p-value<0.001) in African Americans.   

Discussion 
 

     Inconsistent associations between LTL, race/ethnicity, and psychosocial factors in 

literature have been reported [5] (16, 17)  [23] [25], and few studies have evaluated the 

association between LTL and psychosocial factors within race/ethnic subgroups[25].  

Inconsistencies in literature between socioeconomic and psychosocial factors and LTL 
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have been attributed to different laboratory and statistical approaches employed in these 

telomere studies[4], but few studies have evaluated methodological effects.  Multi-center 

studies serve as an ideal opportunity for evaluating methodological effects on LTL 

associations since they often combine data from centers with heterogenous populations 

and varying laboratory approaches.  Our findings suggest that combining and comparing 

data from multiple centers is valid and can have little effect on LTL associations, with 

proper adjustments.  We first showed that our telomere measurements in the combined 

study population were reliable and valid compared to other published studies[4, 5, 14, 

15].   More specifically, we evaluated the source of DNA, type of telomere length assays, 

CV percents, and DNA extraction techniques[4, 5, 14, 15] since they are known to 

contribute to discrepancies in reporting associations between LTL and cancer and other 

diseases[3, 14, 27].  Choice of tissue type and assay in our study were consistent with 

literature(4), and correlations between TRF and T/S ratios for Penn and OSU were 

within range of other studies (0.60-0.95)[26, 29, 30, 52, 53].  Although not included in 

TRF and T/S ratio comparisons, UTMB LTL measures were reliable based on a 2.0% 

TRF CV%[4].   

    Similar to published studies, phenol-chloroform DNA extraction resulted in longer 

telomeres than Qiagen methods[14, 27], and Qiagen and Chemagen, both column-

based extraction methods, yielded similar median LTL results [14, 27].  The majority of 

our samples were extracted using Qiagen and Chemagen(97.3%), thus our LTL 

measurements could be underestimated and result in Type II error.  However, the bias is 

likely nondifferential.  Few multicenter studies of LTL report and consider the effects of 

DNA extraction on study outcomes(Supplementary Table 1-Appendix C), and DNA 

extraction appears to contribute to inconsistent findings in telomere association 

studies[14, 27].   
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     Age and male gender have been associated with shorter LTL(4) in many studies. 

While we see the same trends in our data, we do not observe statistically significant 

associations(Supplementary Table 2-Appendix C).   Although the linear relationship 

between age and LTL was weaker in the present study for log-transformed LTL(R2= -

0.08) than previously reported(R2~0.15 [4]), the attenuated association observed 

between age and LTL when adjusting for other covariates, like gender, is consistent with 

other studies[53].  Additionally, the rate of telomere attrition may vary over lifespan, with 

some studies suggesting more rapid attrition in younger ages (childhood) and in later 

decades of life (over age 70) [55, 56]; the age range of the sample was 26-64 and the 

median age of the sample was relatively young at 51 years (Table 2). We also found that 

male cancer cases had longer telomeres compared to non-cancer cases ,and this has 

been observed in literature[57],  although inconsistently[58].   

      These initial evaluations informed which laboratory and population factors may affect 

LTL associations in our study.  DNA extraction methods, along with age, gender, cancer 

status, and the interaction of gender and cancer status, were significant confounders.  

Center-specific study recruitment led to specialized groupings of gender and cancer 

status by center.  Thus, center was a cluster variable, and GEE models, which 

accounted for the within and between effects of the center cluster variable and include 

stricter standard errors[59], appeared more appropriate in our analyses.  Few multi-

center association studies of LTL have accounted for potential cluster effects 

(Supplementary Table 1-Appendix C).  Concern over additional variability in LTL in those 

w/ cancer and by center prompted us to compare findings when restricting the 

population to those without cancer and UTMB only.  We found that results were robust 

and that extraneous variability in LTL appeared to be removed with adjustment for 

relevant population and laboratory methods.  
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     We also evaluated the choice of outcome measure(log-transformed LTL or Z-score).  

Most multicenter studies of LTL report log-transformed LTL (Supplementary Table 1-

Appendix C).  However, Z-scores standardize telomeres based on sample distributions 

and may be more appropriate in instances where the distribution of LTL greatly differs by 

center or when confounders or model adjustment variables differ by center.  Although 

the magnitude of effects appear different (and often higher with Z-score), they are not 

comparable.  This is because the data transformation associated with each of these 

measures lends itself to different interpretations.  Nevertheless, patterns of association 

between LTL and race/ethnicity and psychosocial factors were similar regardless of 

which telomere outcome measure (log-transformed LTL or Z-score) was used.   

To our knowledge, this is the first study to evaluate the effect of race/ethnicity on 

the relationship between socioeconomic and psychosocial factors and LTL, and to more 

comprehensively investigate the collective effect of laboratory procedures, study 

population characteristics, and statistical measures on reported LTL associations.   We 

found significant associations between race/ethnicity, low levels of education, perceived 

stress, and LTL.  Associations between high levels of perceived stress and shorter LTL 

have been reported[5].  We are only the second study to report that both African 

Americans and Hispanics have longer LTLs than Non-Hispanic Whites[4].  Having less 

than a high school education was associated with longer LTL, which is an association 

not typically reported in literature(5)[25].  When stratifying the analysis by race, there 

was a suggested association between longer LTL and less than a high school education 

for Hispanics, and a significant association between shorter LTL and having a high 

school education for African Americans.  Thus, the racial, ethnic and educational 

composition of our sample (including a large number of Hispanics with low education) 

may have affected our education findings.  Studies have found correlations with 

socioeconomic status (SES) related to education and income, and race, namely lower 
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SES conditions are associated with African Americans[60].  Being Hispanic is also 

associated with lower levels of education in literature, as well as improved mortality rates 

compared to African Americans[60], referred to as the Hispanic paradox[61-63].  Given 

that shorter LTL is believed to be related to mortality[4], racial composition appears to be 

an important consideration in LTL studies.     

     Our study had some limitations.  This was a cross-sectional investigation, limiting us 

to studying variables that were common to all 3 centers.  For instance, duration and 

severity of depression and perceived stress are more consistently associated with 

shorter LTL[64], and LTL is likely to shorten over time(1).  Stratified analyses by race 

yielded small samples, particularly for African Americans, but findings suggest studies 

focused on telomere biology by race/ethnicity are warranted.  Like most LTL association 

studies, differences in mean LTL could be influenced by the proportions of different kinds 

of leukocytes[65].  The average LTL in any given study is considered to be a general 

average of all the LTLs across all chromosomes and blood leukocytes.   Although it is 

unclear whether differential cell counts are affected by race/ethnicity in a way that would 

explain the patterns we observed, one previous study found no association between 

leukocyte type and LTL in African Americans  or Non-Hispanic Whites[66].   

     The large multi-ethnic and multicenter composition of our study allowed for more in 

depth analysis of the effects of laboratory and statistical approaches on telomere length 

associations.  Our study demonstrated that with proper evaluation and adjustment of 

center and laboratory effects, combining data from multiple centers, with different 

laboratory approaches and population characteristics, can be a powerful and valid 

approach for assessing LTL associations.  In addition, evaluating methodologic effects, 

similar to what we have done here, within and across LTL studies may help resolve 

inconsistent reports of LTL associations.  Our data provide evidence of an association 

between Hispanics and African Americans and longer LTLs, as well as potential 
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relationships between educational level, perceived stress and LTL for certain 

racial/ethnic sub-groups.  Further study into the effects of socioeconomic and 

psychosocial factors on LTL by race/ethnicity could have implications for research 

involving health disparities and disease outcomes.  

 

 

 

Table 1: Study Descriptions and Inclusion/Exclusion Criteria 

Center Original 
Disease Focus:          
Primary 
Race/Gender 

Sample 
size(n=1510) 

Inclusion criteria 

Ohio State 
University(OSU)[34] 

Cervical cancer:  
Non-Hispanic White/ 
underserved women 

111 Women from Appalachia with 
an intact uterine cervix and 
corpus, not pregnant, and no 
history of cervical cancer 
recruited at time of routine 
cervical cytology.   

University of 
Pennsylvania 
Hospital System 
(UPenn)[36] 

Prostate cancer:      
Non-Hispanic White 
and African-
American/men 

101 Male prostate cancer patients 
from UPenn urology clinics with 
blood sample. 

University of Texas 
Medical 
Branch(UTMB)[35] 

Stress effects near 
oil refineries:                  
Non-Hispanic and 
Hispanic Whites and 
African 
American/men and 
women 

1298 Population-based sample of 
Non-Hispanic households and a 
strata sample of Hispanic 
households in Texas City, TX. 
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Figure 1.  a-c. Comparison of Log-transformed TRF to T/S Ratio overall and by center. 
d. Median Telomere Length and R2 by DNA extraction method. 

a. Overall                                                             b. UPHS    

 c. OSU 

 

 

d.  DNA Extraction Method (Center, 
N, Median, R2) 
Chemagen 
(UPHS, n=61, 6.80, R2=.69)  QiAmP 
(OSU/UTMB, n=1409, 6.28, R2=.81)  
Phenol-Chloroform 
(UPenn, n=40, 9.20,R2= 0.90) 

 

* R2 ranges from 0.60-0.95 in 
literature[26, 29, 30]. 
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Table 2.  Study Characteristics  

 

*Abbreviations:  University of Pennsylvania(UPenn), Ohio State University(OSU), University of 

Texas Medical Branch(UTMB); 
a Medians(interquartile range for the median); b p-values comparing characteristics across each 

of the 3 centers using Kruskal Wallis Test or Fisher’s Exact Test. 
b Range from low to high for Depression (0-60) and Perceived Stress Scale (0-40). 

 

 

 

 

 ALL Centers UPenn OSU UTMB p-

valueb 

Population 

Characteristics 

     

Total Population (n) 1510 101 111 1298  

Median Telomere 

length (kb)a 

6.4 (4.3-8.3) 8.7 (4.2-11.8) 6.3 (5.1-7.9) 6.3 (4.2-8.3) 0.0001 

Median Agea 51 (38-63) 58 (53-63) 30 (26-43) 51 (38-64) 0.0001 

Male Gender (%) 41.2 100 0 40.1 0.0001 

Cancer diagnosis(%) 15.7 100 0 10.5 <0.001 

Ever Cigarette 

Smokers(%) 

51.0 57.4 42.3 51.2 0.08 

Race (%)      

     Non-Hispanic 

White 

45.6 89.0 98.2 37.8  

     African American 9.4 11.0 1.8 9.9  

     Hispanic 45.0 0 0 52.3 <0.001 

Education(%)      

     > High School 37.0 72.3 64.9 31.8  

     High School/GED 29.8 23.7 23.4 30.8  

     <High School 33.2 4.0 11.7 37.4 <0.001 

Psychosocial Factors      

Median Total 

Depression Score 

6(1-15) 8 (3-13) 12 (7-22) 5 (0-14) 0.0001 

Median Total 

Perceived Stress 

19 (17-22) 20 (18-22) 22 (19-24) 19(16-22) 0.0001 
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Table 3.  Unadjusted Median Telomere Length(kb) and Mean Log-Telomere Length(TL 
in kb) by Study Characteristics(ALL n=1510) 
 

 Median TL (kb) 

(Interquartile 

Range)a 

p-

valueb 

Mean 

logTL(SD) 

p-

valuec 

Population 

Characteristics 

    

Age     

     Younger 

age(<=51) 

6.39(4.33-8.29)  1.78(0.44)  

     Older age(>51) 6.30(4.20-8.32) 0.68 1.77(0.50) 0.51 

Gender     

     Female 6.33 (4.39-

8.27) 

 1.77(0.44)  

     Male 6.43 (4.14-

8.39) 

0.58 1.78(0.51) 0.07 

Cancer diagnosis     

     Yes 7.14 (4.00-

9.18) 

 1.83(0.58)  

     No 6.28 (4.30-

8.17) 

0.02 1.77(0.45) 0.08 

Ever Smoker     

     Yes 6.45(4.25-8.29) 0.71 1.78(0.47)  

     No 6.28(4.31-8.31)  1.77(0.48) 0.89 

Race      

     Non-Hispanic 

White 

6.11(4.19-8.23)  1.75(0.490  

     African 

American 

6.61 (4.56-

8.82) 

 1.83(0.48)  

     Hispanic 6.42 (4.42-

8.27) 

0.12 1.79(0.45) 0.18 

Education     

     > High School 6.35(4.29-8.30)  1.77(0.50)  

     High 

School/GED 

6.13(4.29-8.30)  1.76(0.48)  

     <High School 6.43(4.53-8.15) 0.61 1.80(0.43) 0.46 

 Psychosocial 

Factors 

    

Total Perceived 

Stress 

    

     High Stress 

(>19) 

6.33(4.20-8.32)  1.77(0.48)  
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     Low Stress 

(<=19) 

6.39(4.33-8.26) 0.60 1.78(0.47) 0.69 

Total Depression     

     High 

Depression (>16) 

6.45(4.50-8.52)  1.81(0.44)  

     Low Depression 

(<=16) 

6.33(4.24-8.23) 0.12 1.76(0.48) 0.19 

* Ranges of Median and Mean telomere length are similar to those reported in literature[26, 29, 

30].   
a Medians(interquartile range for the median); b p-values comparing characteristics across 3 or 

more groups using Kruskal Wallis Test, otherwise used Wilcoxon Ranked Sum Test; c p-values 

comparing characteristics across 3 or more groups using ANOVA, otherwise used T-test. 

 

Table 4.  Adjusted Regression Estimates(Standard Errors) of Individual Race/Ethnicity, 
Education, Psychosocial Factors and Log-Transformed and Z-Score Telomere 
Length(TL in kb). 

 Log-Transformed TL Z-Score TL 

 Model 1 Model 2 Model 1 Model 2 

Race (compared 

to Non-Hispanic 

Whites) 

    

      African-

American 

0.10(0.04)** 0.09(0.04)** 0.19(0.09)** 0.17(0.08)** 

      Hispanic 0.07(0.03)** 0.06(0.01)*** 0.16(0.06)** 0.13(0.03)*** 

Education 

(compared to > 

High School)  

    

     High School 

education 

0.01(0.03) 0.01(0.03) 0.01(0.06) 0.0004(0.04) 

     Less than 

high school 

0.06(0.03)* 0.06(0.02)** 0.13(0.06)* 0.12(0.04)** 

Perceived Stress      

     High 

Stress(compared 

to low stress) 

-0.02(0.02) -

0.02(0.003)*** 

-0.05(0.05) -

0.05(0.003)*** 

Depression      

     High 

Depression 

(compared to 

low) 

0.04(0.03) 0.04(0.02)* 0.07(0.06) 0.07(0.05)* 

Model 1=Linear Regression; Model 2=GEE, accounts for clustering of center.  LogTL model 

adjusted by age, gender, cancer status, DNA extraction, and the interaction of gender and 

cancer status.   Z-score adjusted by age, gender and cancer status and model adjusted by DNA 

extraction. 

***p-value < 0.001;**p-value >0.001 and <0.05;  *suggestion of significance p-value<0.15, but 

>0.05. 
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Table 5.  GEE Estimates(Standard Errors) of Individual Socioeconomic and 
Psychosocial Factors and Log-Transformed Telomere Length(TL in kb) stratified by 
Race/Ethnicity and adjusted for age, gender, cancer status, gender-cancer status 
interaction, and DNA extraction method. 

 Non-Hispanic 

Whites (n=688) 

African 

Americans 

(n=142) 

Hispanicsa 

(n=688) 

Education    

     High School education 0.03(0.04) -0.11(0.03)*** 0.001(0.05) 

     Less than high school -0.02(0.05) 0.01(0.02) 0.07(0.04)* 

Perceived Stress     

     High Stress 0.02(0.03) -0.001(0.01) -0.05(0.04)* 

Depression    

     High Depression 0.09(0.05) 0.02(0.04) -0.01(0.04) 
 

a Linear Regression Model is reported since all Hispanics come from only 1 center.  This model is 

adjusted by age, gender, cancer status and the interaction of gender and cancer status.  ***p-

value < 0.001;**p-value >0.001 and <0.05;  *suggestion of significance p-value<0.15, but >0.05. 
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Abstract 
 

Background: Analogous to “field cancerization” in pathobiology, “neighborhood 

cancerization” describes how individuals within areas exposed to common unfavorable 

circumstances can experience biological consequences that may result in cancer and 

other diseases.   Telomere length (TL) shortening has been associated with exposure to 

individual-level and neighborhood-level stressors as well as cancer development, yet 

these relationships are not well understood. This study examined the complex 

association between neighborhood characteristics and TL to test the neighborhood 

cancerization hypothesis.   

Methods:  We studied 1,488 individuals from 127 census tracts in three regions of the 

US.  TL was measured from peripheral blood using terminal restriction fragment(TRF) 

assays.  Multilevel linear models and quantile regression models were fitted adjusting for 

individual-level characteristics including self-reported race, education, perceived stress 

and depression.  Neighborhood sociodemographic exposures included population 

density, urban/residential crowding, residential stability/instability, and socioeconomic 

status (SES). 

Results: Neighborhood population density, urban/residential crowding, residential 

stability/instability, and SES were not significantly associated with TL using standard 

linear models.  Quantile regression revealed significant inverse associations between 

population density and urban crowding and the 5th (population density, p-value=0.03; 

urban crowding p-value=0.002), 50th(both p-values <0.001) and 75th percentiles(both p-

values<0.001) of the TL distribution.  Significant associations between residential 

stability and TL were seen at the upper tails of the TL distribution (95th percentile-p-

value=0.006; 90th percentile-p-value=0.005).   
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Conclusions: The relationship between neighborhood sociodemographic variables and 

TL may be nonlinear, with only a portion of the TL distribution being associated with 

neighborhood-level exposures.  Common exposures identified across different 

neighborhoods can exert biological effects.  These results support the neighborhood 

cancerization hypothesis.  

Introduction 
 

     The concept of field cancerization was originally proposed over a half century ago to 

explain synchronous or metachronous tumors of the oral mucosa[1].  Field cancerization 

came to refer to the propensity of a field of tissue to become malignant based on either 

pathological observations or molecular markers[2].  In theory, field cancerization occurs 

from simultaneous wide-spread, unfavorable exposures acting on cells and tissues 

within organs and organ systems (such as the effect of cigarette smoking on the lung), 

as well as the migration of patches of molecularly altered cells into larger tissue fields or 

territories that become predisposed to cancer development[2].  Common molecular 

signatures in pre-malignant cells and primary, malignant tumors provide evidence of the 

cancer field effect.  The biological basis for field cancerization has been related to 

epigenetic changes[3-5], tissue micro-environment[6, 7], and telomere function[8] across 

different tissue types.  

     Analogous to a field of tissue for which unfavorable exposures may lead to 

carcinogenesis, residents of neighborhoods may experience common experiences and 

stressors that can lead to unfavorable biological consequences including heightened 

cancer risks.  Exposure to socioeconomically disadvantaged neighborhoods can lead to 

poorer health outcomes and a greater chance of death[9, 10], even after controlling for 

individual-level socioeconomic factors[11].  This suggests that changes to the 
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neighborhoods themselves, and not necessarily the individuals within those 

neighborhoods, may be an underutilized yet high-return approach to reducing the 

population burden of disease outcomes like cancer[12]. 

     Potential mechanisms for explaining this association are complex, but one of the 

most relevant mechanisms relates to chronic stress[13, 14].  Chronic stress may result 

from exposure to unfavorable social and economic environments at the neighborhood-

level acting in concert with psychosocial factors at the individual-level [15] (i.e., 

depression[16] and perceived stress[17]) .  Thus, chronic stress is related to constant 

“wearing down” of the body that can affect biological processes, accelerate the rate of 

decline in physiological functioning, and ultimately affect the body’s ability to fight 

disease processes such as cancer [18-23].   

     The hypothesis that neighborhood-level characteristics can therefore influence an 

individual’s biological state is supported by numerous multilevel (i.e., accounting for 

individuals’ experiences within environments) conceptual frameworks[15]. For instance, 

animal models demonstrate that unfavorable macro-level environmental exposures, 

including social isolation from peers, influence stress-related biological parameters, such 

as cellular apoptosis and inflammation[24].  Further, human observational studies have 

shown that unfavorable neighborhood environmental characteristics can affect biological 

markers related to disease[25].  Telomere length (TL) has emerged as a promising 

intermediate biological marker along the pathway linking chronic stress and disease 

pathogenesis.  Furthermore, the telomere pathway has been studied as a common 

molecular signature in field cancerization studies[8, 26], and has been shown to be 

associated with many cancers on the population level[21].   
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     Telomeres consist of long stretches of (TTAGGG) repeat DNA located at the ends of 

chromosomes and are designed to protect against DNA degradation[27].  Telomeres 

naturally shorten with age in all replicating somatic cells [18, 28], but can also shorten 

prematurely in response to cellular stress[22, 29].  Associations have been reported 

between shorter blood leukocyte TL attrition and individual-level chronic stress resulting 

from perceived stress, depression[22, 29], and difficult or stressful life circumstances, 

like caring for a chronically ill child[26].  Evidence also shows an inverse relationship 

between shorter LTL and neighborhood socioeconomic status(SES) [15, 25], 

disadvantage[30, 31] and unfavorable social environment[25], even after adjustment for  

individual-level factors known to affect telomere length[25] such as biomedical variables 

(including cardiovascular disease risk factors), lifestyle variables (such as smoking, body 

mass index, diet, and physical activity) or socioeconomic variables (related to education, 

income, and employment)[25].   Beyond being a potential biomarker of chronic stress, 

telomere length is also implicated as a biomarker of aging, cancer, and cardiovascular 

diseases[18-22, 29].  Thus, understanding the relationship between neighborhood and 

telomere length could have implications for a range of poor health outcomes [18, 19, 22, 

29] [20, 21], and could support the “neighborhood cancerization” hypothesis. 

     The neighborhood cancerization hypothesis is analogous to the concept of field 

cancerization in that it considers the biological basis for neighborhood-level effects 

among groups of commonly exposed individuals from different neighborhoods.  We 

hypothesize that residents of a neighborhood who are (as a group) exposed to stressors 

or certain neighborhood social or physical characteristics may experience increased 

cancer risk or unfavorable outcomes via biological responses to these exposures.  The 

goal of this paper is to employ multiple analytic approaches to evaluate how 

neighborhood-level factors influence telomere length in a diverse, multi-neighborhood 
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sample, in order to support the hypothesis of neighborhood cancerization.  Further, 

neighborhood factors that are found to be associated with telomere length in this study 

could be used to create common neighborhood stress signatures, under a shared 

chronic stress pathway that is currently not well understood.   

Methods 
 

     Study Population.  The study sample included data collected at 3 centers:  

University of Pennsylvania (Penn), the Ohio State University (OSU), and the University 

of Texas Medical Branch (UTMB). These 3 centers were originally part of the larger 

Centers for Population Health and Health Disparities (CPHHD) Initiative[32].  A previous 

investigation showed that combining data from these 3 centers is a valid approach[33] 

that increases variation in ethnicity, geography, and neighborhood circumstances.  Study 

participants were recruited between 2004 and 2012.  Each center focused on an 

underserved population from a different geographical area and included protocols for 

recruitment and data collection that has been described previously[34-36].  Briefly, OSU 

included Non-Hispanic, White women from rural Appalachia (65% with a high school 

education or greater) who were not pregnant and without cervical cancer at the time of 

enrollment[26].  Penn included mostly urban, Non-Hispanic White(89%) and African 

American(11%) men who were highly educated (72% with greater than high school 

education) prostate cancer patients from urology clinics within the Penn hospital 

system[28], and UTMB included a population-based sample of non-Hispanic households 

and a strata sample of Hispanic households(52% of the study population) in Texas City, 

TX[27], where 32% of the population had greater than a high school education and 37% 

had less than a high school education.  This geographic and demographic variation 

allows for comparisons analogous to those in field cancerization that compare molecular 

alterations in tissue sites within and across organ systems within an individual patient. 
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Study participants from all centers provided a blood sample, and they completed a 

standardized questionnaire at the time of study enrollment. Study participants were 

followed-up for cancer status.  Informed consent was received from all participants, and 

study protocols were approved by the Institutional Review Boards of each center.     

     Outcome variable.   TL was measured from extracted DNA from blood samples. 

OSU and UTMB samples were processed using the QIAamp DNA Extraction Kit 

(Valencia, CA).  UPHS DNA samples were extracted using Chemagen Magnetic Bead 

technology (n=57) and phenol-chloroform extraction (n=36).  Terminal restriction 

fragment (TRF) or Southern Blot assays were used to measure TL from extracted DNA 

on all samples (using duplicate samples), as described previously[37].  The overall 

coefficient of variation (CV%) was 1.25%, where a CV less than 2% is expected[22, 29].  

Mean TRF in kilobases (kb) was determined using Telorun software[37]. TL was 

reported in kb units.    

     Neighborhood variables.  Census data from the American Community Survey 

(ACS) were obtained at the census tract level to ascertain sociodemographic 

neighborhood variables (http://www2.census.gov/acs2009_5yr/summaryfile/).  Thus 

neighborhood is defined here by select census tract social and economic conditions.  

Census variables were linked to geocoded study data by the Federal Information 

Processing Standard (FIPS) code, which uniquely identifies states, counties, and census 

tracts[38].  In order to ensure confidentiality, we obtained 5-years of census tract level 

estimates from the ACS.  We used ACS version 2005-2009 since 86% of the study 

population was accrued between 2004 and 2009.  Individuals from the same census 

tract were assumed to have the same neighborhood characteristics.  Our data included 

127 unique neighborhood clusters (census tracts) in total.  Penn had the most unique 

number of clusters (n=92), followed by OSU (n=29) and UTMB (n=6). 
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     Variables extracted from the ACS database to represent sociodemographic 

neighborhood environment were chosen based on literature [28], [39-43] and included 

population density (overall population/total land area in square miles), urban crowding 

(housing units/square mile), residential crowding (represented by percent households 

that have more than one occupant per room), residential stability (percent living in the 

same house as 1 of year ago) and residential instability (percent who moved their 

residence within the same State as of 1 year ago).  The following variables were used to 

construct a neighborhood socioeconomic status index (NSES):  education (percent of 

adults over 25 with less than a high school education), employment (percent male 

unemployment), poverty (percent of households with income below the poverty line, 

percent of households receiving public assistance, percent of female-headed 

households with children) and income (median household income) [43].  Briefly, these 

six variables related to income, education, employment, and poverty were the best 

representatives of socioeconomic status(SES) in a factor analysis(Cronbach’s 

alpha=0.93)[43].  Each of the 6 variables were summed after being transformed (i.e., 

higher values corresponded to higher SES).  This total score was then standardized to a 

mean of zero and a standard deviation (sd) of one.  Thus, an index score greater than 

zero denotes a tract with SES above the sample average[43].   

     Individual-level Covariates.  Variables common to all 3 centers and that were found 

to relate to telomere length in a previous analysis[33] were included as covariates in 

statistical models: gender (male/female), age at enrollment(continuous); race/ethnicity 

(White/Non-Hispanic, African American/Non-Hispanic, and Hispanic), educational status 

(<high school (or less than 12 years of schooling), a high school education (12 years of 

schooling/GED), or >high school education(>12 years of schooling)), disease status 

(cancer; yes/no), total perceived stress score dichotomized at the median[44, 45], as 
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measured from the Perceived Stress Scale [46, 47] (total score range: 1–40); and 

depression dichotomized at a clinical cutpoint of 16[40] [48, 49], as measured from 

questions from Center for Epidemiological Studies-Depression (CES-D) scale[50] and 

the CES-D revised(R) scale[51] (total score range: 0-60).   

     Statistical Analysis.  The distributions of TL and neighborhood variables were 

examined for non-normality and appropriate data transformations were conducted.  

Natural log-transformed TL was used as the outcome variable for all analyses. For ease 

of interpretation, continuous neighborhood variables (with the exception of the NSES 

index) were scaled by dividing by their standard deviation[25].  We used linear mixed 

effect models to account for the multilevel nature of the data.  This model allowed 

clustering of individuals within neighborhoods and centers to estimate associations 

between neighborhood variables and TL before and after adjustment for covariates [25].  

Quantile regression was also used to assess associations with neighborhood factors 

within segments of the TL distribution, accounting for clustering by census tract and 

confounding by center [52, 53].  Quantile regression coefficients at the 5th, 10th, 25th, 50th, 

75th, 90th, and 95th TL percentiles were considered.    The coefficients at each TL 

percentile are interpreted as the change in log-transformed TL, given each unit increase 

in the neighborhood variable standard deviation.  Interactions among covariates were 

evaluated in stratified analysis and by taking the cross-product terms of each variable in 

both multilevel linear regression and quantile regression models. Individual-level and 

neighborhood-level covariates were assessed for multicollinearity before inclusion in 

statistical models using correlation matrices[54].  Robust standard errors are reported 

and all tests were two-sided.  A p-value<0.05 was considered to be statistically 

significant.  All analyses were performed using Stata 12.1 (StataCorp LP, College 

Station, TX)[55].  
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Results 

 

     Baseline characteristics of the study sample are presented in Table 1.    Of the 1,488 

participants, 58.8% were female, 15.7% had a cancer diagnosis, and the median age 

was 51 years (interquartile range (IQR) 38-63).  The sample was comprised of 45.6% 

non-Hispanic Whites, 45.0% Hispanics, and 9.4% African Americans. The overall 

sample reported mild levels of stress on the Perceived Stress Scale(median score=19; 

IQR=17-22) and low levels of depressive symptoms(median score=6, IQR=1-15).   The 

study sample had a relatively low median neighborhood SES index overall(-0.11; IQR=-

0.68-0.48), though neighborhood SES was different by region (UPenn=0.80(IQR=0.38-

1.11); OSU=-0.35(IQR=-0.61- -0.17); UTMB=-0.10, IQR=-0.68-0.48); data not shown).  

We report a median population density (total population/total area of land use in square 

miles) of 3857.3(IQR=1694-5101)).  The U.S. reports a population density of 87.5, 

Galveston, TX reports 1158.2, and Philadelphia county reports 11,379.4.    The median 

percent of households considered to be crowded (i.e., greater than one occupant per 

room) was 2.6% for the overall study population, which is lower than the national 

average[56].  The median percent of the population still living in the same house as of 1 

year was 86.7%, and the median percent of the population that moved within the same 

state in the past year was 2.9%.   

     No statistically significant associations between any neighborhood factor and log-

transformed TL in multilevel linear regression models.  These findings did not change 

when adjusting for covariates and psychosocial factors (Table 2).  In quantile regression 

models, significant associations were seen between log-transformed TL and population 

density and urban crowding at lower tails of the TL distribution (the 5th, 50th, and 75th 

percentiles), and between residential crowding and TL at the 50th percentile (p-

value=0.03) (Table 3).  For both population density and urban crowding, magnitudes of 
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effect were small, but twice as large at the 5th percentile(0.10 for population density; 0.11 

for urban crowding) than the 75th percentile of the log-transformed TL distribution(0.05 

for population density; 0.04 for urban crowding).  For neighborhoods where residents 

remained in the same house in the past year, there was a significant, positive 

association between TL and residential stability at the highest levels of the TL 

distribution (95th percentile-p-value=0.006; 90th percentile-p-value=0.005).  For 

neighborhoods where residents moved within the same state in the past year, there was 

a significant, inverse relationship between TL and moving within the same state in the 

past year at the 90th (p-value=0.02) and 95th percentiles (p<0.001). 

Discussion 
 

     This is the second study in adults to evaluate the relationship between TL and 

neighborhood, and the first to adjust associations by individual-level psychosocial 

variables. We report that neighborhood sociodemographic stressors have a complex, 

possibly non-linear relationship with TL, a biological marker used in the study of age-

related disease, cellular and psychosocial stress, and field cancerization [8, 26, 57, 58].  

We found that unfavorable neighborhood characteristics, namely urban crowding and 

population density, were significantly related to shorter TL.  This finding is consistent 

with reports that shorter TLs are associated with unfavorable neighborhood 

characteristics [25, 30, 31].  Residential stability (remaining in the same house in the 

past year) and instability (moving within the same state in the past year) were more 

strongly associated with longer TL at the upper tail of the TL distribution.  These findings 

are consistent with hypotheses that longer TL is associated with more favorable 

neighborhood circumstances and less chronic stress[30, 31] [25]. Low levels of 

residential stability are likely to affect groups of individuals differently, depending on their 

social position or cultural resources[59].  Both impoverished and flourishing 
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neighborhoods can have a high level of residential stability, yet impoverished 

neighborhoods often have poorer health[59].   When we adjusted quantile regression 

models for neighborhood SES, associations of TL with urban crowding and residential 

stability remained unchanged (data not shown). Further, these relationships persisted 

even after adjustment for individual-level psychosocial stressors. 

     Our findings are similar to results from a previous study of neighborhood and TL in 

adults, using different neighborhood variables and analytic approaches[25].   The 

previous study investigated the relationship between TL and composite scores of 

neighborhood SES (from Year 2000 U.S. Census variables) and self-reported, 

neighborhood social stressors (e.g., social cohesion, aesthetics, and safety)[25].  This 

study modeled mean TL so that associations at the upper and lower tails of the TL 

distribution were not distinguished.  Given that the lower tail of the TL distribution is of 

particular interest in disease susceptibility, we examined the association between 

telomere length and neighborhood SES and socio-demographic environment using 

quantile regression, an approach that could provide additional insights into neighborhood 

associations given its focus on the extremes of the telomere length distribution[52, 53]. 

     We examined associations using a composite score of neighborhood SES and 

neighborhood variables from the U.S. Census related to population density, urban and 

residential crowding and stability.  We chose these variables to represent the 

sociodemographic stressors because they provide insight into the social norms of a 

neighborhood, as well as general insights into the neighborhood physical landscape[59, 

60].  Additionally, these variables have shown associations with psychosocial stress[59, 

60] and premature death[61] and have been considered surrogates for self-reported 

measures of neighborhood stress investigated in previous TL studies[25].  More 

specifically, urban and residential crowding are related to increases in social stress[61, 
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62], can negatively affect family and social relationships[63], and impact social 

cohesion[59, 60, 62].  Residential stability is related to neighborhood safety (i.e., safer 

neighborhoods are related to increases in residential stability)[64], and residential 

stability can affect social cohesion[59, 60].  This is because when a number of well-

established residents or families leave a neighborhood, there can be a destabilization of 

social norms and a disruption of social networks[59, 60].   Thus, our findings show that 

while U.S. Census variables are generally considered less specific measures of 

neighborhood phenomena than self-report data, they are readily accessible, reasonable 

measures of numerous social and environmental phenomena, and can be used to 

identify potential biologic effects of neighborhood environment and justify more in-depth 

neighborhood investigations. 

     Our findings also suggest that when considering the relationship between complex 

exposures such as neighborhood characteristics and biological variables such as TL, 

novel statistical modeling tools may be required to obtain relevant insights into the 

relationship between neighborhood factors and TL.  While no statistically significant 

associations were observed using multilevel, linear regression models, relatively 

constant associations were observed between shorter TL and population density and 

urban crowding using quantile regression.  Quantile regression allows for the study of 

predictors across the entire TL distribution, without having to categorize a continuous 

outcome variable (with concomitant reduction in statistical power), and is better able to 

evaluate effects at the extremes of a distribution [65].  Our results are consistent with 

reports that shorter TLs are associated with increases in urban crowding or population 

density [25, 30, 31]. Our findings demonstrate that using an approach like quantile 

regression may identify associations that are otherwise missed by modeling simple 

linear relationships or focusing on the mean of an outcome. 
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     Our analysis supports the concept of neighborhood cancerization.  Unfavorable 

neighborhood circumstances were related to TL, a biomarker indicated in disease 

development[66], assuming a chronic stress pathway model that extends from macro-

environment (neighborhood) exposures to effects occurring at the cellular level[15].  Like 

field cancerization, the present analysis identified potential common neighborhood 

characteristics or signatures across different neighborhoods that were associated with 

biological changes that have been implicated in carcinogenesis[2].   Longitudinal follow-

up of TL and changes in residential stability, neighborhood gentrification, and in-out 

migration of neighborhood residents and families over time could shed light into our 

findings[59] and could provide further evidence of the neighborhood cancerization 

effect[67].   

     More recently, field cancerization theory has been extended to include etiologic field 

effects that focus not just on complex molecular changes and interactions within a cell, 

but interactions of the whole host organism with external stimuli, a concept known as the 

interactome[67].  The interactome includes gene-environment interaction studies[67], 

although these studies have been almost entirely limited to traditional, often geo-

atmospheric measures of environment and much less so the social and population 

measures of neighborhood environments used here.  The neighborhood cancerization 

effect proposed here extends the etiologic field effect hypothesis and provides some 

insights into potential gene-neighborhood interactions.  Although this has not been 

tested, it is possible that individuals at the lower tails of the TL distribution in this 

study(for instance, the 5th and 10th percentiles) could be genetically predisposed to 

having shorter TL, and those in the upper tails of the TL distribution (the 90th and 95th 

percentiles) could be genetically predisposed to having longer TL.  Thus, based on our 

findings, neighborhood effects related to residential stability may only be relevant in 
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those who have inherently longer TL.  This suggests that studying the relationship 

between gene-neighborhood interactions, in the context of other relevant individual and 

neighborhood-level social factors, is warranted and supports the etiologic field effect 

concept[67].  

     Our study had some limitations.  This was a cross-sectional study in three U.S. 

regions, each with its own ascertainment strategy, and it is not a nationally 

representative sample.  This sampling strategy could affect generalizability of results.  

However, we included data from multiple geographic regions, ethnicities, and disease 

states to include maximal variation of factors that may influence TL.  There is not a 

standard, agreed upon approach to defining neighborhoods, and while the utility of pre-

defined boundaries to define neighborhoods, such as census tract, has been 

questioned, it is a commonly used approach and has the benefit of allowing for 

standardized assessments of neighborhoods with readily available data[68, 69].  Future 

studies could consider so-called boundary-free geographic methods to measure 

environments that are more complex yet are an improvement upon more commonly 

polygon-based methods[70].  Despite these few limitations, our findings were similar to a 

population-based study with a comparable demographic composition[25].        

     Our findings demonstrate that neighborhood factors exert effects on biology, even 

after adjustment for psychosocial stressors at the individual-level.  The results of this 

study provide evidence to support the hypotheses that neighborhood circumstances can 

have biologic consequences, under a concept termed, neighborhood cancerization.  TL 

may therefore be a biomarker of the biological influences of neighborhood 

circumstances on human health and disease. We conclude that neighborhood-level 

factors may contribute to TL, chronic stress and disease development[40, 71], but that 

the relationship of neighborhood on TL is complex.    
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Table 1.  Study Characteristics including neighborhood and individual-level psychosocial factors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

a Medians(interquartile range for the median);  
b Range from low to high for Depression (0-60) and Perceived Stress Scale (0-40) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Population Characteristics  
Total Population (n) 1488 
Median Telomere length (kb)a 6.4 (4.3-8.3) 
Median Agea 51 (38-63) 
Male Gender (%) 41.2 
Cancer diagnosis(%)  15.7 
Race (%)  
     Non-Hispanic White 45.6 
     African American 9.4 
     Hispanic 45.0 
Education(%)  
     > High School 37.0 
     High School/GED 29.8 
     <High School 33.2 
Median Total Perceived Stressb 19 (17-22) 
Median Depressive Symptomsb 6(1-15) 

Neighborhood Factors  
Median Neighborhood SES Index -0.11(-0.68-0.48) 
Median Population Density   (total population/sq. 
mile) 

3857.3(1694-5101) 

Median Urban Crowding (housing units/sq. mile) 1755.8(695-1833) 
 Residential Crowding (%)  
     Median % households that ARE crowded 2.6 (0.6-11) 
Residential Stability(%)  
     Median % living in the same house as 1 year 
ago 

86.7(78-91) 

     Median % moved within the same state(not 
county) 

2.9 (1.2-2.9) 
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Table 2.  Estimates and standard errors(SE) for associations between log-transformed telomere 
length (kb) and neighborhood factors(scaled by standard deviation(SD), before and after 
adjustment for covariates (n=1488). 
 
 Neighborhood Factors scaled by SD 

 Model 1 
(Estimate, SE) 

p-value Model 2 
(Estimate, SE) 

p-value 

Increasing Neighborhood 
SES Index 

-0.01, 0.04 0.90 -0.01, 0.04 0.89 

Increasing Population 
Density (sq. meters) 

-0.02, 0.02 0.32 -0.03, 0.02 0.20 

Increasing Urban 
Crowding (housing units/sq. 
mile) 

-0.02, 0.02 0.36 -0.02, 0.02 0.23 

 Increasing Residential 
Crowding  

    

    % Crowded households  -0.05, 0.07 0.52 -0.05, 0.08 0.48 
Increasing Residential 
Stability(%) 

    

    %Same house in past 
year 

0.06, 0.05 0.18 0.05, 0.05 0.23 

Increasing Residential 
Instability (%) 

    

    %Moved within same 
state in past yr 

-0.01, 0.04 0.89 -0.001, 0.04 0.98 

 
Model 1 is the crude analysis without covariates.  Model 2 includes adjustment for age, gender, 
cancer status, race/ethnicity, perceived stress(high/low), depression(high/low), education level, 
and the interactions of gender and cancer status, and race/ethnicity and educational level.   
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Table 3. Associations with Neighborhood factors (standard deviation adjusted) across the log-
transformed telomere length distribution(kb). 
 

 Log-Transformed Telomere Length Distribution 
 5th 

Percentile 
10th 

Percentile 
50th 

Percentile 
75th 

Percentile 
90th 

Percentile 
95th 

Percentile 
Neighborhood 
Factor     

 

Coeff(SE) 
p-value 

Coeff(SE) 
p-value 

Coeff(SE) 
p-value 

Coeff(SE) 
p-value 

Coeff(SE) 
p-value 

Coeff(SE) 
p-value 

Increasing 
Neighborhood 
SES  

0.003(0.02) 
0.86 

0.01(0.03) 
0.58 

-0.004(0.03) 
0.85 

0.01(0.02) 
0.71 

-
0.02(0.03) 

0.51 

0.01(0.03) 
0.72 

Increasing 
Population 
Density 
(population/sq. 
mile) 

-0.10(0.05) 
0.03* 

-0.07(0.04) 
0.11 

-0.05(0.01) 
<0.001* 

-0.05(0.01) 
<0.001* 

-
0.05(0.04) 

0.27 

-0.01(0.02) 
0.74 

Increasing 
Urban 
Crowding 
(units/sq. mile) 

-0.11(0.03) 
0.002* 

-0.08(0.03) 
0.02* 

-0.04(0.01) 
<0.001* 

-0.05(0.01) 
<0.001* 

-
0.04(0.04) 

0.28 

-0.02(0.02) 
0.45 

 Increasing 
Residential 
Crowding  

      

 % crowded 
households  

-0.01(0.02) 
0.70 

-0.02(0.01) 
0.27 

-
0.001(0.001) 

0.03* 

-0.01(0.02) 
0.78 

0.03(0.03) 
0.28 

0.002(0.001) 
0.09 

Increasing 
Residential 
Stability(%) 

      

% in the same 
house in past 
year 

0.03(0.04) 
0.56 

0.02(0.04) 
0.64 

0.03(0.03) 
0.27 

0.04(0.02) 
0.12 

0.04(0.02) 
0.005* 

0.04(0.01) 
0.006* 

Increasing 
Residential 
Instability(%) 

      

% Moved 
within same 
state in past yr 

0.03(0.03) 
0.32 

0.03(0.02) 
0.19 

-0.01(0.01) 
0.70 

-0.01(0.01) 
0.25 

-
0.03(0.01) 

0.02* 

-0.03(0.01) 
<0.001* 

 
Model includes adjustment for age, gender, cancer status, race/ethnicity, perceived 
stress(high/low), depression(high/low), center, educational level, and the interactions of gender 
and cancer status,  and race/ethnicity and educational level.   
 
*p-value less than 0.05 
 

 

 

 

 

 



55 

 

References: 

1. SLAUGHTER, D.P., H.W. SOUTHWICK, and W. SMEJKAL, Field cancerization in oral 

stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 1953. 

6(5): p. 963-8. 

2. Lochhead, P., et al., Etiologic field effect: reappraisal of the field effect concept in cancer 

predisposition and progression. Mod Pathol, 2015. 28(1): p. 14-29. 

3. Giovannucci, E. and S. Ogino, DNA methylation, field effects, and colorectal cancer. J Natl 

Cancer Inst, 2005. 97(18): p. 1317-9. 

4. Ushijima, T., Epigenetic field for cancerization. J Biochem Mol Biol, 2007. 40(2): p. 142-

50. 

5. Ramachandran, K. and R. Singal, DNA methylation and field cancerization. Epigenomics, 

2012. 4(3): p. 243-5. 

6. Stearman, R.S., et al., A macrophage gene expression signature defines a field effect in 

the lung tumor microenvironment. Cancer Res, 2008. 68(1): p. 34-43. 

7. Martinez-Outschoorn, U.E., et al., Oxidative stress in cancer associated fibroblasts drives 

tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the 

field effect and genomic instability in cancer cells. Cell Cycle, 2010. 9(16): p. 3256-76. 

8. Heaphy, C.M., et al., Telomere DNA content and allelic imbalance demonstrate field 

cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer, 

2006. 119(1): p. 108-16. 

9. Adler, N.E., Ostrove, J.M. , Socioeconomic status and health: What we know and what 

we don’t. Ann N Y Acad Sci, 1999. 896: p. 3-15. 

10. Diez Roux, A.V., Mair, C., Neighborhoods and health. Ann N Y Acad Sci, 2010. 1186: p. 

125-145. 

11. Merkin, S.S., et al., Neighborhoods and Cumulative Biological Risk Profiles by 

Race/Ethnicity in a National Sample of U.S. Adults: NHANES III. Annals of epidemiology, 

2009. 19(3): p. 194-201. 

12. Branas, C.C. and J.M. MacDonald, A Simple Strategy to Transform Health, All Over the 

Place. Journal of public health management and practice : JPHMP, 2014. 20(2): p. 157-

159. 

13. Geronimus, A.T., Hicken, M., Keene, D., Bound, J., "Weathering" and Age Patterns of 

Allostatic Load Scores Among Blacks and Whites in the United States. Am J Public Health, 

2006. 96: p. 826-833. 

14. McEwen, B., Protective and Damaging effects of stress Mediators. N Engl J Med, 1998. 

338: p. 171-179. 

15. Lynch, S.M. and T.R. Rebbeck, Bridging the Gap between Biologic, Individual, and 

Macroenvironmental Factors in Cancer: A Multilevel Approach. Cancer Epidemiology 

Biomarkers & Prevention, 2013. 22(4): p. 485-495. 

16. Wolkowitz, O.M., Mellon, S.H., Epel, E.S., Lin, J., Dhabhar, F.S., Su, Y, et al., Leukocyte 

Telomere Length in Major Depression: Correlations with Chronicity, Inflammation and 

Oxidative Stress - Preliminary Findings. PLoS ONE, 2011. 6(3): p. e17837. 

17. Parks, C.G., et al., Telomere Length, Current Perceived Stress, and Urinary Stress 

Hormones in Women. Cancer Epidemiology Biomarkers & Prevention, 2009. 18(2): p. 

551-560. 

18. Londoño-Vallejo, J.A., Telomere instability and cancer. Biochimie, 2008. 90(1): p. 73-82. 

19. Koorstra, J.B.M., et al., Pancreatic Carcinogenesis. Pancreatology, 2008. 8(2): p. 110-125. 



56 

 

20. Cunningham, J.M., et al., Telomere Length Varies By DNA Extraction Method: 

Implications for Epidemiologic Research. Cancer Epidemiology Biomarkers & Prevention, 

2013. 22(11): p. 2047-2054. 

21. Wentzensen, I.M., et al., The Association of Telomere Length and Cancer: a Meta-

analysis. Cancer Epidemiology Biomarkers & Prevention, 2011. 20(6): p. 1238-1250. 

22. Sanders, J.L. and A.B. Newman, Telomere Length in Epidemiology: A Biomarker of Aging, 

Age-Related Disease, Both, or Neither? Epidemiologic Reviews, 2013. 35(1): p. 112-131. 

23. Butt, H.Z., et al., Telomere Length Dynamics in Vascular Disease: A Review. European 

journal of vascular and endovascular surgery : the official journal of the European 

Society for Vascular Surgery, 2010. 40(1): p. 17-26. 

24. McClintock, M.K., et al., Mammary cancer and social interactions: identifying multiple 

environments that regulate gene expression throughout the life span. J Gerontol B 

Psychol Sci Soc Sci, 2005. 60 Spec No 1: p. 32-41. 

25. Needham, B.L., et al., Neighborhood characteristics and leukocyte telomere length: The 

Multi-Ethnic Study of Atherosclerosis. Health & Place, 2014. 28(0): p. 167-172. 

26. Epel, E.S., et al., Accelerated telomere shortening in response to life stress. Proceedings 

of the National Academy of Sciences of the United States of America, 2004. 101(49): p. 

17312-17315. 

27. Cheung, A.L.M. and W. Deng, Telomere dysfunction, genome instability and cancer. 

Frontiers in Bioscience, 2008. 13(6): p. 2075-2090. 

28. Blackburn, E.H., Telomere states and cell fates. Nature, 2000. 408(6808): p. 53-56. 

29. Starkweather, A.R., et al., An Integrative Review of Factors Associated with Telomere 

Length and Implications for Biobehavioral Research. Nursing Research, 2014. 63(1): p. 

36-50 10.1097/NNR.0000000000000009. 

30. Mitchell, C., et al., Social disadvantage, genetic sensitivity, and children’s telomere 

length. Proceedings of the National Academy of Sciences, 2014. 111(16): p. 5944-5949. 

31. Theall, K.P., et al., Neighborhood disorder and telomeres: Connecting children's exposure 

to community level stress and cellular response. Social Science & Medicine, 2013. 85(0): 

p. 50-58. 

32. Health, N.I.o. NIH Centers for Population Health and Health Disparities. 2014  [cited 

2014 September 25, 2014]; Available from: 

http://cancercontrol.cancer.gov/populationhealthcenters/cphhd/. 

33. Lynch, S.M., Peek, M.K., et al., Race/ethnicity, Psychosocial Factors, and Telomere 

Length in a Multicenter Setting. Unpublished, submitted manuscript, 2015. 

34. Paskett, E.D., et al., Psychosocial predictors of adherence to risk-appropriate cervical 

cancer screening guidelines: A cross sectional study of women in Ohio Appalachia 

participating in the Community Awareness Resources and Education (CARE) project. 

Preventive Medicine, 2010. 50(1–2): p. 74-80. 

35. Peek, M.K., et al., Allostatic Load Among Non-Hispanic Whites, Non-Hispanic Blacks, and 

People of Mexican Origin: Effects of Ethnicity, Nativity, and Acculturation. American 

Journal of Public Health, 2010. 100(5): p. 940-946. 

36. Rebbeck, T.R., et al., Joint effects of inflammation and androgen metabolism on prostate 

cancer severity. International Journal of Cancer, 2008. 123(6): p. 1385-1389. 

37. Kimura, M., et al., Measurement of telomere length by the Southern blot analysis of 

terminal restriction fragment lengths. Nat. Protocols, 2010. 5(9): p. 1596-1607. 

38. Census, U.S. 2014; Available from: 

http://quickfacts.census.gov/qfd/meta/long_fips.htm. 



57 

 

39. Krieger, N., Williams, D., Moss, N., Measuring social class in US public health research: 

concepts, methodologies, and guidelines. Annu Rev Public Health, 1997. 18: p. 341-378. 

40. Messer, L., . Laraia, B., Kaufman, J., Eyster, J., Holzman, C., Culhane, J., et al. , The 

development of a standard neighborhood deprivation index. . Journal of Urban Health, 

2006. 83(6): p. 1041-1062. 

41. Caughy, M., Hayslett-McCall, K., O’Campo, P. , No neighborhood is an island: 

incorporating distalneighborhood effects into multilevel studies of child development 

competence. Health and Place, 2007. 13: p. 778-798. 

42. Krieger, N., Chen, J., Waterman, P., Rehkopf, D., Subramanian, S. , Race/ethnicity, 

gender, and monitoring socioeconomic gradients in health: A comparison of area-based 

socioeconomic measures – the public health disparities geocoding project. Am J Public 

Health, 2003. 93: p. 1655-71. 

43. Dubowitz, T., Heron, M., Bird, C.E., Lurie, N., Finch, B.K., Basurto-Dávila, R., Hale, L., 

Escarce, J.J. , Neighborhood socioeconomic status and fruit and vegetable intake among 

whites, blacks, and Mexican Americans in the United States. Am J Clin Nutr, 2008. 87(6): 

p. 1883-1891. 

44. Wang, L., et al., The Effects of Perceived Stress and Life Style Leading to Breast Cancer. 

Women & Health, 2012. 53(1): p. 20-40. 

45. Shell, A.M., M.K. Peek, and K. Eschbach, Neighborhood Hispanic composition and 

depressive symptoms among Mexican-descent residents of Texas City, Texas. Social 

Science & Medicine, 2013. 99(0): p. 56-63. 

46. Krieger, N., Smith, K., Naishadham, D., Harman, C., Barbeau, E.M., Experiences of 

discrimination:  validity and reliability of a self-report measure for population health 

research on racism and health. Social Science and Medicine, 2005. 61: p. 1576-1596. 

47. Cohen, S., Kessler, R.C., Underwood, L., Perceived stress scale. Measuring stress: A guide 

for health and social scientists. Oxford University Press, 1994. New York. 

48. Crockett, L.J., Randall, B.., Shen, Y.L.,  Russell, S.T., Driscoll, A.K., Measurement 

equivalence of the center for epidemiological studies depression scale for Latino and 

Anglo adolescents: a national study 

Journal of Consulting and Clinical Psychology, 2005. 73(1): p. 47-58. 

49. Flores, E., Tschann, J., Dimas, J., Bachen, E., Pasch, L., De Groat, C., Perceived 

discrimination, perceived stress, and mental and physical health among Mexican-origin 

adults. Hispanic Journal of Behavioral Sciences, 2008. 30(4): p. 401-424. 

50. Radloff, L., The CES-D scale:  a self-report depression scale for research in the general 

population. Applied Psychological Measurement, 1977. 1: p. 385-401. 

51. Eaton, W.W., Smith, C., Ybarra, M., Muntaner, C., Tien, A., Center for Epidemiologic 

Studies Depression Scale: review and revision (CESD and CESD-R). In ME Maruish (Ed.). 

The Use of Psychological Testing for Treatment Planning and Outcomes Assessment, 

2004. 3rd Edition(Volume 3: Instruments for Adults): p. 363-377. 

52. Hao, L., Naimen, D.Q., Quantile Regression. Quantitative Applications in the Social 

Sciences, ed. T.F. Liao2007, Thousand Oaks: SAGE Publications. 

53. Beyerlein, A., et al., Genetic markers of obesity risk: stronger associations with body 

composition in overweight compared to normal-weight children. PLoS One, 2011. 6(4): p. 

e19057. 

54. Kumar, T.K., Multicollinearity in Regression Analysis. The Review of Economics and 

Statistics, 1975. 57(3): p. 365-366. 



58 

 

55. Stata. Stata 12 help for sqreg. 2012  [cited 2012 August 22nd 2012]; Available from: 

http://www.stata.com/help.cgi?sqreg. 

56. http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=CF. 

Population, Housing Units, Area, and Density: 2010 - United States -- States; and Puerto 

Rico 2010 Census Summary File 1 2012  [cited 2015; Available from: 

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=CF. 

57. Kananen, L., Surakka, I., Pirkola, S., Suvisaari, J., et al., Childhood adversities are 

associated with shorter telomere length at adult age both in individuals with an anxiety 

disorder and controls. PLoS One, 2010. 5(e): p. 10826. 

58. Tyrka, L.H., Price, H.T., Kao, B. et al, Childhood maltreatment and telomere shortening: 

preliminary support for an effect of early stress on cellular aging. Biol. Psychiatry, 2010. 

67: p. 531-534. 

59. Howden-Chapman, P., Housing standards: a glossary of housing and health. J Epidemiol 

Community Health, 2004. 58: p. 162-168. 

60. Entner Wright, B.R., Caspi, A., Moffit, T.E., et al., Factors associated with doubled-up 

housing--a common precursor to homelessness. Social Service Review, 1998. 72: p. 92-

111. 

61. Kellet, J.M., Crowding and Mortality in London Boroughs. In: Burridge, R., Ormandy, D., 

eds., 1993. Unhealthy housing(London: Chapman and Hall): p. 209-222. 

62. Gabe, J., Williams, P., Women, crowding, and mental health. In: Burridge, R., Ormandy, 

D., eds., 1993. Unhealthy Housing(London: Chapman and Hall): p. 191-208. 

63. Clark, W.A.V., Deurloo, M.C., Dieleman, F.M. , Housing consumption and residential 

crowding in US housing markets. Journal of Urban Affairs, 2000. 22(1): p. 49-63. 

64. Boggess, L. and J. Hipp, Violent Crime, Residential Instability and Mobility: Does the 

Relationship Differ in Minority Neighborhoods? Journal of Quantitative Criminology, 

2010. 26(3): p. 351-370. 

65. Altman, D.G. and P. Royston, The cost of dichotomising continuous variables. BMJ, 2006. 

332(7549): p. 1080. 

66. Lynch, S.M., et al., A prospective analysis of telomere length and pancreatic cancer in the 

alpha-tocopherol beta-carotene cancer (ATBC) prevention study. International Journal of 

Cancer, 2013. 133(11): p. 2672-2680. 

67. Lochhead, P., Chan, A.T., Nishihara, R., Fuchs, C.S., Beck, A.H., Giovannucci, E.G., Ogino, 

S., Etiologic field effect: reappraisal of the field effect concept in cancer predisposition 

and progression. Modern Pathology, 2015. 28: p. 14-29. 

68. Dietz, R.D., The estimation of neighborhood effects in the social sciences: An 

interdisciplinary approach. Social Science Research, 2002. 31: p. 539-575. 

69. Sampson, R.J., Morenoff, J.D., Gannon-Rowley, T., Assessing "Neighborhood Effects": 

Social Processes and New Directions in Research. Ann Rev Sociol, 2002. 28: p. 443-478. 

70. Branas, C.C., et al., A Difference-in-Differences Analysis of Health, Safety, and Greening 

Vacant Urban Space. American Journal of Epidemiology, 2011. 

71. Diez Roux, A.V. and C. Mair, Neighborhoods and health. Annals of the New York 

Academy of Sciences, 2010. 1186(1): p. 125-145. 

 

 



59 

 

CHAPTER 4 
 

A NEIGHBORHOOD-WIDE ASSOCIATION STUDY (NWAS): 

IDENTIFICATION OF NEIGHBORHOOD CANCERIZATION 

SIGNATURES  IN PROSTATE CANCER 
 

Shannon M. Lynch1, Nandita Mitra1, Michelle Ross1, Craig Newcomb1, Karl Dailey1, Tara 
Jackson1, Charnita M. Zeigler-Johnson2, Harold Riethman2, Charles Branas1, Timothy R. 
Rebbeck1. 

 

1 University of Pennsylvania, Perelman School of Medicine, PA 19104 

2 Thomas Jefferson University, Philadelphia, PA 

3Wistar Institute, Philadelphia, PA 19104 

 

This research was supported by grants from the Public Health Service (P50-CA105641, P60-
NM006900 and R01-CA85074 to TRR and F31-AG039986 to SML) 

 

 

Corresponding Author:    Shannon M. Lynch 
235 Blockley Hall 
University of Pennsylvania 
423 Guardian Drive 
Philadelphia, PA 19104 

     Email: lynchs@mail.med.upenn.edu 
     Tel: 215-898-1793 
 

 

 

 

 

 

 



60 

 

Abstract 
 

Background: Cancer is accepted to be the result of complex interactions of multiple 

variables measured at biological, individual and neighborhood environmental levels.  

However, systematic approaches to assess neighborhood-level effects are limited. We 

propose a Neighborhood-Wide Association Study (NWAS), a systematic approach 

analogous to a genome-wide association study (GWAS), in order to identify 

neighborhood-level signatures associated with aggressive prostate cancer.   

Methods:  We empirically evaluated the association between all Year 2000 U.S. Census 

variables and prostate cancer aggressiveness among White prostate cancer cases 

reported to the Pennsylvania State Cancer Registry using a multi-phase approach that 

accounted for age, year of diagnosis, spatial effects, and multiple comparisons.  The 

outcome of interest was aggressive (Stage>3 and Gleason grade >7) vs. non-aggressive 

(Stage<3 or Gleason grade<7) cancer. Using generalized estimating equations (Phase 

1) and Bayesian statistics (Phase 2), we calculated odds ratios (OR) and credible 

intervals (CI).  In Phase 3, principal components analysis was used to account for 

correlation among variables.   

Results: From 14,663 census variables, we identified the top 17 variables associated 

with prostate cancer aggressiveness.  The top two hits related to transportation 

(OR=1.05; CI=1.001-1.09) and poverty (OR=1.07; CI=1.01-1.12).  Our findings also 

confirm previous associations between poverty, income, housing, employment, 

immigration, and cancer.   

Discussion:  This NWAS methodology addresses gaps in neighborhood research by 

introducing a standardized evaluation of a myriad of complex neighborhood factors on a 

disease outcome.  This approach has implications for health disparities research, and 
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provides a foundation for multidisciplinary, multilevel research by proposing a common 

methodological framework for identifying relevant neighborhood variables.   

 

Introduction 

 

     Numerous conceptual frameworks suggest that cancer results from a complex 

interaction of factors at the macro-environmental (e.g. neighborhood), individual, and 

biologic levels[1, 2]. However, novel approaches that could be used to evaluate the joint 

effect of these multiple levels have not kept pace with other fields, in which high-

dimensional computing approaches have been used to discover etiologic agents.  For 

example, genome-wide association studies (GWAS) have driven population-based 

cancer research in recent years [3-6]. GWAS studies use high-throughput, low cost 

technology and readily available genome-mapping data to evaluate the role of millions of 

genetic markers with a variety of diseases and traits using a unbiased, model-free 

framework [7, 8].   

     Applying methods borrowed from GWAS, environmental-wide association studies 

(EWAS) were subsequently developed to study the effect of exposures at the individual 

level (e.g., pesticides, cigarette smoking, plastics, air pollution, etc.), and to provide 

insight for subsequent gene-environment interaction studies[9].  However, EWAS 

methods have not been applied to cancer outcomes, and the impact of social 

environment, particularly at the neighborhood level has not been comprehensively 

studied using this approach.  Thus, borrowing concepts from GWAS and EWAS, we 

propose a novel, empirical approach known as a neighborhood-wide association study 

(NWAS) to evaluate the effect of multiple neighborhood-level environmental exposures 

on disease etiology and outcomes.  The overarching goal of this method is to 
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systematically identify “neighborhood signatures” that may be related to disease 

phenotypes.  

     In proposing this new method, we also borrow from the pathobiologic concept of field 

cancerization, which refers to the propensity of a field of tissue to become malignant 

based on either pathological observations or common molecular markers[10, 11].  

Common molecular signatures that provide evidence of the cancer field effect include 

changes in epigenetics[12-14], the tissue microenvironment[15, 16] and telomere 

function[17].  In theory, field cancerization can occur from simultaneous, wide-spread, 

and unfavorable exposures acting on cells and tissues within organs and organ systems 

(such as the effect of cigarette smoking on the lung), as well as the migration of 

“patches” of molecularly altered cells into larger tissue fields or territories that become 

predisposed to cancer development[11].  

     Neighborhood circumstances and lived conditions also contribute to geospatial 

effects on populations [18, 19]. Under the proposed “neighborhood cancerization” 

concept, we hypothesize that residents of a neighborhood who are (as a group) exposed 

to certain neighborhood characteristics may experience a similar biological or social 

effect that may relate to their cancer risk as a group, and that common unfavorable 

neighborhood circumstances identified across different neighborhoods can contribute to 

tumors of similar etiologic origins[19]. 

     Compared to other cancers, prostate cancer is disproportionally affected by social 

circumstances.  When compared to European American (EA) men, African American 

(AA) men are more likely to receive differential treatments for prostate cancer, and are 

twice as likely to die of prostate cancer[20].  This is the largest disparity seen in any 

cancer site.  Studies of neighborhood and prostate cancer show that neighborhoods with 

poor socioeconomic (SES) circumstances, as measured by single, a priori selected U.S. 

census variables and SES deprivation scores derived from combinations of US census 
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variables, are related to high-grade prostate cancer[21-24].  These effects are apparent 

independent of individual level exposures[25-28].  Thus, the study of neighborhood 

effects on prostate cancer risk is warranted, particularly given that few prostate cancer 

risk factors at the individual level have been identified [29].      

     We hypothesize that signatures of factors that influence disease risk and severity 

may impact groups of residents in neighborhoods, and that these effects can be 

efficiently identified by using an NWAS approach. In this paper, we introduce the NWAS 

methodology, and demonstrate how agnostic, high-dimensional data analyses can be 

used to identify neighborhoods at risk for high grade/high stage, aggressive prostate 

cancer.  

Methods 
 

     Study Population.  Anonymized data from the Pennsylvania Department of Health 

Prostate Cancer Registry was provided on prostate cancer patients diagnosed in the 

Commonwealth of Pennsylvania from 1995 to 2005.  Residential addresses of prostate 

cancer patients were cleaned by trained research staff and geocoded at the census tract 

level by using Arc GIS software. The registry included variables related to prostate 

cancer diagnosis (tumor stage and grade), age at diagnosis, year of diagnosis, and 

race/ethnicity.  We focused only on Caucasian prostate cancer cases in this analysis 

(n=80,575), and excluded those who had only a P.O. Box address (n=112), and those 

missing tumor grade or stage (n=3371), age (n=2), or year of diagnosis (n=4).  A total of 

77,086 men were included in the final analysis (Appendix D Supplementary Methods-

Phase 0 Data Cleaning). 

     Neighborhood Variables.   All 24,634 census tract variables available in the 2000 

U.S. Census Summary File 1 (SF1) and Summary File 3 (SF3) were downloaded from 

Social Explorer (http://www.socialexplorer.com).  Year 2000 U.S. Census data was used 
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since it served as the midpoint for the prostate cancer registry data from 1995-2005.  

Social explorer automatically calculates percentages, aggregates, and medians for each 

variable in the U.S. Census tables.  The SF1 form, referred to as the “100%” data, is 

distributed to every household in the U.S. and asks questions about each person within 

the housing unit related to demographic information, such as age, gender, and race, as 

well as general housing questions related to occupancy, tenure, etc[30].  The SF3 form 

is distributed to 5% of all people and housing units in the U.S and asks more specific 

questions related to socioeconomic status and physical environment characteristics, 

such as migration, language ability, disability, veterans status, vehicle availability, 

kitchen and plumbing facilities, etc. [31] .  Both SF1 and SF3 variables are used 

frequently in social science investigations[24-27, 32-35].  All SF1 and SF3 variables 

were evaluated for missingness (Appendix D Supplementary methods/ Appendices E 

and F and Supplementary Digital Files 1-4).  Variables with greater than 10% 

missingness (n=8,092) and modal values that comprised over 95% of the data (n=1,879) 

were excluded.  After these exclusions, 14,663 census variables were included in the 

analysis.   

     Data Join of Study Population and Neighborhood Variables. Microsoft Visual Studio 

2008 was used to execute the join by importing both the census tract level cancer 

registry and the SF1 and SF3 census data into a program where the geographic 

identifier was set to the census tract FIPS code[30].  Individual prostate cancer cases 

were linked to the neighborhood variable values of the census tract in which they live.  

Thus, cases arising from the same census tract were assumed to have the same 

neighborhood characteristics.        

     Outcome Definition.  All incident, Caucasian prostate cancer cases occurring in PA 

from 1995-2005 were included in this study.  Incident prostate cancer cases were 

identified according to ICD-0-3 site and morphology coding.  We assumed complete 
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case ascertainment, given that medical facilities are required by law to report all 

diagnosed cases of prostate cancer in PA [36]. Tumor stage is said to measure 

screening effects, whereas tumor grade is said to measure the biologic composition of 

the tumor[37], thus we created a combined, “prostate cancer aggressiveness” variable 

for our primary outcome[38, 39] that was defined by cases with a high tumor stage 

(stage 3 or 4) and high tumor grade (grade 7+), compared to controls with other 

combinations of these two variables[38, 39].  Tumor stage and grade were determined 

by Surveillance, Epidemiology, and End Results (SEER) coding criteria for stage and 

histology variables, respectively[40, 41].  Subjects with low stage prostate cancer (Stage 

1 and 2) were defined by SEER Stages 0 and 1; subjects with high-stage (Stages 3 and 

4) were defined by SEER Stages >2[38, 40].  Low tumor grade (Gleason score of 6 or 

below) and high-grade (Gleason score of 7 or greater) prostate cancer was determined 

from the SEER 6th digit coding for histology and differentiation[42].  Sixth digit diagnosis 

codes that were equal to 6 or 9 were excluded because grade or differentiation could be 

not determined, was not stated, or was not applicable[42].  Subjects who were missing 

grade variables also were excluded from our outcome definition (n=3,371) (Appendix D: 

Supplementary Methods-Phase 0).  After these exclusions, we defined two comparison 

groups for analysis: aggressive prostate cancer cases (n=6,416) and non-aggressive 

prostate cancer cases (70,670).  On average, there were 2 cases of aggressive prostate 

cancer compared to 23 non-aggressive prostate cancer cases in each census tract. 

     Statistical Analysis.  Data reduction techniques were applied across 3 analytical 

phases to identify continuous neighborhood variables associated with aggressive 

prostate cancer.  Each phase included progressively more stringent statistical criteria, in 

order to minimize false positive findings. All models were adjusted for age at diagnosis 

and year of diagnosis.   
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     In Phase 1, we used Generalized Estimating Equations (GEE) with a logit link 

function, binomial distributions, and robust standard error methods to estimate odds 

ratios (OR) that describe the relationship between  census variables and disease 

aggressiveness[43]: 

Logit(p)= α+β0xage+ β1xyear of diagnosis + β2xneighborhood variable (i, j)  + Corr + Error; (Eq. 1), 

where i= individual prostate cancer cases; j=census tracts and Corraccounts for clustering effects within an exchangeable correlation matrix 

     P-values were Bonferroni-corrected to an alpha of 0.05 to account for multiple 

comparisons[44], thus Bonferroni-adjusted p-values less than 0.05 were significant in 

this analysis.  Phase 1 analyses were conducted using SAS 12.0 statistical software. 

     In Phase 2, we used spatial regression to further evaluate those variables that 

reached statistical significance in Phase 1 and to account for and describe the spatial 

variability in our data.  We specified a Bayesian random effects model in which we allow 

both global and local smoothing: 

Logit(p)= α+β0xage+ β1xyear of diagnosis + β2xneighborhood variable (i, j)  + V(j) + U(j)             (Eq. 2) 

where i= individual prostate cancer cases; j=county and V(j) are independent non-spatial random effects and U(j) are spatial random 

effects.       We model the spatial random effects using an intrinsic conditional auto-

regressive (ICAR) prior: 

��|�� , � ∈ �� ~ �(�

� , ��

� /��), 

where �� is the set of neighbors of county j, mj is the number of neighbors, �

�  is the 

mean of the spatial random effects of the neighbors, and ��
�  is the conditional variance 

whose magnitude determines the amount of spatial variation[45]. This model imposes 

smoothing by assuming that the spatial effect in a particular county is similar to the mean 

of the spatial effects in near-by counties, with the strength of the similarity determined by 

the number of neighbors (counties with more neighbors will have stronger similarities 

imposed). We define counties j and k to be neighbors if they share a common boundary. 
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Under this model, we must assign distributions to ��
� and ��

� . We specify a 

Gamma(0.05,0.001) prior distribution on �� = ��
�� and on �� = ��

��.  We conducted 

sensitivity analyses using different prior distributions (Gamma(1,0.026; 0.05,0.026; 1, 

0.001),and results were similar. County-level data was used instead of census tract-level 

data since each geographic area must include at least 1 case and 1 control. 

Neighborhood variables were Z-score transformed (subtracting the mean and dividing by 

the standard deviation) in order to compare odds ratios from many regressions[9]. The 

proportion of residual variability that is spatial in nature was calculated by dividing the 

posterior marginal variance of the spatial random effects by the sum of the posterior 

marginal variances of the spatial and non-spatial random effects. In this phase, there is 

again a large multiple testing problem and so we adjust our significance threshold and 

set it to 0.05/n for n the number of variables identified in Phase 1, which corresponds to 

a Bonferroni corrected threshold of 0.05. Since we are performing a Bayesian analysis, 

p-values are not available to assess significance. Hence, we calculate (100-0.05/n)% 

credible intervals and neighborhood variables whose credible intervals included zero 

were not considered significant. Phase 2 analyses were conducted using Integrated 

Nested Laplace Approximations (INLA) [46] implemented in the INLA package in R 

statistical software. 

     In Phase 3, we account for correlation among the most significant variables identified 

in Phase 2 by applying standard principal components analysis (PCA), a technique 

frequently used in neighborhood research[47, 48].  PCA converts a set of observations 

of possibly correlated variables into a set of values of linearly uncorrelated variables 

called principal components[47]. PCA analyzes total variance[49], and variable loadings 

onto components represent the correlation between the variable and that 

component[50].  PCA, as opposed to factor analysis, was chosen for data reduction in 
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this study because we sought an empirical summary of total neighborhood-level 

variance explained by the census variables, rather than confirmation of an underlying 

factor structure comprised of previously identified domains[48, 51].  No independent 

components emerged following exploratory factor analysis. We hypothesized that 

variables within each principal component were correlated; this is analogous to linkage 

disequilibrium in GWAS where single nucleotide polymorphisms within larger gene 

regions are considered correlated[9].  Additionally, we determined that the most 

significant variable within each component(i.e. the variable with the tightest credible 

interval from Phase 2) was the best representation of that principal component for use in 

future neighborhood and prostate cancer aggressiveness studies.  This approach is 

similar to fine mapping approaches that are often used post-GWAS[52, 53].  Fine 

mapping methods identify the specific SNP within a gene region that is most relevant to 

the outcome of interest.   

     In this analysis, neighborhood variables with a maximum loading of <0.30 on any of 

the retained principal components were eliminated, given that loadings between 0.3 and 

0.5 are considered acceptable[48] [49, 54].  Principal components (and the variables that 

load on those components) that accounted for up to 90% of the data were retained in 

order to determine “top hits” in this study.   For variables that loaded strongly(>0.30) on 

more than one component or factor variable, the magnitude of the correlation coefficient 

for each component, as well as the variable description, were used to determine the 

most appropriate component placement. Phase 3 was conducted using STATA/SE 12.0 

statistical software. 

Results 
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     Figure 1a displays the distribution of all prostate cancer study participants in this 

analysis by census tract, and Figure1b displays the distribution of aggressive prostate 

cancer cases by 

census tract.  Of the 

reported 3,135 census 

tracts in the 

Commonwealth of 

Pennsylvania (PA) in 

Year 2000, 3,037 

(97%) census tracts 

are represented in our study sample (Figure 1a; Appendix D).  Most aggressive prostate 

cancer cases are clustered in urban areas, namely Pittsburgh and Philadelphia (Figure 

1b).  The average age of the study population was 69.2 (standard deviation (sd) 9.4) and 

mean year of diagnosis was 2000.  The average age of aggressive cases was 69.8 (sd-

10.4) and of nonaggressive cases was 68.8 (sd-9.0).   Figure 2 summarizes the study 

methods and findings of Phases 1-3.  In Phase 1, we identified 517 census variables 

that were significantly associated with prostate cancer aggressiveness at Bonferroni 

significance levels (Supplementary Digital File 5).  In Phase 2 we identified 217 variables 

that were still significant at Bonferroni-adjusted credible intervals after adjustment for 

spatial variability (Supplementary Digital File 6).  The average amount of spatial variation 

across the 217 models was 0.34 (range: 0.14-0.50), which is considered substantial.  In 

Phase 3, 17 uncorrelated principal components were identified from 217 neighborhood 

variables, with 76 variables loading on Component 1 and 51 loading on Component 2.  

Components 1-8 explain 80% of the variance among the top 217 neighborhood 

variables, and these components relate to poverty level (Component 1), white only 

characteristics (Component 2), household income and worth (Component 3), male 

Figure 1a. All Prostate Cancer Cases by Census Tract 

b. Aggressive Prostate Cancer Cases by Census Tract

A.

B.
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householders living alone component 4), rented houses built before 1939 (Component 

5), civilian population (Component 6), household income above $60K (component 7), 

and immigration (Component 8) (Figure 2). 

 

     The top 17 most significant variables within each of the 17 principal components are 

described in Table 1.  The top hit or most significant variable in this analysis (based on 

significance from Phase 2) loaded on Component 12 (Workers mode of transportation). 

Specifically, percent workers 16 years and over taking trolley or street car public 

transportation to work was related to an OR of 1.05 and a credible interval(CI) of 1.001-

1.09, which can be interpreted as the odds of having aggressive prostate cancer for 

each unit increase in the neighborhood percentage of workers 16 years and over taking 

Phase 2: Spatial Model2

•Bonferroni-like Adjustment

Phase 1: GEE Model1 

•Bonferroni Adjustment

14,663 Census Variables

Figure  2.  Summary of NWAS Methods and Top Neighborhood Components

Caucasian Prostate Cancer Cases

517 variables

217 

variables

Aggressive (n=6,416); 

NonAggressive(n=70,670)

Top 17 variables (Table 1)

Phase 3: Data Reduction
• Principal Components Analysis

• Fine Mapping 3

Top Neighborhood Components 
(by ranking of variance explained)*

# 

Variables 
Loading

1.Poverty (below poverty) 76

2.White Only Family and Housing 51

3.Householder income/worth 31

4.Male Householder Living Alone 11

5.Rented Household built 1939 or 

earlier

14

6. Civilian Population 4

7. Household income >$60K 4

8.Immigration 1

9. Owner occupied housing unit worth 3

10.Poverty  Status Males under 50 5

11.Housing units built 1940-49 3

12. Workers Mode of Transportation 3

13.Rented Household no vehicle 4

14.Males in Protective Services 1

15.  Male earnings 7.5K-9,999 2

16. Male over 65 (not family household) 3

17. Male household renter aged 55-64 1
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trolley or streetcar public transport to work.  Seventeen of the top 30 variables (top 10% 

of significant variables from Phase 2) loaded on Component 1(Supplementary Digital 

File 6).  Component 1 related to poverty and is best described by variables related to 

poverty status based on income and female head of households with children variables 

(Supplementary Digital File 6).  The most significant variable from Component 1 

represented Non-Hispanic Whites aged 6-11 for whom poverty status was determined 

(OR=1.07, credible interval=1.01-1.12).   In general, 15 of the top hits were 

socioeconomic variables and two also related to physical environment (% Aggregate 

income of Occupied Housing units built 1940-1949 and % Renter occupied housing unit 

built 1939 or earlier with householder aged 15-24 years).   

Discussion 

 

     Based on GWAS and EWAS frameworks, we propose the neighborhood-wide 

association study (NWAS).  We systematically and comprehensively assessed the 

association of 14, 663 neighborhood variables measured in the U.S. Census SF1 and 

SF3 forms with prostate cancer aggressiveness, based on case data from the PA State 

Cancer Registry.  Through a series of progressively more stringent model adjustments 

and data reduction techniques, we identified the top 17 neighborhood variables 

associated with aggressive prostate cancer.  These findings confirm previous 

associations between neighborhood and prostate cancer, and they provide new insights 

into the role of neighborhood in prostate cancer development.         

     Previous neighborhood studies have focused on associations between prostate 

cancer and pre-determined variables from the U.S. Census that represent 

socioeconomic status (SES) domains related to education, income, poverty, and 

employment (Supplementary Discussion Table 1-[21, 22] [23, 24] [24, 32-35] [25-27]).  

Housing variables related to vacancy and median home/rental values have also been 
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used as potential indicators of neighborhood SES (Appendix G).  Our findings support 

that neighborhood income and poverty (Components 1,2,3,7,8, 9, 10, 15), employment 

(Component 14)) and housing variables(Components 3, 4, 5, 9, 11, 13, 16, 17) are 

related to prostate cancer aggressiveness; however, neighborhood educational level did 

not appear to be an important determinant of aggressive prostate cancer in this NWAS.  

Immigration status (Component 9) has also been studied at the neighborhood and 

individual-level in prostate cancer.  Studies of neighborhoods with higher rates of 

foreign-born immigrants have shown associations with decreased risk for cancer, 

despite the socioeconomic status of the individual[55].  Even if individuals are diagnosed 

with late stage prostate cancer, survival is particularly improved for those who live in 

high ethnically homogeneous enclaves, suggesting the strong role that social support 

may play in prostate cancer progression[55, 56].  Other variable components identified in 

the NWAS have been implicated in neighborhood research or cancer research in 

general, namely, variables related to mode of transportation(Components 12 and 13) 

and age of housing units(Components 5, 11).  Not having a vehicle or taking public 

transport to work are measures that are often associated with urban vs rural areas, and 

they have beenused as measures for access to medical care[57] [58, 59].  Access to 

care is often cited as cause of disparity in prostate cancer treatment[58] and survival[57] 

in both urban and rural settings.  Higher cancer incidence and mortality rates are often 

noted in more urban settings, and cases arising from rural environments often are 

diagnosed at a later stage of disease[60]. Further, previous studies of neighborhood and 

disease suggest that physical environment (e.g., housing vacancy) is relevant to disease 

risk[30].  Age of housing unit was associated with aggressive prostate cancer in the 

NWAS.  Assuming that older age of the house is associated with deterioration, this 

finding supports the hypothesis that poor housing can lead to poor health outcomes[61].  

Thus, NWAS findings are biologically plausible, given results support the association 
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between previously defined socioeconomic domains that were based on existing social 

theories[62, 63]. 

     While the NWAS top hits represent similar socioeconomic domains/components 

presented in literature, the variables presented here, within each of the principal 

components, are potentially more informative for inferring causation and identifying 

areas in need of intervention.  A limitation of previous neighborhood studies has been a 

lack of consistency in variable selection for analysis[63].  For example, poverty can be 

defined as the proportion of individuals or households below the federal poverty level, or 

as a percentage on public assistance[48].  This lack of “common methods” or “common 

neighborhood variables” for analysis is pervasive across neighborhood research in 

general[48, 63], making the accumulated evidence of the role of neighborhood in 

disease difficult to assess systematically for causation[63].  NWAS identified mostly 

combination variables or variables that represent more than one socioeconomic 

construct(e.g percentage of male householders not living with family, which represents 

gender, family, household, and poverty information).  Previous studies generally select a 

single variable that represents fewer socioeconomic parameters (e.g. household income 

only) and/or develop indices from these variables [24, 32-35] [25-27]. Improper variable 

selection using a priori approaches could bias association results and lead to false 

negative associations.  Thus, NWAS addresses this research gap by empirically 

identifying neighborhood factors relevant to prostate cancer.  Additionally, it is unlikely 

that previous studies would select to study both variables:  percentage of male nonfamily 

householders living alone AND percentage of male nonfamily householders living alone 

over 65.  Although these two variables appear to represent similar information by name, 

the NWAS identified these variables as two separate components.   Variables related to 

single resident households have been used as markers of social support[64], and it is 

possible that they represent separate or potentially dynamic changes in the role of social 
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support across the lifespan.  This is similar to findings in GWAS where top hits from the 

same region may provide additional information about the function of that genetic 

locus[65].  Additionally, renter versus owner-occupied housing units appeared to be 

more strongly associated with aggressive prostate cancer in the NWAS, and could be 

another indicator of degree of socioeconomic status, beyond income.  Given the 

specificity of top variables from NWAS, groups (in neighborhoods that possess these 

particular neighborhood characteristics) who are likely to have unfavorable 

outcomes/aggressive disease can be identified for recruitment in studies and can lead to 

studies that better characterize the neighborhood environment.  This could result in the 

development of targeted interventions and strategies for addressing these 

neighborhood-specific factors in high risk areas.  

     Given that this analysis was restricted to white men with prostate cancer (median age 

66), it is not surprising that top hits included variables related to older age 

ranges(Components 2, 10, 13, 17)  and white only neighborhood characteristics 

(Component 2).  Neighborhood investigations often adjust by percent Hispanic or 

percent African American as a measure of neighborhood segregation (24, 33-35), but 

segregation or socioeconomic circumstances related to other racial groups did not 

appear to be associated with aggressive prostate cancer.  This could suggest that 

relevant, race-specific neighborhood characteristics may predict in a manner that is 

dependent on the individual subject’s own race.  The conduct of an NWAS in other racial 

groups is warranted in order to allow for comparisons across other race/ethnicities.  

Thus, the NWAS approach has implications for health disparities research, particularly 

teasing apart racial versus socioeconomic effects. 

     Some of the top variables did not relate to socioeconomic or physical environmental 

variables, and instead related to population denominators used to calculate percentages 

in the U.S. Census (i.e., Component 6) or included age ranges that are not typically 
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associated with cancer development(i.e. Components 1, 5).  For example, civilian non-

institutionalized population 5 years and older is an imputed variable in the SF3 form that 

could reflect adjustments for study sampling approaches, given SF3 is based only on a 

subset, i.e., 5% of the population.  Although we made inferences using extremely 

conservative significance levels, it also is possible that some of these findings could be 

spurious.  In the same token, there is potential for false negatives in this analysis, given 

that our goal was to minimize Type I error and focus on finding true positives using a 

multi-phase approach and stringent parameters for statistical significance.  Further, 9 of 

the top 17 variables had mean percent values of less than 1%.  Although these variables 

may be rare, they would still be useful for data reduction purposes, particularly if the goal 

is to identify census tracts at the upper range of these particular variables for prevention 

or intervention.  Further, some variables, namely taking trolley or street cars to work or 

living in older, rented housing units, may be a reflection of urban versus rural nature of 

the U.S. Census data.  More prostate cancer cases come from more densely populated 

urban environments[60], but to address this issue, we account for the spatial nature of 

the data in Phase 2.  Although odds ratio did not change more than 8% when comparing 

odds ratios from Phase 1 to Phase 2, spatial variance was substantial in our models 

(greater than 30%), suggesting that spatial events should be considered in 

neighborhood and cancer studies.   

     In general, standardized data processing and design approaches often used in 

administrative datasets like the PA Cancer Registry and U.S. Census, can introduce 

systematic bias and limit inferences that can be made[30].  For instance, we did not 

have the ability to adjust for individual level factors beyond race, age, and date of 

diagnosis.  Neighborhood socioeconomic factors are believed to exert separate effects 

from individual level data[21-24, 38], but conduct of NWAS in populations that allow for 

individual-level adjustments will be needed in future studies, particularly to make 
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generalizations about causality[22].   Bias related to data missingness is also a concern 

in administrative datasets, and could be a factor in this NWAS.  The response rate for 

the census data for the State of Pennsylvania is 70%[66].  Also, we limited our dataset to 

variables with less than 10% missingness based on GWAS, EWAS, and social 

epidemiologic studies that have used an acceptable missingness level of <10%[9] [67, 

68].  Based on our assessments of missingness in this study, bias related to reporting or 

administrative rules appears likely nondifferential ( Appendix D); however, future studies 

that investigate missingness effects in NWAS, using both spatial autocorrelation and 

imputation techniques[69], are warranted. 

     There are other study strengths and limitations to note.  A hallmark of GWAS studies 

has been replication of findings in similar study populations. However, with the generally 

low observed odds ratios in current GWAS studies and that fact that replication in similar 

study population is not always feasible, many investigators are favoring a single 

discovery phase adjusted for multiple comparisons[70].  This school of thought applies 

when using State Cancer Registry and U.S. Census data.  Neighborhood characteristics, 

as well as disease rates, likely differ by State, thus, it’s not clear whether other State 

registries would serve as appropriate replication groups.  Clinical populations of prostate 

cancer cases that give rise to cases within State cancer registries (that also likely include 

more detailed collections of individual-level factors) and the comparison of cancer 

registries within the same State from different time periods (i.e. using prostate cancer 

diagnosed from 1995-2005 and the 2000 US Census versus prostate cancer cases 

diagnosed from 2005-2015 and the 2010 Census) could potentially serve as appropriate 

replication groups and warrant further investigation. Focus on appropriate replication 

groups was outside the scope of this study, and instead we aimed to introduce the 

NWAS as a nascent, but novel approach focused on discovering potentially new 

research angles in neighborhood and cancer research.  
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     The use of county and census tract-level data does not come without some 

criticism[22].  Area-level data analysis assumes that people within the same geographic 

area experience similar socioeconomic circumstances.  In reality, this may not be the 

case and people may not spend the majority of their time at their self-reported residential 

addresses.  However, use of U.S. Census variables are warranted given that they are 

widely available, allowing for systematic analysis and consistency across studies.  

Additionally, previous studies of prostate cancer have inconsistently accounted for the 

effects of spatial autocorrelation related to U.S. Census administrative boundaries[63], 

and have focused mostly on socioeconomic, compared to physical environment [22, 63].  

This was the first study to comprehensively evaluate the role of all available US census 

variables, accounting for similarities across administrative census boundaries and 

including physical and social characteristics, in cancer.  We found that spatial variance 

contributes substantially to model variance (though magnitudes of effect do not change 

by more than 8% from Phase 1 to Phase 2).  Thus, NWAS does contribute new findings 

to the literature and could provide justification for more precise measurements of 

neighborhood-level attributes[71].   Additionally, NWAS methodology could be applied to 

other available, community or national-level databases, which could lead to more 

relevant neighborhood boundary definitions.   

     Our prostate cancer outcome was derived from simplified and broader categories of 

tumor stage and Gleason grade often employed in SEER and State Cancer 

Registries[41].  Most prostate cancer cases die with and not of the disease, making 

aggressive prostate cancer the most relevant outcome[20, 72, 73].  It is possible that 

including more detailed clinical information related to stage, grade, metastasis, and 

prostate specific antigen(PSA) level[74-76] could improve our outcome definition and the 

specificity of our findings[77, 78].   
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     Despite limitations, this study will be the first to systematically and empirically 

evaluate the role of the macro-environment in prostate cancer.  We demonstrate for the 

first time that high dimensional data analysis can be applied to publically available, social 

datasets.  Findings from this study can be used as “neighborhood signatures” in the 

identification of neighborhoods that possess “high risk” characteristics and are in need of 

disease intervention and prevention efforts.   NWAS results are hypothesis-generating 

and can lead to studies focused on the etiologic role of neighborhood on prostate cancer 

and other diseases.  The NWAS method has implications for health disparities research 

and can be applied across a number of health and disease settings.  NWAS can serve 

as a common methodology across disciplines, and thus can facilitate multicenter, 

multilevel investigations.   

 

Table 1. Summary of Neighborhood Variable “Top Hits” Associated with Aggressive Prostate 

Cancer by Phase Results. 

   Phase 1 Phase 2 Phase 
3  

 Mean 
(sd) 

Range Odds 
Ratio 

CI p-value R
a
n
k 

Odds 
Ratio 

CI R
a
n
k 

Com-
ponent 
Load 

Census Variable           
%White alone 
population for whom 
poverty status is 
determined age 6-
11 years 
(pct_sf3_pct075a006) 

0.38 
(0.53) 

0-20.6 1.09 1.05-
1.12 

0.03 4
6
3 

1.07 1.01-
1.12 

1
2 

1  

%White, Non-
hispanics where 
poverty status 
determined aged 
18-64 below poverty 
level in 1999 
(pct_SF3_p159i007) 

4.4 
(4.7) 

0-100 1.01 1.01-
1.02 

.003 1
4
7 

1.06 1.02-
1.12 

1
1 

2 

% Male Nonfamily 
households below 
poverty level 
(pct_sf3_p092021) 

1.6 
(1.9) 

0-35.4 1.03 1.02-
1.04 

0.03 4
6
1 

1.06 1.01-
1.11 

1
4 

3  

%Male householder 
living alone 
(nonfamily 
household) 
(pct_SF3_h019093) 

4.69 
(3.9) 

0-39.5 1.02 1.01-
1.02 

0.03 4
6
6 

1.07 1.01-
1.12 

6
1 

4 

% Renter occupied 
housing unit built 
1939 or earlier with 
householder aged 

0.75 
(1.4) 

0-31.8 1.05 1.03-
1.06 

0.003 1
3
6 

1.07 1.02-
1.11 

2 5 
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15-24 years 
(pct_SF3_hct00508
3) 
Imputed civilian non-
institutionalized 
population  5 years 
and older 
(pct_sf3_p120002) 

6.39 
(2.6) 

0-63.2 1.02 1.01-
1.03 

0.02 4
1
5 

1.06 1.01-
1.11 

9
1 

6 

%Household income 
$60K-74,999 
(pct_SF3_p052012) 

10.9 
(3.6) 

0-25.1 0.98  (0.97-
0.99) 

0.048 5
1
6 

0.95 0.89-
0.99 

2
0
2 

7 

%Foreign born 
naturalized citizen at 
or above poverty 
level 
(pct_SF3_pct05102
0) 

2.0 
(2.1) 

0-18.9 0.96 0.94-
0.97 

8.8 X 
10-6 

1
0 

0.93 0.87-
0.99 

2
1
7 

8 

%Household income 
of $10K-19,999 with 
owner-occupied 
housing unit value of 
$10K-19,999 
(pct_SF3_hct01701
9) 

0.34 
(1.1) 

0-23.0 1.06 1.04-
1.08 

2.7 X 
10-5 

1
5 

1.05 1.00-
1.10 

3 9 

% Population for 
whom poverty status 
is determined aged 
45-54 years, under 
0.50(pct_sf3_pct050
102) 

0.33 
(0.41) 

0-12.6 1.18 1.12-
1.25 

6X10-5 1
9 

1.08 1.03-
1.13 

1
0 

10 

% Aggregate 
income of Occupied 
Housing units built 
1940-1949 
(pct_sf3_hct015042) 

0.67 
(1.1) 

0-28.3 1.06 1.03-
1.08 

0.001 9
4 

1.06 1.01-
1.11 

7 11 

%Workers 16 years 
and over taking 
public 
transportation, 
namely trolley or 
street cars, to work 
(pct_SF3_p030007) 

0.12 
(0.64) 

0-14.6 1.10 1.06-
1.13 

0.0001 2
5 

1.05 1.001-
1.09 

1 12 

Renter occupied 
housing unit with 
householder aged 
55-64 with no 
vehicle available 
(pct_SF3_h045025) 

0.54 
(0.99) 

0-15.1 1.06 1.04-
1.09 

0.003 1
5
5 

1.07 1.02-
1.12 

8 13 

%Male Protective 
Service 
Occupations: fire 
fighting, prevention, 
and law 
enforcement 
workers 
(pct_SF3_p050026) 

0.89 
(0.93) 

0-16.7 0.93 0.90-
0.96 

0.04 4
9
9 

0.94 0.89-
0.99 

2
1
3 

14 

%Males with 
earnings of $7500-
9,999 in 1999 
(pct_SF3_p084006) 

1.50 
(0.96) 

0-37.1 1.07 1.04-
1.10 

0.01 3
2
3 

1.05 1.001-
1.10 

4
1 

15 

Male householder  
over 65 living alone 
in nonfamily 
household 
(pct_SF1_p030012) 

7.2 
(2.5) 

0-34.5 1.03 1.02-
1.04 

.005 1
9
6 

1.07 1.02-
1.13 

1
0
0 

16 

% Household 
Renters aged 55-64 
years 
(pct_sf3_hct004093) 

0.74 
(0.75) 

0-9.3 1.09 1.05-
1.12 

0.03 4
6
2 

1.06 1.01-
1.12 

5
3 

17 



80 

 

 

References: 

1. Lynch, S.M. and T.R. Rebbeck, Bridging the Gap between Biologic, Individual, and 

Macroenvironmental Factors in Cancer: A Multilevel Approach. Cancer Epidemiology 

Biomarkers & Prevention, 2013. 22(4): p. 485-495. 

2. Warnecke, R.B., et al., Approaching Health Disparities From a Population Perspective: 

The National Institutes of Health Centers for Population Health and Health Disparities. 

American Journal of Public Health, 2008. 98(9): p. 1608-1615. 

3. Yeager, M., et al., Genome-wide association study of prostate cancer identifies a second 

risk locus at 8q24. Nat Genet, 2007. 39(5): p. 645-9. 

4. Eeles, R.A., et al., Multiple newly identified loci associated with prostate cancer 

susceptibility. Nat Genet, 2008. 40(3): p. 316-21. 

5. Gudmundsson, J., et al., Genome-wide association study identifies a second prostate 

cancer susceptibility variant at 8q24. Nat Genet, 2007. 39(5): p. 631-7. 

6. Kibel, A.S., A common variant associated with prostate cancer in European and African 

populations Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson 

BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J, Jakobsdottir M, Kostic J, 

Magnusdottir DN, Ghosh S, Agnarsson K, Birgisdottir B, Le Roux L, Olafsdottir A, Blondal 

T, Andresdottir M, Gretarsdottir OS, Bergthorsson JT, Gudbjartsson D, Gylfason A, 

Thorleifsson G, Manolescu A, Kristjansson K, Geirsson G, Isaksson H, Douglas J, 

Johansson JE, Balter K, Wiklund F, Montie JE, Yu X, Suarez BK, Ober C, Cooney KA, 

Gronberg H, Catalona WJ, Einarsson GV, Barkardottir RB, Gulcher JR, Kong A, 

Thorsteinsdottir U, Stefansson K, deCODE Genetics Inc., Reykjavik, Iceland. Urol Oncol, 

2007. 25(5): p. 446-7. 

7. Varghese, J.S. and D.F. Easton, Genome-wide association studies in common cancers—

what have we learnt? Current Opinion in Genetics &amp; Development, 2010. 20(3): p. 

201-209. 

8. Chen, G., P. Wei, and A.L. DeStefano, Incorporating biological information into 

association studies of sequencing data. Genetic Epidemiology, 2011. 35(S1): p. S29-S34. 

9. Patel, C.J., Bhattacharya, J., Butte, A.J., An Environment-Wide Association Study (EWAS) 

on Type 2 Diabetes Mellitus. PLoS One, 2010. 5(5): p. e10746. 

10. SLAUGHTER, D.P., H.W. SOUTHWICK, and W. SMEJKAL, Field cancerization in oral 

stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 1953. 

6(5): p. 963-8. 

11. Lochhead, P., et al., Etiologic field effect: reappraisal of the field effect concept in cancer 

predisposition and progression. Mod Pathol, 2015. 28(1): p. 14-29. 

12. Giovannucci, E. and S. Ogino, DNA methylation, field effects, and colorectal cancer. J Natl 

Cancer Inst, 2005. 97(18): p. 1317-9. 

13. Ushijima, T., Epigenetic field for cancerization. J Biochem Mol Biol, 2007. 40(2): p. 142-

50. 

14. Ramachandran, K. and R. Singal, DNA methylation and field cancerization. Epigenomics, 

2012. 4(3): p. 243-5. 

15. Stearman, R.S., et al., A macrophage gene expression signature defines a field effect in 

the lung tumor microenvironment. Cancer Res, 2008. 68(1): p. 34-43. 



81 

 

16. Martinez-Outschoorn, U.E., et al., Oxidative stress in cancer associated fibroblasts drives 

tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the 

field effect and genomic instability in cancer cells. Cell Cycle, 2010. 9(16): p. 3256-76. 

17. Heaphy, C.M., et al., Telomere DNA content and allelic imbalance demonstrate field 

cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer, 

2006. 119(1): p. 108-16. 

18. Lochhead, P., Chan, A.T., Nishihara, R., Fuchs, C.S., Beck, A.H., Giovannucci, E.G., Ogino, 

S., Etiologic field effect: reappraisal of the field effect concept in cancer predisposition 

and progression. Modern Pathology, 2015. 28: p. 14-29. 

19. Lynch, S.M., Mitra, N., Ravichandran, K., Spangler, E., Zhou, W., Paskett, E., Gehlert, S., 

et al., Telomere Length and Neighborhood Cancerization:  Evaluating Biological 

Response to Unfavorable Exposures. Submitted for Peer Review, 2015. 

20. American Cancer Society, Cancer Facts and Figures, 2009, American Cancer Society: 

Atlanta. 

21. Messer, L., et al., The Development of a Standardized Neighborhood Deprivation Index. 

Journal of Urban Health, 2006. 83(6): p. 1041-1062. 

22. Diez Roux, A.V. and C. Mair, Neighborhoods and health. Annals of the New York 

Academy of Sciences, 2010. 1186(1): p. 125-145. 

23. Wardle, J., et al., Socioeconomic disparities in cancer-risk behaviors in adolescence: 

baseline results from the Health and Behaviour in Teenagers Study (HABITS). Prev Med, 

2003. 36(6): p. 721-30. 

24. Borrell, L.N., et al., Perception of general and oral health in White and African American 

adults: assessing the effect of neighborhood socioeconomic conditions. Community Dent 

Oral Epidemiol, 2004. 32(5): p. 363-73. 

25. Ziegler-Johnson, C., et al., Prostate Cancer Severity Associations with Neighborhood 

Deprivation. Prostate Cancer, 2011. 2011. 

26. Byers, T.E., et al., The impact of socioeconomic status on survival after cancer in the 

United States. Cancer, 2008. 113(3): p. 582-591. 

27. Carpenter, W., et al., Racial differences in PSA screening interval and stage at diagnosis. 

Cancer Causes and Control, 2010. 21(7): p. 1071-1080. 

28. Lyratzopoulos, G., et al., Population based time trends and socioeconomic variation in 

use of radiotherapy and radical surgery for prostate cancer in a UK region: continuous 

survey. BMJ, 2010. 340. 

29. Crawford, E.D., Epidemiology of Prostate Cancer. Urology, 2003. 62: p. 3-12. 

30. Bureau, U.S.C., 2000 Census Technical Documentation for SF 3. United States 

Department of Commerce, 2007. 

31. Bureau, U.S.C., 2000 Census Technical Documentation for SF 3 Data. US Department of 

Commerce, 2007. 

32. Diez Roux, A.V., D.R. Jacobs, and C.I. Kiefe, Neighborhood characteristics and 

components of the insulin resistance syndrome in young adults: the coronary artery risk 

development in young adults (CARDIA) study. Diabetes Care, 2002. 25(11): p. 1976-82. 

33. Stoll, B.A., Affluence, Obesity, and Breast Cancer. Breast J, 2000. 6(2): p. 146-149. 

34. Robert, S.A. and E.N. Reither, A multilevel analysis of race, community disadvantage, 

and body mass index among adults in the US. Soc Sci Med, 2004. 59(12): p. 2421-34. 

35. Robert, S.A., et al., Socioeconomic risk factors for breast cancer: distinguishing 

individual- and community-level effects. Epidemiology, 2004. 15(4): p. 442-50. 

36. Part III, Chapter 27 Communical and Noncommunicable Diseases, Section 27.31, in 28, 

P.S. Legislature, Editor 1980: Harrisburg, Pennsylvania. 



82 

 

37. Penney, K.L., et al., Gleason Grade Progression Is Uncommon. Cancer Research, 2013. 

73(16): p. 5163-5168. 

38. Zeigler-Johnson, C., Tierney, A., Rebbeck, T.R., Rundle, A., Prostate Cancer Severity 

Associations with Neighborhood Deprivation. Prostate Cancer 2011. 

39. Eeles, R.A., et al., Multiple newly identified loci associated with prostate cancer 

susceptibility. Nat Genet, 2008. 40(3): p. 316-321. 

40. SEER Program Coding and Staging Manual 2000, E. National Cancer Institute. 

Surveillance, and Endpoints Research (SEER). Editor 2000: Bethesda, MD. 

41. SEER., SEER Training Modules, in Prostate Cancer N.I.o.H. U.S. Department of Health and 

Human Services, National Cancer Institute, Editor 2014: Bethesda, MD. 

42. Rule G SEER Training Modules 2012  October 30, 2013]; Available from: 

http://training.seer.cancer.gov/coding/guidelines/rule_g.html. 

43. Hubbard, A.E., et al., To GEE or Not to GEE: Comparing Population Average and Mixed 

Models for Estimating the Associations Between Neighborhood Risk Factors and Health. 

Epidemiology, 2010. 21(4): p. 467-474 10.1097/EDE.0b013e3181caeb90. 

44. Aickin, M., Gensler, H. , Adjusting for multiple testing when reporting research results: 

the Bonferroni vs Holm methods. Am J Public Health, 1996. 86: p. 726-728. 

45. Besag, J., York, J., Mollie, A., Bayesian Image Restoration, with Two Applications in 

Spatial Statistics. Ann Inst Statist Math, 1991. 43(1): p. 1-59. 

46. Ru, H., Martino, S., Approximate Bayesian inference for latent Gaussian models by using 

integrated nested Laplace approximations. J.R. Statist. Soc. B, 2008. 71(2): p. 319-392. 

47. Hatcher, L., Principle Component Analysis. SAS Institute Inc, 1994. 

48. Messer, L., . Laraia, B., Kaufman, J., Eyster, J., Holzman, C., Culhane, J., et al. , The 

development of a standard neighborhood deprivation index. . Journal of Urban Health, 

2006. 83(6): p. 1041-1062. 

49. Tabachnick, B.G., Fidell, L.S., Chapter 13: Principal Components and Factor Analysis. 

Using Multivariate Statistics. 3. Northridge, California: California State University, 

Harper Collins College, 1996. 635-708. 

50. Wilson, W.T., The Truly Disadvantaged: The Inner City, The Underclass, and Public Policy, 

C.U. Press, Editor 1987: Chicago, IL. 

51. Kim, J.-O., Mueller, C.W. , Vol 07-014. Newbury Park, California: Sage; 1978., Factor 

Analysis: Statistical Methods and Practical Issues. Newbury Park, CA, 1978. 07-

014(Sage). 

52. Fine Mapping and GWAS. Nature/Nurture: Genetic epideiology and statistics-how tos 

and wherefores blog 2014; Available from: https://blogs.sph.harvard.edu/peter-

kraft/2013/07/03/fine-mapping-and-gwas/. 

53. Meuwissen, T.H. and M.E. Goddard, Fine mapping of quantitative trait loci using linkage 

disequilibria with closely linked marker loci. Genetics, 2000. 155(1): p. 421-430. 

54. Principal Components Analysis. 

http://www.unt.edu/rss/class/mike/6810/Principal%20Components%20Analysis.pdf 

University of Texas (accessed 2015). 

55. Schupp, C.W., Press, D.J., Gomez, S.L., Immigration factors and prostate cancer survival 

among Hispanic men in California: does neighborhood matter? Cancer, 2014. 120(9): p. 

1401-1408. 

56. Carriere, G.M., Sanmartin, C., Bryant, H., Lockwood, G., Rates of cancer incidence across 

terciles of the foreign-born population in Canada from 2001-2006. Can J Public Health, 

2013. 104(7): p. e443-449. 



83 

 

57. Guidry, J.J., Aday, L.A., Zhang, D., Winn, R.J., Transportation as a barrier to cancer 

treatment. Cancer Pract, 1997. 5(6): p. 361-366. 

58. Patel, K., Kenerson, D., Wang, H., Brown, B., Pinkerton, H., Burress, M., Cooper, L., 

Canto, M., Ukoli, F., Hargreaves, M., Factors influencing prostate cancer screening in low 

income African Americans in Tennessee. J Health Care Poor Underserved, 2010. 21(1 

Suppl): p. 114-126. 

59. Goodwin, J.S., Hunt, W.C., Samet, J.M., Determinants of Cancer Therapy in Elderly 

Patients. Cancer, 1993. 72(594-601). 

60. Monroe, A.C., Ricketts, T.C., Savitz, L.A., Cancer in Rural versus Urban Populations: A 

Review. J Rural Health, 1992. 8(3): p. 212-220. 

61. Thomson, H., Thomas, S., Sellstrom, E., Petticrew, M., Housing Improvements for Health 

and Associated Socio-economic Outcomes. Cochrane Database Syst Reve, 2013. 

62. Dietz, R.D., The estimation of neighborhood effects in the social sciences: An 

interdisciplinary approach. Social Science Research, 2002. 31: p. 539-575. 

63. Sampson, R.J., Morenoff, J.D., Gannon-Rowley, T., Assessing "Neighborhood Effects": 

Social Processes and New Directions in Research. Ann Rev Sociol, 2002. 28: p. 443-478. 

64. Thompson, E.E., Krause, N., Living Alone and Neighborhood Characteristics as Predictors 

of Social Support in Late Life. J Gerontol B Psychol Sci Soc Sci, 1998. 53(6): p. S354-64. 

65. Salinas, C.A., et al., Multiple Independent Genetic Variants in the 8q24 Region Are 

Associated with Prostate Cancer Risk. Cancer Epidemiology Biomarkers & Prevention, 

2008. 17(5): p. 1203-1213. 

66. United States Census Bureau, U., Response Rates by State. 2000. 

67. Thomas, G., et al., Multiple loci identified in a genome-wide association study of prostate 

cancer. Nat Genet, 2008. 40(3): p. 310-315. 

68. Lynch, S.M. Missing Data (Soc 504). 2003. 

69. Paternoster, L., et al., Genome-wide Association Study of Three-Dimensional Facial 

Morphology Identifies a Variant in PAX3 Associated with Nasion Position. The American 

Journal of Human Genetics. 90(3): p. 478-485. 

70. Thomas, D., Casey, G, Conti, DV, Haile, RW, Lewinger, JP, Stram, DO., Methodological 

Issues in Multistage Genome-wide Association Studies. Stat Sci, 2009. 24(4): p. 414-429. 

71. Basta, L.A., T.S. Richmond, and D.J. Wiebe, Neighborhoods, daily activities, and 

measuring health risks experienced in urban environments. Social Science &amp; 

Medicine, 2010. 71(11): p. 1943-1950. 

72. Society, A.C., Cancer Facts and Figures. 2011. 

73. D'Amico, A.V., Whittington, R., Malkowicz, S., Fondurulia, J., Chen, M. , The combination 

of preoperative prostate specific antigen and postoperative pathological findings to 

predict prostate specific antigen outcome in clinically localized prostate cancer. Journal 

of Urology, 1998. 160(6): p. 2096–2101. 

74. Prostate Cancer Staging, in Cancer Staging References, American Joint Committee on 

Cancer, Editor 2013. 

75. Chodak, G.W., et al., Results of Conservative Management of Clinically Localized 

Prostate Cancer. New England Journal of Medicine, 1994. 330(4): p. 242-248. 

76. Gittes, R.F., Carcinoma of the Prostate. New England Journal of Medicine, 1991. 324(4): 

p. 236-245. 

77. Stephenson, A.J., et al., Preoperative Nomogram Predicting the 10-Year Probability of 

Prostate Cancer Recurrence After Radical Prostatectomy. Journal of the National Cancer 

Institute, 2006. 98(10): p. 715-717. 



84 

 

78. Kattan, M.W., T.M. Wheeler, and P.T. Scardino, Postoperative Nomogram for Disease 

Recurrence After Radical Prostatectomy for Prostate Cancer. Journal of Clinical 

Oncology, 1999. 17(5): p. 1499. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

 
APPENDIX A 

Bridging the Gap between Biological, Individual  
and Macro-Environmental Factors in Cancer:  

A Multi-Level Approach 

 

 

 

Shannon M. Lynch, Timothy R. Rebbeck 

 

 

Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and 

Epidemiology and Abramson Cancer Center, University of Pennsylvania, Philadelphia, 

PA 19104 

 

Published in Cancer Epidemiology, Biomarkers and Prevention. 

This research was supported by grants from the Public Health Service (P50-CA105641, P60-
NM006900 and R01-CA85074 to TRR and F31-AG039986 to SML) 

Corresponding Author:   Shannon M. Lynch 

    Department of Biostatistics and Epidemiology 

    University of Pennsylvania School of Medicine 

    243 Blockley Hall, 423 Guardian Drive 

    Philadelphia, PA 19104-6021 

    Telephone: 215-898-5300 

    Fax: 215-573-1050 

Email: lynchsh@mail.med.upenn.edu 



86 

 

 

Abstract 

To address the complex nature of cancer occurrence and outcomes, approaches have been 

developed to simultaneously assess the role of two or more etiological agents within hierarchical 

levels including the: 1) macro-environment level (e.g., health care policy, neighborhood, or family 

structure); 2) individual level (e.g., behaviors, carcinogenic exposures, socioeconomic factors and 

psychological responses); 3) biological level (e.g., cellular biomarkers and inherited susceptibility 

variants). Prior multilevel approaches tend to focus on social and environmental hypotheses, and 

are thus limited in their ability to integrate biological factors into a multilevel framework.  This 

limited integration may be related to the limited translation of research findings into the clinic.  We 

propose a “Multi-level Biological And Social Integrative Construct” (MBASIC) to integrate macro-

environment and individual factors with biology.  The goal of this framework is to help researchers 

identify relationships among factors that may be involved in the multifactorial, complex nature of 

cancer etiology, to aid in appropriate study design, to guide the development of statistical or 

mechanistic models to study these relationships, and to position the results of these studies for 

improved intervention, translation, and implementation.   MBASIC allows researchers from 

diverse fields to develop hypotheses of interest under a common conceptual framework, to guide 

transdisciplinary collaborations, and to optimize the value of multilevel studies for clinical and 

public health activities.   

Motivation 

Cancer is etiologically complex and its causes are multifactorial.  Risk factors associated 

with cancer development have been identified that represent a variety of levels of 

influence on health and disease (Table 1).  Macro-environment factors including health 

system, neighborhood or community characteristics, have increasingly been linked to 

cancer incidence and mortality [199, 200].  In addition, social determinants and 

processes [14, 199, 201] have been identified as cancer risk factors, including 
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socioeconomic status or self-reported race [202-205]. Environmental exposures at the 

level of the individual [202] including cigarette smoking [206], radon [207], asbestos 

[208], diet [209], and physical activity [210] are causally associated with some cancers. 

Applied and fundamental investigations have identified a wide array of biologic factors 

mechanistically involved in carcinogenesis including those of the tumor 

microenvironment, metabolome, proteome, transcriptome, and genome.  For example, 

hundreds of novel genetic susceptibility loci have been identified through candidate and 

genome-wide association studies (GWAS [144]).   

     Studies of factors at a single level have provided a great deal of insight into the 

etiology of disease.   Despite successes in identifying cancer risk factors, these 

approaches are limited and at some point the information obtained from these single-

level studies reach a saturation point, and have provided as much information as they 

can.  It is clear that the factors reported to date do not fully explain cancer incidence in 

the general population.  For example, while smoking is strongly associated with lung 

cancer [211], most smokers will not be diagnosed with lung cancer, whereas some non-

smokers will [212].  While BRCA1 or BRCA2 mutation carriers have a greatly increased 

lifetime risk of developing breast cancer [213], some BRCA1/2 mutation carriers are 

never diagnosed with breast or ovarian cancer, even at an advanced age.   GWAS have 

identified a wealth of susceptibility genes, but the identification of novel genes using this 

approach is unlikely to continue ad infinitum.  Therefore, risk factors studied in isolation 

and identified by standard approaches are unable to fully explain the complex, 

multifactorial causes of cancer.  For this reason, cancer research has evolved from 

focusing on single factors to studies of complex relationships between social, behavioral, 

molecular, and environmental factors.    
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Overview of Current Multilevel Approaches 

To address the complex nature of cancer etiology, multilevel approaches have been 

developed to simultaneously assess the role of two or more etiological agents within a 

hierarchical or nested structure [6].  A number of conceptual frameworks have been 

proposed that integrate information across levels of disease etiology, including the “web 

of disease” of MacMahon and Pugh [7], the “wheel” of Mausner et al. [8], “systems 

epidemiology”[9], and more recent models of multifactorial etiology [3, 4, 10-13].  

Multilevel approaches are generally characterized by three main levels: 1) macro-

environment, referred to elsewhere as “eco-level” [3, 4]; 2) individual; and 3) biology 

(Table 1).  Each of these levels is further characterized by sub-levels (Table 1) that 

define domains of variables involved in cancer etiology or outcomes.  Multi-level 

conceptual frameworks are based on the premise that factors affecting disease act 

within and across levels to collectively affect disease.  These approaches generally 

hypothesized that cancer outcomes can result from the complex relationship of factors at 

multiple levels in at least two ways (Table 1).  First, factors at the macro-environment 

and individual levels can directly affect the biological events and result in cancer.  

Second, factors may confer risk in a hierarchal fashion, such that biologic-level effects 

are affected by behaviors or exposures of the individual, and individual level effects are 

affected by the macro-environment [15].   

 

The relationships described above in the context of a multilevel model refer to both 

statistical and biological interactions.  Here, we use the term “interaction” generically to 

refer to any non-additive statistical structure that can be constructed between two or 

more factors.  This concept includes that of effect modification, mediation[214], as well 
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as biological structures that may be defined between two or more factors (e.g., epistasis 

among genetic loci).  The goal of Multi-level Biological And Social Integrative Construct” 

(MBASIC) we propose below is not to define a specific form for interaction.  A variety of 

statistical methods have been developed to guide the implementation of hierarchal, 

longitudinal or multilevel models [6, 215-217].  Instead, MBASIC provides a framework 

around which a researcher can generate hypotheses about the relationship among 

etiological agents in a consistent manner.  When results of these hypothesis tests are 

known, investigators using this framework may be better able to compare and combine 

their results to form more coherent multilevel inferences.   

 

Most multilevel approaches lack a detailed focus on mechanisms that can be used to 

frame the relationships between macro-environment or individual- level factors.  In part, 

the limited incorporation of mechanistic hypotheses stems from the early multilevel 

frameworks having evolved from research focused on social factors. Thus, multi-level 

conceptual approaches have tended to take a “top-down” approach that is focused on 

the role of social determinants at the macro-environment level (Table 2). Only more 

recently has a detailed consideration of the biological level been included in multilevel 

studies.  For instance, the model of Warnecke et al. [10] centers on health disparities as 

the outcome of interest and defines macro-environment level factors by policies, 

institutions, and social or physical factors.  They also include a single level including 

biological factors.  Similarly, the models of Taplin et al. [4] and Gorin et al. [3] focus on 

improved cancer care, sub-dividing the macro-environment level by national and state 

health policy, local community environment, organization or practice setting, health care 

provider teams, and family/social support.  Across proposed multi-level frameworks, the 

traditional individual level risk factors for cancer (e.g., smoking, race, diet) are also 
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considered, whereas biological factors in these constructs remain broadly defined by 

genes, proteins, enzymes and other somatic changes in the cellular environment [2-4].  

In these models, all biological processes are treated in a manner similar to those of other 

levels without accounting for the extensive knowledge of biological processes, pathways, 

and etiologic relationships that are involved in carcinogenesis.   

 

Approaches that focus on macro-environment have had an impact on the conceptual 

advancement of our understanding of disease etiology. While the National Institutes of 

Health has increasingly recognized and encouraged the use of multilevel approaches to 

go beyond investigating individual level factors to include macro-environment level 

exposures [218, 219], many of the current  approaches[218, 219]come from the 

perspective of social and environmental research, and the full integration of biological 

level factors has yet to be realized.  A search of PubMed for the term “multilevel 

analysis” or “multilevel model” and “cancer” resulted in 55 articles published between 

2002 and 2012, although the majority of these (26 of 55, 47%) were published since 

2010.  Most of these studies focused on individual-level and macro-environmental 

factors, and few incorporated biological factors.  Thus, work is needed to improve the 

understanding of which factors at each level are relevant to the disease, the hierarchical 

nature of the relationship of those factors, and the effective application of integrative 

multilevel approaches to achieve meaningful etiological inferences.   

 

Multi-level Biological and Social Integrative Construct (MBASIC).   

To the degree that a researcher has knowledge of biological mechanisms of human 

cancer, multilevel models could be used to harness this information and to generate 
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hypotheses that link macro-environment or individual level factors with mechanisms of 

carcinogenesis.  Current multi-level conceptual approaches, while created to promote 

multi-disciplinary research, often lack detailed descriptions of the biological level that 

could be used to unite traditionally distinct fields (e.g., molecular biology and social 

epidemiology).  MBASIC defines the multilevel framework (construct) to include three 

main hierarchal levels that contribute to cancer etiology and levels of carcinogenesis 

(i.e., macro-environment, individual, and biological factors; Figure 1), where the 

biological level is more specifically defined.  This multilevel etiological model is then 

placed in the context of interventions, and translation/implementation (i.e., T0-T4; [220, 

221]; Figure 1)   Thus, this framework allows researchers from the fields of public 

health, health policy, prevention, behavioral sciences, sociology, epidemiology, biology, 

clinical medicine, and others to test hypotheses of interest under a common conceptual 

framework, to address the dynamic nature of carcinogenesis, to facilitate translation of 

multilevel studies to clinical and public health strategies, and to support multi-disciplinary 

collaborations.   

 

The primary goal of MBASIC is to consistently and systematically frame complex 

hypotheses about cancer etiology, that once tested, can expeditiously inform 

intervention and implementation levels, under the umbrella of a common framework.  As 

may be expected with any comprehensive conceptual framework, the full range of 

MBASIC components is not meant to be implemented in any one study.  Instead, 

MBASIC is meant to aid the researcher in stating hypotheses for individual studies that 

address a part of the complete framework.  Thus, MBASIC provides the framework for 

hypotheses that allow comparison and compilation of individual study results using 

formal (e.g., meta-analytic) or ad hoc means.  Individual studies built around the 
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MBASIC framework could also motivate multidisciplinary collaborations and could 

rationalize single, large-scale multilevel studies in the future.  

 

Predictive and Mechanistic Links Between and Among Hierarchical Levels of 

Etiology 

An important goal of the MBASIC is to guide researchers to consistently and 

systematically incorporate biological mechanisms into a multilevel framework.  Despite 

the substantial limitations in our ability to generate meaningful statistical or 

epidemiological models of mechanism and biological events [222, 223], knowledge of 

existing biological pathways emerging from animal, tumor, and other in vivo studies  can 

be employed to improve generation of hypotheses about how each of the three 

hierarchal levels relates with the others in order to frame questions about the complexity 

of cancer etiology[224].  The well-known molecular epidemiology paradigm [225-229] 

provides a useful structure into which existing biological knowledge can be incorporated 

into a multilevel framework.  As shown in Figure 2 and defined below, the effect of 

exposures can be measured by biomarkers of biologically effective doses (BED), early 

biological effects (EBE), and altered structure and function (ASF) that are predictive of 

disease [226-229].  The formation of these biomarkers can be influenced by inherited 

genotypes (IG).  These factors can give rise to somatic genomic (SG) changes involved 

in carcinogenesis.  Note that while prior constructs include markers of internal dose, 

which have great value as biomarkers for research, clinical or screening purposes, we 

exclude these in the present framework to emphasize biological and mechanistic effects 

in the multilevel etiology of cancer.  While spontaneous mutation may give rise to the 

biomarkers of disease and effect shown in Figure 2, the multilevel construct assumes 
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that each of the biomarkers occur in response to an initial macro-environment or 

individual level exposure, even though that exposure may not be known or measurable. 

 

We adapt the traditional molecular epidemiology approach [226-229] in two ways: by 

considering the nested hierarchical nature of the multilevel model (Figure 2); and by 

expanding the definition of “exposure” to include both macro-environment level and 

individual level exposures.  As noted in Table 1, relevant etiological factors can be 

measured by biomarkers (i.e., BED, EBE, ASF) of exposure or disease at the biological 

level.  These biomarkers reflect somatic changes and are often measured at the tissue 

or cellular level.  For example, biomarkers of exposure to cigarette smoking at the 

individual level can be measured by exposure biomarkers such as DNA adducts [226-

229] in blood; prostate specific antigen (PSA) levels or chromosomal instability [229] 

measured in blood can serve as markers of disease.  Thus, these factors may be framed 

as both processes leading to disease and as intermediates reflecting the relationship 

between macro-environmental and individual factors, separately, and disease (Table 1).  

For instance, macro-environment level variables can induce a psychological response, 

which can be directly measured at the biological level.  Witnessing a crime in a 

neighborhood environment can lead to flight or fight cellular responses that cause 

increases in cortisol levels.  Thus, cortisol is a biomarker of a macro-environment 

exposure.  An example of a linkage between the individual level and the biological level 

is that of the human exposome [230]. The exposome is defined by environmental 

exposures (including lifestyle factors) that represent combined exposures from all 

sources, from the prenatal period onwards [230].  The exposome can be measured by 

biomarkers at the cellular level via bodily fluids or tissue that can serve as surrogates for 

exogenous or endogenous environmental exposures.   For instance, exposure to 
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organophosphate pesticides can be measured by certain metabolites, and dietary 

factors, like vitamin intake, can be measured by antioxidant metabolites.  Like the GWAS 

approach, epidemiology has employed environment-wide association studies (EWAS) 

[230, 231] that use an agnostic approach to identifying environmental factors involved in 

disease.  Future EWAS studies in cancer are warranted to provide practical evidence for 

a link between individual level exposures and the biological level. While EWAS and 

GWAS share some conceptual similarities, there are numerous methodological 

differences between the two approaches[232].  However, the results of each can provide 

information that may promote the development of multilevel hypotheses in cancer 

etiology.   

  

While the examples above demonstrate how macro-environment and the individual level 

factors can each separately affect the biological level as an exposure, we can also 

demonstrate the hierarchal effect among exposures at multiple levels on the biologic 

level.  For example, exposure to a group of friends who smoke cigarettes could prompt 

an individual to change her behavior and also start to smoke cigarettes.  This change in 

behavior at the individual level influences molecular carcinogenesis at the biologic level 

(i.e. DNA adducts; BED) and chromosomal damage (ASF).  Despite symptoms of 

decreased lung function over the course of 15-20 years, the individual is genetically 

predisposed to nicotine dependence, is unable to quit smoking, and ultimately ends up 

developing lung cancer.  Here, the behavior change served as an intermediate between 

the macro-environment and biological events involved in carcinogenesis. Thus, this 

example demonstrates the biological plausibility of how a macro-environmental factor 

can impact an individual, affecting her biological environment, ultimately resulting in 

disease.  When the macro-environment, individual, and biological factors are collectively 
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considered in order to predict or explain a cancer outcome, statistical methods will be 

needed to determine which levels or which risk factors within each level are most 

relevant to the cancer outcome under study.  Thus, it is possible for intermediates to 

serve as surrogates of exposure and disease, but the importance of each level and each 

factor within each level will need to be determined statistically based on available 

methods. 

 

Biology in a Multilevel Framework 

Starting with the Levels of Etiology (Figure 1), the biological level can be subdivided into 

sub-levels with a hierarchical order based on our knowledge of biology and 

carcinogenesis:  tissues are comprised of cells, which contain genes.  Somatic 

mutations and cellular events (e.g. DNA replication) may be involved in carcinogenesis.  

In the following sections, we build the framework around which the biological level can 

be optimally incorporated into multilevel analysis (Figure 2). 

 

Tissues: Tissues warrant consideration as a unique biological sub-level in a 

multilevel framework for two reasons.  First, cellular markers and processes that are 

measured in normal tissue, pre-neoplasia, or malignant tumors could serve as potential 

markers of exposure, disease, or prognosis.  Second, tumors occur at the tissue level.  

Most cancers are diagnosed and staged using tissue samples or by imaging techniques 

that may identify lesions in a particular organ.  A growing area of research is focused on 

the tumor microenvironment, defined by normal cells, signaling molecules, matrices and 

blood vessels that surround and feed a tumor cell [233]. A tumor can alter its 

microenvironment (as defined by cellular and genomic sub-level factors), and the 
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microenvironment can affect how a tumor grows and spreads.  Data about the role of the 

tumor microenvironment are rapidly becoming available via initiatives such as The 

Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov).   

 

     Cells: The cellular sub-level is characterized by proteins, enzymes, and other 

biomarkers that can be detected in bodily fluids and tissues.  In the context of our model, 

the cellular level includes the transcriptome, proteome, and metabolome, where 

biomarkers of exposure and disease can be measured (Figure 2).  The transcriptome 

includes the various forms of RNA in the cell that affect gene expression and cellular 

function [234-236]. The proteome includes the total set of proteins expressed in a given 

cell at a given time [235].  Examples of factors measured in the proteome include 

prostate specific antigen (PSA) and CA-125 [229, 234, 237]. Complex protein 

interactions are referred to as the metabolome [235, 238].  Therefore, even within the 

cellular sub-level, there is an emerging hierarchy [235].  Many approaches for disease 

biomarker discovery focus on a single biomarker at the cellular level, despite an 

emerging expectation that panels of biomarker analytes will be needed to provide 

sufficient sensitivity and specificity for cancer screening, diagnosis or prognosis [234, 

238].  Therefore, there is a shifting focus to the role of the pathway-based and statistical 

interactions among cellular factors, but progress in this area is limited by available, high-

throughput technologies that can detect and organize the millions of proteins obtained 

from a given biological sample.   

 

     Somatic Genomics (SG): The SG sub-level (Figures 1 and 2) is defined by acquired 

somatic genomic changes over the course of a person’s lifetime.  The SG level is 
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defined by factors that can be both markers of disease and markers of exposure. SG 

examples include mutations, copy number variants, and epigenetic changes occurring in 

DNA [234, 239].  Early studies of SG used methods that identify potential susceptibly loci 

a priori, but this approach used a small number of genetic markers, rarely identified 

robust associations between candidate genes and cancer, and most findings were not 

replicable in other studies [144].  

 

     Inherited Genomics (IG): The IG sub-level (Figures 1 and 2) is comprised of inherited 

susceptibility loci that serve as markers of disease risk and outcome. IG includes 

hereditary cancer syndromes [240], which confer a high risk of cancer development.  IG 

research may use family-based linkage methods to identify important inherited, high-

penetrance genes, such as BRCA1 and BRCA2.  However, the mutations in these 

genes are rare in the general population [144, 201, 213], and only explain a small 

fraction of familial aggregation and cancer risk.  GWAS have identified many dozens of 

cancer susceptibility loci [227, 241], most of which were not previously hypothesized to 

be involved in cancer susceptibility [144]. Despite this success, genetic risk variants 

identified from GWAS, alone and in combination, explain a relatively minor proportion of 

disease risk, and have had limited translational value to the clinic.  This has led to a 

focus on the identification of rare variants that may account for larger proportions of 

cancer genetic risk[145].   

 

Given the limited clinical utility of SG and IG findings focused on single disease loci and 

statistical interactions thereof, there has been a renewed interest in studying epistasis, 

defined as genes at two or more loci that produce phenotype effects that are different 
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than the expected effects of the individual loci [242].  At both the SG and IG sub-levels, 

gene-gene interaction studies are being conducted to ascertain the independent and 

joint effects of risk loci on cancer outcomes [243].  These studies may use multiple 

cancer risk susceptibility loci based on pathway or shared biological function, or be 

combined using statistical predictive models independent of biological knowledge. 

 

Non-Hierarchical Effects Within and Across Levels of Etiology 

Mechanisms and example methodologies have been proposed to build on the definition 

of the biological level and to illustrate how interactions between and among factors at 

each level relates to one another, assuming a hierarchal structure for levels of etiology 

(Figure 1).  Hypotheses that consider the hierarchical framework of MBASIC are readily 

constructed from the discussion provided above.  However, the effects of factors within 

each of these levels need not follow a strict hierarchy.  In the context of predictive (as 

opposed to mechanistic) models, each level can dynamically affect another.  Thus, 

statistical (causal) inferences need not be constrained in a linear hierarchical fashion 

[244].  Concepts in social science and genetics support this assertion.  According to the 

Social Ecological Perspective [245, 246], human health results from the complex 

interaction of personal factors (e.g., behaviors, biology, psychology) as well as physical 

and social environments (e.g., geography, built environment, culture, economics, 

politics, and social relationships) [245].  For instance, a combination of geography, 

psychology, and behavior without a clear hierarchal or biological link could interact 

(statistically) and affect disease outcomes.  Additionally, changes in eating habits at the 

individual level may affect social relationships at the macro-environment level since a 

person who is more conscious of their eating habits may prefer to be around other 
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healthy eaters; the effect of each level on the other is not necessarily linear, top-down, or 

bottom-up.  In the field of genetics, penetrance [247] is defined by the probability of a 

phenotype given genotype.  Even though a person is born with a disease genotype, lack 

of exposure to harmful environmental factors or carcinogens may prevent the disease 

from occurring. While it is likely that the disease genotype and exposure have some 

biological link, in the absence of this knowledge, specific methodologies aimed at 

analyzing gene-environment interactions, more recently, gene-environment interaction-

wide association studies (GEIWAS) [248], can be developed to help elucidate statistical 

interactions across levels.  Since it is clear that biological, social, and environmental 

factors interact in some way in cancer etiology, a multilevel framework is needed to both 

organize and guide traditionally separate fields of cancer research; however, these 

frameworks should also account for the dynamic nature of the disease.  

 

Expanding MBASIC:  Levels of Intervention, Implementation and Evaluation 

MBASIC expands the utility of the multilevel approach by including levels of etiology and 

carcinogenesis with levels of intervention and implementation/evaluation, all of which 

can influence one another in a nonlinear manner.  Levels of intervention are 

characterized by primary, secondary, and tertiary prevention strategies and survivorship 

that range from risk assessment to detection to diagnosis and treatment (Figure 1).  

Previous multilevel studies have focused on assessing factors within the levels of 

intervention [14], particularly cancer care outcomes like detection or screening at the 

individual level or practice setting sub-level [3, 4].    

 



100 

 

The implementation/evaluation level is characterized by changes made through the 

application and translation of relevant interventions [249].  Implementation/evaluation 

may occur through national, state, or local policy or health care systems changes, and 

the impact of interventions and implementation will ultimately be seen in changes to the 

health status of a population.  The levels of implementation/evaluation are based on the 

translational model of Khoury et al. [220, 221], which describes five translational phases 

(Figure 1): T0/T1 (determination of mechanisms, etiology and development of 

interventional strategies); T2 (development of evidence-based policy and practice); T3 

(implementing evidence-based guidelines to elicit health care system changes); and T4 

(surveillance and monitoring the effect of changes on health outcomes in populations).    

Appropriate consideration of the dissemination, implementation, and evaluation of 

research findings into health systems is critical if the potential of multilevel models is to 

be realized.  For instance, knowledge of the role of macro-environmental factors (e.g., 

residential location, social environment) in individuals with specific biological 

characteristics and risk factor profile could provide a resource-efficient approach to early 

detection or screening for cancer.   

 

Simultaneous consideration of multiple levels in the MBASIC framework may impact a 

number of cancer outcomes.  The levels or sublevels of inference (etiology, 

carcinogenesis, intervention, or implementation/evaluation; Figure 1) could serve as the 

outcome or exposure of interest.  For instance, healthcare system changes (e.g., 

insurance coverage) can affect individual level behavior (e.g., participation in smoking 

cessation programs), which can affect the cellular environment (e.g., carcinogen levels 

and formation of DNA adducts).  Therefore, interactions within and across levels can be 

modeled in a variety of ways, and extent to which the four levels of inference impact the 



101 

 

trait of interest will vary depending on the etiological setting.  For instance, during cancer 

initiation, living in a community that promotes cancer screening and having access to 

primary care may play a prominent role in cancer early detection(ref).  After cancer is 

diagnosed, the oncology provider and social support may become a predominant 

influence on clinical and psychosocial outcomes.  Both of these scenarios may be 

imposed on a common biological context (e.g., a cancer having a specific mechanistic 

cause), but the relevant individual and macro-level factors may differ substantially.   

 

MBASIC Example: Prostate Cancer  

In the United States, prostate cancer (CaP) is the second leading cause of cancer death 

in men [250]. CaP is of public health concern because it disproportionately affects 

different races. African American men are more likely to be diagnosed with and die from 

CaP than any other racial group, and this disparity is the largest observed for any cancer 

[251]. Despite the burden of CaP, particularly for African American men, little is known 

about the etiology and predictors of poor prognosis for the disease. At present, the only 

widely agreed-upon risk factors for CaP are at the individual level: race, age, and family 

history of CaP [153]. Tumor and patient characteristics used to identify men with a poor 

prognosis include tumor stage, Gleason score or grade, and prostate-specific antigen 

(PSA) level at diagnosis.  However, these clinical characteristics are imperfect in their 

ability to determine long-term prognosis and appropriate treatment options. Thus, CaP is 

a good example of the potential value of the MBASIC framework. 

 

PSA Screening:  From the Cellular Level to T4 Implementation  
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In the 1980s, studies on the cellular level demonstrated that PSA levels could serve as 

markers for CaP recurrence [252].  The use of PSA screening for patients undergoing 

treatment was approved in 1986 [252-254].  Despite studies in the late 1980s suggesting 

that PSA might not be an ideal biomarker for screening and early detection of CaP [252-

254], the FDA also approved PSA as an early detection screening test in 1994, and PSA 

became one of the first FDA approved early detection biomarkers for cancer [252].  The 

FDA based its approval on a large clinic study whose results suggested that men with 

PSA values above 4.0mg/mL could be biopsied for cancer[255].   As a result of this 

bench to beside clinical translation (T1 phase), screening guidelines with often 

conflicting recommendations from different organizations like the United States 

Preventive Services Task Force [256], the American Cancer Society [257], and the 

National Comprehensive Cancer Network [258], started to emerge.  These guidelines 

affected clinical practice (T2 phase), resulting in more men being screened for and 

diagnosed with CaP [252].  The health care system was also affected by these 

guidelines: insurance companies, particularly the Veterans Association and Medicare, 

incurred large costs covering routine PSA screening (T3 phase) [259].  Continued 

research at both the population level (T4 phase) and levels of causation (cellular and 

individual levels) in more recent years have shown that PSA screening may not improve 

CaP mortality rates, that early detection of CaP can often lead to unnecessary treatment 

for some and insufficient treatment in others [252, 260, 261].  As a result, researchers 

continue to developed enhanced PSA screening tests that are more sensitive and 

specific [252].  Guidelines for routine PSA screening are continually being revised in the 

context of individual level factors.  These include questioning the utility of screening for 

men under the age of 75 [256], focusing on screening high risk groups [202], and 

recommending baseline PSA measures in men under age 50 [145].  Despite its 

limitations and controversies, PSA screening illustrates how cellular and individual levels 
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of causation, resulting biomarker interventions, and health care implementation (Figure 

1) can inform one another to optimize the early detection of CaP.   

The PSA scenario also suggests that a comprehensive evaluation of PSA in early 

detection of CaP may benefit from the use of MBASIC to frame the hypotheses and 

approaches needed to improve screening and treatment for CaP.  While macro-level 

factors have yet to be widely used in the context of PSA screening, it is not hard to 

imagine that screening strategies may be optimized by having a better understanding of 

those men who are most likely to have unfavorable CaP outcomes based on their socio-

economic situation, access to health care, or other macro-environmental factors.  The 

role of macro-environmental factors in CaP risk and mortality are beginning to emerge 

from the health disparity and PSA screening literature.  Screening behaviors can be 

affected by economic, physical, and social characteristics of residential neighborhoods 

[262].   Neighborhoods considered to be disadvantaged or low-income have been 

correlated with higher levels of pollutants, overcrowding, violence, less social cohesion, 

and less access to services [263].[263].  Screening practices can affect CaP incidence, 

and low-income neighborhoods often have fewer medical facilities that are overburdened 

with indigent care to provide optimal screening[262].  This can lead to differential 

screening practices by neighborhood [264] and differences in both the diagnosis and 

treatment of CaP, particularly among Caucasian versus African American men [151, 

265].  Therefore, neighborhood measures could serve as a surrogate for access to care 

in CaP, and appear to be a relevant macro-environment level measure to investigate for 
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this cancer outcome.  In the setting of an MBASIC approach, men with known biological 

risk profiles may therefore benefit from targeted intervention if they also reside in defined 

disadvantaged neighborhoods.  For instance, this concept is further illustrated by a 

multilevel analysis that investigated the role of individual level characteristics and 

census-tract neighborhood variables and stage of prostate cancer.  Consistent with data 

showing an association between race, stage, and socioeconomic circumstances like 

living in a low income area, using geographical information systems technology, Xiao et 

al. [266] went beyond identifying factors associated with prostate cancer stage and 

suggest community education and outreach in areas with unfavorable neighborhood 

characteristics. In the context of MBASIC, discovery and early translation can be 

leveraged in a single study and can provide additional insights that would not be as 

readily apparent in studies focusing on a single etiological level. 

 

Prostate Cancer Disparities:  Piecing Together Studies on Biology and Neighborhood 

Because of the complex etiology of CaP, an understanding of CaP disparities may 

benefit from a multilevel approach.  A growing body of literature supports this 

hypothesis.  Rundle et al. [267] reported an association between neighborhood SES 

(based on median income level of a census tract) modifies the association between 

individual smoking status and PAH-DNA adduct levels in prostate tissue (BED).  We 

reported an interaction between CaP genetic susceptibility loci identified in GWAS and 

census-tract level neighborhood variables on time to PSA failure in men who had 

undergone radical prostatectomy [32].   We identified no main effects of the genetic 
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variants or neighborhood factors on PSA failure by themselves, but found statistically 

significant interactions between neighborhood variables and the susceptibility loci.  

Specifically, genotypes at MSMB and HNF1B/TCF2 predicted time to PSA failure in men 

from disadvantaged neighborhoods.  This suggests that context-specific effects of 

genotype should be explored and may improve the ability to identify groups that may 

experience poor CaP outcomes.  It is important to note that these studies represent 

predictive models that may have implications for implementation or translation, but 

themselves do not provide direct mechanistic conclusions.  In general, these studies 

may motivate a continued focus on multi-level approaches and provide rationale for the 

utility of multilevel models in cancers like CaP, where typical single disciplinary 

approaches provide limited insight into disease etiology.   

 

Charge to the Scientific Community 

We have proposed a unifying conceptual framework that allows researchers from public 

health, policy, oncology, health services research, behavioral science, epidemiology, 

and the biomedical sciences to test hypotheses of interest under a common framework.  

The MBASIC framework allows researchers to generate common inferences from 

otherwise disparate individual research findings by using a common conceptual model.  

As illustrated by the prostate cancer example, taking a multilevel approach can help to 

expedite translation of etiologic findings into translational efforts, more than would occur 

in studies focused on single levels of etiology alone.  By providing a stronger basis for 

inclusion of biological factors in a multilevel hierarchy, MBASIC bridges the gap between 

social science and biology in order to foster multidisciplinary collaboration and 

streamline intervention, implementation, and translation efforts.  Emerging biomedical 
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technologies enable population-based studies to include biomarker data such that the 

landscape of cancer research is changing and the lines between disciplines are 

increasingly blurring. MBASIC can serve as a road map for hypothesis generation and 

the development of emerging multidisciplinary teams.  The MBASIC framework allows 

individual studies to more effectively piece together individual research findings under a 

common conceptual model.  Knowledge gained from this integration can be used to 

rationalize the costs of future, large-scale, multilevel studies.   Finally, MBASIC 

represents a framework around which transdisciplinary research (i.e., research that 

generates new fields of inquiry) can be built.   
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Table 1: Hierarchical Level Definitions 

Level Sub-Level 
Factors at this Level Can 

Serve As: 

Macro-

Environment 

• Health Policy (National, State, 

Local) 

• Exposures that affect individual 

risk factors 

 • Community, Neighborhood 
• Exposures that affect biological 

processes  

 • Social and Built Environment • Contextual variables [32]  

 • Practice Setting and Health 

Care Providers 
 

 • Family and Social Support  

Individual • Behaviors • Exposures leading to disease 

 • Exposures 

• Intermediates between the 

macro-environment and 

disease 

 • Psychological Determinants  

 • Socioeconomic Factors  

Biological • Tissue • Processes leading to disease 

 • Cell • Intermediates and biomarkers 

reflecting the relationship 

between macro-environmental 

and individual factors 

 • Somatic Genome (SG) 

 • Inherited Genome (IG)  
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Table 2: Multilevel Framework Examples 

Level Hiatt and Breen 
[14] 

Warnecke et al. 
[10] 

Taplin et al. [4] 
Gorin et al. [3] 

Morrissey et 
al. [26] 

Macro-
Environ-
ment 
 

Defined by 
Factors: 
Social 
determinants 
and Health 
Care Systems 

Defined by sub-
levels (from 
largest to 
smallest): Social 
conditions (e.g., 
discrimination), 
Institutions (e.g., 
Families), 
Neighbor-hood, 
Social 
Relationships 

Defined by sub-
levels: 
National/state 
policy, local 
community, 
organization or 
practice setting, 
health care 
providers, family/ 
social support 

Defined by 
sub-levels 
from Taplin 
et al. [4] 
Gorin et al. 
[3] 

Individual  Defined by 
Factors: Social 
Determinants, 
Behavioral/ 
Psychological 
factors 

Defined by 
Factors: Age, 
Socioeconomic 
status, 
Education, 
Obesity, 
Tobacco Use, 
Acculturation, 
Diet, Race  

Defined by 
Factors: 
Biological 
Factors, 
Sociodemograph
ics, insurance 
coverage, risk 
status, 
comorbidities, 
knowledge, 
attitudes, beliefs, 
decision-making 
preferences, 
psychological 
reaction/coping 

Similar to 
Taplin et al. 
[4] Gorin et 
al. [3] where 
individual is 
described as 
the patient. 

Biologic  
 

Defined by 
Factors: genes 
and biomarkers 

Defined by 
Factors: 
Allostatic Load 
(e.g., 
combination of 
stress markers 
or other 
biomarkers), 
Metabolic 
Processes,  
Genetic 
Mechanisms 

 Defined by 
sub-levels 
(largest to 
smallest 
level): 
Organ, 
Tissue, Cell, 
Gene, 
Molecule, 
Atom 

Primary 
Outcome 
of Interest 

Cancer Control 
Continuum 
(Pre-disease, 
pre-clinical, 
incidence, 
morbidity/ 

Cancer Health 
Disparities 

Cancer Care 
Continuum  
(Risk 
assessment, 
primary 
prevention, 

Cancer Care 
Continuum 
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survival, 
mortality) 
Interventions 
(Prevention, 
early detection, 
diagnosis/treat-
ment, quality of 
life) 

detection, 
diagnosis, 
treatment, 
survivorship, end 
of life) 
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Figure Legends 

Figure 1: Multi-level Biological And Social Integrative Construct (MBASIC).  This 
framework includes levels of etiology, carcinogenesis, intervention, and 
implementation/evaluation, as well as previously defined phases of translation (i.e., T0-
T4; [220, 221].  Biological levels include inherited genome (IG), somatic genome (SG), 
as well as related biomarkers of biologically effective dose (BED), biomarkers of early 
biological effect (EBE), and biomarkers of altered structure and function (ASF) [225].  
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Figure 2: Incorporating Molecular Epidemiology and Biomarkers in the Multilevel 
Framework.   

Biological levels include inherited genome (IG), somatic genome (SG), as well as related 
biomarkers of biologically effective dose (BED), biomarkers of early biological effect 
(EBE), and biomarkers of altered structure and function (ASF) [225].  
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APPENDIX B 
 

Overview of Systematic Review of Multilevel Studies in Cancer Etiologic Research 

 

I. Background.  A number of multilevel conceptual models exist in cancer research(see 

Lynch and Rebbeck, CEBP, 2013).  In general, these models state that macro-

environment, defined by neighborhood, families, hospitals; individual factors, like 

behaviors, exposures and social circumstances; and biologic factors, like genes and 

other molecular markers, can each individually and/or collectively affect cancer 

outcomes. 

II. Problem/hypothesis.  A number of these conceptual models exist, but they have not 

been tested in literature.  Very few cancer studies include factors from all 3 levels: 

macro-environment, individual and biology, or consider macro-environment and 

biology together, when studying cancer outcomes. 

III. Study Aims.  The goal is to conduct a systematic review to identify the number of 

cancer studies that include factors from all 3 levels (or at least the macro and biologic 

levels) and summarize their findings in order to begin to identify research gaps, 

evaluate the utility of multilevel conceptual frameworks, and suggest next steps. 

IV. Study Methods.  A manuscript review was conducted to identify multilevel cancer 

epidemiology research studies.   A multilevel study is defined here as a study that 

includes the analysis of an association between a cancer outcome and variables at 

ALL three hierarchal levels, macro-, individual, and biologic levels OR at least the 

macro- and biologic levels in adult populations.  Cancer outcomes could include, 

incidence, prevalence, mortality, case-control status, or prognosis outcomes.  

Biologic outcomes could include biomarkers related to oxidative stress, given these 

markers have been implicated in cancer at the biologic level.  Otherwise, articles 

were excluded if only one or two levels (namely individual and macro-level or 

individual and biologic level) were represented in the analysis.   Gene-environment 

interaction studies where the environment was measured at the individual level were 

excluded since they only represented one level outside the individual.  An advanced 

search of the electronic database, PubMed/Medline, was conducted between May-

July 2014.  Studies from 2002 to the present were identified by entering required 

terms: “cancer” and “epidemiology”,  with alternating key words focused on identifying 

macro-environmental studies including: family relations (n=63), health disparities 

(n=276), macroenvironment (n=3), multilevel (n=268), neighborhood (n=284) then 

combining the following biologic level terms with selected macro-environmental terms 

listed above, “genotype” and “macroenvironment”( n=1), “biomarker” and 

“neighborhood” (n=0), and : “gene environment interaction” (n=245).  Key words were 

also paired individually with the terms “biomarker” and “genes” including: “family 

practice” and “genes” (n=6) and “family practice” and “biomarker” (n=0), “health 

services” and “genes” (n=27) and “health services” and “biomarker” (n=11), 

“healthcare disparities” and “genes” (n=1) and healthcare disparities” and “biomarker” 

(n=1), “poverty” “gene” (n=3) and “poverty” “biomarkers” (n=23), “psychology” and 

“genes” (n=87) and “psychology” and “biomarker” (n=8),  “social perception” and 
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“genes” (n=1) and “social perception” and “biomarker” (n=0), “social support” and 

“genes” (n=6) and “social support” and “biomarker” (n=1), “socioeconomic factors” 

and “genes” (n=31) and “socioeconomic factors” and “biomarker” (n=10), and “state 

medicine” and “genes” (n=0) and “state medicine” and “biomarker” (n=0).  Citations in 

articles were cross-referenced to obtain additional sources.  

V. Results:  Studies that met inclusion criteria are summarized in Table 1, and include 

descriptions of methodological approaches, cancer/biomarker outcomes, and study 

findings.   One study includedfactors at all 3 levels and 4 studies included 

investigations of macro-environment or neighborhood on biomarkers indicated in 

cancer. 

Appendix B Table 1.  Evaluation and Summary of Multilevel Cancer Studies from 2002-Present 

 Study Characteristics Multi-Level Approaches Method  

 Study 
Design 

Sample 

Size 
Race/ 
Gender 

Outcome Macro-
environ
mental 
Predictor
/con-
founders 

Individual 
Level 
Factor(s) 
Predictors
/con-
founders 

Biologic 
Factors/ 
con-
founders 

Statistics Findings 

Studies 
by 
author, 
year 

         

Rebbeck 
et al, 
2010[32] 

 Cohort 
Survival 
Analysis 

444 White 
males 

Prostate 
cancer 
bio-
chemical 
failure 
(BF)  

Pre-
dictors: 
U.S. 
Census 
Tract 
variables: 
Aging/ 
social 
isolation; 
education
;Housing 
quality; 
SES: 
 

Con-
founder: 
Age 

Con-
founder: 
Tumor 
Stage/ 
Gleason 
Grade 
 
Pre-
dictors:   
3p12, 
multiple 
regions at 
8q24, 
11q13, 
17q24; 
and 
candidate 
genes 
including 
CTBP2 , 
HNF1B/T
CF2, 
JAZF1, 
LMTK2, 
MSMB, 
and 
NUDT , 
Xp11, 
KLK3, 
OATP1B1
RNASEL, 
MSR1 

Cox 
models  

Significant 
association 
found 
between BF 
and MSMB 
and older 
single 
heads of 
households 
and HNF1B 
and 
income. 

Barrington 
et al, 
2014[33] 

Cross-
sectional 

543 White 
men 
and 
women 

Cortisol 
reactivity 

Pre-
dictors: 
Neighbor
hood 
Dep-
rivation 

Pre-
dictors: 
Age, 
gender, 
work, 
education, 

 Multi-
level 
Growth 
Curve 
Model 

Significant 
relationship 
between 
Neighbor-
hood 
Deprivation 
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Index fear of 
crime, 
social 
control 

and Cortisol 
Level in 
women 

Waggaman 

et al, 
2014[35] 

Cross-
sectional 

669 Black, 
His-
panic, 
White 
women 

Pre-
cancer 
cervical 
lesions 

Pre-
dictors: 
Pro-
portion 
female 
black or 
Hispanic 
or living 
below 
poverty at 
census 
tract level 

Con-
founders: 
Age, race 

  
Poisson 
Model 

Found a a 
marginally 
significant 
interaction 
(P < 0.05) 
between 
individual 
race/ 
ethnicity 
and area 
race 

Epplein 
et al 

2012[34] 

Cohort 665  
 

336 
Black 
men 
and 

woman; 
329 

White 
men 
and 

women    

Sero-
negativity 
to H. 
pylori 
and 
CagA  

 

Pre-
dictors: 
US 
Census 
2000 
used to 
find 
income or 
wealth; 
education
; work 
;crowding 

Con-
founders: 

Race 
(African 

American 
ancestry) 

and Marital 
status. 

 Poly-
tomous 
logistic 

re-
gression 

Neighbor-
hood-level 
measures 

of 
education, 
work and 

house 
values are 
associated 
with CagA+ 

H. pylori 
sero-

prevalence 
Need-
ham et 

al., 
2014[31] 

Cross-
sectional 

973 Hispanic, 
Black, 
White 
men 
and 

women 

Telomere 
Length 

Social 
environ-
ment and 
Neighbor
hood Dis-
advantage 

Con-
founders: 
Age, race, 

lifestyle 
factors, 

biomedical 
factors, 
socio-

economic 
factors 

 Linear 
Multi-
level 

Models 

Neighbor-
hood social 
environment 

was 
associated 

with 
Telomere 

Length 
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APPENDIX C 
 

Systematic Review of Multilevel studies in Telomere Length. 

     A manuscript review was conducted to identify epidemiologic, multicenter studies 

focused on factors affecting telomere length in adult populations.  A multicenter study is 

defined here as a study comprised of individual research projects that collected data 

independently, then collaborated with other projects, and merged data to analyze 

telomere length as an overall, combined study outcome.  Articles were excluded if only 

one university or academic center oversaw and was responsible for original data 

collection under a single study protocol, or if the main association analysis remained 

stratified by project or center.  This is because the methodological concerns associated 

with varying population characteristics and laboratory methods are often minimized 

under these circumstances, and these studies have been reviewed previously [17, 52, 

53, 58] (See supplementary methods).   

      A search of the electronic database, PubMed/Medline, was conducted in 2014.  

Studies from 2002 to the present were identified using the key words, “telomere length” 

paired with “multicenter(n=16)” or “consortium(n=12)” or “registry”(n=12).   Citations in 

articles were cross-referenced to obtain additional sources. Study design, type of risk 

factor, or disease under study were not selection factors since the focus of this 

investigation is on methodological considerations in multicenter studies, not overall 

association findings.  Eleven articles were retrieved and 9 met the criteria for inclusion 

listed below: 

1. Research studies that involved adult, human participants and combined data 

from multiple centers with a primary aim of assessing the relationship between a 

risk factor and telomere length measured in blood. 
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2. The study reported clear methodologies for measuring telomere length. 

3. It was written in English. 

     We summarized methodological approaches for each study based on laboratory, 

population factors, and statistical approaches known to affect telomere length 

measurements in literature[17, 52, 53, 58, 73] (Supplementary Table 1). 

 

Supplementary Table 1.  Evaluation and Summary of Methodologies employed in Multi-
center,Telomere Length(TL) Association Studies from 2002-Present 

 LABORATORY CONSIDERATIONS POPULATION FACTORS STATISTICAL METHODS  
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a Quantitative Polymerase Chain Reaction(q-PCR) is often reported as a ratio of telomere length 

repeat length (T) to copy number of a single-copy gene or standard(S) DNA, called a T/S ratio; 

Southern blot assays report telomere length in terms of base pairs(bp). 

 b Had to consult source manuscripts to identify potential sources of DNA extraction and did not 

find this information for each cohort in some instances.  Also, for some cohorts, DNA extraction 

methods were different in two separate source manuscripts and it’s unclear which extraction 

method was used for the telomere length study. 
c Different DNA standards(S) were used to generate T/S ratios and were used to explain 

differences in mean T/S ratios across studies or cohorts. 
e In the genome-wide association study(GWAS), all were white participants(n=3417).   
f In the replication of the GWAS findings(n=1893), the study population included whites and 

blacks and findings differed slightly by race, which could have been due to the small sample size 

of blacks(n=574). 
 
 
 
Supplementary Laboratory Methods 

     Terminal Restriction Fragment (TRF) assay:  Genomic DNA samples were digested 

with restriction enzymes Hinf I (10 U) and Rsa I (10 U; Roche), then the digested DNA 

samples (1-5 µg each) along with molecular weight DNA markers (1-kb DNA ladder plus 

λ DNA/Hind III fragments; Invitrogen, Carlsbad, CA) were resolved on 0.8% agarose 

gels and transferred to nitrocellulose membranes by southern blotting. Membranes were 

hybridized overnight using radioactively-labeled (TTAGGG) probes, and the radioactive 

signal was detected and digitized using a phosphorImaging system.  The 

phosphorImager signals (adjusted for background)  versus DNA migration distances 

were determined for each sample[91], and mean TRF in kb was determined using 

Telorun software[91]. Each sample was run in duplicates on separate gels, and the 

average value in kb was used.   

      Quantitative Telomere PCR (qPCR):    The overall telomere lengths for each 

experimental sample are determined relative to the reference DNA by comparing the 

difference in their ratios of the telomere copy number (T) to the single copy gene copy 

number (S) using quantitative PCR. This ratio has been found to be proportional to 
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average telomere length2. The qPCR reactions are set up as 10ul reactions in a 384 well 

plate compatible with the Applied Biosystems, 7900 HT.  The final DNA concentration for 

each experimental sample is approximately 20ng diluted in 5 ul of water. Each plate also 

contains a set of standards (using the reference DNA) spanning an 81-fold range 

prepared by serial dilution and analyzed in triplicate1.  These reactions generate the 

standard curves used for relative quantitation. The multiplex qPCR assay from Cawthon1 

was modified to make it compatible with the ABI 7900 HT. Two master mixes of PCR 

reagents were prepared, one with the telomere primers (telc and telg) and the other with 

either the albumin pair (albd, and albu) or the beta-globin pair (hgbu, and hgbd). LTL did 

not vary by reference gene primer. Five micro-liters of each master mix was added into 

the appropriate wells. The final concentrations in each PCR reaction were 0.8X SYBR 

Green I Master Mix (Agilent Technologies), and 900nM of the telomere pair, or 900nM of 

the albumin pair, or 500nM of the beta-globin pair.  

     The thermal cycling profile used was 15min at 95°C, 2 cycles of 15s at 94°C, 15s at 

49°C, followed by 32 cycles of 15s at 94°C, 10s at 62°C, and 15s at 74°C with data 

acquisition. The plates were read at 74°C to minimize the interference from the telomere 

primer-dimers. The ABI software SDS version 2.0 was used to generate two standard 

curves from each plate, one for the telomere amplification, and the other for the single 

copy gene. The ratio (T/S) of the telomere copy number (T) to the single gene copy 

number (S) was generated for each experimental sample, and the value was averaged 

across the triplicates. The T/S ratios relative to the reference sample were generated 

using the comparative CT(cycle threshold) method.  Center samples were batched 

analyzed to minimize inter-assay variation. 

  



141 

 

Supplementary Table 2.  Unadjusted Median and Mean LogTelomere Length(TL)by 
Study Characteristics(No Cancer, n=1261) 

 

 

a Medians(interquartile range for the median); b p-values comparing characteristics across 3 or 

more groups using Kruskal Wallis Test, otherwise used Wilcoxon Ranked Sum Test; c p-values 

comparing characteristics across 3 or more groups using ANOVA, otherwise used T-test. 
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 Median TL (kb) 

(Interquartile Range)a 

p-valueb Mean 

logTL(SD) 

p-valuec 

Age     

     Younger age(<=51) 6.35(4.33-8.17)  1.78(0.44)  

     Older age(>51) 6.16(4.26-8.17) 0.52 1.76(0.46) 0.49 

Gender     

     Female 6.33 (4.48-8.27)  1.78(0.44)  

     Male 6.01 (4.10-8.00) 0.12 1.74(0.46) 0.13 

Race      

     Non-Hispanic White 5.96(4.24-7.92)  1.73(0.44)  

     African American 6.48(4.37-8.32)  1.77(0.48)  

     Hispanic 6.44 (4.42-8.32) 0.03 1.79(0.45) 0.08 

Education     

     > High School 6.18(4.21-8.06)  1.75(0.45)  

     High School/GED 6.05(4.18-8.19)  1.74(0.47)  

     <High School 6.44(4.59-8.16) 0.13 1.81(0.42) 0.07 

Perceived Stress     

     High Stress 6.16(4.23-8.17)  1.76(0.45)  

     Low Stress 6.38(4.37-8.15) 0.29 1.78(0.45) 0.72 

Depression     

     High Depression 6.45(4.50-8.44)  1.79(0.44)  

     Low Depression 6.26(4.26-8.03) 0.20 1.75(0.45) 0.22 
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APPENDIX D 

NWAS Supplementary Material 

Phase 0.  Data Cleaning 

I.  Characterization of Data Missingness by Outcome and Neighborhood 

Variables 

Prostate Cancer Outcome.  Overall, there were 93,308 incident cases of prostate cancer 

between 1995-2005 in the State of Pennsylvania.  We focused this analysis on Caucasians 

only (prostate cancer cases=80,575).  112 prostate cancer cases were dropped because 

their home address was a non-descript P.O. Box address, 6 more were dropped because 

of missing age and date of diagnosis, leaving 80,457 cases.  The main outcome variable, 

prostate cancer aggressiveness, is a combination variable comprised of tumor stage and 

grade data.  The stage variable is never missing, and the grade variable is missing for 

3,371 prostate cancer patients(4.2% of total cases).  Thus, we had 77, 086 Caucasian 

cases left for an analysis with our primary outcome variable; 6, 416 were classified as 

aggressive cancer and 70,670 cases were classified as “non-aggressive.” 

Neighborhood variables.  Selection of Year 2000 U.S. Census variables for inclusion in 

this analysis from SF1 and SF3 is summarized in Appendices E and F, respectively.  We 

assessed percent missingness for each census or neighborhood variable from the 2000 US 

Census SF1(n=8113) and SF3 forms(n=15,521) for just the variables from the US Census 

and after the join that linked the cancer registry to the US census data.  Percentage 

available are reported in SF1 Supplementary Digital File 1(variables included in analysis) 

and Digital File 2(variables excluded from analysis), columns B(census file availability) 

and C(join file availability), and SF3 Supplementary Digital File 3(variables included in 

analysis) and 3(variables excluded from analysis), and columns B(census file availability) 

and C(join file availability).  Columns B and C correspond to the percentage of census 

tracts reporting a value(either a percentage, mean, or median) for each census variable, 

which equates to  percent non-missingness for that variable.  SF1 and SF3 Supplementary 

Digital file 1 and 3, respectively, show which variables were included in the final NWAS 

analysis (SF1 n=5,943; SF3 n=10,599), based on having less than 10% missing data; SF1 

and SF3 Digital Files 2 and 4, respectively, show which variables had missingness 

greater than 10% and were excluded from the analysis.  Using SF1 Supplementary 

Digital File 1 as an example, for each census variable, %nonmissingness in column C 

was slightly higher than %nonmissingness in column B, but the difference(Column D) 

was generally not more than 3-6.5%.  Thus, census or neighborhood variable missingness 

did not appear to be majorly affected by the incorporation of case status after joining the 

2000 U.S. Census data SF1 and SF3 forms to the Pennsylvania State Prostate Cancer 

Registry (1995-2005).  

Census Tract Level.  Individual prostate cancer cases were linked to Year 2000 Census 

SF1 and SF3 forms at the census tract level.  Of the reported 3, 135 census tracts in the 

entire State of Pennsylvania in Year 2000, 3,037 census tracts are represented in our 

Caucasian population.  Thus, 97% of PA census tracts are covered in this analysis.  On 
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average, there were 2 cases of aggressive prostate cancer compared to 23 controls with 

non-aggressive prostate cancer in each census tract.  We also assessed case status by 

census block group, but there were <1 cases on average and 8 controls in each census 

block group.  Prostate cancer grade missingness did not appear systematic by census tract 

(in the grade variable, 3,033 census were represented).  Thus, missingness is likely at 

random.   

Statistical Analysis.  Using the joined (combined registry and census) final dataset, 1346 

(SF1=748; SF3=598) neighborhood variables(8% of the final analytic set) would have 

been excluded based on census only missingness (missingness>10% in column B in 

Appendix A for both SF1 and SF3), but were included in the analysis because 

missingness improved to <10% after the join(column B).  After running Phase 1, only 1 

of these variables were included in the top 517 hits, and none of these variables were in 

the top hits after Phase 2, thus findings did not change by this inclusion criteria.   
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APPENDIX E 
 

Year 2000 SF1 Variable Missingness Descriptions for the State of Pennsylvania 

Year 2000 SF1 Variables Pulled from Social Explorer(http://www.socialexplorer.com) 

Year 2000 SF1 Variables Linked to Pennsylvania State Prostate Cancer Registry 1995-2005 

Census Tract Level 

 

 
 

 

  

Key:  Percentage Variables take the Census base variables from which it originates and  

divides percentage variables by base variables. Social Explorer calculates these variables.  

Master Variables often serve as denominator variables, such as Total Number of Households.  

 In some cases, it is relevant to include in statistical models, therefore, all master variables with  

appropriate levels of missingness (i.e. less than 10%) are included in the statistical models 

(n=286) Some Census Base variables were not represented as percentages, but are relevant 

because they report means or medians, thus, are included in the analysis (n=43) 
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                                                    APPENDIX F 

  

Year 2000 SF3 Variable Missingness Descriptions for the State of Pennsylvania 

Year 2000 SF3 Variables Pulled from Social Explorer(http://www.socialexplorer.com) 

Year 2000 SF3 Variables Linked to Pennsylvania State Prostate Cancer Registry 1995-

2005 

 

 

 Key:  Percentage Variables take the Census base variables from each census table and 

divide it by the appropriate master variable from the table with which it originates.  

Social Explorer calculates these variables. Master Variables often serve as denominator 

variables, such as Total Number of Households.  In some cases, it is relevant to include 

in statistical models, therefore, all master variables with appropriate levels of 

missingness (i.e. less than 10%) are included in the statistical models 

 

 



146 

 

APPENDIX G 
 

Supplementary Discussion Table 1.  Examples of Neighborhood Methods used in 
Prostate Cancer Research 

Study            
(data source) 

Neighborhood 
variables 

Outcome Results Ref 

Method:  Neighborhood Indices  

Hellenthal et 
al. 2010 (CA 
Cancer 
Registry) 

Principal 
components 

analysis used to 
create an SES 
score(1-5, 5 being 
the highest), 
including median 
household 

income, education 
level, proportion 
below 200% 
poverty, 

and median house 
value.  

PCa 
Treatment/Survival 

Men of lower SES 
are less likely to 
undergo radical 
prostatectomy (RP) 
or radiation (XRT) for 
the management of 
localized prostate 
cancer.   After RP or 
XRT, men of lower 
SES have a 
decreased cancer-
specific survival 
compared with men 
of higher SES. 

[39] 
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Zeigler-
Johnson et al. 
2011 (PA 
Cancer 
Registry) 

1.  Analyzed 
individual SES 
variables from 
Census.  2. 
Calculated a 
deprivation index (-
1 to 1, with 1 being 
the highest 
deprivation index) 
using a principle 
components 
analysis (PCA), 
including: 

(1) % of households 
with income 
<$30,000/year  

(2) % poverty;  

(3) % households 
on public 
assistance  

(4) % female head 
of household with 
dependent children  

(5) % households 
with no car.  

Prostate cancer The highest quartile 
of neighborhood 
deprivation was also 
associated with high 
Gleason score. For 
both Caucasians and 
African-Americans, 
the highest quartile of 
neighborhood 
deprivation was 
associated with high 
Gleason score at 
diagnosis (OR=1.27, 
95% CI=1.11-1.44; 
OR=1.61, 95% 
CI=1.15-2.25, 
respectively.)   Using 
a neighborhood 
deprivation index, 
associations between 
prostate cancer 
severity and 
neighborhood 
deprivation across 
ethnic groups was 
observed. 

[40] 

Cheng et al. 
2009           
(CA Study) 

Principal 
component analysis  
to develop single 
SES index from 
seven census-
based indicator 
variables of SES:      
1. mean years of 
education;  2. 
median household 
income; 3. percent 
living 200% below 
poverty level;  

4.percent blue-
collar workers; 5. 
percent older than 
16 years in 
workforce without 

Prostate Cancer 
risk and mortality 

Higher levels of SES 
were associated with 
lower mortality rates 
of prostate cancer 
deaths (SES Q1 vs. 
Q5: RR = 0.88; 95% 
CI: 0.92–0.94). 
African-Americans 
had a twofold to 
fivefold increased 
risk of prostate 
cancer deaths in 
comparison to non-
Hispanic Whites 
across all levels of 
SES. 

[41] 
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job;  

6. median rent;  

7. median house 
value . This index 
was used to assign 
a standardized 
score to each 
census block group, 
which was then 
categorized into 
quintile levels. 

Lyratzopoulous 
et al. 2010 
(United 
Kingdom) 

The United 
Kingdom 2004 
Indices of 
Deprivation. 

Prostate Cancer 
Treatment/Survival 

After a diagnosis of 
prostate cancer, men 
from lower 
socioeconomic 
groups were 
substantially less 
likely to be treated 
with radical surgery 
or radiotherapy. The 
causes and impact 
on survival of such 
differences remain 
uncertain. 

[38] 

Byers et al. 
2008 (NPCR 
POC Study) 

Both education and 
income were 
classified into 2 
Levels  (<25% vs 
25% of adults aged 
25 years with less 
than a high school 
education and 
<20% vs 20% of 
households with 
incomes below the 
Federal Poverty 
Level).  Each 
patient was then 
classified as living 
in a census tract 
with neither low 
education nor low 
income (65% of 
cases), with only 1 
of those indicators 

Advanced 
Prostate, Breast, 
colon cancer 

Low SES was 
associated with more 
advanced disease 
stage and with less 
aggressive treatment 
for all 3 cancers. 

[36] 
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of low SES (20% of 
cases), or with both 
of those indicators 
(15% of cases). 

Schymura et 
al. 2010  

(CDC-NPCR  
PoC1) 

Records were 
linked by census 
tract.  The following 
variables were 
analyzed 
individually: 

1. poverty (<20% 
versus 20%+ of 
residents below the 
2000 poverty level); 

2. education (<25% 
versus 25%+ of 
residents age 
twenty-five and 
over with less than 
a high school 
education); 
3.working class 
status (<66% 
versus 66%+ 
working class 
occupations);  

4. urban-rural 
residence (totally 
urban, totally rural, 
urban-rural mix, or 
unknown). 

Prostate Cancer 
survival 

No neighborhood 
variables were 
associated with 
survival from 
localized prostate 
cancer 

 

State of residence 
was a significant 
predictor of treatment 
type and overall 
survival. 

[42] 

Marlow et al. 
2010 (national 
cancer 
database) 

Socioeconomic 
status was 
classified using the 
median household 
income and 
proportion of 
population with a 
high school diploma 
from patient's ZIP 
code of residence. 

Advanced 
Prostate Cancer 

Patients residing in 
areas with lower 
socioeconomic 
characteristics have 
significantly 
increased odds of 
advanced PCa.  

 

[43] 


