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ABSTRACT 

 

FUNCTION OF BROMODOMAIN AND EXTRA-TERMINAL MOTIF PROTEINS (BETs) IN 

GATA1-MEDIATED TRANSCRIPTIONAL ACTIVATION 

Aaron J. Stonestrom 

Gerd A. Blobel 

 

 Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated 

histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family 

is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms 

through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the 

physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, 

we characterize functions of the BET family as a whole using a pharmacologic approach. We find 

that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression 

is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and 

transcription downstream of its binding. Second, we test the specific roles of BETs BRD2, BRD3, 

and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient 

transcriptional activation by GATA1. Despite co-localizing with the great majority of GATA1 

binding sites, we find that BRD3 is not required for GATA1-mediated transcriptional activation. 

However, exogenous BRD3 efficiently compensates for BRD2 loss, suggesting that BRD2 and 

BRD3 function redundantly. Third, we tested the role of BETs in mitotic bookmarking. We present 

evidence that mitotic binding by BRD4, the BET most strongly implicated in preserving 

transcriptional state during mitosis, is extensively remodeled during this phase of the cell cycle. 

Additionally, disruption of mitotic BET occupancy has no measurable impact on post-mitotic gene 

reactivation, calling into question the role of BETs in mitotic bookmarking. These results elucidate 

new factors critical for GATA1-mediated erythropoiesis. In addition to furthering understanding of 



v 

  

the mechanisms underlying BET function, these findings have important consequences for the 

rational development of BET inhibitors. 
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CHAPTER 1. INTRODUCTION 

 

Transcriptional regulation 

Lineage-specific gene expression 

 High-throughput technologies have made comprehensive description of gene expression 

patterns routine. The resulting wealth of information being generated holds great promise both in 

understanding basic biology and in directing rational therapeutic intervention. Fulfillment of this 

promise will require a better understanding of the mechanisms responsible for the gene 

expression patterns being cataloged. Research over the past several decades has revealed a 

number of the factors involved. 

 Lineage-specific master transcription factors drive gene expression programs. These 

proteins regulate transcription through association with specific DNA sequences in genomic 

regulatory regions. At promoter regions adjacent transcription start sites, their binding can lead to 

recruitment of general transcription factors and RNA polymerase II to activate gene expression. 

However, the DNA sequence motifs recognized by transcription factors occur at many more sites 

in the genome than are actually bound, and most transcription factors can both activate and 

repress transcription. Transcription factor specificity and activity depends critically on additional 

co-activator and co-repressor proteins and the local chromatin environment. 

 Much of chromatin structure involves the wrapping of DNA around nucleosome octamers 

of histone proteins. Both histones and DNA are regulated in large part by covalent modification. 

The number of possible combinations of modifications on even a single histone tail greatly 

exceeds the number of genes in the genome and provides a vast number of regulatory modes. 

Regulation can be dynamic throughout the cell cycle, adding further regulatory complexity. The 

combination of all these factors creates an elaborate chromatin language controlling gene 

expression in each cell (Berger, 2007; Strahl & Allis, 2000). This dissertation focuses on the role 

of the ubiquitous Bromodomain and Extra-Terminal motif protein (BET) cofactors in the gene 
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expression program induced by the master erythroid transcription factor GATA1. Through binding 

to acetylated histones and acetylated GATA1, BETs integrate transcription factor binding with 

chromatin structure and regulate cellular transcription. 

 

Acetylation of histones and transcription factors 

 Histone lysine acetylation is associated with transcriptionally active regions of the 

genome (Allfrey, 1966; Hebbes, Thorne, & Crane-Robinson, 1988). Acetylation may contribute to 

activation by altering nucleosome structure or through signaling to recruit other factors. Structural 

alterations may result from neutralization of positive charges or through steric effects. Recent 

work has supported the possibility that acetylation of lateral histone surfaces contacting DNA may 

destabilize nucleosomes (Tropberger et al., 2013). However, the most well-characterized histone 

modifications are on the tails of these proteins where the primary mode of action is likely 

signaling. Histone acetylation is written by histone acetyltransferases (HATs) and erased by 

histone deacetylases (HDACs). Rapid turnover of acetylated lysines makes this modification ideal 

for temporally precise transcriptional control. While the best characterized HAT substrates are 

histones, these enzymes modify thousands of proteins and regulate virtually every cellular 

process (Choudhary et al., 2009; Kouzarides, 2000). Notably, acetylation of transcription factors 

regulates stability and activity (Soutoglou, Katrakili, & Talianidis, 2000), and many HATs self-

regulate through auto-acetylation (Blanco-García, Asensio-Juan, la Cruz, & Martínez-Balbás, 

2009; P. R. Thompson et al., 2004). HDACs often mediate transcriptional repression as part of 

large multi-protein co-repressor complexes. Interestingly, pharmacologic HDAC inhibitors have 

found in clinical use in cancer and other settings demonstrating the feasibility of therapeutic 

targeting of such general chromatin mechanisms. HDAC inhibitors support cellular 

reprogramming during the creation of induced pluripotent stem cells, emphasizing the importance 

of acetylation in transcriptional identity (Huangfu et al., 2008; Kazantsev & Thompson, 2008).  

Acetyl-lysine marks are recognized largely by bromodomains, although other histone acetyl-lysine 
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binding domains have been described (Ishizaka et al., 2012; Marmorstein & Zhou, 2014). 

Bromodomains are often found in proteins with HAT activity or in multiples, such as the tandem 

bromodomains in Bromodomain and Extra-terminal motif proteins (BETs). Recognition of 

acetylated lysines by bromodomains is required for the association of BETs with chromatin, but 

may not be sufficient (Filippakopoulos & Knapp, 2014; Filippakopoulos et al., 2012). Large gaps 

remain in our understanding of how interpreters of acetylation such as bromodomain proteins 

interact with histones and transcription factors to create and maintain cellular transcription 

patterns. 

 

Mitotic bookmarking: maintenance of transcriptional state through cell division 

 Once established in development, the transcriptional identity of individual cells needs to 

be maintained while they continue to cycle. Both DNA replication and mitosis challenge the 

maintenance of the information required to maintain cellular identity. During mitosis transcription 

is silenced, chromatin is condensed, and transcription factors are removed (Martínez-Balbás, 

Dey, Rabindran, Ozato, & Wu, 1995; PRESCOTT & Bender, 1962; Fangwei Wang & Higgins, 

2013). Recent work examining the three dimensional structure of the mitotic genome show that it 

is grossly effaced (Naumova et al., 2013). Likely because of these features, mitotic nuclei are 

reprogrammed far more efficiently than interphase nuclei (Halley-Stott, Jullien, Pasque, & 

Gurdon, 2014). This has led to the proposal that mitosis represents both a challenge to cellular 

identity as well as an opportunity for lineage change. The remnants of structure preserved during 

this period must be sufficient for resumption of lineage-appropriate transcription at the beginning 

of the next cell cycle. 

 Patterns of nuclease sensitivity are to a large degree maintained in mitotic chromatin 

(Gazit, Cedar, Lerer, & Voss, 1982; Hsiung et al., 2014; Martínez-Balbás et al., 1995). This 

observation suggests that certain transcription factors, "mitotic bookmarks", might remain bound 

to mitotic chromatin to allow newborn cells to remember which genes were active during the 



4 

 

previous cell cycle (John & Workman, 1998; Michelotti, Sanford, & Levens, 1997). DNA 

methylation and some histone modifications remain largely unchanged during mitosis and may 

also function in mitotic memory of transcriptional state (Campos, Stafford, & Reinberg, 2014; 

Ghenoiu, Wheelock, & Funabiki, 2013). However, neither of these features easily explains the 

nuclease patterns observed. A likely explanation is provided by the growing number of 

transcription factors found to remain associated with mitotic chromatin (Kadauke & Blobel, 2012).  

 Several studies have provided evidence that mitotic bookmarking could be important for 

preservation of cell identity through mitosis. Depletion of some mitotically-bound transcription 

factors have been shown to delay post-mitotic transcriptional reactivation in several settings 

(Blobel et al., 2009; Caravaca et al., 2013; Dey, Nishiyama, Karpova, McNally, & Ozato, 2009; 

Sarge & Park-Sarge, 2009). While intriguing, it is difficult to directly attribute inefficient 

transcriptional reactivation to mitotic bookmarking directly in these studies because factor 

depletion occurred throughout the cell cycle. A major step toward mitosis-specific factor 

manipulation was recently made by the use of mitotic degron-transcription factor fusion proteins 

that cause mitosis-specific degradation (Kadauke et al., 2012). While a significant improvement 

over cell-cycle independent depletion, this strategy is also imperfect in that the targeted factor 

needs to be resynthesized following mitotic destruction. Further studies applying more mitosis-

specific methods are needed to better understand the mitotic roles of bookmarks. This work 

examines mitosis-specific functionality of BETs using pharmacologic inhibitors to test their role in 

mitotic memory. 

 

Bromodomain and Extra-Terminal motif proteins (BETs) 

The BET family 

 Bromodomain and extra-terminal motif proteins (BETs) are chromatin regulators that 

associate with acetylated histones and transcription factors (Belkina & Denis, 2012). The 

eponymous sequence features of the BET family are tandem homologous bromodomains and a 
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shared extra-terminal motif (Figure 1.1). The bromodomains are responsible for association with 

chromatin, while the extra-terminal motif and other conserved regions mediate interaction with 

other proteins and may allow BET oligomerization (Dey, Chitsaz, Abbasi, Misteli, & Ozato, 2003; 

Garcia-Gutierrez, Mundi, & Garcia-Dominguez, 2012; Y. Liu et al., 2008; Rahman et al., 2011; Z. 

Yang et al., 2005). BETs are widely implicated in transcription, particularly at the level of 

elongation (discussed further in the context of individual BETs) (Jang et al., 2005; Kanno et al., 

2014; Z. Yang et al., 2005). BETs also interact with and regulate the occupancy of prominent 

acetylated transcription factors including p53, RelA, and GATA1 (B. Huang, Yang, Zhou, Ozato, & 

Chen, 2009; Lamonica et al., 2011; S.-Y. Wu, Lee, Lai, Zhang, & Chiang, 2013). The association 

of BETs with chromatin likely reflects a combination of their association with acetylated histones 

and with acetylated transcription factors. 

 BETs are found only in eukaryotes. Vertebrate genomes encode four BET homologs: 

BRD2, BRD3, BRD4, and BRDT. In mammals the expression of BRDT is restricted to the testis 

and ovary, while the other BETs are expressed ubiquitously. Functional similarity among BETs is 

suggested by strict conservation of their bromodomains, association with many of the same 

regulatory complexes, and overlapping genomic binding profiles (Anders et al., 2014; Asangani et 

al., 2014; Dawson et al., 2011). Additionally, common functional themes unite the BETs within 

and between species. Many reports demonstrate roles of BETs in pathologic growth. Depletion of 

BRD2, BRD3, and BRD4 have each been shown to slow the growth of diverse tumors (Asangani 

et al., 2014; Y. Tang et al., 2014). Interestingly, chromosomal translocations of Brd3 or Brd4 with 

the NUT gene cause histopathologically indistinguishable NUT midline carcinoma (French et al., 

2003; 2008). These translocations involve the BET bromodomains but not their C-terminal 

domains. Roles in the inflammatory response are also common to BETs. Depletion of either 

BRD2 or BRD4 attenuates inflammation in different circumstances (Belkina, Nikolajczyk, & Denis, 

2013; Nicodème et al., 2010; Wienerroither et al., 2014). BRD2, BRD3, and BRD4 have also 

each been linked to nucleosome remodeling in the context of transcription (Kanno et al., 2014; 
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LeRoy, Rickards, & Flint, 2008), and BRDT in histone exchange during spermatogenesis 

(Gaucher et al., 2012). Yeast BETs Bdf1 and Bdf2 may similarly maintain heterochromatin 

boundaries through a mechanism involving histone turnover (Ladurner, Inouye, Jain, & Tjian, 

2003; Jiyong Wang et al., 2013). Interestingly, Bdf1 and Bdf2 are redundantly required for growth 

suggesting that BETs have overlapping functions in yeast. The molecular basis for the 

distinctions between these proteins remains unclear, and large gaps remain in our understanding 

of their individual roles. 

 BETs in all species are distinguished by their ability to remain associated with chromatin 

through mitosis, a feature that sets them apart from the great majority of transcription factors and 

chromatin regulators examined. Knockdown and inhibitor studies have suggested BRD4 in 

particular may have a role in transcriptional reactivation in newborn cells immediately following 

mitosis (Dey et al., 2009; R. Zhao, Nakamura, Fu, Lazar, & Spector, 2011). In these studies BETs 

were depleted or inhibited in post-mitotic cells as well as mitotic cells and the functional role of 

mitotic association not directly addressed. However, speculation that BETs function as mitotic 

bookmarks in this regard is widespread. Clarification of the nature and importance of mitotic BET 

association is needed. 

 

Short BETs: BRD2 and BRD3 

 BRD2 and BRD3 lack extended C-terminal domains and are the "short" members of the 

vertebrate BET family. Mice deficient for BRD2 have severe developmental defects (Fangnian 

Wang et al., 2009), and BRD2 ablation is incompatible with life (Shang, Wang, Wen, Greenberg, 

& Wolgemuth, 2009). Deficiency causes a number of developmental deficits and an attenuated 

inflammatory response (Belkina et al., 2013; Fangnian Wang et al., 2010). BRD2 knockdown or 

deficiency is associated with altered cell cycle and growth characteristics (Denis, Vaziri, Guo, & 

Faller, 2000), and overexpression promotes hematologic malignancies in mice (Belkina, Blanton, 

Nikolajczyk, & Denis, 2014). BRD3 was discovered by homology to BRD2 and remains much less 
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studied. Interestingly, relative mRNA expression of BRD2 and BRD3 correlates across a wide 

range of human tissues (Thorpe et al., 1997). Where BRD3 knockdown has a mild anti-growth 

effects in several cancer models, the effects are less dramatic than for those of Brd2 and Brd4 

depletion (Asangani et al., 2014; Y. Tang et al., 2014). A BRD3 knockout mouse has yet to be 

reported. Large gaps remain in our understanding of the functional roles of BRD2 and BRD3.  

 

 

 

Figure 1.1 BET structure. Mammalian BETs. BD1 - Bromodomain 1. A - Motif A. BD2 - 

Bromdomomain 2. B - Motif B. ET- Extra-terminal domain. CTD - C-terminal domain. Grey bars 

show regions of sequence similarity between BRD4 and BRDT in their CTDs.  

 

BRD4 

 BRD4 is the BET most consistently linked to transcription, oncogenesis, and mitotic 

bookmarking. BRD4 ablation causes early embryonic lethality in mice (Houzelstein et al., 2002). 

BRD4 can be expressed either as a short isoform similar in length to BRD2 and BRD3, or a long 

isoform with an extended C-terminal domain (CTD). The long form of BRD4 is the dominant 

transcript expressed in most tissues (Shang et al., 2004). Its CTD is unrelated to other 

mammalian proteins, although there are short regions of amino acid sequence overlap with the 

Short&and&long&BET&proteins&
     BD1 !  A !  BD2!     B !     ET!

C-terminal domain (CTD)!

BRD2!
!
!
!
BRD3!
!
!
!
!
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!
!
!
!
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CTD of BRDT. BRD4 also interacts with, and may activate, CDK9, the kinase subunit of the 

elongation complex pTEFb (Bisgrove, Mahmoudi, Henklein, & Verdin, 2007; Jang et al., 2005; Z. 

Yang et al., 2005). BRD4 has also been reported to itself be a kinase capable of directly 

phosphorylating RNA polymerase II (Devaiah et al., 2012). The BET extra-terminal motif has also 

been proposed to have a major role in stimulating pTEFb-independent transcription, perhaps by 

recruiting the histone methyltransferase NSD3 (Rahman et al., 2011). Interestingly, changes in 

DNA structure are visible at the levels of both immunofluorescence and DNase sensitivity upon 

BRD4 depletion in mammalian cells supporting a role in global chromatin structure (R. Wang, Li, 

Helfer, Jiao, & You, 2012).  

 BRD4 is connected to cancer in several settings. Robust BRD4 expression is required for 

transcription of oncogenic drivers in a number of cancers and its depletion variably slows growth, 

induces apoptosis, and promotes differentiation in diverse malignancies (Ott et al., 2012; 

Schwartz et al., 2011; Zuber et al., 2011).  The precise oncogenes implicated seem to be tumor-

specific, with Myc being a major target in some cancers but not in others (Mertz et al., 2011). 

MYCN, AR, IL17R, GLI, and TWIST and among the other oncogenes targeted in particular 

settings (Asangani et al., 2014; Ott et al., 2012; Puissant et al., 2013; Jian Shi et al., 2014; Y. 

Tang et al., 2014). Additionally, direct amplification of BRD4 has been observed in breast cancer 

(Kadota et al., 2009).  

 While all mammalian BETs have been observed on mitotic chromatin, BRD4 specifically 

has been implicated in post-mitotic transcriptional reactivation (Dey et al., 2009; Voigt & 

Reinberg, 2011). Interest in BRD4 as a mitotic bookmark has been amplified by the observation 

that its depletion causes some tumor cells to differentiate (Filippakopoulos et al., 2010; Schwartz 

et al., 2011; Zuber et al., 2011). This has led to speculation that BRD4 helps cancer cells 

remember they are cancer (Bradner, 2011). Further examination of the mitotic role of BRD4 

specifically, and BETs in general, will be critical to understanding the role of mitotic bookmarking 

in their transcriptional functions. 
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BET inhibitors 

 Small molecule BET inhibition has generated intense interest as an emerging therapeutic 

modality (Baud et al., 2014; Dawson, Kouzarides, & Huntly, 2012; Filippakopoulos & Knapp, 

2014). Oncologic applications are the most advanced and multiple clinical trials have been 

launched with these drugs for the treatment of diverse malignancies (Belkina & Denis, 2012; 

Dawson et al., 2012; Junwei Shi & Vakoc, 2014). The major class of thienodiazepine BET 

inhibitors were discovered by scientists at Yoshitomi Pharmaceuticals, who subsequently noted 

their potential both as anti-inflammatory and anti-cancer agents (“Thienotriazolodiazepine 

compounds and medicinal uses thereof,” 1998). However, these molecules remained virtually 

unknown to the general scientific community prior to their adoption and optimization into the 

molecule JQ1 and its use in NUT midline carcinoma (Filippakopoulos et al., 2010). At the same, 

an unrelated drug development effort to find mimics of histone lysine acetylation converged on 

similar small molecules and published them along with their anti-inflammatory properties 

(Nicodème et al., 2010). Prior to these discoveries, the protein-protein interaction between 

bromodomains and acetylated lysines was considered impossible to pharmacologically target 

(Bradner, 2011). However, since this time several chemically unrelated molecules have been 

found that can target the same binding site in BET bromodomains (Picaud et al., 2013). The 

current generation of BET inhibitors do not distinguish between BET family members, and the 

development of additional BET inhibitors with distinct specificities remains an important goal 

(Filippakopoulos & Knapp, 2014; Nicodème et al., 2010; Picaud et al., 2013).  

 Many tumors are significantly more sensitive to BET inhibitors than is NUT Midline 

Carcinoma, despite this disease being driven by a BET bromodomain-containing fusion 

oncogene. Some genes with critical roles in cancer progression, such as Myc in some 

hematologic cancers, are exquisitely sensitive to BET inhibition for largely unknown reasons 

(Mertz et al., 2011; Zuber et al., 2011). A number of ChIP-seq studies examining BET protein 



10 

 

occupancy have been reported, but the binding patterns observed have disappointingly little 

ability to predict which genes are or are not sensitive to BET inhibition. Large genomic regions 

termed "super-enhancers" (SEs) have been proposed as regions that are particular sensitive to 

BET inhibition. However, when JQ1 sensitivity at SE-associated genes has been shown to be at 

most 15-20% more on average than at regular enhancer-associated genes (Chapuy et al., 2013; 

Lovén et al., 2013). Prediction of the transcriptional targets of BET inhibitors remains a major 

challenge.  

 BET inhibitors may be useful in applications outside of cancer, particularly as anti-

inflammatories. BET inhibition prevents death in mouse models of sepsis, attenuates 

autoimmunity, and lessens damage from overactive inflammatory responses in the lung 

(Bandukwala et al., 2012; Mele et al., 2013; Nicodème et al., 2010; X. Tang et al., 2013). Pre-

clinical studies have also demonstrated efficacy in applications that would require chronic 

administration such as heart failure (Anand et al., 2013). Additional studies of BETs in physiologic 

contexts will be critical to understanding the range of feasible applications of these molecules. 

 

The erythroid transcription factor GATA1 

Erythropoiesis 

 Erythropoiesis occurs in the bone marrow by differentiation of hematopoietic stem cells 

(HSCs). Lineage-specific transcription factor expression successively commits HSCs to the 

myeloid lineage, the megakaryocyte-erythroid lineage, and into committed erythroblasts. 

Following an initial expansion phase, erythroblasts mature through a process of cellular and 

nuclear condensation, and subsequently nuclear ejection (Figure 1.2). These final steps are 

accompanied by massive activation of genes involved in hemoglobin synthesis (globin genes and 

heme biosynthetic enzymes) and those encoding components of the specialized erythrocyte 

membrane. Transcriptional regulation by GATA1 drives this conversion from proliferative 

progenitor cells into specialized oxygen carriers. 



11 

 

 

 

 

 

Transcriptional activation and repression by GATA1 

 GATA1 was initially described as an erythroid transcription factor that activates the beta-

globin gene (Evans, Reitman, & Felsenfeld, 1988). It is now recognized as part of the GATA 

family of zinc finger transcription factors that control diverse developmental processes (Patient & 

McGhee, 2002). GATA1 mutant mice are unable to form mature erythroid cells, and several types 

of congenital anemias in humans are associated with GATA1 mutations (Campbell, Wilkinson-

White, Mackay, Matthews, & Blobel, 2013; Fujiwara, Browne, Cunniff, Goff, & Orkin, 1996; 

Nichols et al., 2000). During erythroid maturation, GATA1 activates nearly all erythroid-specific 

genes while silencing genes associated with the immature proliferative state (Cheng et al., 2009; 

Welch et al., 2004). In addition to being required for erythrocyte development, GATA1 is also 

essential for normal differentiation of megakaryocytes, mast cells and eosinophils (Crispino, 

2005).  

Prolifera)on+
+

Differen)a)on+

v+
v+

v+

GATA2++++++ GATA1++++++

Figure 1.2 GATA1 expression and function in erythropoiesis. EMP - Common erythoid-

myeloid progenitor. BFU-E - Blast forming unit erythroid. CFU-E - Colony forming unit 

erythroid.  
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 Study of GATA1 has been greatly facilitated by the GATA1-null erythroblast (G1E) cell 

line (Weiss, Yu, & Orkin, 1997). G1E cells are an erythroblast line derived from embryonic stem 

cells obtained from GATA1 null mice. These cells proliferate rapidly in culture, but upon 

introduction of GATA1 by transfection or by activation of an estrogen-responsive GATA1 allele 

(G1E GATA1-ER cells) mature following a pattern of gene expression changes mirroring those 

observed in maturing primary erythroblasts (Welch et al., 2004; M. Yu et al., 2009). Studies 

examining transcriptome changes in G1E cells as cell as primary erythroblasts found evidence 

that GATA1 activation is associated with activation and repression of a similar number of genes 

(Cheng et al., 2009; Welch et al., 2004; M. Yu et al., 2009). Importantly these studies examined 

gene expression changes in relation to total RNA content, a standard called into question by the 

dramatic changes in cell size and morphology that accompany erythroblast maturation (Dacie & 

White, 1949). This dissertation re-examines global transcription in this system by using external 

RNA spike-in controls which allow quantification relative to cell number rather than assuming a 

cellular RNA content to be constant. 

 Activation and repression by GATA1 is strongly influenced by cofactor proteins (M. Yu et 

al., 2009). The importance of GATA1 cofactors is underscored by the localization of many 

disease-causing GATA1 mutations to cofactor binding sites (Campbell et al., 2013; Nichols et al., 

2000). Friend of GATA-1 (FOG1) was the first described GATA1 co-factor (Tsang et al., 1997). 

FOG1 associates with co-repressor complexes and histone deacetylases, but is still recruited 

along with GATA1 to both activated and repressed genes (Miccio et al., 2010). Mutations in 

GATA1 that impair FOG1 binding variably compromise GATA1 occupancy across the genome, 

suggesting that FOG1 may function at the level of GATA1 occupancy as well as by recruiting 

transcriptional effectors (Letting, Chen, Rakowski, Reedy, & Blobel, 2004; Pal et al., 2004). 

Another important GATA1 cofactor is the acetyltransferase CBP (Blobel, Nakajima, Eckner, 

Montminy, & Orkin, 1998). GATA1 is acetylated by CBP and p300 on lysines that are conserved 
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across species and across GATA-family proteins (Hayakawa et al., 2004; Hung, Lau, Kim, Weiss, 

& Blobel, 1999; Yamagata et al., 2000).  

 The cofactor CBP also has a major role in GATA1 function by acetylating it at conserved 

lysine-rich motifs (Hung et al., 1999).  Mutations that impaired GATA1 acetylation had no effect 

on binding to naked DNA templates or plasmids, but did impair the genomic occupancy of GATA1 

in vivo (Lamonica, Vakoc, & Blobel, 2006). This finding prompted a search for GATA1 cofactors 

that might bind to acetylated GATA1 and support its occupancy on chromatin. Peptide affinity 

pull-down using an acetylated GATA1 peptide in murine erythroleukemia (MEL) nuclear lysates 

recovered the BETs BRD2, BRD3, and BRD4 while the same unmodified peptide did not 

(Lamonica et al., 2011). This made the BETs leading candidates for the identity of the GATA1 

cofactor responsible for in vivo occupancy. 

 

Association of GATA1 with BETs 

 While BRD2, BRD3, and BRD4 were recovered in initial efforts to identify acetyl-GATA1 

binding partners, several lines of evidence made BRD3 appear to be the most important BET in 

the context of erythropoiesis. First, early array studies suggested that BRD2 was not expressed in 

G1E cells (Welch et al., 2004), making it seem less likely to be important as erythroid maturation 

occurs efficiently in these cells. Second, while peptides from GATA1 associated with both BRD3 

and BRD4, their interaction with BRD3 required acetylation while their interaction with BRD4 did 

not. Third, genomic occupancy of BRD3 correlated extremely well with genomic occupancy of 

GATA1 and BRD4 was absent from from a number of important GATA1-target sites. These 

observations strongly supported a relationship between GATA1 and BRD3. Because of this, the 

finding that nonspecific BET inhibition prevented transcriptional changes induced by GATA1 was 

interpreted as being due to BRD3 inhibition.  

 Recently, several findings led us to reconsider the question of whether BRD2 and BRD4 

might have a role in GATA1-mediated erythropoiesis. More recent expression profiling studies 



14 

 

(Cheng et al., 2009; Paralkar et al., 2014) reported expression of BRD2 in G1E cells, and we 

confirmed this at both RNA and protein levels (this work). Additionally, more recent examination 

of the genomic occupancy of BRD4 suggested that it is present at a greater fraction of GATA1 

sites than previously thought. Further exploration of the association and functional relationship 

between individual BETs and GATA1 is presented in Chapter 3. Another intriguing avenue of 

research is suggested by recent work demonstrating that GATA1, like BETs, binds to mitotic 

chromatin (Kadauke et al., 2012). Together with the proposed roles of BETs in bookmarking, this 

led us to hypothesize that these factors form a functional mitotic bookmarking complex. This is 

examined in Chapter 4. 

 

Specific Aims 

 The dissertation explores the transcriptional roles of BETs in GATA1-mediated 

erythropoiesis. The central hypothesis of this work is that BRD2, BRD3, and BRD4 support 

GATA1-mediated transcriptional activation in interphase and mitosis. Specifically, we aimed to: 

 

1. Evaluate the functional role of the BET family in GATA1-mediated transcription. To test 

the role of BETs in GATA1-mediated activation and repression, we pharmacologically inhibit them  

with JQ1 and measure transcriptome changes during GATA1-mediated erythropoiesis. We 

subsequently examine the requirement of BETs in transcriptional activation at the level of GATA1 

occupancy and at the level of downstream transcription. 

 

2. Test the individual contributions of BETs in GATA1-activated transcription. We 

characterize the genomic occupancy patterns of BRD2, BRD3, and BRD4 in the absence and 

presence of GATA1. We then test the functional requirement of each BET by depleting them 

using shRNA and CRISPR/Cas9.  
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3. Examine the role of BETs in mitotic bookmarking during erythroid maturation. We 

examine genomic association of BRD4, the BET most implicated in mitotic bookmarking, during 

mitosis. To directly test the functional role of BETs in mitotic bookmarking, we disrupt BET 

binding specifically during mitosis and measure post-mitotic transcriptional reactivation. 

 

Together these studies aim to elucidate general mechanisms of BET function in the context of 

erythropoiesis.  
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CHAPTER 2. EXPERIMENTAL METHODS 

 

Standard methods 

Cell culture 

  Culture of GATA1- erythroblast (G1E) cells and G1E cells expressing a conditionally-

active estrogen receptor-GATA1 fusion protein has been described(Tripic et al., 2009). G1E cells 

were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) with 15% fetal bovine serum (FBS), 

2% penicillin- streptomycin, 0.6% kit-ligand (KL) conditioned medium (CM), 45 uM 

monothioglycerol (MTG), and 2 U/mL Epoetin alpha (EPO). GATA1 was activated in G1E 

GATA1-ER cells by addition of 100nM estradiol for 24 hours (+GATA1). Where applicable, JQ1 

was added to a final concentration of 250nM (unless explicitly stated otherwise) and was diluted 

in media from 10mM in DMSO carrier.  

 

Chromatin immunoprecipitation (ChIP) 

  ChIP was performed as described (Letting, Rakowski, Weiss, & Blobel, 2003) with 

modifications as follows: Protein-DNA crosslinking was with 1% formaldehyde for 10 minutes at 

room temperature. 1M glycine was added to quench the reaction. Nuclei were extracted by lysis 

of outer cell membranes in cell lysis buffer (10 mM Tris pH 8.0, 10 mM NaCl, 0.2% Nonidet P-40) 

for 10 minutes on ice, and nuclei lysed in nuclei lysis buffer (50 mM Tris pH 8.0, 10 mM EDTA, 

1% SDS). Nuclear lysates were sonicated for 30 minutes using a Bioruptor (Diagenode) to lower 

the range of chromatin fragment sizes. Chromatin was diluted in IP dilution buffer (20 mM Tris pH 

8.0, 2 mM EDTA, 150mM NaCl, 1% Triton X-100, 0.01% SDS), pre-cleared with IgG and Protein 

A/G beads. Chromatin incubated with 10 ug of each antibody bound to Protein A/G Sepharose for 

each antibody IP, and 200ul of pre-cleared input chromatin from each sample saved separately. 

Following incubation overnight, beads were washed once with IP wash buffer 1 (20 mM Tris pH 

8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), twice with high salt buffer (20 mM 
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Tris pH 8.0, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.01% SDS), once with IP wash buffer 

2 (10 mM Tris pH 8.0, 1 mM EDTA, 0.25 M LiCl, 1% Nonidet P-40, 1% sodium deoxycholate), 

and twice with TE (10 mM Tris pH 8.0, 1 mM EDTA). Immunoprecpitated complexes were eluted 

with 100ul of IP elution buffer (0.1 M NaHCO3, 1% SDS). Eluates were incubated with RNaseA 

(0.02 mg/mL) for 30 minutes at 37 degrees, and then proteinase K (0.06 mg/mL) and NaCl (0.3 

M) were added and samples placed at 65 degrees to reverse crosslinks overnight. DNA was 

purified on Qiagen Mini-prep columns and eluted in 60ul of water for (DNA) or 133.3 ul water 

(input DNA). Antibodies used for IPs were: GATA1 (sc265-N6; Santa Cruz), BRD2 (A302-583A; 

Bethyl), BRD3 sera (see (Lamonica et al., 2011)), BRD4 (A301-985A; Bethyl), HA (12CA5). 

Quantitative PCR (qPCR) was run on ViiA7 Real-Time PCR System (Life Technologies) using 

Power SYBR Green (Invitrogen) and sample DNA content was compared in the linear range of a 

standard curve generated from serial dilution of input DNA. 

 

RNA isolation and RT-qPCR 

 RNA was isolated using Trizol or Trizol LS (Life Technologies). Reverse transcriptase 

(RT)-qPCR was performed with iScript (BIO-RAD) and Power SYBR Green (Invitrogen) using a 

Viia7 (Applied Biosystems). Mature transcript primers were designed to span exon-exon junctions 

across introns that are at least 500bp to prevent genomic DNA amplification. Primary transcript 

primers spanned exon-intron junctions are were placed at least 2kb beyond the transcription start 

site to prevent measurement of 5’ abortive transcripts. qPCR signal was normalized either to 

spike-in controls or to Gapdh, depending on experimental design. For spike-in normalization, in 

vitro transcribed mRuby2 RNA, or Solaris RNA Spike-in(Thermo), was added directly to Trizol in 

proportion to cell number for a per cell frame of reference for quantification(Lovén et al., 2012; 

van de Peppel et al., 2003). 
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Mouse fetal liver erythroblast culture 

  Primary mouse cell experiments were designed in consultation with Kristen Jahn, and 

performed by Kristen Jahn. Mouse fetal liver cells from E14.5 pregnant females were dispersed 

and lineage-depleted using the EasySep Kit (Stemcell; 19756A) which removes cells by depletion 

of cell populations with the following surface markers: CD5, CD11b, CD19, CD45R, 7-4, Ly-6G/C 

(Gr-1), TER119. The progenitor-enriched cell population was expanded for three days in 

StemPro-34 media (GIBCO) supplemented with Epoetin (EPO) (0.5U / ml), Kit Ligand (1% mSCF 

conditioned media), dexamethasone (1um), monothioglycerol (MTG) (0.1mM), L-glutamine, and 

penicillin/streptomycin. Cells were differentiated by re-suspension in media without   other than 

EPO. Cells were harvested in Trizol for RNA analysis and analyzed by flow cytometry (stains: 

Ter119-APC (BioLegend), DAPI (4,6 diamidino-2-phenylindole)). Analysis was performed on an 

LSR Fortessa flow cytometer (BD Biosciences). All mice were used in accordance with guidelines 

from the Institutional Animal Care Committee of the Children’s Hospital of Philadelphia 

(IACUC#012-7-660). 

 
 

Immunoblot 

 Nuclear extracts were prepared by removal of cytosol by selective permeabilization of cell 

membranes, centrifugation of nuclei, and nuclear lysis in high salt. Samples were separated by 

SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose (Bio-Rad) or PVDF 

membranes (Millipore). Signal was detected with chemiluminescence (Thermo). For quantification 

of BRD3 knockdown, an Odyssey Imager (LI-COR Biosciences) was used with fluorescent-

labeled secondary antibodies, and band intensity quantified with ImageJ (Schneider, Rasband, & 

Eliceiri, 2012). The following primary antibodies were used: ACTIN (A3854; Sigma), BRD2 (A302-

583A; Bethyl), BRD3 (2088C3a; Santa Cruz), BRD4 (A301-985A; Bethyl). 
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Mitotic ChIP 

 Cells were arrested in pro-metaphase of mitosis using nocodazole. Nocodazole offers 

high single-drug mitotic purity, but the potential that results obtaining using it reflect effects of 

microtubule disruption rather than of mitosis itself. Mitotic ChIP was performed with purification 

based on the phosphorylated mitotic epitope MPM2 (Campbell, Hsiung, & Blobel, 2014b). Briefly, 

nocodazole-treated cell populations were fixed with 1% formaldehyde for 10 minutes at room 

temperature. Cellular membranes were permeabilized with cell lysis buffer (see ChIP section), 

and cells were subsequently stained with anti-MPM2 antibody (Cell Signaling) (2.5ul/ml) for x 2 

hours at 4 degrees. A secondary stain with anti-mouse APC was performed for 45 minutes at 

room temperature, and cell sorted based on this label. Following sorting of APC high population, 

400ul was removed for mitotic purity checks by direct microscopy of DAPI-stained nuclei, and the 

remainder of sorted cells treated per ChIP protocol (above) beginning from nuclear lysis step. 

 

Mitotic arrest-release and measurement of transcriptional reactivation 

 Assessment of post-mitotic transcriptional reactivation was performed as described 

(Kadauke et al., 2012). G1E ER-GATA1 cells infected with MigR1/YFP-MD constructs. Cells were 

arrested in prometaphase of mitosis with nocodazole for 7-12 hours, and released for 0-5 hours 

by nocodazole washout. Cells were placed on ice and a newborn cell population was sorted as 

YFP-dim (mitotically degraded YFP) / FSC-low (small size) population on a FACSAria II (BD 

Biosciences) into TRIZOL LS (Invitrogen). RNA isolation and RT-qPCR was performed as 

described above. 
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New methods 

CAS9-mediated genetic disruption in G1E cells 

 This section outlines a simple approach to CAS9-based genome engineering used to 

create G1E knock-out cell lines. Parts of this section are modified from a write-up of our lab’s 

experience with CAS9 co-authored with Sarah Hsu that was previously shared with labs in the 

Epigenetics Program at the University of Pennsylvania via the “(Epi)genome Engineering 

CRISPR CLUB” organized by Professors Jennifer Phillips-Cremins and Roberto Bonasio.  

 

Overall strategy: 

 The strategy used was to introduce random mutations into the coding region of gene 

targets and screen for cells in with bi-allelic frame-shift mutations that made no functional protein 

product. This relies on the non-homologous end-joining (NHEJ) DNA repair pathway so that while 

the most common mutations observed are small deletions (1 to 50bp), significantly larger 

deletions and insertions of unexpected sizes are also commonly observed. This strategy can 

easily be extended to generating larger genomic deletions of other regions such as enhancers 

and non-coding RNAs, and is currently being applied to these purposes in our laboratory. 

 

Guide RNA design and cloning: 

 The major factors considered in designing guide RNAs were (1) generation of an optimal 

target, and (2) minimization of off-target binding. Guide RNA targets were selected early in coding 

regions so that as little protein would be produced, however the first 100bp of coding sequence 

was avoided so that use of an alternative start codon could not easily make a functional protein 

product. Guide RNAS were expressed as sgRNAs, combination guide RNA fusions to structural 

RNA that attaches the complex to the CAS9 protein (Jinek et al., 2012), from a human U6 

promoter with the vector phU6-gRNA(Addgene #53188). A single ‘G’ nucleotide was added to 
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guide RNA sequences that did not start with G to initiate transcription. Guide RNA sequences 

were ordered as sense and antisense versions, and annealed by boiling for 5 minutes followed by 

air cooling on the bench top to room temperature. Annealed oligos were ligated into BbsI-cut 

vector and transformed into highly competent E. coli DH5-alpha. Constructs were verified by 

sequencing from the human U6 promoter (sequencing primer: AAGGTCGGGCAGGAAGAGGG). 

 

CAS9-transfection and single cell sorting: 

 CAS9/GFP and guide RNA/mCherry plasmids were transiently co-transfected into G1E 

cells using an Amaxa II electroporator (Lonza) with program G-016 and Kit R. Single transfected 

cells were sorted into a 96-well plate using a FACSAria II cell sorter (BD Biosciences), expanded, 

and screened by DNA sequencing and immunoblot. Immunoblot must consider the location of the 

antibody epitope (ideally toward the end of the protein) relative to the position of the mutation 

being induced. Guide RNA sequences were generated using the CRISPR design tool 

(http://crispr.mit.edu), and are listed below:  

Brd2 (exon 3)  TTAGGACAATATCATCGGT 
Brd3#1 (exon 4)  ACCTTGACTACAGGCGGTGT 
Brd3#2 (exon 1)  GGGACTGCCGGGATCCCCGT 

 

Mitotic ChIP by ro3306-release 

 Microtubule-disrupting drugs such as nocodazole are effective in arresting cell in mitosis, 

however cellular stress responses and the general toxicity of this agent create the potential that 

results obtained are not generalizable to cells undergoing mitosis normally. Furthermore, these 

agents limit mitotic study to pro-metaphase of mitosis specifically. Some reports suggest BRD4 

may dissociate from chromatin as a result of microtubule disruption with nocodazole but still is 

able to re-associate with chromatin in late telophase(Nishiyama, Dey, Tamura, Ko, & Ozato, 

2012). However, as we observed mitotic BET protein binding by ChIP, it is unclear whether 

dissociation of BRD4 at the global level of immunofluorescence would be important for 
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bookmarking if it occurs. Still, nocodazole-independent methods of mitotic purification will be 

important for verifying observations about BET proteins as well as any mitotic phenomenon 

observed.  

 For nocodazole-independent mitotic purification, we used the CDK1 inhibitor ro3306 

(Vassilev et al., 2006) to initially enrich G1E cells progressing through mitosis. ro3306 arrested 

cells in late G2, and following its washout cells were grown in media for 30 minutes at 37 degrees 

and then harvested for mitotic ChIP by fixation with 1% formaldehyde. Subsequent mitotic ChIP 

staining, cell sorting, and immunoprecipitation was performed as described for standard 

nocodazole-based mitotic ChIP. ro3306-purified populations represent cells in a range of different 

stages of mitosis and anaphase and telophase cells are clearly visible by microscopy using this 

method. Data from use of this method are presented in chapter 4. 

 

High-throughput data generation and analyses 

ChIP-seq library preparation and initial read mapping 

  ChIP libraries for sequencing were created as described above for ChIP-qPCR. 

Subsequent Illumina library preparation and sequencing was performed was performed by Cheryl 

A. Keller and Belinda Giardine at the Hardison Laboratory at Penn State University per 

manufacturer’s recommendations. Libraries were prepared from a 10ng of ChIP DNA. DNA 

fragments were filled to generate linear blunt-ended double-strand oligos. Fragments were 

amplified by 18 cycles of PCR following adaptor ligation, and DNA between 200 and 400 bp gel 

purified and used for sequencing. Sequencing was performed on an Illumina Hi-seq2000. Non-

unique reads were considered PCR artifacts and discarded. Reads were mapped to mouse 

genome assembly mm9 using Bowtie (Langmead, Trapnell, Pop, & Salzberg, 2009). Reads were 

extended in the 3’ direction to 200bp using MACS (Y. Zhang et al., 2008) to generate bigwig 

format files for browser display. Libraries generated and used are presented in Table 2.1. 
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Table 2.1 ChIP-seq libraries generated and analyzed in this dissertation. BRD3 ChIP was 

performed by Janine M. Lamonica and Stephan Kadauke.  

 

Analysis of ChIP-seq data 

  Bigwig format files were visualized with the UCSC genome browser (Meyer et al., 2013). 

Heatmap visualization of multiple tracks at GATA1 locations (Mouse ENCODE Consortium et al., 

2012) was performed using the Cistrome (T. Liu et al., 2011) Galaxy (Giardine et al., 2005) 

analysis tool ‘Heatmap’. BRD2, BRD3, BRD4, H3K27ac signal in bigwig format was aligned 

across 4kb regions centered on GATA1 locations. GATA1 locations were clustered using k-

means (k=5) considering only BRD4 signal. Regions of BRD4 high signal were easily identified 

independent of k in the ranges allowed by ‘Heatmap’ (k=3-10). Peak calling employed MACS 

(Feng, Liu, Qin, Zhang, & Liu, 2012; Y. Zhang et al., 2008) (default parameters: p < 10-5 

threshold, band width = 300, tag size = 25, effective genome size = 2.7 x 109) and SISSRS 

(maximum fragment length L = 300, genome size = 2.7 109, using G1E input DNA as 

background) (Jothi, Cuddapah, Barski, Cui, & Zhao, 2008; Narlikar & Jothi, 2012).  Signal at 

particular regions promoters and enhancers was measured by counting aligned reads or bigwig 

Target Antibody Condition #0replicates
Libraries(generated:

H3K27ac Millipore G1E 2
G1E+GATA1 2

GATA1 Santa(Cruz((N6)(sc265 G1E 2
G1E+GATA1 2

BRD2 Bethyl(A302M583A G1E 1
G1E+GATA1 1

BRD2 HA G1E+GATA1 2
BRD4 Bethyl(A301M985A Mitotic(G1E+GATA1((nocodazole) 1

Mitotic(G1E+GATA1((ro3306) 2
BRD4 Bethyl(A301M985A G1E 2

G1E+GATA1 2
Initial(reported(analysis(of(prior(libraries:

BRD3 sera((Lamonica(2011) G1E 1
G1E+GATA1 1

BRD3 HA G1E 1
G1E+GATA1 1
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signal as indicated using bedtools (Quinlan & Hall, 2010). Binned scatter plots were generated 

using the function geom_bin2d in the r package ggplot2 (Wickham, 2009). from each experiment 

at promoter locations (within 500bp of RefSeq transcription start sites), and enhancer locations 

(5kb regions that were H3K4me1 enriched, DNase hypersensitive, and promoter excluded 

(Hsiung et al., 2014) 

  GATA1 occupancy analyses were conducted using ChIP-seq data performed in two 

control replicates in parallel with two JQ1 replicates. MACS was used to call peaks in control 

samples using default parameters, and a high-confidence peak set was defined as peaks called 

independently in each control replicate. Read density was measured at these locations using 

bedtools as above. For comparison to array data, the nearest gene within of each high 

confidence GATA1 peak was located using bedtools. Varying length of associations allowed 

between peaks and genes of 2kb to 100kb were tested and gave similar results. Gene symbols 

were matched to array symbols, and binned scatter plots generated plotting (sum GATA1 +JQ1 / 

sum control GATA1) on the x-axis against fold change in mRNA on the y-axis for each GATA1 

peak with ggplot2. 

 

Microarray hybridization and analysis 

  To allow normalization of results to cell number, ERCC RNA Spike-In Mix (Ambion 

#4456740) was added directly to Trizol-homogenized samples in proportion to cell number. RNA 

quality control and subsequent microarray hybridization was performed by the UPENN Molecular 

Profiling Facility. Details on microarray procedures prior to analysis are summarized from 

information provided by Molecular Profiling Facility staff who performed these steps. Protocols 

were performed as described in the Ambion WT Expression Manual and Affymetrix GeneChip 

Expression Analysis Technical Manual. Total RNA (250ng) was converted to first-strand cDNA 

with addition of the T7 promoter sequence using reverse transcriptase priming with poly(T) and 

random oligomers. Second-strand cDNA was synthesized by in vitro transcription with T7 RNA 
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polymerase for linear amplification. Product cRNA was converted to cDNA, fragmented, assessed 

by Bioanalyzer, and biotinylated by terminal transferase end labeling. Labeled cDNA was added 

to Affymetrix hybridization cocktails, denatured at 99ºC for 5 minutes, and hybridized for 16 h at 

45ºC to Affymetrix Mouse Gene 2.0 ST GeneChips. Arrays were subsequently stained with 

streptavidin-phycoerythrin (SA-PE). Fluorescence was amplified by adding biotinylated anti-

streptavidin and additional SA-PE stain. Fluorescence signal was collected with a GeneChip 3000 

7G scanner. Affymetrix Command Console and Expression Console were used to quantify 

expression levels using default analysis parameters provided by Affymetrix. 

  Analysis was performed using the Robust Multi-array Analysis (RMA) method (Irizarry et 

al., 2003) and subsequently normalized to spike-in controls as described (Lovén et al., 2012). 

Genes whose probe intensity was above the median level of background probes in 2 or fewer 

replicates (3 replicates were made in each condition) were excluded from further analysis. 

Differentially expressed genes were defined as those which changed at least 2-fold on average 

when replicates were averaged with Bonferroni-corrected p-value was <.05 using a linear model 

of statistical variance calculated by the r package limma (Smyth, 2004). 

 

Public access to data via Gene Expression Omnibus 

 Data generated as described in this manuscript is accessible via the Gene Expression 

Omnibus (Edgar, Domrachev, & Lash, 2002) repository under the SuperSeries accession 

GSE62737 which consists of ChIP-seq accession GSE62709 and microarray accession 

GSE62736. This data is on pre-publication hold pending acceptance of our manuscript "Function 

of BET proteins in GATA1-mediated transcriptional activation" by Stonestrom et al. and will be 

publicly accessible in early 2015. 

 

Primers 

Primer design strategy is explained per specific experiment above. 
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Chip-qPCR primers 

CD4 5’TR  CCAGAACATTCCGGCACATT 
GGTAAGAGGGACGTGTTCAACTTT 

Eraf promoter  TTAAAGGGTCTGGGCATCATG 
   CAACATCTTGGGAGAACGGTC 
Hba-a1 promoter TGACCAAGGTAGGAGGATACTAACTTCT 
   TTGCCCGGACACACTTCTTAC 
Hba-a1 HS-12  ACCCTGACTCAAAACAACAAAGTAA 

GGTTTCTGAGTTTCCTTATCTGCAA 
Hba-a1 HS-31  TTCTGACCTCACCTCAGCTAAGC 

TGTGTGGGCAGAGGACACA 
Hbb HS2  GGGTGTGTGGCCAGATGTTT 

CACCTTCCCTGTGGACTTCCT 
Hbb-b1 promoter CAGGGAGAAATATGCTTGTCATCA 
   GTGAGCAGATTGGCCCTTACC 
Gata2 -2.8  GCCCTGTACAACCCCATTCTC 

TTGTTCCCGGCGAAGATAAT 
Gata2 promoter  CCCCTCGAAGTGATGTCGAA 
   TCTGGCTGTCTCTCGGTTCC 
Kit -114   GCACACAGGACCTGACTCCA 

GTTCTGAGATGCGGTTGCTG 
Kit +5   GGCTGGAAACCACTGCCTTA 
   AGCCTTGCCTGTGCTTAAAGC 
Kit +33   TGGCAGTCCTGGTTGTAGCA 
   GCTGCAAGCATGCGATCA 
Kit +58   GGAGGAGTTAGGGAATATGTCGATAG 

  GCAGTTCTCCAGGTTGAGTCAGA 
Klf1 promoter  TCTGCTCAAGGAGGAACAGAGCTA 

  GGCTCCCTTTCAGGCATTATCAGA 
Klf1 enhancer  CTGGCCCCCCTACCTGAT 

  GGCTCCCTTTCAGGCATTATC 
Lyl1 promoter  TCAGCATTGCTTCTTATCAGCC     
   CGCAGAGGCCAGAGGATG 
Lyl1 5’ TR  TCCAGGAGCAGCTCACTTTCTC 

CGGAGGGCCTGAGTAGCTT 
Lyl1 intron  ACAGCCATCAGATAGGTCACCAGT 

  TGAGAGGTCCATGCTGTGGTTTCA 
Nfe2 +3.4  GTGATAGCAACCCTTCCCTC 

GGTAAAGGTCCAGTGTCTCC 
Runx1 +4  CTCTCACGAGAAAGGGAACAAT 
   GCAGGAGGAAACCTGTAACTC 
Slc4a1 promoter CTGAGCAGTCAAGCCTTAGTTCAC 
   CCTGTCCAGTCCCTAAGGTCTTT 
Slc4a1 intron 1  ATCAGAAGCAACCTAGAGTCCAGC 

  TAAGAGTGTAGGACCAGCAGGCAA 
Zfpm1 +2  CTTTTCTCCTGCCCAGTCG 

TGCTGTTGCCTCGAACC 
Zfpm1 +4.7  AATTGTGCCCCTTATC TCCTG 

  CTGGAGTATTATTCACGAGCCG 
Zfpm1 intron 1  TGCAAGTCCCATCCTGATAAGA 

  GCACGCCAGATAAGATCACAATT 
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Reverse transcription-qPCR primers 

Alas2   TATGTGCAGGCCATCAACTACCCA 
   TTTCCATCATCTGAGGGCTGTGGT 
Eraf   GCCATGACAGAATTCCAGCAA 
   TTTGGACTTCAGAAAGGTCCTGTAT 
Klf1   CACGCACACGGGAGAGAAG 
   CGTCAGTTCGTCTGAGCGAG 
Epb4.9   TGCAGAAGCAACCTCTTACC 

  AGATCCTTGTAGCCCAACACC 
Hba-a1   CACCACCAAGACCTACTTTCC 

  CAGTGGCTCAGGAGCTTGA 
Hbb-b1   AACGATGGCCTGAATCACTTG 

AGCCTGAAGTTCTCAGGATCC 
FOG1   CCTTGCTACCGCAGTCATCA 

  ACCAGATCCCGCAGTCTTTG 
Gata2   CACCCCTAAGCAGAGAAGCAA 

TGGCACCACAGTTGACACACT 
Gapdh   AGGTTGTCTCCTGCGACTTCA 

CCAGGAAATGAGCTT GACAAAG 
Hexim1   TTGTGGAAGAAGCTGGTGAG 

TCCTGCTTGCTCATGTTCTG 
Kit   AGCAGATCTCGGACAGCACC 

TGCAGTTTGCCAAGTTGGAG 
Lyl1   CCTGACCTGG ACTGACAAACCT 
   CACATGGACCCCACGGATA 
Myb   TGACTTTCGACACATGGCTCCTCA     

  AATGCACTTGGTGCTGCTCTCAAC 
Myc   AACCAGAGCTTCATCTGCGATCCT 
   AGAAACCGCTCCACATACAGTCCT 
Nfe2   TGGAACTGACTTGGCAAGAG 
   ACAGGGGCAATATGTTGGAG 
Slc4a1   TGGAGGCCTGATCCGTGATA 
   AGCGCATCGGTGATGTCA 
Spna1   AAAGAGTTCCGCTCTTGCCTGAGA 
   TTTCCTCCCTGGATCCACAGCATT 
Uros   CAGGCACAATGAAGGTTCTC 
   TGACAGCACAGGAATCAGTG 

 

Primary transcript rt-qPCR primers 

Hbb-b1   GCCTGCAGTATCTGGTATTTTTG 
TGAAATCCTTGCCCAGGTG 

Klf1   TTGGAGGGTGGTACTTACAGC 
   AGAAGGGACGATGTCCAGTG 
Nfe2   AATTCTGCACGAGGACAACC 

CTCCACAAGCACAAAGGATTC 
Tal1   CACAGGGAGAATCCATCTAAGG 
   TGTTGGTGAACATGGGGAAG 
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Hba-a1   TCAGGGTGTCCACTTTGTCTC 
GGCAAGGAA TTTGTCCAGAG 

Uros   CCATTCCCACTTCCATTCC 
   TAGCTCTTCAGGCTCCCTTG 
Pabpc1   TCTGAAGTTCCTGGGATTGG 

TAGCCCTTGGAGCCATTTTC 
Gapdh   CTCAGCTCCCCTGTTTCTTG 
   AATCTCCACTTTGCCACTGC  
cKit   TTACTTCGCCAAGACAGCTC 
   CTGATTGTGCTGGATGGATG 
Gata2   TTCGCTGAGTTGTGATCCTG 
   GCTGTGCAACAAGTGTGGTC 
Myb   TGCTGAAGCGTTTCTGTCTG 
   AGCCCATCGTAGTCATGGTC 
Lyl1   ATGGTCTTTGGCCTTCCTTC 
   TTTCTCAGTCATGGCGGAAC 
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CHAPTER 3. FUNCTION OF BET PROTEINS IN GATA1-MEDIATED TRANSCRIPTIONAL 

ACTIVATION 

 

Chapter summary 

  Bromodomain and Extra-Terminal motif proteins (BETs) associate with the master 

erythroid transcription factor GATA1 and are required for its normal in vivo occupancy. Here 

we test the extent to which BETs regulate the erythroid transcriptome as a family and the 

individual roles of each BET. Pharmacologic inhibition of the BET family impaired GATA1-

mediated transcriptional activation but allowed repression to continue normally. BETs were 

required both to facilitate the occupancy of GATA1 and support downstream transcription. 

We subsequently investigated the role of each expressed BET BRD2, BRD3, and BRD4 

independently. We identified BRD3 binding at the great majority of GATA1 sites, BRD4 

binding at a large subset, and BRD2 binding at relatively few. Surprisingly, depletion of 

either BRD2 or BRD4 blunted erythroid gene activation, while depletion of BRD3 did not. 

BRD3 loss only affected erythroid transcription in the setting of BRD2 deficiency. 

Additionally, exogenous BRD3 expression compensated for BRD2 loss. These results 

characterize the role of BETs in gene activation during GATA1-mediated erythropoiesis and 

reveal the individual functions of BRD2 and BRD4 in this process. They further suggest that 

BRD2 and BRD3 can function redundantly. 

 

Introduction 

  The mammalian Bromodomain and Extra-Terminal motif proteins (BETs) have drawn 

widespread interest as pharmacologic targets for the treatment of various diseases, 

including hematological malignancies and solid tumors (Belkina & Denis, 2012; Dawson et 

al., 2012; Prinjha, Witherington, & Lee, 2012; Junwei Shi & Vakoc, 2014). Within the BET 

family BRD2, BRD3 and BRD4 are ubiquitously expressed in mammalian tissues, while 
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BRDT is testis-specific. These molecules contain two tandem bromodomains that mediate 

association with chromatin by binding to acetylated histones and transcription factors (Dey 

et al., 2003; B. Huang et al., 2009; Lamonica et al., 2011; Nishiyama, Dey, Miyazaki, & 

Ozato, 2006; S.-Y. Wu et al., 2013). BETs function in regulatory complexes that impact 

mRNA production at multiple steps of the transcription cycle, such as modifying and 

remodeling chromatin and promoting transcription elongation (Bartholomeeusen, Xiang, 

Fujinaga, & Peterlin, 2012; Dawson et al., 2011; Itzen, Greifenberg, Bösken, & Geyer, 2014; 

Jang et al., 2005; LeRoy et al., 2008; Patel et al., 2013; S.-Y. Wu & Chiang, 2007; Z. Yang 

et al., 2005). 

  Given the widespread expression of BETs, it was initially surprising that 

pharmacologic inhibitors, such as JQ1, elicit cell- and gene-specific responses. These BET 

inhibitors selectively bind BET bromodomains and displace them from acetylated lysine 

residues on histones and transcription factors (Dawson et al., 2011; Filippakopoulos et al., 

2010; Nicodème et al., 2010). Promising results in animal models of malignancy have 

sparked clinical trials and intensified efforts to better understand BET function (Belkina & 

Denis, 2012; Dawson et al., 2012; Delmore et al., 2011; Junwei Shi & Vakoc, 2014). The 

current generation of BET inhibitors do not distinguish between BET family members, and 

the development of additional BET inhibitors with distinct specificities remains a major goal. 

 Erythroid maturation is a developmental process driven in part by the erythroid master 

transcription factor GATA1 which activates essentially all erythroid-specific genes and silences 

genes associated with the immature proliferative state (Cheng et al., 2009; Welch et al., 2004). 

Mice lacking GATA1 die in utero due to failure to form mature erythroid cells (Fujiwara et al., 

1996), and several types of congenital anemias in humans are associated with GATA1 mutations 

(Campbell et al., 2013; Nichols et al., 2000). GATA1 is acetylated near its zinc finger DNA binding 

domain, and mutations of acetylated lysines impair the ability of GATA1 to associate with 

chromatin in vivo (Lamonica et al., 2006). Exposure of erythroid cells to BET inhibitors diminishes 
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GATA1 occupancy at a subset of target genes. The BET protein BRD3 specifically associates 

with acetylated GATA1 and chromatin immunoprecipitation (ChIP) studies suggest BRD3 in 

particular is present at most GATA1-occupied sites (Lamonica et al., 2011). Here we expand 

these initial studies of BET function in the context of GATA1-mediated erythropoiesis by first 

characterizing BET functions and mechanisms as a family, and second elucidating the roles of 

individual BETs. We find that BETs facilitate GATA1-mediated transcriptional activation but are 

largely dispensable for repression. BETs appear to both support the initial occupancy of GATA1 

and subsequently activate transcription downstream. BRD2 and BRD4 depletion compromise 

GATA1-induced erythroid gene activation. Unexpectedly, despite the presence of BRD3 at nearly 

all GATA1 occupied sites, BRD3 is not required for normal GATA1-activated transcription. 

However, BRD3 deficiency exacerbates transcriptional defects associated with BRD2 loss and 

BRD3 expression compensates for BRD2 loss suggesting these proteins have overlapping 

functions. Together these studies reveal the aspects of the GATA1-mediated transcription 

program that utilize BETs, and identify the functional role of each BET individually. 

 

Results 

BETs are required for efficient GATA1-dependent transcriptional activation but not repression 

 Pharmacologic inhibition of BETs impaired activation of several GATA1-target genes 

(Lamonica et al., 2011). To evaluate the contribution of BETs to GATA1-induced gene 

expression changes genome wide, we performed microarray analysis on G1E cells treated 

with 250nM JQ1 or DMSO control concurrent with GATA1 activation or in its absence for 24 

hours in biological triplicate. As dramatic alterations in cell size and RNA content occur 

during erythroid maturation, we added external spike-in RNA controls to each sample in 

proportion to cell number to normalize our results (Lovén et al., 2012; van de Peppel et al., 

2003). We initially visualized changes in mRNA levels of expressed genes as a heatmap 

arranged by hierarchal clustering (Figure 3.1A). A preponderance of genes were most highly 
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expressed in untreated G1E cells and declined slightly upon JQ1 treatment. A stronger 

decline in transcripts was observed following GATA1 induction, and transcript levels were 

lowest upon GATA1 activation in the presence of JQ1. Focusing first on GATA1’s impact on 

gene expression, we plotted all transcripts from most repressed to most activated (Figure 

3.1B). 5,094 transcripts decreased while only 220 increased following GATA1 addition using 

stringent differential expression criteria (2-fold change and Bonferroni-corrected p<0.05) 

(Figure 3.2). The predominance of repression upon GATA1-induction contrasts with prior 

studies of GATA1-mediated transcriptome changes that were based on internal standards 

and concluded that the number of activated and repressed genes are similar (Doré, Chlon, 

Brown, White, & Crispino, 2012; Welch et al., 2004; W. Wu et al., 2011; M. Yu et al., 2009). 

This highlights the importance of spike-in controls in transcriptome studies in which global 

mRNA output is dramatically altered. 

 To evaluate the role of BETs in transcriptional regulation by GATA1, we plotted 

transcriptional change with GATA1 induction against JQ1 sensitivity for each gene (Figure 

3.3A). While significant variation was observed across measured genes, consistent with 

gene selectivity in JQ1 response (Dawson et al., 2011; 2012; Lovén et al., 2013; Nicodème 

et al., 2010; Zuber et al., 2011), JQ1 sensitivity trended strongly with increased GATA1-

mediated activation. In contrast, transcripts that decreased upon GATA1 induction 

decreased no more or less on average with concurrent JQ1 treatment. BET inhibition 

increased mRNA levels at some genes, which could be due to repressive functions of BETs 

or be indirect. These results are consistent with BETs functioning principally in GATA1-

mediated activation and having little role in repression. Our findings were confirmed at 

canonical erythrocyte genes in independent experiments by RT-qPCR (Figure 3.3B).  

To verify the transcriptional effects of BET inhibitors in primary erythroid cells, we 

measured gene expression in mouse fetal liver erythroblast progenitors differentiated in the 

presence or absence of JQ1. BET inhibition suppressed surface expression of the erythroid 



33 

 

maturation marker TER-119, but had no overt toxic effect (Figure 3.4A). Similar to results in 

G1E cells, activation of erythroid gene expression was impaired by JQ1 while gene 

repression occurred normally (Figure 3.4B). We also noted induction of the transcriptional 

repressor HEXIM1 upon BET inhibition as has been observed in other cell types 

(Bartholomeeusen et al., 2012; Chaidos et al., 2014). Together these results support the 

role of BETs in GATA1-driven transcriptional activation, and further suggest repression may 

be largely BET-independent.   

 

Role of BETs in GATA1 occupancy genome-wide 

 We previously reported that GATA1 must interact with BETs in order to bind to a 

handful of its occupied sites (Lamonica et al., 2011). To evaluate the role of BETs in GATA1 

occupancy genome-wide, we performed anti-GATA1 ChIP-seq following 24 hours of GATA1-

induction in the absence or presence of JQ1. BET inhibition almost entirely prevented 

GATA1 binding at some loci (Hbb), while having no measurable effect on binding at others 

(Zfpm1) (Figure 3.5A). To quantitatively examine the requirement of BETs for GATA1 

occupancy we first defined 5,096 high-confidence GATA1 sites using the intersection of 

MACS peak calls in two control replicates (Y. Zhang et al., 2008). We then compared the 

maximum read pileup height at these locations in controls compared to JQ1-treated samples 

(Figure 3.5B). BET inhibition reduced GATA1 occupancy at 89.6% of sites (points below 

blue line), but did so only partially at the great majority of loci. To evaluate the relationship 

between inhibition of GATA1 occupancy and inhibition of transcription, we plotted fractional 

maintenance of GATA1 occupancy against transcriptional sensitivity of presumptive target 

genes nearby GATA1 sites (Figure 3.5C).  

 Loss of GATA1 occupancy was not a strong predictor of JQ1-sensitivty at genes 

adjacent GATA1 OS. However, genes adjacent JQ1-evicted GATA1 sites that also activated 

by GATA1 were more JQ1-sensitive than those adjacent GATA1 sites that were JQ1-stable 
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(Figure 3.6). Still, a wide range of transcriptional sensitivities was observed regardless of 

the stability of GATA1 occupancy at all sites. This included reduction of GATA1 at many 

sites adjacent genes whose expression was unaffected by BET inhibition. At these OS, 

GATA1 binding is either not required for transcription or partial occupancy is sufficient for 

transcriptional activation. GATA1 signal was higher when induction occurred concurrent with 

JQ1 treatment at a small number of sites. This suggests that BETs might also function in an 

occupancy-inhibitory manner. The sensitivity of GATA1 sites to JQ1 correlated with TAL1 

occupancy, but not with the other mouse ENCODE-defined transcription factors in the same 

cell type, promoter or enhancer localization, or DNase hypersensitivity (Table 3.1). As TAL1 

is associated with transcriptional activation, this is consistent with GATA1-activated genes 

having an increased need for BETs for full occupancy. Independent experiments confirmed 

variable JQ1-mediated reductions in GATA1 occupancy similar to those observed by ChIP-

seq (Figure 3.7). These results suggest BETs are widely required for maximal GATA1 

occupancy at many sites, but that the role of BETs in GATA1-mediated transcription is likely 

to extend beyond assisting GATA1 in binding to chromatin. 

 

BETs activate transcription subsequent to establishment of GATA1 occupancy 

  BETs interact with the general transcription machinery and may stimulate 

transcription directly (Anand et al., 2013; Devaiah et al., 2012; Jang et al., 2005; LeRoy et 

al., 2008; Patel et al., 2013; Z. Yang et al., 2005). Based on the results above, we tested 

whether BETs function in GATA1-activated transcription subsequent to the establishment of 

chromatin occupancy. As GATA1 occupancy might be less sensitive to BET inhibition once 

established, we examined the short-term effects of BET inhibition on accomplished GATA1 

occupancy. Indeed, JQ1 treatment for one hour removed BETs from all sites examined with 

little effect on GATA1 occupancy (Figure 3.8-9). We next measured primary transcript levels 

of GATA1 target genes under these conditions. Several GATA1 targets including Hbb-b1 (β-
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globin), Klf1, and Nfe2, were immediately repressed upon BET inhibition, suggesting with 

transcriptional activity of BETs downstream of GATA1-occupancy (Figure 3.10-11). In 

contrast, transcription of other genes like Hba-a1(α-globin) and Uros was unperturbed by 

short-term JQ1 treatment despite their sensitivity to long term JQ1 exposure and proximity 

to BET-bound regulatory elements. At these genes BETs might function by predominantly by 

assisting GATA1 occupancy or by secondary mechanisms. As expected, genes repressed 

by GATA1, such as Gata2 and Kit remained inactive upon JQ1 treatment. We conclude that 

at a subset of genes BETs augment GATA1 transcriptional activity subsequent to its 

chromatin binding. 

 

GATA1 drives global reorganization of BET occupancy 

 We previously demonstrated that BRD3 and BRD4 directly interact with acetylated 

GATA1, and BRD3 is recruited to several GATA1 binding sites in GATA1-dependent manner 

(Lamonica et al., 2011). Early microarray data (Welch et al., 2004) suggested BRD3 and 

BRD4 were the only BETs expressed in G1E cells, however recent genome-wide data 

(Cheng et al., 2009; Paralkar et al., 2014) indicated BRD2 was indeed expressed. To better 

define the role of each individual BET in erythroid maturation, we performed chromatin 

immunoprecipitation and high-throughput sequencing (ChIP-seq) for BRD2, BRD3, and 

BRD4 in G1E cells in the absence and presence of GATA1 (Weiss et al., 1997). Although 

we had previously generated a BRD3 ChIP-seq data set (Lamonica et al., 2011), we 

repeated this experiment to improve sequencing depth and compare BET profiles generated 

on the same platform. We initially inspected BET occupancy at model GATA1 target loci 

including Hbb (beta-globin) (Figure 3.12A) and observed recruitment of each BET to these 

sites in similar but distinct patterns. All were recruited to the beta-globin gene (Hbb), but 

BRD3 and BRD4 occupied much more of the nearby locus control region than did BRD2. We 

then examined occupancies of these BETs across all 13,123 GATA1 occupied sites (Mouse 
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ENCODE Consortium et al., 2012; W. Wu et al., 2011). We clustered binding signals for 

BRD2, BRD3, BRD4, and GATA1 together with acetylated histone 3 lysine 27 (H3K27ac) 

across each GATA1 sites using k-means (k=5), and visualized this as a heat map (Figure 

3.12B). BRD3 was present at nearly all the locations bound by GATA1, while BRD4 was 

strongly present at only a subset (3,344 sites). BRD4 occupancy correlated strongly with 

H3K27ac in the vicinity of GATA1 OS but was maximal directly over GATA1 peaks where 

H3K27ac was relatively lower. The distribution of H3K27ac likely reflects acetylated 

nucleosomes flanking GATA1 occupied nucleosome-depleted regions. These results support 

a model of GATA1-dependent recruitment of BETs to GATA1 sites. These results suggest 

that upon GATA1 induction BRD3 is recruited to nearly all GATA1 sites, BRD4 to a large 

minority, and BRD2 to the vicinity of some.  

 We next expanded our analysis of BET binding to include all BET-occupied sites. 

We used two different peak identification methods (MACS and SISSRS) to define BET-

enriched regions across the genome. We compared the binding sites identified for each with 

predicted regulatory regions and mouse ENCODE-defined transcription factor binding sites 

in erythroid (G1E and MEL) cells in the absence and presence of GATA1 (Table 3.2). 

GATA1 induction increased the fraction of BRD3 and BRD4 sites at promoters, and BRD3 

also at enhancers, but did not substantially change the fraction of BRD2 sites at these 

potential regulatory elements. Additionally, the fraction of BRD3 and BRD4 sites at DNase 

hypersensitive sites increased following GATA1 induction. This is consistent with an 

increase in DNA association mediated by transcription factors relative to histones. Both 

peak identification methods demonstrated a much stronger overlap of BRD3 and BRD4 with 

GATA1 than BRD2. The distinct binding pattern of BRD2 was confirmed by retroviral 

expression of HA-BRD2 and ChIP-seq using an antibody directed against the HA epitope in 

independent experiments (Table 3.3). These results show substantial reorganization of 

BRD3 and BRD4 binding upon GATA1 activation. 
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 To parse the functional contributions of BETs, we re-examined the effects of BET 

inhibition on GATA1 occupancy and transcriptional activation together with the BET-specific 

occupancy data generated. To test whether occupancy of a particular BET family member 

explained the effect of JQ1 on GATA1 occupancy, we plotted BRD2, BRD3, and BRD4 binding 

against the fractional occupancy of GATA1 upon JQ1 treatment (Figure 3.13). No strong 

relationship was observed between GATA1 eviction and the presence of the BETs alone or in 

combination. This suggests that factors other than quantity of BET binding are likely to determine 

whether GATA1 requires BETs for occupancy at given sites. Other GATA1 cofactors are likely 

sufficient for stable GATA1 binding to chromatin at many locations. To examine whether a 

particular BET family member predicted transcriptional response to JQ1, we plotted BRD2, 

BRD3, and BRD4 read counts at promoters and enhancers against JQ1 response with or without 

concurrent GATA1 induction (Figure 3.14). BET occupancy was not a strong predictor of JQ1 

sensitivity overall, however a weak relationship between JQ1 effects and BRD4 occupancy at 

promoters was observed. This is consistent with previous reports showing that most BET 

occupied genes fail to respond to BET inhibitors (Anders et al., 2014; Lovén et al., 2013; 

Nicodème et al., 2010; Zuber et al., 2011). Regions with high histone acetylation or BRD4 

occupancy, referred to as “super-enhancers”, have been suggested to identify genes particularly 

sensitive to JQ1 (Lovén et al., 2013). We defined these regions using the algorithm ROSE (Rank 

Ordering of Super-Enhancers) using BRD4 signal and examined JQ1 sensitivity of associated 

genes (Figure 3.15). Genes linked to super-enhancers were only minimally more JQ1 sensitive 

than random genes. Activation by GATA1 was a much stronger predictor of JQ1 sensitivity.  

 

Individual roles of BETs 

  Current knowledge of BET function is largely built on studies using inhibitors that do not 

distinguish between individual BETs (Asangani et al., 2014; Belkina & Denis, 2012; Lovén et al., 

2013; Mele et al., 2013; Nicodème et al., 2010; Junwei Shi & Vakoc, 2014). To dissect the roles 
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of individual BETs in GATA1-driven erythropoiesis, we initially used a loss-of-function approach 

combining CRISPR/CAS9-engineered gene disruption (Mali et al., 2013) and shRNA-mediated 

knockdown. As BRD3 occupies nearly all GATA1 OS, we had speculated that it was the most 

relevant BET in GATA1-mediated transcription. Surprisingly, cells engineered to produce no 

detectable BRD3 expressed all examined GATA1 target genes at essentially normal levels upon 

GATA1 induction (Figure 3.16A), suggesting BRD3 is not essential. In contrast, BRD2 deficient 

cells failed to transcribe erythroid genes at normal levels following GATA1 activation (Figure 

3.16B). However, the effects of BRD2 depletion were less pronounced than those observed with 

JQ1 treatment implicating additional BETs in GATA1 driven erythroid maturation. Attempts at 

functional deletion of BRD4 failed, perhaps due to its requirement for cell growth (Houzelstein et 

al., 2002). However, transient shRNA-mediated depletion of BRD4 significantly decreased 

GATA1-induced gene expression (Figure 3.16C) supporting its importance in this process. While 

no growth defects were observed upon BRD3 ablation, cells deficient in BRD2 or BRD4 

proliferated more slowly, indicating these genes have additional roles in G1E proliferation (data 

not shown). These results suggest BRD2 and BRD4 are individually required for normal GATA1-

mediated transcriptional activation.  

 

Overlapping functionality between BETs 

  Given the physical association of BRD3 with acetylated GATA1 and to genome-wide co-

localization, the indifference of GATA1-activated transcription to BRD3 depletion was surprising. 

We therefore tested whether other BETs might compensate for BRD3 loss. To do this we used 

shRNAs to deplete BRD3 in BRD2-replete and BRD2-deficient cells (Figure 3.17A). As expected, 

BRD3 knockdown on its own had no significant impact on gene activation. However, BRD3 

knockdown exacerbated the consequences of BRD2-deficiency on GATA1-activated gene 

expression. Hence, BRD2 and BRD3 assist GATA1 in an at least partially overlapping manner. 

To further test this we compared re-expression of BRD2 to over-expression of BRD3 in BRD2-
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deficient cells. GATA1-mediated activation of the β-globin gene Hbb-b1 and Alas2 were largely 

rescued by Brd3 expression (3.17B). Slc4a1 was not significantly rescued, however this gene 

also failed to activate normally upon Brd3 expression in cells with normal Brd2 expression. This 

indicates that transcriptional rescue is gene specific. To test rescue at the phenotypic level we 

examined cell pellet color as an indicator of hemoglobin production following GATA1 activation 

(Figure 3.17C). BRD2-replete cells turned red following GATA1 activation while BRD2-deficient 

pellets remained mostly white. As expected, retroviral expression of BRD2 rescued red color 

changes in these cells and validated knockout specificity. Consistent with functional redundancy 

between BRD2 and BRD3, retroviral BRD3 expression also rescued red color changes in BRD2 

deficient cells. These results strongly suggest functional overlap between BRD2 and BRD3 in 

GATA1-dependent transcriptional activation.  
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Figure 3.1 Transcriptome changes driven by GATA1 activation and BET inhibition. (A-B) 

Microarray expression profile of G1E cells -/+ GATA1 induction in the presence or absence of 

JQ1. Transcript levels were normalized to cell number using external spike-in controls. Data 

represent the average of three biological experiments with similar results. (A) Heatmap showing 

relative expression of every expressed transcript in each condition. (B) Distribution of mRNA 

changes upon GATA1 activation (red points). 
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Figure 3.2 Differentially expressed genes. (Top panels) Expression fold change versus p-value 

of differential expression for genes compared in the conditions in bold. (Bottom) Number of high-

confidence up-regulated and down-regulated transcripts for each comparison (Bonferroni-

corrected p<.05 and fold change >2). 
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Figure 3.3 BET inhibition preferentially targets GATA1-activated genes during GATA1 

induction. (A) Relationship of activation by GATA1 with JQ1 sensitivity in a binned scatter plot 

where color represents number of genes at a location. Black line shows a Loess regression. (B) 

GATA1-activated and repressed transcript levels as determined by RT-qPCR. Data were plotted 

relative to untreated G1E cells normalized to cell number by RNA spike-in controls. Error bars 

represent SEM of three biological replicates.  
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Figure 3.4 BET inhibition prevents erythroid gene activation in primary fetal liver erythroid 

progenitors. (A) Percentage of fetal liver progenitors expressing TER-119 and percentage viable 

(DAPI negative) measured by flow cytometry following 24 hours growth in differentiation media in 

the presence or absence of JQ1 or DMSO carrier. (B) RT-qPCR measurement of erythroid 

transcripts in differentiating primary fetal liver erythroblasts. Error bars represent SEM, n=3.  

* indicates p < .001 for JQ1 treatment versus DMSO-treated and untreated samples. 
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Figure 3.5 Effects of BET inhibition on GATA1 occupancy genome-wide. (A) Genome 

browser tracks showing GATA1 binding at the Hbb and Zfpm1 loci in the absence and presence 

of 250nM JQ1. Tracks are from one biological experiment and representative of two with similar 

results. (B) GATA1 ChIP-seq read counts (read pileup heights) at GATA1 sites following GATA1 

induction for 24 hours in the absence versus presence of JQ1. The red line shows a Loess 

regression, the blue diagonal demarcates no change between control and JQ1 treatment. (C) 

Binned scatter plot showing the relationship between BET dependence of GATA1 occupancy and 

transcriptional activation. GATA1 peaks are linked to nearest gene within 5kb. Black line shows a 
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linear regression. Highlighted examples for varying behaviors are Alas2 and Slc4a1 which lose 

nearby GATA1 peaks and are repressed following JQ1 treatment. In contrast, Rhag is repressed 

upon JQ1 treatment but an adjacent GATA1 peak is maintained. 
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Figure 3.6 GATA1 occupancy is a better predictor of JQ1 sensitivity at GATA1-activated 

than GATA1-repressed genes. GATA1-repressed and GATA1-activated genes are defined as 

those changing at least two-fold upon GATA1 induction relative to spike-in control. GATA1 sites 

were linked to the nearest gene within 5kb. Dotted black line indicates no change upon JQ1 

treatment. 
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Table 3.1 Relationship of differentially JQ1 sensitive GATA1 sites to promoters, 

enhancers, and ENCODE-defined genomic regions. Promoter regions are here defined as 

within 2.5 kb of transcription start sites. Enhancer regions are defined as H3K4me1-enriched, 

DNase-hypersensitive regions that do not overlap transcription start sites (Hsiung et al., 2014). 

ENCODE regions represent all transcription factor regions defined in GATA1-null erythroblasts 

following GATA1 induction. Enhancers were H3K4me1 enriched, DNase hypersensitive sites at 

least 500bp away from transcription start sites and defined in G1E cells as in (Hsiung et al., 

2014). 

 

  

% GATA1 retained  
DNase 

hypersensitive promotor enhancer TAL1 CTCF
<40% (125 sites) 82.4 22.4 59.2 72.0 6.4

40-50% (516 sites) 75.2 20.2 52.5 56.6 8.1
50-60% (1108 sites) 73.2 21.9 51.2 46.2 9.2
60-70% (1312 sites) 76.0 24.4 52.2 44.8 9.8

70-80% (961 sites) 80.6 27.6 55.7 40.2 10.0
80-90% (520 sites) 83.7 25.6 55.6 38.1 11.3

90%+ (97 sites) 88.7 24.7 59.8 32.0 15.5

% GATA1 sites overlapping regulatory region or binding site:
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Figure 3.7 Confirmation of variable BET-dependent GATA1 occupancy changes by ChIP-

qPCR. GATA1 ChIP performed in the absence of GATA1 (blue bars), following 24 hours of 

GATA1 induction (red bars), or 24 hours of GATA1 induction with concurrent 250nM JQ1 

treatment. Cd4 is a negative control for GATA1 binding. Error bars represent SEM of three 

independent biological experiments. 
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Figure 3.8 Short-term effect of BET inhibition on established GATA1 occupancy. ChIP for 

BRD4 and GATA1 in G1E GATA1-ER cells with established GATA1 activation treated with 

250nM JQ1 for up to 60 minutes. Cd4 is a negative control for GATA1 occupancy. Error bars 

represent SEM of three biological replicates. * indicates p < .05. 
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Figure 3.9 Effect of BET inhibition at various doses for one hour on established GATA1 

occupancy. G1E ER-GATA1 cells retrovirally expressing HA-BRD3 were induced to activate 

GATA1 for 24 hours, and subsequently treated with indicated JQ1 concentration for one hour. 

ChIP-qPCR for (A) GATA1 and (B) HA-BRD3 at GATA1 sites in these cells. Error bars represent 

SEM of three independent biological experiments.  
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Figure 3.10 Transcriptional requirement of BET proteins following establishment of GATA1 

occupancy. Primary transcript RT-qPCR measuring levels of indicated transcripts in response to 

250nM JQ1 treatment in GATA1-induced cells. Error bars represent SEM from four biological 

replicates. This data was generated as part of a dose-response (Figure 3.11). 
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Figure 3.11 Dose-response time course of primary transcript levels in GATA1-activated 

cells following short-term BET inhibitor treatment. Primary transcript primers span exon-

intron boundaries.  Results are normalized to mature transcript GAPDH and shown as a fraction 

of expression in untreated GATA1-activated cells. Error bars represent SEM of 4 biological 

experiments. 

  

      Hba-a1                       Uros                       Pabpc1 !                 Nfe2l2!

beta−globin Klf1 Tal1 Nfe2

alpha−globin Uros PABPC1 Nfe2l2

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

1.2

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

0

1

2

3

0

1

2

3

0.0

0.5

1.0

1.5

2.0

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

pr
im

ar
y t

ra
ns

cr
ipt

 m
RN

A 
/ +

GA
TA

1

0
250nM
1uM
4uM

[JQ1] �
      Hbb-b1                        Klf1                           Tal1 !                  Nfe2!

!!0!!!!15!!!30!!!!60!!!!!!!!!!!!0!!!!15!!!30!!!!60!!!!!!!!!!!!!0!!!!15!!!30!!!!60!!!!!!!!!!!!!0!!!!15!!!30!!!!60!
+JQ1!(minutes)!

beta−globin Klf1 Tal1 Nfe2

alpha−globin Uros PABPC1 Nfe2l2

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

1.2

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

0

1

2

3

0

1

2

3

0.0

0.5

1.0

1.5

2.0

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

pr
im

ar
y t

ra
ns

cr
ipt

 m
RN

A 
/ +

GA
TA

1

0
250nM
1uM
4uM

beta−globin Klf1 Tal1 Nfe2

alpha−globin Uros PABPC1 Nfe2l2

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

1.2

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

0

1

2

3

0

1

2

3

0.0

0.5

1.0

1.5

2.0

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

+G
AT

A1

+G
AT

A1
 +J

Q1 −
 15

min

+G
AT

A1
 +J

Q1 −
 30

min

+G
AT

A1
 +J

Q1 −
 60

min

pr
im

ar
y t

ra
ns

cr
ipt

 m
RN

A 
/ +

GA
TA

1

0
250nM
1uM
4uM

!!0!!!!15!!!30!!!!60!!!!!!!!!!!!0!!!!15!!!30!!!!60!!!!!!!!!!!!!0!!!!15!!!30!!!!60!!!!!!!!!!!!!0!!!!15!!!30!!!!60!
+JQ1!(minutes)!

pr
im

ar
y!t
ra
ns
cr
ip
t!m

RN
A!
/!m

at
ur
e!
tra

ns
cr
ip
t!G

AP
DH

!m
RN

A!
/!u

nt
re
at
ed

!



53 

 

 

 

Figure 3.12 BETs associate with GATA1 sites upon GATA1 complementation. (A) UCSC 

Genome Browser track showing BRD2, BRD3, and BRD4 signal at the beta-globin (Hbb) locus in 

G1E cells in the absence and presence of GATA1. (B) ChIP-seq signal across 4kb regions 

centered on 13,123 mouse ENCODE GATA1-binding sites in G1E cells clustered by k-means 

(k=5). 
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Table 3.2 Comparison of BET binding sites to regulatory regions and transcription factor 

binding sites in the absence and presence of GATA1. DNase hypersensitive sites and 

transcription factor binding sites were defined by the mouse ENCODE project. Factor binding 

sites are from G1E or MEL (murine erythroleukemia) cells. Enhancers were H3K4me1 enriched, 

DNase hypersensitive sites at least 500bp away from transcription start sites and defined in G1E 

cells as in (Hsiung et al., 2014).  

Cell line MACS
% BRD2 

(10557 sites)
% BRD3 

(4001 sites)
% BRD4 

(11293 sites)
% BRD2 

(15834 sites)
% BRD3 

(9110 sites)
% BRD4 

(12328 sites)
G1E DNase 93.9 29.9 47.2 84.2 70.8 68.6

promotor 44.4 16.7 21.3 38.0 37.8 44.3
enhancer 20.9 6.3 21.6 21.3 20.6 23.0
GATA1 0.1 0.0 0.0 10.2 24.1 33.1
GATA2 2.9 3.2 2.1 3.6 11.3 2.5
TAL1 4.6 2.6 13.8 2.9 14.1 17.5

MEL DNase 94.6 31.6 48.1 96.9 73.2 73.4
ETS1 7.3 4.3 16.3 5.7 13.4 21.2
KAT2A 10.8 3.6 2.7 8.7 10.0 8.4
P300 6.8 3.0 20.7 4.8 14.2 23.6
MYB 2.6 1.3 6.8 1.9 3.9 4.9
MYC 16.0 4.3 10.5 12.3 13.5 11.8

SISSRS
% BRD2 

(14208 sites)
% BRD3   

(726 sites)
% BRD4 

(2663 sites)
% BRD2 

(9921 sites)
% BRD3 

(3623 sites)
% BRD4 

(5945 sites)
G1E DNase 95.5 51.4 68.9 84.9 92.6 80.7

promotor 56.6 23.3 29.1 41.6 55.1 51.1
enhancer 19.2 9.9 31.4 23.0 26.1 26.9
GATA1 0.0 0.0 0.0 6.3 33.7 43.1
GATA2 0.6 5.6 2.4 0.7 4.9 2.0
TAL1 3.8 5.4 19.9 1.2 22.1 24.5

MEL DNase 96.5 50.4 66.1 98.1 92.3 83.7
ETS1 8.8 9.6 25.2 5.7 21.9 28.3
KAT2A 13.3 5.9 2.9 9.7 15.7 7.9
P300 8.6 3.4 32.0 4.9 21.2 32.0
MYB 3.5 2.1 10.9 1.9 5.7 5.9
MYC 22.2 6.3 15.8 12.5 18.2 13.2

-GATA1 +GATA1
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Table 3.3 Comparison of endogenous BRD2 with exogenous HA-BRD2. All comparisons are 

in G1E cells induced with GATA1. HA-BRD2 is expressed approximately 5-fold higher than 

endogenous at the mRNA level than endogenous BRD2 (endog.). TF/RR - transcription factor or 

regulatory region. 

MACS % of BRD2 sites % of TF/RR sites
% BRD2 (endog.) DNase 84.2 13.7

15,834 sites promotor 38.0 28.7
enhancer 21.3 11.1

GATA1 10.2 13.3
GATA2 3.6 4.3

TAL1 2.9 9.7
HABRD2 rep 1 DNase 71.6 25.5

34,566 sites promotor 33.1 44.1
enhancer 26.8 32.2

GATA1 19.2 58.2
GATA2 3.7 10.0

TAL1 8.8 65.7
HABRD2 rep 2 DNase2 71.7 25.0

32,845 sites promotor 33.4 43.5
enhancer 26.9 31.5

GATA1 19.3 56.7
GATA2 3.7 9.6

TAL1 8.8 63.6
SISSRS % of BRD2 sites % of TF/RR sites

% BRD2 (endog.) DNase 84.9 7.5
9921 sites promotor 41.6 15.5

enhancer 23.0 7.2
GATA1 6.3 4.3
GATA2 0.7 0.5

TAL1 1.2 2.4
HABRD2 rep 1 DNase 73.9 25.1

32,965 sites promotor 34.2 43.7
enhancer 28.1 32.2

GATA1 19.8 57.5
GATA2 2.7 6.6

TAL1 9.1 65.0
HABRD2 rep 2 DNase2 73.9 24.5

31,350 sites promotor 34.5 43.0
enhancer 28.1 31.5

GATA1 19.9 56.0
GATA2 2.8 6.4

TAL1 9.2 63.0
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Figure 3.13 BET occupancy and JQ1-mediated GATA1 eviction. Scatter plots show the 

relationship of BRD2, BRD3, and BRD4 occupancy with fractional GATA1 loss mediated by BET 

inhibition. Color shows the number of GATA1 sites at each point. Black lines show a linear 

regression.  
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Figure 3.14 Ability of individual BET promoter and enhancer occupancy to predict JQ1 

sensitivity at nearby genes. Binned density plots where color indicates number of points 

showing BRD2 (top row), BRD3 (middle row) or BRD4 (bottom row) occupancy at promoters and 

enhancers plotted against JQ1-induced transcriptional response of genes associated with those 

elements. Enhancers are linked to nearest gene within 100kb. Variation of genomic linkage 

between 10kb and 1mb gave similar results. Black trend-line shows a linear regression, Pearson 

coefficient r2 < .1 in each plot.   
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Figure 3.15 Comparison of GATA1 activated genes to BRD4-"super enhancers" in 

predicting JQ1 sensitivity. (Left panel) Annotation of 564 super-enhancers (SEs) using ROSE 

(Lovén et al., 2013) and BRD4 ChIP-seq. (Right panel) JQ1 sensitivity of SE-associated genes 

(linked to nearest gene when not overlapping one) compared to JQ1 sensitivity of GATA1-

activated genes.  
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Figure 3.16 Functions of individual BETs in GATA1-activated transcription. (A-C) Left: 

Western blots with antibodies against listed BET proteins; right: Relative transcript levels 

following GATA1 activation in cells depleted of (A) BRD3 (B) BRD2, or (C) BRD4. BRD4 

reduction was achieved by shRNA-mediated Brd4 knockdown. (D) shRNA-mediated Brd3 

knockdown in BRD2 replete versus deficient cells. Error bars represent SEM, n=3. * indicates p < 

.05 for BRD2 or BRD4 deficient cells compared to unmodified or control hairpin infected 

erythroblasts. 
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Figure 3.17 Evidence for overlapping functionality between BRD2 and BRD3. (A) 

Immunoblot showing BRD3 protein level following shRNA-knockdown with ACTIN control (left 

panels). shRNA-mediated BRD3 knockdown in unmodified G1E GATA1-ER cells or BRD2-

deficient cells (right panels). * indicates p < .05.  (B) qRT-PCR for GATA1-activated genes * 

indicates p < .01 that measured mRNA in Brd2- or Brd3-expressing Brd2-deficient cells is greater 

than in Brd2-deficient cells following GATA1 induction. # indicates p > .2. (C) Representative cell 

pellets before and after GATA1 induction in unmodified cells or BRD2-deficient cells infected or 

not with retroviruses expressing Brd2 or Brd3. Error bars show SEM and n=3 to 4 for each 

experiment.  
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CHAPTER 4. ORGANIZATION AND FUNCTION OF BET PROTEINS DURING MITOSIS 

 

Chapter summary 

 Most transcription factors are evicted from chromatin during mitosis, yet lineage-specific 

transcription patterns faithfully reactive at the start of each new cell cycle. Bromodomain and 

Extra-Terminal motif proteins (BETs) have been implicated in 'bookmarking' previously activated 

genes for rapid post-mitotic transcription. However, neither genomic BET organization during 

mitosis nor its functional implications have been examined in depth. Here we test mitotic 

bookmarking by BETs in the context of GATA1-mediated erythropoiesis. GATA1 recruits BETs in 

interphase, and is itself implicated in mitotic bookmarking, raising the possibility of functional 

convergence between GATA1 and BETs at the level of mitotic bookmarking. We define genome-

wide mitotic occupancy of BRD4, the BET most commonly implicated in bookmarking. We find 

that it occupies largely distinct binding sites in mitosis relative to interphase, but remains bound to 

mitotic chromatin at some loci. To test the functional importance of BET bookmarking during 

mitosis, we pharmacologically disrupt BET binding during this phase of the cell cycle. This has no 

measurable effect on post-mitotic transcriptional activation. These results suggest that continuous 

BET binding during mitosis may not have a major role in preserving the transcriptional state of 

particular genes. 

 

Introduction 

 Mitotic chromatin condensation is associated with widespread global ejection of 

transcription factors from DNA (Martínez-Balbás et al., 1995). The longstanding observation that 

nuclease hypersensitivity can be retained in the vicinity of active genes led to the proposal that 

some 'bookmarking' factors bind mitotic chromatin to allow immediate accessibility and 

transcriptional activation at the beginning of the next cell cycle (Gazit et al., 1982; John & 

Workman, 1998; Michelotti et al., 1997). This may be a way in which cellular lineage identity is 
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maintained during cell division (Kadauke & Blobel, 2012; Sarge & Park-Sarge, 2005; Zaidi et al., 

2010). While an increasing number of transcription factors have been identified that remain at 

least partially bound to mitotic chromatin (Blobel et al., 2009; Caravaca et al., 2013; D. Chen, 

Hinkley, Henry, & Huang, 2002), functional evaluation of bookmarking remains a major challenge. 

Standard approaches, such as RNAi, deplete factors throughout the cell cycle. Mitosis-specific 

transcription factor functions remain largely untested. 

 Bromodomain and extra-terminal motif proteins (BETs) are among the factors most 

commonly speculated to function as mitotic bookmarks (Devaiah & Singer, 2013; Follmer & 

Francis, 2011; Voigt & Reinberg, 2011). This is due to their global association with mitotic 

chromatin in many cell types combined with their ability to support transcriptional reactivation in 

newborn cells (Dey et al., 2003; 2009; Toyama, Rebbert, Dey, Ozato, & Dawid, 2008; R. Zhao et 

al., 2011). Additionally, the ability of chromosomal translocations involving BETs to abrogate 

cellular differentiation (French et al., 2003; Yan, Diaz, Jiao, Wang, & You, 2011), and of 

pharmacologic BET inhibition to cause differentiation of some cancers (Filippakopoulos et al., 

2010; Zuber et al., 2011), implicate BETs in lineage maintenance. BRD4 has been reported to 

bind to mitotic chromatin at promoters (Dey et al., 2009). BRD4 also has a clear functional role in 

transcription in many systems, and a defined role in post-mitotic transcriptional reactivation (Dey 

et al., 2009; R. Zhao et al., 2011). Interestingly, BRD4 expression has been implicated both in 

preserving lineage and in facilitating its change (Di Micco et al., 2014; Fernandez et al., 2014; W. 

Liu et al., 2014). Despite repeated observation, the importance of the association of BRD4 with 

mitotic chromosomes in the cell fate decisions influenced by this protein remains poorly 

understood. 

 Recent work has shown that the erythroid lineage factor GATA1 is retained at select sites 

on mitotic chromatin and may have a functional role in mitotic bookmarking (Kadauke et al., 

2012). As GATA1 recruits BETs to its occupied sites, we hypothesized that BETs have a role in 

bookmarking at GATA1 sites. We first examine the genomic localization of BRD4 and second test 
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its function through transient removal in GATA1 null erythroblasts following GATA1 

complementation (G1E+GATA1). We find that BRD4 binding is extensively reorganized during 

mitosis. While mitotic retention of BRD4 appears independent of mitotic GATA1 retention, some 

of the sites it remains bound to are putative GATA1-bookmarked genes. We utilize the kinetic 

control afforded by small molecule BET inhibitors to specifically disrupt BET binding during 

mitosis to directly test the hypothesis that BETs function as bookmarks. We find that post-mitotic 

transcriptional reactivation is insensitive to disruption of BET binding during mitosis. This 

suggests BET binding during mitosis may not significantly contribute to post-mitotic transcriptional 

state. 

 

Results 

Dynamics of BET occupancy during mitosis 

 To examine mitotic BET occupancy, we performed ChIP in mitotic G1E cells purified 

using two independent methods. In the first, cells were prevented from progressing beyond pro-

metaphase of mitosis using nocodazole, and mitotic cells further purified by fluorescence-

activated cell sorting (FACS) for the mitotic marker phospho-MPM2 (Figure 4.1A) (Campbell, 

Campbell, Chris, Chris, et al., 2014a; Kadauke et al., 2012). Nocodazole causes microtubule 

disruption, and has been shown to destabilize BET binding in some settings (Nishiyama et al., 

2012). To address the possibility that any binding patterns observed resulted from nocodazole 

treatment, we developed a parallel method that captured cells progressing through mitosis 

normally (Figure 4.1B). Cells were arrested immediately prior to mitosis in late G2 using the 

CDK1 inhibitor ro3306 (Vassilev et al., 2006), released from this block, allowed to enter mitosis, 

and sorted for phospho-MPM2. Unlike the nocodazole arrest method in which recovered cells 

were homogenously in pro-metaphase (Figure 4.2A), this method returned cells distributed 

across all mitotic sub-stages (Figure 4.2B-D). 
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 Initial inspection of BRD4 ChIP-seq data from mitotic cell populations at critical GATA1 

occupied-loci demonstrated that ChIP-seq signal from each of the two mitotic populations was 

overall similar (Figure 4.3). Interestingly, occasional sharp signal peaks were higher in the 

nocodazole-enriched cells that could represent features specific to pro-metaphase. During mitosis 

BRD4 was almost entirely lost from the beta-globin (Hbb) locus and retained at the Zfpm1 and 

Nfe2 loci. Interestingly, GATA1 also departs from Hbb and is retained at Zfpm1 and Nfe2 during 

mitosis. We next defined mitotic BRD4 sites genome-wide independently using two different peak 

callers (MACS and SISSRS). The nocodazole-arrest BRD4 data was used for this analysis 

because of its superior signal-to-noise ratio. Interestingly, most mitotic BRD4 sites were specific 

to this phase of the cell cycle, and largely overlapped GATA1 binding sites (Figure 4.4). We 

investigated this further using a heatmap to visualize mitotic binding at GATA1 sites. As a control 

we compared this pattern to association with all DNase hypersensitive sites in G1E cells (mouse 

ENCODE) (Figure 4.5). Interphase BRD4 binding correlated weakly with mitotic binding, and a 

subset of GATA1 sites with strong binding in mitosis but little in interphase was apparent using k-

means clustering (k=5). We then expanded our analysis to consider mitotic BRD4 binding in the 

context of additional annotated genomic regions in G1E cells (Table 4.1). In contrast to published 

work suggesting BRD4 is maintained at promoters during mitosis (Dey et al., 2009), mitotic BRD4 

sites were greatly reduced at promoters relative to enhancers (highlighted in orange). These sites 

were highly enriched for GATA1, TAL1, p300, and ETS1 binding (highlighted in yellow). This 

could indicate mitotic recruitment by one of these factors. 

 

Role of mitotic BET protein binding in transcriptional reactivation 

 To directly test the functional role of mitotic BET binding, we undertook a strategy to 

specifically disrupt mitotic binding using the pharmacologic BET inhibitor JQ1. Remodeling of 

BET binding occupancy raises the possibility that mechanisms other than bromodomain binding 

are responsible for their association with particular locations during this time period. To confirm 
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that JQ1 efficiently removes BETs from mitotic chromatin, we treated mitotically arrested cells 

with JQ1 and performed mitotic ChIP to measure BRD4 occupancy (Figure 4.6). Endogenous 

BRD4 was efficiently removed from mitotic chromatin by JQ1 supporting its use in disruption of 

mitotic BET occupancy. To test the requirement for continuous BET binding to maintain 

transcriptional state during mitosis, we disrupted BET occupancy specifically during mitosis with 

JQ1 and measured post-mitotic transcriptional reactivation of erythroid genes (Figure 4.7). To 

insure that the cell population being assayed had indeed progressed through mitosis, post-mitotic 

cells were purified by fluorescence-activated cell sorting (FACS) using a combination of small cell 

size (FSC-low) and low fluorescence intensity of mitotically degraded YFP (Kadauke et al., 2012). 

Mitosis-specific JQ1 treatment did not significantly alter cell cycle progression in newborn cells 

(Figure 4.8). Despite the ability of primary transcript qPCR to detect small changes in 

transcription rate, transient BET disruption during mitosis did not measurably affect reactivation of 

any erythroid gene measured (Figure 4.9). Importantly the genes assayed included GATA1-

activated genes where a bookmarking function has been reported (Zfpm1, Nfe2, Runx1), all of 

which are bound by BRD4 in mitosis and two of which (Nfe2 and Runx1) are very JQ1-sensitive 

in interphase. Additionally no transcriptional changes were observed in GATA1-repressed genes 

where bookmarking has been suggested to prevent expression of lineage-inappropriate genes 

(Kit, Gata2). A post-mitotic transcriptional spike was apparent in a number of transcripts (Nfe2, 

Runx1, Gata2, Myb), as has been observed previously in our lab (Hsiung et al., in preparation). 

This was also unaffected by mitotic BET disruption. Together these results call into question 

whether BETs need to remain bound in mitosis in order for post-mitotic transcription to reactivate 

normally. 
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Figure 4.1. Mitotic purification methods. (A) Purification of a pro-metaphase mitotic population 

by cell sorting from a population of cells treated with nocodazole (Campbell, Hsiung, & Blobel, 

2014b). (B) Isolation of mitotic cells from cell synchronized in late G2 with ro3306 (Vassilev et al., 

2006), released, and sorted while progressing through mitosis naturally. 
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Figure 4.2 Visualization of mitotic cells by fluorescence microscopy. (A) Mitotic cells 

arrested in pro-metaphase recovered using the nocodazole arrest method. Chromatin is 

homogenously condensed. (B-D) Mitotic cells recovered using the ro3306 method. (B) Phospho-

MPM2 and (C) DAPI stains showing the same cells. (D) A wider field showing the diversity of 

mitotic cells recovered using ro3306-based synchronization. Red boxes highlight anaphase and 

telophase cells. 
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Figure 4.3 BRD4 ChIP-seq at key erythroid genes in interphase and mitosis. Mitotic ChIP 

using either nocodazole or ro3306 demonstrates loss of BRD4 binding around the Hbb (beta-

globin) locus (left) and gross retention of BRD4 at the Zfpm1 (middle) and Nfe2 loci (right). 

Browser tracks were displayed using the UCSC Genome Browser. 
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Figure 4.4 Relationship of mitotic BRD4 binding with BRD4 and GATA1 in asynchronous 

cells. Circles are drawn in proportion to the 2,064 mitotic BRD4 sites, 12,328 asynchronous 

BRD4 sites, and 13,123 GATA1 sites used in this comparison. 
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Figure 4.5 BRD4 occupies distinct GATA1 sites in mitosis. Heatmaps show BRD4 signal 

across four kilobase windows centered on ENCODE-defined GATA1 peaks (left) and DNase 

hypersensitive sites (right) in G1E+GATA1 cells. 
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Table 4.1 Comparison of BRD4-enriched regions in asynchronous and mitotic cells with 

genomic regulatory regions. DNase hypersensitive and transcription factor regions were 

downloaded from mouse ENCODE (Mouse ENCODE Consortium et al., 2012). Promoters are 

within 2.5kb of Refseq transcription start sites. Enhancers are H3K4me1-enriched, DNase 

hypersensitive regions that do not overlap transcription start sites (Hsiung et al., 2014).  

 

 

  

BRD4 peaks (SISSRS) asynch BRD4 mitotic BRD4
G1E DNase 80.7 69.6

promotor 51.1 10.7
enhancer 26.9 78.2

GATA1 43.1 77.5
GATA2 2.0 0.7

TAL1 24.5 44.1
MEL (MEL) GATA1 42.6 91.4

(MEL) ETS1 28.3 73.4
(MEL) KAT2A 7.9 1.1

(MEL) P300 32.0 87.6
(MEL) MYB 5.9 25.6
(MEL) MYC 13.2 10.9

BRD4 peaks (MACS) asynch BRD4 mitotic BRD4
G1E DNase 68.6 71.3

promotor 44.3 15.7
enhancer 23.0 72.5

GATA1 33.1 75.1
GATA2 2.5 1.6

TAL1 17.5 42.3
MEL (MEL) GATA1 36.2 88.0

(MEL) ETS1 21.2 68.4
(MEL) KAT2A 8.4 1.5

(MEL) P300 23.6 81.6
(MEL) MYB 4.9 23.0
(MEL) MYC 11.8 12.7

% of BRD4 sites
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Figure 4.6 Mitotically retained BRD4 remains sensitive to JQ1. Mitotic BRD4 ChIP in 

nocodazole-treated cells treated or not with 250nM JQ1 for 15 minutes. Ivr16 is a negative control 

for BRD4 binding. Sites labeled BRD4 mitotically bound were selected from BRD4 mitotic ChIP-

seq peaks at GATA1 sites. Error bars represent SEM. n=3 for each condition. * indicates p < .05 

that JQ1-treated samples are lower than untreated. 
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Figure 4.7 Testing the "bookmarking" hypothesis. (A) Mitotic bookmarking implies that stable 

association of proteins such as BRD4 throughout mitosis has a role transcriptional identity in 

newborn cells. (B) Disruption of BRD4 occupancy during mitosis using JQ1 perturbs continuous 

BET occupancy and tests the reversibility of its mitotic removal. 
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Figure 4.8 Mitotic BET inhibition does not alter cell cycle progression. G1E cells were 

induced with GATA1, arrested with nocodazole, treated with JQ1 or not beginning in mitosis, and 

released from nocodazole block. DNA content was measured by propidium iodide (PI) stain 

measured by flow cytometry (arbitrary linear scale) following EtOH fixation. Each row is an 

independent biological experiment.

co
un

t&

DNA&content&(PI&fluorescence&intensity)&

Experiment&
&
#1&
&
&
&
&
#2&
&
&
&
&
#3&

           G1E! !    ! ! ! !                G1E+GATA1!
                             ! ! !    +JQ1          ! !       +nocodazole arrest!
             ! ! ! ! ! ! ! ! ! !  +4 hr release     +release +JQ1!



75 

 

 

 

Figure 4.9 Mitotic BET disruption does not significantly affect post-mitotic transcriptional 

reactivation. G1E+GATA1 cells expressing mitotically degraded YFP were arrested in mitosis 

with nocodazole, treated with JQ1 (1uM for 15 minutes) or DMSO control, and released into 

growth media for the indicated times. Newborn cells (YFP-dim, FSC-small) were sorted and 

analyzed by primary transcript qRT-PCR. Error bars represent SEM. n=6 for each condition. 
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CHAPTER 5. DISCUSSION 

 

Chapter summary 

 The advance of BET inhibitors into human clinical trials provides a strong incentive to 

better understand the role of BETs in normal physiology. The first part of the work (Chapter 3) 

describes the roles of BETs in erythroid maturation activated by the master transcription factor 

GATA1 by characterizing their functions as a family and as individuals. BET inhibition prevents 

GATA1-mediated transcriptional activation by both compromising GATA1 occupancy and 

downstream transcription. BRD3 occupies nearly all GATA1 sites, BRD4 a significant minority, 

and BRD2 relatively few. Depletion of BRD2 and BRD4 compromise GATA1-activated 

transcription, while depletion of BRD3 does not. However, increased BRD3 expression 

compensates for BRD2 depletion suggesting these proteins have redundant functions. The 

second part of this work (Chapter 4) addresses the role of BETs in mitotic bookmarking. Genomic 

binding assays in mitotic erythroblasts suggest that BRD4 occupies a distinct set of binding sites 

BRD4. BET disruption during mitosis does not affect transcriptional reactivation. This calls into 

question the role of BETs in mitotic bookmarking. These results are discussed along with their 

implications and the outstanding questions raised. 

 

GATA1-mediated erythroid maturation involves widespread repression 

  Lineage transitions can dramatically alter RNA content and limit the reliability of 

transcriptional comparison relative to cell-intrinsic parameters like total RNA content or 

housekeeping genes (Lovén et al., 2012; van de Peppel et al., 2003). Erythroid differentiation 

involves obvious changes in cellular size and morphology (Dacie & White, 1949). Here 

transcriptome measurements made relative to exogenous RNA spike-in controls revealed that 

most transcript levels decreased upon GATA1 induction in erythroblasts. These results 

contrasted with prior studies of the same process which suggested that the number of activated 
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and repressed genes were similar (Cheng et al., 2009; Doré et al., 2012; Welch et al., 2004; M. 

Yu et al., 2009). This was critical in defining the global decrease in transcript levels resulting from 

GATA1 activation, as well as the specific roles of BETs in erythroid maturation. 

  Several mechanisms are likely to contribute to large-scale transcriptional repression. 

GATA1 is known to recruit co-repressors such as the FOG1/NuRD complex (Cantor & Orkin, 

2005; Tsang et al., 1997). The extent to which GATA1 recruits co-repressors genome-wide has 

not been examined. It is possible that many, if not most GATA1 sites have roles in the direct 

repression of specific genes. While difficult to study on a large scale, repression may be more 

likely to happen at larger genomic distances than activation (Cheng et al., 2009). Inhibition of 

Myc, which has been suggested to function in a rheostat-like manner to dim transcription globally, 

may also contribute to large-scale repression in this system (Lin et al., 2012; Nie et al., 2012). 

Additionally, GATA1 could repress many genes by altering the physical arrangement of the 

erythroid genome to prevent normal enhancer-promoter interaction. In support of this, GATA1 has 

been reported to form a repressive loop responsible for Kit inhibition (Jing et al., 2008). It is 

possible that similar mechanisms control expression of many genes. Yet another possibility is that 

indirect repression could occur as a result of redistribution of the factors required for transcription 

at the small number of genes that are massively activated by GATA1. Mechanisms similar to this 

have previously been proposed both in the context of GATA1 and other transcriptional activators 

(Cheng et al., 2009; Step et al., 2014). Importantly, non-transcriptional mechanisms such as RNA 

degradation may also influence transcript levels and contribute to the erythroid transcriptome 

changes we observed. However, changes in primary transcript mRNA levels correlated extremely 

well with total mRNA changes at both activated and repressed genes. This is consistent with 

transcriptional control being the major factor controlling erythroid mRNA levels but does not 

preclude significant contributions from other factors. 
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GATA1-mediated repression is largely BET-independent 

  Given that JQ1 disrupts GATA1 occupancy at most sites including at known targets of 

GATA1-mediated repression, it is surprising that GATA1-mediated repression is not significantly 

mitigated by JQ1 treatment. As repression only involves disruption of the transcriptional process, 

it is possible that it may occur efficiently despite reduced GATA1 binding. For example, GATA1 

may only need to be present often enough to disrupt the combinatorial factor and cofactor binding 

events that may be needed for productive transcription to occur. Another possibility is that part of 

the mechanism of repression by GATA1 is BET eviction. Consistent with this BRD2 and BRD4 

are detectable at some GATA1 repressed genes like Kit and Gata2 in the absence of GATA1 but 

are undetectable upon its induction. In these cases, transcription may be crippled by BET 

removal equally well through full GATA1 binding or through partial GATA1 binding combined with 

pharmacologic BET inhibition.  

 

GATA1-activated genes are BET dependent 

  GATA1-mediated activation is a strong predictor of BET inhibitor sensitivity during 

erythroid maturation. As has been observed in other systems, BET binding near genes is a weak 

predictor of JQ1 response (Itzen et al., 2014; Lovén et al., 2013). Efforts to improve predictions by 

quantitatively taking into account BET signal or considering promoters or enhancers specifically 

did not provide biologically significant predictive power in our hands. "Super-enhancer” regions 

(SEs) have also been proposed as an explanation for differential JQ1 sensitivity. However, here 

as well as in the reports describing these regions (Chapuy et al., 2013; Lovén et al., 2013), the 

magnitude of transcriptional predictions based on these regions were very small and of 

questionable biological significance. This could be due to failure to link these regions to the genes 

they regulate. Alternatively, the underlying assumption that a large quantity of ChIP-seq signal 

necessarily makes a region an instance of a distinct class of biological entity could be false. The 
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predictive ability of GATA1 in this setting emphasizes its functional connection with BETs. 

GATA1-mediated activation is, like post-mitotic transcriptional reactivation and activation of 

inflammatory gene expression, a setting in which the major effect of JQ1 seems to be to prevent 

the ability of silent genes to be turned on (Khan, Kirkham, Barnes, & Adcock, 2014; Meng et al., 

2014; Nicodème et al., 2010). Studies in other cell types will be helpful in understanding how 

generally inducibility is a useful paradigm in predicting the pharmacologic effects of BET 

inhibitors.  

 

BETs facilitate GATA1 occupancy 

 Genome-wide occupancy analysis showed that BET inhibition compromised GATA1 

occupancy at least partially at the vast majority of binding sites. BETs might facilitate genomic 

GATA1 occupancy at the level of initial binding, stability, or both. The activity of BETs in 

mediating nucleosome exchange suggests a possible mechanism through which BETs might 

facilitate GATA1 binding to chromatin. However, GATA1 sites are almost uniformly DNase 

hypersensitive prior to GATA1 binding making nucleosome occupancy less likely to be a barrier 

to DNA accessibility. However, high H3K27ac signal immediately adjacent to GATA1 binding 

sites implies adjacent nucleosomes at most binding sites. Speculatively, BETs may stabilize or 

recruit GATA1 by acting as a scaffold to connect it with adjacent nucleosomes. 

 

BETs facilitate transcription downstream of GATA1 occupancy 

 Transcriptional effects of BETs in GATA1-mediated transcription were revealed by kinetic 

isolation of occupancy-independent effects using short-term JQ1 treatment. This is in agreement 

with observations that BETs have direct transcriptional roles in many other systems. While 

several mechanisms through which this occurs have been proposed, a consensus understanding 

of the role of BETs in transcription is lacking. The C-terminal domain of BRD4 is the best studied 

transcriptional activator and may recruit elongation factors, relieve the effects of inhibitory factors, 
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or directly phosphorylate RNA polymerase II (Devaiah et al., 2012; Itzen et al., 2014). How the 

short BET proteins, BRD2, BRD3, and the short isoform of BRD4 promote transcription are less 

well understood. It is likely that at least some of this activity can be mapped to the extra-terminal 

(ET) domains of these proteins which have been shown to interact with transcription elongation 

factors (Dawson et al., 2011). The importance of this domain and others could be investigated 

genetically in by expression of BRD2 mutants in BRD2 knockout cells generated here. Several 

reports have suggested that short BETs may facilitate elongation throughout genes by displacing 

acetylated histones (Kanno et al., 2014; LeRoy et al., 2008). Somewhat counter to this idea is 

that ChIP-seq studies of different BETs across different cell types have revealed enrichment at 

promoters and enhancers but not to a large extent in gene bodies. However, BETs do not bind 

DNA directly and they may still function in these processes despite failing to be detected by ChIP. 

ChIP detection issues have been previously noted in the context of the GATA1 cofactors, as 

FOG1 which is poorly detected at GATA1 regions by ChIP using formaldehyde crosslinking but is 

well-detected when a longer chain crosslinker is used (Zeng, Vakoc, Chen, Blobel, & Berger, 

2006). 

 

Relationship of BET occupancy to function in GATA1-mediated transcription 

 During erythroid maturation BET occupancy is regulated by association with GATA1, 

other transcription factors, and acetylated histones. Direct recruitment by GATA1 appears to be 

most important for BRD3, which is present at nearly all GATA1 binding sites. As BRD4 is present 

at only a subset of GATA1 binding sites other factors may be required to bring BRD4 to these 

sites. Direct in vivo association between BRD4 and GATA1 is supported both by previous 

immunoprecipitation studies and overlapping genomic occupancy patterns. Despite also being 

identified as a GATA1 binding partner by mass spectrometry, direct association between GATA1 

and BRD2 is less likely to be an important mechanism in vivo based on the poor co-localization 

observed between these factors by ChIP-seq.  
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 The functional effects of depletion of individual BETs on GATA1-mediated transcription 

were surprising based on their genome-wide binding patterns. The first surprise was that 

erythroblasts activate GATA1-mediated transcription normally when BRD3 is ablated. This 

suggests that this factor either is not required for GATA1 to function despite the genomic 

evidence linking the two, or that other BETs may compensate for its loss. If compensation 

occurred through increased binding of other BETs to GATA1, this could be measured by ChIP for 

BRD2 and BRD4 in BRD3-deficient cells. A second surprise was the phenotypic importance of 

BRD2 loss despite relatively poor genome-wide correlation with GATA1. While BRD2 does not 

co-localize with GATA1 to the extent that BRD3 or BRD4 does, BRD2 is present in the vicinity of 

many critical GATA1 activated sites. It may be required for transcriptional activation at these 

genes through GATA1-indirect mechanisms. 

 

BRD2 and BRD3 have redundant functions in GATA1-mediated transcriptional activation 

 Despite a high degree of co-occupancy with GATA1, BRD3 depletion did not measurably 

compromise transcription except in the context of BRD2 deficiency. Additionally, retroviral BRD3 

expression compensated for BRD2 deficiency to almost the same degree as BRD2 expression. 

These findings suggest the ability of these short BETs to execute the same biological functions. 

Interestingly, Brd3 mRNA is approximately 4-fold less abundant than Brd2 mRNA in RNA-seq 

studies in G1E cells (Paralkar et al., 2014). This raises the possibility that phenotypic differences 

between these proteins may be due to their different expression levels. However, BRD2 and 

BRD3 have very different genomic binding patterns in cells expressing both. To gain insight into 

how this works, we are currently testing whether each can physically take the place of the other 

when the other is depleted. 

 An important caveat is that the genetic manipulation of BETs that affected GATA1-

mediated transcription also affected erythroblast proliferation. BRD4 may be essential for 

erythroblast growth as a BRD4 null erythroblast cell line could not be made, and cells depleted of 
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BRD4 or heterozygous for the Brd4 gene had proliferation impairments. Similarly, while BRD3 

depletion had no measurable effect on growth in BRD2-replete cells it slowed growth in BRD2 

null cells, and cells simultaneously lacking both BRD2 and BRD3 could not be generated. This 

suggests that at least one of these factors for growth. In this context, the pharmacologic BET 

inhibitor studies we performed examining primary transcript mRNA complements these genetic 

studies by demonstrating transcriptional compromise upon BET inhibition in the immediate short 

term. This strongly supports the direct role of BETs in GATA1-mediated transcriptional activation. 

 

Implications for pharmacologic BET inhibition 

 BRD4 depletion alone is sufficient to slow growth and suppress inflammation in a number 

of settings. However, in light of the functional overlap of BRD2 and BRD3 it is possible that the 

combined contribution of these molecules has been underestimated in studies that deplete them 

individually (Anand et al., 2013; Knoechel et al., 2014; Sahai et al., 2014; Zuber et al., 2011). In 

erythroblasts, BRD2 deficiency renders BRD3 depletion synthetically lethal. If this relationship 

generalizes to other cell types, it is likely that inhibition of both BRD2 and BRD3 will have a 

synergistic effect on growth that could be of similar importance as BRD4 inhibition. Future 

dissection of the mechanisms through which BETs act distinctly or compensate for each other will 

be critical to development of BET inhibitors directed against specific members of this family. 

 While BET inhibitors are a promising class of therapeutics, the ubiquitous importance of 

their targets is likely to limit the range of practical applications. Anemia has not been observed 

despite the strong effects of JQ1 on GATA1-dependent erythroid differentiation. Significant 

effects on the erythroid lineage are expected only with long-term administration of BET inhibitors 

because of the long lifespan of erythrocytes. While anemia has not been observed, GATA1 is 

also essential for platelet formation and thrombocytopenia is a consistent side effect of BET 

inhibition observed in human patients (Dombret, n.d.; Thieblemont, n.d.). Longer-term studies will 

reveal whether GATA1 function is more generally affected in patients receiving these drugs. 
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Dose-limiting toxicity could result from functional inhibition of any of the growing number of 

transcription factors that utilize BETs (Asangani et al., 2014; Nagarajan et al., 2014; Y. Tang et 

al., 2014). 

 

BETs reorganize during mitosis 

 The association of BRD4 with specific genomic locations during mitosis remains largely 

unexamined despite longstanding observation of their broad mitotic association by 

immunofluorescence (Dey et al., 2003). BRD4 mitotic chromatin immunoprecipitation showed us 

that BRD4 occupied an almost entirely distinct set of sites during mitosis as during interphase. 

This results stand in contrast to one report suggesting that BRD4 remains bound to promoter 

sites during mitosis where chromatin is likely to remain open (Dey et al., 2009). However, a 

similar pattern of RNA polymerase II retention is also reported on mitotic chromatin calling into 

question the mitotic purity of the cell population examined. Interestingly, the finding that mitotic 

occupancy can be largely reorganized at specific sites while remaining globally bound is similar to 

what has been observed for the proto-oncogene MLL (Blobel et al., 2009) and the hepatocyte 

transcription factor FoxA1 (Caravaca et al., 2013). 

 What explains this alteration in genomic occupancy? The association of BRD4 at specific 

DNase hypersensitive sites occupied by several hematopoietic transcription factors during 

interphase is consistent with these being critical to its mitotic association with chromatin at 

specific sites. These sites are mostly enhancers and their transcriptional targets difficult to 

definitively identify. Increased histone phosphorylation during mitosis may be a major factor in 

controlling the mitotic distribution of BET binding. BRD4 bromodomains preferentially associate 

with acetylated histones that are simultaneously phosphorylated on nearby residues (including 

H3K14acS10p, H3K27acS28p) (Filippakopoulos et al., 2012) and this may increase mitotic 

binding widely and increase non-specific signal. ChIP-seq spike-in controls have been described 

and may be useful in measuring changes in background signal intensity in this context 
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{Orlando:2014be}. Further work is required to understand the functional meaning of the mitotic 

BRD4 binding pattern described here.  

 

BETs do not function as mitotic bookmarks 

 Mitotic bookmarks are here defined as factors stably associated with mitotic chromatin 

that facilitate post-mitotic transcriptional reactivation. An original prediction of the 'bookmarking' 

hypothesis was that "Extraction of the bookmark (during mitosis) would abolish the distinction 

between active and inactive genes" (John & Workman, 1998). While previous studies have 

reported the role of BRD4 in transcriptional reactivation (Dey et al., 2009; Z. Yang, He, & Zhou, 

2008; R. Zhao et al., 2011), the question of whether continuous mitotic binding of BRD4 supports 

gene reactivation has not been previously addressed. Here, disruption of mitotic BET binding did 

not affect post-mitotic transcriptional reactivation, calling into question the role of BETs as mitotic 

bookmarks. Additionally, cell cycle release profiles of cells treated with BET inhibitors in mitosis 

were not significantly changed suggesting that if BETs have transcription-independent functions 

in mitosis they are either not critical to normal cycle progression or also do not require continuous 

BET association. Together these results suggests that BET localization may not be important in 

mitotic memory of transcription state. Histone modifications and transcription factors which 

directly bind to DNA may be more likely to fulfill cellular bookmarking needs. 

 Transcription restarts during telophase of mitosis as the nuclear membrane reforms. This 

occurs before some nuclear factors can be re-imported into the nucleus (K. V. Prasanth, Sacco-

Bubulya, Prasanth, & Spector, 2003). It is possible that non-specific association of transcription 

factors with mitotic chromatin could avoid the need for import once the nuclear membrane 

reforms. Indeed, a role for non-specific association of a bookmarking factor in rapid transcriptional 

restart has been described (Caravaca et al., 2013). The association of transcription factors with 

mitotic chromatin could regulate transcriptional restart by staying only loosely associated with 

mitotic chromatin and without 'bookmarking' specific genomic locations. 
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Conclusions 

  This work elucidates aspects of BET function in the context of GATA1-mediated 

transcription. As a family, BETs function predominantly in gene activation by facilitating the 

occupancy of GATA1 and by promoting downstream transcription. Their continuous association 

with chromatin was not required for the preservation of transcriptional memory during mitosis. 

Individual BETs have distinct but overlapping binding patterns that follow the distribution of 

GATA1 and of histone acetylation to varying degrees. Genomic deletion and knockdown 

experiments demonstrate that BRD2 and BRD4 are individually required for GATA1 to activate 

transcription normally, but that BRD3 is not. As ChIP-seq studies showed a tight correlation 

between BRD3 and GATA1, but not BRD2 and GATA1, these studies highlight the need for 

functional experimental modalities to complement ChIP-seq in interpreting the meaning of 

genome-wide binding studies. Importantly, increasing BRD3 expression compensated for BRD2 

deficiency suggesting that these proteins can function redundantly. These results provide a 

number of insights into BET function during erythropoiesis. Future studies are needed to better 

understand both the mechanisms through which BETs perform the functions described here and 

to evaluate the generalizability of the mechanisms uncovered to other physiologic contexts. 
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