
RENO: A Rename-Based Instruction Optimizer

Vlad Petric, Tingting Sha, Amir Roth
Department of Computer and Information Science, University of Pennsylvania

{vladp, shatingt, amir}@cis.upenn.edu

Abstract

RENO is a modified MIPS R10000 register renamer that
uses map-table “short-circuiting” to implement dynamic ver-
sions of several well-known static optimizations: move elimina-
tion, common subexpression elimination, register allocation, and
constant folding. Because it implements these optimizations dy-
namically, RENO can apply optimizations in certain situations
where static compilers cannot.

Several of RENO’s component optimizations have been pre-
viously proposed as independent mechanisms. Unified renam-
ing [13] implements dynamic move elimination and specula-
tive memory bypassing [19] (the dynamic counterpart of regis-
ter allocation). Register integration [21] implements common-
subexpression elimination and speculative memory bypassing.
RENO unifies these mechanisms and adds a dynamic version of
constant folding, RENOCF . RENOCF uses an extended map table
format and a limited form of dynamic operation fusion.

Cycle-level simulation shows that RENO dynamically elim-
inates (i.e., optimizes away) 22% of the dynamic instructions in
both SPECint2000 and MediaBench. RENOCF is responsible for
12% and 17% of the eliminations, respectively. Because dataflow
dependences are collapsed around eliminated instructions, per-
formance improves by 8% and 13%, respectively. Alternatively,
because eliminated instructions do not consume issue queue en-
tries, physical registers, or issue, bypass, register file, and exe-
cution bandwidth, RENO can be used to absorb the performance
impact of a significantly scaled-down execution core.

1 Introduction
RENO (RENaming Optimizer) is a modified MIPS-
R10000 register renaming mechanism that uses map ta-
ble “short-circuiting” to implement the dynamic counter-
parts of well-known static optimizations: move elimina-
tion, common-subexpression elimination, register alloca-
tion, and constant folding. The static versions of these op-
timizations are inherently limited by: (i) a small register
namespace, (ii) separate, function-level compilation, (iii)
conservative information about memory dependences, and
most critically (iv) the requirement that any transforma-
tion be correct along all possible static paths. The dynamic
RENO versions: (i) can use the much larger physical regis-
ter namespace, (ii) do not see function or other static com-
pilation boundaries, (iii) can optimize based on dynami-
cally available or speculative memory dependence infor-
mation, and (iv) need only worry about the correctness of
the optimization along the current dynamic path. If the path
turns out to be mis-speculated or memory dependence in-
formation turns out to be wrong, the wrong instructions are
rolled back and RENO optimizations are rolled back with
them.

RENO unifies several previously proposed mech-
anisms. RENOME is dynamic move elimination [13].
RENOCSE+RA is register integration [21], an implemen-
tation of redundant instruction elimination and specula-

tive memory bypassing, the dynamic counterparts of static
common-subexpression elimination and register alloca-
tion. This paper introduces RENOCF , the dynamic coun-
terpart of constant folding. Previous RENO optimizations
work within the confines of conventional renaming which
maps logical registers to physical registers, e.g., r1→[p1].
RENOCF extends this mapping and maps logical register to
physical-register/displacement pairs, e.g., r1→[p1:4]. The
interpretation of a RENOCF mapping is the sum of the reg-
ister value and the displacement. RENOCF folds register-
immediate additions by annotating the addition in this ex-
tended map-table format, and then fusing it to any subse-
quent instruction that attempts to use the result.

Register-immediate additions are used in program-
matic increments, address calculation, and loop control.
They account for 12% and 17% of all dynamic instruc-
tions in SPECint2000 and MediaBench [16], respectively.
Collapsing register-immediate additions in RENOCF also
off-loads that responsibility from RENOCSE+RA, enabling
a much simpler implementation of that mechanism that
uses smaller tables and fewer table accesses.

RENO “short-circuiting” eliminates (i.e., optimizes
away) instructions and relinks dependences around them.
The direct benefit is the removal of eliminated instructions
from the dataflow graph. If an instruction on the execution
critical path [11] is eliminated, performance improves. The
indirect benefit is that eliminated instructions do not con-
sume physical registers or issue queue slots, and do not
contend for scheduling, bypass, and register file read/write
bandwidths. Cycle-level simulation of RENO shows that
on a 4-way superscalar, dynamically scheduled processor,
RENO yields performance improvements of 8% and 13%
on SPECint and MediaBench, respectively. Alternatively,
if the primary concern is execution core “engineering com-
plexity” rather than performance, RENO’s bandwidth and
capacity amplification effects can be used to maintain a
given level of performance but with fewer physical regis-
ters and issue queue slots, and reduced issue, bypass, and
register file bandwidths.

In this paper, we make the following contributions:

• We present a unifying framework for several previously-
proposed techniques called RENO, which uses map-
table short-circuiting to implement dynamic counter-
parts of traditional static optimizations.

• We propose RENOCF , a renaming-based implementa-
tion of dynamic constant folding. RENOCF uses an ex-
tended map-table format and a limited form of dynamic
operation fusion.

• We describe in detail RENO’s implementation within
both a conventional two-stage renaming pipeline and a
conventional execution core. We argue that RENO does
not require additional renaming stages and that its addi-
tional execution core complexity is low.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation
r1→p1, r2→p2 add r1, r2, r3 add p1, p2, p3 r3→p3 (p1+p2)→p3
r1→p1, r2→p2, r3→p3 move r3, r2 move p3, p4 r2→p4 (p3+0)→p4
r1→p1, r2→p4, r3→p3 load r4, 8(r2) load p5, 8(p4) r4→p5 MEM[p4+8]→p5

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation
r1→p1, r2→p2 add r1, r2, r3 add p1, p2, p3 r3→p3 (p1+p2)→p3
r1→p1, r2→p2, r3→p3 move r3, r2 — r2→p3 —
r1→p1, r2→p3, r3→p3 load r4, 8(r2) load p5, 8(p3) r4→p5 MEM[p3+8]→p5

Fig. 1. TOP: Conventional processing. BOTTOM: Dynamic move elimination (RENOME)

• We present a simulation-driven performance evaluation
of RENO.

The next section describes the formulation of each of
the RENO optimizations, focusing on RENOCF . Section 3
describes RENO’s implementation, including detailed de-
scriptions of the renaming pipeline. Section 4 presents a
simulation-driven performance evaluation.

2 RENO Optimizations
RENO exploits the indirection in MIPS R10000-style reg-
ister renaming to perform optimizations on the dynamic
instruction stream. RENO modifies the renamer to col-
lapse (i.e., optimize away) instructions from the dynamic
instruction stream and relink dependences around them us-
ing a single simple trick: physical register sharing. RENO
looks for instructions whose output values it can “prove”
already exist (or will exist) somewhere in the physical reg-
ister file. When it finds such an instruction, RENO sets the
map table entry of its output register to point to the physical
register that contains (or will contain) the proper value. The
collapsed instruction is allocated a re-order buffer (ROB)
entry so that it may retire, but otherwise is not entered into
the execution core.

Several static optimizations have dynamic RENO
formulations: move elimination, common-subexpression
elimination, and register allocation. All use the same basic
map-table manipulations and register-sharing framework.
They differ in the types of instructions they eliminate and
the machinery they use to detect elimination opportunities.
We show that constant folding fits into this framework and
synergizes with its previously described components.

2.1 RENOME : Move Elimination
Dynamic move elimination [13] (RENOME) is the sim-
plest RENO optimization. RENOME requires only the ba-
sic register-sharing machinery—which is needed by all
RENO optimizations—and a circuit that identifies register
moves.

The top half of Figure 1 shows how a conventional
processor executes a move. It allocates a new physical reg-
ister to the move and executes an “add-to-zero” operation
(in most architectures, register moves are “add-to-zero”
pseudo-instructions). The bottom half of the figure shows
the same instruction sequence on a processor augmented
with RENOME . Rather than allocating a new physical reg-
ister to the move, the processor sets its output register, r2,
to point to its input register, p3. The move itself is dropped
from the instruction stream and not executed. The example

also illustrates the latency reduction effect of this action.
The conventional processor executes the add in cycle 1,
the move in cycle 2, and the load in cycle 3. The RENOME
enabled processor executes the add in cycle 1 and the load
in cycle 2. Because the add and the move “share” physi-
cal register p3, the load’s dependence on the move “short-
circuits” and becomes a dependence on the add. When the
add completes, it wakes up the load directly.

2.2 RENOCSE : Common-Subexpression Elimination

Register integration [21, 23, 24] is RENOCSE , the RENO
formulation of common-subexpression elimination. Regis-
ter integration treats the physical register file as a value
cache. Just like a compiler maintains a table of “avail-
able expressions” that it uses to recognize redundancies,
register integration maintains a table that describes which
values are currently available in the physical register file.
The integration table (IT) contains tuples of the form
<opcode/imm, pin1, pin2→pout>; each tuple describes one
physical register in terms of the register dataflow of the
instruction that created its value. At renaming, the IT
is searched (using a hashing scheme, not associatively)
for tuples that match the operation the current instruction
will perform, i.e., same opcode/immediate and same input
physical registers. A match implies the current instruction
is redundant; it is eliminated and its output is set to pregout .

The top of Figure 2 shows an example of RENOCSE .
The instruction sequence appears less contrived when one
imagines other instructions interceding between the ones
shown. The first load is non-redundant. It is allocated the
new register, p3, executed, and assigned an IT entry that
describes the value it is computing into p3. The signature
or tag of this entry is the operation and input register, p1.
The second load is redundant with the first load. RENOCSE
detects this redundancy because r1 has not changed since
the first load and so the signature of the current load (load
with immediate 8 and input physical register p1) matches
the signature of the IT entry created by the first load. The
now familiar collapsing operation sets r4→p3, making the
first and second loads “share” physical register p3. The
add is non-redundant and follows the same steps as the first
load. The interesting thing about this add is that it over-
writes register r1. This makes the third load non-redundant
with the first two. The signature of this instruction (load
with immediate 8 and input physical register p6) rightfully
does not match the signature in the IT entry created by the
first load.

Because the IT does not track addresses, RENOCSE
may eliminate a load in the presence of an older conflicting

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation IT Entry Created
r1→p1, load r3,8(r1) load p3,8(p1) r3→p3 MEM[p1+8]→p3 <load/8,-,p1→p3>
r1→p1, r3→p3 load r4,8(r1) — r4→p3 — —
r1→p1, r3→p3, r4→p3 add r3,r3,r1 add p3,p3,p6 r1→p6 (p3+p3)→p6 <add/-,p3,p3→p6>
r1→p6, r3→p3, r4→p3 load r3,8(r1) load p8,8(p6) r3→p8 MEM[p6+8]→p8 <load/8,-,p1→p3>

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation IT Entry Created
sp→p8, r1→p1, r2→p2 store r2,8(sp) store p2,8(p8) — p2→MEM[p8+8] <load/8,-,p8→p2>
sp→p8, r1→p1, r2→p2 addi sp,-16,sp addi p8,-16,p9 sp→p9 (p8-16)→p9 <addi/16,p9,-→p8>
sp→p9, r1→p1, r2→p2 add r1,r1,r2 add p1,p1,p3 r2→p3 (p1+p1)→p3 <add/-,p1,p1→p3>
sp→p9, r1→p1, r2→p4 addi sp,16,sp — sp→p8 — —
sp→p8, r1→p1, r2→p4 load r2,8(sp) — r2→p2 — —

Fig. 2. TOP: Common subexpression elimination (RENOCSE). BOTTOM: Speculative memory bypassing (RENORA).

store. To detect such false eliminations, eliminated loads
re-execute prior to commit using the data cache read/write
store retirement port [24]. Store Vulnerability Window
(SVW) [22] is a general-purpose store-load conflict track-
ing mechanism that dramatically reduces the number of
eliminated loads that must re-execute and mitigates the per-
formance overhead of re-execution.

2.3 RENORA: Register Allocation
Register integration’s dataflow-style tuples can be used
in a slightly different way to implement speculative
memory bypassing [13, 19, 20, 21]—the short-circuiting
of producer-store-load-consumer chains to producer-
consumer chains—for stack store-load pairs. This opti-
mization is the dynamic counterpart of register allocation
which is why we refer to it as RENORA. Stack commu-
nication is the product of function-level compilation and
the limited number of architectural registers which forces
spilling. RENORA exploits the fact that there are more
physical registers than logical registers, so that spilling out
of the physical register file is less frequent. Collectively,
we refer to RENOCSE and RENORA as RENOCSE+RA.

The bottom part of Figure 2 illustrates. RENORA
uses reverse IT entries. The stack store (first instruction)
does not create an IT entry for a future redundant store
<store/8, p2, p8→>, but rather for the anticipated cor-
responding load (last instruction) <load/8,−, p8→p2>.
This entry is created by switching the opcode from store to
load and placing the input data register p2 in the output po-
sition. Stack pointer decrements (second instruction) create
similar reverse entries for future stack pointer increments
(fourth instruction) to allow speculative memory bypassing
to bootstrap itself across function calls.

2.4 RENOCF : Constant Folding
The RENO optimization new to this paper is RENOCF ,
a dynamic implementation of constant folding. Con-
stant folding differs from move elimination, common-
subexpression elimination, and register allocation in that
it eliminates instructions that compute new values. Moves
perform no actual computation. Nor do loads that are col-
lapsed by speculative memory bypassing, these are ef-
fectively “memory moves.” Common-subexpression elim-
ination eliminates instructions that compute, but the val-
ues themselves are not new. Because of this difference,

RENOCF requires an extension to register renaming that
goes beyond register sharing.

Conventional renaming maps each logical register to
a physical-register which acts as proxy for a single value,
l→[p]. RENOCF extends this mapping to l→[p:d], where
p is a physical register and d is a constant displace-
ment. Mappings with non-zero displacements represent de-
normalized values, whose normal form is the sum of value
in p and the displacement d. RENOCF eliminates register-
immediate additions by representing the addition operation
as a de-normalized value in the map-table. The addition
operation itself is deferred until the de-normalized value is
needed as an input to another operation. At that time, the
value is normalized by dynamically fusing the addition to
the dependent operation. RENOCF exploits the fact that ad-
ditions can be fused to many other operations at little cost.
The most common fusion scenario is addition-to-addition
(e.g., address calculation). The resulting three-input addi-
tions can be implemented at minimal cost over two-input
additions using the carry-save technique.

Figure 3 shows an example of RENOCF . The instruc-
tion sequence resembles the one from Figure 1, but we
replace the move with two dependent register-immediate
additions addi r3,4,r3; addi r3,8,r2. Again, the exam-
ple seems less contrived if one imagines interceding in-
structions. A conventional processor (top half of the fig-
ure) treats the addi’s like any other instructions, allocates
new physical registers p4 and p6 to them, and executes
the dependent operations (p3+4)→p4 and (p4+8)→p6.
RENOCF (bottom half) eliminates the first addi by setting
the extended mapping r3→[p3:4]. It then eliminates the
second addi by setting the extended mapping r2→[p3:12].
The RENO renamer itself accumulates the displacements
(4+8), thereby “folding the constants.” Finally, RENOCF
renames the load to load p5,8([p3:12]). Notice, while the
latency of both addi’s has been removed from the dataflow
graph, the load address calculation now has to perform a
three-input ((p3+12)+8) rather than a two-input addition.

Register-immediate additions only, please.
De-normalization/annotation and subsequent normaliza-
tion/fusion could be applied to any instruction. We restrict
RENOCF to folding register-immediate additions to limit
the complexity of both the extended map-table format
and the execution engine which would execute the fused
operations.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation
r1→p1, r2→p2 add r1, r2, r3 add p1, p2, p3 r3→p3 (p1+p2)→p3
r1→p1, r2→p2, r3→p3 addi r3,4,r3 addi p3, 4, p4 r3→p4 (p3+4)→p4
r1→p1, r2→p2, r3→p4 addi r3,8,r2 addi p4, 8, p6 r2→p6 (p4+8)→p6
r1→p1, r2→p6, r3→p4 load r4, 8(r2) load p5, 8(p6) r4→p5 MEM[p6+8]→p5

Initial Map-Table Raw Instruction Renamed Instruction Map-Table Action Executed Operation
r1→[p1:0], r2→[p2:0] add r1, r2, r3 add [p1:0], [p2:0], p3 r3→p3 (p1+p2)→p3
r1→[p1:0], r2→[p2:0], r3→[p3:0] addi r3, 4, r3 — r3→[p3:4] —
r1→[p1:0], r2→[p2:0], r3→[p3:4] addi r3, 8, r2 — r2→[p3:12] —
r1→[p1:0], r2→[p3:12], r3→[p3:4] load r4, 8(r2) load p5, 8([p3:12]) r4→p5 MEM[(p3+12)+8]→p5

Fig. 3. TOP: Conventional processing. BOTTOM: Dynamic constant folding (RENOCF)

Folding register-register operations potentially creates
fused operations with three register inputs. Such operations
would require additional register file ports, bypass paths,
and scheduler tag matching hardware. Limiting RENOCF
to register-immediate instructions ensures that fused oper-
ations have at most two register inputs and that scheduler,
register file, and bypass complexity is not exacerbated.

A load is a register-immediate instruction but it would
not be practical to add a load port to the input paths of
every other functional unit. Fusing a multiplier or divider
to existing functional units is similarly impractical. Only
simple single-cycle operations like additions, small shifts,
and logical functions can be reasonably fused. In fact, cer-
tain three-input fused functional units may be only trivially
more complex than their two-input counterparts. The most
common fusion scenario is addition-to-addition (e.g., addi-
tion to load/store address calculation). A three-input adder
can be made only slightly slower than a two-input adder
using the carry-save technique.

Additions, shifts, and logical operations are also good
candidates for folding because they have fixed format de-
normalized representations that can express collapsed op-
eration chains of arbitrary length. Consider addition. A
map-table format [p:d] can represent the result of an ar-
bitrary chain of dependent register-immediate additions:
(p+d1) is represented as [p:d1], ((p+d1)+d2) is represented
as [p:(d1+d2)], and so on. The fact that addition is asso-
ciative allows RENO to perform the immediate-immediate
portion of the operation itself—in other words to “fold the
constants”—and to defer only a single register-immediate
normalization step to the execution core.

Shifts and logical functions are also associative, as
are combinations of adds, shifts, and logical functions.
However, three-input functional units that sequentially fuse
a shift, logical operation and an addition to another op-
eration would be slow. We restrict constant folding to
register-immediate additions because additions are much
more common—and have more synergy with other instruc-
tions optimized by RENO, specifically loads—than either
shifts or logical operations.

2.5 Combining RENOCSE+RA and RENOCF

RENOCF changes the map-table representation from
r→[p] to r→[p:d]. RENOME is unaffected by this
change: a move is effectively a register-immediate ad-
dition with a zero immediate. For RENOCSE+RA, we
extend the integration table tuple format and attach

a displacement to each register name. The new for-
mat is <opcode/imm, [pin1:din1], [pin2:din2]→[pout :dout]>.
With this change, RENOCF and RENOCSE+RA mesh seam-
lessly. RENOCSE+RA recognizes two instructions as redun-
dant if they have the same register dataflow, i.e., they read
values created by the same dynamic instructions. If a re-
dundant instruction depends on a RENOCF eliminated in-
struction (i.e., a de-normalized value), then the instruction
with which it is redundant must also depend on the same
eliminated instruction.

The more significant interaction between RENOCF
and RENOCSE+RA concerns the fact that both collapse
ALU operations. RENOCSE+RA collapses all kinds of ALU
operations (including register-register operations) but re-
quires collapsed operations to be redundant and uses table
accesses to identify redundancies. RENOCF collapses only
register-immediate additions, but does not require them to
be redundant and does not use table accesses.

As it turns out, the main benefit of RENOCSE+RA is
the elimination of loads, which are more costly (in both la-
tency and bandwidth) than ALU operations. RENOCSE+RA
collapses ALU operations less for their direct benefit than
to expose more load elimination opportunities. The prime
example is RENORA’s reverse entries for stack-pointer
decrements (bottom of Figure 2) that allow the collapse
of stack-pointer increments, which in turn allow specula-
tive memory bypassing—a form of load elimination—to be
applied across function calls. Incidentally, stack-pointer in-
crements and decrements are register-immediate additions,
as are many other operations that enable load elimination.
This is not a coincidence as register-immediate additions
are used in address calculations for many memory access
idioms.

In light of this, we restrict RENOCSE+RA to loads.
This division of labor reduces the size (by 50%) and band-
width requirements (by 56%) of the IT while maintaing
near-peak elimination rates. In fact, it can sometimes im-
prove elimination rates by removing ALU operation tuples
from the IT, which reduces contention with load tuples.

3 RENO Implementation
We describe several aspects of the RENO implementation.

3.1 Physical Register Reference Counting

All RENO optimizations exploit physical register shar-
ing which relies on a physical register reference counting

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

scheme. A register reference counting scheme tracks the
number of times each physical register is used as an output,
i.e., mapped to an architectural register or in-flight instruc-
tion. We do not track the number of times a given physical
register is used as an instruction input; such “use” counts
have other applications like dead code elimination [6] and
early register reclamation [17]. Reference counting natu-
rally extends conventional free list semantics: allocations
and RENO “sharing operations” become increments; de-
allocations become decrements. Registers with reference
counts of zero are free. A detailed design of a reference
counting mechanism is beyond the scope of this paper.

3.2 The RENO Renaming Pipeline

We now show how RENO is incorporated into an existing
MIPS R10000-style renaming pipeline. Interestingly, most
of the inline machinery is needed to support register shar-
ing in general, not any particular RENO optimization. This
machinery is required even for the most basic optimization,
RENOME . Once in place, other sharing optimizations can
be implemented at low cost. RENOCF , the RENO compo-
nent new to this paper, requires only a displacement ac-
cumulation circuit that parallels the physical register name
manipulation path.

Our proposed RENO implementation includes a
an important simplification. Except for eliminations by
RENOCSE+RA (register integration [21]), we disallow
RENO from eliminating two dependent instructions in the
same cycle. This simplification actually prevents RENO
from performing the full optimization shown in Figure 3.
However, it has little impact in practice. The instruction
sequence in Figure 3 is highly contrived and unlikely to
appear in a real program. Dependent addi pairs that are
close enough dynamically to be renamed in a single cycle
are also close enough statically to be folded by a compiler.

With the help of Figure 4, we begin with a discussion
of conventional RENO-less renaming and incrementally
build up the RENO logic. Our focus here is on RENOME
and RENOCF . To simplify the figures, we use a 2-way is-
sue pipeline in which each instruction has one input regis-
ter. In the ensuing discussion we call the older instruction
in the group (the top one) I0 and the younger (bottom one)
I1. When speaking about the complexity of different as-
pects of renaming and RENO, we will use the variable N
to denote the number of instructions renamed per cycle.

Basic, RENO-less renaming pipeline. Figure 4a
shows a basic renaming pipeline, which consists of two
stages. In RENAME1, map-table lookups (MTr) rename
the inputs of the current instructions and logical register
names are cross-checked to determine intra-group depen-
dences. In our example, cross-check consists of comparing
I0’s output to I1’s input. In RENAME2, the output map-
pings of current instructions are written to the map-table
(MTw). Finally, dependence information is used to “fixup”
input mappings to reflect intra-group dependences by po-
tentially redirecting them to the output registers allocated
to older instructions from within the group. The results of
input fixup (which here requires a two-input mux for I1 to
select between I1’s input and I0’s output) are only written
to the issue queue entries and are not needed by subse-
quent instructions. Input fixup is therefore considered part

of DISPATCH, than than the renaming pipeline proper. The
complexity of RENO-less renaming (measured as number
of cross-check comparisons and number of inputs to the
input fixup mux) is proportional to N for an individual in-
struction, and to N2 overall.

Adding RENOME . Figure 4b shows the changes that
implement the simplest application of register sharing:
move elimination. The basic renaming circuit is grayed.

The first change is the addition of two move signals
from the decoder. For I0, a high move0 signal has two ef-
fects. First, it sets I0’s output physical register to be I0’s
input physical register; this is “map-table short-circuting”
or “output selection”. Second, it cancels the creation of an
issue queue entry for I0; this is how RENO removes the
instruction from the execution stream.

I1 requires similar although slightly more complicated
changes. Let us examine the potential inputs to I1’s output
selection mux. I1’s output can be mapped to one of four
physical registers:

• If I1 is not a move, it is the new register from the free
list.

• If I1 is a move but does not depend on I0, it is I1’s input
register from the map table.

These first two cases are identical to I0’s. However, there
are also two other possiblities:
• If I1 is a move and depends on I0 and I0 is not a move,

then it is I0’s output register.
• If I0 and I1 are dependent moves, it is I0’s input register.

If we were to allow all four scenarios, the complex-
ity of individual output selection muxes would grow as
2N + 2: I2’s mux would have six inputs, I3’s eight, and
so on. However, because the fourth scenario is extremely
rare we ignore it; when it does occur we collapse I0 and
treat I1 as a non-move, taking its output from the free list.
This decision is performed by the logic block E1 which in-
ternally computes (move1&(!move0 | !dependence)). With
this simplification, output selection mux complexity grows
only as N +2. I1’s output selection mux has only three in-
puts, I2’s will have four, I3’s five, and so on.

Adding RENOCF . Figure 4c shows the changes re-
quired to implement RENOCF over RENOME . RENOME is
grayed to highlight the new structures and paths. RENOCF
adds virtually nothing to the core renaming circuit, i.e.,
physical register name manipulation path. From the point
of view of output selection, constant folding is identical to
move elimination. Move elimination sets an instruction’s
output register to its input register; constant folding does
the same. RENOCF does require a circuit that parallels
the physical register name path but manipulates immedi-
ates and displacements instead. We use the term imme-
diate to mean an immediate value in an instruction and
the term displacement to mean immediates accumulated
by RENOCF in the extended map table.

The displacement path parallels the register name
path in structure and action. In RENAME1, displacements
are read from the map table (MTDr). Simple logic exam-
ines the upper two bits of the instruction immediate and the
map-table displacement to conservatively check for dis-
placement overflow. If potential overflow is detected, the
folding operation is canceled. The overflow signals (ov f0

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Decoded
Insns

Issue
queue

Map table
writes

Free List

MTr0

Free List

Map table
reads

Depend?

Lin1

Lout1

Lin0

Lout0 Pin0

Pout0

op/imm

Pin1

Pout1

op/imm

MTr1

MTw0

MTw1

=

RENAME1 RENAME2 DISPATCHDECODE

(a) Non-RENO superscalar pipeline

Pin1

Pout1

op/imm

move0?

move1?

MTw1

E1

Free List

Free List

Lin0

Lout0 Pin0

Pout0

op/imm

MTw0

Lin1

Lout1

MTr0

=

MTr1

Decoded
Insns

Map table
reads

Map table
writes

Issue
queue

RENAME1 RENAME2 DISPATCHDECODE

Output
selection

Output
selection

Pin0

Pout0

op/imm

Pin1

Pout1

op/imm

move/
addi 0?

move/
addi 1?

Lin1

Lout1

MTr0

MTw0

MTw1

Lin0

E1

E0

OVF0

MTDr0

IMM0

Lout0

Lout0

OVF1

Lin1 MTDr1

IMM1

Lout1

Lin0

OVF0

OVF1

OVF0

OVF1

CTImm1

CTImm0

Free List

CTIMux1

CTIMux1

Free List
disp

disp

MTr1

=

+

+

Decoded
Insns

Map table
reads

Map table
imm reads

Map table
writes

Map table
imm writes

Issue
queue

MTDw0

CTImm0

CTImm1

MTDw1

RENAME1 RENAME2 DISPATCHDECODE

(b) Pipeline changes for RENOME (c) Pipeline changes for RENOCF
physical
register

logical
register

immediate control

Fig. 4. Simplified pipeline, for two instructions, each with one input and an output

and ov f1) are sent to the elimination logic blocks in the
register name path.

In RENAME2, displacements (from the map table)
and immediates (from the instructions) are added using
narrow (16-bit) adders and written to the corresponding ex-
tended map-table entries (MTDw). Notice, unlike the reg-
ister name path, there are no output selection muxes for dis-
placements. An output mapping can only have a non-zero
displacement if the instruction is eliminated, i.e., if it is a
register-immediate addition or a move that depends on an
older register-immediate addition. By definition, instruc-
tions that generate new values have map-table displace-
ments of zero, so the inverses of the elimination signals
(i.e., !E0 and !E1) can serve as the map-table displace-
ment clear signals. But even if an instruction is eliminated,
its output mapping’s displacement can only be the sum of
its input register’s displacement and its immediate, such
that a two-input adder suffices. This simple implementa-
tion is a direct result of our decision to disallow the folding
of dependent addi’s in a single cycle. Without this simpli-
fication, a fully-general RENOCF renamer would have to

be capable of combining immediates for any subset of the
N instructions currently in RENAME2. This would require
adders with as many as N + 1 inputs (for the youngest in-
struction in the group) as well as N3 logic to control which
displacement inputs to each adder should be active.

Finally in DISPATCH, we route an additional dis-
placement into the issue queue entries of non-eliminated
instructions. For I0 there is no choice, the additional dis-
placement is the one attached to the input register. For I1,
we perform the displacement equivalent of input-fixup:
• If I1 does not depend on I0, we choose the displacement

from I1’s register input.
• If I1 depends on I0, we choose the displacement from

I0’s register output.
Again, the number of inputs to the individual

displacement-fixup muxes grows as N +2.
Adding RENOCSE+RA. RENOCSE+RA adds an input

to each output-selection mux on the physical register name
path, corresponding to the physical register output from the
IT tuple. The logic to select this input is the “integration
test” [21] which compares the physical register input (and

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

preg1

preg2

op

imm

Reg file
/bypass

+
imm

Address
generation

preg
store
data

A
L
U ALU/

shift

A
L
U ALU

Branch
Direction
Unit

dircompare
>/=/< 0

preg

imm/d2

Reg file
/bypass

preg

imm

disp
Address
generation

preg1

preg2

op

disp1 preg

disp

store
data+

preg

disp

+

Branch
Direction
Unit

dircompare
>/=/< 0

+

preg1

disp

imm/d
+

preg2
4-input
ALU/shift

A
L
U

A
L
U

3-input
ALU

Latch

Latch

fuse2

fuse1

C
S
A

+

preg1

disp1

preg2

imm

(a) Normal execution core (b) RENO execution core
physical
register

immediate control
register
value

Fig. 5. Simplified view of the execution engine

displacement if RENOCF is implemented) from the map
table with the one(s) from the tuple. The results of these
comparisons feed the elimination logics, E0 and E1. Re-
naming pipeline diagrams for RENOCSE+RA (i.e., register
integration) can be found elsewhere [24].

Summary. RENO starts with a MIPS R10000 re-
namer and adds output selection logic to each instruction
slot. This logic includes a three-input mux (four-input if
RENOCSE+RA is also implemented) and control which is
derived from the existing dependence-check signals and
additional signals from the decoder regarding the collapsi-
bility of each instruction. RENOCF adds a circuit that par-
allels this renaming circuit in structure but accumulates and
selects displacements, rather than physical register names.

Because RENO circuits are either pipelined with con-
ventional renaming circuits (output selection) or paral-
lel to them (displacement accumulation), a RENO imple-
mentation should not necessitate the addition of renaming
pipeline stages. RENO does not form new critical loops [3]
with conventional renaming and only slightly exacerbates
(by adding output-selection muxes) the critical loop that
already exists. RENO also does not require new paths be-
tween the renamer and pipeline stages with which it does
not otherwise interact. A RENO implementation that in-
cludes RENOCF also enables a simple implementation of
the most expensive RENO optimization, the table-driven
RENOCSE+RA.

3.3 RENOCF Execution Core Modifications
RENOME and RENOCSE+RA change register renaming it-
self, but do not require changes to the execution en-
gine. RENOCF changes the map-table format, creating de-
normalized values which must subsequently be normalized
by fusion, and thus requires execution-core changes. These
changes are limited in scope and impact.

Figure 5a shows a simplified integer side of a con-
ventional scalar execution core. Issue queue entries in-
clude input and output physical register names, one im-

mediate, and one operation descriptor. The register file has
two read ports and one write port. The functional units in-
clude two ALUs, one of which can also perform shifts, a
branch direction comparison unit, the store data path, and
the load/store address generation unit. All functional units
have two inputs.

Figure 5b shows the modifications required by
RENOCF ; unmodified structures are grayed. Arguably the
most important components—the physical register file and
the register bypass network—are unchanged, as even fused
instructions have at most two register inputs. RENOCF re-
quires the following changes:

• An additional displacement field (disp) in each issue
queue entry and a path from this field to the functional
units.

• Two additional bits (f use0 and f use1) per issue queue
entry indicating whether either register input must be
normalized before the primary operation is executed.

• Enhancements to the functional units themselves.

The functional unit enhancements are as follows. The
simple ALU (the one that does not perform shifts) and
the load/store address generation unit, both originally two-
input units, are extended to three-input units that accept
one de-normalized input and one conventional (i.e., reg-
ister or immediate) input and perform addi-X operations.
Via appropriate use of carry-save adders, these conversions
are assumed to have no impact on clock cycle time or the
latency of these units.

The multiply/divide unit (not shown) and the general
ALU/shifter are extended to four-input units that can ac-
cept two de-normalized inputs. These units use conven-
tional adders (not carry-save adders) to normalize their in-
puts and incur a one-cycle execution penalty if normaliza-
tion on either input is required.

Finally, we place two-input adders on the branch di-
rection computation path and on the store data path. The
latter normalizes register/displacement pairs before writing

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

them to the store queue (en route to memory) and extends
store data latency by one cycle.

3.4 Recovery and Precise State under RENOCF

Processors with conventional register renaming recover
from mis-speculation by some combination of map table
checkpointing and re-order buffer rollback. The existing
machinery extends naturally to support RENOCF : where
there is a physical register name that could potentially be
used in recovery (the map table checkpoints and the output
physical register name in each re-order buffer entry) that
name is augmented with a displacement. RENOCF does
not change the rollback/checkpoint-restoration algorithm
itself.

RENOCF also supports precise interrupt state, despite
the fact that it defers operations to future instructions. Al-
though interrupts can occur while some mappings are de-
normalized, program state always looks as if each opera-
tion occurred in its intended spot in program order. There
are two keys to this behavior. First, instructions that logi-
cally follow an interrupt are correctly rolled back and un-
optimized. Second, interrupt handler instructions also ex-
ecute on the RENO pipeline so any attempt by them to
either operate on a de-normalized register or store that reg-
ister transparently performs a normalization step.

4 Experimental Evaluation
We present a simulation-driven evaluation of RENO.
We begin by investigating RENO’s instruction elimina-
tion effects and its performance impact. We then evalu-
ate our chosen division of labor between RENOCF and
RENOCSE+RA. Finally, we show that RENO’s capacity and
bandwidth amplification effects can be used to offset re-
ductions in physical register file size and execution band-
width.

4.1 Methodology
Our benchmarks are the SPEC2000 integer and Media-
Bench [16] programs. We compile them for the Alpha EV6
architecture using the Digital OSF compiler with -O4 op-
timizations. We run all programs to completion: SPECint
on their training input sets with 2% periodic sampling and
10M instructions per sample; MediaBench on their sup-
plied inputs with no sampling.

Our timing simulator is based on the SimpleScalar Al-
pha AXP ISA and system call modules [5]. It models a
dynamically scheduled superscalar processor with pointer-
based (i.e., MIPS R10000-style) register renaming. The
on-chip memory hierarchy includes a 16KB 1-cycle ac-
cess instruction cache and a 32KB 2-cycle access data
cache; both are 2-way set-associative with 32B blocks. The
L2 is 512KB, 4-way set associative with 64B lines and a
10-cycle access latency. Main memory has an access la-
tency of 100 cycles and is accessed via a 16B bus that is
clocked at one quarter of the core frequency. A maximum
of 16 misses may be outstanding at any time. The fetch
engine uses a 16Kb hybrid branch predictor, a 2K-entry,
4-way set-associative BTB, and a 32-entry RAS, and can
fetch past one taken branch per cycle. The pipeline has 13-
stages: 1 branch prediction, 2 instruction cache, 1 decode, 2

rename, 1 dispatch, 1 schedule, 2 register read, 1 execute, 1
complete, and 1 retire. The out-of-order execution core has
a 128-entry re-order buffer (ROB), a 48-entry load buffer, a
24-entry store buffer, a 50-entry issue queue, and 160 phys-
ical registers. Loads are scheduled aggressively using a 64-
entry store sets predictor [7]. Replays due to cache misses
and squashes due to memory ordering violations are mod-
eled. Because RENO amplifies effective issue and execu-
tion bandwidths, we experiment with two processors con-
figurations. A 4-wide fetch/issue/commit configuration can
issue up to 3 integer operations, 1 floating point operation,
1 load, and 1 store per cycle. A 6-wide fetch/issue/commit
configuration can issue 4, 2, 2, and 1, respectively.

The Alpha ISA uses 8- and 16-bit immediates, so
RENOCF displacements are 16-bits wide. RENOCSE+RA
uses a dual-ported 512-entry 2-way set-associative IT with
a total size of 8KB.

4.2 Instruction Elimination Rate and Speedup

Figure 6 shows RENO’s instruction elimination rates
(striped bar) and the corresponding performance improve-
ments on 4-way and 6-way issue processor configurations
(solid bars 4 and 6). Each bar is split into a vertical stack
which isolates the effects of the different RENO optimiza-
tion. The bottom portion corresponds to RENOME , the
middle to RENOCF , and the top to RENOCSE+RA.

Elimination rates. With a few exceptions (mcf and
mesa) RENOME eliminates fewer than 8% of the dynamic
instructions; the average is 4%. Register moves are com-
pilation artifacts and a good compiler will generate few of
them. RENOCF eliminates an additional 12% (SPECint)
and 16% (MediaBench) of the dynamic instructions. Be-
cause they are used in many common address-generation
and loop-control idioms, register-immediate additions ac-
count for at least 10% of instructions in all programs ex-
cept crafty, vpr.place and mcf. They account for 23% of all
instructions in mpeg2.decode. Adding RENOCSE+RA elim-
inates an additional 5% (SPECint) and 3% (MediaBench)
of the dynamic instructions. However, these are loads and
so the benefit of eliminating them is greater relatively than
the benefit of eliminating moves and additions.

Performance improvements. On a 4-way issue pro-
cessor RENO improves the performance of SPECint pro-
grams by an average of 8% and of MediaBench pro-
grams by an average of 13% with peak speedups of 14%
(perl.scrabbl) and 27% (gsm.decode). Average speedups
relative to a 6-way issue baseline are naturally lower, 6%
on SPECint and 11% on MediaBench. A wider baseline
processor diminishes the relative impact of RENO’s capac-
ity and bandwidth amplification effects.

Our performance simulator includes a critical path
model [10, 11]. It collects timing and dependency in-
formation for all retired instructions, then builds depen-
dence graphs and computes maximum edge depth and edge
breakdown for 1M dynamic instruction chunks. We use
this model to isolate RENO’s performance impact by com-
paring breakdowns of RENO and RENO-less configura-
tions. Figure 7 shows critical path breakdowns for a base-
line RENO-less machine (B), a machine with RENOME
and RENOCF only (C), and a machine with full RENO
(R). The latency of each critical edge is added to one of

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

0

10

20

30

RA+CSE

CF

ME

RA+CSE

CF

ME

SPECint % Instructions
Eliminated

% Speedup

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 46 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
bzip2 eon.c eon.r gcc mcf perl.d twolf vpr.p mean

crafty eon.k gap gzip parser perl.s vortex vpr.r

0

10

20

30

40

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 46 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

MediaBench

adpcm.de epic g721.en gsm.de jpg.de mesa.m mesa.t mpg2.en pegw.en mean
adpcm.en g721.de gs.de gsm.en jpg.en mesa.o mpg2.de pegw.de unepic

Fig. 6. Instruction elimination rates and performance improvements for 4- and 6- wide machines.

0

20

40

60

80

100

commit

mem

load

alu

win/fetch

B B B B B B B BC C C C C C C CR R R R R R R R
eon.k gzip perl.s vpr.rcrafty gap parser vortex

B B B B B B B BC C C C C C C CR R R R R R R R
epic gsm.de mesa.m pegw.enadpcm.de g721.en jpg.de mpg2.en

Fig. 7. Critical-path breakdown for baseline RENO-less execution (B), RENOME+RENOCF (C), and full RENO (R)

five buckets: commit (commit bandwidth), mem (memory
dataflow latency), load (D$ and L2 dataflow latency), alu
(integer dataflow latency), and fetch/win (fetch bandwidth,
instruction cache misses, finite instruction window and is-
sue queue).

RENO’s most noticeable impact is on the execution
latency (i.e., dataflow) components of the critical path: alu
and load. MediaBench is ALU-critical, so RENOME and
RENOCF which attack this component have the greatest
performance impact. In contrast, SPECint is more load-
critical. Even though RENOCSE+RA accounts for less than
50% of the eliminated instructions, it has a much higher
performance impact than RENOME and RENOCF here.

RENOME and RENOCF act as a cheap mechanism that
exposes more load elimination opportunities. Finally, no
RENO technique attacks memory latency (mem), so RENO
does not fare as well on benchmarks with significant mem-
ory components like gap and parser.

RENO has an interesting effect on fetch/window crit-
icality. In most cases, RENO makes the processor more
fetch bound. It eliminates so many instructions that fetch
bandwidth can no longer keep up with highly amplified ex-
ecution bandwidth and execution criticality “decays” into
fetch criticality. This is particularly visible in MediaBench
programs. However, in rare cases (e.g., vortex and mesa.m)
RENO reduces fetch criticality. Here, RENO allows in-

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

0

5

10

15

20

25

30

RENO RENO+RI RI load-RI

% Speedup

perl.s vpr.p adpcm.de mesa.m avgMedia
bzip2 vortex avgSpec gsm.de mpg2.de

Fig. 8. Combining RENOCF and RENOCSE+RA

structions to dispatch more quickly by reducing contention
for issue queue entries. These two effects are difficult
to precisely isolate from one another in our critical path
model because they involve a common set of critical path
edges.

Vortex is bound by commit store bandwidth.
RENOCSE+RA, which requires load re-execution to detect
false eliminations, exacerbates the problem.

4.3 Combining RENOCF and RENOCSE+RA

In our default RENO configuration, RENOCF collapses
register-immediate additions and RENOCSE+RA eliminates
only loads. This configuration (RENO) is the first bar in
each group in the graph in Figure 8. We also examine three
other possible divisions of labor.

The second configuration (RENO+RI) implements
RENO and full register integration, i.e., it allows
RENOCSE+RA to eliminate all instructions, not just loads.
This configuration produces average performance im-
provements of less than 0.5% over RENO on both SPECint
and MediaBench, with slight degradations due to increased
RENOCSE+RA table conflicts on several programs (e.g.,
bzip2). It also requires 70% more IT accesses than RENO.

The starker contrast is between RENO and register in-
tegration alone, both of the full blown variety (RI, third bar)
and a variant that eliminates only loads (load-RI, final bar).
Here, RENO wins handily, by an average of 3% over full-
blown register integration for SPECint and 6% for Media-
Bench, and by significantly more over load-only register
integration. RENO’s advantage derives from RENOCF ’s
ability to eliminate non-redundant instructions and the re-
sulting synergy with load elimination.

4.4 RENO Implementation Effects

The performance data presented so far assumes that arith-
metic and logical operations can take a third (but not a
fourth) input without requiring an additional cycle, and that
RENO does not increase the number of register renaming
pipeline stages. Although we have argued that these as-
sumptions are reasonable, in this section we relax them.
Figure 9 shows speedups for our baseline RENO configu-
ration (B) and three others. All speedups are relative to a
RENO-less processor with a two-stage renaming pipeline.
In the R configuration, RENO adds one renaming pipeline
stage. In the A configuration, all three- and four-input ALU
operations except load/store address generation require an
extra execution cycle. In the L configuration, all three- and

0

5

10

15

20

25

30

+CSE+RA
+ME+CF

% Speedup

B B B B B B B B B BR R R R R R R R R RA A A A A A A A A AL L L L L L L L L L

perl.s vpr.p adpcm.de mesa.m avgMedia
gap vortex avgSpec gsm.de mpg2.de

Fig. 9. RENO implementation effects

four-input operations including load/store address genera-
tion take an additional cycle.

Adding a register renaming stage (R) elongates the
branch misprediction penalty and induces an average per-
formance penalty of 1.3%. RENO speedups degrade from
from 8% to 6.8% for SPECint and from 13% to 11.6% for
MediaBench.

Adding one execution cycle to all three- and four-
input non-loads/stores (A configuration) degrades RENO
gains by 1% for both SPECint and MediaBench. Adding
an execution cycle to three-input loads and stores reduces
gains by an additional 1.2%. These penalties effectively
neutralize RENOCF ’s latency reduction benefit, but not its
bandwidth and capacity amplification effect. Even under
these assumptions, RENOCF (and RENO in general) main-
tains some performance benefit. One exception perl.s, for
which RENOCF in the L configuration induces a slight
slowdown. perl.s’s addi’s are more execute-critical than
they are in other programs and have a higher fan-out (i.e.,
more consumers). “Bandwidth-only” RENOCF (L) saves
one execution cycle in the producer, but adds one execu-
tion cycle to each consumer; in perl.s this is a poor trade.

4.5 RENO and Reduced Execution Cores

RENO’s bandwidth and capacity amplification effects can
be exploited to trade performance for reductions in the ex-
ecution core.

Execution width. As shown in Figure 10, RENO can
compensate for reductions in scheduling, execution, regis-
ter read/write and bypass bandwidths. Our baseline 4-way
issue configuration (4) can issue 3 integer operations per
cycle, 1 floating point, 1 load and 1 store. We look at two
additional configurations, both of which can execute only
two integer operations per cycle; one is limited to issuing
a total of three instructions per cycle (configuration 3), the
other has a total issue width of two (configuration 2).

In SPECint, RENOME and RENOCF together can
compensate for the loss of one issue slot and the associated
functional unit, paths, and ports (3). Adding RENOCSE+RA
results in an overall 5% gain over the baseline configura-
tion (4). RENO cannot compensate for a 50% reduction in
issue bandwidth (2)—neither is it expected to since it does
not eliminate 50% of the dynamic instructions—but can
restore performance back to within 6% of the 4-way issue
baseline.

The more execution-bound MediaBench programs
see a sharper decline in baseline performance when mov-

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

60

70

80

90

100

110

120

130

+ME+CF+CSE+RA
+ME+CF
baseline

Relative
Performance

2 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4
perl.s vpr.place adpcm.de mesa.m avgMedia

gap vortex avgSpec gsm.de mpg2.de

Fig. 10. RENO and reduced execution cores

ing from 4- to 3-way issue. However, precisely because
they are execution-bound, RENO is especially effective at
compensating. MediaBench programs execute 2% faster
on a 3-way issue processor with RENOME and RENOCF
(no RENOCSE+RA) than on a RENO-less 4-way issue pro-
cessor. For the 2-way issue configuration, RENO recoups
18% of the overall performance loss of 29%.

Other simplifications. In addition to execution
width, RENO can compensate for 40% reductions in phys-
ical register file and issue queue sizes, or for the presence
of a two-cycle scheduler [3]. In the interest of space, we do
not show data for these experiments. In both cases, RENO
not only fully offsets the performance loss (11% for physi-
cal registers and 9% for the two-cycle sheduler) it actually
produces a small net performance gain, an average of 2.5%.
It is interesting to note that RENO tolerates scheduling
loop latency in a fundamentally different way than other
fusion techniques do [4, 12, 15]. RENO does not create
multi-cycle compound operations (recall, we assume that
most fusions do not increase execution latency), it simply
eliminates many single cycle operations.

5 Related Work
Several lines of work are related to RENO.

Physical register sharing. There are two classes of
physical register sharing techniques. Techniques in the
first class detect sharing opportunities post-execution us-
ing value comparisons, and back-patch the map table and
optionally issue queue tags [1, 26]. Their main aim is to
facilitate the early freeing of registers and the subsequent
use of smaller, faster register files. The most aggressive of
these techniques is physical register inlining (PRI) [18]
which allows a physical register value to share storage with
its own name if that value is narrow enough.

The second class of techniques detects sharing op-
portunities at the rename stage and exploits these to re-
shape the dynamic register dataflow graph and to avoid
the execution of certain instructions. Unified renaming [13]
uses reference counts to implement move elimination and
memory-dependence prediction to implement store-load
bypassing. An earlier implementation of store-load by-
passing [19] does not use explicit reference counts and
only operates if both store and load are simultaneously
in-flight. Register integration [21] implements common-
subexpression elimination in this framework and also
includes a register-based implementation of speculative
memory bypassing. RENO unifies these works and extends

them with an optimization that applies dataflow graph col-
lapsing to instructions that produce fresh values and which
cannot simply point to an existing physical register. This is
accomplished via temporary de-normalization, a combina-
tion of map-table extensions and a limited form of dynamic
operation fusion.

Register tracking. Register tracking [2] uses the re-
name stage to fold stack-pointer-immediate additions and
create a fast, speculative address-generation and issue path
for stack loads. Unlike RENO, register tracking does not
optimize the main instruction stream inline. Rather, it
maintains and optimizes a bit of redundant state (a copy
of the stack pointer) for a specific purpose.

Operation fusion. RENOCF performs a limited form
of operation fusion, fusing register-immediate additions to
dependent operations. RENOCF fusion exploits carry-save
three-input adders to provide a single cycle latency reduc-
tion in the common fusion case. This form of latency re-
duction is similar in spirit to fused multiply-add and col-
lapsing ALUs [27].

Recent proposals for dynamic [15] and static [12]
pairwise instruction fusion target scheduling loop latency
and scheduler capacity and bandwidth, but not dataflow
graph execution latency. RENO targets all three. Dataflow
mini-graphs [4] use static multi-instruction fusion to am-
plify execution capacity and bandwidth, including register
file and bypass capacity and bandwidth. They also sup-
port a different form of limited fusion (collapsing ALU
pipelines) to reduce execution latency.

Dynamic instruction stream optimization. Opti-
mization of the dynamic instruction stream can be done at
the decode stage [14]. However, the inability to name phys-
ical registers at that stage limits the kinds of optimizations
that can be applied. RENO operates on physical register
names and can perform a wider range of optimizations.

A more powerful optimization model is the offline op-
timization of cached traces used in rePLay [8]. The of-
fline setting enables optimizations like dead code elimi-
nation that require backwards-dataflow analysis (e.g., live-
ness analysis). rePLay also makes traces atomic, removing
the constraint that transformations must be correct on all
paths. These features compensate for the fact that rePLay
operates on logical registers.

RENO is similar to Continuous Optimization (CO,
our acronym) [9], a recently proposed technique that also
modifies register renaming to perform move elimination,
redundant load elimination, store-load bypassing, and con-
stant folding. RENO and CO differ in implementation
philosophy: CO is primarily value-based while RENO is
purely name-based. Because value equivalence subsumes
name equivalence [25] (i.e., two values can be equal even
if two names are not) CO has a broader optimization scope.
However, RENO arguably has a simpler implementation.

CO tries to execute as many instructions as it can in
the renamer itself. To do this, it maintains a table that maps
logical registers to their values. This table is filled as values
are computed by the execution core. At rename, instruc-
tions whose inputs are available in this table are executed
immediately and their results written into the register file
directly, their dataflow graph latency effectively reduced
to zero. The parallel map table also contains a symbolic

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

description of the dataflow that computes each register.
This description is used to perform partial calculations and
dataflow height reductions even when input values are un-
available. CO adds complexity to register renaming (effec-
tively a simple in-order execution pipeline) and adds paths
out of the execution core and into the physical register file
but leaves the core otherwise unmodified.

In contrast, RENO reduces dataflow graph height us-
ing only physical register name identities. When RENO
does compute, it does so only on immediates using fu-
sion to defer computation on full values to the execution
core. RENO adds a little complexity to renaming and a lit-
tle (three-input adders) to the execution core.

6 Conclusion
RENO is a modified MIPS-R10000 style register renamer
that uses map-table “short-circuiting” to implement dy-
namic counterparts of several static optimizations: move
elimination, common subexpression elimination, register
allocation, and constant folding. RENO unifies several pre-
viously proposed techniques [13, 19, 20, 21, 23] into a sin-
gle framework and adds a dynamic implementation of con-
stant folding that uses an extended map table format and a
simple form of operation fusion.

Cycle-level simulation on the SPEC2000 integer and
MediaBench benchmarks shows that RENO can dynami-
cally eliminate 22% of the dynamic instructions. Dataflow
dependences are collapsed around eliminated instructions,
improving performance by averages of 8% and 13%, re-
spectively. Because eliminated instructions do not con-
sume issue queue entries, physical registers or issue band-
width, RENO can alternatively be used to maintain perfor-
mance with a scaled-down execution core.

We continue to study the potential of adding other
optimizations to the RENO framework and of combining
RENO with other techniques. One interesting combina-
tion is RENO and physical register inlining (PRI) [18].
PRI maps logical registers to either a physical register or a
value. RENO maps logical registers to a physical register
and a value. It may be possible to exploit this similarity
to incorporate PRI’s register reclamation functionality into
RENO. We are also evaluating RENO’s energy aspects.

Acknowledgements
The authors thank the anonymous reviewers for their com-
ments. Anne Bracy, Milo Martin, and Marci McCoy Roth
helped improve the final manuscript. This work was sup-
ported by NSF CAREER award CCF-0238203.

References
[1] S. Balakrishnan and G. Sohi. Exploiting Value Locality in

Physical Register Files. In MICRO-36, Dec. 2003.
[2] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev,

and R. Ronen. Early load address resolution via register
tracking. In ISCA-27, Jun. 2000.

[3] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops
Sink Chips. In HPCA-8, Jan. 2002.

[4] A. Bracy, P. Prahlad, and A. Roth. Dataflow Mini-
Graphs: Amplifying Superscalar Capacity and Bandwidth.
In MICRO-37, Dec. 2004.

[5] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin-Madison, Jun. 1997.

[6] J. Butts and G. Sohi. Dynamic Dead Instruction Detection
and Elimination. In ASPLOS-X, Oct. 2002.

[7] G. Chrysos and J. Emer. Memory Dependence Prediction
using Store Sets. In ISCA-25, Jun. 1998.

[8] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung,
S. Patel, and S. Lumetta. Performance Characterization
of a Hardware Framework for Dynamic Optimization. In
MICRO-34, Dec. 2001.

[9] B. Fahs, T. Rafacz, S. Patel, and S. Lumetta. Continuous
Optimization. Technical Report UILU-ENG-04-2207, Uni-
versity of Illinois, Aug. 2004.

[10] B. Fields, R. Bodik, M. Hill, and C. Newburn. Using Inter-
action Costs for Microarchitectural Bottleneck Analysis. In
MICRO-36, Dec. 2003.

[11] B. Fields, S. Rubin, and R. Bodik. Focusing Processor Poli-
cies via Critical Path Prediction. In ISCA-27, Jul. 2001.

[12] S. Hu and J. Smith. Using Dynamic Binary Translation to
Fuse Dependent Instructions. In CGO-2, Mar. 2004.

[13] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and
A. Yoaz. A Novel Renaming Scheme to Exploit Value Tem-
poral Locality Through Physical Register Reuse and Unifi-
cation. In MICRO-31, Dec. 1998.

[14] I. Kim and M. Lipasti. Implementing Optimizations at De-
code Time. In ISCA-29, May 2002.

[15] I. Kim and M. Lipasti. Macro-op Scheduling: Relaxing
Scheduling Loop Constraints. In MICRO-36, Dec. 2003.

[16] C. Lee, M. Potkojnak, and W. Mangione-Smith. Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems. In MICRO-30, Dec. 1997.

[17] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Tor-
rellas. Cherry: Checkpointed Early Resource Recycling in
Out-of-Order Microprocessors. In MICRO-35, Nov. 2002.

[18] B. Mestan, E. Gunadi, and M. Lipasti. Physical Register
Inlining. In ISCA-31, Jun. 2004.

[19] A. Moshovos and G. Sohi. Streamlining Inter-Operation
Communication via Data Dependence Prediction. In
MICRO-30, Dec. 1997.

[20] S. Onder and R. Gupta. Load and Store Reuse using Regis-
ter File Contents. In ICS-15, Jun. 2001.

[21] V. Petric, A. Bracy, and A. Roth. Three Extensions to Reg-
ister Integration. In MICRO-35, Nov. 2002.

[22] A. Roth. Store Vulnerability Window (SVW): Re-
Execution Filtering for Enhanced Load Optimization. In
ISCA-32, Jun. 2005.

[23] A. Roth and G. Sohi. Register Integration: A Simple and
Efficent Implementation of Squash Re-Use. In MICRO-33,
Dec. 2000.

[24] A. Roth and G. Sohi. Squash Reuse via a Simplified Imple-
mentation of Register Integration. JILP, 4, 2002.

[25] A. Sodani and G. Sohi. Dynamic Instruction Reuse. In
ISCA-24, Jun 1997.

[26] L. Tran, N. Nelson, F. Ngai, S. Dropsho, and M. Huang. Dy-
namically Reducing Pressure on the Physical Register File
through Simple Register Sharing. In ISPASS-2004, Mar.
2004.

[27] S. Vassiliadis, J. Phillips, and B. Blaner. Interlock Collaps-
ing ALUs. IEEE Transactions on Computers, Jul. 1993.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

