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ABSTRACT 

DYNAMICS AND STATICS OF LIQUID-LIQUID AND GAS-LIQUID INTERFACES 
ON NON-UNIFORM SUBSTRATES AT THE MICRON AND SUB-MICRON 
SCALES 

Michael M. Norton 

Haim H. Bau 

Droplets and bubbles are ubiquitous motifs found in natural and industrial 

processes. In the absence of significant external forces, liquid-liquid and gas-liquid 

interfaces form constant mean curvature surfaces that locally minimize the free energy of 

a given system subject to constraints. However, even for sub-micron bubbles and droplets 

free of hydrodynamic and hydrostatic stresses (small Capillary, Weber, and Bond 

numbers), non-equilibrium at the contact line of sessile bubbles and droplets can 

influence geometries and dynamics. First, the wetting of micron-sized ellipsoidal 

particles was considered. In the space of axially symmetric interfaces, it is found that 

multiple constant mean curvature surfaces can satisfy volume and contact angle 

constraints. Partial encapsulation may be preferred even when the droplet's volume is 

sufficient to fully engulf the particle. The co-existence of multiple equilibrium states 

suggests possible hysteretic encapsulation behavior.  Secondly, motivated by electron 

microscopy observations of sub-micron bubbles in a liquid cell, a small mobile and 

growing bubble confined between two weakly diverging plates is considered 

theoretically. Scaling analysis suggests that observed bubbles move by continuously 

wetting and de-wetting the substrates onto which they are adhered. 2D and 3D models are 

constructed incorporating the Blake-Haynes mechanism, which relates the dynamic 

contact angle to contact line velocity; partial pinning of the contact line is also 



 vi 

considered. In 2D, the system is fully described by a set of non-linear ordinary 

differential equations that can be readily solved. In 3D, the non-linear PDE system and 

constraints were solved using a pseudo-spectral method. Both 2D and 3D models predict 

that in order for a doubly confined bubble to grow in a super-saturated solution it must 

first increase its curvature; this is in contrast to a free-floating bubble whose curvature 

always decreases with the addition of mass/volume. Since the surface concentration is 

proportional to the internal pressure of the bubble, this geometric change temporarily 

regulates the growth of the bubble. The model predicts growth rates like those observed 

experimentally that are several orders of magnitude lower than predictions made by 

classical mass transfer driven growth theory developed by Epstein and Plesset. 
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Chapter 1. Background 

 

Droplets and bubbles are ubiquitous motifs found in natural and industrial 

processes; as such, interest spans multiple fields within engineering, physics, and 

mathematics.  At the micro- and nano- scale multi-phase systems are of interest to 

developers of droplet-based high-throughput lab-on-chip devices and meta-materials built 

up from emulsions and colloids[1]-[3]. In these applications, the immiscibility of two 

phases is utilized to either transport a disperse phase (typically water) of a well-controlled 

size containing reactants or specimens of interest within a carrier fluid (typically mineral 

or silicon oil), or to provide an interface for colloidal assembly. 

In all these cases, the geometry of the solid, the volume of the disperse phase, and 

the contact angle determine the shape of the liquid-liquid interface or gas-liquid interface 

and ultimately the behavior of the system. Clever conduit design in drop-based devices 

can induce the merging of bubbles and droplets, or incite instabilities forcing them to 

dispense from a fluid stream or divide. Colloids can be made to jam on a confined 

interface and create non-spherical, stabilized emulsions[4], or the curvature of the 

interface can be controlled to direct assembly of particles in specific ways [5], [6]. 

In microfluidic applications, a substrate/continuous phase combination is often 

sought such that the latter completely wets the former. Additionally, the transport of 

disperse phases is often rapid enough that a dynamic film of the continuous phase always 

exists between the disperse phase and the substrate [7], [8]. However, when this is not the 

case, the disperse phase makes direct contact with the substrate and (de)wetting dynamics 
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at the contact line can critically alter the behavior of the system[9]-[12]. Contact line 

physics also impact colloidal adsorption to interfaces [13] and are important for 

deposition of Langmuir-Blodgett films [14].  

In this thesis, interface geometry, interface-substrate interactions, and contact line 

dynamics will be explored in two different systems where capillary forces dominate over 

viscous, inertial, and body forces. In Chapter 2, the geometry of sub-millimeter droplets 

of water adhered to ellipsoidal polystyrene particles of comparable size will be examined. 

It will be shown that when a substrate is finite and curved, that multiple interface 

geometries can exist for a given volume of the disperse phase. However, it is found that 

because these configurations are geometrically disparate, the system can exhibit 

conformational hysteresis. Theory shows that if one begins with a small droplet bound to 

the particle and increases its volume the system will evolve through one set of geometries 

while if one begins with a droplet that fully engulfs the ellipsoid and shrinks it, a different 

set of geometries will be accessed. Chapter 3 focuses on novel electron microscopy 

observations of growing and moving sub-micron bubbles created by electron-beam-

induced radiolysis [15], [16] and confined within a Hele-Shaw-like apparatus comprised 

of a micro-fabricated pressure vessel designed to enable imaging with electrons [17]. 

Chapter 4 will illustrate how classical theories describing bubble growth[18]-[21] are not 

applicable under the conditions encountered in Chapter 3 and need to be modified to 

explicitly account for the interplay between contact line dynamics [9]-[12], confinement, 

and mass transfer. It will be demonstrated by developing a 2D model based on the Blake-

Haynes model for contact line movement [12] that the restricted movement of the contact 

line (be it partial or full) encumbers the rate of mass flux into the bubble by requiring that 
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curvature increase with volume at short time scales. Chapter 5 will expand on the 

intuition gained from the 2D model to develop a 3D model valid for highly confined high 

aspect ratio bubbles (bubbles whose height is much less than their projected radius). The 

model is able to predict the contact line shapes observed experimentally and confirms the 

important role of pinning at early times.  Chapter 6 examines a theoretically simpler but 

still important scenario of a bubble on a single substrate growing and shrinking due to 

diffusion with the same contact line resistance model used in the previous chapters. 

Model predictions show that, unlike the doubly-confined cases considered in Chapters 4 

and 5, growth is relatively unaffected. However, for a dissolving bubble, it is shown that 

as contact line resistance is increased, dissolution can be inhibited and the bubble 

temporarily stabilized; the model can be thought of as a generalization to the completely 

pinned nanobubbles modeled by Lohse and Zhang [22].  This work closes in Chapter 7 

with suggestions for further theoretical work on bubbles that move by contact line 

wetting and de-wetting and hi-lights two ostensibly beam-induced interfacial fluid 

dynamical phenomena relevant to liquid cell electron microscopy: interface oscillations 

and spontaneous film thickening.  
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Chapter 2. The Geometry of Droplets on Ellipsoids 

2.1. Motivation 

 

Rapid and controllable encapsulation of colloidal objects in aqueous drops is 

useful for high throughput studies of bacteria [23], [24], cells [25], embryos [26], [27], 

and larger multi-cellular organisms such as nematodes [28]. High throughput devices 

confer the opportunity to efficiently explore the effects of genetic and environmental 

factors on phenotype. The same encapsulation method can also be used to form 

anisotropic colloidal materials with customized properties. This work is motivated by our 

work on encapsulating Caenorhabditis elegans (C. elegans) in water drops dispersed in 

oil, using a flow-focusing platform similar to the one described in Utada et al. [29]. 

It was observed that, under certain conditions, the animals were partially 

encapsulated and under others, fully encapsulated. C. elegans are compliant and deform 

under the action of surface tension forces. To gain insights into the encapsulation process, 

it is desirable to examine separately the effect of particle’s size and elasticity. Hence, it 

was advantageous to study a simpler system of rigid particles. To estimate the importance 

of elasticity in the particle-droplet system, we compare the capillary force resulting from 

the pinned contact line to the critical load required for Euler-buckling [30]. The ratio of 

these two forces is given by the dimensionless group ( ) ( )2 2 38 cos /a Ebγ θ πΓ = , where 

E, γ, a, b, and θ are, respectively, the elastic modulus, surface tension, minor particle 

radius, major particle radius (if ellipsoidal), and contact angle at the contact line. In this 
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study, we focus on polystyrene particles with Γ ~O(10−7 ) . In contrast, Γ ~O(106 )  for 

live C. elegans. By focusing on rigid particles, we are able to examine geometric effects 

in the absence of elastic ones. 

In the absence of gravitational forces, the oil-water interfaces belong to a special class of 

axisymmetric, constant curvature solutions of the Young-Laplace equation known as 

unduloids or Delaunay surfaces [31]. Princen[32], Roe [33] and Carroll[34] were the first 

to apply the unduloidal solutions of the Young-Laplace equation to the cylindrical fiber-

wetting problem. The pinning of droplets and bubbles on patterned substrates have 

attracted ongoing interest from both experimentalists and theorists [35]-[40]. In 

particular, Hanumanthu and Stebe determined the equilibrium positions and stability of 

droplets pierced by a cone[41] and Michielsen[42] experimentally confirmed that droplet 

equilibrium positions coincided with the free-energy minima. None of the above studies 

has considered finite length particles that can be either partially or fully encapsulated by 

the drop. 

In this chapter, the shape of axisymmetric drops encapsulating ellipsoidal 

particles as a function of drop volume, contact angle, and particle dimensions is 

determined. I discuss experimental results and extend Carroll’s classical fiber wetting 

problem to address finite length particles with non-uniform cross-sections. The droplet 

shapes are determined by searching for unduloids that satisfy specified boundary 

conditions at the contact lines. The same droplet shapes are also obtained with an energy 

minimization method. When the droplet’s volume is smaller than a critical value, only 

one axisymmetric, pinned state is possible.  Once the droplet has exceeded a critical 

volume, three axisymmetric droplet configurations that correspond to energy minima co-
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exist: a spherical engulfed state and two pinned, unduloidal states. For one pinned 

solution branch, the distance of the contact line from the particle’s center increases as the 

droplet volume increases. For the other pinned solution branch, counter to intuition, the 

opposite is true; the axial pinning position retracts upon droplet volume increase. While 

not energetically favorable, this second barrel configuration possesses a lower mean 

curvature and lower internal pressure than the first. As the droplet volume is increased, 

the two solution branches eventually coalesce at a limit point that signifies the end of the 

existence of axially symmetric pinned solutions. Further volume increases result in either 

the breaking of axial symmetry (which we do not consider in this work) or a fully 

engulfed state. We gain further insights into the problem by calculating the system’s free 

energy as a function of state, which reveals the existence of hysteretic behavior.  

 

2.2. Materials and Methods 

2.2.1. Fabrication of Elongated Polystyrene Particles 

Polystyrene spheres were formed (Fig.  2.1) with a flow-focusing device constructed 

from glass capillaries in the same manner as Utada et al. [29]. A solution of polystyrene 

(Scientific Polymer Products, Inc., Mw 190,000, CAS: 9003-53-6, CAT: 845) 15% w/w 

dissolved in a solvent, comprised of chloroform 75% v/v (Fisher Science, CAT: C606) 

and toluene 25% v/v (Fisher Science, CAT: T290), was flowed into the device at a flow 

rate of Qinner = 300µl / hr  to form the dispersed phase (Fig.  2.1.A). The outer phase 

consisted of water with 2% w/w Poly(vinyl alcohol) (PVA) 87-89% hydrolyzed Mw 
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13000-23000 (Sigma Aldrich, CAT: 363170) that helped stabilize the polystyrene 

emulsion and was pumped in at a rate Qouter =10,00µl / hr . The emulsion was discharged 

into a 40oC water bath. The solvents evaporated, and the drops solidified to form 

~100µm diameter spheres (Fig.  2.1.C). 

To form elongated particles, we followed a process previously described in [43]-[48]. 

Briefly, the particles were embedded in a liquid film of PVA (87-89% hydrolyzed Mw 

85,000-124,000, Sigma Aldrich CAT 363081) dissolved in water. Evaporation of the 

water yielded a solid, free-standing film of PVA (Fig.  2.1.D) embedded with the PS 

particles. The film was subsequently clamped into a pulling apparatus, heated to above 

the glass transition temperature of polystyrene (~100oC), using a handheld heat gun, and 

pulled (Fig.  2.1.E). The applied tension caused the particles to elongate and assume 

nearly ellipsoidal shapes. While under tension, the film and particles were cooled to room 

temperature, rendering the particles’ deformations permanent. The PVA film was then 

dissolved in water to release the now ellipsoidal particles. The particles were washed 

multiple times by exchanging the water suspending them to remove excess PVA. The so-

formed ellipsoidal particles varied significantly in their sizes, which required us to 

individually measure the dimensions of the particles with which we experimented. Fig.  

2.1.G is a micrograph of the precipitated ellipsoid particles, whose minor diameter varied 

from 50 to 100 µm and whose length varied from 400 to 700 µm. 

Although polystyrene particles are natively hydrophobic, the PVA, which we used to 

stabilize the emulsion during the particles’ formation and to form the film for the 

particles’ stretching, adsorbed to the ellipsoidal particles’ surface, rendering them 

hydrophilic with a three phase contact angle of 14.2±5.2o. The surface tension, contact 
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angle, and droplet morphology also depend strongly on the surfactant concentration. The 

contact angle measurement is described in supplemental information. 

  

Fig.  2.1: The ellipsoidal particles’ formation process. (A) The creation of a polystyrene 
emulsion using a flow-focusing apparatus. (B) Evaporation of solvents from the emulsion 
in a warm water bath. (C) A micrograph of solidified mono-dispersed spheres. (D) 
Embedding PS particles in a PVA film. (E) Stretching of the heated PVA film to elongate 
the particles. (F) Dissolution of PVA film in water to release the ellipsoidal particles. (G) 
A micrograph of the ellipsoidal particles. 

 

2.2.2. Encapsulation of Elongated Polystyrene Particles 

 

The encapsulation of the polystyrene ellipsoids took place in a flow-focusing device 

similar to the one used to create the polystyrene spheres. Fig.  2.2 (top) depicts a 
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schematic of the encapsulation process. Polystyrene ellipsoids were first imbibed into a 

length of vinyl tubing from a dish containing rinsed particles. The tube was subsequently 

connected to a syringe pump at one end and to the flow-focusing device at its other end. 

The suspension was then discharged through the device. The jet (central stream) laden 

with the particles was sheathed with a co-stream of immiscible oil. Observations were 

carried out using an inverted optical microscope (Nikon Diaphot 300) at 4× 

magnification; encapsulation events were captured at 10,000-15,000 frames per second 

with a high-speed SR-CMOS camera (Phantom V7.1). Fig.  2.2 (bottom) shows three 

typical encapsulation results: (A) a partially encapsulated particle, (B) a nearly fully 

engulfed particle in an ellipsoidal drop, and (C) a fully encapsulated particle in a 

spherical drop. 

 

Fig.  2.2: A schematic (top) of the encapsulation process and (bottom) three typical 
encapsulation results. (A) a partially encapsulated particle, (B) a nearly fully engulfed 
particle in an ellipsoidal drop, and (C) a fully encapsulated particle in a spherical drop.  

 

water oil

100μm

A B C



 10 

2.3. Image Processing 

 

The encapsulated particles were imaged while in the flow focusing device (Fig.  

2.2). The images of the encapsulated particles were processed with ImageJ and Matlab to 

deduce the droplet volume, the position of the pinning line, the maximum radius of the 

droplet, and the particle dimensions. 

In ImageJ, the oil-water interfaces were traced using the multi-point tool as 

schematically depicted on the right hand side of Fig.  2.3. The top and bottom profiles of 

each projection of an encapsulated particle were traced out in five consecutive frames 

and the center, inclination, major axis (a), and minor axis (b) were determined. We found 

that the particles can be approximated reasonably well as prolate ellipsoids with the 

averages of a and b serving, respectively, as the major and minor axes.  See the Appendix 

for a discussion of the accuracy of this approximation. The ellipsoid’s aspect ratio 

/ 1a bε = > . The volume of the drop V was estimated using trapezoidal integration of the 

discretized droplet surface.  

We present our experimental data and theoretical predictions with dimensionless 

quantities. The minor radius b is the length scale. The droplet’s dimensionless equatorial 

radius and contact line position are, respectively, 2 2
* /r br=  and *

1 1 /z bz= .  The volume 

of the drop (V) is normalized with the volume V0 of the smallest spherical drop that 

encapsulates the particle. In other words, ( )3 2
0
4
3

V a abπ= −  is the difference between 

the volume of a sphere of radius a and the ellipsoid’s volume. The dimensionless volume 

*
0/V V V= . 
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The measurements of the interface geometry were adversely affected by optical 

aberrations resulting from the difference in the indices of refraction of the glass, water, 

and mineral oil and the device’s circular geometry. Specifically, the encapsulated 

particles appeared smaller in width than their true size. To minimize errors from this 

distortion, we used the exposed ends of the polystyrene particle for the ellipsoid fitting. 

This method worked well for the partially encapsulated particles, but posed a challenge 

when the particles were nearly fully encapsulated since there was little polystyrene-oil 

interface available for curve fitting. 

 

 

Fig.  2.3: (Left) A photograph of an elongated polystyrene particle (σ) partially 
encapsulated in a water drop (α) and suspended in a continuous phase (β) of oil. The 
interface is computed with the unduloid solution (dashed line) and energy minimization 
(hollow circles). The particle aspect ratio ε=8.0±0.9, the dimensionless volume 
V*=0.027±0.007, and the contact angle 10θ °= . The ellipsoid’s major (a) and minor (b) 
axes, the droplet’s radius ( 2r ), and the axial position of the pinning line ( 1z ) are shown. 
(Right) The schematic details of the discretized domain used in the energy method. The 
radial position ( ρ ) originating from the spheroid’s center, the inclination angle (φ ), the 
arc length (l), and the node number (n) are shown. The discretization is used in the 
energy method. See supplement. 
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2.4. Mathematical Model 

In this section, we describe the calculation of the axisymmetric encapsulating drop’s 

shape. We consider three incompressible domains: a rigid elongated particle σ, a droplet 

α, and continuous phase β (Fig.  2.3). Since the Bond number 2
2| | /Bo grβ α αβρ ρ γ= − , 

the capillary number /Ca Uβ αβµ γ= , and the Weber number 2 /W De Uβ αβρ γ=  are all on 

the order of 0.1 or less (see Appendix I), we assume the droplet to be at a uniform 

pressure. In the above, ( )3 3~ 10 /O kg mρ  is the fluid density; g is the gravitational 

acceleration; ( )2 ~ 100r O mµ  is the maximum droplet radius; ( ) ~ 1 /O mN mαβγ  is the 

interfacial surface tension between phases α and β; ( )3~ 10O Pa sβµ
− ⋅  is the viscosity; 

( )~ 1D O mm  is the diameter of the glass capillary, and ( )~ 1 /U O mm s  is the average 

fluid velocity. Clean oil/water interfaces have an interfacial tension ( )~ 10 /O mN m  [49], 

but the addition of surfactant may lower this number by an order of magnitude [29], [50]. 

To determine the interface between the drop (α) and continuous phase (β) we employ 

two different methods. The first method takes advantage of the pressure uniformity inside 

the drop under equilibrium conditions and in the absence of external fields (Bo<<1). The 

Young-Laplace equation implies that the interface αβ must have a constant mean 

curvature. The corresponding axisymmetric surfaces are, therefore, unduloids or 

Delaunay surfaces [31]. The interface can be specified by a general transcendental 

expression. We center the Cartesian position vector[34]  
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at the particle’s center. The position vector is parameterized by the unduloid’s surface 

parameter u and the azimuthal angle v. Bold and italic print letters denote, respectively, 

vectors and scalars. The functions F and E are, respectively, the incomplete elliptic 

integrals of the first kind and second kind. The modulus   
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In the above, 1r  is the radius of the ellipsoid at the contact line; 2r  is the major radius of 

the unduloid; and uϕ  is the angle that the unduloid’s surface makes with the z-axis. The 

contact angle u eθ ϕ ϕ= − , where  

 
1

arctane
z

r
z

ϕ
⎡ ⎤∂= −⎢ ⎥∂⎢ ⎥⎣ ⎦

 [2.2] 

is the angle that the ellipsoid’s surface makes with the z-axis at 1z z= . 1z  is the distance 

along the z-axis from the particle’s center to the pinning line.  

The ellipsoidal particle, axial pinning position 1z , and the contact angle θ  define a 

unique unduloid.  The ellipsoid’s radius at the pinning line  
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Equation [2.4] together with the equation  

 ( ) ( )2 2
1 1 2 1 1, ,rF k u r E k u zχ + =  [2.5] 

enable us to determine 1u  and 2r .  

Our second solution strategy minimizes the system’s free energy subject to a volume 

constraint by discretizing the drop’s surface and finding the stationary state. The energy 

minimization technique can handle more general circumstances than addressed here. In 

the interest of space, the description of the energy method is deferred to Appendix I. The 

energy method yielded identical results to the ones obtained when assuming unduloidal 

surfaces.  
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2.5. Results and Discussion 

We start by comparing the predicted shape of the drop-oil interface with the 

experimentally observed one. Fig.  2.3 (LHS) overlays the theoretical predictions (dashed 

line - unduloid surface, and hollow circles - energy minimization) on top of the 

experimentally observed drop, partially encapsulating an ellipsoidal particle with aspect 

ratio 8.0 0.9ε = ± . The droplet’s dimensionless volume is * 0.027 0.007V = ±  and the 

contact angle 10θ °= . Although a couple of small droplets are visible in the background, 

they do not appear to distort the shape of the interface. Both theoretical predictions are in 

excellent agreement with each other (<3% root mean square difference) and in good 

agreement with the experimental data (<13% root mean square discrepancy). 

Fig.  2.4.A and B depict, respectively, the drop’s dimensionless radius *
2r  (at the 

symmetry plane z=0) and the dimensionless axial position of the pinning line *
1z  as 

functions of the dimensionless volume *V . The lines and circles denote, respectively, 

theoretical predictions and experimental data. The four curves featured in Fig.  2.4 

correspond to permutations of two aspect ratios, ε=2.5 (black line) and 7.5 (gray line), 

and two contact angles, 10θ °=  (solid line) and 20°  (dashed line). Error bars represent 

one standard deviation. The experimental data (circles) is gray scale-coded (see inset) to 

indicate the aspect ratio of the particle. The lighter the color is, the larger the particle’s 

aspect ratio. As the color darkens, the particle approaches a spherical shape ( 1ε → ).  We 

present theoretical predictions for two different contact angles due to the uncertainty in 

the actual value of the contact angle, which may have varied from one particle to another 

and along the surface of a particle. In the range 10 20θ °= − , the *
2r  predictions were 
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insensitive to the precise value of the contact angle. The predictions for *
1z  exhibited a 

greater dependence on the contact angle θ. As *V  increased, so did *
2r  and *

1z . For a 

fixed volume, the greater the hydrophilicity (the smaller the contact angle) is, the smaller 

the droplet radius *
2r  and the greater the distance to the pinning line ( *

1z ) are. Generally, 

the theoretical predictions are in reasonable agreement with experimental observations. 

The average root mean square discrepancies between the predicted and experimentally 

observed *
2r  and *

1z  values are, respectively, 3% and 9%. A significant source of error is 

due to the volume estimate that is calculated as the product of three measured linear 

dimensions. Additionally, when the particles are long (ε >>1) and the drops small (  V *

<<1), the free-energy varies slowly with the pinning position ( *
1z ), causing a lengthy 

relaxation time [42]. An experimental error would result when the approach to 

equilibrium occurs over a time interval that exceeds the observation time in our dynamic 

experiments [13]. Yet another complication is potential wettability gradients along the 

particles’ surfaces, resulting from non-uniform surfactant absorption and particle 

stretching during the particle formation process [46]. 
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Fig.  2.4: The dimensionless maximum droplet radius 
*
2 2/ / ar rε =  (A) and the axial 

position of the contact line 1 1
* / / az zε =  (B) as functions of the volume !!V * . 

Experimental data points (circles) are color-coded according to their aspect ratio. Black 
indicates a stubby particle; the lighter the color, the more slender the particle. The 
theoretical predictions are depicted for two aspect ratios, ε=2.5 (gray line) and 7.5 (black 
line), and two contact angles, !θ =10°   (solid line) and !θ =20°   (dashed line). 

 

10-2 1000

0.2

0.4

0.6

0.8

1

1.2

10-2 1000

0.2

0.4

0.6

0.8

1

1.2

V*

102.5
particle aspect ratio ε

ε=2.5, θ=10°
ε=7.5, θ=10°
ε=2.5, θ=20°
ε=7.5, θ=20°

(A)

(B)

V*

z*1

r*2

ε

ε



 18 

Next, we predict behaviors that are not readily accessible experimentally. Fig.  

2.5 depicts the relationship among various parameters that characterize the unduloid. All 

variables are dimensionless, and the particle’s aspect ratio 3ε = . The abscissa and 

ordinate are spanned, respectively, by ( )*1rχ  and *
2r . The various solid curves correspond 

to the specified contact angles. The dashed lines correspond to the drop’s volume. For 

example, when the drop has volume * 0.05V =  and contact angle 60θ °= , *
2 1.51x =  and 

*
1 0.29xχ = − .   Regions I (white) and II (gray) correspond, respectively, to drop volumes 

* 1V <  and * 1V > . In the latter case, the volume is sufficiently large to allow a spherical 

drop to fully engulf the particle. The hollow (red) circle represents the state when the 

drop has a spherical shape, * 1V = , *
1 0r = , *

2r ε= , and the particle is fully engulfed. See 

the inset next to the hollow circle. All constant contact angle curves emanate from the 

hollow circle since as *
1z ε→ , * 1V → , indicating that all unduloids approach a spherical 

configuration in this limit. The region *
1 0rχ <  corresponds to situations when 0χ <  (

* *
1 2cos /u r rϕ < ).  

Fig.  2.5 shows that, for each contact angle, there is a maximum volume *
maxV  that 

can be supported by an unduloidal drop. The unduloids corresponding to *
maxV  are 

denoted with solid (red) dots and can be found explicitly by determining ( )*1rχ  and *
2r  

when the matrix in  
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 [2.6] 

becomes singular for a given contact angle.  When * *
maxV V> , the drops are spherical and 

completely engulf the particle (i.e., Fig.  2.2.C). 

 

 

Fig.  2.5: Contours of constant contact angle θ and constant volume 
*V are depicted in the 

space of the unduloid coefficients ( )*1rχ  and 
*
2r ; 3ε = . Regions I (white background) 

and II (gray background) correspond, respectively, to drop volumes 
* 1V < and 

* 1V > . 
The hollow (red) circle denotes the smallest fully engulfing, spherical drop with 

* 1V = . 
The solid dots indicate the maximum possible unduloidal drop volume at a given contact 
angle.   
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When !!V * <1  , Fig.  2.5 illustrates that there is only one possible unduloidal drop 

configuration for any given drop volume and contact angle. When * 1V > , multiple 

unduloidal drop configurations are possible, however. Witness that, when * 1V >  and 

0θ > , constant volume curves intersect constant contact angle curves twice.  In other 

words, there are three possible axisymmetric drop configurations: two consisting of 

partial engulfment (the right and left insets at the top of Fig.  2.5) and one of complete 

engulfment (Fig.  2.2.C). To obtain further insight into the two possible partially engulfed 

configurations, Fig.  2.6 depicts the two unduloids when 60θ °=  and * 1.2V =  (solid 

lines). We include in the figure also a third unduloid having the limiting volume 

* 1.34maxV =  ( 60θ °= , dashed line). We refer to this unduloid as the limiting drop. This 

third unduloid corresponds to the red solid dot in Fig.  2.5. For better visibility, we 

enlarge the region next to the contact line in the inset.  We refer to the drop 

configurations to the left and right of the limiting drop as the retracted and extended 

branches, respectively. Let’s consider a gedanken experiment in which one gradually 

increases the drop’s volume. As the drop volume increases, both the contact lines 

associated with the retracted and extended branches approach the position of the drop 

with the limiting volume. The contact line of the retracted branch migrates away from the 

particle’s center, increasing the particle’s wetted area, as we observed in the experiments.  

Counter to intuition, the extended drop contracts as its volume increases. The extended 

configuration always has a lower curvature than the extended branch. To determine 

which branch is preferred, we will consider the surface energy of each configuration. 

In addition to the two axisymmetric pinned, barrel states (B) and the fully engulfed 

(FE) state that we already discussed heretofore, other stationary states are possible, such 
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as an axially-asymmetric clam-shell (C-S) [36] and an expelled (EX) state in which the 

particle resides entirely in the continuous phase, outside the drop. In this paper, we have 

restricted ourselves to axisymmetric configurations, and we cannot comment on possible 

transitions to the C-S state. We will compare, however, the free energies of the various 

axisymmetric states. We use the expelled state as the reference state (state of zero 

energy). Fig.  2.7 depicts the dimensionless free-energies ( )*EΔ  of the pinned states 

(solid lines) and, when admissible, of the engulfed states (dotted lines) as functions of the 

volume *V  for various contact angles θ. The particle’s aspect ratio 3ε = . We use 2bγ  as 

the energy scale. We identify three regions. In region I ( * 1V < ), only one pinned 

axisymmetric conformation is possible. In region II ( * *1 maxVV << , shaded area), full 

encapsulation (dashed line) and two pinned solutions (solid lines) are possible. The two 

pinned solution branches meet at * 1V = . The lower and upper, pinned branches 

correspond, respectively, to the retracted and extended states. The retracted state is a state 

of lower energy than the extended state. In region III ( * *
maxV V> ), no pinned solutions are 

possible. When 70θ °< , the pinned, retracted state is the lower energy state while the 

engulfed and expelled states are metastable. When 70θ °> , expulsion is the preferred 

state. In the neighborhood of 70θ °= , the energy is non-monotonic and high volumes 

prefer a pinned state while lower volumes prefer expulsion.  
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Fig.  2.6: The shapes of the two solution branches ( * 1.20V = , solid lines) and that of the 
limiting drop ( * 1.34V = , red line). 60θ °=  and 3ε = .  

 

To better clarify the energy landscape in region II, Fig.  2.8.A magnifies the region 

enclosed in the dotted rectangular frame of Fig.  2.7 ( 60θ °= ). Fig.  2.8.B depicts the 

position of the pinning line when the drop is pinned ( *
1z ε< , * *

maxV V< , solid lines) and 

the radius of the engulfing spherical drop (when * 1V >  , dashed line). Let’s consider a 

hypothetical experiment in which one gradually increases the volume of the drop from 

state A. When * 1V < , only the pinned, retracted state (solid line) is possible (see inset 

next to A). Once *V  exceeds one, an additional pinned state, an extended state (solid 

red), and an engulfed state (dashed line) becomes possible. In the gray region (

* * *1 maC xVV V< =< ), three states coexist. When * *1 BV V< < , the pinned, retracted state is 

the state of lowest energy. When * *
BV V=  (state B), the engulfed and pinned states have 

the same energy. When * * *
B CVV V< < , the engulfed state is energetically most favorable. 
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Point C is a limit point at which the retracted and extended pinned branches meet. When 

* *
CV V> , only the fully engulfed state exists. In the hypothetical experiment, one would 

anticipate that when the drop volume is gradually increased, the pinned, retracted state 

would persist until * *
DV V= . Further increase in volume will induce a discontinuous 

transition to the engulfed state (D).  If one were to gradually decrease the drop volume 

from state (D), the system would likely follow a different path, a path of engulfed states, 

up to state (E) before jumping discontinuously to the pinned state (F). The “extended” 

pinned branch, which provides an alternative route between (C) and (E), is likely 

inaccessible. In the above, we described a potential hysteretic behavior in which the 

system follows different paths in the directions of increasing and decreasing volumes 

when * *1 maxVV << . 

  

Fig.  2.7: The free energy relative to that of the expelled state as a function of normalized 
volume. The solid and dashed lines correspond, respectively, to pinned drops and 
engulfing drops. The shaded region corresponds to the parameter space where multiple 
equilibrium states coexist. The particle aspect ratio ε=3. 
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Next, we examine the axial force that the drop applies on the particle  

 ( ) ( ){ }* * * *
1 12 cos 1z uF r rπ ϕ κ= − + − . [2.7] 

In the above, * bκ κ=  is the dimensionless uniform curvature (twice the mean curvature) 

of the drop. Fig.  2.9.A depicts the normalized curvature as a function of the normalized 

volume V* for various contact angles. The force is normalized with b αβγ . The first term 

in eq. 8 is the force exerted by the contact line on the particle. This force can be either 

compressive or tensile depending on the magnitude of the angle of the tangent to the 

drop’s surface ϕu . The second term in [2.7] results from the Laplace pressure acting on 

the particle’s surface. This force is always compressive in the case of a prolate 

ellipsoid.  Fig.  2.9.B depicts the axial force *
zF  as a function of the droplet volume *V  

for several contact angles. Positive and negative *
zF  represent, respectively, tension and 

compression. When the drop is wetting ( 90θ °< ), the contact line exerts a compressive 

force. When 90θ °> , tensile force is possible. The transition from compression to tension 

occurs when the pinning line force balances the compressive force due to the pressure in 

the drop. 
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Fig.  2.8: A magnified image of the framed region in Fig. 7. *EΔ (A) and *
1z  (B) are 

depicted as functions of *V .  60θ °=  and 3ε = . The arrows describe a gedanken 
experiment. 
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Fig.  2.9: Normalized curvature (A) and axial force (B) as functions of dimensionless 
volume; 3ε = . Hollow circle denotes a spherical, engulfing drop. 
 

2.6. Conclusion 

 

We have studied the shape of axisymmetric drops enclosing a slender, ellipsoidal 

particle as a function of drop volume and contact angle. Calculations of the droplet 
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results. The theoretical results agreed favorably with experimental observations.  
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The theory shows that there is a maximum volume that can be supported by 

pinned unduloidal morphologies. It remains, however, to be seen whether or not volumes 

beyond this limit point can be supported by asymmetric clam-shell states. Similarly, 

while we have identified multiple stationary states and the possibility of hysteretic 

encapsulation behavior, further investigations are required to determine if these 

transitions are physically realizable given that asymmetric morphologies may be 

preferable in certain cases.  Our work was also limited to rigid particles.  Another 

interesting extension of the work would be to address the behavior of flexible (compliant) 

particles.  



 28 

Chapter 3. Liquid-Gas Interface Observations in SEM 

and TEM 

3.1. Motivation 

 

In recent years, investigations into the existence and stability of nanobubbles 

(100s of nanometers and below) have been pursued by many groups [51]-[64]. The 

hypothesis of persistent surface-bound nanobubbles began as a result of indirect 

measurements; it was found that the force between two hydrophobic surfaces immersed 

in water varied in a step-wise matter at the sub-micron scale. The magnitude and discrete 

nature of the force jumps were not consistent with predictions based on Van der Waals 

forces and were ultimately attributed to nanobubble coalescence and/or adsorption 

events.  A review of these findings can be found in Parker et al. [65].  

In Engineering applications, nanobubbles have been implicated in the anomalous 

scrubbing of interfaces exposed to ultra sound [66], [67] and the ease with which 

heterogeneous nucleation of vapor bubbles occurs after repeated cycles of heating [68]. 

Recent experimental investigations have relied on the solvent-exchange method to 

reliably deposit surface nanobubbles on hydrophobic surfaces and the use of atomic force 

microscopy (AFM) for observations. However, these measurements are temporally 

restricted to the scanning rate of the AFM tip. The AFM measurement is also intrusive. 

As a result, it is still unclear whether the bubbles nucleate heterogeneously, or if 

nucleation occurs homogenously and is followed by surface adsorption[69]. It also 

remains difficult to directly assess nanobubbles’ role in physical processes without real-
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time direct observations.  The spatial and temporal resolution of electron microscopy 

makes it an attractive imaging tool to complement AFM measurements. The large density 

difference between liquids and gases make liquid-gas interface easy to spot with electron 

microscopy.  

Electron microscopy has existed since the 1930’s, beginning with the development of the 

transmission electron microscope (TEM) and followed by the scanning electron 

microscope (SEM). While the desire to visualize liquids and liquid-bound samples by 

way of electron beam illumination has existed for a long time, the low operating 

pressures required to maintain a coherent electron beam have prohibited such 

investigations. Environmental scanning electron microscopy (ESEM) allows the 

observation of samples such as hydrated solids but still operates at pressures too low for 

prolonged observations. Because secondary electrons are used for imaging, the ESEM is 

not capable of probing deep within a liquid sample. The strong need to interrogate 

aqueous nanometer scale phenomena has precipitated the creation of a fairly new field of 

study, liquid cell electron microscopy. The maturation of micro-fabrication techniques 

has made possible the development of pressure vessels thin enough to allow transmission 

of electrons with minimal scattering (so as to work with TEMs and SEMs operating in 

transmission mode), but mechanically robust enough to maintain pressure differences of 

multiple atmospheres. A review of recent liquid cell technology and a detailed 

description of the device used in this work can be found in [70].  

While the issue of containment has been to a large degree surmounted by using 

Silicon-Nitride or Graphene as window materials, there are additional imaging and 

experimental issues specific to electron microscopy of liquids that need to be considered. 
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Primarily, interactions between the electron beam and the irradiated material can be 

strong and manifest themselves through thermal, electrical, and chemical means.  

The chemical effects in particular have received an increasing amount of attention 

lately. Exposing water to high-energy electrons induces changes in pH and hydrogen 

peroxide concentration through a process called radiolysis. The changes have important 

effects on the growth of electro-deposited films, nanoparticle stability[71], and 

precipitation of cations from solutions of metal-salts[72]-[74]. Indeed, chemical changes 

are drastic enough to produce large amounts of molecular hydrogen and oxygen that may 

form bubbles under certain conditions [15], [72], [75].  

While radiolysis bubbles are often an undesirable occurrence in liquid cell 

experiments, their growth and movement will be the focus of this and subsequent 

chapters. In addition to providing a way to probe fundamental interfacial phenomena, 

understanding nanobubble movement may have immediate benefits to the liquid cell 

community who wish to mitigate their influence on experiments. In this chapter, 

observations will be qualitatively and quantitatively discussed. Recent studies have 

shown that electron radiation can induce condensation [76] and mediate electro-wetting 

phenomena [77], [78]. The goal of this chapter is to understand the mechanisms of 

nanobubble migration and growth. 

3.2. Experimental Methods 

 

Nanoaquarium liquid cells[70] were loaded with a solution of gold nano-rods which 

possessed trace amounts of cetrimonium bromide (CTAB) surfactant. A schematic cross-
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section of the device used is shown Fig.  3.1. Nano-bubbles were ostensibly created from 

the interaction of products of water radiolysis resulting from the electron irradiation [15], 

[16] of a transmission electron microscope (Hitachi H9000) with water. We used a 300 

keV beam, a current of 1-10nA and a beam radius ~2 um. An optical fiber transfers light 

from the TEM’s phosphor screen to a CCD (charge-coupled device) and stores images on 

a digital tape at a rate of 30 frames per second. 

Changing beam settings affords some control over nanobubble growth [15], [72], 

[75]. However, in general nucleation sites and the dissolved concentration of oxygen 

and/or hydrogen cannot be controlled or measured directly.  Additionally, the internal 

pressure of the device cannot be measured directly and can only be estimated in 

serendipitous circumstances; thus the difficulty in knowing the level of super-saturation 

is further confounded. The loading procedure requires the application of set-screws to a 

set of O-rings. As a result, the pressure of the device is highly sensitive to the final setting 

of these screws and the volume of fluid loaded. 

The thin (~50nm) silicon-nitride membranes that encapsulate the liquid sample 

are capable of large strains. The square 100x100 um membranes have been shown to bow 

outward 100s of nanometers or more when holding 4 atmospheres against vacuum. This 

mechanics problem has been tackled previously in the literature; an analytical result 

found by Maier-Schneider furnishes a relationship between pressure and deflection [79]. 

Fig.  3.2 (left) plots the membrane deflection as a function of position for a few internal 

pressures. This model also provides us with the slopes of the membrane that we can 

expect to find in the experiment, which are on the order of !10−5 −10−1rad , see Fig.  3.2 

(right).  
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In an auxiliary experiment, loaded liquid cells were viewed using STEM and the 

deflections were compared to the predictions of the thin membrane-bending model with 

pressure as the unknown variable. We conclude that pressures from 0.05 to 4 

atmospheres can be expected, one such example is plotted in Fig.  3.3. For simplicity, we 

assume that image intensity is linearly related to liquid thickness (this is valid in the limit 

of very thin samples). We calibrate the relationship between thickness and intensity 

(which has two unknowns) by noting that the thickness of liquid near the edge of the 

window must be 200 nm and that after the bubble has formed the liquid thickness is ~0 

nm.  

 

Fig.  3.1: A schematica cross-section of the microfabricated lqiuid cell described in [70]. 
The schematic shows etched Silicon (gray), Silicon-Nitride (green), Silicon-Oxide spacer 
(blue), and electrodes (yellow) for use in electrochemical experiments. 
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Fig.  3.2: (Left) Total cell thickness and (Right) slope as a function of dimensionless 
position where a is the half-width of the membrane !!a=50µm  (the origin is at the center 
of the membrane) for !!P /Patm =10

−2 ,10−1 ,100 !and!10 . 

 

 

Fig.  3.3: Intensity profiles from two STEM images (inset) before (bottom) and after (top) 
bubble creation converted to water thickness (asterisks and circles correspond, resptively, 
to before and after bubble creation) compared to the Maier-Schneider theory[79]. 
Estimated pressures were respectively ~1/7 and ~1/2 of an atmosphere.  
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However, this theory is only applicable under idealized circumstances. During 

manufacturing of the liquid cell or during filling, the imaging chamber’s roof and ceiling 

can be drawn together by capillary forces to form a collapsed structure. Fig.  3.4 shows 

light microscopy images of the filling process impeded by window adhesion. The 

schematics show the cross-section (deformations are exaggerated for clarity). Typically, 

loading the cell and subjecting it to vacuum is sufficient to separate the membranes. 

When they do not separate, however, gaps of less than the nominal !200[nm]are also 

possible. The optical clarity and the limited mobility of, to be described, ~!10[nm]

bubbles strongly suggests that this is the case for the experiments discussed in this thesis. 

Color variations in Fig.  3.4 are due to constructive and destructive interference of 

different wavelengths. Since neither monochromatic light nor filters were used in the 

acquisition of the image, performing a true quantitative analysis was not possible. 

However, we know that interference peaks of green light (!λ =540!nm ) occur every ~150 

nm of additional water thickness (the order of magnitude is similar for other visible 

wavelengths) [70]. Because we see very few striations for each color, we can conclude 

that the membrane is undergoing deformations on the order of !±100!nm . 
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Fig.  3.4: (Left) Light microscope images of the silicon nitride membrane at various 
stages of liquid cell filling and (Right) a schematic of the cross-section along the dashed 
line (not to scale, deformations are exageratted for clarity). Color variations are due to 
height variatons that result in constructive and destructive interference of different 
wavelengths. (A) Unfilled liquid cell. (B-C) Capillary action pulling the windows 
together, and trapping an air bubble. (D-F) After adding liquid to the ports, the 
membranes spontaneoulsly relax, note that the bubble’s projected area increases. 
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circular or spheroidal on one end of the spectrum, or elongated, tear-drop-like, or finger-

like, on the other. Additionally, the image shows variations in the intensity of the regions 

outside the bubbles indicating that the liquid is non-uniform. At the level of an individual 

still, vignetting around the edge is a result of the finite illumination of the beam and the 

fiber-optical system that transmits the phosphor image to a CCD. By examining a 

collection of images, however, it becomes apparent that there are larger scale gradients in 

the transmission of the sample that cannot be attributed to the optical system alone. 

Specifically, note that the upper-right quadrant in the composite is generally darker than 

the lower-center.  

 Qualitative observations reveal that all bubbles with the same nucleation site 

migrate in a common direction. In the particular composite (Fig.  3.5), the bubbles were 

generally moving towards the upper-right. To confirm and quantify this, a simple series 

of image processing steps were applied in Mathematica to track the centroids, hydraulic 

radii, and the principal values and axes of bubbles. The first step of the scheme consists 

of manually finding or constructing a “blank” TEM image where no water is present so 

that it may be subtracted from any frame of interest to minimize the impact of vignetting. 

Such an image is shown in Fig.  3.6. After subtraction, noise is removed by applying a 

Gaussian blur function, and a black and white image is created using a “Binarize” filter (a 

simple function that replaces all pixels above a specified threshold with a “1” white and 

those below it with a “0” - black) with appropriate level set. Finally, a Mathematica 

function “Morphological Components” is used to acquire several metrics of bubble 

geometry and motion for all bubbles within a frame. These include projected area, 

hydraulic radii, principal values and orientation of a bounding ellipse, and centroid 



 37 

position. This series of steps is repeated for manually selected sections of footage and 

yields a “disordered” matrix where each row represents a unique bubble and frame, and 

contains the aforementioned quantities and the frame number. The matrix is disordered in 

the sense that there is no explicit structure. For example, each line contains the 

information of one bubble, the following line could be the same bubble at a different 

frame, or a different bubble at either the same frame or a different frame. 

While such an unstructured list might be useful to obtain statistics on bubble features, it is 

also of interest to track the temporal evolution of radius, aspect ratio, etc. of an individual 

bubble. To appropriately create this structure, the resulting matrix is exported to Matlab 

where a version of John. Crocker and Eric Weeks’ particle tracking code (ported to 

Matlab by Daniel Blair and Eric Dufresne) is used to stitch together bubble trajectories 

[80], [81]. The code examines particle centroids and time stamps to identify bubbles 

across frames; the additional parameters are simply along for the ride. Trajectories 

created using this process from a few different locations within a liquid cell are plotted in 

Fig.  3.7. 
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Fig.  3.5: Composite image created from several TEM images observed at a 
magnification of 5,000X. All images are unaltered to illustrate the difference between 
vignetting and larger scale transmission gradients. Each still is !!1.8[µm]  across.  

 

 

Fig.  3.6: (Right) TEM image of an empty liquid cell and (Left) the same image with 
enhanced contrast, illustrating vignetting.  
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Fig.  3.7 : Trajectories of bubbles observed at three different nanoaquarium locations. (A 
– top) and (B - middle) are observations made at 5,000x, (C - bottom) is at 10,000x.  
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3.4. Bubble Transport Hypotheses 

We now address possible mechanisms for the observed bubble locomotion. We begin 

with beam-centric physics, since there is some precedent in the literature for strong beam-

liquid interactions.  Firstly, energy deposited in the liquid-cell can locally heat the 

membrane and liquid. Even though the estimated temperature increase is small[72], 

surface tension is a function of temperature and a discrete bubble might experience 

Marangoni driven propulsion [50]. The magnitude of Marangoni effect on a spherical 

bubble can be estimated by calculating Marangoni number 

 
!!!
Ma = dγ

dT
dT
dx

R2

ηα
 .  [3.1] 

In the above, the bubble radius !!R~10!nm , the thermal diffusivity of the suspending 

liquid!α =1.43×10−7 !m2/s , the liquid viscosity !η =8.9×10−4 !Pa!s , 

!!dγ /dT~2×10
−4 !J/m2K , and !!!dT /dx ~1×10

6 !K/m . We find that !Ma~O 10
−4( ) . An 

estimate for the temperature gradient is arrived at by using the beam radius!!~1µm  and a 

temperature rise of 1 K [72]. While small, we continue with the thought experiment. 

Motion of the bubble through this mechanisms result because a surface tension gradient 

proportional to the temperature gradient is introduced along the surface of the bubble. 

Such a gradient creates in a tangential force that must ultimately be balanced by viscous 

stresses, this forms a toroidal recirculating flow within the bubble driven by the surface 

motion. Since surface tension tends to decrease with increased temperature, this flow 

diverges at the hot side of the bubble as the surface is pulled away from the area of low 

surface tension, and converges at the cold pole. This action would, therefore, tend to 

propel the bubble towards the hotter region of the beam center.  In the experiment, we 
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observe some bubbles migrating towards the beam’s center, while others away from it. 

Thus, surface tension gradients cannot be the dominating force responsible for bubble 

locomotion.  

Another effect is local charging of the membrane[77] or the localized introduction 

of free charge into the liquid by way of radiolysis[15]. Such charging can have at least 

two effects on the fluid. If one can argue that the beam precipitates a region of high 

electric field intensity through some mechanism, then the expulsion of the less 

polarizable bubble in favor of highly polarizable water is plausible. Similarly, for bubbles 

that wet the Silicon-Nitride, local changes in contact angle, which favor the wetting of 

water, are also possible. Several groups in the liquid-cell community have noted such 

manipulations of water by the beam, though the physics remain ambiguous because the 

interactions between high-energy electrons, and thin solids and liquids are still ill 

understood[76]-[78]. Electro-wetting, like polarization forces, would tend to draw liquid 

towards the irradiated region, and expel bubbles. 

 A common denominator that all these mechanisms share is that they are beam-

centric; they propose energy gradients that would tend to evacuate all bubbles from the 

field of view, or draw them to it, regardless of position. However, this is inconsistent with 

the large majority of observed trajectories. For a given location, trajectories seem to have 

one preferred direction that is not radially outward from the beam center, and which 

seems to persist even as the viewing area changes. Bubbles either nucleate in the field of 

view and exit or pass through the viewing area; bubbles have never been observed that 

enter from out of the beam region and seek the beam center. Examining the intensity 
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profiles of bubbles more closely will suggest a different mechanism that does not rely on 

beam-induced effects.  

 As the electrons travel through the irradiated medium they are scattered, thus 

darker sections of the image indicate more scattering events and a thicker liquid layer. 

Gradients in intensity therefore correspond to variations in liquid layer thickness and a 

varying geometry of the liquid cell. This allows us to note two related features that 

signify a locally tapered geometry of the liquid cell. Firstly, consider the bubble in Fig.  

3.8 and its intensity profile taken along its direction of motion (white arrow); the dotted 

line hi-lights the drop in background intensity from aft to fore supporting the idea of a 

varying cell geometry. Secondly, we note that bubbles’ edges are not sharply defined; 

this is because there is some curvature to the interface. However, the distance over which 

the transition from the bubble’s interior to the background intensity tends to vary along 

the perimeter of a given bubble. That is, portions of a bubble’s perimeter appear sharp 

while others appear softer or more blurred. Fig.  3.8 shows a typical migrating bubble 

along with an intensity profile taken along its direction of motion. The intensity slice 

highlights the extrema of these gradients: sharpest at the trailing edge of the bubble, and 

more gradual at the leading edge.  

We find that the bubbles tend to migrate towards the darker region, like in in Fig.  

3.8, and that when bubbles appear non-circular, they’re axes also point towards these 

regions. To quantify this effect for all observed bubbles, regions of video frames devoid 

of bubbles are examined to create maps of the background intensity gradient ∇I . We 

assume that, to first order, these gradients are proportional to the confinement gradient 

∇h .  Using the image processing steps described earlier, we collect all bubble aspect 
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ratios in a histogram, Fig.  3.9.A, to establish that, in general, bubbles possess some 

elongation even if it is slight. Fig.  3.9.B depicts the distribution of the angle between the 

direction of the bubble velocity vector ! !x  and the direction of the intensity/confinement 

gradient ∇h  (light gray), and the distribution of the angles between the bubble’s principal 

axis !p (arrow in Fig.  3.9, inset) and !∇h (dark gray). Both distributions peak when the 

vectors are aligned. The preferential growth and migration in the direction of the 

confinement gradient ∇h , common to all bubbles, suggests that the observed dynamics 

are dominated by confinement gradients. 

 

 

 

Fig.  3.8: A typical bubble and its intensity profile taken along the principal axes and the 
direction of motion. Markings on intensity profile illustrate the drop in background 
intensity that occurs across the length of the bubble.  
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Fig.  3.9: (A) Fraction of bubbles as a function of aspect ratio for bubbles observed at 
5000x from 5 different nanoaquarium locations. (B) Angle between background intensity 
gradient !∝∇h  and velocity (light gray) and angle between bubble’s principal axis !p  and 
velocity ! !x  (dark gray). The inset shows a schematic of a bubble whose position, radius, 
and aspect ratio evolve in time with the vectors for velocity, background gradient, and 
principal axis labeled. 
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Another strong indicator that bubbles move because of confinement gradients is 

that bubbles that appear very “soft” do not move at all. Fig.  3.10.A shows such a bubble, 

along with an intensity profile. We assert that such bubbles are not large enough to have 

adhered to both membranes (bridge between both membranes) because they do not 

possess the characteristic plateau in their intensity profile (as seen in Fig.  3.8 and Fig.  

3.10.C) and therefore are not subject to confinement gradient driven motion. 

Furthermore, elongated geometries, like  Fig.  3.10.C, are always seen exhibiting flat 

intensity profiles. Thus we envision bubble growth as occurring in roughly two stages. In 

the first, the bubble nucleates heterogeneously and grows on one substrate. Eventually, 

the bubble approaches the second substrate (Fig.  3.10.B), makes contact and 

symmetrically wets the top and bottom substrates. In the second, the bubble continues to 

grow in a top-bottom symmetric manner and travel to the wider parts of the tapered 

conduit. These stages require different theoretical treatments; the lattermost regime will 

be the focus of in the next two chapters. 
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Fig.  3.10: Three characteristic bubbles at different stages in growth: A) a sessile bubble 
touching one surface, B) bubble beginning to bridge between membranes and C) a bubble 
touching both membranes and growing anisotropically due to confinement gradient. The 
columns are, respectively, from left to right: schematics of the side view, bright field 
TEM images, and intensity profiles taken along the principal axis.  
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However, since a sphere satisfies a uniform contact angle when intersecting a tapered 

conduit [82], such a case is considered briefly.  A spherical bubble will appear blurrier on 

the edge facing the thicker part of the wedge since more of its surface protrudes; thus, a 

spherical geometry is qualitatively consistent with asymmetric intensity gradients noted 

earlier in micrographs Fig.  3.8 and Fig.  3.10. We note, however, that when the opening 

angle is very small, this feature may not be clearly observed. When a stationary bubble 

gains mass, its volume increases, which in turn would cause the bubble’s contact angle to 

deviate from its equilibrium value, unless the bubble moves. We examine the hypothesis 

that a bubble migrates to preserve its equilibrium contact angle at all instances. The half-

wedge height at the bubble’s center !!h~ x tanϕ , where x is the distance from the wedge 

cusp and !!ϕ = arctan ∇h( )  is the wedge half angle. We consider two simple bubble 

geometries: a bubble that bridges between the two wedge surfaces (Fig.  3.10.C) and a 

bubble growing on a single surface (Fig.  3.10.A). 

When the bubble bridges, the following must be satisfied  

 
!!
R = h cosϕcosθ0

= x sinϕcosθ0
 , [3.2] 

where !θ0  is the contact angle and h is the channel half-height at the center of the sphere. 

For the contact angle to retain its equilibrium value when the bubble grows, we need  

 

 !! !Rcosθ0 = !xsinϕ . [3.3] 

Not surprisingly, smaller slopes require larger velocities for the same ! !R  since the bubble 

must travel further to retain the magnitude of its contact angle.  In the case of parallel 
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plates (!ϕ =0  ), the model becomes invalid because non-spherical geometries are needed 

to accommodate the growth. The velocity predicted by this model is not physically 

realizable since the model does not account for dynamics. It merely states how fast a 

spherical bubble must travel to retain its equilibrium contact angle.  

When the bubble grows on a surface (without bridging), the sphere’s center 

projected onto the wedge’s plane of symmetry exhibits the apparent translational velocity 

 !! !x = !Rcosθ0 sinϕ . [3.4] 

Fig.  3.11 depicts the velocity of the bubble’s center of mass ! !x  as a function of the 

bubble growth ! !R .  The symbols, solid lines, and dashed lines correspond, respectively, to 

experimental data (where we plot the rate of change of the hydraulic radius 

!!RH = A/π( )1/2  and !A  is the measured projected area), predictions for the bridging bubble 

eqn. [3.3] (solid lines), and predictions for the surface bubble eqn. [3.4] (dashed lines). 

The various lines correspond to different wedge angles.  The bridging spherical bubble 

model overestimates while the surface bubble model underestimates the measured 

velocities.  The large symbols correspond to two specific bubbles that were continuously 

monitored over time. 
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Fig.  3.11: Translational velocity ! !x  as a function of growth rate of the hydraulic radius ! !R
for bubbles observed at 10,000x (gray “+”) and 5,000x (gray dots) magnifications. A 
bubble at each magnification is hilighted (connected points) along with its moving 
average trajectory in !! 

!R, !x{ }  space. Solid  and dashed lines are, respectively, eqn. [3.3] 

(Fig.  3.10.C) and eqn. [3.4] (Fig.  3.10.A). !θ0 = 45
° . ! ϕ =10−1 ,10−1.25 ,10−1.5!  . 
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experiment the bubbles tend to evolve towards higher velocities for similar growth rates 

as time goes on; since the model possesses no explicit time dependence, it cannot account 

for this feature either. One could conclude from Fig.  3.11 that bubbles are simply 

moving from regions of high-slope to low-slope. This is consistent with the direction of 

migration (bubbles are moving towards the center of the device where the slope is zero). 

However, this would require slopes to change rapidly within the viewing area (1-2 

microns), and thus require large curvatures. The goal of the next chapter will be to 

determine the physics relevant to this problem.  

3.6. Growth Anisotropy Revisited  

 

As the bubble grows to contact both windows, there is a possibility that the 

bubble will be partially pinned to its nucleation site, which possesses either a chemical or 

physical defect (or both); contact lines of a representative bubble before and after 

departure are shown in Fig.  3.12 (the higher the transparency of the contact line, the 

earlier the time).  Fig.  3.13 provides additional information on the bubble dynamics by 

examining the nucleation site, which repeatedly produced highly deformed bubbles; the 

figurereports the velocity of the center of mass as a function of the bubbles’ projected 

hydraulic radius !RH  (A) and as a function of the aspect ratio of a bounding ellipse (B). 

The symbols represent experimental data. In Fig.  3.13.B, the symbol’s size is 

proportional to the bubble’s radius. Since the data is noisy, we added solid lines (red) for 

guidance. When the bubble’s radius is smaller than a critical radius!!RC ~110!nm , the 

velocity of the bubble’s center of mass increases slowly with the radius. Once the 
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bubble’s radius exceeds RC, the velocity of the bubble’s center of mass increases rapidly 

as the radius increases. We hypothesize that small bubbles (!RH <RC ) are partially pinned 

but ask whether or not forces at the contact line inhibiting motion are enough to achieve 

the observed geometries or if complete immobility of part of the contact line is required. 

This is addressed in the next chapter by comparing model results for the case when both 

contact lines are free to move at the Blake-Haynes velocity and when the rear contact line 

is immobilized (pinned).  As the bubble grows (!RH <RC ), it attains a teardrop shape and 

its aspect ratio increases. Once the bubble radius exceeds !RC and the bubble’s aspect ratio 

exceeds ~1.3, the bubble departs, and its aspect ratio decreases. Furthermore, while 

bubbles acquire geometries like those observed in the tapered Hele-Shaw microfluidic 

device of Dangla et al. [83], it is unclear whether the departure is due to bubble breakup 

because of an instability[83] or if the entire bubble is released because a critical contact 

angle has been achieved at the rear portion of the contact line.  

 

 
100nm
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Fig.  3.12: Contact-line and centroid evolution of a bubble that nucleated in the field 
view. At early times the bubble grows while the position of the rear portion of the contact 
line changes very little; the last several frames show a sudden change in behavior. To 
show the passage of time, early profiles are plotted with more transparency.!!Δt =1/15!s . 

 

 

Fig.  3.13: Measured translational velocity (symbols) as a function of (A) bubble’s 
hydraulic radius and (B) as a function of aspect ratio. N=23. Data symbol’s size is 
proportional to the  hydraulic radius.  The solid lines in (A) correspond to !! !x~RH  and 

!! !x~10RH . Solid arrow in (B) indicates the passage of time.  
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Chapter 4. Bubble Growth in Hele-Shaw Devices 

4.1. Motivation 

Understanding phenomena associated with bubbles and droplets growing and 

moving in a liquid cell relies on multiple pools of knowledge. In order to model the 

growth of the sub-micron bubbles described in the previous chapter, modifications to 

classical theories need to be considered. In the following analysis, the growth dynamics 

of a compressible, soluble bubble due to mass transfer in a super-saturated solution while 

it is confined between two divergent plates is considered. The gaseous bubble is 

composed of species that are produced by radiolysis of the surrounding fluid (water)[15], 

[72]; for simplicity it will be assumed that radiolysis maintains a steady far field 

concentration and that Hydrogen is the main contributor to growth. 

The analysis will begin with a review of classical mass transfer driven growth 

theory that includes inertial and viscous forces[18], [19], [21].  Several assumptions are 

made at the onset such as neglecting the flow field within the bubble itself and dynamics 

slow enough to warrant isothermal expansion. This is in contrast to phase change 

phenomena such as cavitation in which rapid bubble growth and collapse would more 

closely be described by adiabatic or polytropic processes. Experimentally observed 

growth rates are used to generate a time scale, and scale the governing equations. The 

result justifies the assumption of quasi-static mass transfer, and negligible inertia and 

viscous stress contributions to bubble pressure, and prompts a closer look at the fluid 

dynamics specific to confined bubbles. 
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The transport and geometry of droplets and bubbles in confined geometries have 

attracted considerable attention in the scientific community. G. I. Taylor, Tanveer and 

Saffman studied the migration and interfacial instability of droplets in Hele-Shaw cells 

[84], [85]. Bretherton used matched asymptotic expansions to understand the geometry of 

the liquid-gas interface at the advancing and trailing edges of a gas slug in a cylindrical 

tube [8]. Park and Homsy extended Bretherton’s theory to model advancing, weakly non-

uniform interfaces in Hele-Shaw geometries[7].  

Typically, bulk flow and/or buoyancy provoke bubble/drop motion. However, when 

the disperse phase only partially wets the substrate, gradients in substrate elasticity [86] 

and surface chemistry [87], [88] also spontaneously drive motion on single-substrates. 

Similarly, geometric gradients can promote transport of drops inside tapered capillaries 

[89], [90] and on conical wires [41], [91]. To minimize their surface energy, wetting 

drops seek confinement while non-wetting drops and bubbles avoid it. The dynamics of 

bubbles and droplets in tapered Hele-Shaw devices when the continuous phase wets 

completely the substrates [83], [92], [93] or when a film between the disperse phase and 

substrate exists [94] have been considered as well. In the cases considered by Metz et al. 

[92] , Reyssat [93] and Jenson [94], drops and/or bubbles are dispensed into a tapered 

channel and traverse towards their equilibrium positions where they can exist as spherical 

sections that satisfy the equilibrium contact angle [82] or be completely free floating 

droplets/bubbles. 

Metz et al. [22] modeled the propulsive driving force by estimating a fore-aft 

capillary pressure difference and balancing it against dissipative mechanisms in the bulk 

and at the contact line. To circumvent the problem of modeling the precise geometry of 
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the bubble, only the component of the curvature in the confinement direction is 

considered (i.e., for two plates separated by a gap of 2h, the curvature would be 1/h). In 

contrast, Reyssat estimates the propulsive force by taking the spatial gradient of the 

surface energy of the system (assuming constant volume) and balances it against bulk 

viscous dissipation and a Bretheron-like drag law developed by Cantat[95]. Jenson et al. 

[94] performed microgravity experiments at larger length scales and identified flow 

regimes dominated by capillary forces, inertia, and viscous forces; however, the specifics 

of the contact line were not considered.  

The migrating bubbles described in Chapter 3 range in size from tens to hundreds 

of nm. Since the water wets the silicon nitride, bubbles migrate towards the wider part of 

the taper as expected to minimize surface energy; however, energy considerations alone 

do not allow one to estimate bubbles’ velocities and dynamically created shapes. Scaling 

analysis suggests that the observed bubble migration and geometry cannot be explained 

by buoyancy and capillary force-based theories since both growth and migration take 

place at very small Capillary (!10−9 −10−7 ) and Bond (!10−11 −10−9 ) numbers. Our 

experimental situation differs in three important ways from prior works. Firstly, since the 

Capillary numbers of our experiments are much lower than those encountered in the cited 

works and our surface does not perfectly wet the substrate, we cannot presume the 

existence of a liquid lubrication layer between the bubble and substrate. Secondly, the 

volume and mass of our bubbles are changing with time. Lastly, since the mass transport 

into our bubbles is ostensibly driven by diffusion, it is proportional to the pressure within 

the bubbles, which at the sub-micron scale is sensitively related to the bubble curvature, 

!!∝R−1  .  
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The ultra-low capillary number at which our bubbles grow and move suggests that 

the dynamics progresses through uniform-mean curvature conformations, thus we posit 

that bubbles in our experiment move only because they are growing. The statics of 

capillary surfaces confined between two parallel plates or in a wedge has also been 

considered extensively.  When plates are parallel, interfaces can assume axisymmetric 

shapes that satisfy constant contact angle and volumetric constraints. These interfaces are 

described by elliptical integrals and can be classified as either nodoidal, unduloidal or 

catenoidal [82]; special cases can result in cylindrical and spherical shapes. However, it 

has been shown that if the planes are tilted infinitesimally, equilibrium can be lost 

entirely unless the wedge angle !2ϕ  and equilibrium contact angle !θ0  (measured from 

within the continuous phase) satisfy the inequality !θ0 −π /2<ϕ . When this inequality is 

satisfied and !ϕ ≠0 , a section of a sphere is the equilibrium surface [82], [96], this fact 

was used earlier to help sort the data in Chapter 3. 

For the bubble to move in the absence of Laplace-pressure-gradients, however, 

the driving force must arise at the contact line itself through the unbalanced Young’s 

force!!f ~γ cosθ − cosθ0( ) , where θ  is the instantaneous contact angle [12], [97], [98]. 

We consider a system for which the gas-liquid interface is always at mechanical 

equilibrium while the contact angle is driven out of equilibrium by mass transfer. 

The dominance of contact line dynamics at ultra-low Capillary numbers is also 

encountered in a slightly different system, the adsorption of colloidal particles to 

interfaces [99]. Unlike prior works[92]-[94], in the present model we leverage the limit 

!!Ca→0 to explicitly couple contact angle and radius of curvature. This motivates us to 

develop a model that explicitly describes the contact angle and radius of curvature 
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evolution. For simplicity we begin with a two-dimensional analysis and qualitatively 

compare our theoretical predictions with what we have observed in experiments. 

4.2. Governing Equations and Scaling 

 

 Before we consider the contact line physics specific to the nanobubble problem, 

the problem of a growing bubble in an infinite medium is briefly reviewed. In the 

classical Rayleigh-Plesset bubble growth problem, analysis begins with mass and 

momentum conservation. The radial flow field generated by a spherical bubble’s moving 

interface is given by the potential flow 

  
u r,t( ) = R

2

r2
R , [4.1] 

where it has been assumed that mass transfer at the interface is negligible. This is 

reasonable even in phase change phenomena (boiling and cavitation) so long as the 

densities of the two phases are sufficiently disparate. The Navier-Stokes equation for a 

spherically symmetric flow is given by 
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Since the flow is irrotational, viscous terms drop upon substituting in [4.1], simplifying to  

  
−
∂P
∂r

1
ρL

= 2 R
4

r5
R2 − 1

r2
R2 R+2R R2( ) . [4.3] 

The expression can readily be integrated to remove the radial dependence 
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After some rearrangement we have an equation for the pressure directly outside the 

bubble as a function of the bubble radius, radial growth rate, and acceleration 

  

P R( )−P∞
ρL

= RR+ 3
2
R2 . [4.5] 

 

The pressure inside the bubble !PB  can replace the pressure directly outside of the bubble 

!
P r = R( )  by performing a force balance on a portion of the interface. In spherical 

coordinates the component of the stress tensor we are interested in is given by 

 

   
σ rr = 2µ ∂u

∂r
− P . [4.6] 

At the interface, we have the following jump condition due to the curvature of the 

bubble’s interface: 

   
σ rr ,outside −σ rr ,inside =

2γ
R  [4.7] 
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Since !! µH2 ,O2 ≪ µH2O , the pressure directly outside of the bubble is given by 

    
P R( ) = PB −

2γ
R
+2µ ∂u

∂r
= PB −

2γ
R
−4µ R2

r3
R

. [4.9] 

 

Applying this boundary condition yields a second order ODE for the bubble radius:  
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PB = ρL RR+ 3

2
R2

"

#
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R
+ 4µ R

2

r3
R+P∞ . [4.10] 

Since this equation depends on the pressure inside the bubble, we need another equation 

to describe the thermodynamic state of the gas. Assuming that the gas(es) within the 

bubble are incondensable we have from the ideal gas law that the number of moles in the 

bubble  

   
N =

PBV
BT

=
4π
3

R3PB

BT . [4.11] 

 

In the above, B is the universal gas constant and T the absolute temperature. Taking the 

time derivative (and assuming isothermal expansion) yields the rate of change of the 

number of molecules within the bubble: 

    
N =

4π
3BT

3R2 RPB + R3 PB( )
. [4.12] 

 

The total flux supplied to the bubble through diffusion is given by: 

    
N = 4πR2D ∂C

∂r . [4.13] 

Note that there is no direct contribution from convection in this flux term; this is true so 

long as the interface and bulk fluid move at the same velocity.  Equating these two 

equations yields a first order ODE for the pressure of the bubble that must be solved 

simultaneously with the momentum equation, [4.10]. 

 

    
4πR2D ∂C

∂r
=

4π
3BT

3R2 RPB + R3 PB( ) . [4.14] 
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To close the problem, an expression of the mass flux is needed. The task is 

complicated by the moving boundary of the interface and the changing concentration at 

the surface of the bubble, since !
C r = R( )∝PB .  Beginning with the unsteady diffusion 

equation  

 
!!
∂C
∂t

+ vr
∂C
∂r

= D 1
r2

∂
∂r

r2 ∂C
∂r

⎛
⎝⎜

⎞
⎠⎟

 , [4.15] 

we can introduce the variable transformation !
u=C −C R( ) , 

 
!!
∂u
∂t

+
∂Cs
∂t

+ vr
∂u
∂r

= D 1
r2

∂
∂r

r2 ∂u
∂r

⎛
⎝⎜

⎞
⎠⎟

  with 
!!
C R( ) =H P∞ +

2γ
R

⎛
⎝⎜

⎞
⎠⎟

,  [4.16] 

where H the Henry’s constant for the solute of interest. Of course, this would not be a 

practical transformation to effectuate a solution since it simply moves the problematic 

boundary condition at !r = R  to !r→∞ , however, it will allow us to compare the size of 

various terms.   

 
!!
∂u
∂t

− Hγ
R2

∂R
∂t

+ vr
∂u
∂r

= D 1
r2

∂
∂r

r2 ∂u
∂r

⎛
⎝⎜

⎞
⎠⎟

 . [4.17] 

Let’s now non-dimensionalize the system according to !!r
* = r /R0  , !! t

* = t !R0 /R0 , and 

!!u
* =u/C∞  where !!R0  is a characteristic bubble radius and!! !R0  is a characteristic velocity of 

the interface. The governing equations alone do not furnish us with a timescale different 

than the one associated with diffusion. However, we choose to use an arbitrary interface 

velocity so that we can gain insights into the observed experimental situation that we 

hypothesize possess additional physics. Introducing these scales and simplifying yields  
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!!
Pe ∂u*

∂t *
+ vr

* ∂u*

∂r *
⎛

⎝⎜
⎞

⎠⎟
−Ω3

1
R2

∂R*

∂t *
= 1
r *2

∂
∂r *

r *2 ∂u
*

∂r *
⎛

⎝⎜
⎞

⎠⎟
. [4.18] 

and gives rise to two dimensionless groups. The familiar Peclet number and another that 

quantifies the importance of boundary condition transience  

 
!! 
Pe =

!R0R0
D

 and 
!! 
Ω3 =

Hγ !R0
DC∞

. [4.19] 

When these quantities are much less than one then using the flux from the steady 

diffusion equation is justified. Using the following values !!H =7.74×10−6[mol/m3Pa] , 

!!D= 4.5×10−9[m2 / s] ,!!R0 ~10
−8[m] ,!! !R0 ~10

−7[m/s],!γ ~40×10
−3[J/m2] , and letting the 

far field concentration scale as the initial surface concentration of the bubble!!C∞ ~Hγ /R0  

such that!! Ω3 = R0 !R0 /D=Pe  gives ! Pe~10−8≪1 and eqn. [4.18] simplifies to 

 
!!
0= 1

r *2
∂
∂r *

r *2 ∂u
*

∂r *
⎛

⎝⎜
⎞

⎠⎟
. [4.20] 

Applying these same scales to [4.10] gives 

  
PB
* =We R* !!R* + 3

2
!R*2⎛

⎝⎜
⎞
⎠⎟ +

2γ
R*

+Ca4
!R*

R*
+ P∞

* , [4.21] 

where the Weber and Capillary numbers naturally arise  

 
!! 
We= ρ !R0

2R
γ

  and 
!! 
Ca = µ !R0

γ
, [4.22] 

and are both much less than one. With ! We,!Ca≪0 , eqn. [4.21]	
  becomes	
  simply	
  	
  

 PB
* = 2γ

R*
 . [4.23] 
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The conclusion of this dimensional analysis is that a quasi-static analysis is suitable for 

bubbles growing and/or moving at the rates described in the previous chapter. The scaling 

also shows that inertial and viscous forces can be safely omitted. However, since we 

plugged in experimentally observed velocities to generate the time scale, the scaling 

analysis cannot furnish us with why bubbles grow the way they do. The task of the next 

section is to establish the importance of additional physics at the contact line.  

 

4.3. Contact Line Dissipation 

 

The previous scaling served to establish that quasi-static mass transfer is a valid 

approximation, which will be utilized below. Taking a closer look at dissipation 

mechanisms in our system, we find four contributors: viscous dissipation in the bubble 

interior, viscous dissipation in the bulk fluid surrounding the bubble (while this was ruled 

out for a bubble in an infinite medium, we briefly reconsider it here for a bubble in a 

Hele-Shaw device), fluid circulation in the vicinity of the contact line [10], [100], and the 

movement of the contact line itself [11], [12]. We may safely ignore the dissipation 

within the bubble itself because of the large viscosity contrast between the gas and the 

liquid. The bulk viscous dissipation of a bubble of !!R~100!nm translating at !!U~1!µm/s  

(the maximum velocity we observe experimentally) in water confined within a Hele-

Shaw cell of half-height !!h~100!nm  scales as ( )η −2 2 232 ~/ 10 	
   s2 J/RU hh [101]. There 

is often debate over which of the final two mechanisms dominate in a given scenario. For 

a spreading spherical droplet, the de Gennes model for hydrodynamic dissipation in the 
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vicinity of the contact line yields !!~6πU
2 ln R/R*( )R/θD ~10−21 −10−20 !J/s , where !θD  is 

the dynamic contact angle (!!θD =θ0 =30
°  is assumed for the purposes of the estimate) and 

!!R* ~0.1!nm   is the molecular cutoff length [9].  Alternatively, the Blake-Haynes-Eyring 

approach for molecular contact line dissipation gives !!2πRU
2ηCL~10−21 −10−17 !J/!s , 

where !!ηCL = kBT / λ3κ 0( )  is the contact line viscosity ([Pa s]). The characteristic length 

!λ~0.1!nm  is the atomic lattice spacing of the substrate and the hopping frequency 

!κ 0 ~103 −109 !s−1 [11] . The dominance of one dissipation mechanism over the other will 

therefore depend strongly on these two unknown parameters. We focus on the Blake-

Haynes model because it affords greater flexibility since it is not tied directly to the bulk 

viscosity and can include, for example, the effect of surfactants on adsorption kinetics 

[14].  

 

4.4. 2D Cylindrical Bubble Growing in a Wedge Model 

 

To explore the impact of contact line resistance on bubble motion, a 2D model is 

proposed. Fig.  4.1 depicts the bubble’s cross-section and defines the relevant geometric 

parameters. We seek the time evolution of the contact line positions ±x , contact angles 

θ± , and the radius of curvature R. Subscripts + and – denote, respectively, variables 

associated with the interfaces facing the wide (right) part and the narrow (left) part of the 

conduit. Since water does not completely wet silicon nitride and the observed interfacial 
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velocities are well below the threshold required to support a film, we assume that the 

bubble contacts the surfaces.  The absence of a liquid film between the bubble and the 

surface is consistent with Bretherton’s theory that predicts a film thickness d ∝ 2/3Cah , 

where !Ca=Uη /γ  is the capillary number. When γ −× 2	
  ~4 10 	
  N/m  (water surface 

tension in the presence of a surfactant), !!U~10
−6 !m/s , !η =8.9×10−4 !Pa!s  (water), and 

!!h~100!nm , Bretherton’s theory predicts !!d~10−13 !m , which is non-physically small.  

 

	
  

Fig.  4.1: Schematic of 2D bubble slug showing  contact line positions ±x , contact angles 

θ± , local channel half-height !h± , radius of curvature R, half-length L, and center position 
X with exaggerated taper ϕ . 

 

Proceeding with the Blake-Haynes model, the projection of the contact line 

velocity on the wedge symmetry plane  
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!! 
!x± = ±U0σ θ±( )cosϕ sinh W0 cosθ± − cosθ0( )⎡⎣ ⎤⎦ , [4.24] 

with 

 

!!

σ θ±( ) =
1 θ± /θ0 ≤ βR
0 βR <θ± /θ0 < βA

1 θ± /θ0 ≥ βA

⎧

⎨
⎪⎪

⎩
⎪
⎪

  [4.25] 

In the above, !!W0 = λ
2γ / 2kBT( )  is the normalized energy barrier that needs to be 

surmounted to move the contact line by a characteristic distance λ  (typically the lattice 

spacing of the substrate) [12]. !!U0 =2κ 0λ  is the molecular velocity scale with the hopping 

frequency !κ 0 . !θ0  is the equilibrium contact angle. To explore deviations from smooth 

behavior, we introduce the function σ θ±( )  to include hysteresis, which are controlled by 

changing the values !!βA ,R . Subscripts A and R correspond, respectively, to advancing and 

receding contact angles !!βA ≥1  and !!βR ≤1  (note, by convention advancing and receding 

refer to movement of the liquid phase; when liquid has moved into an area previously 

occupied by the bubble that contact line is said to have advanced and vice versa).  Blake-

Haynes behavior can be retrieved by letting !!βA ,R =1 . For simplicity, we assume a small 

!!W0  and linearize eqn. [4.24] for small deviations from the equilibrium contact angle to 

yield 
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!! 
!x± = ± γ

ηCL
σ θ±( ) cosθ± − cosθ0( )cosϕ , [4.26] 

 

where γ is the macroscopic surface tension and !!ηCL = kBT / κ 0λ
3( )  is the contact line 

viscosity. 

The half-heights of the channel at the contact line positions are  

 

 !! h± = Rcos θ± ∓ϕ( ) . [4.27] 

 

We assume that the bubble is at a uniform pressure and therefore has a uniform radius of 

curvature !R .  Initially, we take the bubble to be shaped like a segment of a circular disk 

with equilibrium contact angles. !! h± t =0( ) = R0 cos θ0 ∓ϕ( ) . Where, 

 
!!
R0
h0

= cosϕcosθ0
  [4.28] 

 

defines the relationship between the initial radius !!R0  and conduit half height at the initial 

disk’s center !!h0 .  In what follows, the origin of !x  is fixed at the position of the center of 

the initial bubble. Eqn. [4.27] , the relationships ϕ± ±= +0 tanh h x  , and the uniform 

curvature condition yield the two equations: 

 

 
!!
R =

h0 + x− tanϕ
cos θ− +ϕ( ) =

h0 + x+ tanϕ
cos θ+ −ϕ( )  . [4.29] 
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It is convenient to express the bubble size in terms of its length 2L  along the wedge axis  

 

 ( ) ( ) ( )θ ϕ θ ϕ−+ − +⎡ ⎤= − + − −⎣ ⎦+ −2 2 sin sinx x RL . [4.30]  

 

At !!t =0 , !L= R . The location of the bubble’s geometric center 

 

 ( ) ( )( )θ ϕ θ ϕ− + − +⎡ ⎤= −+ + − ⎦+⎣
1 sin sin
2

x RX x .  [4.31] 

 

We examine the motion induced by mass transfer into the bubble.  We assume 

that the gas in the bubble behaves like an ideal gas!PV = nBT , where !P  is the uniform 

pressure in the bubble, n is the number of moles per unit depth, !B  is the universal gas 

constant, and !T  is the absolute temperature.  Given the very high Laplace pressure of the 

bubble, deviations from ideal gas behavior are expected, but not considered to avoid 

obscuring the goal of the model. The time derivative of the state equation yields  

 

 ! !PV +P !V = !nBT . [4.32]  

 

The volume per unit depth is: 

 

 

!!
V = R

2

2
2π −2 θ− +θ+( )
−sin 2θ− +2ϕ( )− sin 2θ+ −2ϕ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 2h0 + x− + x+( )tanϕ⎡⎣ ⎤⎦ x+ − x−( ) . [4.33] 
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We assume quasi-static conditions with the pressure in the bubble given by 

Laplace equation !!P∞ +2γ /R , where !P∞ is the liquid’s pressure, and that the bubble’s 

volume increase does not appreciably alter the liquid pressure. The solute gas 

concentration at the liquid’s interface with the bubble obeys Henry’s law !
C r = R( ) =HP , 

where H is Henry’s constant.  For simplicity, we assume that the solute concentration 

!
C∞ =C r = R∞( )  at the distance !R∞  from the bubble’s center is held constant at all times.  

This assumption is reasonable when the bubble’s volume is much smaller than the 

liquid’s volume and/or when solute is continuously produced to maintain its equilibrium 

concentration as during electron beam irradiation [15].  The total solute mass flow per 

unit depth is: 

 
!! 
!n=2 π −θ− −θ+( )D C∞ −H P∞ +γ /R( )⎡⎣ ⎤⎦

ln R/R∞( )  , [4.34] 

where D is the solute diffusivity.  Substituting eqn. [4.34] into [4.32] along with the 

constraint eqns. [4.29] and the Blake-Haynes eqn. [4.26] gives the mass transfer driven 

system.  We define the excess solute concentration as 

 α ∞⎛ ⎞
= ⎜ ⎟−

⎝ ⎠
10

0

log 1C
C

, [4.35] 

where !!C0 =H P∞ +γ /R0( )  such that !!C∞ =H 10α +1( ) P∞ +γ /R0( ) . We choose this 

definition for the far field concentration so that we can readily control it relative to what 

is needed to initiate growth !!C∞ >C0 . Given !C∞  and initial conditions, the equations can 

be integrated to yield !R , θ± , and !x± as functions of time. 
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 For comparison, if we assume !!ηCL =0!and!θ± =θ0 . We have an Epstein-Plesset-

like theory. In this case, the pressure remains the same, but volume per unit depth is 

given by 

   
VEP = πR2 1− 2

θ0

2
− sin

θ0

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 [4.36] 

and the mass flow per unit depth becomes 

    
!nEP = 2 π − 2θ0( ) D C∞ − H P∞ + γ / R( )⎡⎣ ⎤⎦

ln R / R∞( ) .
 [4.37] 

4.4.1. Volume Driven Growth Results 

 

We now examine the dynamics of the system in response to a prescribed volume 

(per unit depth) variations with time. Thus we set !!V t( )~V0t2 in eqn. [4.33]. 

Serendipitously, this  choice of volume evolution permits the existence of a steady-

dynamic state (constant velocity! !X  and growth rate ! !L ). This allows us to qualitatively 

examine the transient effects of initial conditions, wedge angle, and equilibrium contact 

angle. We non-dimensionalize the system using the length scale !!h0 and timescale 

!!h0ηCL /γ . Thus, the dimensionless volume flow!!V0
* =V0ηCL / γ h0( ) , equilibrium contact 

angle !θ0 , slope ϕ  and the initial conditions govern the evolution of the system.  

 Fig.  4.2 (A) and (B) shows, respectively, the effect of !!V0
*  and ϕ  on the evolution 

of θ±  and !R  in time.  In the long time, we observe that the trailing (leading) contact 
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angle is greater (lesser) than the equilibrium contact angle. This is consistent with both 

interfaces moving to the right at the same velocity, towards the wider part of the wedge. 

At short times, however, both contact angles are observed to decrease below the 

equilibrium value. This corresponds to an outward expansion of the droplet. Interestingly, 

very short times, this is accommodated completely by a change in the radius of curvature, 

which must decrease initially (Fig.  4.3). Increasing !!V0
*  and ϕ  have similar effects: a 

larger departure from equilibrium in the long time and a more pronounced non-

monotonic evolution. Decreasing the slope also affects the time required for the rear 

contact line velocity to assume a positive value, this is shown in the inset of Fig.  4.2.A. 

As the slope becomes smaller the time spent growing outward in both directions 

increases. 

Simply put, the response of the bubble occurs in two phases with a transition 

region in between: an expansion phase in early times and a phase where translation and 

growth coexist. In the limit !Ca→0 , bulk viscous dissipation does not exist and therefore 

decreasing the radius of curvature is the path of least resistance to accommodate growth. 

In other words, these results show that physics at the contact line feed back into the 

global geometry of the bubble or droplet; this has important implications for any 

processes that depend on the internal pressure of the bubble. When the radius of 

curvature responds instantly in this way, both contact angles !θ1,2  are forced to decrease 

below their equilibrium values. However, they do so asymmetrically !θ2 <θ1 <θ0  and 

eventually the contact lines “cooperate” to allow for translation of the disperse phase.  
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Fig.  4.2: θ−  (red) and θ+  (black) contact angle evolution (A) when the wedge angle 

!ϕ = 0.1,0.3,0.5,0.7{ }  (!!V0
* =0.004  and !θ0 = 45

° ) and (B) when the area flux 

!!V0
* = 0.001,!0.002,!0.01,!0.02{ }  (!ϕ =0.25  and !θ0 = 45

° ). 
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Fig.  4.3: Bubble radius of curvature normalized by starting radius as a function of time. 

!!V0
* = 0.001,!0.002,!0.01,!0.02{ } . !ϕ =0.25  and !θ0 = 45

° . 

 

4.4.2. Mass Transfer Driven Growth Results 

We now consider the more realistic case of mass transfer-controlled growth of the 

wedged bubble. Fig.  4.4 depicts the bubble’s half-length  L and radius R (A), the 

velocity of the bubble’s center (B), , and the ratio R/L (C) as functions of time. Lines with 

symbols (p, r, �, �), dashed lines, extra thick lines, and symbols correspond, 

respectively, to theoretical predictions, predictions for a pinned rear contact line, 

predictions based on Epstein-Plesset (EP) theory [20], and experimental data.  

For comparison, we’ve selected data of bubbles that nucleate in the field of view 

and begin translating instead of bubbles that simply pass through the viewing window but 

have already grown to a large size. We found it instructive to include longer time 
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EP) and demonstrate the asymptotic convergence of our theory to EP’s theory at long 

time. In the theoretical calculations, we use !!h0 =15!nm , !α = −4 ,!!θ0 =30
°  [102], ∞P

=0.1MPa, !!HH2
=7.74×10−6 !mol/Pa!m3 [103], !!DH2 = 4.5×10

−9 !m2/s  [104]and 

!γ = 40!mN/m . The surface tension of the gas-liquid interface is lower than that of pure 

water to account for the presence of the CTAB surfactant. While the device is 

hermetically sealed, the flexibility of the membrane permits a range of pressures[70]; 

since we are unable to measure these deflections in-situ, we assume a pressure of one 

atmosphere. 
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Fig.  4.4: Bubble half-length and radius (A), velocity (B), and ratio R/L (C) as functions 
of time.  The blue “+” and red dots represent experimental data from, respectively, 
10,000x and 5,000x observations. We plot four combinations of !ηCL and ϕ : 

!!ηCL =η0{10
1 ,103}  are respectively, triangles and circles; and !ϕ =10−6 ,10−6.25   are 

respectively solid and hollow symbols. Dashed lines correspond to !!ηCL ,− →∞  . Solid and 

dashed lines are Epstein-Plesset theory using eqn. [3.3] for the velocity with  !ϕ =10−6 and 

!10−6.25  (note that the growth rates are nearly identical while the velocities differ). In (B), 
black trends are the half-length L and gray trends are t he corresponding radius of 
curvature R. !η0 =8.9×10

−4 !Pa!s , !!h0 =15!nm , !α = −4 ,!!θ0 =30
° , and !γ = 40!mN/m . 
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To examine the sensitivity of our predictions to contact line viscosity and the 

wedge slope, we present predictions in Fig.  4.4 for { }η η= 1 3
0 10 , 	
  10CL  (p, r and �, 

�), where !η0 =8.9×10
−4 !Pa!s  and slopes !ϕ =10−6  (p, �) and 10-6.25 (r, �). Note that 

even small changes in the slope shift the curve noticeably. Decreasing the slope shifts the 

curves to the right because it increases the distance a bubble must travel to decrease its 

confinement. Bubbles eventually grow like EP theory predictions when they are large 

enough that contact line dynamics no longer dominate the geometry of the bubbles. That 

is, a small bubble must change its curvature much more than a large bubble in order to 

move and grow. The EP theory is applied to a wedged bubble undergoing diffusion-

driven growth without contact line dissipation !!ηCL →0  (Supplement S5). In the latter 

case, the contact lines slide freely to maintain the equilibrium contact angle and equation 

[3.3] is used to find the translational velocity as a function of growth rate.  We can 

understand the restricted growth through Fig.  4.5, which depicts !!R/R0 −1  (A) and 

!θ± −θ0   (B) as functions of time when the supersaturation!α = −2,−3!and!−4 .  Witness 

that at low super-saturation, the radius initially decreases slightly, suppressing mass 

transfer; attains a minimum and then increases again. The super-saturation level sets the 

magnitude of the dip because the surface concentration cannot exceed that of the bulk 

concentration. This type of behavior is absent in classical theories of bubble growth that 

tend to over-predict the rate of growth. As expected, as time increases, θ+  increases while 

θ−  decreases. Unlike the free sliding case, smaller slopes result in small velocities 

because the growth is restricted by the inability to increase the radius of curvature. That 
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is, the contact line must move further for smaller slopes in order for the curvature to be 

permitted to decrease and growth to accelerate. 

 

Fig.  4.5:!!R/R0 −1  (A) and !θ± −θ0  ( ±  are, respectively, black and red) (B) as functions 

of time. !α = −2,−3,−4{ } . !!ηCL =η010
3  and  ϕ = 10−6 . All other parameters are the same as 

in Fig.  4.4. 

 

 

The bubbles we compare to the theory display non-circular footprints as they 

grow, especially during their early stages, Fig.  3.12 and Fig.  3.13. This raises the 

question whether Blake-Haynes contact line resistance alone or some degree of pinning is 

required to achieve such geometries. While our model is two-dimensional, we can still 

approximate these special cases. To do so we first examine the predictions when the rear 

contact line is pinned !! η− ,CL →∞,! !x− →0  (dashed line in Fig.  4.4), altering the slope ϕ  to 

α

α
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!10−4.7 !rad for a better fit with the experimental data. Further, Fig.  4.6 compares results of 

the Blake-Haynes theory with !!ηCL =10
3η0 , pinned rear contact line, and small amount of 

hysteresis !!βA = 1.10,1.15,1.20{ }  (!!βR =1  for all) for fixed supersaturation !α = −4  and 

slope !ϕ =10−5 . We find that the pinned case produces velocities that are constant at 

early times, which is the same trend we observe in the experimental data. By introducing 

hysteresis instead of complete pinning, the model allows the bubble to depart (as 

observed in Fig.  3.12). Fig.  4.6 shows that larger amounts of hysteresis result in later 

departure as would be expected. The model predicts that bubbles can reattach at later 

times. This occurs because as the bubble grows, its growth rate and velocity diminish. 

The contact angles, therefore, tend towards their equilibrium values. If the departure from 

equilibrium is sufficiently small, the contact line will halt, resulting in reattachment.  

Detachment and reattachment events can be identified as the times when the hysteresis 

model begins to asymptote towards different extremes: predictions made by the pure 

Blake-Haynes model (dashed) and fixed rear contact line (dotted).  
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Fig.  4.6: Bubble half-length and radius of curvature  (A), velocity (B), and ratio R/L (C) 
as functions of time.  Blake-Haynes model !!ηCL =η010

3  (dashed), pinned rear contact line 

!!ηCL ,− →∞ (dotted), and hysteresis with!!βA = 1.10,1.15,1.20{ }  and !!βR =1  (black, from left 

to right) results. For all trends, !α = −4 !ϕ =10−6 .  
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4.5. Conclusion 

We observed highly transient bubble migration phenomena in the asymptotic limit 

of zero Capillary and Bond numbers that is only observable at sub-micron scales and 

proposed a model to explain the main features of the experimental data. Our model 

predicts continuous transport of a disperse phase in the absence of outside forces; all 

work is provided by the concentration gradient and subsequently dissipated at the contact 

line and in the creation of additional interface. The insights gained in this study have 

applications in multi-phase devices such as heat exchangers and catalytic devices where 

bubbles of vapor or gaseous products nucleate heterogeneously but must be cleared to 

free up surface area and maintain efficiency. Channel height, channel slope, and -in 

particular- contact line mobility are shown to play a crucial role in governing growth rate 

and velocity in both volume driven and mass transfer driven systems. Our results also 

have very specific applicability to liquid-cell electron-microscopy. Since liquid-cells used 

in electron-microscopy are created from thin, flexible materials, geometric non-

uniformities are likely to be prevalent in many devices. Thus, confinement gradients need 

to be considered when fluid motion of drops and bubbles is observed. Conversely, one 

could take advantage of such a mechanism to prevent bubbles from interfering with an 

experiment, or draw them to a region for study. 

The cylindrical nature of the bubble in our 2D model cannot address the tear-drop 

shaped bubbles seen in Fig.  3.10.C or predict pinch off events when bubbles are partially 

pinned [83]. However, our model does show that modifying diffusion limited growth to 
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include contact line dissipation can lower growth rates by orders of magnitude and bring 

theory much closer to observed dynamics. In order for the model to agree with 

experiment, we must use small gaps and small slopes; this supports the claim that the 

membranes have become laminated together in some way as described in Fig.  3.4 and 

are not bowed outward Fig.  3.3.  

  



 81 

Chapter 5. Quasi-3D Bubble in a Hele-Shaw 

5.1. Motivation 

Chapter 4 introduced a two-dimensional dynamic model to describe the contact 

line and contact angle evolution of a bubble slug confined in a wedge geometry. The 

system was a convenient one to explore because the non-linear system of equations that 

describes the geometric constraints and Blake-Haynes relationship between contact angle 

and velocity could be readily solved using standard numerical tools. While the model did 

show how a bubble subject to mass or volume changes would force the contact angle out 

of equilibrium and drive both growth and net motion , questions remained about whether 

the prescription of the Blake-Haynes model would yield bubble geometries like those 

observed in liquid cell experiments described in Chapter 3 (the tear drop like bubbles in 

particular) and/or similar relationships between radial growth rate and velocity in a fully 

three-dimensional scenario.  To deal with these shortcomings, a quasi-three-dimensional 

model will be developed in this chapter, and compared to the results of Chapter 4 and the 

experimental data from Chapter 3. 

The model leverages four special limits. Firstly, as with all other models in this 

thesis, the zero Capillary number limit will be employed, allowing the details of the fluid 

flow interior and exterior to the bubble to be ignored. Secondly, the Young-Laplace 

equation will be scaled using two length scales: a characteristic radius of the projected 

bubble !P  and a characteristic thickness !!h0 . When these length scales are sufficiently 

disparate, the curvature equation can be simplified. Thirdly, it will be assumed that the 

bubble resides in a wedge that opens very slowly. Lastly, the geometry of the contact line 
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(projected onto the xy-plane) will be assumed to be nearly circular. The latter two of 

these simplifications will permit a spectral representation of the system. Such a 

representation will then allow integration of the spatial dimension to be performed 

analytically, leaving only the temporal evolution of the system to be determined 

numerically. Once the general model is derived, it will be used to explore four cases: 

prescribed volume !!V ∝t3  , mass transfer driven growth/migration, and each of those 

cases with and without an immobilized portion of the contact line. 

 

5.2. Simplifying the Young-Laplace Equation 

 

To begin, we consider a surface z parameterized in cylindrical coordinates by the 

radial position r and polar angle ψ . For such a surface, the Young-Laplace equation is 

given by 
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  [5.1] 

 

For a surface that is highly confined, the vertical length scale h is much smaller than the 

characteristic radius P. However, gradients with respect to r are sharp, and scale as 1/h: 
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!!

∂
∂r
~1
h

r~P
z~h

 [5.2] 

Applying these scales to the Young-Laplace equation gives 
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where we’ve introduced a dimensionless pressure jump !!ΔP
* = ΔP h/γ( )  .Rearranging 

and introducing the aspect ratio !!ε = h/P  gives 
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 [5.4]

 

In the limit as the aspect ratio ε  goes to zero, the equation reduces to  
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!!

∂2z*

∂r *2

1+ ∂z*

∂r *
⎛
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⎞
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2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

3
2
= ΔP*  . [5.5] 

Integration readily shows that a circle satisfies this differential equation. Thus, in the 

lubrication limit, each cross section of the interface is circular and variations with respect 

to the polar angle do not affect the pressure. While it is possible to consider higher order 

corrections, as discussed by Park and Homsy [7], we will henceforth assume that, in a 

plane oriented with the local normal of the contact line, the interface is a section of a 

circle. 

 

5.3. Contact Line Geometry 

 

By utilizing the lubrication limit, we no longer have to concern ourselves with the 

behavior of the interface in the z-direction. This section will show how the bubble 

geometry can be completely described in terms of its contact line and radius of curvature 

R. 
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Fig.  5.1: Problem schematic, top view. Solid curve is the contact line, dashed curve is 
the bubble geometry at the mid-plane of the wedge.  
 

We define the projection of a contact line point on the xy-plane in polar coordinates as 

 

 !!!x ψ ,t( ) = ρ ψ ,t( )cosψ + X t( ) ,ρ ψ ,t( )sinψ{ }   [5.6] 

 

To minimize clutter, once variable dependencies such as !!ρ ψ ,t( )  are explicitly stated, 

they will be omitted in the remainder of the analysis. We define our coordinate system 

such that x (Fig.  5.1) is the global or lab Cartesian xy-coordinate, X is the center of the 

bubble measured in the lab frame of reference and ρ  is the radial position of the interface 

measured from a coordinate system centered about X. An evolution equation for X will be 

developed later in the analysis. We define the center of the lab reference frame such that 

at !!x =0 , the half-height of the channel is !!h0 ; !!h0 will be defined when the initial 

conditions for the model are discussed (eqn. [5.36]). In a coordinate system oriented with 

ρ
ψ

n

ex
ey

X

x
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the normal of the contact line, we have two equations for the local height of the tapered 

conduit that together will yield a unique equation for the local contact angle (as measured 

from the continuous phase). The first equation relates the radius of curvature !R  to the 

slope of the wedge in the plane normal to the contact lineϕ ψ( )  and θ ψ( )  
 

 !!h= Rcos θ ψ( )−ϕ ψ( )( )  . [5.7] 

 

We arbitrarily let the planes of the Hele-Shaw device diverge in the x-direction such that 

 

 !!h= h0 + x tanΦ = h0 + X + ρcosψ( )tanΦ ,  [5.8] 

 

where !2Φ  is the total opening angle of the wedge. Equating [5.7] and [5.8] and solving 

for the contact angle gives 

 

 
!!
θ = cos−1

h0 + X + ρcosψ( )tanΦ
R

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ϕ  . [5.9] 

 

A distinction must be made between the global or maximum wedge angle Φ  and the 

local wedge angle ϕ ψ( ) . The latter depends on the local normal of the contact line 

through the relationship 

 



 87 

 !!!tanϕ = n̂ ⋅êx tanΦ  , [5.10] 

where 

 

 

!!

n̂=
ρcosψ + ∂ρ

∂ψ
sinψ

ρsinψ − ∂ρ
∂ψ

cosψ

⎧

⎨
⎪
⎪

⎩
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 . [5.11] 

 

For example, when!!!n̂ψ =0
= êx  , !ϕ ψ =0

=Φ ; when !!!n̂ψ =π/2
= ê y , !ϕ ψ =π/2

=0 . The relationship 

between ϕ  and Φ  (eqn. [5.10]) can be found by considering two vectors (one oriented 

along the x-axis, and another at an angle ω from the x-axis) that begin at the origin and 

end at points in the tapered conduit with the same height. The vector !!!êx  naturally sees 

the channel as diverging at an angle Φ .  If we arbitrarily let the length of the second 

vector be !W , from eqn. [5.8], we have  

 !!h0 +W tanϕ = h0 +W cosω tanΦ  , [5.12]  

where we can recognize !cosω  as being the value of the scalar product of any unit vector 

with !!!êx .  The normal vector can easily be derived from the equations 
!!!
n̂= dt̂

dψ
dt̂
dψ  

, 

where 
!!!
t̂ = dx

dψ
dx
dψ

 is the unit tangent vector. The full equation for the local wedge 

angle 
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For ! Φ≪1 , the expression can be linearized 
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An expansion about 
!
∂ρ
∂ψ

=0  for 
! 
∂ρ
∂ψ

⎛
⎝⎜

⎞
⎠⎟
≪1  (i.e. nearly circular bubble), yields additional 

simplification such that 
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The full expression for the local contact angle is  
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When ! Φ≪1  and 
! 
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where !!H = 1− h0 /R( )2  . 

Under the Blake-Haynes description of contact line motion, the normal velocity of 

the interface is  

 !!!
∂x'
∂t

⋅n̂=U0 cosϕ cosθ − cosθ0⎡⎣ ⎤⎦   [5.18] 

where !!U0 = γ /ηCL  and 
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which comes directly from taking the time derivative of [5.6]. Note that we only consider 

the projection of the contact line motion in the xy-plane; there exists a small vertical 

component of the motion !∝sin ϕ( )   that we do not need in the present analysis. As 

before, we linearize for ! Φ≪1  and 
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 [5.20] 

5.4. Bubble Center X Evolution 
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Since the geometry of the contact line is defined using polar coordinates and we 

assume ! ∂ρ /∂ψ ≪1  , it is computationally advantageous to have the center of this 

coordinate system move with the contact line as it migrates. In order to find the evolution 

equation for the bubble’s center, we require that !!ρ 0,t( ) = ρ π ,t( )  or equivalently  

!! ∂ρ /∂t( )
ψ =0

= ∂ρ /∂t( )
ψ =π

 with !ρ 0,0( ) = ρ π ,0( ) . Evaluating eqn. [5.20] for !ψ =0  and 

ψ =π , subtracting the results, and incorporating !! ∂ρ /∂t( )
ψ =0

= ∂ρ /∂t( )
ψ =π  

gives the 

evolution equation 
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U0Φ ρ 0( )+ ρ π( )( )−R 2U0ΦH +2dX

dt
⎛
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⎞
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=0

.

 [5.21] 

5.5. Volume 

 

The evolution of the contact line is governed by [5.20] and [5.21] but the space of 

possible interfaces needs to be further restricted for the system to be closed. For example, 

we could consider an isobaric process by letting!! !R =0  or enforce constant (or changing) 

mass or volume.  For the latter two cases, an integral over the entire control volume needs 

to be written. The volume of the disperse phase can be divided into two contributions, a 

nearly cylindrical portion !VI  and the portion that bulges out from the contact line !VII .  

 
!!
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0

2π
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∫   [5.22] 
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In [5.23] it was assumed that ! R≪ ρ  to simplify the integrand. It can be further simplified 

by again lettering! Φ≪1  and 
!! 
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≪1  to yield 
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  [5.24] 

 

5.6. Surface Area 

 

Later in the analysis, a bubble subject to mass transport will be considered. Here 

we derive the expression for the effective surface area of a bubble available for mass 

transport. While the bubble is not perfectly cylindrical, the radius of the outward bulge is 

small compared to the overall radius of the contact line. We therefore expect the 
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concentration field around the bubble to be essentially similar to that around a cylindrical 

bubble. For an arbitrary cylinder the surface area is given by 

 

 
!!
S = ρ + ∂ρ

∂ψ
⎛
⎝⎜

⎞
⎠⎟

2

−h ρ( )

h ρ( )
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Integrating in the z-direction gives 

 
!!
S =2 h0 + X + ρcosψ( )TanΦ( ) ρ + ∂ρ

∂ψ
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2

0
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and linearizing yields the expression we will use for the effective area 

 
!!
S~2 ρ h0 +Φ X + ρcosψ( )( )+O Φ2( )O ∂ρ

∂ψ
⎛
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2
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5.7. Spectral Representation 

 

The system that resulted above consisted of a partial differential equation (the 

Blake-Haynes relationship), an integral constraint, and a point-wise constraint; the latter 

two equations being necessary to solve for, respectively, the radius of curvature and 

bubble center. To simplify the numerical integration of the mixed system of equations, a 

spectral decomposition of the contact line is proposed 
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!!
ρ ψ ,t( ) = ρn t( )cos nψ( )

n=0

N

∑  , [5.28] 

and the governing Blake-Haynes equation [5.20] (BH) integrated with respect to ψ for 

each n used in [5.28] 

 
!!
cos nψ( ) BHLHS −BHRHS( )d

0

2π

∫ ψ =0  . [5.29] 

 

Such decomposition has the virtue of not only reducing the system to a set of non-linear 

ordinary differential equations but readily incorporating volume and point-wise 

constraints. Because the system is non-linear, such a Fourier-like expansion as this will 

not result in a system of independent equations governing the evolution of the 

coefficients (alternatively stated, the system does not permit a complete diagonalization 

as one is accustomed to when solving linear partial differential equations). Rather, we 

will be left with (N+1)+2 coupled equations (N+1 for the number of terms chosen, 1 for 

X, and a volume or mass constraint for R). Only even modes are selected because we 

expect the bubble to be symmetric with respect to the principal axis of the wedge (that is, 

symmetric about !ψ =0  ). The problem could be generalized to include odd modes if, for 

example, initial conditions containing odd modes were of interest; odd modes will not be 

excited otherwise.  

To illustrate the technique, we let N=2 and perform the integration on eqn. [5.20] , 

this gives three coupled equations corresponding to n=0,1 and 2 : 
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  [5.31] 

 and 

 

 

!!

n=2

2ρ2
∂ρ0
∂t

+ ρ1 2dX
dt

+
∂ρ1
∂t

⎛

⎝⎜
⎞

⎠⎟
+2ρ0

∂ρ2
∂t

=
U0
R

2h0ρ2 −R 2ΦHρ1 +2cosθ0ρ2( )+2Φ ρ0ρ1 + Xρ2 + ρ1ρ2( )⎡⎣ ⎤⎦

 . [5.32] 

 

The remaining governing equations do not need to be integrated, substituting the form 

[5.28] into eqn. [5.21] gives 

 

 
!!
−U0Φ ρ0 + ρ2( )+R U0ΦH + dX

dt
⎛
⎝⎜

⎞
⎠⎟
=0 .  [5.33] 

 

The volume (eqn. [5.24]) and surface area (eqn. [5.27]) integrals give, respectively 
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!!

VSE =
1
rRH

4πHRρ02 h0 +ΦX +Φρ1( )+4h02πΦρ1ρ2
+4πρ0 R2h0 +Sin−1 h0

R
⎛

⎝⎜
⎞

⎠⎟
HR3 +h0

2 h0 +2ΦX +2Φρ1( )+ΦHRρ1ρ2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+πHR 2 h0 +ΦX( )ρ12 +2 h0 +ΦX( )ρ22 +Φ ρ1
3 +2ρ1ρ22( )⎡

⎣
⎤
⎦

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 ,[5.34] 

and 

 

 

 !!SSE =2π 2ρ0 h0 +Φ X + ρ1( )( )+Φρ1ρ2⎡
⎣

⎤
⎦  . [5.35] 

 

5.8.  Initial Conditions 

 

As with previous chapters, we assume that the initial geometry of the bubble is 

spherical and possesses the equilibrium contact angle. While a spherical bubble does not 

satisfy the assumption ! ε ≪1 , it is the only geometry that creates a uniform contact angle 

along the entire contact line; using a different geometry would introduce additional 

dynamics at early times. From simple geometric considerations, we again have the 

following relationship between the initial radius and the height of the channel at the 

center of the sphere 

 
!!
R0 = R t =0( ) = h0 cosΦcosθ0

 . [5.36] 
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The initial contact line is thus a circle with radius !!R0 sinθ0 , but the projection of this 

circle onto the xy-plane is an ellipse with major and minor radii given by 

 

 

!!
RE =

R0sinθ0
R0 sinθ0 cosΦ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

h0 tanθ0 cosΦ
h0 tanθ0 cos2Φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 . [5.37] 

 

In our polar coordinate system centered around X is described by 

 
!!
ρ t =0( ) = h0 tanθ0 cos2Φ

cos2ψ + cos2Φsin2ψ
 . [5.38] 

 

where the initial center of the contact line 

 !!X t =0( ) = −h0 sinΦcosΦ  . [5.39] 

 

Note that this value is negative because the center of the contact line is to the left of the 

center of the sphere and we’ve set the zero for the global coordinate system such that the 

half-height at zero is !!h0 . 

5.9. Model Results 

5.9.1. Volume Controlled Case 
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In order to gain an initial understanding of this new system, we first consider an 

insoluble bubble/droplet subject to a prescribed volume variations !!V ∝t3 ; all results 

presented in this section are in dimensionless form. The initial gap height !!h0  is the length 

and the Blake-Haynes velocity !!U0  enables us to generate the time scale!!h0 /U0  . We 

initially explore the behavior of the system when N=3,4, and 5. We compare the 

predictions with three different truncations in Fig.  5.2. The figure shows that, while some 

information of bubble geometry flows into the higher order modes at short times, the long 

time behavior is governed by the leading order mode !ρ0  only.  Initially, !ρ2 ≠0  because 

the contact line begins with an elliptical geometry, eqn. [5.38]. Now that we’ve 

established that the leading order mode dominates for the most part, we can compare its 

evolution, as well as that of the radius of curvature R and position X as a function of time 

for different truncations, Fig.  5.3.  If we take the N=5 truncation as our reference 

(“exact”) solution, we can see that, with the exclusion of early times, increasing the level 

of the truncation does not alter the overall outcome of the key variables. In order to 

reduce the complexity of the system, all results presented henceforth are with N=3.   
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Fig.  5.2: Coefficient evolution (n=1,2…N) normalized by the 0th order mode for three 
different truncations (N=3,4,5). In the long time limit, the contact line assumes a 
perfectly circular geometry regardless of where the series was truncated. Different line 
styles correspond to the three different N used (see key); coefficents (n) are labeled. 

 

n=1

n=2

n=3
n=5

n=4
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Fig.  5.3: Relative Error !R ,!X and!ρ0 (1st, 2nd, and 3rd rows, respectively) for N=0,1,2,3,4 

compared to N=5 (!!Error = fN − f5( ) f5  ). Left column shows temporal evolution of the 

error and in the right column, gray scale indicate time (from light to dark, 

!!t =10−1 ,101 ,103 ,105  ). 

 

Fig.  5.4 depicts the evolution of X, R, !ρ0  and their rates of change; like the 

results of Chapter 4, dynamics become more pronounced as !!V0
*  gets larger. In Fig.  5.4 , 

we observe non-monotonic evolution in both the radial growth rate ! !ρ0  and rate of change 

of the radius of curvature ! !R .  Fig.  5.5 and Fig.  5.6  show, respectively, the aspect ratio 

!!R/ρ0  and contact angle distributionθ ψ( )  for a few different growth rates. All of the 

quantities eventually grow !∝t  ; it then follows that the aspect ratio should reach a steady 
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value, which it does. To accommodate increasing volume the bubble has two avenues: 

spreading radially and moving down the confinement gradient to gain height. As the 

volume rate increases relative to the ability of the contact line to move, the bubble 

becomes more “pancake” like because it is unable to move to wider parts of the channel 

fast enough and instead, spreads radially. We note that the bubble initially begins at an 

aspect ratio that violates the assumptions, under which the model was developed, !ε →0 .  

 

 

V*0

V*0
V*0

V*0

V*0

V*0
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Fig.  5.4: (Left Column) Temporal evolution of bubble center !X , average contact line 
radius !ρ0 , and radius of curvature !R and (Right Column) their time derivatives for 

!!V0 = 1×10−3 ,5×10−3 ,1×10−2{ } ; values correspond to curves from bottom to top in all 

plots. 
 

 

Fig.  5.5: Temporal evolution of the ratio between the radius of curvature !R   and the 0th 
mode !ρ0   that governs the average radius of the droplet.  The droplet begins as a sphere 
(the initial ratio being dictated by the contact angle and wedge angle eqn. [5.37]) but 
becomes more “squashed” as time goes on. Under volume controlled cases !!V

* ∝V0
*t3 , a 

geometric steady state of self-similar growth is reached.  From top to bottom 

!!V0
* = 1×10−3 ,5×10−3 ,1×10−2{ } . As noted when describing the initial conditions, the 

model is initiated as a sphere in order to satisfy an initially uniform contact angle, even 
though the assumption !! R/ρ0 = ε ≪1  is initially violated. 

 

 

 

 

 

V*0
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Fig.  5.6: Contact angle evolution for !!V0
* = 10−3 ,5×10−3 ,10−2{ } ; amplitude in contact 

angle variation increases with !!V0
*  . N=3. 

 

V*0
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We can formalize our finding that !!limt→∞
ρ0 ,X ,R∝t  while !!limt→∞

ρ1,2..N =0  by letting 

!!ρ0 ,X ,R~P
*t ,X *t ,R*t , substituting into [5.30], and [5.34] and retaining only the leading 

order terms as !t→∞  . Doing so creates the the system 

 

!!

2πP* 3P*X *Φ( )−3V0 =0
2R* X * +U0Φ( )−2P*U0Φ =0
P*R* −U0X

*Φ+R*U0 cosθ0 =0
 . [5.40] 

The system has multiple roots, but only one physical solution. Fig.  5.7 compares the 

asymptotic solution to the full solution (N=3) and shows excellent agreement.  

 

 
Fig.  5.7 : Comparison between N=3 system and asymptotic values found from 

!!Φ =0.15,U0 =1,θ0 =π /4,V0 =10−3   

 

The asymptotic forms can also be applied to the linearized contact angle equation [5.17] 

to yield the steady state contact angle distribution. 

 

 
!!
lim
t→∞

θ !~ π
2 +Φ cosψ 1− P

*

R*
⎛

⎝⎜
⎞

⎠⎟
− X

*

R*
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  [5.41] 
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We conclude from this portion of the analysis that when the volume is prescribed 

to grow in time with the same exponent as the dimension of the problem !!V ∝t3 , a 

dynamic steady state is approached as !t→∞ . This asymptotic state is fully described by 

a linear evolution of the mean radius, position, and radius of curvature. This growth is 

scale invariant or self-similar because the relationships between the linear dimensions 

remain constant. Self-similarity is further evidenced by a steady state contact angle 

distribution, eqn. [5.41]. Stated alternatively: in the long time limit, the droplet/bubble 

possesses a contact angle distribution that furnishes a contact line velocity which brings 

the contact line to a new position at the next time instant where the identical contact angle 

distribution exists. To the best of my knowledge, this is the first time such an application 

of the Blake-Haynes model has been used to gain insights into bubble locomotion. 

5.9.2. Partially Pinned Bubble – Volume Controlled 

 

In Chapter 4, the case of a completely immobile, rear contact line was considered. 

To emulate this in the current model, a weighting function is introduced to our linearized 

BH eqn. [5.20]! 1+ cosψ( )/2  such that 

 

 !!

∂ρ
∂t

+ dX
dt

sinψ
ρ

∂ρ
∂ψ

+ cosψ⎛
⎝⎜

⎞
⎠⎟
=

U0
1+ cosψ( )

2
h0
R
+Φ X

R
+ cosψ ρ

R
−H

⎛
⎝⎜

⎞
⎠⎟
− sinψH

ρ
∂ρ
∂ψ

+
⎡

⎣
⎢

⎤

⎦
⎥− cosθ0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 [5.42] 
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The weighting function enforces zero velocity at ψ =π  and smoothly transitions to the 

full BH velocity !ψ =0 . The same integration as before, eqn. [5.29], is performed; for 

N=2, eqns. [5.30]-[5.32] become 

 

!!

n=0

2ρ0
∂ρ0
∂t

+ ρ1
∂ρ1
∂t

+ ρ2
∂ρ2
∂t

=
U0 2ρ0 h0 − cosθ0R( )+Φ ρ1 + X( )⎡⎣ ⎤⎦+Φρ1ρ2

R

,  [5.43] 

 

 

!!

n=1
∂ρ2
∂t

∂ρ1
∂t

− dX
dt

⎛

⎝⎜
⎞

⎠⎟
+2ρ0

∂ρ1
∂t

+ dX
dt

⎛

⎝⎜
⎞

⎠⎟
+ ρ1 2∂ρ0

∂t
+
∂ρ2
∂t

⎛

⎝⎜
⎞

⎠⎟

=
U0
2R

4h0ρ1 +R −cosθ0ρ1 +2ΦH ρ2 −2ρ0( )⎡⎣ ⎤⎦...
+Φ 4Xρ1 +3ρ12 +2 2ρ02 +2ρ0ρ2 + ρ22( )⎡

⎣
⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  [5.44]

 

 and 

 

 

!!

n=2

2ρ2
∂ρ0
∂t

+ ρ1 2dX
dt

+
∂ρ1
∂t

⎛

⎝⎜
⎞

⎠⎟
+2ρ0

∂ρ2
∂t

=

U0
R

2h0ρ2 +R −2ΦHρ1 −2cosθ0ρ2( )+Φ 2ρ0ρ1 +2Xρ2 +2ρ1ρ2( )⎡⎣ ⎤⎦

 . [5.45] 

Eqn. [5.33] ,the constraint needed to describe the evolution of the center X, is modified as 

well, becoming 

 
!! 
U0

h0 +Φ X + ρ0 + ρ1 + ρ2( )
R

− cosθ0 −ΦH
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=2 !X  .  [5.46] 
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Fig.  5.8 shows the contact line evolution for Φ = 0.1 and 0.01, and !!V0 =10
−4  . We 

see that, for the same volume and times, the contact line is more circular for the smaller 

slopes. By scaling the geometries (bottom row of  Fig.  5.8) we see that over longer time 

scales, the !Φ =0.01  case assumes geometries much like !Φ =0.1 . 
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Fig.  5.8: (Top Row) Contact line evolution of a partially pinned bubble for !!V0
* =10−4  , 

!! t =0,15,30!90 for two different slopes !Φ =0.01  and !0.1 ; (Bottom Row) the same 
contact line normalized by the average radius !ρ0  and centered around !X , note that a 
larger time range is used (!! t =0,100,200!500) for the !Φ =0.01  case to illustrate that the 
same elongated geometry of !Φ =0.1  is approached. !θ0 = 45

°   

 

5.9.3. Mass Transfer Driven Growth 

Finally, we explore the results of the model driven by mass transfer with and 

without partial pinning of the contact line. Fig.  5.9 compares the 2D model described in 

Chapter 4 to the model developed in this chapter for different Φ , both without any 

pinning. We observe qualitative agreement between the two models. The predictions 

differ slightly in the maximum growth rates and velocities achieved in the long time.  The 

radius of curvature evolution also appears to be slightly more sensitive to changing slopes 

in the 3D case; that is, for the same change in slope, the curves are more spread out in 

time.  However, unlike the 2D cases, in 3D, we can compare the entire contact line to the 

experimental data, not just the “reduced” metrics of half-length L (see Chapter 4) and 

position X. We are now poised to answer the question: does contact line dissipation result 

in “tear-drop” shaped bubbles? 

Fig.  5.10 compares theoretical contact lines (for pinned A and unpinned B) to 

experimental observations. One can garner that, while the overall predictions of bubble 

size are the same for pinned and unpinned cases, only the pinned case can yield the 

teardrop geometries observed. Fig.  5.11 compares the 2D (dotted lines) and 3D (solid 

lines) models for pinned (gray) and unpinned (black) cases to experimental observations 

of one nucleation site (using the same model parameters as Fig.  5.10). Interestingly, we 
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see that the overall size evolution for the four different cases agree at early times. The 

biggest differences are seen in the velocity evolution. When the entire contact line is free 

to move at the Blake-Haynes velocity, the 2D and 3D predictions are roughly the same 

over the experimentally relevant time scale. However, when the contact rear portion of 

the contact line is fixed, 2D and 3D predictions differ; the 2D case predicts a constant 

velocity while the 3D, a deceleration. We can conclude from this that when contact line 

pinning is present, the ability of the bubble to accommodate mass by spreading out 

perpendicular to the confinement gradient has a strong impact on the overall velocity.  
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Fig.  5.9: Comparison between 2D model (dotted line) presented in Chapter 4 and 3D 
model (solid line) of (A) Bubble size (half length L for 2D model or !ρ0  for 3D model), 
(B) velocity, and (C) radius of curvature R for a few different wedge angles, 

!Φ = 10−4 ,10−5 ,10−7{ } . Growth is driven by mass transfer. !!η =η0103 ,α = −3,h0 =15[nm] 

Ф

Ф

Ф
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Fig.  5.10: Contact line evolution comparison between experiment (data points) and mass 
transfer driven model (lines) with partial contact line pinning (A) and without it (B), 
darker lines and points correspond to later times.  Values that provided the best fit to the 
experimental data are !!Φ =10−6.3 ,η =η0102 ,α = −2.73,h0 =15[nm], time between frames 

!!Δt =0.2[s]. 
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Fig.  5.11: Comparison between 2D model with (gray, dotted line) and without (black, 
dotted line) a pinned rear contact line, 3D model with and without contact line pinning 
(respectively, gray and black solid lines), and the experimental data of 7 bubbles that 
nucleated at the same location. (A) Bubble size (half length L for 2D model or !ρ0  for 3D 
model), (B) velocity, and (C) radius of curvature R for mass transfer driven growth

!!Φ =10−6.3 ,η =η0102 ,α = −2.73,h0 =15[nm] , these are the same values that provided the 
best fit in Fig.  5.10. An open, gray circle marks the end of the predictions made by the 
pinned, 3D model. 
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5.10. Conclusions 

 

A quasi-3D model has been derived and solved using a pseudo-spectral method. 

The volume-controlled case gives interesting insights into the coupling between bubble 

geometry, growth, and motion. In the long time limit, we are able to derive simple 

expressions for the geometric evolution of droplets and bubbles; in particular a simple 

expression for the contact angle distribution is furnished. When mass transfer and partial 

pinning are added, substantial agreement is found between model predictions and 

experimental observations. Namely, the 3D model allows us to conclude that contact line 

friction alone is not sufficient to achieve tear-drop-like geometries, as observed 

experimentally – partial pinning (modeled using a weighting function to the Blake-

Haynes equation) must be included. However, while pinning must be included to get the 

best agreement, the unpinned model still produces velocities and growth rates orders of 

magnitude slower than Epstein-Plesset theory[20]. Including partial contact line pinning 

also makes another fact clear: contact line geometries are growth rate dependent. This is 

evidenced by Fig.  5.8; we see that the slower the growth rate, the more circular the 

contact line will be at early times. This may have important implications in determining 

the size at which bubbles “depart” from their nucleation site. 

The experimental data shows a rapid change in velocity that we cannot account 

for in either 2D or 3D models. Since bubble geometries are well modeled up until that 

point, this is a strong indication that either instability driven breakup as described by 

Dangla et al. is occurring (however, unlike Dangla et al., the geometries present here are 

growth rate dependent) or that contact angle hysteresis is present. Understanding the 
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departure mechanism is a logical next step for this work. Within the framework 

developed thus far, it is the most straight forward to consider the latter mechanism first. 

As suggested by the results of Chapter 4, introducing even small amount of contact 

hysteresis allows for rapid changes in velocity, Fig.  4.6. However, while it was possible 

to implement a contact angle hysteresis into the 2D model with relative ease, the spectral 

method employed in this chapter would have required many terms to satisfactorily 

account for a step-discontinuity in the equations of motion. Yet, this is a limitation of the 

solution method not the model itself and can perhaps be overcome if a more general 

numerical technique is employed. The biggest hurdle is implementation of a volume 

constraint, which was handled readily by the spectral method.  
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Chapter 6. Growing Sessile Bubble with Contact Line 

Dissipation 

6.1. Motivation 

 

The previous chapters established the potential large impact of confinement and 

contact line dissipation on diffusion driven growth of bubbles. In this chapter, a simpler 

case is examined, that of a spherical bubble growing on only one substrate. The 

importance of complete contact-line pinning on the persistence of sessile nanobubbles 

has been demonstrated by Lohse and Zhang [22]. Here we examine whether or not a 

contact line with only partially restricted movement can yield additional insights. Once 

the model is developed, we will our compare model predictions to the experimental work 

of Li et al. [105], who examined the growth of bubbles by diffusion on a substrate and 

published data on the evolution of both the radius and the contact angle.  

6.2. Insoluble 

 

To illustrate the impact of contact line resistance on bubble growth we first 

consider the case of an insoluble droplet with a transient but prescribed volume variations 

!!V ∝t3 . The volume of a spherical cap of radius!R  that makes a contact angle θ  with the 

substrate (as measured through the continuous phase, Fig.  6.1) is given by [106] 
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!!
V R t( ) ,θ t( )( ) = 13πR3 2− cosθ( ) 1+ cosθ( )2 =V0t3  , [6.1] 

The system is closed using the linearized Blake-Haynes model[11], [12]  

 !! ηCL
!Rsinθ +R !θ cosθ( ) = γ cosθ − cosθ0( ) , [6.2] 

which relates the instantaneous contact line (which has radius !!Rsinθ  ) velocity to the 

dynamic contact angle through the contact line viscosity !ηCL  and surface tension γ . It is 

assumed, by using this model, that the contact angle possesses no size or space 

dependency and that any departure from equilibrium is due purely to dynamics. Space 

heterogeneities could be the result of intentional patterning or contamination. A 

structurally patterned surface (such as a pillar array) could give rise to an apparent 

contact angle that differs from the actual, material contact angle. Such a surface might 

also see a size dependent contact line viscosity because the energy barrier associated with 

moving the interface would be that required to hop from one pillar to the next, instead of 

moving between substrate molecules. The system is now non-dimensionalized using the 

initial radius !!R t =0( ) = R0  as the length scale and the velocity scale !!γ /ηCL  , 

 

!! 

1
3πR

*3 2− cosθ( ) 1+ cosθ( )2 =V0*t *3
!R* sinθ +R* !θ cosθ = cosθ − cosθ0

 , [6.3] 

where !!V0
* =V0η0 /γ R02 . 
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Fig.  6.1: Schematic of a spherical sessile bubble (white) of radius !R  with a contact angle 
θ   (as measured from the liquid side, gray). 

 

The time evolutions of !!R*  and θ  for several values of !!V0
*  are plotted in Fig.  6.2; 

the results are qualitatively similar to the results for the 2D and quasi-3D bubbles 

presented in the previous chapters. When !!V0
* <1  the timescale associated with volume 

gain is smaller than that associated with contact line motion and only weak departures of 

the contact angle from equilibrium occur. When !!V0
* >1 contact line dissipation plays a 

more dominant role in controlling the geometry. Like the models in Chapters 4 and 5, 

self-similar growth is also achieved for this system in long times. The asymptotic values 

can be found by assuming the forms !!limt→∞
R* = R∞

*t  and !!limt→∞
θ =θ∞  , substituting them into 

[6.3], retaining only the largest terms as  !t→∞ . These steps create the system  

 

 

!!

1
3πR∞

*3 2− cosθ∞( ) 1+ cosθ∞( )2

R∞
* sinθ∞ − cosθ∞

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

V0
*

−cosθ0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 , [6.4] 

R θθ
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which can be numerically solved. The asymptotic values are plotted in gray, dashed lines 

in Fig.  6.2. A and B. 

 

 
Fig.  6.2: (A) radius of curvature, (B) contact angle and (C) contact line radius of an 
incompressible droplet growing according to !!V

* =V0
*t *3  , !!V0

* = 10−2 ,10−1 ,!1,!10,102 ,103{ } . 

At !! t≫1  , !R∝t  (dotted line) and ! !θ →0  (larger growth rates are associated with steady 
state values further from equilbrium). !θ0 = 45

°  

 

 

V0
*

V0
*

V0
*
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 Another instructive case to examine is the relaxation of the droplet under the 

constraint of constant volume when the contact angle is initiated at a non-equilibrium 

value (Fig.  6.3). We change the reference length scale to be the final radius !!limt→∞
R* =1 , 

and choose the initial radius !!R
* t =0( ) = Ri*  

according to, 

 

!!
Ri
*3 =

2− cosθ0( ) 1+ cosθ0( )2
2− cosθi( ) 1+ cosθi( )2

 . [6.5] 

 

While there is only one natural time scale in the system of equations, we find from Fig.  

6.3 that the relaxation time depends on the initial condition.  We can gain additional 

insights into this behavior by linearizing the radius of curvature and contact angle about 

their initial conditions. To do so, the forms 

 

 

!!

R t( )~Ri +δR t( )
θ t( )~θi +δR t( )   [6.6] 

are assumed and substituted into [6.3] and only the first order terms retained. The linear 

system is as follows 

 

!! 

δ !R 2πRi2 +3πRi2cosθi −πRi2cos3θi( )−πRi3sin3θiδ !θ =0
δ !Rsinθi +δ !θ sinθi +Ri cosθi( ) = cosθi − cosθ0

 . [6.7] 

The system allows us to show, formally, that the early exponential behavior depends on 

the initial conditions; the two time constants are 
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!!

λ1 =
−32cos9θi2 cosθi −2( )secθi sinθi2

Ri
−cosθi −3cos2θi
+cos4θi − sin4θi

⎛

⎝
⎜

⎞

⎠
⎟
2+3cosθi − cos3θi
+sin3θi + tanθi

⎛

⎝
⎜

⎞

⎠
⎟

λ2 =0

  [6.8] 

A comparison of the contact angle evolution between the linearized model and the full 

model is plotted in Fig.  6.4A for two initial contact angles; the model shows good 

agreement at early times as one would expect. The full spectrum of relaxation times as a 

function of initial contact angle !θi  for different equilibrium contact angles 

!θ0 = 45° ,90° ,135°{ }  is shown in Fig.  6.4. B. At the extremes !!θi =0,π  , we see that the 

linear model fails to account for the dynamics indicating that higher order terms would 

need to be included to model early time dynamics for those initial conditions. 
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Fig.  6.3: (A) radius of curvature, (B) contact angle and (C) contact line radius of an 
incompressible droplet initiated at a non-equilibrium contact angle and relaxing toward 
its equilbrium state while conserving volume, !!V0

* =0 . All droplets are given the same 

initial volume such that the final radius of curvature of the equiliberated droplet !!R* =1 .  

!θ0 = 45
°

. 
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Fig.  6.4: (A) Contact angle evolution of a droplet beginning at a non-equilibrium contact 
angle while conserving volume !!V0

* =0 . Trends compare full model (black line) and 

linearized model (eqn. [6.7]) (gray dashed line) for !!θi = 30° ,60°{ }  with !θ0 = 45
° . (B) 

Relaxation time constant !λ1  (eqn. [6.8]) as a function of initial contact angle for 

!θ0 = 45° ,90° ,135°{ } . 

 

0
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6.3. Compressible and Soluble 

 

The case of a compressible bubble that is partially soluble in the surrounding fluid 

is now derived. Beginning with the ideal gas equation of state !PV = nBT and taking the 

time derivative yields ! !PV +P !V = !nBT , where B [mol J^-1 K^-1] is the universal gas 

constant, T [K] is the temperature, n [mol] is the total number of moles in the gas. The 

pressure P of the gas inside the bubble is given by the surrounding pressure plus the 

Laplace-pressure!!P = P∞ +2/R . 

If we assume a spherically symmetric diffusion field (that is, we ignore the impact 

of the substrate), then the molar flux per unit area is given by the long-time Epstein-

Plesset[20] equation 

 
!!
D ∂C
∂r

r=R

= D C∞ −HP∞ −H
2γ
R

⎛
⎝⎜

⎞
⎠⎟
1
R

⎛
⎝⎜

⎞
⎠⎟

 . [6.9] 

The solution excludes convection and assumes that the boundary conditions are steady 

with time, as was justified in Chapter 4. Integrating the flux along the exposed portion of 

the sphere gives a total molar flux of 

 
!! 
!n=2πR2 1− cosθ( )D C∞ −HP∞ −H

2γ
R

⎛
⎝⎜

⎞
⎠⎟
1
R

⎛
⎝⎜

⎞
⎠⎟

 . [6.10] 

However, this will tend to overestimate the mass flow when !θ0 <π /2   and underestimate 

it when !θ0 >π /2. To find the correction, an auxiliary finite element simulation is 

performed that includes the no-flux condition at the surface of the substrate, a sample of 

the mesh used is shown in Fig.  6.5. 
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Fig.  6.5: A sample of the mesh (with !θ0 = 45
° ) used for the finite element calculation of 

the total mass flux into the bubble plotted in Fig.  6.6. The bubble has unit radius, the 
actual domain size used was 50 times the size of the bubble. 

 

The dimensionless mass flow of the spherically symmetric analytical case

!! !n/ DRΔC( ) = 4π 1+ cosθ0( )  (black line) is compared to the FEM solution (black points). 

The numerical points are used to create a smooth interpolation function !!f θ0( )  , which 
will be implemented as follows 

 

 
!! 
!n= f θ0( )RD C∞ −HP∞ −H

2γ
R

⎛
⎝⎜

⎞
⎠⎟

 . [6.11] 
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Fig.  6.6: Comparison of the (dimensionless) mass flow into a sessile bubble as a function 
of contact angle between a spherically symmetric solute field (black line) and a more 
realistic calculated using the finite element method (black points). Note that when the 
bubble is a perfect hemisphere (!θ = 90°  ) the two methods agree due to symmetry. 

 

 

Substituting eqn. [6.11] into the ideal gas equation along with [6.2] closes the system. We 

non-dimensionalize the system using, again, the initial radius as the length scale 

!!R
* = R/R0  but this time the time scale associated with diffusion !!t

* = tD/R02  . 

 

 
!! 

− !R* 2
R*2

⎛
⎝⎜

⎞
⎠⎟
V * + P*∞ +

2
R*

⎛
⎝⎜

⎞
⎠⎟
!V *⎡

⎣
⎢

⎤

⎦
⎥ = HBT( )R*2 f θ0( ) C∞

* −P∞
* − 2
R*

⎛
⎝⎜

⎞
⎠⎟

, [6.12] 

and 

 !! 
!Rsinθ +R !θ cosθ =Ω2 cosθ − cosθ0( ) . [6.13]

 

 

This introduces the following dimensionless variables and quantities: 
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 !!Ω1 =HBT ,
!!
Ω2 =

γ R0
ηCLD

,
!!
C∞
* =

C∞R0
Hγ

 ,
!!
P∞
* =

P∞R0
γ

  [6.14] 

   

The group !Ω2  quantifies the importance of contact line friction and can be understood as 

a ratio of velocities. In the limit as !Ω2→∞  , ! !θ →0  and the equilibrium contact angle is 

maintained at all times. In the opposite limit !Ω2→0  , the contact line seizes completely 

throughout the growth. We can see quite readily from this group that contact line 

dissipation will be more important at small scales or early times.  
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Fig.  6.7: (A) radius of curvature, (B) contact angle and (C) contact line radius of a 
shrinking bubble !Ω2 = 10−4 ,10−3 ,10−2 ,10−1 ,1,10{ } .!α =1.1 ,!!P∞

* =0.01  and !Ω1 =0.019 . 

 

Ω2

Ω2
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Fig.  6.8: (A) radius of curvature, (B) contact angle and (C) contact line radius of a 
bubble whose surface concentration matches the concentration in the solute initially 

!α =1 , but begins with a non-equilibrium contact angle, !θ 0( ) = 1° ,15° ,30°{ } . The bubbles 

grow; however, the contact angle evolution is non-monotonic., !θ0 = 45
° ,!!P∞ =0.01 , 

!Ω1 =0.019  and !Ω2 =10−3 . 
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Fig.  6.9: (A) radius of curvature, (B) contact angle and (C) contact line radius of a 
shrinking bubble !α = 0.999,0.99,0.9{ } . Solid, dotted, and dashed lines are, respectively 

!Ω2→0 , !Ω2 =10−5  and !Ω2 =10−4 . !!P∞
* =0.01!and!Ω1 =0.019 .  

 

We now choose to model a specific physical situation that has been realized 

experimentally by another group: the growth of a compressible and soluble bubble due to 

a diffusion limited growth following sudden change in super-saturation created by 

dropping the pressure. Like the nanobubble analysis, the inertial and viscous stages of the 

Ω2

Ω2

α
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growth are ignored and we view the problem as an instantaneous change in the super-

saturation of dissolved gas.  

 In order to compare our results to the experimental work of Li et al.[105], we 

assume that the mass transfer driven growth begins with the bubble having a radius of 

curvature of !!R0 =15[µm]. In order to estimate the super-saturation value (which is not 

given in their paper), we assume that prior to the pressure drop that the bubble was at 

mechanical and chemical equilibrium with the surroundings. For the sake of making the 

problem self-consistent, we find the radius of the bubble prior to pressure expansion in 

order to find the super saturation that corresponds to its surface concentration by solving 

for !!R'   

 

 
!!
R'3 P∞

' + 2γ
R'

⎛
⎝⎜

⎞
⎠⎟
= R0

3 P∞ +
2γ
R0

⎛

⎝⎜
⎞

⎠⎟
 . [6.15] 

For!!P∞
' =101![kPa]  , !!P∞ =35![kPa], !!R0 =15![µm], and !γ =70![mN!m'1] , !!R

' ~11![µm] . If 

the pre-expansion bubble of this radius is at equilibrium, the bulk concentration of 

dissolved gas must be !!C∞ =H P∞
' +2γ /R'( ) =0.68 mol!m−3⎡⎣ ⎤⎦  for 

!!H =6.06e−6 mol!m−3 !Pa⎡⎣ ⎤⎦ .  However, ultimately we find that !!C∞ =0.44 mol!m−3⎡⎣ ⎤⎦  

gives a better fit with the experimental data; this simply suggests that the initial 

assumption of chemical equilibrium was incorrect.  Fig.  6.10 compares the evolution of 

the radius of curvature (A) and contact angle (B).  
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Fig.  6.10: (A) radius of curvature, (B) contact angle comparison between theory mass 
transfer driven theory and the experimental work of Li et al.[105] 

!Ω2 = 1,10−1 ,10−2 ,10−3 ,0{ } , !θ0 =160
°  . 

 

In order the Blake-Haynes model to give a good agreement at early times, an equilibrium 

contact angle !θ0 =160
°  was used. However, the model also predicts a relaxation back 

towards this contact angle as the growth rate slows; this is in contast to the experimental 

data in which late stage growth proceeds with nearly constant contact angle.   

Ω2

Ω2
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6.4. Conclusion 

A simple model of a sessile bubble growing and shrinking on a substrate with 

contact line dissipation is considered. Like previous chapters, when volume is prescribed 

and grows as the dimension of the system !!V ∝t3 , growth becomes self-similar. However, 

unlike the doubly-confined (Hele-Shaw) cases considered earlier, the evolution of the 

radius of curvature when diffusion drives growth does not deviate from Epstein-Plesset 

theory. Additionally, a comparison with the experimental data of Li et al. [105] is 

conducted. In their experiment, Li et al. show that the contact angle saturates at a 

constant value. In contrast, the Blake-Haynes model predicts a relaxation back towards 

the equilibrium, indicating that other physics at the contact line are present, such as 

contact angle hysteresis.  
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Chapter 7. Conclusions and Outlook 

Droplet and bubble geometries in the zero Capillary and Bond number limits have 

been examined experimentally and theoretically with different substrate geometries. The 

low Capillary number limit is an important one in the maturing field of lab-on-chip 

technologies and other devices in which interface behavior at the sub-micron scale 

dominates performance such as multi-phase heat exchangers and gas-producing catalytic 

processes. Capillary driven assembly of micro- and nano- particles also occur in the low 

Capillary number regime. 

In Chapter 2, the shape of axisymmetric drops enclosing a slender, ellipsoidal 

particle as a function of drop volume and contact angle was explored. Interface 

geometries satisfying contact angle and volume constraints were identified by finding 

unduloidal solutions (described by elliptical integrals). Solutions were compared to a 

numerical technique that found interfaces by minimizing the free energy of a discretized 

surface. The theory revealed that there is a maximum volume that can be supported by 

pinned unduloidal morphologies on an ellipsoidal substrate, that multiple stationary states 

exist, and that there is the possibility of hysteretic encapsulation behavior. This 

investigation was, however, restricted to axisymmetric (or, colloquially, “barrel”) states. 

It has been established that barrel interfaces, when attached to a uniform cylindrical 

substrate, are unstable for some combinations of contact angle and volume, and give way 

to axisymmetric “clam-shell” geometries [36]. This situation is likely to persist for 

ellipsoidal particles as well. However, the phase space will be controlled by not just 

volume and contact angle, but aspect ratio as well. In addition to the barrel and clam-

shell states encountered by Eral et al., the fully engulfed state will have to be considered 
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as well. Finding the stability limit of the barrel state can be accomplished quasi-

analytically using a technique developed by Brinkmann et al. [35]. The geometry and 

stability of the non-axisymmetric clam-shell state will need to be accomplished using a 

numerical method. While Surface Evolver is well equipped for this task, it should be 

noted that by default it utilizes gradient descent methods that are unlikely to find saddle 

points. Care must be exercised when choosing the search method; fortunately, 

documentation on enabling these features is thorough.  

Chapter 3 discussed electron microscopy observations of radiolysis-induced bubble 

growth and anomalous migration in a liquid cell originally made by Joseph M. 

Grogan[17], [70], [107]. Ideal and non-ideal filling situations of the nanoaquarium are 

discussed; in particular, adhesion between the silicon-nitride membranes of the liquid cell 

are shown to produce both non-uniformities and levels of confinement smaller than the 

nominal 200nm spacing. The chapter concludes that, most likely, motion is driven by 

confinement gradients. Because many bubbles appeared circular and were growing and 

translating at ultra-low Capillary and Bond numbers, it was hypothesized that perhaps 

their geometry was spherical. By assuming a locally wedge-shaped conduit, a simple 

relationship between radial growth rate and translational velocity was established that 

assumed such geometry.  It was then shown that the experimental data did not follow this 

prescription. This lead to the conclusion that while the bubbles appeared circular, they 

were not simply the projection of spherical shapes and further, that additional forces must 

be at play.  

Scaling analysis in Chapter 4 revealed that bulk viscous and inertial stresses 

should not significantly impact bubble growth or movement. A 2D bubble model of 
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diffusion driven growth of a bubble in a wedge was introduced that included contact line 

resistance while omitting bulk viscous dissipation. It predicts continuous transport of a 

disperse phase in the absence of outside forces; all work is provided by the concentration 

gradient and subsequently dissipated at the contact line and in the creation of additional 

interface. By first exploring a bubble slug with a prescribed volume (per unit depth) 

!!V ∝t2 , it was shown that when contact line resistance is present, curvature evolution is 

non-monotonic. Additionally, it was found that when the volume is forced to increase in 

this way, as !t→∞  the contact angles saturate to non-equilibrium values that permit 

constant velocity and growth rate. When mass transfer by diffusion is included and 

Henry’s law used to determine the surface concentration, the model predicts growth rates 

orders of magnitude lower than the Epstein-Plesset theory for the same super-saturation 

conditions because the curvature increases initially, reducing mass transfer by diffusion. 

While the model demonstrates the strong impact of the contact line on growth and 

migration dynamics, it cannot answer more subtle questions about bubble geometry. 

Chapter 3 showed tear-drop shaped bubbles in addition to circular ones and the question 

remained whether the Blake-Haynes relationship alone could yield such geometries. 

To answer this question, a quasi-3D model was developed and presented in 

Chapter 5. The method leveraged not only the zero Capillary and Bond number limits but 

also assumed small opening angles for the wedge geometry and only weakly non-circular 

contact lines. These assumptions allowed for a pseudo-spectral scheme to be 

implemented.   Analogously to the 2D case, it was found that prescribing a volume 

!!V ∝t3  allowed for self-similar growth in the long time limit. Qualitatively, the radial 

growth rate and velocities were similar to those found for the 2D model when mass 
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transfer driven growth was considered. Compellingly, when the contact line was partially 

immobilized, bubble geometries very reminiscent of the teardrop shaped bubbles 

described in Chapter 3 experiment were found. Further, it was not possible to achieve 

these same geometries without partial pinning. We can conclude that while confinement, 

small wedge angles, and the Blake-Haynes model are sufficient at explaining reduced 

growth compared to free floating bubbles, they are not enough to alone explain more 

exotic geometries. Further, the theory developed here shows that the amount to which the 

contact line of partially pinned bubbles and droplets depart from a circular geometry is 

determined by how rapidly they grow (Fig.  5.8); in other words their geometry is 

dynamically created because of contact line dissipation. This is in contrast to the teardrop 

geometries observed and predicted by Dangla et al.[83] that are always quasi-static; in 

the their experiments, the continuous phase completely wetted the substrate and they note 

that droplets depart at the same size regardless of the volumetric flow. Dynamically 

selected departure geometries could have important engineering applications.  

However, there remain important questions regarding the physics governing 

bubble departure itself. The data demonstrates an apparent critical size after which the 

bubble undergoes a rapid change in geometry and velocity. The question is whether this 

departure happens because an instability (as demonstrated by Dangla et al.) develops or is 

the result of the rear contact line achieving a critical contact angle (i.e. contact angle 

hysteresis). In some cases, when bubbles depart they leave a small remnant, indicating 

that the instability may be the catalyst for detachment; in other cases, the departure 

appears to be complete, supporting a contact angle hysteresis hypothesis. It may be that 

both mechanisms facilitate departure at similar radii, making them difficult to 
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differentiate. In either case, experiments with controlled nucleation sites and/or pinning 

sites could facilitate a greater understanding of this phenomenon. Additional theoretical 

investigations to comparing departure size for the different mechanisms may also be in 

order. 

More broadly, the theoretical framework developed in Chapter 5 to study bubbles 

is powerful, and may be used to model the movement of bubbles or droplets in channels 

with geometry that is more complex than a simple wedge, or is chemically patterned such 

that the equilibrium contact angle or contact line viscosity vary with position. In this 

thesis, it was assumed that radiolysis was the dominant contributor to bubble growth; 

applying the same framework to consider vapor bubbles growing due to phase change is 

also possible and may be relevant to those studying phase change at the nanoscale using 

liquid cells. The technique has utility because it explicitly tracks the contact angle 

distribution. However, many simplifications were made in order to implement the model 

as a system of differential equations. If a solution method other than the spectral method 

used here was applied to the problem, it would be possible to include additional physics 

such as contact angle hysteresis. One can also envision implementing higher order 

corrections to the Young-Laplace equation[7], [83] to achieve more realistic geometries 

as well. 

Chapter 6 applies the techniques developed in Chapter 4 and 5 to a slightly 

simpler problem but technologically important one, the growth and dissolution of a 

sessile bubble. Interestingly, while contact line dissipation does impact contact angle, the 

overall impact on curvature is minimal during; growth the model predicts growth very 

similar to Epstein-Plesset theory. A greater departure from Epstein-Plesset theory is seen 
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when a dissolving bubble is considered; in this case contact line resistance is able to 

temporarily prevent the run-away dissolution of bubbles. The framework of the problem 

is simple enough that it would be straightforward to implement physical or chemical 

heterogeneities into the model to gain insights into how such patterns might be used to 

tailor boiling and catalytic processes.  

This thesis focused on but one of many fluid dynamical phenomena that have 

been observed in the nanoaquarium liquid cell. The degree to which the imaging beam 

interacts with liquid samples is still being studied, but there are a few observations that 

deserve a closer look in the future. First, Fig.  7.1 shows a !!~10µm  bubble oscillating in 

the nanoaquarium observed in a SEM operating in transmission mode. While the slow 

scan rate of the SEM is typically undesirable, in this case it permits us to estimate the 

frequency of the bubble’s oscillations to be about 150 Hz. The frequency is estimated by 

noting that it takes 300 milliseconds to scan the entire frame. At the image’s original size, 

it was 900 pixels in height with each jump in the interface occurring every ~20 pixels or 

every 6.7 milliseconds. These oscillations are interesting because they are asymmetric in 

time (note saw-tooth pattern in Fig.  7.1) and are occurring at low Weber numbers, 

meaning that they are not inertial in nature. We hypothesize that the dry portion of the 

membrane is charging up because of an interaction with the beam. This creates a region 

of high electric field that draws the interface towards it, compressing the bubble. 

Alternatively (or additionally), the charging could be increasing the wettability of the 

membrane, drawing liquid in. In either case, once the liquid has wet the area, it provides a 

means of discharging the membrane. Developing a model that incorporates charging and 
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discharging rates and trying to match the experimental results could be a way of 

furthering our understanding of beam-liquid interactions.  

 

 

Fig.  7.1: An SEM micrograph of a large bubble oscillating in the nanoaquarium liquid 
cell. The bubble is oscillating at approximatley 100 Hz. Because of the slow scan speed 
of the microscope, the bubble oscillates several times while the image is captured. 
 

 When using the nanoaquarium, a common experimental situation that arises is the 

presence of a large bubble in the viewing window. Such bubbles are typically introduced 

in the nanoaquarium during filling but cannot be eliminated and expand to fill the 

viewing area when the vacuum chamber of the microscope is evacuated and the pressure 

drops. On several occasions it has been observed that when an area within such a bubble 

is interrogated at high magnification, spontaneous liquid build up occurs, Fig.  7.2. 

However, the liquid does not build up uniformly: at first “droplets” appear at a 
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characteristic spacing from each other, Fig.  7.2B, and eventually grow and merge to 

create a liquid area with extents that match the region view at high magnification, Fig.  

7.2C.  The non-uniform interface, Fig.  7.2B, that precedes the final rectangular-shaped 

film is highly reminiscent of those predicted by the stability analysis of Verma on thin 

liquid films subjected to high electric field [108]. The phenomenon suggests that a thin 

film persists along the silicon-nitride membranes and that the beam locally alters the 

substrate in such a way as to attract a thicker film. It is interesting to note that the 

instability does not appear to persist in the interrogated region (dashed line in Fig.  7.2) 

once the film becomes “thick,” (perhaps thick enough to wet both membranes) but does 

remain outside of that region; note the droplets outside the rectangular region exposed to 

high magnification, Fig.  7.2C. This, perhaps, suggests that the instability only persists 

over a range of film thicknesses. Applying the theory of Verma could provide a means to 

estimate the film thickness and/or the amount of charging that takes place the 

membranes.  Such a characterization would have applications in future liquid-cell 

experiments, particularly those in the nanoaquarium. 
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Fig.  7.2: A series of  SEM images depicting how temporarily increases the magnification 
on an ostensibly dry region of the nanoaquarium can promote local film thickening. The 
liquid does not build up uniformly and undergoes some form of instability with a 
characteristic wavelength. 
  

(A)

(B)

(C)
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Chapter 8. Appendix 

8.1. Drop Shape Calculation Using Numerical Energy 

Minimization 

To enable the calculation of the drop shape under conditions of non-constant 

curvature (i.e., when one wishes to account for Van der Waals forces), we developed an 

algorithm based on the minimization of the free energy. In this section, we briefly 

describe the energy minimization algorithm and verify its performance by comparing its 

predictions with unduloid-based solutions. 

We define the functional  

 vF E E E Eαβ ασ βσ= + + +  [8.1] 

where  

 
1

2
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d
2 sin d

d
E

π
αβ

αβ αβ αβ αβφ

ρ
γ π ρ ρ φ φ
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⎛ ⎞
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∫  [8.2] 

is the surface energy of the droplet-continuous phase (αβ) interface;  
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⎛ ⎞= +⎜ ⎟
⎝ ⎠∫  [8.3] 

is the surface energy of the droplet-solid (ασ) interface;  
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is the surface energy of the continuous phase-solid (βσ) interface; and  

 
1

3 322 ( )sin d
3 2v

VE
π

αβ ασφ

πλ ρ ρ φ φ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

∫  [8.5] 

is the volume constraint. All are written in spherical coordinates defined in  Fig. 3. The 

volume constraint is enforced through the Lagrange multiplier λ that corresponds to the 

static (Laplace) pressure in α. In all the above equations, integration about the azimuthal 

angle has already been carried out. The task is to determine the shape of the (αβ) 

interface ( )αβρ φ  and the position of the contact line 1φ  that minimizes F. 

Although the contact angle θ  does not appear explicitly in equations S1-S5, the state 

that minimizes F satisfies Young’s equation. To see this, we consider one of the essential 

conditions of the stationary state: 

 
1

0F
φ
∂ =
∂

. [8.6] 

Since 1/ 0VE φ∂ ∂ = , we have  

 
1 1 1

0
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φ φ φ
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. [8.7] 

Further, since ( ) ( ) ( )1 1 1e βσ ασ αβρ ρ φ ρ φ ρ φ≡ = = , we have:  
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The term in front of αβγ  is a ratio of arc-lengths and can be replaced with the cosine of 

the contact angle to retrieve the Young’s equation:  

 cos 0ασ βσ αβγ γ γ θ+ =− . [8.9] 

To minimize F, we resort to numerical techniques. The interface αβ is divided into N 

segments each having an arc length l (see Fig. 3). l is not known a priori and must be 

determined as part of the solution. The restriction of uniform segments is enforced with 

an additional pseudo-energy term:  

 ( ) ( )
1 2 2 2

; 1 ; ; 1
1

N

l n n n n n n
n

E lαβ αβ αβη ρ ρ ρ φ φ
−

+ +
=

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦∑ . [8.10] 

The above constraint prevents the nodes from aggregating in a narrow region. In Fig.  

2.3, nodes are labeled with hollow circles and the nth node is highlighted with a solid 

circle. Node n=1 corresponds with the contact line. At the contact line, 1φ is to be 

determined while 1ρ  is available from the particle’s geometry. The left-right symmetry is 

enforced by fixing / 2Nφ π= . The discretized equations are:  
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and  
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We find the stationary state by setting the derivatives of the energy functional with 

respect to all degrees of freedom x to zero.  

 0F∂ =
∂x

. [8.13] 

In the above,  

 ( ) ( ) ( )2 3 1 2 1 1 2 1, , , , , , ,N N N lρ ρ ρ φ φ φ η η η λ− −= … … …⎡ ⎤⎣ ⎦x . [8.14] 

We solve equation S13 with the Newton-Raphson method  

 ( ) ( )
( ) ( )12

1

k
k

k k F F
−

+
⎡ ⎤⎛ ⎞∂ ∂= − ⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

x x
x x x

. [8.15] 

In the above, the superscript denotes the kth iterate. The first order derivatives and 

Jacobian matrix were determined analytically. The corresponding expressions are lengthy 

and therefore not reproduced here. 

Typically N ~100  nodes were sufficient to achieve grid-independence. The energy 

minimization code was verified by reproducing known solutions for the cylindrical fiber 

wetting problem [S1]. Fig. S1A compares the energy-minimization solution (hollow 

circles) with the analytical solution (solid line) when 45θ °= . Fig.  8.1.B depicts the 

relative discrepancy between the analytical solution and the energy minimization solution 

for the position of the droplet apex (squares) and droplet pinning point (circles) as 

functions of the number of nodes (N). When N>80, the error is smaller than 1%. 
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Next, we applied the energy minimization algorithm to determine the shape of a drop 

partially engulfing an ellipsoidal particle. Fig.  8.2 A and B depict, respectively, *
1z  and 

*
2r  as functions of the volume as determined by the energy minimization method (solid 

circles) and the unduloid solution (solid lines). ε=5 and 90θ °= . Both solution methods 

produced nearly identical results. To illustrate the convexity of the energy functional, 

Fig.  8.3 depicts the free energy of a fixed volume drop as a function of the pinning line 

position 1φ  for various contact angles. 

 
Fig.  8.1 (A) The shape of a drop wetting a cylindrical fiber as obtained with the unduloid 
method (solid line) and the energy minimization method (hollow circles, N=100, not all 
nodes are plotted). 45θ °= . (B) The relative discrepancy between the energy 
minimization and the unduloid predictions of the droplet apex (squares) and the axial 
position of the pinning point (circles) as a function of the number of nodes (N) used in 
the discretization of the drop surface; for large N,  the error decreases as 1N − .
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Fig.  8.2: The axial position of the pinning line (A) and the drop radius  22

* // ar rε =  (B) 
as functions of the dimensionless volume *V .  The solid lines and the symbols denote, 
respectively, the unduloid solution and the energy minimization solution. ε=5 and 

90θ °= . 

 

Fig.  8.3: The penalty function [8.1] as a function of the pinning line position 1φ  for 
various contact angles. e=3. The energy minima, when present, are denoted with solid 
circles. 
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8.2. Contact Angle Measurement 

The three-phase contact angle was measured by an ex-situ experiment using a 

planar polystyrene film. A concentrated solution of polystyrene in toluene (20% w/v) was 

spin coated onto a glass slide with a commercial spin coater (Laurell Technologies Co., 

WS-400BZ-6NPP/Lite). The presence of PVA during the microfluidic generation of the 

polystyrene particles and the stretching of the particles into ellipsoids was simulated by 

spin coating 2% w/w PVA in water onto the PS film, followed by three subsequent spin 

coatings of water to rinse off any excess PVA. The composed film was heated to above 

the glass transition temperature (100oC) of Polystyrene using a hot plate [46]. The film 

was rinsed with DI water and air dried before the contact angle measurement.  

The three phase contact angle was measured with a goniometer (Theta Optical 

Tensiometer, Attension KSV instruments). The continuous phase consists of DI water 

and the dispersed phase of light mineral oil containing a 5% v/v surfactant ABIL EM 90 

(Evonik Industries). The average contact angle obtained from four different samples 

prepared in a similar manner was 165.8 ± 5.2 ° , which confirmed the hydrophilic 

character of the treated polystyrene. The contact angle of interest in our work is the 

supplementary angle 14.2± 5.2 ° . 

8.3. Dimensionless Groups 
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In the manuscript, we introduced several dimensionless groups to justify our 

assumptions. The various material properties used in these calculations are listed in Table 

8.1. The relevant length and velocity scales are tabulated in Table 8.2 and the values for 

the dimensionless groups in Table 8.3. The smaller the magnitude of the dimensionless 

group , the more the interfacial tension forces dominate the system’s behavior. 

For the elastic modulus of C.elegans, we used the conservative value of 3.77 

kPa [109]. Other sources indicate higher elastic moduli for nematodes such as 50 kPa 

[110]  and 380 MPa  [111] for the cuticle.  

 

parameter value 
  ϱα,wtr  1.00e3 [kg/m3] 
ϱβ,oil  8.3e2 [kg/m3] 
µα,wtr  1e-3 [Pa s] 
µβ,oil  2.78e-2 [Pa s] 
γαβ 1e-3 [N/m] [29], [49]  
ECE 3.77e-1[Pa] [109]  
EPS 3.6e9 [Pa] [112] 

Table 8.1: The magnitudes of the various properties used in the calculation of Table 
8.3.The light mineral oil’s manufacturer provides the kinematic viscosity at 40oC while 
the specific gravity is given at 15.6oC. Subscripts CE and PS, respectively, denote 
properties of the C.elegans and polystyrene 
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parameter value 

  
r2,D   5e-4 [m] 

U 6e-3[m/s] 
 aCE 4e-5 [m] 
2bCE 1.13e-3 [m] 
 aPS 5e-5 [m] 
2bPS 7e-4 [m] 

Table 8.2: Typical velocity and length scales. Subscripts D, CE, and PS denote properties 
belonging to a typical droplet, C.elegans, or polystyrene particle. 

 

quantity value 
 Bo 4.17e-1 
Caβ 1.67e-1 
Weα 1.80e-2 
ΓCE 1.07e6 
ΓPS 2.21e-7 

Table 8.3: Estimated magnitudes of the non-dimensional parameters relevant to our 
system  

8.4. How Ellipsoidal are the Particles? 

As a matter of convenience, in the manuscript, we assumed the particles have an 

ellipsoidal shape. To assess the accuracy of our assumption, we compare the profile of 

several particles to an analytical expression for ellipsoids. The profile is obtained by 

manually selecting N∼50 points along the surface of an imaged particle in ImageJ. The 

major and minor axes for the analytical expression are acquired by circumscribing an 

ellipse around the particle in ImageJ and matching the narrowest and widest portions of 

the particle. We use polar coordinates to calculate the error metric:  
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Five particles were measured; the maximum deviation between the ellipsoids and the 

actual particles was 3.8%.  
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