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Abstract 

At large financial institutions, operational risk is gaining the same importance as market and credit risk in 

the capital calculation. Although scenario analysis is an important tool for financial risk measurement, its 

use in the measurement of operational risk capital has been arbitrary and often inaccurate. We propose a 

method that combines scenario analysis with historical loss data. Using the Change of Measure approach, 

we evaluate the impact of each scenario on the total estimate of operational risk capital. The method can 

be used in stress-testing, what-if assessment for scenario analysis, and Loss Given Default estimates used 

in credit evaluations. 
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Introduction 

 

Scenario analysis is an important tool in decision making. It has been used for several decades in various 

disciplines, including management, engineering, defense, medicine, finance and economics. Mulvey and 

Erkan (2003) illustrate modeling of scenario data for risk management of a property/casualty insurance 

company. When properly and systematically used, scenario analysis can reveal many important aspects of 

a situation that would otherwise be missed. Given the current state of an entity, it tries to navigate 

situations and events that could impact important characteristics of the entity in the future. Thus, scenario 

analysis has two important elements: 

 

1. Evaluation of future possibilities (future states) with respect to a certain characteristic. 

2. Present knowledge (current states) of that characteristic for the entity. 

 

Scenarios must pertain to a meaningful duration of time, for the passage of time will make the scenarios 

obsolete. Also, the current state of an entity and the environment in which it operates give rise to various 

possibilities in the future. 

 

In management of market risk, scenarios also play an important role. Many scenarios on the future state 

of an asset are actively traded in the market, and could be used for risk management. Derivatives such as 

call (or put) options on asset prices are linked to its possible future price. Suppose, for example, that 

Cisco (CSCO) is trading today at $23 in the spot (NASDAQ) market. In the option market we find many 

different prices available as future possibilities. Each of these is a scenario for the future state of CSCO. 

The price for each option reflects the probability that the market attaches to CSCO attaining more (or 

less) than a particular price on (or before) a certain date in the future. As the market obtains more 

information, prices of derivatives change, and our knowledge of the future state expands. In the language 

of asset pricing, more information on the future state is revealed. 

 

At one time, any risk for a financial institution that was not a market or credit risk was considered an 

operational risk. This definition of operational risk made data collection and measurement of operational 

risk intractable. To make it useful for measurement and management, Basel banking regulation narrowed 

the scope and definition of operational risk. Under this definition, operational risk is the risk of loss, 

whether direct or indirect, to which the Bank is exposed because of inadequate or failed internal processes 

or systems, human error, or external events. Operational risk includes legal and regulatory risk, business 

process and change risk, fiduciary or disclosure breaches, technology failure, financial crime, and 

environmental risk. It exists in some form in every business and function. Operational risk can cause not 

only financial loss, but also regulatory damage to the business’ reputation, assets and shareholder value. 

One may argue that at the core of most of the financial risk one may be able to observe an operational 

risk. The Financial Crisis Inquiry Commission Report (2011) identifies many of the risks defined under 

operational risk as among the reasons for the recent financial meltdown. Therefore, it is an important 

financial risk to consider along with the market and credit risk. By measuring it properly an institution 

will be able to manage and mitigate the risk. Financial institutions safeguard against operational risk 

exposure by holding capital based on the measurement of operational risk. 

 
Sometimes a financial institution may not experience operational losses that its peer institutions have 

experienced. At other times, an institution may have been lucky. In spite of a gap in its risk it didn’t 

experience a loss. In addition, an institution may also be exposed to some inherent operational risks that 

can result in a significant loss. All such risk exposures can be better measured and managed through a 

comprehensive scenario analysis. Therefore, scenario analysis should play an important role in the 

measurement of operational risk. Banking regulatory requirements stress the need to use scenario analysis 
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in the determination of operational risk capital.
4
 Early on, many financial institutions subjected to banking 

regulatory requirements adopted scenario analysis as a prime component of their operational risk capital 

calculations. They allocated substantial time and resources to that effort. However, they soon encountered 

many roadblocks. Notable among them was the inability to use scenario data as a direct input in the 

internal data-driven model for operational risk capital. Expressing scenarios in quantitative form and 

combining their information with internal loss data poses several challenges. Many attempts in that 

direction failed miserably, as the combined effect produced unrealistic capital numbers (e.g., 1,000 times 

the total value of the firm). Such outcomes were typical. As a result, bank regulators relaxed some of the 

requirements for direct use of scenario data. Instead, they suggested using external loss data to replace 

scenario data as a direct input to the model. External loss events are historical losses that have occurred in 

other institutions. Such losses are often very different from the loss experience of the institution. In our 

opinion, that process reduced the importance of scenarios in measuring operational risk capital. 

Previously, as well as in current practice, external loss data were and are used in generating scenarios. 

 

We believe that the attempts to use scenario data directly in capital models have failed because of in-

correct interpretation and implementation of such data. This work attempts to address and resolve such 

problems. Because scenarios have been used successfully in many other disciplines, we think that 

scenario data should be as important as any other data that an institution may consider for its risk 

assessments. Some may question, justifiably, the quality of scenario data and whether such data can be 

believable. We contend that every discipline faces such challenges. As we will show, the value in 

scenario data outweighs the inherent weaknesses it may have. Also, through systematic use we will be 

able to enhance the quality of the data. 

 

In this paper we propose a method that combines scenario analysis with historical loss data. Using the 

Change of Measure approach, we evaluate the impact of each scenario on the total estimate of operational 

risk capital. Our proposed methodology overcomes the aforementioned obstacles and offers considerable 

flexibility. The major contribution of this work, in our opinion, is in the meaningful interpretation of 

scenario data, consistent with the loss experience of an institution, with regard to both the frequency and 

severity of the loss. Using this interpretation, we show how one can effectively use scenario data, together 

with historical data, to measure operational risk exposure and, using the Change of Measure concept, 

evaluate each scenario’s effect on operational risk. We believe ours is the first systematic study of the 

problem of using scenario data in operational risk measurement. 

 

In the next section we discuss why some of the earlier attempts at interpreting scenario data did not suc-

ceed and the weaknesses of current practices. We then discuss the nature and type of scenario data that we 

use in our models. Following that, we discuss our method of modeling scenario data and economic 

evaluation of a set of scenarios in operational risk measurement. We conclude with a discussion of some 

issues that may arise in implementing the method and of its use in other domains. 

 

1. Problem Description 
 

In their model for calculating operational risk capital, financial institutions subject to Basel banking 

regulations are required to use, directly or indirectly, four data elements: 

 

 internal loss data (ILD), which are collected over a period of time and represent actual losses 

suffered by the institution; 

                                                 
4
  A basic source on these requirements is Risk-Based Capital Standards: Advanced Capital Adequacy Framework — Basel II at 

(http://edocket.access.gpo.gov/2007/pdf/07-5729.pdf) 
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 external loss data (ELD), which are loss events that have occurred at other institutions and are 

provided to the institution via a third-party vendor or from a data consortium; 

 scenario data based on assessments of losses the institution may experience in the future; and 

 business environment score, created from a qualitative assessment of the business environment 

and internal control factors (BEICF). 

 

The regulatory rule does not prescribe how these elements should be used. However, given the similarity 

of operational losses to property/casualty losses, the measurement approach predominantly follows the 

loss distribution approach (LDA), which actuaries use for pricing property/casualty insurance. 

 

Unit of measure is the level or degree of granularity at which an institution calculates its operational risk 

capital. The least granular unit of measure is enterprise-wide. More commonly, institutions calculate 

operational risk capital for several units of measure and aggregate those capital estimates. Units of 

measure are often determined by business line or type of loss event. Smaller business lines and/or less 

common types of loss events are frequently combined to create one unit of measure. 

 

Of the four data elements, internal loss data are used primarily in the Loss Distribution Approach (LDA) 

to arrive at a base model. In that approach, one tries to fit two distributions: the severity distribution, 

which is derived from the amounts of all the losses experienced by the institution; and the frequency dis-

tribution, which is derived from the number of losses that have occurred at the institution over a prede-

termined time period (usually one year). As the frequency distribution, the Poisson distribution is the 

choice of nearly all financial institutions. Generally, the Poisson parameter is the average number of 

losses on an annual basis. A loss event (also known as the loss severity) is an incident for which an entity 

suffers damages that can be assigned a monetary value. The aggregate loss over a specified period of time 

is expressed as the sum      ∑   
 
   , where   is a random observation from the frequency distribution, 

and each    is a random observation from the severity distribution. We assume that the individual losses 

   are independent and identically distributed, and each    is independent of  . The distribution of      is 

called the aggregate loss distribution. The risk exposure can be measured as a quantile of     . Dutta and 

Perry (2007) discuss the use and various challenges in modeling the severity distribution using internal 

loss data. 

 

Given the characteristics and challenges of the data, an LDA approach resolves many issues. The sum LTot 

can be calculated by either Fourier or Laplace transforms as suggested in Klugman et al. (2004), by 

Monte Carlo simulation, or by an analytical approximation. We use the simulation method as well as an 

analytical approximation. 

 

Regulatory or economic capital for the operational risk exposure of an institution is typically defined as 

the 99.9th or 99.97th percentile of the aggregate loss distribution. Alternatively, we can call it capital or 

price for the risk.
5
 

 

1.1 Scenarios Are Not Internal Loss Data 

 

Many financial institutions have been collecting internal loss data for several years. These data can be 

considered the current state for operational risk exposure. Additionally, many losses of various types and 

magnitudes have occurred only at other financial institutions. A financial institution may choose to 

evaluate such external loss data in order to understand the potential impact of such losses on its own risk 

profile. Typically, an institution analyzes those losses based on the appropriate magnitude and probability 

of occurrence, given the current state of its risk profile, and develops a set of scenarios. 

                                                 
5
  See footnote 4 for source. 
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Suppose institution A observes that institution B has incurred a $50 million loss due to external fraud, a 

type of operational loss. Institution A is also aware of the circumstances under which that loss occurred. 

After evaluating its own circumstances (current state), institution A determines that it is likely to 

experience a similar event once every ten years and that such an event would result in a $20 million loss. 

These are the frequency and severity of an event in the future state. Alternatively, the institution could 

specify a range, such as $15 million to $25 million, instead of a single number. We discuss this issue 

further in Section 2. Together with the description of the loss event, the specified severity and frequency 

constitute a scenario. 

 

Suppose an institution has collected internal loss data for the last five years. It also generates a scenario 

for a certain operational loss event whose likelihood of occurring is once in ten years, resulting in a $20 

million loss. It is inaccurate to interpret this as just another data point that could be added to the internal 

loss data. Doing so would change the scenario’s frequency to once in five years from once in ten years. 

This key insight led us to develop a method that appropriately integrates scenario data with internal loss 

data. The problem most often reported from integrating scenario data with internal loss data is 

unrealistically large capital estimates. Because the integration process failed to consider the frequencies 

specified for the scenarios, the adverse scenarios were analyzed with inflated frequencies. A scenario 

could also be incorrectly analyzed with a frequency lower than specified. If the $20 million loss could 

occur once in 2.5 years, adding it to internal loss data from five years would dilute the effect of the 

scenario. A simplistic remedy would approximate the intended effect of this scenario by adding two such 

losses to the five years of internal data. Thus, frequency plays a key role in interpreting scenarios across 

financial institutions. 

 

Suppose that, for the same unit of measure, two institutions have the same scenario of a $20 million loss 

occurring once in 10 years. One institution has an average of 20 losses per year, and the other has 50. For 

the institution with 20 losses per year, the scenario has much more impact than for the institution with 50 

losses per year. Our method properly aligns the frequency of the scenario data with the time horizon of 

internal loss experience. 

 

Continuing with the example of a $20 million loss whose frequency is once in ten years, in order to merge 

this scenario with internal loss data from five years’ experience, we will have to consistently recreate 

internal data with a sample size equivalent to a period of ten years. Only then can we merge the scenario’s 

$20 million loss with the internal data, and we would do so only if such a loss has not already been 

observed with sufficient frequency in those data. In other words, we use the current state of five years of 

observed internal loss data to generate enough data to determine whether the loss amount in the scenario 

is represented with sufficient frequency in the current severity distribution. 

 

1.2 Measurement Practices Using Scenario Data 

 

Rosengren (2006) adequately captured and summarized the problems with and the art of using scenario 

analysis for operational risk assessment. The issues discussed in Rosengren (2006) are still valid. In fact, 

since then, there has been very little, if any, focus on the development of scenario-based methodology for 

operational risk assessment. One exception was Lambrigger et al. (2007), who made an early attempt to 

combine expert judgment with internal and external operational loss data. Their informal approach was to 

make qualitative adjustments in the loss distribution using expert opinion, but they provided no formal 

model for incorporating scenarios with internal and external loss data. The methods that we found in the 

literature are very ad hoc, and most integrate scenarios and internal or external data without sound 

justifications. 
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One method
6
 pools the severities from all the scenarios and then samples from that pool a severity for 

each unit of measure that the institution is using for internal or external loss data modeling. In each 

replication of the simulation, the severities are sampled according to the probabilities assigned to the 

scenarios for that unit of measure. If a severity is chosen, it is added to other severities chosen in that 

replication. If no severity is chosen, zero is added. From the observed distribution of the summed severity 

amounts (over the trials), the 99.9th or 99.97th percentile is chosen. This number is then compared with 

the corresponding percentile of the loss distribution obtained using internal or external loss data, and the 

institution must decide which number to use for regulatory capital. Typically the scenario-based number 

will be much higher than the number based on internal or external data. In such situations, a number 

between the two is chosen as the 99.9th or 99.97th percentile. Rarely, the scenario-based 99.9% or 

99.97% level number would be added to the corresponding number obtained using internal or external 

loss data to provide an estimate of extreme loss. This method suffers from the drawback that the universe 

of potential severe loss amounts is limited to the severity values assigned to the scenarios, which are 

completely isolated from internal and external loss data. This approach closely resembles sampling from 

an empirical distribution. Dutta and Perry (2007) highlight some of the problems involved. 

 

Another method derives two types of severity numbers from the one scenario created per unit of measure. 

One figure is the most likely severity outcome for the scenario, and the other represents the worst severity 

outcome. Then a purely qualitative judgment is made to interpret these two severity values. The worst-

case severity outcome is put at the 99th percentile (or higher) of the severity distribution obtained from 

internal or external data for that unit of measure, and the most likely severity outcome is put at the 50th 

percentile of the severity distribution. The 99.9th or 99.97th percentile is obtained from the loss 

distribution after recalibrating the severity distribution with these two numbers. As in the previous 

method, the resulting percentile is compared with the corresponding percentile of the distribution based 

on internal or external loss data. Typically the institution uses purely qualitative judgment to choose an 

operational risk capital amount between the two figures. 

 

All other methods of which we are aware are variations or combinations of these two. Institutions adopt 

some type of ad hoc, often arbitrary, weighting of the 99.9th or 99.97th percentiles from the loss 

distributions derived from both internal loss event data (sometimes also including external loss event 

data) and the scenario data to arrive at a final model-based regulatory or economic capital number. 

 

2. Generating Scenario Data 
 

External loss data are the primary basis for scenario generation at every financial institution. Several 

sources offer external data.
7
 Those data contain the magnitude of the loss amount and a description of the 

loss, including the name of the institution, the business line where the loss happened, and the loss type. 

Basel regulatory requirements categorize operational losses into seven types: Internal Fraud, External 

Fraud, Employment Practices and Work Place Safety, Client Products and Business Practices, Damage to 

Physical Assets, Business Disruptions and System Failures, and Execution Delivery and Process 

Management. 

 

Prior to generation of scenarios, risk management decisions determine the unit of measure, which often 

crosses loss types or loss types within business lines. It could also cross business lines or sub-business 

lines. For some units of measure, internal loss experience may not be adequate to support any meaningful 

analysis. Some financial institutions supplement such units of measure with external data. From 

                                                 
6  The methods described are not published but observed in practice. Financial institutions have implemented similar methods. 
7  The First database from Fitch is one good source of data. It is based upon publicly available information on operational losses 

with severities exceeding $1 million that have occurred at financial institutions.  
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preliminary research we have undertaken on external data, we are not comfortable using our approach on 

units of measure that have insufficient internal loss data to develop a meaningful and stable model. 

Although our method does not explicitly depend on which data are used for calibration, an unstable base 

model will give poor estimates of the effects of scenarios. Thus, we often form an “other” category that 

includes adequate internal loss data. 

 

To generate scenarios within a unit of measure, an institution uses a scenario workshop, typically 

conducted by a corporate risk manager or an independent facilitator. The participants are business line 

managers, business risk managers, and people with significant knowledge and understanding of their 

business and the environments in which it operates. Workshop participants discuss the business 

environments and current business practices, and take guidance and help from external data such as the 

following: 

 

Event A 

 

At bank XYZ, when selling convertibles to clients, an employee makes inappropriate promises to buy them 

back at a certain price. Market conditions move in the wrong direction, and the bank is required to honor 

the commitment. As result, the bank suffers a loss of $200,000,000.
8
 

 

Question for Workshop: Could a similar situation occur at our institution? If so, what is the potential 

magnitude of the loss, and how frequently might this happen? 

 

The unit of measure for this event will usually be Client Products and Business Practices (CPBP). After 

considering a range of possibilities, participants agree on a scenario related to this event. We are assuming 

one scenario per incident type. Multiple scenarios should be carefully combined without sacrificing their 

value. 

 

The unit of measure such as CPBP can be thought of as a process driven by many factors, such as 

unauthorized employee practices in selling convertibles. A scenario is not loss data. It is an impact and 

sensitivity study of the current risk management environment. The data in a scenario have two 

quantitative components – severity and frequency – and one descriptive component – the type of loss 

within the unit of measure. The description identifies the type of scenario within a process and is an 

essential characteristic of a scenario. In the above example, the scenario is for unauthorized employee 

practices of selling convertibles within CPBP. Often more scenarios are generated in a workshop than will 

be useful for quantification. In that situation scenarios may be filtered, taking into account their 

descriptive components. This decision is best made at the scenario generation workshop. In the above 

example the risk management team should very carefully decide whether a scenario on unauthorized 

employee practices for selling equity can be ignored when a scenario of unauthorized employee practices 

for selling convertibles was also generated, even though both are “unauthorized employee practices” 

within the larger event class of CPBP. 

 

The severity in a scenario can be a point estimate (e.g., $2 million) or a range estimate (e.g., between $1 

million and $3 million). We prefer to work with range estimates, intervals of the form [a, b], as we 

believe that in such a hypothetical situation a range captures the uncertainty of a potential loss amount. 

This choice is consistent with the continuous distributions we use for modeling the severity of internal 

loss data. A continuous distribution assigns positive probability to ranges of values, but zero probability 

to any individual value. We can convert a point estimate to a range estimate by setting the lower and 

upper bounds of the range at appropriate percentages of the point estimate. We revisit this choice in 

Section 4. 

                                                 
8  This example was supplied to us by a banking associate. Our understanding is that it is an adaptation of an event from an exter-

nal database.  
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The frequency in a scenario takes the form    , where m is the number of times the event is expected 

to occur in   years. We interpret   as the number of events that we expect to occur in a sample of size n1 

+ … + nt, where ni is the number of losses observed annually, sampled from the frequency distribution of 

the internal loss data for that particular unit of measure. We assume that the capital calculation is on an 

annual basis. Stating the frequency denominator as a number of years allows us to express the sample size 

as a multiple of the annual count of internal losses at an institution. Like the severity, the frequency could 

take the form of a range such as   [     ]. For a range we interpret m  t1 as the worst-case estimate 

and m  t2 as the best-case estimate. Alternatively, one could take a number between    and    , such as 

their average. We are making a subtle assumption that we use throughout the analysis. 

 

Assumption 1: During a short and reasonably specified period of time, such as one year or less, the fre-

quency and severity distributions based on the internal loss data for a unit of measure do not change. 

 

This assumption is important because our methodology is conditional on the given severity and 

frequency distributions (in this case, based on internal loss data). Justification for the one-year time 

threshold lies in the loss data collection process and capital holding period at major financial institutions 

in the USA. To interpret the assumption in terms of time and state of riskiness of the unit of measure, we 

would say that at time zero (today) we have full knowledge of the loss events for the unit of measure. 

Using this knowledge, we forecast the future for a reasonable period of time in which we can safely 

assume that the assumption is valid. We stress that scenario data are not the institution’s loss experience. 

Our analysis does not use scenario data as a substitute for internal loss data. Scenario data represent the 

possibility of a loss; we are proposing a method to study its impact. Therefore, we make another vital 

assumption. 

 

Assumption 2: The number of scenarios generated for a unit of measure is not more than the number of 

internal loss events observed in that unit of measure. 

 

Subjectivity and possible biases will always be inherent characteristics of scenario data. Methods for in-

terpreting scenarios must take these features into account. As Kahneman, Slovic, and Tversky (1982) put 

it: “A scenario is especially satisfying when the path that leads from the initial to terminal state is not 

immediately apparent, so that the introduction of intermediate stages actually raises the subjective 

probability of the target event.” We have undertaken research that seeks to explain how one could control 

and reduce the biases and subjectivity in scenario data in the context of operational risk. Very preliminary 

results show that scenario data generated in the format discussed above are less subjective and therefore 

more suitable than data produced in other formats. We also think that this is the most natural format in 

which workshop participants can interact and express their beliefs. The discussion of how judgment 

happens in Chapter 8 of Kahneman (2011) further corroborates some of our findings in the context of 

scenario data generation for operational risk. 

 

As noted earlier, in current practice, scenario data are predominantly influenced by external data. We 

have several concerns. External data are historical events that have occurred at other institutions. 

Generating scenario data by solely using or over-relying on external data and without considering many 

other hypothetical situations may defeat the purpose of the scenario. We will discuss these issues in later 

studies, as detailed discussions of them are beyond the scope of this paper. 
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3. Methodology 
 

For the method to work effectively, it is important that the current state (severity and frequency 

distributions using historical losses
9
) be estimated accurately. We may have many candidates for the 

severity distribution, and often the choice is not clear. In such situations it will be advisable to use all 

models that could possibly be a good fit, particularly when the institution did not experience many losses 

for a particular unit of measure. This approach will ensure more stability in the measurement of the 

current state, which is an important cornerstone for this method. The frequency distribution, on the other 

hand, provides the information to determine how many losses would need to occur before one would 

expect to observe a loss of a given magnitude. In order to take account of sampling variability, one may 

need many thousands of replications, drawing an N from the frequency distribution and then drawing N 

losses from the severity distribution. 

 

From the current state, we would like to predict the probability of an event’s happening in the future. On 

the other hand, scenario data also implicitly predict the probability of an event, which we define as a 

subset of the positive real numbers, usually an interval. More than likely, these two probabilities will not 

match. Therefore, the probability distribution of the current state must be adjusted in such a way that it 

accounts for the scenario probability. This step is necessary in order to calculate the equivalent dis-

tribution if the scenario loss actually happened with the frequency specified in the scenario, proportional 

over the specified period of time. If the scenario data lower the probability compared with the historical 

loss data, then for practical reasons we do not alter the probability predicted by the historical loss data. 

 

Borrowing terminology from the Black-Scholes option pricing concept, we call the probability 

distribution implied by the scenario the implied probability distribution. The probability distribution for 

the current state, estimated from historical losses, is the historical probability distribution. 

 

The scenario events’ historical probabilities could be based on internal and external loss data. In our 

experiments, however, probabilities based on internal loss data have proved to be much more stable than 

those based on both internal and external loss data. Our method is based on two primary assumptions: 

 

Assumption 3: Within a reasonably short period of time, all the losses that an institution incurs come from 

the same family of distributions. 

 

Assumption 4: The challenge in modeling historical data is to develop a model that we can trust for its 

ability to forecast within a reasonable period of time. Scenario data are used to improve the model’s 

forecasts for tail events. 

 

We discuss the justification for these assumptions, their usefulness, and their limitations in detail in 

Section 4. In measuring operational risk, we are making a clear transition from a pure “data fitting” exer-

cise to a more meaningful economic evaluation of the problem. 

 

Suppose f(x|)
10

 is the density function of the severity distribution based on historical data. f(x|) could be 

any distribution, including a mixture or any other suitable combination. Discussion of the choice and 

appropriateness of a distribution for fitting the internal loss data is beyond the scope of this work.
11

 Let 

                                                 
9
  From now onward we will denote by historical loss data the internal and when appropriate the supplemental external loss event 

data chosen by the institution for a particular unit of measure. 
10

  The generic parameter  may have as many components (individual parameters) as the distribution requires. 
11

  Dahen et al. (2010), Dutta and Perry (2007), Hoaglin (2010), and Nagafuji (2011) are good sources for such a discussion. 
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           be a set of scenarios, independently occurring,
12

 with associated events and implied 

probabilities. Our methodology aims to answer the following question: 

 

Given that the scenarios are tail events, how much does f(x|) need to be adjusted so that its 

probabilities for those events “match” the probabilities implied by the scenarios? 

 

Essentially, we revise the probabilities of various events to take the scenarios into account. Sections 3.1 

and 3.2 show how to adjust the parameter values in f(x|). 

 

The method does not depend on the form of the frequency distribution. The conventional choice is the 

Poisson distribution, but the method could easily use other distributions. The revision of the probabilities 

of multiple events, independently occurring, is not always simple. The method is designed to take into 

account various issues that may arise from the combined effects of multiple scenarios. 

 

In practice, each event is a bounded interval (i.e., its endpoints, a and b, are finite). And, because the 

severity distributions are continuous,    , the probability assigned to the event, does not depend on 

whether a and b are in the interval. Thus, we define the range of the event as    . We say an event 
[   ] has occurred when a sample contains an observation   such that      . When    ,     
 . In other words, when the range of an event goes to zero, its probability of occurring (frequency) also 

goes to zero. We use this fact when discussing sensitivity analysis due to the range of an event. 

 

Suppose the new estimated parameter (vector) is 1. We refer to the resulting density function, f(x|1), as 

the implied density function (implied by the scenarios). In other words, we reweight the probability of 

every event. Etheridge (2002) describes Change of Measure as a reweighting. In that sense the method is 

essentially a Change of Measure method. One can accomplish the reweighting in various ways, but every 

reweighting is driven by an objective. Our method reweights the historical probabilities to make the 

probabilities of tail events “match” the probabilities implied by the scenarios. 

 

Because the scenarios are primarily tail events, the process of reweighting will move probability from the 

body of the severity distribution to the tail. If the scenarios consisted primarily of low-severity events, the 

reweighting process would move probability from the tail to the body. The method has the flexibility to 

handle such sets of scenarios. In order to move substantial weight from the tail to the body, however, one 

would need a considerable number of low-severity, high-frequency scenarios. In that hypothetical situ-

ation the set of scenarios would not be considered economically realistic. 

 

The reweighting method should be optimal under the economically meaningful assumptions made earlier 

and the maximum-likelihood method of estimating the parameters. We also evaluate the effect of each 

scenario on the Change of Measure in order to understand its economic impact. 

 

Omitting the dependence on parameters, we let  ( ) be the historical probability density function for the 

severity for the particular unit of measure. 

 

If we randomly draw   observations from  ( ), the expected number of observations between a and b is 

nPab. For a fixed value of n, the actual number of observations will reflect sampling variability. Overall 

variability in the number of observations will also involve the variability that arises in sampling n from 

the frequency distribution. For the random variable N representing the number of losses in a year, we 

denote the probability function by  ( )                                      . In other words, the 

probability that N takes the value n is  ( ).   

                                                 
12

  We assume the independent occurrence of events given by the scenarios. This is consistent with loss distribution approach. 

Also, we have seen very little evidence of the dependence of operational risk events in the internal and external loss data. 
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We refer to probabilities based solely on historical data interchangeably as a measure of current state, 

current probabilities, or historical probabilities. 

 

In theory, the scenario-based  ( ) and  ( ) can have a different shape than the ones obtained using ILD. 

However, as we discuss in our application, the scenario-data-based  ( ) and  ( ) will differ from their 

ILD-based counterparts only in the values of their parameters. 

 

3.1 Calculation of Implied Probability Distributions 

 

An example in the Appendix illustrates the method discussed here. We first consider a single scenario, 

whose event has a severity given as [   ] and a frequency in the form of    , which means that   such 

events are likely or expected to occur in a period of   years. In adjusting the probability distribution to 

take the scenario into account, we revise the historical probability distribution so that the number of 

occurrences of the event in a sample equivalent to t years of losses is equal to  . We obtain the size of 

such a sample by drawing t observations, ni (i = 1, …, t) from the historical frequency distribution, 

yielding a total of      ∑   
 
    losses.  

 

We then draw a sample of      observations from the historical severity distribution. Suppose that this 

sample contains   occurrences of the event [   ]. If   is less than  , then we draw     additional 

observations from the historical severity distribution restricted to the interval [   ] and combine them 

with the initial      observations. We then fit a severity distribution to the combined data set by adjusting 

the parameters of the severity distribution. The resulting severity distribution is the implied severity dis-

tribution due to the scenario in which [   ] occurs   times in   years. 

 

In practice,      will be substantially larger than    . Therefore it should be satisfactory to work 

within the same family of distributions and re-estimate the parameters of the historical severity 

distribution using the combined data set. We revisit this issue in Section 4. 

 

In addition to the scenario, S, the implied severity distribution depends on the value of      and on the 

particular sample from the historical severity distribution. For simplicity, however, we denote the implied 

severity distribution by  (   ). More generally, if                is a set of scenarios, then  (   ) 

denotes the implied severity distribution due to the combination of scenarios in  . The key to appropri-

ately deriving the combined effect is to preserve the frequencies of the events in those scenarios. 

 

Calculation of  (   ) is very similar to the case of one scenario. Scenario    in   has a severity range 
[     ] and frequency      . Thus, each scenario may reflect a different time span. We take T to be 

max{ti}. If event    occurs mi times in    years, then in   years we should have   (   ⁄ ) occurrences of 

  . We are making a simple linear extrapolation. One could use a stochastic extrapolation based on the 

frequency distribution. For a Poisson frequency distribution, we find that linear extrapolation gives a very 

close approximation to stochastic extrapolation. We have normalized the frequencies to a common time 

span. The result for    may not be a whole number, but we define the normalized frequency    
  (   ⁄ ) and use it in the calculations that take into account overlaps among events. The calculation 

below is based on the independent occurrence of the scenarios in the set of scenarios. In the Appendix, we 

give a probabilistic justification of the method. 

 

In the case of more than one scenario, it is necessary to take into account the frequency of each scenario. 

In a simple example, if two scenarios have exactly the same severity range, then (on average) in a sample 

of      losses the number of occurrences of losses in that severity range must be equal to or greater than 

the sum of the frequencies indicated by the two scenarios. More commonly, the severity ranges overlap, 
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but do not coincide, and more than two scenarios may be involved. In such situations, we adjust the    in 

a way that reflects the overlaps. Thus, for each scenario we have two cases: 
 

1. The severity range of the scenario is disjoint from the ranges all other scenarios. 

2. The severity range of the scenario overlaps, completely or partially, with the ranges of other 

scenarios in the set  . 

 

Case 1 

 

When the severity range of a scenario is disjoint from the ranges of all other scenarios, its normalized 

frequency remains unchanged. 
 

Case 2 

 

When the severity range of a scenario overlaps fully or partially with the severity ranges of other 

scenarios, we arrange the scenarios in order and calculate a cumulative frequency for each scenario. 

 

We sort the set of scenarios so that the lower bounds of their severity ranges are in non-decreasing order: 

       . In our application, the value of the lower bound is never less than zero. 

 

To calculate a cumulative frequency for each scenario in the set  , we construct a lower triangular r by r 

matrix, R, whose (i, j) element is     (i = 1, …, r, j = 1, …, r) with       when j > i. 

 

For i = 1, …, r, we define      . 

For i = 2, …, r and j = 1, …, i–1,  

             (     )  (     ) when the     scenario overlaps with the     scenario and    ≥     

                          =  (     )  (     ) when the     scenario overlaps with the     scenario and    <     

     otherwise. 

 

We denote the column vector of the unadjusted normalized frequencies by   (       ) . Then the 

(adjusted) cumulative frequencies are given by the column vector:  ̃ =    ([  ]   [  ])
   where [ ] 

denotes the result of rounding f to the nearer integer. These cumulative frequencies allow the algorithm to 

follow the order of the lower bounds, taking each scenario separately, and determine whether the sample 

from the severity distribution (perhaps augmented by additional observations for preceding scenarios) 

contains the required number of occurrences of the scenario’s event. 

 

For i = 1, …, r, the sample of      losses should contain    occurrences of the event associated with 

scenario   . If it contains fewer than     occurrences, we augment the sample by drawing the appropriate 

number of additional losses from the interval [ai, bi]. 

 

The preceding steps are based on a single sample. To obtain a stable estimate of the effect of the set of 

scenarios, we repeat the process at least 10,000 times. For each such realization of     , the initial sample 

of losses, and the additional losses, we determine the implied severity distribution  (   ). Then for each 

 (   ) we denote by    (   )  the 99.9% or 99.97% quantile of the loss distribution obtained by using 

 (   ) as the severity distribution and the historical  ( ) as the frequency distribution. 

 

We could also use  (   ) to calculate other measures. We are using the historical frequency distribution, 

but the frequency also changes. However, since the amount of data augmentation is small relative to the 

total size of the sample, the change in the average value of the frequency will be negligible. If we needed 

to adjust the frequency distribution, the adjusted Poisson parameter would be equal to (     + total 

number of additional draws from the historical severity distribution for all scenarios combined)  . To 
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save time, the 99.9% or 99.97% level can be calculated using the single loss approximation formula given 

by Böcker and Klüppelberg (2005) instead of a Monte Carlo simulation of one million trials. We take the 

median of all the    (   )  to arrive at the final capital number due to scenarios in set   conditional on 

the current state and the corresponding  (   ) is the implied probability distribution that was used for 

capital calculation, in this case the median of all 10,000    (   ) . 
 

Here we are trying to find the median implied distribution due to the combined effect of a set of scenarios 

under certain criteria, such as the 99.9% level of the aggregate loss distribution resulting from the implied 

distribution. Alternatively, one can form a 95% band of the estimates by ignoring the bottom and top 

2.5% of the estimates, or one can take the median of all the estimates as a final number. If we take the 

95% band, then there will be two corresponding distributions for this band. If we take an average, there 

may not be an exactly corresponding  (   ). In that case, we take the nearest one to represent the implied 

distribution. 

 

3.2 Economic Evaluation of Scenarios: The Change of Measure 

 

Each scenario will change the historical probability for a given severity range. The Change of Measure 

(COM) associated with the scenario is given by: 

 

   Implied probability of the severity range 

Change of Measure =    ———————————————————— 

                                       Historical probability of the severity range 

 

This value is a one-step conditional COM, and it applies only to the severity distribution. In general, one 

can make a similar calculation for the frequency distribution. In our application, however, the change in 

the frequency distribution will have negligible impact on overall computations and scenario studies. The 

step is from Time 0 (or current state of loss, i.e., ILD) to Time 1, the period for which we are trying to 

estimate the operational loss exposure. This time period should not be long (usually no more than a year). 

If the time period is long, one may have to re-evaluate the current state. This same issue arises in the fi-

nancial economics of asset pricing. It is extremely difficult, if not impossible, to price an option of very 

long maturity given the current state of the economy. Borrowing the language of financial economics, we 

are trying to determine the states by the possible future values of the losses. For tail events we do not 

know what that loss will be. Therefore it is impossible to know the future values of tail event losses. We 

are trying to estimate a range of values for likely outcomes. We need to consider the possibilities for 

changes regarding events that will cause the tail losses. 

 

The unit-free nature of the COM makes it useful for evaluating the loss distribution derived from 

historical data. Suppose we have two distributions that adequately fit the historical loss data. For one, the 

COM is 20, and for the other it is 5. We can say that the second distribution is a better predictor of the 

given scenario event than the first, without knowing anything about those distributions. 

 

The COM quantifies the impact of a particular scenario and its marginal contribution in risk valuation. An 

extremely high COM can be due to any of these three situations: 
 

1. The historical measure is inaccurate and inconsistent with the risk profile of the institution; 

2. The scenario is nearly impossible given the current state of the institution; 

3. The risk of the institution is uninsurable (self-retention or through risk transfer). 

 

In the third situation above, the risk may be uninsurable by an institution itself, but it may be insurable 

collectively among all institutions with similar risk exposure. However, that may not be possible without 

causing a systemic risk. The pros and cons of such a situation are very well discussed in Cummins, 



 
13  

Doherty, and Lo (2002). An operational risk scenario should also be developed and considered in light of 

this important aspect discussed in that paper. 

 

On the other hand, a low COM may indicate redundancy of a scenario. Before we interpret its numerical 

value, however, we must ensure that the numerator and denominator of the COM are calculated correctly. 

If a probability distribution involving scenarios is not based on the historical distribution, the resulting 

values of the COM will be incorrect or misleading. And if the historical distribution is not evaluated 

correctly, both the implied distribution and the COM will be incorrect. The method discussed in Section 

3.1 systematically updates the historical distribution to produce the implied distribution. 

 

The COM can also be used to evaluate our valuation of the current state. If we had several possible 

distributions to fit to the historical loss severity data, the COM could be a criterion for model selection 

using the scenarios that we believe are a good representation of the future state of the loss profile. 

 

Therefore, using scenario analysis and the COM, one can validate both the current state and the 

usefulness of the scenario under consideration. The method described here can be used to evaluate one 

scenario at a time or any subset of scenarios. In asset pricing one often uses the price of an option to 

predict the future distribution. For example, in the seminal work of Jackwerth and Rubinstien (1996) 

probability distributions of the future price of underlying assets were estimated from the prices of sets of 

options. Using the same reasoning and the COM, we could reassess our choice of a severity distribution 

in terms of its predictive power. 

 

 3.3 Example 

 

The results shown and discussed in this section are based on actual internal loss event data and scenario 

data made available by a major financial institution. Operational loss data as well as scenarios for opera-

tional losses are highly sensitive proprietary information. We do not have permission to provide descrip-

tive statistics for the data in our examples. 

 

Table 1 shows the results of goodness-of-fit tests for five distributions used to model the internal loss data 

for a particular unit of measure at a financial institution. No external loss event data were used in 

modeling the severity and frequency distributions. 

 

Table 1: Results of Two Goodness-of-Fit Tests for Five Distributions  

 
Column headings are defined as follows: Stat: test statistics, CV: critical value (at 95% confidence 

level), P: p-value, H = 0: null hypothesis, i.e., a distribution fits the data, could not be rejected; H = 

1: alternative hypothesis, i.e., the distribution does not fit the data, could not be rejected. 

 

 
 

We show two goodness-of-fit tests: Anderson-Darling (AD) and Kolmogorov-Smirnov (KS). Any of the 

five distributions could be used to model the internal loss data. However, on the basis of the p-value of 

the AD test, Burr has the best fit, and GB2 (the parent distribution of Burr), GPD, and loglogistic will be 

Distributions

Stat CV P H Stat CV P H

Lognormal 0.701652 0.744959 0.061618 0 0.059954 0.066526 0.111536 0

GPD 0.434731 0.755586 0.310396 0 0.038805 0.063516 0.637776 0

Loglogistic 0.390558 0.672978 0.318861 0 0.048933 0.058910 0.208124 0

Burr 0.268320 0.509786 0.442925 0 0.040082 0.055923 0.423949 0

GB2 0.272043 0.485646 0.311828 0 0.041333 0.055685 0.269032 0

Anderson-Darling Kolmogorov-Smirnov



 
14  

among the next best choices. Lognormal gives the worst fit. On the basis of the p-value of the KS test, 

GPD is best, and Burr is second best. If we want to put more emphasis on the tail than on the body, we 

should give priority to the AD test. Then Burr will be the distribution of choice for this unit of measure. 

All five distributions produced a reasonable 99.9% and 99.97% level capital with the internal loss data. 

 

Table 2 depicts the sixteen scenarios. For this unit of measure, the institution has experienced many 

severe losses (tail events) and therefore generated many tail scenarios to understand the institution’s risk 

exposure. To disguise the actual data, we have coded the lower bound of the first scenario as 1 and 

expressed the upper bound of the first scenario and the lower and upper bounds of the other scenarios as a 

multiple of the lower bound of the first scenario  Table 2 also shows the COM of each scenario under the 

five distributions in Table 1. Table 3 shows the COM when the set of scenarios includes only one 

scenario at a time. Using the methodology of Section 3.2 for computing the implied distribution, we use 

cumulative frequency for Table 2 and normalized frequency for Table 3. Use of normalized frequency for 

computing COM in Table 3 enables us to compare the COM among all the scenarios on a uniform basis. 

 

Table 2 shows the value of COM for each scenario as a combined effect (or group effect) of all the 

scenarios, whereas Table 3 shows the value of COM as a pure effect or an individual effect of a scenario. 

The difference in COM between the group effect and individual effect will be pure group effect for each 

scenario. Because of the construction of our method the individual effect cannot be less than one. 

Numbers less than one in Table 3 are due to simulation variation. 

 

Table 2 (Group Effect): A Set of Scenarios for a Particular Unit of Measure: Event Range, 

Cumulative Frequency, and Change of Measure under Five Distributions 

 
The table depicts the sixteen scenarios used. To disguise the actual data, we have coded the lower bound of the first 

scenario as 1 and expressed the upper bound of the first scenario and the lower and upper bounds of the other 

scenarios as a multiple of the lower bound of the first scenario  The set of scenarios for calculating the implied 

probability distribution includes all sixteen scenarios. Therefore, the table shows the value of COM for each 

scenario as a combined effect (or group effect) of all the scenarios. 

 

 

No Lower Upper Cumulative Change of Measure

Bound Bound Frequency GPD Loglogistic Lognormal Burr GB2 

1 1 5 7 0.88 0.96 0.92 0.88 0.95

2 2 18 14 1.01 1.13 1.13 1.05 0.97

3 13 26 18 1.41 1.39 1.56 1.53 1.37

4 18 33 16 1.55 1.44 1.72 1.68 1.55

5 60 110 10 2.34 1.69 2.81 2.50 2.79

6 75 200 20 2.66 1.76 3.29 2.80 3.35

7 75 225 34 2.70 1.77 3.35 2.83 3.43

8 75 250 54 2.73 1.78 3.39 2.87 3.49

9 76 336 60 2.82 1.80 3.51 2.95 3.66

10 103 206 60 2.86 1.81 3.66 2.99 3.73

11 106 152 63 2.75 1.79 3.49 2.89 3.53

12 119 186 58 2.90 1.82 3.76 3.03 3.82

13 400 600 3 4.42 2.08 7.19 4.37 7.11

14 1160 1935 20 6.54 2.35 14.49 6.11 12.77

15 1697 1979 8 7.07 2.40 17.08 6.53 14.34

16 3500 7500 7 10.02 2.67 33.97 8.76 24.17
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From the upper and lower bound columns of Table 2 and Table 3 we can make an estimate of the relative 

severities of the events in the scenarios. For example, the last three scenarios are 1160, 1697, and 3500 

times as severe as the first scenario. The severity of first scenario is in the upper 10% of the internal loss 

experience of the institution. Therefore, these scenarios are much more severe in comparison with the 

institution’s internal loss experience. 

 

Table 3 (Individual Effect): A Set of Scenarios for Particular Unit of Measure: Event Range, 

Normalized Frequency, and Change of Measure under Five Distributions 

 
The table depicts the sixteen scenarios used. To disguise the actual data, we have coded the lower bound of the first 

scenario as 1 and expressed the upper bound of the first scenario and the lower and upper bounds of the other 

scenarios as a multiple of the lower bound of the first scenario  The set of scenarios for calculating the implied 

probability distribution includes only that individual scenario. Therefore, the table shows the value of COM for each 

scenario as a pure effect (or individual effect). 

 

 
 

Selection of a scenario is an important aspect in the use of scenarios. More often than not, the workshop 

generates many scenarios without understanding their usefulness in measuring risk. For scenarios with 

very high severity values (extreme tail events) the group effect may be more severe than the individual 

effect, whereas for scenarios with comparatively low severity values, the individual effect may be 

dominant. For the first twelve scenarios, the values of the COM for all distributions show very similar 

individual effects and very similar group effects. Pending more-detailed analysis, we believe for these 

scenarios the individual effect dominates. For the last four scenarios, the group effect clearly dominates. 

 

In order to understand the effect of a particular scenario (as in a what-if analysis), we could evaluate that 

scenario alone, in the absence of the other scenarios. In Table 3 we can see that none of the individual 

effects of any scenario is particularly high for any distribution. Modeling of current state using Burr or 

loglogistic could reasonably predict the future states given in any of the scenarios individually, especially 

the extreme tail events. More than likely, not all of the scenarios will happen during a specified period. In 

that case it is more important to understand the individual effects of tail events. On the other hand, the 

No Lower Upper Normalized Change of Measure

Bound Bound Frequency GPD Loglogistic Lognormal Burr GB2 

1 1 5 7 1.00 1.00 1.00 0.98 1.02

2 2 18 10 1.00 0.97 0.99 1.06 1.02

3 13 26 14 0.98 0.95 1.00 1.05 0.98

4 18 33 7 0.99 0.99 1.00 0.97 0.98

5 60 110 10 1.02 1.02 0.99 0.98 0.90

6 75 200 13 1.01 0.99 1.04 0.99 1.05

7 75 225 14 0.98 1.02 1.02 0.97 1.02

8 75 250 20 1.07 1.04 1.13 1.11 1.26

9 76 336 7 1.01 0.99 1.00 1.02 1.10

10 103 206 14 1.14 1.01 1.14 1.16 1.22

11 106 152 5 1.00 0.97 1.02 1.06 0.96

12 119 186 3 0.98 1.04 1.03 0.98 0.97

13 400 600 3 1.06 1.03 1.16 1.04 1.26

14 1160 1935 20 2.97 1.49 4.63 2.67 5.76

15 1697 1979 2 1.16 1.06 1.23 1.11 1.49

16 3500 7500 7 2.03 1.16 2.82 1.71 4.11
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group effect can be used for stress testing the current states using collections of scenarios. Here Tables 2 

and 3 together can help in understanding the use and purpose, and selection of a set of scenarios. The first 

twelve scenarios with comparatively low severity inflated the COM, at least by a multiple of two, for the 

last four scenarios. 

 

Alternatively, we could remove each scenario in turn and compare the COM for the remaining subset 

against the COM for the full set. Information on the group effect and individual effect for each scenario 

will be of value in understanding the risk sensitivity of various factors that constitute the risk for a unit of 

measure. Chart 1 is a graphical representation of Table 3 (Panel 1) and Table 2 (Panel 2). 

 

The five distributions generally give different results for those scenarios. The loglogistic shows the least 

variation. In that sense, loglogistic has the best predictive power for the given set of scenarios, conditional 

on the internal loss data. On the other hand, lognormal and GB2 performed worst in this respect. The GB2 

distribution has a fatter tail than the loglogistic distribution. Also the GB2 has four parameters, whereas 

the loglogistic has two. Thus, a distribution’s predictive power for an extreme event is not necessarily 

determined by either its tail shape or its number of parameters. Therefore, for this set of scenarios and the 

internal loss experience of the institution for this unit of measure, loglogistic is the best choice for 

modeling the severity of the data. 

 

One could extend the analysis further in the context of the three situations discussed in Section 3.2. 

Concluding that loglogistic is the best choice (and not the Burr) with respect to the scenarios is 

tantamount to believing that Situation 1 applies – i.e., that the historical measure is inaccurate and 

inconsistent with the risk profile of the institution. On the other hand, if we believe that the Burr 

distribution accurately models the risk profile of this unit of measure, then the last three scenario events 

will probably be less likely to occur in the set of all sixteen scenarios, given the current state and risk 

profile of the institution with respect that unit of measure; that is, we would believe that Situation 2 

applies. 

 

The third possibility is that we trust the severity model for the internal loss data using the Burr dis-

tribution and also believe that the last three scenario events are equally possible in the set of all sixteen 

scenarios. If we then arrive at an unrealistic capital estimate, we would consider the last three scenarios 

uninsurable (Situation 3). In that situation, we would revisit the risk controls and address the risk manage-

ment problem through risk control mechanisms instead of through additional capital holdings. The 

present application of COM can easily be adapted for insurance pricing of an individual or group risk. 

 

Table 4: Relative Standard Error of the Parameter Estimates 
 

Distribution Param-1  Param-2 Param-3 Param-4 

Lognomal 0.2859%     1.2741% 
GPD 1.7569% 0.0002%     

Loglogistic 0.2868% 2.3786%     

Burr 8.9288% 1.8110% 5.2130%   

GB2 10.1283% 8.3559% 13.7386% 10.4954% 

 

Table 4 shows the relative standard error (also known as the coefficient of variation) of the parameter 

estimates from 10,000 trials in the simulation used to merge the scenario data with the internal loss data 

across various units of measure. Here we are showing the standard error for the best fitting distribution for 

a particular unit of measure. The relative standard error is obtained for each parameter of a distribution by 

calculating standard deviation of the parameter values and dividing it by the mean of the parameter value. 

The parameter estimates are very stable under this approach. We have tested this with the data from many 

different financial institutions and found this always to be the case. For the GB2 distribution we observed 

the greatest sensitivity to the parameter values. 
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Chart 1: Change of Measure for the 16 Scenarios When the Five Distributions Are Used to Model 

the Internal Loss Data 
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4. Discussion 
 

Historical loss data are at the core of the methods discussed here. If the historical-loss-data-based model 

for either severity or frequency is not estimated correctly, then these methods will suffer from instability 

and inaccuracy. For evaluation of severity and frequency models, we strongly suggest that, along with 

goodness-of-fit tests for each model, one should judge performance by the following criteria, used in 

Dutta and Perry (2007):
13

 

1. Realistic - If a method fits well in a statistical sense, does it generate a loss distribution with a 

realistic capital estimate? 

2. Well-Specified - Are the characteristics of the fitted data similar to the loss data and logically 

consistent? 

3. Flexible - How well is the method able to reasonably accommodate a wide variety of empirical 

loss data? 

4. Simple - Is the method easy to apply in practice, and is it easy to generate random numbers for 

the purposes of loss simulation? 

 

In addition, one should stress-test each distribution in terms of coherence, consistency, and robustness. 

A log-log plot may be a useful tool to ascertain the threshold of a Pareto tail if the Pareto family of 

distributions is used to fit the tail of the distribution. It could reduce the number of simulations. 

Institutions have often used scenarios either in the absence of internal loss data or when very little 

internal loss data had been observed. Our method cannot be used with scenario data alone. 

 

The method is flexible enough that an institution can use more than one scenario for each unit of measure, 

but that flexibility has limits. Heuristically, if the number of scenarios for a unit of measure is greater than 

5-10% of its annual number of historical loss events, the implied probability distribution may start to 

show instability. Thus, one should not use very many scenario data points to augment the historical-loss-

data-based severity distribution. Our experience has shown that if the scenario set has only short-term 

events (between 20 and 25 years), then we rarely augment the historical sample by more than 4% of its 

sample size. On the other hand, if the scenario set has several long-term events (more than 50 years), then 

we need to augment the sample by less than 1% of its sample size. For example, for a long-term (100 

year) event in a unit of measure that has an average annual loss count of 250, we will have a sample size 

on the order of 25,000. As D’Agostino and Stephens (1986) note, for such large data sets, goodness-of-fit 

tests for any distribution are expected to fail unless by stroke of luck every data point happens to come 

from that specific distribution. Also, as we insisted, a robust fit of historical data will ensure that the fit is 

still statistically non-rejectable with the augmented sample. In Appendix C we show the Q-Q plots of the 

tail area (95
th
 percentile and above) of the scenario-augmented data we used to make sure the effect of the 

scenario data was properly accounted in the capital calculation. If any of the above conditions are not met, 

then the data have to be retested for implied probability. In fact, in those situations it will be better not to 

use this method than go through data fitting of an impractical amount of data such as 25,000 observations. 

 

In theory, our method does not prove that the form of distribution that fits the historical severity data is 

still a good fit for the augmented data set. Ideally, one would make a fresh assessment of the fit of the 

distribution with the augmented data. Integration of scenario losses may make the tail of the distribution 

significantly fatter than the one based on the historical data. In that sense it may make the refitting of the 

distribution more challenging. One may potentially encounter a situation in which no known distribution 

or parsimonious mixture is a good fit. In those situations, as we suggested earlier, one may want to 

                                                 
13  Page 58 of the Observed Range of Practice in the Key Elements of Advanced Measurement Approaches (AMA) issued in July 

2009 and page 39 of Operational Risk- Supervisory Guidelines for the Advanced Measurement Approaches issued in June 2011 

by the Basel Committee on Banking Supervision recognizes these criteria as good practice for model selection.  
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evaluate the validity and appropriateness of the scenario. From a practical point of view, however, 

refitting the distribution often has only a negligible effect on its shape. Also, we are making an 

assumption that the historical-loss-data-based severity and frequency distributions are good predictors of 

the future, as long as the forecast horizon is not too long. Scenario data usually pertain to tail events that 

have not been observed to a reasonable extent in the severity distribution (based on historical data alone) 

to take appropriate tail shape. The number of scenario data points is expected to be much smaller than the 

number of historical data points. The nature and purpose of such data is to forecast the frequency of an 

event within a specified period. The severity distribution also forecasts the frequency of such an event 

within the same period. In the COM approach we make sure that the frequency of an event forecast from 

the historical-data-driven severity distribution is as great as the frequency given by the scenario, if we 

believe such a scenario may be a possibility. Therefore, we recalculate the distribution parameters after 

augmenting the sample with the appropriate amount of scenario data. 

 

Another reason for not changing the family of the historical distribution is the evolving nature of scenario 

data generation. Our approach places more value on historical loss data, especially since many institutions 

have been collecting historical loss data for a considerable period of time. 

 

Because prioritizing scenario data over historical data has many practical negative implications, our 

method is conditional on historical loss data. The loss distribution derived from historical loss data serves 

as the base case. Accordingly, for an event given in a scenario, our approach never adjusts the historical 

probabilities downward to the probability based on the scenario frequency. The only adjustments are 

upward. If, as is typical, scenarios are used to predict tail events rather than body events, the process shifts 

probability toward the right, making the tail of the distribution fatter. 

 

In our method, the range, [a,b], of a scenario event has a finite upper bound, but the method can be 

modified when b is infinite. For people generating scenario data, ranges will be a convenient way to 

express the severity. If severity data come in another form and we can map those data into an interval, we 

can use our method. In some instances scenario data are generated as a point estimate instead of a range 

(e.g., a $25 million loss occurring once in 25 years). In empirical work not discussed here, we found that 

bounds of ±15%-20% around the point estimate will yield a severity range that is very comparable to data 

generated in a range format. Instead of using ±15%-20% across all scenarios, it is better to use a tighter 

bound (say 15%) for near-term events and progressively increase the percentage for longer-term events. 

This procedure is consistent with the subjective nature of a scenario. In some sense we are accounting for 

the subjectivity as the number of years increases for the occurrence of the scenario. 

 

One should be careful in arbitrarily enlarging or reducing the interval range. In Section 3 we observed 

that, when the range goes to zero, the corresponding probability (equivalently, the frequency) under a 

continuous severity distribution also goes to zero. Conversely, if the range is too large, the probability 

becomes high. If we keep the frequency constant and arbitrarily narrow the range, we will get a high but 

incorrect estimate. In such situations the frequency should also be reduced to maintain consistency with 

the narrower range. On the other hand, if we increase the range arbitrarily without correspondingly 

increasing the frequency, we will get a low but incorrect estimate. This feature is very important for 

conducting a sensitivity study of this method and also for interpreting the scenario data. 

 

Our method is simulation-based and can be used for studying the impact of one scenario at a time or the 

combined effects of a set of scenarios. Therefore, it can be used for stress-testing the historical-data-based 

model, for what-if analysis under a set of scenarios, and for measuring the total impact of all scenarios in 

conjunction with historical loss data for estimating operational risk. The method can used in removing 

redundancies in a set of scenarios. Peura and Jokivuolle (2004) use a simulation-based approach to stress-

test the capital adequacy of a financial institution with respect to credit risk using scenarios for business 
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cycles, among others. The business cycle scenario can also be studied in the context of Loss Given 

Default (LGD) using the approach proposed here. 

 

COM also has important uses for communication. Using COM, we can express the net effect of a scenario 

in relation to the current loss experience at an institution and for a particular unit of measure. The COM 

evaluation is important in itself. Evaluating scenarios based on COM provides a clear understanding of 

the likelihood of the scenario in relation to all other events and conditional on the current loss experience. 

This probability study of the event in a scenario can help to create a financial product for risk transfer 

contingent on the occurrence of that event. A financial product traded in the market is essentially a 

promise of a future cash flow with an objective probability. The price (at Time 0) of the financial product 

traded in the market is calculated by converting the objective probability to a risk-neutral probability and 

then discounting it with a risk-free rate. One could do the same for the creation of a catastrophe bond (cat 

bond) or for other insurance products using the probability obtained for the events underlying each 

scenario. A further study in this domain will be useful for possible risk transfer of some of the operational 

risks classified by each scenario. 

 

Our method assumes independence among scenarios. However, if the scenarios in a set are correlated, our 

method can easily be extended to account for correlation among scenarios within a unit of measure. Since 

our actual scenario data were not generated in a correlated way, we were unable to use our method to 

illustrate our work for correlated scenarios. We leave it for future work when such data will be available. 

 

5. Conclusion 
 

The study of market risk of financial products uses the Change of Measure as an important evaluation 

criterion. Using COM, one can properly evaluate the possibility of a future cash flow of an instrument. 

This principle was the motivation behind our work. We asked how a scenario could be evaluated using 

the Change of Measure approach. In a sense, future cash flows are a scenario for some economic process. 

For us, it is the loss generation process driving the severity distribution calibrated by historical loss 

experience. If operational risk scenario data had quality similar to market risk scenario data (such as 

option, future, and forward contracts with high liquidity), we could use scenario data to calibrate our loss 

generating process, as in many market risk modeling approaches, such as in Jackwerth and Rubinstein 

(1996). For operational risk, we propose to use COM in validating and updating the loss generating 

process. As problematic as operational risk scenario data are, the use of scenario data for operational risk 

measurement should have the same priority as internal and external loss data. MacMinn (2005) 

differentiated corporate risk exposure between pure and speculative. In that framework operational risk 

would be classified as a pure risk. Similarly, we can differentiate among various tail risks and their 

impacts on the value of the firm based on their insurability. An interesting extension of this work would 

be to analyze various tail risks using COM in the MacMinn framework. Another interesting extension 

would be to employ the method presented here with scenarios, developed through a thoughtful economic 

analytical approach, whose frequency and severity data have been vetted and adjusted through a Bayesian 

or other suitable approach. 

 

Through construction of implied distributions, we have shown how to merge historical and scenario data 

in a systematic way. We have thoroughly tested our method using actual data from several financial 

institutions. From those implementations and tests, we see the use and further development of this method 

through research for many applications beyond the measurement of operational loss exposure of an 

institution. Through this method we found a good use for scenario data that were thought to be practically 

impossible to model in a systematic way. We would not characterize scenario data as forward-looking. 

We believe that in the context of operational risk measurement, all data elements that the regulatory world 

has identified are equally important. One needs to find a systematic and meaningful way to extract the 
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information contained in those data elements. Our method is an effort in that direction. The practice of 

operational risk measurement has some unfortunate tendencies to blame the data if they cannot be 

modeled with available knowledge, as if the data must be good for the model to work and not the reverse. 

 

If we can draw any inference from the experiences reported in other disciplines that use scenarios as a 

cornerstone for measuring and managing uncertainty, we can say that in due course the data will become 

slightly (but not a whole lot) better. We should search for a method to compensate for the inherent 

problem of data quality. We believe our approach, evaluating scenarios using a Change of Measure 

approach, is a modest step in that direction. 

 

So far, research on estimating operational risk has heavily emphasized statistical searches for the “best” 

severity distribution. In our opinion, it should also be viewed as a problem in financial economics. If in 

the end institutions must hold billions of dollars as operational risk capital, its measurement should 

involve tools and techniques from financial economics. We hope this work will stimulate research interest 

in studying operational risk in the context of economics, rather than as a pure (and very often “impure”) 

data fitting exercise. Also, we hope that this work will encourage effective use of scenarios in measuring 

“pure” risk in the framework of MacMinn (2005) such as operational risk and other types of risk covered 

by an insurance contract. Although we have illustrated our method using operational risk data, our 

approach is more general. We think it will be applicable in the management decision making process, 

where scenarios are used to adjust, stress-test, or assess the predictive power of a statistical distribution of 

an underlying process. 
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Appendix 
 

A. An Illustration of the Methodology 

 

The following example illustrates the steps outlined in Section 3. The example given here is based on an 

actual implementation of the Change of Measure method at a financial institution. To protect the 

proprietary information of the institution, the real data have been altered. Therefore, the example here 

should be used purely for understanding the steps outlined in Sections 3.1 and 3.2 and not for any other 

interpretation of either data or results. 

 

Table A1 presents a sample of scenario analysis data. The frequency of the scenario should be interpreted 

as once in the stated number of years. The financial institution obtained range estimates for the severity of 

each event in scenario workshops; therefore severity is represented by upper and lower severity bounds. 

Had the workshops yielded point estimates, we would have calculated 15–20% intervals around them. 

 

Table A1: Scenario Data 

 

 

 

Normalization of the Scenario Frequencies 

 

Table A2 shows the normalized frequencies. Each normalized frequency represents the number of times a 

scenario would occur in the number of years equal to the maximum frequency in the scenario data (in this 

example, 62 years). 

 

Table A2: Scenario Data with Normalized Frequencies 

 

 
 

 

Calculation of Cumulative Frequency for Overlap Scenarios 

 

If the severity ranges of the scenarios overlap, the cumulative frequencies account for the overlap. We 

want to determine whether the model specified by historical data can satisfy all scenarios within a given 

severity range, not just each scenario within the range individually. The rationale for our approach is 

based upon the assumption that the scenarios are independent. 

No Frequency Lower Bound Upper Bound

1 25 29,412$            147,059$              

2 20 73,529$            294,118$              

3 5 88,235$            588,235$              

4 10 500,000$          1,200,000$           

5 62 1,168,500$       1,291,500$           

No

Normalized

Frequency

Lower

Bound

Upper

Bound

1 2.48 29,412$          147,059$         

2 3.1 73,529$          294,118$         

3 12.4 88,235$          588,235$         

4 6.2 500,000$        1,200,000$      

5 1 1,168,500$     1,291,500$      
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In Table A1 the scenarios are already in order of increasing lower bounds. The percentage by which 

Scenario 2 overlaps Scenario 1 is (147,059 – 73,529)/(147,059 – 29,412) = 63%. Table A3 shows (as 

percentages) the overlap matrix (denoted by R in Section 3.2) for the five scenarios. 

 

The cumulative frequency for Scenario 2 is the sum of the normalized frequency for Scenario 2 and the 

product of the percentage overlap between Scenario 2 and Scenario 1 and the normalized frequency for 

Scenario 1: 

 

 Cumulative Frequency for Scenario 2 = 3.1 + (63%)(2.48) = 4.65 , (1) 

 

which becomes 5 when rounded. 

 

Because Scenario 3 overlaps Scenarios 1 and 2, its cumulative frequency includes contributions from 

those two scenarios. 

 

Since we have sorted the scenarios so that the lower bounds of their severity ranges are non-decreasing, 

the cumulative frequency for a scenario needs to include contributions only from overlapping scenarios 

that precede it in the ordering. The normalized frequencies in these calculations are those implied by the 

scenarios; they are not necessarily the same as those implied by the historical loss data. The process of 

comparing the cumulative frequencies of the scenarios against the numbers of occurrences in the sample 

of      losses from the historical severity distribution takes the scenarios in the sorted order. Thus, any 

additional losses sampled for preceding scenarios will already be included in the augmented sample. 

 

The rightmost column of Table A3 shows the cumulative frequencies for the five scenarios. 

 

Table A3: Scenario Data Overlap Matrix and Cumulative Frequencies 

 

 

Calculation of Implied Distribution 

 

In deriving the implied distribution from the historical distribution, we want to add only those events that 

do not occur often enough in the sample data. If the cumulative frequency specified by the scenario data 

is the same or less than the number of events in the sample loss data over the same severity range, then 

the scenario is satisfied by the sample data. If the cumulative frequency specified by scenario data is 

greater than the number given by sample loss data, then the scenario is not satisfied by sample data and 

additional events must be added to the sample data. We calculate the difference between the observed 

frequency from the sample data,  , and the expected scenario cumulative frequency,  . If   is less than  , 

we add   –   events, drawn from the severity range for the scenario in the historical severity distribution. 

 

For example, in Table A3 the cumulative frequency for Scenario 4 is eight events in the range $500,000 

to $1,200,500. If the sample loss data (augmented for Scenarios 1, 2, and 3) included only three events in 

that range, then five events would be drawn in the range of $500,000 to $1,200,500 from the historical 

severity distribution and added to the sample. Conversely, if the sample loss data had eight or more events 

No 
Lower 
Bound 

Upper 
Bound 

Normalized 
Frequency 1 2 3 4 5 

Cumulative  
Frequency 

1 29,412 $       147,059 $     2.48 100% 0% 0% 0% 0% 2 
2 73,529 $       294,118 $     3.1 63% 100% 0% 0% 0% 5 
3 88,235 $       588,235 $     12.4 50% 93% 100% 0% 0% 17 
4 500,000 $     1,200,000 $   6.2 0% 0% 18% 100% 0% 8 
5 1,168,500 $   1,291,500 $   1 0% 0% 0% 5% 100% 1 
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over that range, then Scenario 4 would already be satisfied by the historical loss data, and no additional 

loss events would be added to or subtracted from the sample data. 

 

We re-estimate the parameters of the loss severity distribution that we used to generate the sample data. 

The augmented sample represents both historical and scenario data. We would expect that most losses in 

this vector are generated historical data points, and only a few are augmented to satisfy the cumulative 

frequencies of the scenarios. As discussed in Section 4, if this condition does not hold, then our method 

may not be suitable for the set of scenarios. 

 

We repeat this process 10,000 times to reduce the simulation variance of the sample data generation 

process and estimate a range of parameters of the loss severity distribution. We also recalculate here, 

although it may not be necessary, the frequency parameter, accounting for the “uncovered” events that are 

added to the sample data. At each step of the simulation process we could also calculate the 99.9% or 

99.97% level value of the aggregate loss distribution using the re-estimated parameters of the frequency 

and severity distributions. One can use Monte-Carlo simulation of one million trials for that or, in order to 

save time, one could use the Single Loss Approximation formula given in Böcker and Klüppelberg 

(2005). Out of all the losses reaching the 99.9% or 99.97% threshold, in each trial generated we use the 

median for the purpose of estimating operational risk given the historical loss experience and the scenario 

generated at an institution. 

 

Table A4 shows the severity ranges for the five scenarios, together with the cumulative frequencies from 

Table A3. The fifth column of Table A4 shows the historical frequency count, which is the number of loss 

occurrences within the severity range in a sample from the severity distribution used to model the severity 

of the historical loss event data. 

 

Table A4: Cumulative Frequency vs. Historical Frequency 

 

 

B. Probabilistic Explanation of the Method
14

  
 
Let us assume that severities of the losses are distributed according to distribution F and frequencies are 

Poisson distributed with mean frequency . 

 

Given an event with probability of occurrence p, what is the expected number of samples one has to draw 

in order to observe it? If n draws are needed, then there would be n–1 failures before observing a success. 

This implies that the number of draws has a geometric distribution with mean 1/p. On the other hand, 

because this loss occurs on average once every M years, the expected number of losses necessary to 

observe it is M. Immediately, it follows that 

 

                                                 
14

  Ilya Rozenfeld helped in developing this section. 

No 

Lower 

Bound 

Upper 

Bound 

Cumulative  

Frequency 

Historical  

Frequency 

1 29,412 $             147,059 $           2 320 

2 73,529 $             294,118 $           5 104 

3 88,235 $             588,235 $           17 5 

4 500,000 $           1,200,000 $        8 2 

5 1,168,500 $        1,291,500 $        1 1 



 
26  

 p =  (1) 

 

Now, Suppose a scenario is given where it is expected that the loss exceeding amount L would occur once 

every M years. Let the event be a loss greater than L, it follows that p = P(X>L) = 1–F(L). Therefore, 

1/(1–F(L)) can be interpreted as the expected number of losses that need to occur in order to observe one 

loss greater than L. 

 

Then using (1),  p =  

 

We assume that the scenarios are independent. Let E1, E2,…, En  be a set of events from the corresponding 

scenarios S1, S2,…, Sn  independently occurring with probabilities P1, P2,…, Pn then the probability of one or 

more of the events happening is given by: 

Prob (             ) = ∑     (  
 
 ) – ∑     (        ) + ∑     (             ) + … 

+ (  )        (          ) (2) 

 

By independence of events and from step (1) 

 

     (     ) =     (  )      (  ) = 
 

     
 where           happen on an average every           

years, respectively. 

 

Similarly  

     (          ) =     (  )      (  )      (  ) = 
 

       
  

 

 

     (             ) =     (  )      (  )       (  ) = 
 

        
  

 

 

If , M1,M2,…Mn ≥ 10   then 
 

     
         , 

 

       
            …. 

 

and  
 

        
 ≤ 1/1,000,000 for n ≥ 3 

 

 

In our application , M1,M2,…, and Mn are typically greater than 10 . On a rare occasion we observed that 

M may be less than 10 but in those cases  is very high. Therefore we choose to ignore all the terms 

except the first term of equation (2) without compromising the accuracy of the resulting probability. 

Therefore, Prob (             ) = ∑     (  
 
 )  for all practical purposes of our application. The 

method developed in Section 3 ensures the sum of probability of events given in the set of scenarios. By 

doing so we ensure that our probability calculation is accurate up to the fourth decimal place. 
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C. Q-Q Plots for the Tail Plots of the Scenario-Augmented Data 
 

In the discussion section we noted that the scenario-augmented data may be too large for any meaningful 

goodness-of-fit test. However, to make sure that scenario data (which usually adjust the tail area of a 

distribution) were fitted well, we checked this in two ways. First, we used the concept of the Change of 

Measure to evaluate the validity of the scenarios. Second, we also used Q-Q plots to statistically evaluate 

the goodness-of-fit of the scenarios and ensure that their effects were adequately captured in the capital 

calculation. In the following chart we show the Q-Q plot corresponding to the median of the 10,000 trials 

we used for the capital calculation of the scenario-augmented data. Here we can see that the Burr 

distribution, which was our best choice for the fitting the internal loss data, is still a good fit in the tail 

area for the scenario-augmented data. However, the loglogistic distribution, which was our second best 

choice for fitting the internal loss data, happens to fit the tail of the scenario-augmented data better than 

the Burr. Here one can choose the loglogistic distribution for internal loss and the scenario data after the 

economic evaluation of the scenarios made using the Change of Measure approach discussed in Section 3. 

 

Q-Q Plots for Burr and Loglogistic Distributions for the Scenario-Augmented Data (at the level of 

95
th

 percentile and above) 
 

 

 
 

 


