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ABSTRACT

POLARIZATION AND ITS DISCONTENTS:

HOW POLARIZED FOREGROUNDS AFFECT 21CM EPOCH OF REIONIZATION

MEASUREMENTS

David F. Moore

James E. Aguirre

As the first luminous objects began to form, they heated their surrounding medium, ion-

izing it. This event is the most recent cosmic phase transition, and occured during what is

called the Epoch of Reionization (EoR). The ionization history of the intergalactic medium

can be directly measured by 21cm emission from the hyperfine transition of hydrogen. Mea-

surments of the 21cm signal from the EoR can yield information about those first luminous

objects and help complete our understanding of cosmic history. Today, we measure the 21cm

EoR signal in radio frequencies.

Excavating the 21cm EoR signal from beneath the bright foregrounds present at meter

wavelengths requires pristine characterization of all foregrounds. We discuss how spectrally

smooth foregrounds are isolated to particular regions of the 21cm EoR power spectrum,

but Faraday-rotated, polarized sources can contaminate all regions, even those typically

reserved for the 21cm EoR signal. To estimate the level of contamination we can expect

from polarized foregrounds, we create a physically motivated simulation of the polarized sky

at these wavelengths. These simulations imply that polarized foregrounds will contaminate

the power spectrum at levels much higher than the 21cm signal.

To confirm the theories we develop in simulation, we turn to data taken with the Don-

ald C. Backer Precision Array to Probe the Epoch of Reionization (PAPER), an array of

antennae operating from 100 to 200 MHz in the Karoo desert of South Africa. Using data

taken during a six month deployment with PAPER elements configured into an 8 × 4 grid,

vi
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we measure the power spectrum of all four Stokes parameters. The measured Q power

spectrum exceeds its simulated values, allowing us to constrain the input parameters to the

simulations. In particular, we are able to limit the mean polarized fraction of sources to

2.2× 10−3, a factor of ten lower than existing measurements at 1.4 GHz, on which we based

the simulations.

Finally, we present three new tools for characterizing polarized foregrounds.
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Chapter 1

The Epic of Reionization

1.1 The Early Universe

13.7 billion years ago, when the universe was only about 380,000 years old, the cosmic radi-

ation background (CMB)1 cooled to the point where its photons could no longer dissociate

hydrogen, allowing the first stable atoms to form. This point in cosmic time is often called

the surface of last scattering or the epoch of recombination, and is the earliest event we

can measure, since before this time, the scattering rate of photons with early protons and

electrons was so great as to render the universe opaque.

The relic abundance of photons from this period (the CMB) has provided a pristine

picture of the initial conditions of our universe, and has provided much of the evidence

for our current understanding of cosmology. It is truly remarkable how simple these initial

conditions were — the standard model of cosmology, “vanilla” ΛCDM can be fully character-

ized by only eight numbers! Today, such a simplistic representation of our current universe

1I hesitate to call it the Cosmic Microwave Background (which is what CMB stands for) when talking

about it during recombination. The “M” in CMB represents the fact that today, its brightness peaks at

microwave frequencies. During recombination, it peaked in the UV. Do we call it the CUVB then? Hence,

“cosmic radiation background.”
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1.1 The Early Universe

would be absurd — with the growth of structure also came the growth of complexity. One

of the main goals of the study of cosmology is to answer the question, how did the complex

universe we see today arise?

To begin answering this question, we turn to the universe as it was just after recombi-

nation. Baryonic matter in the universe mostly consisted of neutral hydrogen. Quantum

fluctuations in the radiation background yielded fluctuations in the density of matter. Fluc-

tuations in the matter field allowed the first structures to form. The increased gravitational

potential in the overdensities drew in the surrounding matter, making the overdensities

more dense, and the underdensities less dense. Eventually, overdensities above some thresh-

old density collapsed into galactic haloes — self-supporting structures held together by their

own gravitational potential.

Within these haloes, the first stars and galaxies formed. It is in these stars and galaxies

that we are interested for this thesis. As we will see in the next section, few Lyman alpha

(Lyα) photons, the most abundant source of radiation from HI escaped these early times

without being scattered. Without looking to other tracers of the HI, we know very little

about this period of time. Because of this effect, some call this period “the cosmic dark

ages.” Others call it “cosmic dawn,” because it was at this time that the first luminous

objects originated.

The universe we see today is much different than it was during the cosmic dark ages.

Stars have processed hydrogen and helium into heavier elements, allowing for a more complex

chemistry. Galaxies have merged and evolved into much more complex structures than their

relatively simple progenitors. Notably, UV emission from early luminous objects ionized

the field of neutral hydrogen surrounding them, the intergalactic medium (IGM). Today, we

measure a highly ionized IGM, but we know that without a neutral IGM, the CMB could

not have arisen. The period of time when the IGM transitioned from neutral to ionized,

called the Epoch of Reionization (EoR) captivates researchers, as it is the most recent cosmic

phase transition.

3



1.2 How Do We Measure The Earliest Galaxies?

By characterizing the ionization history of the IGM during the EoR, we can begin to

solve some of the mysteries of the early universe. In what environment did the first luminous

objects arise? What were they? When did the universe begin to look as it does today?

These questions allows us to fill the gaps in our understanding between relatively thorough

knowledge of the universe at early and late times.

1.2 How Do We Measure The Earliest Galaxies?

Now, we turn our attention to observations of the IGM during the EoR, focusing on both

its timing and the nature of reionizing galaxies. Not only will this discussion elucidate the

methods of detecting the signature of the first stars and galaxies, but it will also show the

limits of our understanding of the EoR.

There are three main methods to measure HI during the EoR: the absorption of Lyα

emission from high-redshift quasars, the scattering of CMB photons off of free electrons

after reionization, and 21cm emission from the hyperfine transition of HI. We will discuss

these three measurements in turn, focusing on the advantages and limitations of each. We

will argue that the measurement most likely to detect signatures of reionization is the 21cm

power spectrum, on which we will focus for the remainder of this thesis.

1.2.1 High Redshift Lyman Alpha Emitters

Lyα emission from high-redshift quasars is both relatively abundant and relatively bright, so

it would seem to be an excellent candidate for detecting the signature of HI during the EoR.

Lyα photons have a high cross-section to HI and will quickly become absorbed in a neutral

IGM. As a Lyα photon from a quasar passes through a cloud of HI, it becomes absorbed,

creating a dip in the quasar spectrum. Gunn and Peterson (25) investigated this effect in

their seminal paper, predicting that, for a quasar in a highly neutral interstellar medium, all

emission blue-wards of Lyα in the quasar’s rest frame would be nearly completely absorbed.

4



1.2 How Do We Measure The Earliest Galaxies?

Furthermore, they suggest using the optical depth of Lyα to that quasar yields a measure

of the neutral hydrogen fraction, integrated along the line of sight.

To date, several measurements have been made of these so-called Gunn-Peterson troughs

(4, 20, e.g.). Figure 1.1 shows measurements from Becker et al. (4) of several quasar spectra,

demonstrating the increasing optical depth of the Lyα line with redshift. This indicates the

increase of the neutral fraction with increasing redshift. Measurements like this one indicate

the presence of HI in the IGM as late as z ∼ 6. Measuring the global neutral fraction

through this method is uncertain, as each measurement of xHI depends on the line of sight

to the quasar, and cannot measure a global quantity (82).

Gunn and Peterson (25), in a nearly identical calculation to the one presented in Sec-

tion 1.3, show that the optical depth of Lyα through neutral hydrogen is, to an order of

magnitude, τν ∼ 104xHI , where xHI is the neutral fraction of hydrogen. This poses the

difficult problem that nearly all Lyα emission passing through an IGM with xHI & 10−4 is

absorbed. Thus, these measurements can only access the late stages of the EoR, and will

prove to be difficult to use in measuring xHI during peak reionization. Lyα emitters can also

be measured without spectroscopy. Objects with an excess brightness in one photometric

band which could correspond to highly-redshifted Lyα are called “Lyman break” galaxies.

Lyman break galaxies can be used to measure the luminosity function — and thus the mass

function — of galaxies as a function of redshift Bouwens et al. (9, e.g.).

Figure 1.2 shows the luminosity function for several Lyman break galaxies in a series of

redshift bins. The luminosity function seems to steepen with age, indicating fewer, older

luminous galaxies; hence, galaxies during the EoR were most likely relatively small. There

are two major sources of uncertainty in this measurement, though. First, since the redshift

Lyman break galaxies are measured photometrically, there is a high uncertainty in their

redshift. This uncertainty may be caused by a (photometric) degeneracy between redshift 6

Lyα and a redshift 2 OIII line, allowing for only ∼ 85% confidence in the redshifts measured

for these galaxies. Second, since only the brightest galaxies from this epoch can be measured,
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Figure 1.1: Quasar spectra at redshift 5.80 (cyan), 5.82 (green), 5.99 (magenta), and 6.28

(red), showing the near-total absorption of Ly-α in the high-redshift IGM. This so-called Gunn-

Peterson trough indicates the presence of neutral hydrogen in the quasar environment. Figure

taken from Becker et al. (4).
6
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Figure 1.2: Luminosity function of Lyman break galaxies, in several redshift bins. These

data indicate a steepening of the luminosity function with age. Figure taken from Bouwens

et al. (9).

one must extrapolate measurements of the luminosity function to lower brightness, creating

a high degree of uncertainty. Nonetheless, these measurements indicate that reionization

was most likely driven by low-mass, low-brightness galaxies.

1.2.2 Hints from the CMB

Free electrons present after reionization will scatter CMB photons, suppressing the overall

amplitude of the temperature power spectrum by a factor of exp{−τri}, where τri is the

optical depth of a CMB photon through those free electrons (94). The global ionization

history can be estimated by τri, and in fact, τri is one of the free parameters of vanilla

ΛCDM (43, 77, e.g.), but there is a clear degeneracy between τri and the overall scaling of

the TT power spectrum.

This degeneracy is broken by analyzing the polarization of the CMB. If a CMB photon

Thompson-scatters off of an electron from within a quadrupolar temperature anisotropy,

the CMB becomes linearly polarized (this is one generator of E-modes). This type of scat-
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Figure 1.3: TE cross-correlation from WMAP, showing the first detection of the effects of

reionziation on the CMB. Thompson scattering of CMB photons off of free electrons produced

during reionization creates polarized power on scales of ℓ ∼ 2
√
τri, where τri is the optical depth

of a CMB photon through reionization. Figure from Kogut et al. (42).

tering during reionization contributes power to the EE spectrum, generating a peak whose

amplitude is proportional to τri, and whose location is around ℓ ∼ 2
√
τri (93). Figure 1.3

shows the first detection of this effect, seen in the TE cross-correlation using the Wilkinson

Microwave Anisotropy Probe (WMAP).

Extracting the ionization history from τri is highly model dependent, since τri is an

integral quantity, summing information from all times since last scattering. Typically, re-

searchers will assume simple models for the ionization history and model the optical depth as

τri ∝
∫ zrecomb

0 xe(z)(1+ z)
−1(dl/dz) dz, where zrecomb is the redshift of recombination, xe(z)

is the ionization history, and dl/dz is the cosmological line-element at redshift z. Popular

models for xHI(z) include “instantaneous reionization,” in which xHI(z) is 1 until the red-

shift of reionization zreion, and 0 afterwards, and a model including a sustained reionization,

xHI(z) = tan−1{(z − zreion)/∆z}, where ∆z is the duration of reionization.

A final constraint on the ionization history of the IGM that can be drawn from the
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Figure 1.4: Summary of measurements of xHI(z) ≈ 1 − x̄e(z) including information from

both the CMB data and Lyα emitters, from Zahn et al. (92). Contours show the 1- and 2σ

confidence intervals of xHI (z) taken from data from WMAP and the South Pole Telescope

(SPT). Points, upper, and lower limits show measurements from Lyα emitters (citations shown

in the figure).
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CMB is due to the kinetic Sunyaev-Zel’dovic effect. CMB photons will Doppler-shift as

they scatter off of moving electrons (79). The flow of free electrons generated by ionized

bubbles will generated this Doppler shift in the CMB, and will add structure to the TT

power spectrum (92). Measurements of this type are both heavily model dependent and

vulnerable to systematic errors due to imperfect foreground removal. Figure 1.4 shows

inferences of the ionization history from measurements of this effect from Zahn et al. (92),

alongside measurements from CMB polarization and Lyα emitters.

1.2.3 Hyperfine Transition of Neutral Hydrogen

We now turn our attention to the third method of detecting the signature of the EoR,

emission from the hyperfine transition of neutral hydrogen. The hyperfine transition occurs

via an interaction between the spins of the electron and proton in an HI atom. The singlet

state, when the spins are symmetric under interchange, has a slightly lower energy level than

the triplet state, when they are anti-symmetric under interchange. This effect is usually

summarized by a spin flip in the electron, though this only describes two of the three triplet

states. This transition yields a photon with a wavelength of 21cm.

The hyperfine transition may be much more useful for detecting HI during the EoR than

the previous two measurements. As we will show in Section 1.3, all lines of sight to neutral

hydrogen at high redshift are optically thin, so emission from all times throughout the EoR

is accessible. It also reaches Earth at radio frequencies, so ground-based experiments are

sufficient to measure it. By contrast, redshift 10 Lyα reaches us in the infrared, to which

the atmosphere is opaque. Also, since 21cm emission directly detects HI, information about

the EoR can be directly inferred, with no dependence on a model, as in CMB analysis.

There are two downsides to using the 21cm line to measure neutral hydrogen. First, the

hyperfine transition is a forbidden transition, and has a mean lifetime of around 107 years.

The effect of this small transition rate is relatively dim emission from neutral hydrogen

clouds. Second, the 21cm line from the EoR redshifts into meter wavelengths at which
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galactic synchrotron emission dominates all astrophysical radiation. To give an estimate

of the relative strengths of these two processes, the temperature of 21cm EoR emission

is around 30 mK, and the temperature of galactic synchrotron emission is around 1000 K.

That foreground emission is ∼ 105 times brighter than the target signal necessitates a highly

accurate foreground removal or avoidance scheme.

Despite the difficulties facing its measurement, the benefits of 21cm tomogrophy seem

to outweigh the challenges. Again, the universe is optically thin to 21cm emission, and

detecting HI during the EoR requires no model. Hence, for the duration of this thesis, we

will focus on 21cm emission from neutral hydrogen, and inspect is usefulness for detecting

the signature of the first stars and galaxies.

1.3 Spin Temperature

We begin our investigation into the utility of the hyperfine transition of HI as a probe of the

EoR by solving the radiative transfer equation for a simple model of a neutral IGM. This

is done in an attempt to gain intuition about the processes which generate 21cm emission,

and to allow for a discussion of the environments in which it is produced. Much of this

discussion will follow Furlanetto et al. (22) and class notes from Adam Lidz, but specific

results will be individually cited.

The relative occupancy of hyperfine states in hydrogen gas can be characterized by the

spin temperature Ts, defined in a Saha-like equation

n1
n0

= 3exp

{
T∗
Ts

}
. (1.1)

Here, n1 and n0 are the density of hydrogen in the triplet and singlet states, respectively;

the factor of three represents the threefold degeneracy of the triplet state to the singlet

state, and T∗ is the line-temperature, defined such that kBT∗ = hν21. For 21cm emission,

T∗ = 68 mK.
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1.3 Spin Temperature

The intensity of 21cm emission can be calculated via the radiative transfer equation,

dIν
dτ

= −Iν + sν . (1.2)

With the usual notation, Iν is the intensity of 21cm emission; τν is the optical depth, here

a proxy for distance along the line of sight; and sν = jν/αν is the source function.

By an argument of dimensional analysis (dE = jνdV dΩdνdt), we can write the emission

coefficient in terms of the density of hydrogen atoms in the triplet state n1, the line-profile

of the emission line Φ(ν) ≈ δ(ν − ν21), and the Einstein coefficient for the transition rate

A10:

jν =
hν

4π
n1A10Φ(ν). (1.3)

In a similar fashion, we can write the absorption coefficient in terms of the Einstein coefficient

for photoabsorption, B01, and stimulated emission B10:

αν =
hν

4π
Φ(ν)(n0B01 − n1B10). (1.4)

We can write all Einstein coefficients in terms of the emission rate A10 to write αν in the

more managable form,

αν = 3n0A10
λ2

8π
Φ(ν)

(
1− eT∗/Ts

)
. (1.5)

Finally, we write the source function, easing the burden by assuming that Ts ≫ T∗:

sν =
jν
αν

=
2kB
λ2

Ts. (1.6)

In the Rayleigh-Jeans limit, the spin temperature is the source function for the temperature

of 21cm emission within a cloud of hydrogen gas.

Solutions to the radiative transfer equation (always in the Rayleigh-Jeans limit) take the

form

T = Tex(1− e−τν ) + Tbge
−τν , (1.7)
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where Tex is the temperature associated with the source function sν , and Tbg is the temper-

ature of background radiation — in our case, the temperature of the CMB at redshift z. In

the limit where the optical depth is small, which we will justify shortly, the solution to the

radiative transfer equation becomes

T = Tsτν + Tbg(1− τν), (1.8)

where we take advantage of the source function’s being the spin temperature.

The optical depth, τν , can be calculated by integrating the absorption coefficient along

the line of sight. This can be written in terms of the more cosmologically interesting quan-

tities: the neutral fraction of hydrogen xHI , the matter overdensity field δ, the density of

Hydrogen nH , the Hubble parameter H(z), and the peculiar velocity of the Hydrogen cloud

per unit length along the line of sight, dv||/dr||.

τν =

∫
αν ds = 9.2× 10−3(1 + δ)(1 + z)3/2

xHI

Ts

[
H(z)/(1 + z)

dv||/dr||

]
(1.9)

The fiducial value of 10−2 justifies the assertion that τν ≪ 1, which we used to derive

Equation 1.8. Such a small optical depth also provides a justification for preferring the

hyperfine transition over Lyman-α as a probe of the EoR.

We can give an approximate solution for the contrast in brightness of 21cm emission to

that of the CMB by inserting Equation 1.9 into Equation 1.8 and rearranging terms. Noting

that Tbg = TCMB(1 + z), where TCMB is the current temperature of the CMB (2.4 K), we

write the brightness contrast as

δT ≡TS − TCMB(1 + z)

(1 + z)

≈9 mK xHI(1 + δ)(1 + z)1/2
[
1− TCMB(1 + z)

Ts

] [
H(z)/(1 + z)

dv||/dr||

]
(1.10)

The point of writing this rather tedious calculation is to elucidate the processes that

generate 21cm radiation, and how we may detect it. There are three salient points: first, we
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detect the brightness contrast between 21cm radiation and the CMB; second, the spin tem-

perature provides the source of that contrast, so the brightness contrast yields information

on the astrophysical processes which drive the spin temerature; and third, the brightness

contrast is proportional to the neutral fraction, so the cosmic ionization history can be de-

rived from measurements of the brightness contrast over many redshifts. While cosmological

parameters may be derived from the brightness contrast (53), there is also a wealth of rich

astrophysics to be gleaned from the evolution of the spin temperature.

Thorough discussions of the evolution of the spin temperature may be found in Furlanetto

et al. (22) and Pritchard and Loeb (71), which we summarize here. First, we will discuss

the evolution of the spin temperature’s global average, and then discuss the fluctuations.

There are two main physical processes which drive the evolution of the spin temperature.

The first is collisional excitation of HI — as an HI atom scatters off of another species of

particle (usually another HI atom), some of the kinetic energy of the collision is transferred

to excite the hyperfine structure of the atom. This couples the spin temperature field to the

underlying baryon density field (δ in Equation 1.10). This coupling depends on the density

of the baryon field, which varies due to the growth of structure and the expansion of the

universe. It also depends on the kinetic energy of that field, typically represented by the

kinetic temperature of the gas.

The second process that drives the evolution of the spin temperature is a coupling to

the underlying UV radiation field. A UV photon will excite the electron in an HI atom

from the 1S state in the hyperfine singlet state into the 2P state. When the electron decays

back into the 1S state, it may not return to the hyperfine singlet state, but to the hyperfine

triplet state. This is called the Wouthuysen-Field effect (21, 91). This effect introduces

astrophysics into the spin temperature by allowing it to be affected by UV emitters — early

stars, galaxies, quasars, and small black holes. Because of this, the spin temperature is an

excellent probe of the early universe.
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1.3 Spin Temperature

Figure 1.5: Mean brightness contrast versus redshift and frequency for a fiducial model of

reionization. “Turning points” are labelled and explained in the text. The blue region shows

where the brightness contrast is seen in absorption; red, in emission. Figure credit: Harker

et al. (31).
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The interplay of these two processes can be summarized by the “turning points” of the

global spin temerature (31, 50, 54, e.g.). These are the points in time at which the time-

derivative of the brightness contrast is zero, i.e. the spin temperature transitions from

increasing to decreasing. Figure 1.5 shows a sample model of the evolution of the global

spin temperature, to which we refer to explain the “turning points.” (A) At around a

redshift of 80, the spin temperature becomes uncoupled to the gas kinetic temperature,

mostly due to the baryonic density growing smaller by cosmic expansion. It recouples to the

CMB temperature, increasing the spin temperature. (B) As the first stars begin emitting

UV photons, sometime around redshift 50, they decrease the spin temperature through the

Wouthuysen-Field effect. (C) X-ray heating of the IGM, probably from accreting black

holes, raises the spin temperature at around redshift 20. (D) The spin temperature begins

to fall due to the start of reionization around redshift 13. (E) reionization ends — since the

neutral fraction is nearly zero by redshift 6, the brightness contrast also falls to zero.

Information from the EoR can be obtained from the global signal between redshifts of

13-6, but a much richer story can be told by looking at fluctuations in the spin temperatue

during the EoR. These fluctuations are characterized by a power spectrum, described in

the next section. The power spectrum of the spin temperature will clearly depend on the

underlying baryonic power spectrum — it depends explicitly on the baryon density field

(Equation 1.10. But the power spectrum of spin temperature fluctuations is much more

complex, due in part to the growth of ionized structures surrounding UV emitters. An over-

simplified explanation is that “bubbles” of ionized hydrogen within the neutral hydrogen field

arise as an X-ray or UV emitter ionizes its surrounding gas. As these bubbles first form, they

introduce small-scale structure to the spin temperature field, steepening the power spectrum.

As they grow, they flatten the slope of the power spectrum. As they merge, they introduce

small-scale structure, causing the power spectrum to re-steepen towards high wavenumber.

Finally, as reionization comes to completion, the amplitude of the power spectrum goes to

zero.
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Measuring both the mean spin temperature and fluctuations in the spin temperature

field will allow us to discover both the timing of reionization and the nature of reionizing

sources. This will give us a clearer picture of cosmic history and potentially uncover new

physics.

1.4 Characterizing Fluctuations of the Spin Temperature

We begin by defining the correlation function to a temperature field T (x):

ξ(r) =
1

V

∫
T (x)T ∗(x− r) d3x, (1.11)

where V is the cosmological volume over which the field is sampled, and the limits of the

integral extend over V. This is more appropriately viewed as a power spectrum, which is

simply the Fourier transform of the correlation function

P (k) =

∫
ξ(r)e−ik·r d3r, (1.12)

where k is the wave-number, typically measured in hMpc−1.2 Due to the convolution theo-

rem, this is simply

P (k) =
∣∣∣T̃ (k)

∣∣∣
2
, (1.13)

where we have defined the Fourier-transformed temperature field as

T̃ (k) =
1

V

∫
T (x)e−ik·x d3x. (1.14)

The power spectrum defined here is the goal of our measurements and the quantity which

most easily allows us to compare different models of reionization and track the evolution of

neutral hydrogen in the intergalactic medium at different scales.

2Note the difference in Fourier convention between the theorist’s power spectrum and that of an inter-

ferometer.
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Isotropy demands that P (k) is rotationally invariant, which implies that the power

spectrum is only dependent on the magnitude of the k-mode, i.e. P (~k) = P (k). Because of

this, it is customary to spherically average the power spectrum with log-spaced bins, defining

the quantity ∆2(k), often called the “dimensionless" power spectrum3 as

∆2(k) ≡ 1

(2π)3

∫
P (k)k3 d log k dΩ =

k3

2π2
P (k) (1.15)

It is our task to define a method by which we can detect P (k). We begin by inspecting

the visibility (Equation 2.8) and comparing it with the expressions in Equations 1.12 and

1.14.

In the flat sky limit, neglecting calibration terms (including the primary beam which

will be discussed later), the visibility reads

V (u, v, ν) =

∫
I(l,m, ν)e−2πi(ul+vm) dl dm. (1.16)

As we will discuss in Section 2.1, this is the two-dimensional Fourier transform over direction

cosines l and m.

First, we note that the specific intensity of the observation, I(l,m, ν), is directly propor-

tional to the spin temperature field T (x). The constant of proportionality and the k-modes

sampled by an observation are set by the limits of the observation, and will be discussed.

If we can assume that the measured range in l orm, call it ∆θ is small, then the comoving

distance subtended by ∆θ can be written as a linear scaling, rcom ≈ X∆θ. We note that

X is simply the comoving distance to redshift z, and can be found by integrating c/H(z′)

with respect to z′ from redshift 0 to z. In general, this expression is complicated, but for

redshifts 5-15, this can be written in terms of a simple power law.

X = 6.5 × 103
(

Ωm

0.27

)−1/2(1 + z

10

)0.2

h−1Mpc rad−1, (1.17)

3Theorists tend to normalize the power spectrum by the global spin temperature, making this a truly

dimensionless quantity. Since the global spin temperature is as interesting and as unknown as the power

spectrum, we do not use this normalization. Our values of ∆2(k) will have units of temperature squared.
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where Ωm is the cosmic matter density. We use WMAP7 values for cosmological paramters

(43) to derive this number. This follows the expression in Furlanetto et al. (22).

Having given a prescription to convert a measured quantity into the two transverse

cosmological distances, we now turn to the line of sight distance. Taking advantage of the

one-to-one mapping from the redshift of a 21cm line to the distance to it, we write the

distance spanned by bandwidth ∆ν as ∆D ≈ (drcom/dz)(dz/dν)∆ν. Defining the slope

∆D ≡ Y∆ν, we find another simple, linear, scaling relation:

Y = 1.7× 10−2

(
1 + z

10

)1/2( Ωm

0.27

)−1/2

h−1Mpc GHz−1. (1.18)

This discussion can be summarized into three main points:

1. The sky intensity I(l,m, ν) is proportional to the spin-temperature field.

2. Angles on the sky can be converted into transverse k-modes.

3. The frequency dimension measures line-of-sight k-modes.

We have given approximate proportionality constants between measured l,m, ν coordinates

and the cosmological x, y, z, and a more detailed discussion of power spectral inference will

be given in Section 2.4.

1.5 Observational Prospects

Now that we have discussed the scientific goals of 21cm EoR observations, we turn to two

state of the art measurements. These two datasets are taken with the PAPER experiment,

the primary instrument used for the result of this thesis, described in detail in Chapter 3.

One of these measurements is the power spectrum of foregrounds; the other is an upper limit

on the EoR power spectrum, Combined, they provide context for the work in this thesis,

and help elucidate some of the observational challenges.
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1.5.1 Foregrounds

Perhaps the biggest hurdle to measuring the 21cm EoR power spectrum is mitigating the

contributions of foregrounds to the power spectrum. As a general rule, the synchrotron

emission from our galaxy and extragalactic radio sources are around 104 to 105 times brighter

than the expected level of the spin temperature at peak reionization. To give representative

values, the expected brightness temperature of a neutral hydrogen bubble at redshift of 10

is about 30 mK (Equation 1.10), but the contributions of foregrounds fall in the hundreds

of degrees Kelvin.

There are two main strategies for excavating the 21cm signal from underneath the fore-

grounds, model subraction, and avoidance. Modelling and subtracting source spectra allows

observers to access the underlying EoR power spectrum, but requires a high level of precision

in both the model spectrum and instrumental calibration terms (10, 16, e.g.). While some

strategies require precise imaging of sources, many have simply removed the few bright-

est principal components from their spectra (51, e.g.). This method has been used with

some success (19, 61), but as Paciga et al. (61) demonstrated, blind subtraction of principal

components can also remove components of the EoR power spectrum, severely decreasing

sensitivity.

The second strategy for dealing with foregrounds is through avoidance. Synchrotron

emission generally follows a spectral power law, and thus will accumulate in the lowest bins

of k||, while the 21cm EoR signal falls in higher k|| modes as well. Hence, foregrounds may

be avoided by focusing analysis only on the highest k|| modes.

A number of studies show evidence of a foreground “wedge” in the k⊥-k|| plane for smooth-

spectrum foregrounds (49, 58, 66, e.g.). This wedge is due to the spectral response of an

interferometer, and as we will show in Section 2.3, is set by the geometry of an interferometric

array. Figure 1.6 shows the first observational confirmation of the “wedge.” The region

above and to the left of the orange lines in Figure 1.6 is relatively free of contamination

from foregrounds, and can be designated as the primary target for observations.
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Figure 1.6: Power spectrum of foregrounds, in mK2 (h3Mpc−3). The data presented were

taken for four hours during the PSA64 season (Table 3.1). Smooth spectrum foreground emission

is contained within a foreground “wedge,” delimited by the baseline length. A white line shows

the baseline length, and an orange line shows the baseline length plus a 50 ns buffer. This buffer

encloses the foreground emission, convolved by the kernel of the power law spectra typical to

radio sources. Figure taken directly from Pober et al. (69).
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A negative consequence of restricting analysis to high k|| modes is the relative levels of

the 21cm EoR power spectrum and uncertainty due to thermal noise. Typically, observers

target the spherically averaged power spectrum (∆2(k) in Equation 1.15), in which the

21cm EoR signal is relatively flat, and uncertainty due to thermal noise rises as k3. Thus,

observers target the lower k|| modes of the upper triangle of Figure 1.6. This effect provides

the impetus for using short baselines for EoR analysis, since short baselines probe the lowest

values of k⊥, and restrict foregrounds to the smallest region in k||.

Future observations and possible detections will likely use a combination of both strate-

gies. Pober et al. (68) show that the most highly sensitive modes to the power spectrum

exist within the foreground wedge, and the best prospects for detection are those in which

inter-horizon modes can be accessed.

1.5.2 Current Upper Limits to the Power Spectrum

To date, there are two prominent upper limits to the 21cm EoR power spectrum: Parsons

et al. (65), and Paciga et al. (61). Both of these measurements have overcome significant

hurdles in foreground removal and avoidance (respectively), and show that great progress is

being made to the detection of the 21cm EoR power spectrum. Since this thesis focuses on

data taken with the PAPER array (Chapter 3), we will focus on the Parsons result, taken

with the PAPER instrument.

Figure 1.7 shows the power spectrum at a redshift of 7.7, measured in the EoR2011

Season (Table 3.1), alongside a fiducial model of the power spectrum (48). While uncertain-

ties from thermal noise, residual foregrounds, and other instrumental systematics prevent

a detection of the power spectrum, this measurement can constrain the brightness contrast

of the spin temperature to below (41 mK)2 at k = 0.27 hMpc−1. This value allows for

one of the first physical constraints to the history of the IGM, since it can rule out reion-

ization scenarios in which the IGM cools adiabatically, with no heating from early ionizing
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Figure 1.7: (Left Panel): Power spectrum measurements from the EoR2011 observing season.

(Right Panel): Spherically averaged power spectrum taken from that same data. Dashed,

vertical lines show the horizon limit for the 16λ baselines used for these measurements. Points

and error bars show covariance-removed data, and 95% confidence intervals (See Section 6.1 and

6.2.1 for details). Cyan lines show the 2σ upper limit of data without the covariance removal

applied. Dashed, cyan lines show the level of thermal fluctuations, assuming Tsys = 550 K. The

magenta line shows a fiducial 21cm EoR model, taken from Lidz et al. (48). Yellow triangles

show the 2σ upper limits presented in Paciga et al. (61). Figure taken directly from Parsons

et al. (65).
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sources. Essentially, restricting the brightness temperature to below 41 mK shows that X-

ray heating of the IGM contributed to the bulk of reionization. Scenarios in which the IGM

cools adiabatically are highly unlikely, but this measurement is one of the first observational

confirmations of that statement.
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Chapter 2

Interferometry

2.1 A Thought Experiment

In this section, we will introduce interferometry, and derive an expression for the visibility

from first principles. While this material is used commonly enough and predates many

references typically given, it is nonetheless useful to provide a reference for a more thorough

discussion of this material, which serve as the sources for it. A more thorough and complete

discussion of interferometry can be found in two books: Taylor et al. (81) and Thompson

et al. (83).

Suppose we have two telescopes — label them A and B — which are separated by some

baseline vector ~b. Next, suppose that a single plane wave at frequency ν is indendent on

these telescopes A and B, with a propagation direction −ŝ. For now, let’s assume that these

two telescopes are evenly sensitive to radiation coming from all directions — we can add

that complication later. We will also neglect projection effects of the electric field vector on

telescopes A and B until later — we’re only concerned with the phase information for now.

We define the phase of the electric field so that at telescope A, it takes a value

EA = E0 exp {−2πiνt} , (2.1)
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which sets the value of the electric field at telescope B to be

EB = E0 exp
{
−2πiν[t+ (~b/c) · ŝ]

}
. (2.2)

The extra term in the phase, (~b/c) · ŝ, represents the time-difference of a wavefront’s arrival

on telescope A and B, and is thus defined as the delay. If we correlate the signals from the

two telescopes in time, we extract the delay thus:

〈EAE
∗
B〉t = lim

T→∞
1

2T

∫ T

−T
EA(t)EB(t) dt (2.3)

= |E0|2 exp
{
−2πiν(~b/c) · ŝ

}
. (2.4)

The next stage of complication is to allow plane waves to come from all directions. In

order to represent the response of telescopes A and B to the entire celestial sphere, we

integrate over the sphere, and allow |E0|2 ∝ I, the intensity of the incident emission, to vary

as a function of direction:

〈EAE
∗
B〉t =

∫
I(ŝ) exp

{
−2πiν(~b/c) · ŝ

}
dΩ. (2.5)

We can leave the details of the projection of the sphere onto our antennae for later, but this

equation reveals the two fundamental aspects of interferometry:

1. There is a Fourier relationship between the intensity of celestial emission, I(ŝ), and

the inteferometric response 〈EAE
∗
B〉t.

2. The dual variable to sky position ŝ (in the Fourier sense) is the baseline vector between

two antennae, measured in units of wavelength.

Before attempting to create an image from the interferometer’s response, we will add

two final complications. First, we define a coordinate system. The antenna locations are

defined in a topocentric coordinate system (u, v, w), with u the local easting, v is the local

northing, and w is pointed towards zenith. This coordinate system is fixed to the earth at

26



2.1 A Thought Experiment

the location of the observer. The upper half of the celestial sphere is characterized by the

coordinates (l,m), where at zenith, l points in the direction of u. The relevant terms of

equation 2.5 are the measure,

dΩ =
dldm√

1− l2 −m2
, (2.6)

and the delay,

(~b/λ) · ŝ = ul + vm+ w(1−
√

1− l2 −m2). (2.7)

It is typical to assume that the array of antennae is coplanar, so we can set w = 0, and define

baselines as being in the uv-plane. It is also typical to use the flat-sky approximation for

these coordinates, setting the measure dΩ ≃ dl dm, but we will forgo this approximation.

The penultimate complication we will add (the final complication, polarization, gets

its own section) is the spatial response pattern of an antenna, A(l,m), called the primary

beam. The primary beam attenuates the signal received by the electric field, modifying

Ei → AiEi. We assume that all antennae are identical, so we can combine the product

AiAj into a single primary beam A, which attenuates the intensity of incident radiation,

rather than the electric field.

Finally, we can name the interferometer’s response, and define the visibility (a word

studiously avoided until now) as

V (u, v, ν) =

∫
A(l,m)I(l,m)e−2πi(ul+vm) dl dm√

1− l2 −m2
. (2.8)

Images may be recreated from the visibilities by an inverse Fourier transforms over all

visibilties in an array:

A(l,m)Ĩ(l,m)√
1− l2 −m2

=

∫
X(u, v)V (u, v)e+2πiν(ul+vm) du dv. (2.9)

A couple of items to note in Equation 2.9: first, the reconstructed image Ĩ is attenuated by

the beam-response pattern and the measure4 Second (and more importantly) the sampling

4Typically, the factor of (1− l2 −m2)−1/2 is absorbed into the beam response A(l,m). Henceforth, we

will follow this convention.
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function X(u, v), which is defined as being 1 in the uv points that an array samples and

0 elsewhere, prohibits the full Fourier spectrum from being included in the reconstructed

image. The effect is that the true image I is convolved with what is defined as the dirty

beam, the Fourier-transform of the sampling function. Because X(u, v) contains zeros, a

complete deconvolution of the reconstructed image from the dirty beam is impossible.

2.2 Polarimetry

Here, we add the final complication to our model of the visibility (Equation 2.8), which will

be the subject of this thesis: polarization. To understand the interferometer’s response to a

polarized signal, we need first to lay some groundwork defining our coordinate systems.

As mentioned in the previous section, the uv-plane is defined as being fixed to the earth,

but the polarization vector of a source is obviously fixed to the celestial sphere. To account

for this, we usually define the uv-plane in what we call the topocentric coordinate system

(East, North, Up), and we define the source position in the equatorial coordinate system,

fixed to the sky, ((X,Y,Z), where X2 + Y 2 + Z2 = 1). The three-coordinate equatorial

system can be converted into the more familiar right-ascension α and declination δ via a

similar transformation to convert from Cartesian to spherical coordinates:5

tanα =
Y

X
, sin δ = Z. (2.10)

The projection of the topocentric uv-plane into equatorial coordinates is the projection

of the uv-plane onto the tangent plane of the celestial sphere. Since the hemisphere available

to an observer is dependent on the observer’s location on the earth and the local sidereal

time for the observer, the projection matrix R is a function of location and time. We write R

5The differences are due to the definitions of the two coordinates — δ is defined to be zero at the equator,

rather than the pole (δ = π/2 − θ), and α is defined to be left-handed, to track the earth’s rotation, from

the point of view of an observer looking up (α = −φ).
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2.2 Polarimetry

in terms of the declination of the pointing δ and the hour angle of the pointing H = LST−α
as

R =



sinH − sin δ cosH cos δ cosH
cosH sin δ sinH − cos δ sinH
0 cos δ sin δ


 , (2.11)

which is defined to act on topocentric vectors (the baseline ~b, for instance) on the right as

~beq = ~btop ·R, (2.12)

where ~beq is the baseline vector represented in equatorial coordinates, and ~b is the baseline

vector represented in topocentric coordinates. The projection matrix R is defined to act on

baselines from the right to facilitate interpretation of the product ~b · ŝ.6

Having defined the equatorial and topocentric coordinate systems, and described how

a vector from one projects onto the other, let us now discuss the physical process of a

polarization vector projecting onto an interferometer’s dipole. In doing so, we will introduce

three concepts: the Kronecker product, the Stokes parameters, and parallactic rotation.

The polarization vector of a source is fixed in the celestial sphere, making equatorial

coordinates a natural choice of basis. Since the propagation direction of the E-field of any

source is radially inward, toward the observer, right-ascension and declination are better

suited to describe these vectors. An interferometer, and any telescope in general, projects

these vectors onto its own local frame of reference. If we choose topocentric coordinates

(x, y), colinear with the previously defined (u, v),7 then we can write this projection as a

simple rotation (
Ex

Ey

)
≡ P

′ ·
(
Eα

Eδ

)
=

(
cosψ sinψ
− sinψ cosψ

)(
Eα

Eδ

)
, (2.13)

6Am I standing still and the sky rotates around me, or is the sky fixed and I’m rotating through it?

Either interpretation is correct, depending on your choice of frame of reference. The source vector ŝ can be

written in the topocentric frame as R · ŝ, so in either frame of reference, the term ~b · R · ŝ, being a scalar,

is coordinate-independent, and thus is always constant. This is highly analogous to the Schrödinger and

Heisenberg pictures of quantum mechanics.
7Generally, u and v are the Fourier-dual variables to sky coordinates l and m, measured in units of

wavelength. x and y are the physical easting and northing, measured in units of length.
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2.2 Polarimetry

where Ex,y are the components of the electric field in the xy coordinate system, Eα,δ are

the components in the equatorial frame, and ψ is the parallactic angle, defined in terms of

latitude λ, hour angle of observation H, and the declination of observation δ as

tanψ =
cos λ sinH

sinλ cos δ − cos λ sin δ cosH
(2.14)

Figure 2.1 shows the parallactic rotation of a plus sign.

Figure 2.1: Parallactic rotation of a plus sign. Lines of constant declination at δ =

30, 0, −30, −60 and lines of constant hour angle H = 0, 3h, 6h, 12h, 15h, 18h, 21h are

shown with dotted lines. The latitude is chosen to be that of the PAPER array (−30◦43′17.5′).

Hour angle 0 is chosen to be the meridian.

The next step in propagating a celestial signal through an interferometer is applying

any instrumental gains to each component of the electric field. In general, this can be

represented by a 2 × 2, complex matrix (G), all of whose elements are non-zero. There

are three major components to setting the elements of G: the overall amplification of the
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signal, the electrical delay of the signal with respect to an array-wide average, and any

instrumental polarization terms, most of which can arise from improperly aligned feeds or

inter-signal crosstalk. Each signal recieves each of these calibration parameters, so there

exist Nant copies of the matrix G, for an array with Nant antennae. Finally, we separate

the direction-dependent terms and call them the primary beam A(l,m). For the purposes of

simplicity8, we will omit any discussion of cross-polarizing terms and represent the matrix

for the ith antenna’s matrix Gi in terms of signal gain for each polarization α, gαi and an

electrical delay for each polarization ταi , and the α polarization’s primary beam:

Gi =

(
gxi Ax(l,m)e−2πiντxi 0

0 gyi Ay(l,m)e−2πiντyi

)
. (2.15)

This operation is applied to the signal at each antenna, making the electric field measured

from the ith antenna at the point of correlation

~Ei = Gi ·P · ~Eαδ. (2.16)

At last, we have discussed the necessary precursors, and can begin correlation! An

interferometer whose dipoles are aligned along the x- and y-axes (equivalently the u- and

v-axes) correlates each component of the E-field with both itself and the other, totaling

to four polarization products. This operation can be represented by the Kronecker outer

product between two matrices9, which takes an m× n matrix A and a p× q matrix B and

computes the mp× nq matrix

A⊗B =



a11B . . . a1nB

...
. . .

...
a1mB . . . amnB


 , (2.17)

8As we will discuss in Chapter 6, these cross-terms are measured to be negligibly small for our purposes.
9There is another convention, defining an outer product in which (A ⊗ B

†)ij = AiB
∗
j . Using this

notation, the native, linear polarization products are simply an expansion of the Stokes parameters times

the Pauli matrices and unity. While this definition of an outer product leads to mathematically elegant

results, and is in theory equivalent to our choice of an outer product, I personally find the calculations to

be quite cumbersome and will not use it.
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2.2 Polarimetry

where aij is the (i, j)th element of the matrix A, and each p × q block (represented by B)

contains the elements of matrix B. As an example, the Kronecker product of the E field (in

the (x, y) representation) is

~Exy ⊗ ~E∗
xy =




ExE
∗
x

ExE
∗
y

EyE
∗
x

EyE
∗
y


 , (2.18)

which weighted by the primary beam, and integrated over time and space, is a visibility. A

useful property of the Kronecker product is the mixed-product property, which states that

(AB)⊗ (CD) = (A⊗C) · (B⊗D). (2.19)

So, if we define the 4 × 1 vector of visibilities measured between antennae i and j as V ≡
〈 ~Ei ⊗ ~E∗

j 〉, then

V =
〈
(GiP

~Eαδ)⊗ (GjP
~Eαδ)

∗
〉
= (Gi ⊗G

∗
j)(P ⊗P)

〈
~Eαδ ⊗ ~Eαδ

〉
(2.20)

We can tackle this expression term-by-term, starting on the right. Equation 2.18 gives an

expression for the outer product of the two linear components of an electric field, but a

much more useful basis can be found. This basis, whose components are called the Stokes

parameters, is defined for linearly polarized components of the electric field thus:

I = |Eα|2 + |Eδ|2 (2.21)

Q = |Eα|2 − |Eδ|2 (2.22)

U = 2Re {EαE
∗
δ } = EαE

∗
δ + EδE

∗
α (2.23)

V = 2Im {EαE
∗
δ } = −i(EαE

∗
δ − EδE

∗
α). (2.24)

This basis conveniently represents the power of the electric fields in terms of its total intensity

(I), the power contained in each component of a basis of two, orthogonal, linear polarizations
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(Q and U), and the power contained in circular polarizations (V ). The rotation can be

represented by the matrix S~

~

, defined as




I
Q
U
V


 =




1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0







|Eα|2
EαE

∗
δ

EδE
∗
α

|Eδ|2


 = S~

~




|Eα|2
EαE

∗
δ

EδE
∗
α

|Eδ |2


 (2.25)

For completeness, we present the inverse of S~

~

, and note that were it not for the normalization

which requires I to contain the total intensity of the electric field, S~

~

would be Hermitian:

S~

~

−1 =
1

2




1 1 0 0
0 0 1 i
0 0 1 −i
1 −1 0 0


 . (2.26)

This definition allows us to write Equation 2.20 in terms of the Stokes parameters:

V = (Gi ⊗G
∗
j)(P ⊗P)S~

~

−1

〈



I
Q
U
V




〉
, (2.27)

which allows us to write the parallactic rotation of the Stokes parameters in a convenient

form:

P~

~

= (P⊗P)S~

~

−1 =
1

2




1 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ i
0 − sin 2ψ cos 2ψ −i
1 − cos 2ψ − sin 2ψ 0


 , (2.28)

which looks confusing until we make one observation. The Stokes parameters defined on the

celestial sphere (in the α, δ basis) are different from those observed (in the x, y basis). If

we define topocentric, observed Stokes parameters, (I ′ = |Ex|2 + |Ey|2, etc.), we find that

observed Q′ and U ′ are rotated from the celestial Q and U by an angle 2ψ, while I and V
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remain fixed. We can represent this transformation as




I
Q
U
V


 = S~

~

(P−1 ⊗P
−1)S~

~

−1




I ′

Q′

U ′

V ′


 =




1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1







I ′

Q′

U ′

V ′


 , (2.29)

which aligns with our intuition that Q and U rotate between frames, but I and V remain

constant.

Finally, we can write the parallactic rotation from the point of view from the feeds as

P~

~

′ = (P⊗P)S~

~

−1S~

~

(P−1 ⊗P
−1)S~

~

−1 = S~

~

−1, (2.30)

where we have taken advantage of another property of the Kronecker outer product, that

A
−1⊗B

−1 = (A⊗B)−1. A curious reader at this point will ask why we bothered defining the

visibilities in terms of the equatorially defined Stokes parameters – since the interferometer

measures in topocentrically defined coordinates, why not use those? The answer is because

of the time-dependence of parallactic rotation. A visibility measured at some time with

some pointing is not equal to the same visibility with the same pointing at a later time.

We’ve written the matrices and carefully defined each rotation and projection to define

visibilities in a fixed coordinate system, and furthermore, to develop intuition about the

rotations between Stokes parameters and their projection onto the xy plane.

We can use Figure 2.1 to visualize the parallactic rotation of Q and U , that is, the

rotation from Q′, U ′ to Q,U . In this figure, all symbols represent Q, since they align with

lines of constant right ascension and declination. However, as the + sign “rises” and “sets,”

increasing or decreasing in hour angle, it rotates into × (and back again). The + and × in

Figure 2.1 represent Q′ and U ′, respectively.

To complete this brief discussion of interferometric polarimetry, we present the full equa-

tions for a visibility measured using linear feeds:

V =
〈
(GiP

~Eαδ)⊗ (GjP
~Eαδ)

∗
〉
, (2.31)
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or, writing each component explicitly in terms of topocentric Stokes parameters:

Vxx =

∫
Axx(ŝ)g

x
i g

x∗
j e−2πiν(τxi −τxj )

[
I ′(ŝ) +Q′(ŝ)

]
e−2πiν(~b/c)·ŝ dΩ (2.32)

Vxy =

∫
Axy(ŝ)g

x
i g

y∗
j e

−2πiν(τxi −τyj )
[
U ′(ŝ) + iV ′(ŝ)

]
e−2πiν(~b/c)·ŝ dΩ (2.33)

Vyx =

∫
Ayx(ŝ)g

y
i g

x∗
j e−2πiν(τyi −τxj )

[
U ′(ŝ)− iV ′(ŝ)

]
e−2πiν(~b/c)·ŝ dΩ (2.34)

Vyy =

∫
Ayy(ŝ)g

y
i g

y∗
j e

−2πiν(τyi −τyj )
[
I ′(ŝ)−Q′(ŝ)

]
e−2πiν(~b/c)·ŝ dΩ (2.35)

It is often convenient to rotate the linearly-polarized visibilities as the linearly-polarized

images are rotated into Stokes parameters. This does not exactly represent the true Fourier-

transformed Stokes parameters, but it does provide a useful approximation. Section 4.3 will

discuss one of the negative consequences of such a rotation. For completeness, we provide

the definition of Stokes visibilities:



VI

VQ

VU

VV


 =




1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0







Vxx

Vxy

Vyx

Vyy


 (2.36)

2.3 The Time and Frequency Dependence of Visibilities

In this section, we go through a thorough investigation of the ~b · ŝ term in Equation 2.8.

The discussion here will largely follow Parsons and Backer 2009 (63) and Appendix A of

Parsons, et al. 2014 (65). It will also serve as a precursor to Section 2.4 and be used as a

reference for discussing the compression techniques in Section 6.1.

We begin by expanding (~b/c) · ŝ in the bases defined in Section 2.2, using the equatorial

to topocentric rotation matrix R. We note that in topocentric coordinates, ŝ =
(
0 0 1

)T
,
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since the uv-plane is defined to be tangent to the celestial sphere at ŝ. Written in this basis,

~b · ŝ =
(
bx by bz

)


sinH − sin δ cosH cos δ cosH
cosH sin δ sinH − cos δ sinH
0 cos δ sin δ





0
0
1




= bx cos δ cosH − by cos δ sinH + bz sin δ, (2.37)

where H is the hour angle of the pointing, and δ is the declination. We notice that the phase

of a visibility is 2πiν(~b/c) · ŝ, and define a time-constant of the visibility, τg = (~b/c) · ŝ, called

the geometric delay. This is simply the time delay of the signal between the two antennae in

a basline. This argument indicates that the geometric delay is bound between the positive

and negative baseline lengths, −|~b| ≤ τg ≤ |~b|, whose values are realized when ŝ aligns with

the basline vector, i.e. the interferometer is pointing along the bore sight of its baseline.

Neglecting calibration terms, we may write the visibility (Equation 2.8) in terms of τg:

V =

∫
A(ŝ, ν)I(ŝ, ν)e−2πiντg dΩ. (2.38)

Noting the similariry of Equation 2.38 to a Fourier transform with respect to ν, we define

the delay transform as the inverse Fourier transform of a visibility with respect to frequency:

Ṽ (τ) =

∫
V e+2πiντ dν =

∫
A(ŝ, ν)I(ŝ, ν)e−2πiν(τg−τ) dΩ dν, (2.39)

the convolution of the beam-weighted image with a delta-function kernel, peaked at τg.

Written more explicitly in terms of the convolution operation ⋆, we have

Ṽ = Ã(τ) ⋆ Ĩ(τ) ⋆ δ (τ − τg) . (2.40)

To build intuition about this tranform, we can neglect the primary beam A, and assume that

the only incident radiation is due to a flat-spectrum point source, i.e. I(ŝ, ν) = Ioδ(ŝ− ŝ0).

This assumption reduces Equation 2.39 simply to Ṽ (τ) = I0δ(τ − τg(ŝ0)), exhibiting the

important property of the delay spectrum, that it isolates smooth-spectrum, point sources

in a space accessible to all baslines individually. The isolation of smooth-spectrum point
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2.3 The Time and Frequency Dependence of Visibilities

Figure 2.2: Delay spectra of baslines of different lengths of five simulated sources. Four of

these sources have smooth, power law spectra, and one (which “turns on” at 0.8 days) with a non-

smooth spectrum. Horizon limits for the four baslines are shown by black, dashed lines — these

correspond to the baseline lengths of 32 m (top left), 64m (top right), 128 m (bottom left), and

256 m (bottom right). Visibilities are computed over the PAPER band, spanning frequencies

of 100 MHz to 200 MHz. Color scale denotes the flux, with red showing the brightest sources

and blue showing the dimmest, but the absolute scaling of the flux scale is arbitrary. Figure

credit: Parsons et al. (66).
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soures is demonstrated in Figure 2.2 — this figure also demonstrates the restriction of

smooth-spectrum emission to within the horizon limit of a baseline.

Once we understand that the geometric delay of a source changes with time,10 we can

apply a similar technique in the time-domain. We define the fringe-rate transform of a

visibility thus:

V̂ (ν, f) =

∫
V (ν, t)e−2πift dt (2.41)

Assuming again that we may neglect calibration terms and may only focus on a single,

smooth-spectrum, point source, we find the fringe-rate transform isolates sources in the

similar manner as a delay transform:

V̂ (ν, f) =

∫ [∫
I0δ(ŝ − ŝ0)e

−2πiτgν dΩ

]
e−2πift dt

∝
∫
e−2πi(τgν+ft) dt ≈ δ

(
f +

dτg
dt
ν

)
, (2.42)

where τg is evaluated at ŝ0 after the integration with respect to the sky coordinates is

performed. This allows us to immediately read off the fringe-rate of a source,

f0(ŝ) = ν
dτg
dt

= −ω⊕ cos δ ((ν/c)bx cosH + (ν/c)by sinH) , (2.43)

where ω⊕ = −dH/dt, the angular frequency of the earth’s rotation.

Notice that bx cosH+by sinH is simply the east-west portion of the basline (in topocen-

tric coordinates), and the linear velocity of the earth’s rotation at latitude δ is proportional

to ω⊕ cos δ — the fringe-rate is simply the dot product of the basline with the angular

velocity of the earth!

10Many sources ((83), e.g.) call this the fringe. We will accept this nomenclature, reserving the term

“delay rate" for the time-dependence of the geometric delay, rather than the visibility. Hence, a fringe-rate

transform will be the Fourier transform w.r.t. time of a visibility, but the delay-rate transform will be that

of a delay-transformed visiblity. The difference is subtle, and won’t appear in this work, but nonetheless, it

is great enough to warrant two different names for the two different transforms.
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2.4 The Delay Spectrum

To complete the analogy with the delay transform, we note that the fringe rate of a

source is limited to −(ν/c)bE cos δ ≤ f0/ω⊕ ≤ (ν/c)bE , where bE is the topocentric, east-

west component of the basline.
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Figure 2.3: (Left Panel) Delay, in nanoseconds, of a 32m (106ns), east-west baseline at the

latitude −31◦43′17.5′′. The delay ranges from ±|~b| and is constant along the north-south axis.

(Right panel) Fringe rate of that same baseline, in mHz.

Figures 2.3 and 2.4 show the limits of the delay and fringe rate transform. Figure 2.3

shows the mapping of delay and fringe rate onto the sky, and Figure 2.4 shows evidence for

the horizon limits in PAPER data.

2.4 The Delay Spectrum

At this point, we can discuss what may be the secondmost important tool used in this

thesis — interferometry being the first — the delay spectrum method to power spectrum

estimation. The development of the delay spectrum approach was first presented in Parsons

et al. (66), and has since been implemented in a number of papers (39, 56, 65).
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2.4 The Delay Spectrum

Figure 2.4: (Left Panel) Delay spectrum of one day’s worth of PAPER data vs. time. A solid

black lines showing the horizon limit of the 30 m baseline used to take this data. (Right Panel)

Delay rate spectrum of the same data vs. frequency. Again, black lines denote the horizon

limits of the fringe rate. In both plot, the colorscale denotes flux, with red being the brightest,

but the absolute flux scale is arbitrary.
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When I began work on this thesis, I would have considered the delay spectrum a novel

approach (and it was!), and I would have presented it in constrast to what was then the

“standard method” (10, 22, 48, e.g.). Since its inception, however, the three major players on

the 21cm EoR stage have all diverged in their methods, each further from early approaches

than the last, so I will present the delay spectrum approach from first principles.

To summarize the process, we will attempt to measure the three-dimensional power

spectrum of a temperature field (Section 1.4) from some function of the visibility equation

(Secion 2.1). Calculating power spectra directly from visibilities is a method that was first

used11 to compute the two-dimensional Cℓ spectrum for the CMB using the DASI experiment

(44) using a full covariance analysis of the visibilities (87). We aim to extend some of their

work into the third dimension in the sense that we will be using visibilities as direct tracers of

a power spectrum, but will wildly simplify the analysis with approximations of the primary

beam and the signal. The two main points are these:

1. Transverse wavemodes k⊥ ∝ ℓ are measured by the Fourier transform along the two

dimensions on the sky. Since the visibility natively measures these modes, it natively

measures the Fourier-transformed intensity or temperature field of the sky.

2. The line-of-sight k-modes, k||, may be measured by the Fourier-dual varaible to fre-

quency, since we compute a one-to-one mapping of frequency to cosmological distance.

We’ll start with the flat-sky approximation of the visibility:

V(u, v, ν) =

∫
A(l,m, ν)I(l,m, ν)e−2πi(ul+vm) dl dm. (2.44)

Guided by the the one-to-one mapping between cosmological distance and frequency, we

can compute the Fourier transform with respect to frequency of the visibility (i.e. the delay

transform of Section 2.3) as

Ṽ(u, v, η) =

∫
A(l,m, ν)I(l,m, ν)e−2πi(ul+vm+ην) dl dm dν. (2.45)

11And in my opinion, perfected.
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If we restric our efforts to a single baseline, this cannot exactly represent a three-dimensional

Fourier transform. The frequency-dependence of u and v sampled by a single baseline

prohibits a totally independent transform along the ν axis. The kernel of this transform

would be given by the expression

K(η|~b) =
∫
Ã

(
u− ν

bx
c
, v − ν

by
c
, ν

)
e−2πiνη dν, (2.46)

where the integral is computed over the bandwidth of the observation and Ã is the Fourier

transform of the primary beam over l and m. This kernel approaches a delta function as

ν(bx/c) approaches 0, or to first order in the magnitude of ~b, as ∆ν|b|/c ≪ 1. Intuitively,

the baseline length cannot change appreciably across the bandwidth, and more formally,

the phase along the components of k⊥ must remain coherent along the frequency direction.

Figure 2.5 shows the path of a baseline along the k⊥-ν plane alongside a fringe in k⊥. In this

figure, as baslines cross the fringes in blue, the baseline does not integrate over ~k in phase,

and the delay transform loses its correspondence with a Fourier transform in frequency.

Moving forward with the assumption that our baselines are small enough that a delay

transform approximates a Fourier transform along the frequency axis, we convert the units

of a visibility to temperature, always in the Rayleigh-Jeans limit, as

Ṽ(u, v, η) ≈ 2kB
λ2

∫
A(l,m, ν)T (l,m, ν)e−2πi(ul+vm+ην) dl dm dν. (2.47)

where an assumption is made that the intensity-to-temperature conversion remains constant

over the band. We cross-multiply two instances of the visibility to give

∣∣∣Ṽ(u, v, η)
∣∣∣
2
≈
(
2kB
λ2

)2 ∫
A(l,m, ν)A(l′,m′, ν ′)T (l,m, ν)T (l′,m′, ν ′)×

×e−2πi(u(l−l′)+v(m−m′)+η(ν−ν′)) dl dm dν dl′ dm′ dν ′. (2.48)

We can assume that the primary beam is a tophat function in l, m, and ν, and that it spans

an area Ω in l and m, and ∆ν in ν. These assumptions allow us to remove the primary
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Figure 2.5: Baseline tracks through the k⊥-ν plane. From left to right, the baseline lengths

are 30, 100, 200, 350, and 500 m. Shown in blue is a fringe in k⊥.

beam from within the integral and set limits to the integral:

∣∣∣Ṽ(u, v, η)
∣∣∣
2
≈
(
2kB
λ2

)2 ∫ (
√
Ω,

√
Ω,∆ν)

(0,0,0)
dl′ dm′ dν ′

∫ (
√
Ω,

√
Ω,∆ν)

(0,0,0)
dl dm dν

×T (l,m, ν)T (l′,m′, ν ′)e−2πi(u(l−l′)+v(m−m′)+η(ν−ν′)). (2.49)

Changing variables (l,m, ν) → (lr,mr, νr) ≡ (l− l′,m−m′, ν − ν ′) and integrating over the

dummy variables (lr, e.g.) yields

∣∣∣Ṽ(u, v, η)
∣∣∣
2
≈ Ω∆ν

(
2kB
λ2

)2 ∫ (
√
Ω,

√
Ω,∆ν)

(−
√
Ω,−

√
Ω,−∆ν)

ξ21(lr,mr, νr)e
−2πi(ulr+vmr+ηνr) dlr dmr dνr,

(2.50)

where ξ21 is the correlation function of the temperature field, defined in Equation 1.11.

As in Parsons et al. (62), we use the subscript 21 to denote quantities derived explicitly for

measuring 21cm reionization. Following Equation 1.11, we note that Ω∆ν is the cosmological

volume over which we are sampling in the native units of an interferometer.
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2.4 The Delay Spectrum

At this point we invoke the interpretations of the three axes and their duals, (u, v, η) ⇋

(kx, ky, kz), that they measure the cosmological wavemodes given in Section 1.4. This allows

us to change units according to the Jacobian

J =



X 0 0
0 X 0
0 0 Y


 , (2.51)

where X and Y are defined such that 2π(ul + vm + ην) = kxx/X + kyy/X + kzz/Y for

comoving coordinates x, y, z. The specific values for X and Y are given in Equations 1.17

and 1.18, respectively. This coordinate transformation allows us to write Equation 2.50 in

terms of the familiar quantities

∣∣∣Ṽ(u, v, η)
∣∣∣
2
≈ Ω∆ν

X2Y

(
2kB
λ2

)2 ∫ (X
√
Ω,X

√
Ω,Y∆ν)

(−X
√
Ω,−X

√
Ω,−Y∆ν)

ξ21(r)e
−ik·r d3r (2.52)

If we can assume that the limits of the integral span many phase-wrappings of k · r — for

instance, if
√
Ω ≪ 1/(2Xkx) — then the integral becomes a power spectrum, and we can

write Equation 2.52 as

∣∣∣Ṽ(u, v, η)
∣∣∣
2
≈ Ω∆ν

X2Y

(
2kB
λ2

)2

P21(k), (2.53)

where k is chosen by the (u, v, η) coordinate in the correct coordinate system. Finally,

by noting that the comoving area subtended by the primary beam is X2Ω ≡ D2 and the

comoving distance spanned by the band is Y∆ν ≡ ∆D, then we can write the power

spectrum of 21cm fluctuations in terms of the visibility and the cosmological distances

measured as

P21(k) =

(
λ2

2kB

)2
(Ω∆ν)2

D2∆D

∣∣∣Ṽ(u, v, η)
∣∣∣
2

(2.54)
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Chapter 3

The Donald C. Backer Precision

Array to Probe the Epoch of

Reionization

The Donald C. Backer Precision Array to Probe the Epoch of Reionization (PAPER) was

built specifically to detect the 21cm EoR power spectrum in mind. To achieve this goal,

many design choices violate the assumptions made in normal interferometric analysis — the

two most pertinent of these are the flat sky approximation, and the assumption that one

source dominates the field of view. This chapter will describe the instrument and discuss

the impetus for many characteristics of the array. Much of this material is discussed in

Parsons et al. (64), but several improvements have been made since 2009, when that paper

was written.

3.1 Instrument Design

PAPER is located in the Karoo desert, in the Northern Cape province of South Africa,

around 60km west of Carnarvon, at latitude and longitude of 30◦43′17.5′′S, 21◦25′41.9′′E.
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Figure 3.1: Comparison of RFI environments in South Africa (dark grey) and Green Bank,

West Virginia (light grey). The value shown is the probability that a datum survives RFI

excision.
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3.1 Instrument Design

The array sits approximately 1km east of the KAT7 array, and roughly 0.5km south of the

precursor to the Square Kilometer Array, MeerKAT.12 Such a remote location is chosen

to isolate PAPER from human-generated radio frequency interference (RFI). Figure 3.1

compares the latency of RFI with the site in South Africa to that of the radio-quiet zone

in Green Bank, West Virginia, where we operate a test array. Though the South African

site has a pristine RFI environment, certain frequencies must be discarded at all times —

most notably, for the Orbcomm constellation of tracking satellites at 137 MHz, and for the

International Space Station at 150 MHz.

Figure 3.2: Photograph of a PAPER element, showing the groundscreen and the sleeved

dipole.

Celestial signal enters through a dipole hoisted above a wire-mesh groundscreen. Four

mesh flaps positioned at roughly a 45◦ angle above the groundscreen increase the response

of the dipoles towards zenith. The dipole is placed within a sleeve, which broadens the

response over a wider range of frequencies, and allows for better impedance matching of the

element over such a wide band. All electrical elements of the antenna are isolated from one

12www.ska.ac.za
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3.1 Instrument Design

another by plastic fittings, which are transparent to radio frequencies. Figure 3.2 shows a

photograph of a PAPER element.
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Figure 3.3: (Left panel) East-west cuts through zenith of the PAPER beam, at 127 MHz

(cyan) and 164 MHz (black). In these units, isotropic emission would have 0 dBi at all angles.

These are the two central frequencies of the results in Chapter 6. (Right panel) Effective area

of an antenna as a function of frequency.

The groundscreen is designed to have a relatively low effective area so that the first nulls

of the dipole response occur below the horizon. Since the location of these nulls is highly

frequency-dependent, they can introduce systematic errors to the high k|| modes reserved

for EoR analysis. Such a small effective area results in a large field of view. Figure 3.3 shows

an axial cut through the beam at two frequencies and the effective area Aeff of the element,

defined as AeffΩ = λ2, where Ω is the field of view.

The first stage of amplification occurs at the dipole, boosting the signal by 60 dB. Signal

then propagates along 75Ω, coaxial cable13. The length of all coaxial cables is set to be

roughly equal to minimize the differences of signal travel time along these cables, which

lessens the calibration burden. These coaxial cables pass into an RFI-shielded enclosure

13The same coming out of the back of your TV!
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Figure 3.4: Model of the PAPER bandpass, normalized to peak at one.

containing receivers and the digital equipment. A final amplification stage (40 dB), located

inside the RFI-enclosure, corrects for signal loss along the cables, and an analog bandpass

filter is applied. This bandpass is designed to have a flat frequency response from 120 MHz

to 180 MHz, and attenuate signal in the FM band below around 107 MHz and also attenuate

signal at 200 MHz, which contains the total power signal. A plot of the bandpass (gain as

a function of frequency) is shown in Figure 3.4.

Next, the signal is digitized with a sampling rate of 100 MHz. It is then passed through

a F-engine, which computes the Fourier transform using a four-tap, polyphase filter bank.

Since the sampling rate is below the frequencies allowed by the bandpass filter, we measure an

aliased copy of the frequency spectrum, in the second Nyquist zone. Because the frequency

channels are aliased and reversed, the DC signal is contained in the 200 MHz frequency bin.

The integration time of each Fourier transform is set to be around 10 seconds. The Fourier-

transformed signal is then distributed over 10GbE to the X-engine, which cross-multiplies

each signal and computes the visibility for each antenna pair. The visibilities are finally

49



3.1 Instrument Design

Figure 3.5: Flow chart of analog and digital systems.
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3.2 Deployments of the PAPER Array

written in MIRIAD format (76) and stored for analysis. Figure 3.5 shows a flowchart which

summarizes the propagation of signal through the analog and digital systems.

For the EoR2012 and EoR 2013 campaigns described in Table 3.1, there is a final process

after digitization and correlation. Since the data rate goes as the number of baselines

(roughly, the number of antennae squared) campaigns with many-element arrays will have

untenably large data rates. The extreme case is the EoR2013 campaign with 128 antennae.

With 1024 frequency channels per 10 second integration for each of 104 baselines, this

campaign has a data rate of over 200 Mbps. The total data volume of a 120 day season at

this rate would be 127 TB, which, with storage costs of $150/TB, costs $19,000 just to keep.

To mitigate the “big data” problems of the latter observing seasons, we implement a data

compression system. Data is piped over 1GbE into a large RAID array, and once the night’s

data is taken, a small cluster of compute nodes performs a low-pass filter and decimation

on the data, outputting a smaller, more readily analyzed dataset. The algorithm for the

compression process is described in detail in Section 6.1. This reduces the data rate (and

the data volume) by roughly a factor of twenty.

Once the data is compressed, it is stored on small, portable disks and shipped to its final

resting place, a computer cluster in Philadelphia. From this location, it can be processed

using a larger cluster (folio.sas.upenn.edu) and served elsewhere in the United States.

Figure 3.6 shows a map of this process.

3.2 Deployments of the PAPER Array

Table 3.1 summarizes PAPER’s five major campaigns since I joined the group in 2009. The

first two, PSA32 and PSA64 span an entire year, but due to lack of internet connectivity

to site, consisted of two week-long seasons, separated by about six months. These two

campaigns were designed to characterize foregrounds, so the configuration of antenna was

designed to maximize uv-coverage. Data from PSA32 yielded a new catalog of sources in

the southern hemisphere (37).
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3.2 Deployments of the PAPER Array

Figure 3.6: Map of the data flow. Data is taken on site in the Karoo desert, and shipped

to Philadelphia via Cape Town (CPT). Data may then be served from Philadelphia to other

institutions in the United States, such as the University of California (UCB).

Julian Date Nant Ncorr Configuration Publications

PSA32 2455460-469, 538-544 32 32 Imaging (37)

PSA64 2455743-747, 817-822 64 64 Imaging (38, 69, 78)

EoR2011 2455903-6006 32 64 8× 4 Grid (39, 56, 65)

EoR2012 2456261-383 64 128 8× 8 Grid —

EoR2013 2456620-637 128 512 16× 7 Grid, 16 Outliers —

Table 3.1: PAPER Campaigns from 2009 through 2014. Nant is the number of antennae, and

Ncorr is the number of inputs to the correlator.
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3.2 Deployments of the PAPER Array

In the PSA64 campaign, we doubled both the number of antennae and the number of

inputs to the correlator. Single-polarization data provided confusion-limited images which

yielded one of the first measurements of the foreground “wedge” (69), described in Section

1.5, and shown in Figure 1.6. It also provided precision measurements of the flux of several

calibration sources (38), and a detailed analysis of the spectral structure of Centaurus A

(78). All four polarization products were correlated on subarrays of 32 antennae to give

data for full-Stokes images.

In 2011, because we had reached the confusion limit in our images, we reconfigured the

array into a grid pattern. Parsons et al. (62) show the sensitivity benefits of an antenna

configuration which maximizes the number of redundant baselines. The argument can be

summarized by noting that averaging redundant baselines reduces the variance of T (k) by

1/n, where n is the number of measurements, but averaging the power spectrum of baselines

in the same annulus of constant k reduces the variance of P (k) by 1/n. Hence, redundant

baselines reduce the uncertainty in the power spectrum by 1/n, while non-redundant spac-

ings reduce it by 1/
√
n. With this fact in mind, and also considering the necessity of

characterizing the polarized power spectrum (55), we arranged a subset of 32 antennae into

an 8×4 grid, and took data for about six months. This campaign was our first long integra-

tion designed to measure the 21cm EoR power spectrum. It yeilded three papers: the first

limits on X-ray heating of the IGM (65, Figure 1.7), sensitivity limits on multiple redshift

bins (39), and a characterization of polarized foregrounds (56), the main result of this thesis.

Since the EoR2011 campaign, we have doubled the number of inputs to the correlator

each year, and in 2013, we increased the number of antennae to 128. In this last campaign,

we placed a small subset of antennae along the perimeter of a 300m circle, centered on the

grid. This allows us to increase the imaging power of the array, allowing for more accurate

foreground characterization and mitigation. Work is currently underway to analyze the data

from these campaigns, but to date, results have yet to be published.
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Part II

The Problem of Polarization
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Chapter 4

Initial Thoughts

4.1 Polarization at Meter Wavelengths

Nearly all celestial emission at meter wavelengths comes from the synchrotron radiation of

electrons. Synchrotron emission is natively polarized, so it stands to reason that all emission

at radio frequencies is polarized. These polarized, radio sources yield a wealth of astrophysics

in their own right, but since we are interested in detecting the 21cm EoR power spectrum,

we focus on polarized sources’ impact on its detection.

This section will discuss the provenance of polarized sources, give a summary of the

current understanding of the polarized sky at meter wavelengths, and then discuss how they

can affect efforts to measure the 21cm EoR power spectrum.

4.1.1 Why is Synchrotron Emission Polarized?

To discuss the cause of polarized synchrotron emission, we review how synchrotron emission

comes about. This discussion will summarize the appropriate chapters of Wilson et al. (89)

and Rybicki and Lightman (74), but also loosely follows the original paper, Westfold (86)14.

14 In my opinion, an interesting read in how it differs from modern astrophysical calculations
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4.1 Polarization at Meter Wavelengths

We begin by recalling a few basics of Larmour precession. As an electron takes its

helical path about a magnetic field, it emits a dipole radiation pattern perpendicular to

both its acceleration (pointed toward the center of its helix) and the magnetic field. In

the nonrelativistic limit, this is simply cyclotron emission. As the speed of the electron

approaches c, the Larmour dipole pattern elongates in the direction of the electron’s motion,

forming a thin beam of emission preceding the electron.

An observer off bore-sight of the magnetic field will see a series of pulses in time from a

single synchrotron electron — these pulses in the delta-train arrive at the Lorentz-boosted

cyclotron frequency,

νc ∝ γ3ωB ≈
[
1−

(v
c

)2] eB

mec
, (4.1)

where νc is the observed frequency of the synchrotron emission, ωB ≡ eB/γmc is the cy-

clotron frequency, and γ is the Lorentz factor. Hence, each synchrotron electron emits

radiation whose frequency is a function of that electron’s energy.

We extend this notion to an ensemble of electrons. Since each contributes emission

whose frequency is proportional to the energy of the electron, the total spectrum will be

proportional to the energy spectrum of the ensemble of electrons.

The same notion can be extended to the polarization properties of synchrotron emission.

One can write the full Larmour formula for the relativistic ensemble of electrons (as in the

three sources cited), and find that the polarized fraction of synchrotron emission, p, exactly

written in terms of modified Hankel functions (86), can be written for power-law energy

distributions for the electrons, N(E) ∝ E−n, simply as

p =
n+ 1

n+ 7/3
. (4.2)

The direction of polarization is perpendicular to both the magnetic field and the line of

sight.
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4.1 Polarization at Meter Wavelengths

Finding n in Equation 4.2 from the spectral slope of the galaxy implies a polarized

fraction of around 75%. This is a couple orders of magnitude higher that what is measured,

which we will discuss later in this section.

4.1.2 Faraday Rotation

The next most important process in radio polarimetry is the rotation of the polarization

vector through an ionized, magnetized plasma.15

An easy way to understand Faraday rotation is through birefringence. If a polarized

wavefront is incident on a Faraday screen, a thin layer of electrons with a constant magnetic

field through them, then one circular polarization — the one which opposes cyclotron motion

of electrons in that magnetic field — is slowed with respect to the other.

Integrating through the Faraday screen, we find that the phase difference between the

two polarizations can be written like a column density:

∆ϕ =
e3

(mec2)2
λ2
∫
ne(s)B||(s) ds ≡ λ2Φ, (4.3)

which defines the rotation measure Φ. In this expression, me and e are the mass and charge

of the electron, ne(s) is the electron density along the line of sight, and B|| is the component

of the magnetic field that aligns with the line of sight. The integral extends from the observer

to the emitting source. Since a Faraday screen rotates the polarization vector of a field, it

affects Stokes parameters Q and U by rotating them by 2Φλ2:

(Q+ iU)meas = e−2iΦλ2

(Q+ iU)int, (4.4)

where the subscripts meas and inc refer to the measured and incident polarization states,

respectively.

15Faraday rotation got its start in the optical, though we mostly see it in the radio since we measure the

E-field directly in radio. Faraday rotation is much like interferometry in that sense (remember Michelson

and Morley).
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4.1 Polarization at Meter Wavelengths

Measurements of the Faraday depth of sources can be used to characterize galactic

magnetic fields (3, e.g.). To measure the rotation measure of sources, we can either fit a

line in λ2 to the polarization angle, or exploit the Fourier relationship between Φ and λ2 in

Equation 4.4 (11). A method to characterize the Faraday depths rotation the polarization

vectors of a source is the topic of discussion in Chapter 7. Faraday rotation of sources is also

mechanism which gives polarized sources spectral structure, which has led to the studies in

the remainder of this thesis.

4.1.3 Methods of Depolarization

We will show in Section 6.3 that the mean polarized fraction of point sources at 150 MHz

is less than 3 × 10−3, a far cry from the 75% predicted from the spectral slope of our own

galaxy.16 The question for us to answer now is why there is such a disparity between these

two polarized fractions. The remainder of this section will discuss methods of depolarization,

which we split into two groups: instrumental, and intrinsic.

The first form of instrumental depolarization, called beam depolarization, arises from the

minimum angular resolution element of an array. In general, galactic magnetic fields can

be turbulent, so the polarization angle varies with position. A large synthesized beam sums

many of these randomized polarization vectors, yielding a large amount of depolarization.

The extent of this attenuation is dependent on the size of the synthesized beam, the angular

distribution, and alignment of polarization vectors at a pointing.

The second method of instrumental polarization comes from integrating in frequency, and

is called bandwidth depolarization. Since all polarized emission passing through magnetic

fields undergoes Faraday rotation, it all gains spectral structure given by Equation 4.4. As

we measure this emission, we must integrate over some bandwidth ∆ν. The rotation within

16This is the primary result of this thesis.
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Figure 4.1: Attenuation factor from Equation 4.6 versus bandwidth for a band centered at

150 MHz, and a distribution of sources drawn from the Oppermann et al. (60) maps.

the band yields an attenuation given by

Pmeas =

∫
W (ν)P (ν) dν, (4.5)

where P (ν) is the unaveraged power, Pmeas is the measured power within the band, and

W (ν) is the window function of the band. If we assume the window is a tophat function

centered at frequency ν0, with a width ∆ν, and if we also assume that the intrinsic power

follows a flat-spectrum polarized source, P (ν) = P0 exp{−2iλ2Φ}, then we can expect an

attenuation rate of

Pmeas

P0
=

∫
P(Φ)

[∫ ν0+∆ν/2

ν0−∆ν/2
e−2iλ2Φ dν

]
dΦ, (4.6)

where P(Φ) is the probability distribution of Faraday depths. Figure 4.1 shows the level of

bandwidth depolarization from Equation 4.6 with a distribution of Faraday depths drawn

from the Oppermann et al. (60) maps. Using the channel widths we use for the results
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4.1 Polarization at Meter Wavelengths

in Chapter 6, we expect nearly all polarization to be preserved by this mechanism. Using

the entire bandwidth available to PAPER, around 80 MHz, attenuates the signal to around

10% of its intrinsic power. This effect strengthens at lower frequencies, since the 2Φλ2

phase-wrapping grows faster as the frequency decreases.

These two methods of depolarization are instrumental, meaning they can be mitigated

by the correct design choices in an instrument. The next two forms of depolarization are

intrinsic, meaning they arise by galactic physics. No data analysis methods or instrument

design can remove these sources of depolarization.

The primary form of intrinsic depolarization is due to turbulent magnetic fields. The

expression linking spectral slope with polarization fraction (Equation 4.2) assumes a constant

magnetic field driving the electron’s acceleration. This assumption is not true in general,

but rather, galactic magnetic fields usually vary as a function of position, causing emission

from different parts of the magnetic field to have different polarization angles. This effect

causes the polarization in a line of sight to have emission from many different photons with

different polarization angles. This amounts to an attenuation of polarized power. In the

extreme case, a totally spatially random magnetic field, the net polarization is zero.

The secondary form of intrinsic depolarization is due to a polarized emitter’s position

inside a magnetized, ionized plasma. This effect is discussed at length in Jelić et al. (40),

and we will briefly discuss it here. If an emitter lies within the plasma which Faraday-

rotates its emission, different photons will travel through different lengths of the plasma,

which by Equation 4.3 gives each a different Faraday depth. Many photons with different

rotation measures developed this way may scatter into one line of sight, yielding a signal

containing many Faraday-rotated components. Once this line of sight is summed in the in-

strument, the ensemble average of the polarized signal is attenuated by a factor proportional

to exp{−4∆Φλ4}, where ∆Φ2 is the variance of Faraday depths available in this line of sight

(89).
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These methods of depolarization, both instrumental and intrinsic, are discussed in Gaensler

et al. (23), and Landecker et al. (46), to give two examples. The latter synthesizes infor-

mation regarding depolarization into the notion of a polarization horizon. The polarization

horizon is the maximum distance of a polarized source measurable by a given instrument —

polarized emission produced beyond this horizon will be subjected to a level of instrumental

polarization so great as to attenuate the signal below any reasonable detection threshold.

Instruments like PAPER have polarization horizons on the order of around 10-20 kpc (5).

4.2 Recent Observations

The polarized sky at meter wavelengths is relatively uncharted territory, especially in the

southern hemisphere.17 Significant efforts have been made to characterize the polarized

intensity of individual sources, the power spectrum of polarized emission, and the structure

of magnetic fields of both our galaxy and extragalactic objects. Here, we will briefly describe

the status of polarimetry at the time of writing this thesis. Many of these measurements

were taken at 1.4 GHz, and we must extrapolate their properties down to 150 MHz.

There are two nearly complete surveys of the polarized sky: the NRAO VLA Sky Survey

(NVSS, 14) and a survey using the Dominion Radio Astrophysical Observatory of Canada

(DRAO, 90), both at 1.4 GHz. The former constructed a catalog of polarized point sources,

alongside their rotation measures. The latter, with its shorter baselines, was more able to

measure the extended polarized emission mostly due to our own galaxy. Both the Very

Large Array (VLA) and DRAO are located in the northern hemisphere, so much of the

southern sky blocked by the Earth. Figure 4.2 shows the map of polarized intensity derived

from the DRAO survey(90). The polarized intensity in this map does not match well with

unpolarized intensity (see Haslam et al. (33) or de Oliveira-Costa et al. (18) for examples).

17coeli incogniti
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4.2 Recent Observations

Figure 4.2: Polarized intensity in galactic coordinates from the DRAO survey (90). We

present this to show the relative levels of polarized emission rather than the exact intensity.

Lighter regions have a higher polarized intensity than darker regions.
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4.2 Recent Observations

For example, the north galactic spur is highly polarized in these maps18, but the galactic

plane is unpolarized due to turbulent magnetic fields.

A more recent measurement from Bernardi et al. (8) surveys 2400 square degrees, a stripe

centered at the PAPER latitude, so within the PAPER field of view. These observations,

alongside Wolleben et al. (90) and other measurements (40, e.g.), indicate that qualitatively,

the majority of polarized emission is contained in diffuse structures. Bernardi et al. (8) does

measure one point source, PMN J0351-2744, whose flux at 184 MHz is 320 Jy, and whose

rotation measure is +33 m−2. The discovery of this single source will be used to constrain

the mean polarized flux at these frequencies in the analysis of Section 6.3.

To better characterize the relative levels of diffuse and point-like polarized emission,

groups have measured its angular power spectrum. The first relevant upper limits were

provided by Pen et al. (67) using the Giant Metrewave Radio Telescope (GMRT). They

found, for spherical harmonic multipoles 200 ≤ ℓ ≤ 5000, and upper limit of around Cℓ .

100 mK2. More recent work by Bernardi et al. (7) detected polarized power at the same level

at ℓ . 1000 using the Westerbork Synthesis Radio Telescope (WSRT), with no significant

detection of power above ℓ of 1000. Bernardi et al. (7) did not detect emission directly

attributable to polarized point sources.

Figure 4.3 gives a summary of the low-frequency measurements of polarized power spec-

tra. In addition to the Pen et al. (67) and Bernardi et al. (7) measurements, It also shows

the angular power spectrum of Haslam et al. (33), scaled by a mean polarized fraction of

0.3%, which roughly causes it to agree with the two measurements. This scaling requires a

large degree of depolarization of the synchrotron emission from an ordered magnetic field —

the assumption we used in calculating the expression for the expected polarization fraction

for synchrotron radiation earlier in this section (Equation 4.2.

A recent simulation (41) attempted to further constrain the problem by fully simulating

a full-Stokes realization of galactic synchrotron emission over a 10◦×10◦ field of view. They

18Mostly due to its close proximity to us
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Figure 4.3: Recent measurements of low-frequency polarized power spectra. The thick

black points show the Bernardi et al. (7) measurements of a field around 3C196, and the solid,

magenta line shows the upper limit of Pen et al. (67). The Haslam map at 408 MHz (33), scaled

by a polarization fraction of 0.3% is shown by thin, blue points, and a power-law extrapolation

is shown with a dotted line above ℓ = 200. This fraction was chosen to agree with the low-ℓ

points in the Bernardi measurement. At high-ℓ, the upper limits do not constrain the level of

polarized emission.
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present a realistic spectrum of the mean temperature of polarized emission, but do not

extend their analysis into the power spectrum. They also predict a polarization fraction

from diffuse emission much higher than the limited available measurements allow.

-140 140Faraday Depth [m−2 ]

Figure 4.4: Map of Faraday depths, from Oppermann et al. (60), shown in galactic coordi-

nates.

Finally, we turn to measurements of Faraday depth. The most comprehensive study

is a meta-analysis by Oppermann et al. (60), which synthesizes a full-sky map of Faraday

depth (Figure 4.4) from existing measurements, mostly from the NVSS polarization survey

(14, 80). The quadrupole pattern of rotation measure indicates a large-scale ordering of the

galactic magnetic field (45, 72), though turbulence of the magnetic field within the plane

diminishes this effect. A recent study (59) finds that the dominant contribution to the
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4.3 Beam Leakage

rotation measure of a source comes from magnetic fields within our galaxy.

4.3 Beam Leakage

Since the 21cm EoR power spectrum is largely unpolarized, we ask the question, why care

about polarized emission? In short, Faraday-rotated, polarized sources will exhibit the

spectral structure reserved solely for the EoR and noise (Section 1.5). Any Q → I leakage

will damage prospects of making a clean detection of the 21cm EoR power spectrum. Hence,

we begin our investigation of Q→ I leakage.

The two most prominent ways in which polarized sky emission can leak into an in-

terferometric estimate of Stokes I are leakages due to non-orthogonal and rotated feeds,

and beam ellipticity — an asymmetry in the two linear polarizations of a primary beam

which causes unpolarized signals to appear polarized, and vice versa. The first is a well-

understood question, discussed at length in the series of papers by Hammaker, Bregman,

and Sault (27, 28, 29, 30, 75). This type of leakage can be corrected by the proper linear

combination of visibilities. Hence, we will omit discussion of this, and focus entirely on the

latter issue. Unlike misaligned feeds, Beam leakage cannot be calibrated away. To begin, we

will examine the contents of a visibility and relate them to the intrinsic Stokes parameters.

We begin by expanding the terms for the I and Q visibilities, from Equation 2.36, noting

that they are not exact representations of the Stokes parameters they approximate:

VI = Vxx + Vyy =

∫
(Axx +Ayy) Ie

−2πi~b·ŝ dΩ +

∫
(Axx −Ayy)Qe

−2πi~b·ŝ dΩ; (4.7)

VQ = Vxx − Vyy =

∫
(Axx +Ayy)Qe

−2πi~b·ŝ dΩ +

∫
(Axx −Ayy) Ie

−2πi~b·ŝ dΩ. (4.8)

VI is the Fourier transform of I, weighted by the sum of the xx and yy beams (call it A+),

and that of Q, weighted by the differenced beam (A−). VQ is symmetric to VI . Naïve

addition of the Stokes visibilities clearly produces a mechanism for Q → I leakage.
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4.3 Beam Leakage

If we allowed ourselves the ability to image visiblities, we could simply add a linear

combintation of images to acheive “pure” Stokes parameters, but if we restrict ourselves to

visibilities, this process, now a convolution, is impossible without a densely-sampled uv-

plane. The requirement of densely-sampled uv-plane is often not satisfied, especially for the

array used for the duration of this thesis certainly falls into this category. More discussion

on the benefits and consequences of this effect can be found in Section 4.4.

Having established this particular mechanism for I → Q leakage, we now ask how much

of Q’s power is contained in the power of VI , which yeilds an estimate of the fraction of our

power spectra are corrupted by beam leakage.

To find this estimate, let us first make a three assumptions:

1. The flux contained in I and Q are Gaussian, random fields.

2. The fields I and Q are uncorrelated.

3. The varaiance of Q is some fraction p2 that of I, and p≪ 1.

Despite the obvious exceptions to these three assumptions, we proceed with our estimate

of the leakage power, sacrificing accuracy for an analytic solution, and thus, intuition. The

second assumption allows us to separate the contributions from I and Q when squaring VI ,

allowing us to write

|VI |2 =
∫

|A+|2 dΩ ⋆ Pi +

∫
|A−|2 dΩ ⋆ PQ, (4.9)

where PI(PQ) is the power spectrum of I(Q), and ⋆ denotes a convolution. The first as-

sumption sets PI and PQ to be constant, since the power spectrum of a Gaussian, random

field is flat, and the third assumption allows us to write the simple expression for the power

spectrum of VI ,

|VI |2 ∝
∫

|A+|2 dΩ + p2
∫

|A−|2 dΩ; (4.10)
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4.3 Beam Leakage

and similarly for Q,

|VQ|2 ∝
∫

|A−|2 dΩ + p2
∫

|A+|2 dΩ. (4.11)

We now ask what the ratio |VQ|2/|VQ|2 is — this allows us to answer the question, what

fraction of what I measure in Q is present in what I measure for I. Defining A± to be the

power spectrum of A±, we can write this ratio as

|VQ|2

|VI |2
=

A+ + p2A−
p2A+ +A−

≈ A−
A+

, (4.12)

where the approximation is the first-order Taylor expansion of the ratio in p, which has been

measured to be much smaller than one at higher frequencies (85), and been measured to

decrease at lower frequencies (6, e.g.).
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Figure 4.5: (Right Panel) Summed PAPER beam (70), Axx +Ayy, at 164 MHz, normalized

to peak at two. (Left Panel) Differenced PAPER beam, Axx −Ayy, where each component Ap

is normalized to peak at one.
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4.3 Beam Leakage

We can apply these parameters to the measured PAPER beam (70), whose sum and

difference are shown in Figure 4.5. We find the metric for leakage at 164 MHz to be

A−
A+

= 2.1 × 10−3, (4.13)

— this is roughly the fractional level of contamination we’d expect in the I power spectrum.

In fact, this metric can be a function of frequency — the PAPER beam is most matched at

150 MHz, and we would expect the leakage to be least at that frequency, and increase as

we approach the edges of the band. The measured values, shown in Figure 4.6, confirm our

intuition, showing that the minimum leakage occurs at roughly the central frequency of 156

MHz, where the PAPER antenna’s impedence matching is optimized.

0.12 0.13 0.14 0.15 0.16 0.17 0.18

Frequency [GHz]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

A −
/A

+

Figure 4.6: Fractional beam leakage, defined by Equation 4.12, as a function of frequency

for the PAPER beam. This metric of leakage takes its minumum value at 156 MHz, near where

the PAPER antenna is optimized for impedence matching.
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4.4 Sparse uv Sampling and Wide-field Polarimetry

One advantage of the delay spectrum approach (Section 2.4) is that it relaxes the requirement

of gridding in the uv-plane. Each baseline is assigned a position in the uv-plane ab initio,

and visibilities from similar baselines may be coherently added without imaging. This allows

for sparse sampling in the uv-plane without damaging effects from sidelobes or missing data,

problems other methods may experience. Since the delay spectrum rotates a power-spectrum

estimate into the native coordinate system of an interferometer, there are no inherently

missing frequency-data. Parsons et al. (62) present the sensitivity benefits of a sparse,

redundant array configuration, but other techniques aim to uniformly sample the (u, v, ν)

cube, mitigating the systematic effects of computing a Fourier Transform across unevenly

sampled data.

An obvious disadvantage of having sparesely-sampled data is poor imaging. Not only

does sparse sampling provide a highly-irregular synthesized beam, but it also limits the

available information for a full reconstruction of the image. Without adjacent uv-samples,

a full, accurate deconvolution by a wide beam simply has inssufficient information. As seen

in Section 4.3, the inability to correct for beam effects will provide a significant source of

systematic error via polarized leakage.

By choosing to wield the full power of the delay spectrum approach and redundant sam-

pling, an observer is forced to add visibilities with no beam weighting. The beam information

supplied by adjacent uv-samples simply does not exist, and without transforming into the

image plane, is unrecoverable. Hence, the imperative to investigate the implications of a

lack of beam-weighting, the naïve construction of the I visibility, arises.

Together, redundant sampling and the delay spectrum approach give a 21cm EoR ex-

periment incentive to add raw visibilities, subjecting it to potential leakage. An elliptical

primary beam givees a mechanism whereby polarized emission can corrupt an estimate of

the total power. To what degree does polarized emission corrupt an estimate of the 21cm

EoR signal?
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4.5 The Power Spectrum of a Single, Polarized Source

We begin our investigation of the effects of polarized foregrounds on the 21cm EoR signal by

examining the power spectrum of a single source at zenith, whose signal has the structure of

a single Faraday screen. In doing so, we can develop an intuition for the rotation measures

that affect cosmologically interesting k modes of the power spectrum. By looking at what is

effectively the impulse response of a Faraday screen on the power spectrum, it will be easier

later to interpret a more complicated model.
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Figure 4.7: (Left Panel) Simulated visibilities with Faraday rotation, whose spectra can be

written as exp{−2iΦλ2}. The four visibilities show four rotation measures: black, Φ = 3 m−2;

cyan, Φ = 10 m2; magenta, Φ = 30 m−2; and blue, Φ = 100 m−2. (Right Panel) Amplitudes of

the corresponding, delay-transformed visibilities.

The left-hand panel of Figure 4.7 shows the real component of visibilities containing a

few linearly polarized sources behind Faraday screens, S(ν) = exp{−2iΦλ2}, where Φ is

the rotation measure of the screen. Each spectrum is normalized to contain one arbitrary
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4.5 The Power Spectrum of a Single, Polarized Source

unit of flux, and is located at zenith (delay of zero). Note that at the highest Φ shown,

the spectrum is not critically sampled at the lowest frequencies. This is due to the uneven

sampling of λ2 across the band: as ∆λ2 ≈ dλ2/dν ∆ν ∝ ∆ν/ν3 increases, the sensitivity to

large rotation measures decreases. A more thorough discussion of this effect can be found

in Chapter 7.
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Figure 4.8: k2P (k)/2π2 for the four visibilities in Figure 4.7. The k with maximum contam-

ination for each rotation measure (Equation 4.17) is shown with a gray, horizontal line.

The right-hand panel of Figure 4.7 shows the Fourier Transform over frequency of the

spectra in the left-hand panel. While this does not exactly represent the delay spectrum of a

visibility — there is no beam-weighting, and no exp{−2πi~b · ŝ} component, which essentially

defines the delay spectrum — we interpret it as the delay structure introduced by a polarized

source behind a Faraday screen. The results of these transforms over a subband representing

a cosmological measurement are shown in Figure 4.8. The most important feature of this

plot is this: there is a single k-mode associated with each rotation measure at each redshift.
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4.5 The Power Spectrum of a Single, Polarized Source

We can construct an analytic estimate of this in the following manner.19

First, we approximate the cosmological k-mode sampled as τ ≈ k|| dr||/dν. Next, we

recall the cosmological scaling from frequency into hMpc−1,

dr||
dν

=
dr||
dz

dz

dν
= −c(1 + z)

H(z)ν
, (4.14)

where H(z) is the Hubble parameter at redshift z.

Finally, we find the k||,Φ pair which maximizes the product of a delay mode and a

rotation measure mode,

∫
e−2πi(ντ−Φλ2/π) dν ≡

∫
e−i(ϕk−ϕΦ) dν. (4.15)

This occurs when 0 = ϕk − ϕΦ. Differentiating with respect to λ2, since by one convention,

this defines the rotation measure, and applying the chain rule several times, we arrive at the

conclusion

0 =
∂ϕk

∂λ2
− ∂ϕΦ

∂λ2
=
∂ϕk

∂r||

∂r||
∂z

∂z

∂ν

∂ν

∂λ2
− 2Φ

= k||

(
−c(1 + z)

H(z)ν

)(
−1

2

c

λ3

)
− 2Φ, (4.16)

which yeilds the value of k|| that Φ modes most approximate:

k|| =
4

c

H(z)

(1 + z)
Φλ2. (4.17)

This factor differs from Moore et al. (55), which was derived by simply setting 2πτν = 2Φλ2

by a factor of two, and by the expression derived in Appendix C of Pen et al. (67) by a factor

of c−2, which has a simple error in the derivation of dr||/dν which propagated through their

calculations.

19There is an error in the published version of this paper (55) which omits a factor of two. We present

the correct calculation here. Another peer-reviewed, published paper (67) also incorrectly calculates this

scaling. Thanks to Gianni Bernardi for pointing this out and working through this with me.
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Figure 4.9: The rotation measure which infects k ≈ 0.25 hMpc−1 is shown in black, with

the rotation measures maximally infecting 0.2 hMpc−1 ≤ k ≤ 0.3 hMpc−1 are shown in grey.

This is plotted as a function of frequency and redshift to highlight the fact that lower rotation

measures affect the same k at lower frequencies or redshifts.

74



4.5 The Power Spectrum of a Single, Polarized Source

Figure 4.9 shows the most-infecting rotation measure for wave-numbers 0.2 hMpc−1 ≤
k|| ≤ 0.3 hMpc−1, which abut the horizon for many of PAPER’s short baselines. These are

the k-modes which both minimize thermal noise and avoid foreground signals, so for that

reason, they are critical to the initial detection of a 21cm EoR power spectrum.
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Chapter 5

Simulations

To better grasp the effects ofQ → I leakage into the 21cm signal, we generate several random

realizations of the sky, each consisting of many polarized point sources. Each source passes

through a Faraday screen with some rotation measure, chosen from a distribution based

on current measurements. Next, we simulate that source for a single baseline. Finally,

we calculate the power spectrum measured by that visibility. Only one visibility needs

to be simulated, because the delay-spectrum approach makes use of the fact that each

baseline measures the 21cm EoR with a range of k-modes determened by the baseline length,

orientation, and bandwidth.

Rather than creating an exact simulation of the physical sky, we create a simulation

whose statistical properties are physically motivated. This choice reflects a desire for simple,

easliy tunable parameters for the simulation. In that same spirit, we model all sources simply

as point sources with a Poisson angular distribution. The simulation’s primary concern with

the spectral information of polarized foregrounds allows us to justify neglecting the angular

terms. This is equivalent to assuming for all the relevant k-modes, k|| ≫ k⊥. Emphasis

on the k||, or line-of-sight, spectral modes also motivates our decision to model the sky as

nuemerous point sources. For a more detailed discussion of diffuse polarized emission, we
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5.1 Parameterizing the Polarized Sky

Survey Name Frequency Survey Area Full Stokes? Citation

VLSS 74 MHz δ > −30◦ No Cohen et al. (12)

6C 151 MHz 0.82 sr No Hales et al. (26)

NVSS 1.4 GHz δ > −30◦ Yes Condon et al. (14)

Table 5.1: Summary of three, low-frequency surveys.

direct the reader to Jelić et al. (41).

5.1 Parameterizing the Polarized Sky

Source Positions

Source positions are distributed uniformly over the sphere. A single source’s altitude θ is

drawn from a distribution in which cos θ is uniform on [0, 1]. A source’s azimuthal angle

φ is drawn independently from cos θ, uniform on [0, 2π). This choice of source position

distributions conserves number of sources per unit area across the sky, and is equivalent to

drawing both direction cosines, (l,m) = (sin θ cosφ, sin θ sinφ), from a uniform distribution

on [−1, 1].

Flux Counts

In order to achieve realistic source fluxes and source counts, we base the distributions from

which we draw various parameters on previous radio surveys. For the source fluxes, we aim

to agree with the VLA Large Sky Survey (12, henceforth, called VLSS) and the Sixth Cam-

bridge Survey (26, henceforth, called 6C) surveys, summarized alongside a full polarization

survey in Table 5.1. We can take 6C source counts at face value, since it was measured in

the PAPER band at 151 MHz. However, we must extrapolate the VLSS source counts from
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5.1 Parameterizing the Polarized Sky

the observed 74 MHz into the paper band. We perform this extrapolation, following Cohen

et al. (13), by applying a spectral index of -0.79 to the amplitude of the source counts.

Above some limiting flux Smin, the differential number counts in (dN/dS) found in the

6C survey may be characterized by a double power law, turning over at some knee flux S0:

dN

dS
=

{
4000 S−0.76

0 S−1.75 Jy−1sr−1 Smin ≤ S < S0

4000 S−2.81 Jy−1sr−1 S0 ≤ S
. (5.1)

Following the 6C results, we choose the turning point S0 to be 0.88 Jy. The number of

sources simulated (20,531) is chosen by the size of the PAPER beam at 151 MHz (0.76 sr)

and a flux range over which to integrate. In general, this operation can be expressed by the

integral

N = Ω

∫ Smax

Smin

dN

dS
dS, (5.2)

where Smin and Smax are the limiting fluxes of the survey, and Ω is the survey’s field of

view. We choose to include sources in between 100 mJy and 10 Jy. This choice provides a

reasonable dynamic range of sources. Below the lower limit, the 6C sources are unreliable

due to signal-to-noise issues and confusion20, and above 10 Jy, we expect that sources may

be easily identified and removed.

By setting our lower cutoff too high, are we omitting much of the power contained in our

measurement? If we were to blindly extrapolate the 6C source counts below the lower limit

of the catalog, we would add a negligible amount of power. Integrating S2 dN/dS down to

some minimum flux estimates the contribution of the sources above that flux to the total

variance of the flux. Performing this operation to the 6C source counts, we find that we are

including ∼ 70% of the total variance. Extending the minimum flux would indeed add more

power to the simulation, but it would not drastically alter these results.

20Below a certain flux, I expect to find more than one source per resolution element — this uncertainty

in the number of sources per pointing adds to the variance of my measurement.
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The VLSS source counts follow a single power law, given by

dN

dS
= 4865 S−2.3 Jy−1sr−1, (5.3)

where the spectral index of -0.79 has been applied. For these, we choose minimum and

maximum fluxes of 0.8 Jy and 100 Jy, respectively, rejecting sources well below the lower

limit of the catalogue, and providing a reasonable dynamic range for the included sources.

Integrating over the PAPER beam provides 11,262 sources.

Qualitatively, the source counts for these two surveys differ in two ways. The 6C survey

yields more, dimmer sources, where the VLSS survey yields fewer, brighter sources. By

examining the difference in polarized power from these two source counts, we may answer

the question “Is Q → I leakage due mostly to a few, bright sources, or is it due to a forest

of unresolved, dim sources?”

It is worth noting the robustness of these two source counts with respect to independent

measurements — both agree with the results of a recent survey from the Murchison Widefield

Array (88), an instrument similar in many regards to PAPER.

Spectral Indices

All sources are assigned a spectral index, which is drawn from a normal distribution with

mean -0.8, and standard deviation 0.1. This roughly agrees with the findings of Helmboldt

et al. (34).

Polarized Fractions

Instead of drawing polarized sources from a measured polarized flux distribution, we simply

down-weight the total intensity by some polarized fraction (Π), chosen to reflect the studies

of Tucci and Toffolatti (85). We sample the Π from a log-normal distribution whose mean

is 2.01% and whose standard deviation is log(3.845%). Because the log-normal distribution
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has no upper bound, and it is unreasonable to find sources with a high polarized fraction21,

we truncate the distribution at 30%. As we will investigate in Section 6.3, this upper limit is

considerably higher than what has been measured at 150 MHz. Following the aforementioned

study, we do not impose any correlation between source flux and polarization fraction.

It has been noted that, among other effects, bandwidth depolarization causes the polar-

ized fraction to decrease at lower frequencies (47). This, alongside the GMRT measurements

(67), indicates that these distributions, taken at 1.4 GHz, may overestimate the distribution

at 150 MHz. We neglect this instinct that we are overestimating the polarized flux, taking

the 1.4 GHz measurements at face value, since the mean polarization fraction can be thought

of as a scale factor to the overall power spectrum.

Polarization Angles

The polarization angle of each source is chosen to be uniformly sampled on [0, π), which

assumes no correlation in the polarization angles of individual extragalactic sources. Section

5.3 will investigate the validity of this claim.

Rotation Measures

We draw our distribution of rotation measures on the map presented in Oppermann et al.

(60). To mimic the effects of depolarization due to a finite spacial resolution (47), we

apply a low-pass filter to the rotation measure map. Projecting the map into a spherical

harmonic basis, we keep only those modes below the resolution of our simulated instrument.

In the case of this simulation, we choose to keep only ℓ ≤ 100 = 2π|~b/λ|. This averages

the polarization vectors in much the same way as a synthesized beam, and its effect is

to essentially remove outliers in the rotation measure distribution, to which instruments

like PAPER may not be sensitive. We then randomly draw rotation measures from the

empirical cumulative distribution function of rotation measures, computed from the filtered,

21In fact, it is impossible to measure Π > 1!
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Oppermann et al. (60) maps. Aside from low-pass filtering, no spatial information from the

data is used. Section 5.3 briefly discusses the negligible consequences of spatially correlating

rotation measures.

Histograms of the empirical distributions of rotation measure, polarized fraction, and

source counts may be found in Figure 5.1. Over-plotted on all are the distributions from

which they are drawn. Figure 5.2 shows the empirical distribution of polarized flux, using

the NVSS and 6C surveys — these distributions should be convolutions of the power law

source counts and the log-normal polarized fraction. These distributions qualitatively agree

with the total power source counts: the 6C survey produces dimmer sources, while NVSS

produces fewer.

We calculate visibilities for a single 30m, east-west baseline, corresponding to the most

common spacing in the maximum-redundancy PAPER array (62, 65). The choice of baseline

orientation is arbitrary, and since we are only modelling point sources, the choice of baseline

length will only set the horizon limit of the power spectrum. Since the delay affected

by a rotation measure is independent of a choice of baseline (Equation 4.17), choosing a

relatively short baseline length will isolate smooth-spectrum foregrounds at lower τ and

highlight Faraday leakage.

The full measurement equation for the visibility with linear polarization p (Vp) used in

this simulation is

Vp =

Nsrc∑

j=1

Ap(lj ,mj , ν)S
150
j

(
150 MHz

ν

)αj

e−2πiν(ulj+vmj )
(
1±Πje

−2i(Φjλ
2+χj)

)
, (5.4)

where each source j is assigned a flux (Sj), a polarized fraction (Πj), a spectral index (αj),

a position (lj ,mj), rotation measure (Φj), polarization angle (χj), and is weighted by the

model primary beam in that linear polarization (Ap). To include both I and Q emission,

xx visibilities receive the +, while yy visibilities recieve the −. They are then summed and

differenced to yield VI and VQ. A sample Q visibility is shown in Figure 5.3.
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Figure 5.1: Distributions of simulated parameters. (Top Left) Euclidean normalized source

counts for the sources produced in simulations A (blue) and B (black). Over plotted in cyan

and gray, respectively, are the analytical distributions from which they are drawn. (Top Right)

Distribution of polarized fractions used, with the log-normal distribution over-plotted in gray.

(Bottom) Empirical distribution of rotation measures, generated from a spatially low-pass-

filtered map (60).
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Figure 5.2: Euclidean-normalized, differential source counts for polarized flux in simulations

A (blue) and B (black).
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Figure 5.3: The real part of a sample Q visibility, given by Equation 5.4, and generated

using the parameters shown in Figure 5.1.
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5.2 Results

Label Source Counts Nsrc Rotation Measure Distribution

A 6C 20,531 Oppermann

B NVSS 11,262 Oppermann

C 6C 20,531 2×Oppermann

Table 5.2: Three simulation treatments used in this section.

We choose not to include the parallactic rotation of Q and U (see Section 2.2), implying

that the Q we label for this simulation is fixed to topocentric, azimuth and altitude coordi-

nates. This choice clarifies equations and allows for an ease of understanding which would

be obfuscated by writing equatorially defined Q and U .

Finally, we take advantage of our built-in tunable parameters and present three treat-

ments of the simulation, summarized in Table 5.2. Simulation A serves as a baseline mea-

surement, with reliable 6C source counts and the conservative, low-pass filtered Oppermann

rotation measure distribution. Simulation B uses NVSS source counts, asking is Q → I

leakage is dominated by a few, bright sources, rather than the forest of dim sources in 6C.

Simulation C uses the 6C source counts, but doubles the Oppermann rotation measures,

asking how large rotation measures affect Q → I leakage.

5.2 Results

Figure 5.4 the power spectra of several renderings of simulations A, B, and C. We interpret

the power spectrum of VI outside the horizon as the amount of polarized leakage corrupting

the EoR signal (Q→ I leakage), and the power spectrum of VQ is our best representation of

the polarized signal. These plots show the median power in each k bin for 100 realizations

of the simulation, with error bars showing the 1-σ extend of the bandpowers for these

realizations. These power spectra confirm the prediction made in Section 4.5 that λ2 phase

wrapping extends the foreground cutoff (62, 69, e.g.) to higher delay bins, corrupting some
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Figure 5.4: Power spectra for the three treatments of the simulation discussed in Section

5.1. From top to bottom, the rows are treatments A, B, and C. The left column shows the I

power spectrum, highlighting Q → I leakage. The right column shows the Q power spectrum.

Three redshift bins are shown in all plots: z = 11.13 (cyan), z = 9.77 (black), and z = 7.05

(blue). Error bars show 95% confidence intervals of several iterations of the simulation. For a

point of reference in the left column, a fiducial EoR model (48) is plotted in grey.
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of the most sensitive regions of k space for 21cm EoR analysis. They also demonstrate the

prediction that high-redshift bins will be most affected.
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Figure 5.5: A (cyan), B (blue), C (black)

The severity of the leakage can be inferred from the power in the most EoR-sensitive

k-bins which lie outside the horizon for small baselines (0.2 hMpc−1 ≤ k ≤ 0.3 hMpc−1).

Figure 5.5 shows ∆2(k) in these bins as a function of redshift. The leaked power ranges

in the hundreds of mK2 to thousands, increasing from high frequency/low redshift to low

frequency/high redshift. These simulations are about an order of magnitude above the level

of the expected 21cm signal (48). If we may take this simulation as an accurate prediction of

the low-frequency sky’s polarized emission, these results imply that naïvely adding Vxx and

Vyy, formed with an approximately 10% asymmetric primary beam, incorporates enough

bias from polarized leakage to completely obscure the 21cm signal. The levels of leakage in

our simulations demand a strategy to model and remove point sources.

We note that simply forming VI will also remove a negligible component of the EoR

signal via the same mechanism. In a sense, the Q → I leakage can be thought of as a
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5.3 Consistency Tests

rotation of power between the two Stokes parameters. Hence, for precision measurements

of the EoR signal, this simple estimate may not be ideal. However, the effects of the I → Q

leakage is small (compare the levels of VQ and high k-modes of VI) and should not provide

a significant hiderance to detection.

Were a power spectrum computed from only one linearly polarized visibiltity (xx, for

instance), all polarized power would corrupt the measurement. We have chosen to suppress

the polarized leakage by adding the linearly-polarized visibilities xx and yy. The leakage is

dependent on the difference of the two beams (see discussion in Section 4.3), and by having

beams that are at most 10% different suppresses the signal by around two to three orders

of magnitude. Correcting for the beam-weighting in the image domain can further suppress

the leakage, but errors in the beam model will introduce leakage in much the same manner.

Hence, the constraint of having to suppress polarized leakage by four orders of magnitude

causes the need for an accurate primary beam model to around the 1% level in the case of

imaging, or symmetric at the 1% level if visibilities are used directly.

We conlude this discussion by noting the large variance in simulted power. The results

shown are the mean bandpowers in ∆2(k) for several realizations of the simulation. Taking

so many realizations into account essentially maps out the posterior distribution of the ∆2(k)

bandpowers. The 2σ width covers nearly two orders of magnitude, which indicates that the

level of Q→ I leakage is highly sensitive to the exact parameters drawn in any realization.

The actual level of leakage measured will thus be highly dependent on a choice of field, and

on the actual distributions of polarized fluxes and rotation measures.

5.3 Consistency Tests

Now that we have presented the power spectra, we must check two things: first, that the

two-dimensional Cℓ power spectrum generated by the simulations agrees with current mea-

surements (6), and second, that the assumption that uncorrelated polarization angles is

valid.
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5.3.1 Two-Dimensional Power Spectrum and Diffuse Emission
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Figure 5.6: Black points show the Cℓ power spectrum from Bernardi et al. (6). The blue

line shows the mean Cℓ of several simulations. The shaded, cyan region shows 2σ limits of the

distributions for each bin in ℓ. This shows the consistency between our simulations and recent

measurements. Treatment A is used for these simulations.

Figure 5.6 shows the distribution of two-dimensional power spectrum over several simu-

lations, plotted alongside the Cℓ measurements from Bernardi et al. (6). We see qualitatively

that our simulation well obeys the upper limits imposed by the Bernardi measurement. This

agreement helps validate our results.

The estimates of power in Section 5.2 are dependent on the relative strengths of diffuse,

polarized emission and polarized point sources. We have taken care to agree with mea-

surements of all polarized emission, but those measurements are uncertain above ℓ ∼ 300.

We interpret them as an upper limit. In the limiting case where diffuse emission is the only

component to the polarized sky, this leakage could be suppressed by measuring with a longer

baseline, which in turn measures a lower ℓ or k⊥. We have chosen a 30m baseline, which
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5.3 Consistency Tests

corresponds to ℓ ≈ 200. This choice of baseline length is relatively short for interferometers

at these wavelengths, but falls at the high end of the Bernardi et al. (6) measurements.

Including additional diffuse emission in the simulation would certainly increase the total

power in the simulation for low ℓ, but the frequency structure would remain qualitatively the

same as point sources. As we will show in the following section, the correlation of rotation

measures and polarization angles that could be introduced by an extended structure will

not significantly affect the power spectrum. For this reason, we can consider the polarized

sky as having two components with nearly identical footprints in the line-of-sight direction:

diffuse and point-like. Both components will exhibit similar frequency structure, so choice

of baseline length will set the relative weightings of these components. Bernardi et al. (6)

briefly discuss some of the implications of their measurement of extended structure to the

three-dimensional power spectrum in their conclusion, which agrees with our analysis of

point-like structure. We will discuss the qualitative differences between diffuse and point-

like emission in Section 6.3.3.

5.3.2 Correlating Polarization Vectors

The analysis of Section 5.2 neglects known spatial correlations of the rotation measure

distribution (45). Furthermore, the random drawing of polarization angles could have a

cancelling effect on the visibilities. This neglect could potentially suppress our estimation

of polarized leakage into the power spectrum.

To investigate these possible effects, we choose rotation measures from the Oppermann

map (60), with a pointing center at the Galactic south pole — a reasonable field for EoR

analysis. We then set all polarization angles to zero, maximally correlating polarization vec-

tors, while still including information of the polarized sky. All other simulation parameters

are identical to treatment A of Table 5.2.

Figure 5.7 compares the results of this treatment with simulation A from Table 5.2. The

power spectrum of this treatment agreees with simulation A at all redshifts and values of k,
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Figure 5.7: A comparison of power spectrum measurements for a treatment of the simu-

lation with correlated polarization angles (black), and those from treatment A (gray). As in

Figure 5.4, the left panel shows the I power spectrum, and the right panel shows the Q power

spectrum. Three redshift bins are shown, each denoted with a different line style: 9.73 (solid),

8.33 (dashed), and 7.25 (dot-dashed). The results of simulation A with this simulation show

that correlating polarization vectors does not affect the power spectrum.
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for both polarizations. This agreement indicates that the spatial correlation of polarization

vectors do not significantly affect the power spectrum. Thus, the assumption in Section 5.1

are spatially uncorrelated does not affect the results of these simulations.

5.4 Mitigating Leakage

Section 5.2 predicts an excess polarized signal due only to point sources of around 104 mK2

at k ∼ 0.15 hMpc−1 for most treatments of the simulation. While the exact levels of

these predictions may be subject to some error, the need certainly arises for some removal

scheme. This removal must suppress power from polarized foregrounds by around four orders

of magnitude in the power spectrum.
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Figure 5.8

To investigate the effects of modelling and removing polarized sources, we rerun the

simulation, excluding the brightest polarized sources. Figure 5.8 shows the median value of

several simulations of the k-bin nearest 0.25 hMpc−1, having removed the brightest 1000,
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5.4 Mitigating Leakage

2000, 5000, and 10,000 sources. These limits in numbers of sources correspond to unpolarized

flux-limits of 1300, 900, 460, and 240 mJy, respectively. Polarized flux limits are roughly

2% of these. We remove these sources from treatment A of the simulation, which includes

around 21,000 sources. Despite having removed nearly one-third of the sources, the leaked

power still exceeds 10 mK2, the expected level of the 21cm EoR power spectrum.

To remove enough flux to consistently fall below the expected EoR signal, we need to

remove a large majority of polarized point sources. We recomputed the simulations with a

lower minimum flux (60 mJy), expecting a similar result, but found that we increased the

power in this k-bin by only one or two mK2. For total power to fall below 10 mK2, more

sources required removal. We exclude further investigation of this analysis for three reasons.

First, current measurements do not constrain dN/dS to the levels necessary to accurately

model such low-flux sources. Second, including lower-flux sources does not significantly

affect the result that the result that the expected polarized power spectrum will be of the

order of 104-106 mK2. Third, the variance in power from one simulation to the next was

large enough that the two treatments of the simulation — even with 10,000 sources removed

— could not be considered significantly different.

The onerous levels of source-removal suggest that a different mitigation scheme be consid-

ered. Future instruments may take polarization into consideration in their design. Leakage

can be mitigated with more circular beams, and circular feeds avoid the Q → I leakage

entirely. Even with existing data, rotation measure synthesis (11) could potentially provide

the ability to separate sources with distinct rotation measure structure to be separated from

the EoR signal.
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Chapter 6

Power Spectra

To directly measure the level of polarized power described and simulated in the previous two

sections, we turn to data taken during the EoR2011 observing campaign defined in Table

3.1. While the primary objective of this campaign was to measure the mostly unpolarized

signature of neutral Hydrogen in the early universe (39, 65), it could not reach the sensitivity

levels required to characterize or even detect the power spectrum. Hence, it is a useful study

for characterizing foregrounds. All four polarization products were correlated specifically to

characterize the level of polarized power which could corrupt 21cm EoR power spectrum

measurements.

As as brief reminder of Section 3.2 and Table 3.1, this data was taken during Winter of

2011 and Spring of 2012, spanning eighty-two nights of observations. PAPER’s configuration

for this season was in an 8×4 grid. Since the antennae are arranged in a redundant grid, we

can label the subsets of redundant baselines by their grid spacings. For instance, a baseline

composed of two adjacent antennae in the same row can be written (0, 1). Similarly, a

baseline composed of two adjacent antennae in the same column can be written as (1, 0). For

the results presented here, and in the two sister papers to this work, (39, 65), only baseline

types (0, 1), (1, 1), and (−1, 1) are considered. The row-spacings in this configuration were
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Figure 6.1: (Top Panel) Antenna positions, referenced to the top, left antenna. (Bottom

Panel) uv-coverage for the entire array in black. The uv-coverage of the subset of antennae used

for this analysis is shown in cyan. To give a sense of scale between the u- and v-axes, concentric

circles with radii of 2λ, 5λ, 10λ, 20λ, 50λ, and 100λ are shown. Since the power spectrum is

computed for each integration, there is no Earth-rotation synthesis.
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30m, chosen to reduce the extent of the foreground wedge without incurring the any antenna-

to-antenna cross talk. The column spacings were 4m, maximizing the redundancy between

baselines (0, 1) and (1, 1) or (−1, 1). Figure 6.1 shows a map of the antenna spacing, as well

as the uv-coverage of the array. The four-degree offset of the columns from true north is due

to the projection of the tangent plane to the Earth at the array location to UTM plane 34.

Data was taken continuously from 6pm SAST until 6am SAST each night during this

campaign. To remove effects of the sun, we only consider data when the sun is below -5◦

in altitude. We restrict the number of nights due to some systematic errors which corrupt

the data after April 1, 2012 — Julian Date 2456018. A catastrophic event occurred on this

date,22 and most of the data taken after it was unusable. 82 nights of data survived quality

checks and are used for this analysis.

We focus our efforts on the range in LST from 1h00m until 8h00m, which maximizes the

total integration time available, but minimizes the effects of systematics. Since PAPER is

a drift-scan array, this sets both the pointing and the field of view. Figure 6.2 shows a map

of effective integration time per pointing, defined as

teff (α, δ) =
∑

i

tintA(α, δ, ti) (6.1)

where the sum extends over the each integration in the season. This metric is defined to

give the total integration time when integrated over position on the sphere. The total field

of view surveyed is 2.39 sr.

Finally, we restrict the final analysis to two bands, though the full range of frequencies is

used throughout much of the analysis. We label the lower one Band I, and the upper, Band

II. Band II corresponds with that used for the results in Parsons et al. (65), and Band I is

chosen to correspond to the lowest band in Jacobs et al. (39). Many of the observational

parameters defining these two bands are presented in Table 6.1.

22Because I observed this data remotely, I can only guess, but my money is on a lightning strike.
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Figure 6.2: Effective integration time per pointing (Equation 6.1), as a function of position

on the sphere.

Band ν0 [MHz] ∆ν [MHz] z Aeff [m2] Tsys [K] A−/A+

I 126 7.9 10.3 4.47 836 3.3 × 10−3

II 164 9.4 7.66 5.80 505 2.2 × 10−2

Table 6.1: Observational parameters for the two sets of power spectra presented. Given are

the central frequency ν0, the effective bandwidth ∆ν, the central redshift of observation z, the

effective area of the antennae Aeff , and the ratio which paramterizes Q → I leakage, A−/A+

(Section 4.3).
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6.1 Data Processing

This Chapter outlines the processing and analysis of the polarization properties of this

data. Section 6.1 describes the analysis and quality checks this data underwent; Section 6.2

presents the power spectra of these data, and finally, Section 6.3 gives the physical properties

of polarized point sources that these data imply.

6.1 Data Processing

6.1.1 RFI Excision

We begin with an excision of RFI from the raw data, a three step process. First, we flag

known frequency channels containing nearly constant RFI — for example, the 137 MHz

bin contains the continuous signal from a constellation of communications satellites. Next,

we difference the data in time and frequency, flagging the data which produces 6σ outliers.

Finally, we remove a fiducial foreground model, the process of finding this model is described

in Section 6.1.5, and flag 4σ outliers of the residuals. The flags generated from this process

were used in the production of Figure 3.1. A single set of flags is generated for all times and

frequencies for the entire array for each night of data taking.

6.1.2 Compression

The volume of raw data generated in the EoR2011 season exceeds 10 TB, which is unwieldy

for the level of computation required. While the relatively short integration times of 10s and

relatively narrow channel widths of 50 kHz are useful for reducing the attrition of data due to

RFI excision, these rates highly oversample both the frequency structure of foregrounds and

EoR signal and the temporal structure of anything tied to the sky. To remedy the abundance

of oversampled — and thus redundant — data, we employ a compression technique, first

described in Parsons et al. (65), which critically samples the data in both time and frequency.

This compression algorithm hinges on two results from Section 2.3:
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1. The delay of a smooth-spectrum point source is restricted to the range τ ≤ |b|/c, where

|b| is the baseline length.

2. Similarly, the fringe-rate of a source is restricted to the range −(νbE/c)ω⊕ cos δ0 ≤
f ≤ (νbE/c)ω⊕, where bE is the east-west component of the baseline, ω⊕ is the angular

speed of the Earth’s rotation, and δ0 is the latitude of the array.

These two properties of drift-scan interferometers allow us to set limits on the fringe rate

and delay at which celestial emission can enter the signal — this in turn allows us to set

minimum integration times and channel widths which preserve that emission.

To set this minimum sampling rate in time, we inspect the maximum fringe rate,

(νbE/c)ω⊕. We define the delay rate as the frequency-integrated fringe rate — this al-

lows us to simultaneously compute this alongside the delay. Hence, the maximum delay

rate allowed by celestial emission is (bE/c)ω⊕. The maximum delay rate across the entire

PAPER array occurs in the 210m east-west baselines (between the leftmost and rightmost

columns in Figure 6.1): 9.6 mHz. The Nyquist-Shannon sampling theorem dictates that an

sampling time of 33s can completely describe this structure.

Though the maximum delay can be set as low as the horizon, we intend to preserve

supra-horizon modes containing high-k|| EoR modes. However, we achieve maximum sen-

sitivity to these modes on the shortest baselines, and use the longest only for foreground

characterization. Hence, we set the limit in delay to the horizon limit of the longest baseline

in the array. This requires a sampling rate in frequency of 713 kHz. Setting the maximum

delay allows supra-horizon modes to enter into the visibilities of short-baselines, including

cosmological modes up to 0.38 hMpc−1.

Figure 6.3 shows the extent of the skypass filters — defined as one on the intervals that

contain emission (shown in the preceding discussion) and zero elsewhere. The skypass filters

are shown atop the delay/delay rate transform of a visibility, confirming the claims about

foreground signal’s extent in these directions made in the text.
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Figure 6.3: Delay / Delay rate transform of one days’ worth of raw PAPER visibilities from a

30m baseline. The relatively fine sampling in frequency and time result in large ranges of delay

and delay rate (respectively). A dashed, cyan box shows the skypass filter in delay, and the

magenta, in delay rate. The fluxscale, in log10(Jy), is shown on the right. The skypass filters

are designed to preserve all smooth-spectrum, celestial emission for the entire PAPER array,

with baselines ranging from 30m (shown) up to 300m. For this short baseline, sky emission

is contained within a relatively small range around 0 delay and 0 delay rate. Figure credit:

Parsons et al. (65)
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One serious hurdle to overcome in this compression process is the spectral and temporal

structure introduced by nonuniform RFI flagging. To accommodate the scattering of signal

into high delay/delay rate bins, we first deconvolve the data by the sampling function using

a variation on the CLEAN algorithm, discussed in Section 6.1.5. The difference between this

implementation of the algorithm and the foreground-removal strategy discussed in Section

6.1.5 is that we add the CLEAN components back into the residual spectra. This is the

most computationally costly step.

Once the CLEAN deconvolution has been performed, we simply decimate the data, re-

sampling the data at the rates described in the preceding paragraphs. While we could

sample each baseline type with its own integration time and channel width, we set the limits

based on the longest baselines — this both ensures a conservative application of this new

procedure and allows for ease of data analysis and storage.

We implement the compression algorithm each night on the data using a 35 node com-

puter cluster located on site. This allows us to perform all preprocessing steps up until

this point, including compression, in real time as the data is taken. This algorithm reduces

both the data rate and data volume by a nearly factor of twenty, reducing storage costs and

required computational power.

6.1.3 Crosstalk Removal

For our purposes, crosstalk may be defined as a additive offset to the visibilities, which is

stable on long timescales. To remove crosstalk, we simply subtract the nightly average of

each baseline from each integration of that baseline.

6.1.4 Calibration

Calibration is a two step process. First, we solve for the antenna-based gains and delays

which enforce redundancy among redundant baselines. This procedure is described in greater

detail in Section 8.1. We treat the xx and yy polarizations of the array separately in this
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analysis, linking the two calibrations with a cross-polarization delay and the assumption

that all calibration terms are antenna-dependent. Next, we solve for the remaining four

calibration terms — an overall flux scale for the x and y polarizations, and the delay of

fiducial baselines — by fitting visibilities to a model of Pictor A (38).

We compute the calibration parameters using a relatively small amount of data — for two

hours when Pictor A is overhead during a single day. We then apply these calibration terms

to the entire seasons’ data. Jacobs (36) and Parsons et al. (65) have shown that calibration

terms remain constant for long timescales, and we take advantage of the remarkable stability

of PAPER’s calibration23 to ease the computational burden of calibration. We could solve

for all calibration terms on smaller timescales but we have found that this only causes slight

improvements to the variance in our data. In practice, the errors caused by such a cavalier

calibration effort can be absorbed into the uncertainty of the data, causing a roughly 5%

increase in Tsys.

6.1.5 Foreground Removal

The final step before averaging multiple days is to remove a foreground model from the raw

visibilities. Rather than removing a number of previously-identified sources from the data

— this leaves us vulnerable to calibration errors as well as errors in the primary beam model

— we employ a non-parametric method to remove foregrounds modelled on each visibility

itself. Since most foreground sources are smooth spectrum and can be modelled as point

sources, we model them as delta functions in delay (See Section 2.3). Rather than fitting

for antenna gains and delays, a primary beam model, and the source flux at each frequency,

we only fit for a single parameter: the flux in a given delay mode of a visibility.

To fit these fluxes, we use a version of the CLEAN algorithm (35), reduced to one

dimension, and extended to allow complex flux values. We find the peak in the delay

23To me, that PAPER’s calibration terms are stable for these long timescales is one of the more magical

things about the instrument. I’ve even successfully applied calibration terms from one observing season to

another!
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spectrum of a single integration for one baseline, and subtract the kernel of the sampling

function, weighted by the flux of that peak, from the delay spectrum. We iterate this process

until the variance of the residual spectrum is 10−8 times that of the original spectrum. We

restrict the algorithm to peaks found within the horizon limits, described in Section 2.3,

which enforces that smooth-spectrum foreground sources be removed. This procedure both

removes foregrounds and deconvolves from the spectral sampling function created from the

flagging of RFI.

In the limit where all spectral bins contain data, this is simply a notch filter which nulls

inter-horizon delay modes.

6.1.6 Averaging Multiple Days

As a final excision of spurious signals (most likely due to RFI), for each day, we flag outlying

measurements in each bin of LST and frequency. We use measurements of Tsys outlined in

the Section 6.1.8 to estimate the variance in each bin, flagging 3σ outliers.

If the data followed a complex normal distribution, consistent with pure, thermal noise,

then we would expect this procedure to flag one measurement per frequency/LST bin, caus-

ing a slight miscalculation of statistics post flagging. Most notably, this causes an under-

estimate in the variance of the power spectrum. To counteract this effect, we calculate the

ratio of the variance of a normal distribution truncated at ±3σ to the variance of its parent

distribution (97.3%). Henceforth, we will increase all errors in the power spectrum by a

factor of 1.03 ≈ 1/97.3% to accommodate for this error.

We compute the mean of the RFI-removed data for each bin of LST and frequency,

creating a dataset comprised of a single, fiducial day. We continue analysis on this averaged

dataset.
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6.1 Data Processing

6.1.7 Final Processing

After visibilities are averaged in LST, a final round of crosstalk removal is performed. Again,

we simply subtract the daily average from the data. Much of the crosstalk lies beneath the

sensitivity level of only one day’s worth of data, and appears in the LST-averaged dataset.

Recomputing the mean with the increased sensitivity of an averaged dataset allows for a

more accurate removal.

In the penultimate processing step, we pass the data through a second low-pass filter in

time. Sections 2.3 and 6.1.2 describe the celestial limits of the fringe rate for drift-scan arrays

(f) as bEω⊕ cos δ0 ≤ f ≤ bEω⊕, where bE is the east-west component of the baseline, ω⊕ is

the angular velocity of the Earth’s rotation, and δ0 is the latitude of the array. We filter the

data in time using a boxcar filter, defined as one on 0 ≤ f ≤ bEω⊕ and zero elsewhere. While

this filter does null some celestial emission (roughly the area between the south celestial pole

and the horizon), its effect is small, since the primary beam heavily attenuates these areas

of the sky. We null these fringe rates as an additional step of cross-talk removal.

Finally, we rotate the linearly polarized visibilities into Stokes visibilities, defined in

Equation 2.36.

6.1.8 System Temperature

Alongside the calculation of statistics for binning in LST and frequency, we take advantage

of the nightly redundancy as a check on the data. Since PAPER is a tracking array, mea-

surements taken at the same LST on different nights should be totally redundant. This

redundancy allows us to measure the system temperature via fluctuations in signal in the

same LST bin from day to day.

First, we compute the variance in each frequency and LST bin over all nights of data

(σ2Jy(ν, t)), and convert this variance into a measurement of the system temperature Tsys.

This measurement is totally independent of the following power spectrum analysis, and can

be used to quantify the level of systematic and statistical uncertainty in the power spectra.
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6.2 Power Spectra

It compliments measurements of Tsys in Parsons et al. (65) and Jacobs et al. (39). The

variance computed in each LST/frequency bin is converted into a system temperature in

the usual fashion:

Tsys(ν, t) =
Aeff

kB

σJy√
2∆νtint

, (6.2)

where Aeff is the effective area of the antenna (see Figure 3.3), kB is the Boltzmann constant,

∆ν is the channel width, and tint is the integration time of the LST bin.

Figure 6.4 shows the measured system temperature for each frequency and LST bin

collected during the EoR2011 observing season. To further summarize our data’s variance,

we can average Tsys(ν, t) over the time- and frequency-axes. The frequency-averaged system

temperature is computed as

〈Tsys〉(t) ≡
∫
∆ν W (ν)Tsys(ν, t) dν∫

∆ν W (ν) dν
, (6.3)

where W (ν) is the spectral window function, and the integral is computed over the frequency

band ∆ν. For our analysis, we use a Blackman-Harris window function (32), chosen to

maximally suppress sidelobe levels. A similar expression may be written for the time-axis,

where our window function is simply the number of redundant samples in each frequency

channel.

Figure 6.5 shows the system temperature averaged over frequency and LST ranges used

to compute the power spectra. Tsys, averaged in both frequency and time for both bands

are reported in Table 6.1

6.2 Power Spectra

Now that the data are processed and averaged, we begin computing power spectra by a

two-step process. First, we remove off-diagonal covariances from the correlation matrix of

two baselines — this results in a power spectrum for each integration time of the fiducial,
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Figure 6.4: System temperature in Kelvin as a function of LST and frequency ν, calculated

by Equation 6.2. Black boxes enclose the range in LST and ν used to compute the power

spectra.
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Figure 6.5: (Top Panel) band-averaged system temperature (Equation 6.3) as a function

of LST for Bands I and II in black and blue, respectively. The shaded grey region indicates

the range in LST used to compute the power spectra. (Bottom Panel) Time-averaged system

temperature, averaged over LST 1h00m until 8h00m. The shaded grey and blue regions show

the spectral window functions for Bands I and II, respectively.
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averaged day and for each baseline pair. Next, we bootstrap multiple times and baseline

pairs to characterize the statistics of the distributions of power spectra.

6.2.1 Covariance Removal

Even after having undergone several layers of RFI excision and crosstalk removal, the data

still show large covariances between delay bins. These covariances dominate the averaged

power spectrum despite varying wildly between baseline pairs. We remove them via the

covariance removal strategy described in Appendix C of Parsons et al. (65).

This strategy essentially diagonalizes the average covariance matrix between all baseline

pairs. Since we expect all redundant measurements to see the same sky, and we expect all

k-bins of the power spectrum to be independent, then we expect sky signal to appear in the

diagonal elements of the covariance matrix between two delay-transformed visibilities. By

measuring the full covariance matrix of all baseline pairs, we can estimate the instrumental

systematics which would leak signal from one k-bin to another. By inverting the mean

covariance matrix of all baseline pairs and dotting this into a delay-transformed visibility,

we remove our best guess at the covariances in that visibility.

Once we estimate and remove covariances from the delay-transformed visibilities, we

may proceed with power spectrum estimation. We direct the reader to Parsons et al. (65)

for a more detailed discussion.

6.2.2 Results

The covariance removal described in the previous section projects the delay-transformed

visibilities into a basis in which the covariance between two redundant baselines is diagonal,

and then computes the power spectrum from the projected delay spectra. This procedure

produces an estimate to the power spectrum for each LST bin and baseline type. To mea-

sure the uncertainties in the time-dependent power spectra, we bootstrap over groups of

107



6.2 Power Spectra

−0.4 −0.2 0.0 0.2 0.4

k|| [hMpc−1 ]

1

2

3

4

5

6

7

8

L
S
T
[h
r]

−0.4 −0.2 0.0 0.2 0.4

k|| [hMpc−1 ]

1

2

3

4

5

6

7

8

−0.4−0.2 0.0 0.2 0.4

k|| [hMpc−1 ]

1

2

3

4

5

6

7

8

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

1e8

Figure 6.6: Power spectra, in units of mK2 (hMpc−1)3 shown for each k|| and LST measured.

k|| modes within the horizon for the 30m baselines used are masked. The left panel show I, the

middle panel, PP = PQ + PU , and the right panel shows PV . An excess of power in PP below

LST 4h30m could indicate polarized emission. The excess at k|| ≈ 0.35 hMpc−1 between LST

6h00m and 8h00m could be generated by a 170 mJy source with rotation measure between 42

and 59 m−2.

redundant baselines. Figure 6.6 shows the linearly polarized power spectra from unpolar-

ized emission (I), linearly polarized emission (P = Q+iU), and circularly polarized emission

(V ). as functions of LST, computed via this bootstrapping.

There are two features in PP worth noting. First is the excess of emission at 0 .

k|| . 0.2 hMpc−1, between right ascension 1h00m and 4h30m. That the excess survives

the LST averaging over 82 days indicates that it is fixed to the sky, and that it exceeds its

corresponding k-bins in PI indicates that it is polarized. Furthermore, it roughly corresponds

with the diffuse, polarized power shown in Bernardi et al. (8), which takes its minimum value

at around LST of 5h00m.

The second feature of Figure 6.6 that we will comment on is the track of excess power

from fight ascension 6h00m to 8h00m, at k|| ∼ 0.35 hMpc−1. This type of excess power could

be generated by a polarized point source. This stripe satisfies the two criteria put forth to

indicate the excess at lower right ascension could be polarized emission, and it appears to
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6.2 Power Spectra

be localized in k||, a feature of polarized point sources behind a single Faraday screen.

What properties of a polarized point source would be necessary to generate the excess

shown? To answer this question, we describe the source spectrum with three parameters: a

flux S, a geometrical delay τg, and a rotation measure Φ. The power spectrum of this point

sources P1(k), taken from Equation 2.54 becomes

P1(k) ≈
(
λ2

2kB

)2
X2Y

Ω
S2δ

(
k|| −

dk||
dη

τg − kleak(Φ)

)
, (6.4)

where dk/dη is the linear conversion from delay into k|| (1/Y of Equation 1.18), and kleak(Φ)

is the k|| mode most infected by rotation measure Φ (Equation 4.17). All other terms agree

with Equation 2.54.The bandwidth in the denominator of Equation 2.54 is removed to

properly normalize the delta function. Note the important result from Section 4.5 that a

rotation measure component to a spectrum adds to the normal position of a source in k||.

The potential source peaks in power at right ascension of 6h52m at a k|| value of

0.345 hMpc−1. Its power peaks at 4.62 × 108 mK2(h3Mpc−3). A point source whose right

ascension is between 6h00m and 8h00m, with an apparent flux of 173 mJy, whose rotation

measure is between 42 and 59 m−2 satisfies the requirements to generate this type of emis-

sion. To confirm the existence of such a source would require follow-up observations with an

imaging array, but the excess power at that location in the PP spectrum is well-described

by such a source.

Figure 6.7 shows the power spectra of the four Stokes parameters in Band I, and Figure

6.8 sohws that of Band II. Sensitivity limits using the Tsys computed in Section 6.1.8 and

the sensitivity calculations of Parsons et al. (62) and Pober et al. (68) are shown in dashed,

cyan lines. The noise level of these power spectra are computed by examining the spread

of bootstrapped power spectra, where we bootstrap over both redundant baselines and LST

samples. These noise levels are considerably higher than the predictions from the Tsys of

Section 6.1.8. The increase in Tsys is most likely due to calibration errors and systematics

not targeted by the covariance removal.
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Figure 6.7: Spherically averaged power spectra for the four Stokes parameters: I in the top

left panel. Q in the top right, U in the lower left, and V in the lower right. The data from

Band I are shown. Error basrs show the 98% confidence intervals derived from bootstrapping

over all samples in LST and all redundant baselines. Dashed, cyan lines show the theoretical

level of thermal fluctuations, with Tsys calculated in Section 6.1.8.
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Figure 6.8: Same as figure 6.7, for Band II.
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The level of leakage predicted from the arguments of Section 4.3 show that in the lowest

k|| bins, the I power spectrum cannot be dominated by Q → I leakage. The levels of

polarized leakage in PI , to an order of magnitude, are 103 mK2 in Band I, and 102 mK2 in

Band II. These levels are well below the systematics which dominate the lowest k|| bins of

the I power spectrum, and are also well below the levels of Q→ I leakage predicted by the

simulations in Section 5.2. We will investigate this further in Section 6.3.

6.2.3 Ionospheric Effects

Daily changes in the Faraday depth of the Earth’s ionosphere could potentially attenuate

polarized signal. As the total electron content (TEC) varies, it modulates the incoming

polarized signal by some Faraday depth that which is a function of both the local TEC of

that time, and the strength of the Earth’s magnetic field. Though we assume visibilities are

redundant in LST, they do have slight variations due to the variable TEC of the ionosphere.

Thus, averaging in LST could result in some attenuation of signal.

To quantify this, we first assume that the ionospheric TEC is constant over the PAPER

beam, and assume that from day to day, the Faraday depth of the ionosphere is a random

variable, based on the TEC measurements of Datta et al. (17). For now, we neglect the

day-to-day correlations, though we can check the effects of any correlation later.

We begin by writing the LST-averaged visibility as the Faraday depth-weighted sum of

otherwise redundant visibilities:

V ′ =
1

N

∑

i

e−2Φiλ2

V, (6.5)

where Φi is the ionospheric Faraday depth from day i and V is the redundant component of

the visibilities. Using this expression, we compute the magnitude of the rotated visibilities,

which is proportional to the power spectrum,

P ′ = |V ′|2 = 1

N2


∑

i,j

e−2i(Φi−Φj)λ2


 |V |2. (6.6)
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When i = j, the term in parentheses becomes one, and the i, j component of thes sum is

the conjugate of the j, i component. This allows us to rewrite the sum in terms of the i = j

component, and the j > i components, now written as cosines:

∑

i,j

e−2i(Φi−Φj)λ2

= N + 2
∑

i>j

cos
{
2(Φi − Φj)λ

2
}
. (6.7)

In the limit where all values of Φi are equal, the second term becomes N(N−1)/2, the num-

ber of i, j pairs with i > j. This produces the desired result that with no daily fluctuations

in ionospheric Faraday depth, there is no effect on the signal. In the limit of totally uncorre-

lated data (i.e. 〈ΦiΦj〉 ∝ δij), this term takes its minimum value, maximally attenuating the

measured power spectrum. Hence, considering uncorrelated Φi gives the worst-case scenario.

To estimate the level of ionospheric attenuation, we estimate the attenuation factor in

Equation 6.7. Using typical TEC values of 6× 1016 m2 and a typical value for the Earth’s

magnetic field at the PAPER site24, we calculate a rotation measure for each day, and

estimate the attenuation factor, and estimate the attenuation factor for eighty-two days, as

the data was averaged over that period of time.

This procedure yields a distribution of values for the attenuation factor which peaks

at 88%. Considering that we have neglected day-to-day correlations of the TEC, which

increases this factor, decreasing the level of attenuation, we assume that attenuation due to

the ionosphere is negligible and do not adjust our results for it.

6.3 Updated Polarization Fractions

6.3.1 Scaling the Simulations

Figure 6.9 compares the measured Q and I power spectra to those simulated in Chapter 5.

Since the measured values consistently disagree with the simulations, we can constrain the

24http://www.ngdc.noaa.gov/geomag/magfield.shtml
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Figure 6.9: Top row: measured and simulated power spectra for I (left) and Q (right).

Measured power spectra are in black, simulated values are in blue (median value), cyan (68%

confidence interval), and light cyan (95% confidence interval). Simulations are generated as in

Chapter 5, with a mean polarized fraction of 2.01%. Bottom row: Same as the top row, for

Band II.
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input parameters to the simulations, beginning with a simple scaling relation:

Pk = x2Sk, (6.8)

where Pk is the measured Q power spectrum in the kth bin, Sk is the simulated power

spectrum in that bin, and x2 is the scale factor between the two. We choose to use a scale

factor of x2 rather than x in order to facilitate the interpretation of x as an adjustment to

the mean polarized fraction of point sources, as we will soon discuss.

For the duration of this section, we will approximate the measured power spectrum P̂k

as normal, random variables,

P̂k ∼ N(Pk, σ
2
k), (6.9)

with mean Pk and variance σ2k, derived from the distribution of bootstrapped power spectra.

We find the scale factor x that best fits Equation 6.8, and then interpret its physical

meaning. The likelihood of drawing a simulated power spectrum S by a factor x2 given the

measured data D is

P (x, S|D) ∝ exp

{
−1

2

∑

k

|x2Sk − Pk|2
σ2k

}
, (6.10)

where the sum extends over all available values of k.

By marginalizing over S, we find the likelihood of x:

P (x|D) ∝
∫
P (x, S|D)P (S) dS. (6.11)

Here, P (S) is the joint probability of all k-bins of the simulation, i.e. P (S0, . . . , Sn) for k-bins

labelled 0 to n, and dS denotes the n values of S over which we integrate. We compute the

integral in Equation 6.11 by the Monte Carlo technique, sampling S from different instances

of the simulation. This encapsulates both the probability distribution functions of each Sk

and the covariances between k-bins in S. To insulate the result from potentially damaging

effects of the foreground removal (Section 6.1.5), we do not consider k-bins within the horizon

in this integral.
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To find the most likely value of x which would produce the measured power spectrum, we

turn to Bayes theorem, P (D|x) ∝ P (x)P (x|D), where P (D|x) is the posterior distribution

of D and P (x) is our prior on x. Since x2 is a scale factor, we choose to use Jeffrey’s prior

in x2, which sets P (x) ∝ 1/x.
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Figure 6.10: Posterior distributions for the data, given scale factor x. Blue shows that from

Band I; cyan, from Band II; and black shows the joint posterior from both bands. Moments of

these distributions are summarized in Table 6.2.

Measurements from the different bands can be summarized into a joint posterior by

simply computing the product of the posterior of each band. This assumes that each band

is independent, a reasonable assumption given the high level of noise in the measured power

spectra. Figure 6.10 shows the posterior distributions of D given x for Bands I and II,

alongside the joint posterior. The moments of the three distributions are summarized in

Table 6.2.
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Band x̄ σx Implied Mean Polarized Fraction

I 0.99 0.002 2.0× 10−3

II 0.247 0.002 5.0× 10−3

Both 0.108 0.001 2.2× 10−3

Table 6.2: Moments of P (D|x).

6.3.2 Why is x Related to the Polarized Fraction?

As mentioned in the previous section, we interpret the scale factor x as an adjustment to the

mean polarized fraction of point sources. The simulations parameterize each point source

with a polarized fraction p, an unpolarized flux f , and a rotation measure Φ. All sources are

given a spectrum pf exp{−2iΦλ2}, where λ2 is the squared wavelength. This is a simplified

account of Equation 5.4, but encapsulates the relevant quantities for this discussion. Since

the source counts are well measured at these frequencies (26), and rotation measures are

also well-measured (60) and independent of frequency, we regard the distributions of these

two quantities to be fixed. Hence, any constraints we place on these simulations can be

considered as updates to the distribution of polarized fraction.

The amplitude of the power spectrum in the simulations (Sk) can be expressed in terms

of the source fluxes fi, and the polarized fractions pi.,

Sk ∼
∑

i,j

pipjfifj ≡ p̄2
∑

i,j

πiπjfifj, (6.12)

where we have defined πi ≡ pi/p̄ as the ratio of a single polarization fraction pi to the mean,

p̄. Hence, the simulated power spectra are proportional to the mean polarized fraction

squared, p̄2, and we can interpret the scale factor x as the fractional change in the mean

polarized fraction.

Table 6.2 gives the implied mean polarized fraction of point sources for the two bands

and the joint posterior. In these simulations, we drew polarized fractions from a distribution
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with a mean of around 2%, and now we can set a limit about an order of magnitude lower.
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Figure 6.11: Same as Figure 6.9, but using a polarized fraction distribution scaled by

x = 0.108, the maximum likelihood value of x using both bands.

Figure 6.9 shows updated simulations using the implied polarization fraction of the joint

posterior from Figure 6.10: 2.2 × 10−3. The simulated Q → I leakage now lies between 10

and 100 mK2 in Band II, around the expected level of the 21cm EoR power spectrum at

redshift 7.

6.3.3 On the Applicability of the Simulations

We now turn our attention to a qualitative discussion of the diffuse emission found in

Bernardi et al. (8, B13) and Jelić et al. (40, J14), and how applicable the simulations

are to the polarized emission found in those measurements, which is largely characterized

as being diffuse and as having low rotation measures. We will argue that the simulations

may apply to both these two measurements, and also that the simulations are a valid point

of comparison to the measurements made in Section 6.2. This discussion builds on Chap-
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ter 5, and justifies the use of the simulation as a tool for understanding the power spectra

presented in Section 6.2.

Both B13 and J14 show diffuse, weakly polarized emission found at relatively low rotation

measure (|Φ| . 25 m−2. These measurements differ from the input sources of the simulations

in two ways: in the choice of rotation measures included, and in the spatial correlation of

power. We will discuss these in turn.

The simulations sample rotation measures from the entire Oppermann et al. (60) map,

rather than restricting to a particular field of view. Two effects may arise from such a

generality. First, the inclusion of large rotation measures could scatter power to larger

k in the simulations than in reality, and second, uncorrelated polarization vectors in the

simulation could have a depolarizing effect. This concern was addressed in Section 5.3 by

computing the simulation with all rotation measures drawn from a pointing at the galactic

south pole (coincidentally, the B13 field), with maximally correlated polarization vectors.

The result of this test was identical to the random drawing (Figure 5.7). The reproduction of

power spectra between the two simulations indicates that rotation measure is not a dominant

factor in determining the shape or the amplitude of the power spectrum of polarized emission.

The rotation measures in B13 and J14 are considerably lower than those sampled in the

simulations. Since there is overlap between our field and the B13 field, our measurements

include lower rotation measures than sampled in the simulation as well. A comparison with

our field and the Oppermann et al. (60) maps shows that this is due simply to our choice

of pointing. Again, the results of Section 5.3 show that this does not significantly affect the

power spectrum.

There is another more subtle difference between the Faraday depths of diffuse emission

and point sources. Since we expect diffuse emission mostly to be generated from within our

galaxy, we expect it to be emitting from within the magnetized, ionized plasma that rotates

its polarization vector. As discussed in Jelić et al. (41), this creates both a depolarizing

effect and structure in the rotation measure spectrum of the source.
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The simulations account for this by distributing sources on smaller scales than the reso-

lution element of the array.25 Since each source is assigned an independent rotation measure,

and many sources are placed within the inverse baseline length (θ ∼ 1/u), then the visibility

averages over many rotation measures and polarization angles per pointing. This has the

same effect as a polarized source emitting from within an ionized, magnetized plasma —

different lines of sight summed within the same resolution element of an array produce a

complex Faraday depth spectrum, and they also add incoherently.

Next, we address the spatial correlation of emission. The simulations assume an isotropic

placement of point sources. Projecting the fringe onto the simulated sky selects the modes

correlated on the baseline scale (in our case, 3◦), so the simulation represents any power

correlated on those 3◦ scales — that we model it as a series of point sources in many

ways is irrelevant, since it does not affect this fact. Figure 5.6 shows the agreement of

these simulations with existing angular power spectral measurements, which indicates that

the level of the power correlated on 3◦ scales in the simulations agrees with real, diffuse

emission.

Since the simulations produce angular power spectra that agree with measurements, and

address spectral differences between polarized point sources and diffuse emission, we take

the simulations as a good reference for all types of polarized emission. Hence, for the 15λ

baselines we simulate and measure, any adjustments to the simulation can be considered as

adjustments to our understanding of the polarized sky.

6.3.4 Comparison to Other Measurements

As mentioned before, most measurements of the polarized sky at meter wavelengths detect

large amounts of diffuse polarized emission, compared to the relatively few point sources.

Bernardi et al. (8, abbreviated in this section as B13), in a 2400 square degree, detect a

25I’m trying very hard not to use the word “synthesized beam” here. We are looking at the power spectrum

on a single baseline — there is no synthesis, so a “synthesized beam” doesn’t really make sense.
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6.3 Updated Polarization Fractions

single point source, PMN J0351-2744, whose polarized flux is 320 mJy. Since this was the

only source detected in this survey, they claimed that the polarized fraction of sources must

be bounded at 2%.

We ask if our measurements agree with the B13 detection and upper bound. First, we

compute the probability of detecting a source whose polarized fraction is greater than 2%

in the context of our measurements. We scale the log-normal distribution of polarization

fractions in Tucci and Toffolatti (85) by the maximum likelihood value of x from the joint

distribution of both bands (Table 6.2). Integrating this distribution above 2% yields the

probability of detecting a polarized point source above 2%. That probability is 5%. While

this implies that 2% cannot be counted as a strict upper limit, as B13 imply, it does roughly

agree with their sstatement that detecting sources this polarized is unlikely. Thus, we can

relax their strict upper limit to a 2σ upper bound in the polarization fraction.
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Figure 6.12: Number counts of polarized sources, from a simulation with mean polarized

fraction of 2.2×10−3, derived from the power spectra in Figures 6.7 and 6.8. This is a convolution

of the unpolarized source counts (26), and the polarized fraction distribution (85), scaled by

the maximum-likelihood value of x (Table 6.2).
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6.3 Updated Polarization Fractions

Second, we ask if our updated simulations can produce the occurrence of sources like

PMN J0351-2744. Figure 6.12 shows the simulated, integrate source counts from the updated

simulation. These source counts imply that one source with a polarized flux of 320 mJy

occurs roughly every 1700 square degrees. These number counts are in close agreement with

the detection of one source of this strength in 2400 square degrees.

This data does have the sensitivity to detect sources like PMN J0351-2744, but its

location amidst other polarized emission provides difficulty isolating it, as can be seen in

Figure 6.6.

6.3.5 Closing Remarks

Though PAPER in its grid configuration is incapable of creating the high dynamic-range

images needed to isolate polarized point sources, there are several hints in the data indicating

the presence of polarized foregrounds. The power we described in the previous sections

is consistent with the general properties of diffuse, polarized emission described by other

measurements (6, 8, 40, 67, e.g.). Follow-up observations with arrays more suited for imaging

will be necessary to fully detect and characterize this emission.

Even with the much reduced polarized fraction inferred from this emission, the implied

level of Q→ I leakage exceeds the expected level of the 21cm EoR power spectrum (48, 57,

e.g.). This excess presents a challenge for ongoing and future observations. There are two

mitigation strategies. First, polarized point sources may be identified and subtracted, as in

Geil et al. (24). Subtracting to the requisite levels will require highly accurate models for

an unreasonable number of sources, as we showed in Section 5.4. The second mitigation

strategy will involve the design of future instruments, limiting Q → I leakage. Engineering

a symmetric primary beam could limit instrumental polarization, and is one of the drivers

of the design of the HERA array.
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Chapter 7

The Discrete Rotation Measure

Transform

7.1 Background and Justification

One of the key science goals for the Square Kilometre Array is to investigate the nature of

galactic and cosmic magnetism (1, e.g.). A powerful probe for characterizing those magnetic

fields is the Faraday rotation of polarized emission, discussed in Section 4.1. As a brief

reminder, the polarization vector of emission passing through an ionized, magnetized plasma

will incur a polarization-dependent phase rotation given by

(Q+ iU)meas = e−2iΦλ2

(Q+ iU)inc, (7.1)

where Q and U are the Stokes parameters, λ is the wavelength of the emission, the subscripts

inc and meas denote the incident and measured polarization angles, and Φ is the rotation

measure, defined as

Φ = λ2
e3

(mec2)2

∫
B||(s)ne(s) ds. (7.2)

The rotation measure is the line of sight component of the magnetic field times the number

density of electrons, integrated along the line of sight to the emitting source.
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7.1 Background and Justification

Brentjens and de Bruyn (11, abbreviated to BdB) present a novel approach to isolating

the rotation measure structure of a polarized source: rotation measure synthesis. Instead of

the usual route of fitting a quadratic function in λ2 to the polarization angle, taken in several

older studies (80, e.g.), BdB take advantage of the Fourier relationship between Φ and λ2

in Equation 7.1. They prescribe a method of disentangling the Φ structure, analogous to a

Fourier transform. In the continuum limit, this transform is written as

F̃ (Φ) =

∫
P (λ2)e−2iΦλ2

dλ2, (7.3)

where P (λ2) ≡ Q(λ2)+ iU(λ2) is the total polarized flux, and F̃ (Φ) is the rotation measure

transform (RMT) of the spectrum.

In general, low frequency arrays measure spectra that are spaced constantly in frequency.

This type of sampling, while relatively easy to produce, prohibits the estimation of Equation

7.3 by a conventional discrete Fourier transform (DFT). BdB and others (2, e.g.) suggest

working in the limit where the spacings in λ2 remain roughly constant over the spectrum,

in which case, a valid approximation of the RMT can be written as the sum

Fapprox(Φ) ≈
(
∑

i

wi

)−1∑

i

wiFie
−2iΦλ2

i , (7.4)

where the weights wi can be taken all to be 1. Unfortunately, this approximation breaks

down at low frequencies, in which λ2 rapidly changes across a normal observing bandwidth.

To give a sense of the rapidity of this change, we give a simple example band which may

be representative of those measured with instruments like PAPER, LoFAR (73), GMRT,

and the MWA (84). That band extends from 140 to 180 MHz, with 100 evenly spaced

channels. The difference in observed wavelength-squared will vary from 0.012 m2 (in the

highest frequency bin) to 0.026 m2 (in the lowest) — around a factor of two!

The breakdown of the assumption that evenly spaced frequencies are evenly spaced in

λ2 leads us to revise the standard prescription for the RMT. This assumption is implicit in
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7.2 The Mechanics of the DRMT

the setting of wi to one, since it implies that the measure of each frequency bin in Equation

7.4 is equal.

7.2 The Mechanics of the DRMT

Now, we will discuss the computational details of estimating the integral 7.4. This discussion

builds upon and is intended to complement the work done in BdB, in which rotation measure

synthesis is described, and a prescription for its computation is given. We will review the

discussion of BdB and add a discussion of the effects of discretizing the RMT, creating (in

an analogy to the DFT) a discrete rotation measure transform (DRMT)

We begin the prescription for a DRMT by assigning λ2 values to each frequency bin of

data. Following BdB, we estimate the average value of λ2 in the ith frequency bin (νi) in

a spectrum with evenly spaced frequencies, whose spacing is ∆ν. We define the discrete

values of the squared wavelength λ2i as

λ2i =
1

∆ν

∫ νi+∆ν/2

νi−∆ν/2

c2

ν2
dν =

c2

νi∆ν

[(
1− 1

2

∆ν

νi

)−1

−
(
1 +

1

2

∆ν

νi

)−1
]
≈
(
c

νi

)2

(7.5)

where c is the speed of light. To approximate the band-averaged value of λ2, we have used

the assumption that ∆ν ≪ νi.
26 Since frequencies are spaced evenly, λ2i cannot be; ergo,

there is no set of rotation measures Φj which allow the DRMT to evenly sample the unit

circle, a crucial property of the choice of frequencies in the DFT. Formally, there are no

solutions to the equation

2(λ2i − λ20)Φj = 2π
ij

N
(7.6)

which are independent of i.27 Here i runs on the interval [0, N) and j ∈ [−N/2, N/2). We

will discuss the implications of the lack of solutions to Equation 7.6 throughout this section,

26That this is different than the value cited in BdB, λ2

i = (c/ν)2(1 + 3∆ν/4νi), due to our only approxi-

mating to first order in ∆ν/ν. I personally haven’t found any justification for going to a higher order.
27As a reminder, the frequencies of a DFT are chosen such that 2π(ti − t0)νj = 2π(ij/N). This allows

for an even sampling of the unit circle on [−π, π) and allows for a complete basis of frequencies.
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7.2 The Mechanics of the DRMT

but the first and most obvious of which prohibits a straightforward set of rotation measures

to sample.

To find an optimal set of rotation measures to sample, we must first approximate the

spacing between adjacent frequency bins and then choose a set of rotation measures accord-

ingly. To do this, we simply Taylor expand the spacing in λ2 as

∆λ2i ≈ ∆ν

∣∣∣∣
∂λ2

∂ν

∣∣∣∣
ν=νi

= 2

(
c

νi

)2(∆ν

νi

)
, (7.7)

and the approximating Equation 7.6 for appropriate values of Φ.
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Figure 7.1: Magnitude of the kernel of the DRMT K(Φ), sampled to a maximum value

Φmax = (2∆λ2min)
−1. Vertical lines correspond to the harmonics of Φmin = (2∆λ2max)

−1, with

the dashed vertical line corresponding to Φmin and the dotted lines corresponding to higher

harmonics. This plot demonstrates the pitfalls of choosing ∆Φ too large, since it shows the

kernel structure induced from oversampling the lowest frequencies in a band.

Next, we choose spacings in ∆Φ to fully sample the spectrum in rotation measure.

Setting ∆Φ < 1/2N∆λ2min prohibits complete reconstruction (i.e. aliasing) of the high-

frequency channels, since this choice of ∆Φ is less than the maximum Nyquist frequency of
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7.2 The Mechanics of the DRMT

the spectrum. On the other hand, setting ∆Φ > 1/2N∆λ2max over-samples the Φ spectrum

at the lowest frequencies, adding structure to the kernel of the DRMT at the harmonics of

1/2N∆λ2i , demonstrated in Figure 7.1.

∆Φ=(2N∆λ 2
max)

−1 ∆Φ=(2N∆λ 2
min)

−1

⊢Oversamples low frequencies→

←Undersamples high frequencies⊣

Figure 7.2: A cartoon to demonstrate the range of acceptable choices for ∆Φ. The region

on the ∆Φ-axis hashed to the upper-right represents the range ∆Φ < (2N∆λ2min)
−1 which

under-samples the high frequencies. The region hashed to the lower-right depicts the region

∆Φ > (2N∆λ2max)
−1, which over-samples the high frequencies.

Figure 7.2 gives a graphic depiction of the argment for choosing ∆Φ. We avoid the

doubly-excluded region (2N∆λ2max)
−1 < ∆Φ < (2N∆λ2min)

−1, and choose to undersample

rather than to introduce unwanted structure. Finally, we choose a sampling in rotation

measure

∆Φ =
1

N∆λ2max

. (7.8)

We use this choice of spacing in rotation measure to construct the rotation measure

spectrum which we sample:

Φj = j∆Φ, (7.9)
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7.2 The Mechanics of the DRMT

where the index j ∈ [N/2, N/2) mirrors that of the DFT.

Finally, we set the phase-offset

λ20 ≡
1

N

∑

i

λ2i (7.10)

to reduce the phase error between the i = 0 and i = N frequency bins.

Now, we can approximate the integral in Equation 7.3 as a matrix equation:

F̃j ≈
1∑

i ∆λ
2
i

∑

i

Fie
−2iΦj(λi−λ2

0
)∆λ2i

≡ 1

N

∑

i

Fie
−2iΦj(λ2

i−λ2
0
)ωi, (7.11)

where F̃j is the DRMT of F at Φj, Fi are the spectrum values, and λ2i are the bin-averaged

values of the square wavelength (Equation 7.5). Equation 7.11 also defines the weights

ωi =
N∆λ2i∑

i ∆λ
2
i

(7.12)

which are the ratios of the bin-widths in λ2 to the total bandwidth of the spectrum. We notat

that this is a particular case of Equation 7.4 whose weights are chosen to most accurately

approximate the measure of the rotation measure transform (Equation 7.3).

The matrix W, defined as

Wij = e−2iΦj(λ
2

i−λ2

0
)ωi (7.13)

allows us to write Equation 7.11 in matrix form as F̃ = W · F. This highlights the com-

putational benefit that we need only calculate the matrix W one for each class of spectra

F.

7.2.1 Example Spectra

As a proof of concept, we simulate a mock spectrum containing five “point sources,” each

with a randomly selected flux and rotation measure, shown in the top panel of Figure 7.3.
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Figure 7.3: (Top Panel) Simulated spectrum with five “sources" with randomly chosen fluxes

and rotation measures. Each channel is injected with 10Jy noise. (Bottom Panel) The magni-

tude of the DRMT of the spectrum in the top panel in black, with red triangles corresponding to

the simulated Φ / flux pairs overlaid. The range of Φ values shown is restricted to |Φ| ≤ 50 m−2

to better show the kernel of the DRMT.
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The simulated spectrum Si is calculated as

Si =

5∑

j=1

Aje
−2iΦjλ2

i + ni, (7.14)

where Aj are the simulated fluxes, drawn from a chi-squared distribution with two degrees

of freedom, Φj are the simulated rotation measures, drawn from a normal distribution whose

mean is zero and width is 25 m−2, ni is the injected noise, drawn from a mean-zero normal

distribution with a width of 10 Jy, and the spectrum is calculated on frequencies νi (and

their corresponding square wavelengths λ2i ), which are evenly spaced on 0.1 to 0.2 GHz, with

1000 channels.

Figure 7.3 displays excellent isolation of each Φ component and demonstrates the recov-

ery of an input model. Normally, a physical source will not exhibit such a complex rotation

measure structure, but this simulation is designed to highlight the strengths of the DRMT,

rather than be physically representative.

7.2.2 Inverse Transform

In general, the transformation matrix W (Equation 7.13) is singular, prohibiting an exact

expression for the inverse DRMT. Hence, we must supply an approximation for the inverse

rotation measure transform,

F (λ2) =
1

π

∫
F̃ (Φ)e+2iΦλ2

dΦ (7.15)

which should follow the same conventions as the rotation measure transform. The matrix

W̃ij =
1

π
e+2iΦiλ

2

j∆Φ =
1

π

∑
k ∆λ

2
k

N∆λ2max

e+2iΦi(λ
2

j−λ2
0
), (7.16)

defined such that F ≈ W̃ · F̃ is an approximation to Equation 7.15. A direct consequence

of the singularity of W is that the product

∑

j

WijW̃jk ≈ ωi

ωmax
δik (7.17)
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is not the identity matrix, but converges to the identity matrix in the limit where the spacing

in λ2 becomes even. In this special case, the DRMT reduces to the DFT, as expected. We

also note that in this special case, the DRMT is unitary.

7.2.3 Noise Characteristics

Parseval’s theorem states that power must be conserved between a function and its Fourier

transform — the rotation measure transform is no different. Rewritten to adhere to the

conventions of rotation measure synthesis, Parseval’s theorem requires

∫
|F (λ2)|2 dλ2 =

1

π

∫
|F̃ (Φ)|2 dΦ, (7.18)

where the factor of π−1 accommodates the abnormal Fourier convention of rotation measure

synthesis. With the substitutions λ2 → x and Φ → πk, Equation 7.18 reduces to the

conventional notation for a Fourier transform defined as f̃(k) =
∫
f(x) exp{−2πikx} dx.

Because the transfer matrix for the DRMT in Equation 7.13 is non-unitary (W† 6= W
−1),

the DRMT will not satisfy Parseval’s theorem exactly. However, just as we approximate

W
−1 in Equation 7.16, we can approximate the noise characteristics of the DRMT by

enforcing Parseval’s theorem in the limit where the λ2i are uniformly spaced.

We begin our approximation of Parseval’s theorem by discretizing the right-hand side of

Equation 7.18, and expanding F̃ in terms of the DRMT of the original spectrum:

∑

i

|F̃i|2 = N
∑

i

|Fi|2 ω2
i . (7.19)

In the limit ωi → 1, this expression behaves as expected and gives the usual statement of

Parseval’s theorem for a DFT. Otherwise, we can approximate Equation 7.19 by providing

an upper limit, ∑

i

|F̃i|2 ≤ Nω2
max

∑

i

|Fi|2 , (7.20)
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where ωmax is the maximum fractional bin width for λ2 spectrum, corresponding with the

lowest frequency bin.

The relationship in Equation 7.20 allows us to estimate the noise properties of the DRMT

in terms of the original spectrum. If a spectrum has uniform noise with variance σ2λ2 , then

the DRMT of that wignal will also have uniform noise with variance σ2Φ ≤ Nω2
maxσ

2
λ2 .

Though the noise level of the DRMT is uniform, the noise in each Φ sample will not

necessarily be independent. Since the kernel of the DRMT,

Kj =
∑

i

e−2iΦjλ2

iωi (7.21)

only reduces to a delta function when the λ2i are uniformly spaced, the noise will have

some covariance given by the matrix Cij = KiK
∗
j . As the spacings in λ2 become uniform

(ωi → 1), the covariance will vanish in all but its off-diagonal terms (Cij → δij), since the

DRMT reduces to a DFT.

7.3 Comparison with the Discrete Fourier Transform

Using the tools developed in the previous section, we investigate the validity of setting wi = 1

in Equation 7.4. This is equivalent to examining the validity of the approximation that the

spacings in λ2 may be approximated as even.

There are two effects that may arise from setting wi = 1. First, the samples in Φ may

not be independent, that is, the uneven sampling of λ2 widens the native sinc window of the

DFT. Second, because the data are improperly weighted, the low-frequency samples, where

the λ2 sampling function is least dense is weighted unnaturally low. This causes the DFT

to underestimate the noise in the RMT.

The effects of these errors may be parameterized by the measure of the DRMT, ωi,

defined in Equation 7.12. This quantity is maximized in the lowest frequency bins (Equation

7.7). We can use this value, ωmax as a measure of the uniformity of spacings in λ2. This
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value can be parameterized by the fractional bandwidth of the measurement (fν), defined

for spectra ranging in frequency from ν0(1− fν/2) to ν0(1+ fν/2). The maximum deviation

from even spacings can be written in terms of fν as

Nωmax =
N∆λ2max∑

i∆λ
2
i

=
(1− fν/2)

2

(1− fν/2)
, (7.22)

where we employ Equation 7.7 to approximate the spacings ∆λ2 and noticed that
∑

i ∆λ
2
i =

λ2max − λ2min. As fν → 0, Nωmax → 1, and the DRMT will reduce to a DFT, validating the

assumption made to set wi in Equation 7.4 to 1. Allowing ten percent tolerance on Nωmax

allows all bands with fν < 0.07 to be well approximated by the DFT.

Figure 7.4 shows the kernel (Equation 7.21) for the transform over three bands with

varying fractional bandwidths. Each spectrum is computed with ν0 = 150 MHz and N =

1000 channels, though these numbers do not affect the level of disagreement between the

DRMT and the standard method. As fν → 0, the kernels of these two methods converge to

a delta function, the kernel of a true DFT.

We will compare the use of ωi set by Equation 7.12 to setting wi = 1 by two metrics

— the with of the kernel, and the noise equivalent bandwidth. We will compute these as

functions of the fractional bandwidth fν , noting that for the limiting case, when fν = 0,

the DRMT reduces to the DFT. The first metric, the FWHM, demonstrates the transforms

ability to isolate distinct rotation measure structures. In a true DFT, the FWHM of a

transform is always one bin — this is the simple statement that the kernel of a DFT in

frequency space is a delta function. Away from that limit, the lower the FWHM, the less

covariance between neighboring Φ modes a transform allows. The second is a measure of the

statistical uncertainty in the transformed measurement. For a true DFT, this is always one,

but in the regime with unevenly spaced λ2 samples, its meaning is more complicated. In

general, higher values of the noise-equivalent bandwidth indicate lower levels of uncertainty

in the measurement.
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Figure 7.4: A comparison of the two methods of the RMT. Each plot shows the squared

magnitude of the kernel of the DRMT (cyan) and the approximate DFT (black). The three

panels show three representative bands with central frequency ν0 = 150MHz and different

fractional bandwidths fν . (Top) fν = 1 (Middle) fν = 0.8 (Bottom) fν = 0.5. Only 100 bins of

the kernel are shown to better show structure near the central peak.
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Figure 7.5: Full width at half maximum (FWHM) of the kernel of the DRMT (cyan) and

the kernel of the approximate DFT (black). The FWHM is found by interpolating the value

where kernel approaches 0.5 — this interpolation accounts for both the non-integer values, and

the deviation from one as fν → 0.
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To further examine the kernels of these two transforms, we plot the full width at half

maximum (FWHM) of the kernels as functions of fν . We interpolate the kernel to find the

precise value of the FWHM — this produces non-integer values. As fν → 0, we approach

one, the value taken by a DFT. The slight offset from one is due to the interpolation. As

fν → 1, the FWHM of the DRMT becomes 2/3 that of the approximate DFT.

0 20 40 60 80 100

fν [%]

100

101

η

Figure 7.6: Noise equivalent bandwidth (Equation 7.23 of the DRMT is shown in cyan, of

the approximate DFT in black. That the bandwidth exceeds one reflects the choice of ∆Φ from

the largest λ2 bin. Dashed, black lines show the allowable range in η, for any choice of ∆Φ.

Another measure of the transform is the noise-equivalent bandwidth of the kernel, defined

for a kernel Ki as

η =
|∑iKi|2∑

i |Ki|2
(7.23)

This quantity depends on the choice of Φj. As we discussed in Section 7.2, the available

range in Φ is well determined in the limit of evenly spaced λ2, but outside of that limit, the

available range is not constrained. We choose to sample Φ based on the largest spacings

in λ2, but this neglects the higher Φ modes which are measured in the highest frequency
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7.3 Comparison with the Discrete Fourier Transform

bins. This effect allows the noise-equivalent bandwidth η to exceed one, which typically

is forbidden. Figure 7.6 shows η as a function of fν , alongside the allowed ranges of that

quantity. The DRMT shows a factor of 1.7 increase in this quantity when compared to the

approximate DFT.

The DRMT outperforms the approximate DFT in both metrics, indicating that the

proper choice of a metric (wi in Equation 7.4) can lead to more precise measurements of the

rotation measure structures of polarized spectra.
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Chapter 8

New Methods for Polarization

Calibration

This chapter presents two novel approaches to polarization calibration, designed mainly for

redundant, widefield arrays like PAPER. The two authoritative sources in interferometric

polarization calibration are the series of papers by Hamacker, Bregman, and Sault (27, 28,

29, 30, 75) and Chapter three of Thompson et al. (83). They present a calibration scheme in

which instrumental polarization is represented in terms of a rotation matrix Di, comprised

of off-diagonal terms of the gain equation presented in Section 2.2, in Equation 2.15. In the

Jones formalism, the measured electric field can be described by the equation

(
Ex

Ey

)
=

(
gix 0
0 giy

)(
1 diy

−dix 1

)(
cosψ − sinψ
sinψ cosψ

)(
Eα

Eδ

)
≡ Gi ·Di ·P · ~E, (8.1)

where all terms agree with Equation 2.15. The new, off-diagonal terms dix, e.g. may be

written in term of the three Euler angles of the feed of an antenna (83), but in general,

instrumental polarization arises in the analog electronics, and cannot be represented so

simply.

The cited sources give prescriptions for solving for the 4Nant complex calibration terms as

139
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functions of both time and frequency, but these methods require two criteria which PAPER

does not meet:

1. The primary beam must be dominated by a single or few calibration sources. With

PAPER’s nearly 1 sr beam, there will almost certainly be a plethora of sources with

calibration-level sensitivities.

2. The uv-coverage of the array must be filled to sufficiently isolate point sources, creating

a clarity of image which PAPER in its redundant configuration cannot provide.

With these two criteria in mind, we must find non-traditional calibration methods. We

present two: the first of which relies on the redundancy of identical baselines, and the second

synthesizes images of only a few pointings on the sphere.

8.1 Polarization Calibration in Redundant Arrays

Since the field of view of PAPER cannot be dominated by a single source, we turn to broader,

more statistical measures to calibrate against. The first is that a handful of calibrator

sources, Pictor A, and Fornax A to name two, are only weakly polarized, allowing their

constituent unpolarized signals to dominate the emission in Vxx and Vyy. This allows us to

calibrate the xx and yy polarizations with only an unpolarized model. Once the antenna-

dependent gains are solved for, we apply those to Vxy and Vyx.

This calibration scheme is incomplete, leaving an uncalibrated phase between the two

cross-polarized visibilities. To solve for this phase difference, we make a final assumption,

that V = 0, and solve for the phase which minimizes VV ≡ Vxy − Vyx. In other words, the

assumption that V = 0 allows us to assume that Vxy and Vyx are redundant.

To understand the process of calibrating for the cross-polarization phase difference, we

review redundant calibration in general, focusing on PAPER’s implementation in particu-

lar. We extend this into polarization, explaining the impetus for solving for a single cross-

polarization calibration term.
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8.1 Polarization Calibration in Redundant Arrays

If the signal in two visibilities labeled 12 and 34 is redundant and calibration terms are

antenna-based, then we can solve the equation

g1g
∗
2V12 = g3g

∗
4V34 (8.2)

by minimizing the value

χ2 =
∑

(i,j),(k,l)∈R

∣∣gig∗jVij − gkg
∗
l Vkl

∣∣2 , (8.3)

where R is the set of redundant baselines in an array. A full description of redundant

calibration can be found in Liu et al. (52), and a clever implementation of it can be found

in Zheng et al. (95).

(1,1)

(1,0)

(1,-1)

Figure 8.1

A full minimization of Equation 8.1 requires using all redundant baselines in an array, a

computationally costly task. We restrict ourselves to three redundant types, a subset of R,

labelled by their grid-spacings as (0, 1),(±1, 1) in Figure 8.1, which shows a cartoon map of

the PAPER array.

We are restricted in our choice of a subspace of R. Consider the subspace of all baselines

with grid spacing (0, 1). Each row of the array may be calibrated relative to itself, but

there are no terms in which link different rows. If we add all baselines with (1, 1) to this
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8.1 Polarization Calibration in Redundant Arrays

subset, then we can link rows, but the solutions for the top-left and bottom-left antennae are

under-constrained. Adding the (−1, 1) baseline type fixes this problem and illuminates the

two related criteria for the subspace of R necessary to fully solve for redundant calibration:

the subset R′ must extend through all antennae twice, and it also must allow for closure

quantities to be calculated. As a reminder, the phase of all baselines in a closed loop of

antennae must add to zero — this is called a closure quantity. A general rule is to draw

closed loops with elements of R′, shown in Figure 8.1 as a cyan triangle made of two (0, 1)

baselines, and one each of (1, 1) and (−1, 1).

Having chosen a subset of R, we further simplify the procedure by linearizing Equation

8.1, computing the logarithm of the visibilities. Finally, we model the phase as a line (an

electrical delay τi), representing Equation 8.1 as

log

(
Vij

Vkl

)
= log gi + log gj + log gk + log gl + 2πiν(τi − τj − τk + τl). (8.4)

This equation sacrifices an unbiased, optimal solution for computational ease. The real part

of the log of the ratio Vij/Vkl is simply a function of the antenna gains, and the imaginary

part is simply a function of the electrical delays.

As a final simplifying step, we choose a fiducial baseline from each type to serve as the

denominator of the ratio in Equation 8.4. This eases the computational burden from order

N4
ant, the number of baselines squared, to order N2

ant. This step essentially reduces the size

of the matrix representing the addition of gains (or delays) from Nant×N4
ant to Nant×N2

ant

— the system of equations is still over-constrained, but now we have less work to do.

Thus we solve for calibration parameters which force the array to be redundant. There

are two terms per polarization which cannot be calibrated in this way, though. The first

is obvious: an array-wide flux scale, setting the calibration of the xx-polarization, say, to

the sky. We solve for these by assuming that I dominates the signal in xx and yy, and

setting the flux to a model of Pictor A (38). The second, less obvious terms remaining are

the delays of the fiducial baselines we chose, which we decompose into a fiducial east-west
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8.2 Beamforming

and a fiducial north-south baseline. These final terms are also found by fitting a model of

Pictor A to all of the now-redundant visibilities.

Now, both the xx and the yy polarizations are calibrated. If we assume that the gains

and delays are antenna-based, we can apply them to the xy and yx polarizations. This leaves

one final term: a cross polarization delay. Up until this point in the redundant calibration

process, each polarization of the array has been treated independently. To set the x and y

delays to the same reference, we must add information to our calibration schema.

To solve for the cross-polarization delay, we assume that V = 0 at these frequencies, so

we can treat the xy and yx visibilities as redundant. Then, as before, we solve for the delay

which minimizes VV ,

Im {logVxy − logVyx} = 2πiτxyν. (8.5)

Since all baselines are calibrated to be redundant at this point, we use all available data to

solve for τxy and apply it to fully calibrate the redundant array.

It should be noted that this method is similar to that presented in Cotton (15), with

two differences. First, Cotton (15) suggests maximizing the sum on the left-hand side of

Equation 8.5, which pushes all available signal into VU , allowing some to remain in VV . In

general, one cannot make the assumption that V = 0, but at the low frequencies measured

by PAPER, no circularly polarized emission has been measured to date. Second, Cotton

(15) uses this method on a per-baseline basis, not assuming a redundant array, which we

clearly do. The use of multiple baselines to solve for a single calibration term increases the

signal-to-noise of the measurements of that calibration term.

8.2 Beamforming

We now discuss a method for calibrating the off-diagonal gain terms. Typical measurements

require a single calibration source to dominate emission in a field of view. With a wide field
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8.2 Beamforming

imager, this requirement can never be met. We discuss a method to artificially restrict the

field of view, only imaging a few points on the sky at once.

We begin by modelling a calibrator as a point source at position ŝ with Stokes parameters

I, Q, U , and V . We employ Equations 2.32, 2.33, 2.34, and 2.35 to represent a visibility

containing only this source as a matrix equation,




Vxx

Vxy

Vyx

Vyy


 = e−2πi(~bij ·ŝ)×




Axx

Axy

Ayx

Ayy







1 1 0 0
0 0 1 −i
0 0 1 i
1 −1 0 0







1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1







I
Q
U
V


 .

(8.6)

This equation has neglected gain terms not associated with the primary beam. In contrast

with the discussion in Section 2.2, we allow the gain matrix G~

~

ij to have sixteen, independent

components, rather than forcing it to be diagonal. Furthermore, we write Equation 8.6 in

terms of a vector the source’s stokes parameters ~M , a vector of visibilities ~Vij,t, a diagonal

matrix containing the elements of the beam, A~

~

t, and a transfer matrix W~

~

t, and the fringe,

exp{−2πi(~b · ŝ)}:
~Vij,t = e−2πi(~bij ·ŝ)G~

~

ij ·A~

~

t ·W~

~

t · ~M. (8.7)

We explicitly label the time-dependent quantities with subscript t. Modelling multiple point

sources is as simple as summing over different models M , with different transfer matrices

and beams,

~Vij,t = G~

~

ij ·
∑

s

e−2πi(~bij ·ŝ)A~

~

t,s ·W~

~

t,s · ~Ms. (8.8)

Our task is to solve for the sixteen components of G~

~

ij . We do this by assuming that ~Vij

is comprised of only our model, a sum of point sources, and thermal noise. This allows us
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8.2 Beamforming

to solve for the components of G~

~

ij in the least squares sense, minimizing

χ2 =
∑

t

∣∣∣∣∣
~Vij −G~

~

ij

∑

s

e−2πi(~bij ·ŝ)A~

~

t,s ·W~

~

t,s · ~Ms

∣∣∣∣∣

2

. (8.9)

For simplicity, we will drop the subscripts i and j, which until now have denoted the

visibility’s baseline label. We do this noting that this calibration solution is baseline-

independent. In an additional measure of notational simplicity, we redefine the model

visibility ~M ′
t ≡ ∑

s exp{−2πi(~b · ŝ)}A~

~

t,s · W~

~

t,s · ~Ms as the time-dependent model visibil-

ity. These simplifications reduce the chi-squared expression to

χ2 =
∑

t

∣∣∣~Vt −G~

~

· ~M ′
t

∣∣∣
2
. (8.10)

The values of G~

~

which minimize χ2, found by setting dχ2/dG∗
αβ = 0 is

G~
~

=

(
∑

t

~M ′
t ⊗ ~M ′†

t

)−1

·
(
∑

t

~Vt ⊗ ~M ′†
t

)
, (8.11)

where ⊗ represents the Kronecker outer product, defined in Section 2.2.

In order for
∑

t
~M ′
t ⊗ ~M ′†

t to be non-singular, a full Stokes model of a polarized source

must be included. Otherwise, one may approximate the inverse of that matrix by assuming

that model Stokes parameters Q, U , and V are much smaller than I.

Including multiple sources in the model ~M ′
t will increase the accuracy of the calibra-

tion. By including many sources, we model both the sources in question and sidelobes from

nearby sources — this provides accurate source spectra for each pointing. With redun-

dant arrays like PAPER, a single pointing on the sky may include emission from multiple

sources. Modelling this effect will clearly increase the accuracy of both the calibration and

the measurement of source spectra.

To date, no calibrators are sufficiently accurately measured for use in this method, so

this method has yet to be implemented. Once a more accurate model of the polarized sky
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8.2 Beamforming

in the southern hemisphere is made, future instruments will be able to use this method to

calibrate off-diagonal polarization calibration terms without the computationally costly and

oftentimes uncertain imaging deconvolution.
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Chapter 9

Conclusion

We have demonstrated how crucial foreground characterization will be for uncovering signal

from the 21cm EoR. For smooth-spectrum sources — the overwhelming majority of radio

sources — power is isolated within a “wedge” in the k⊥-k|| plane, which allows us to under-

take foreground avoidance. Faraday-rotated, polarized point sources disobey this rule, and

generally will not be restricted to low values of k||.

We synthesized state-of-the-art measurements of the polarized sky in radio frequencies

to construct a simulation of polarized point sources. This allows us to simulate the level

of contamination of polarized sources to the 21cm EoR power spectrum. This simulation

predicted that the expected level of polarized foregrounds, leaked into the unpolarized power

spectrum, will far exceed the levels of reasonable models for the 21cm EoR power spectrum.

The simulations presented were based mostly on measurements within the PAPER band,

but some extrapolations from higher frequencies were required. In particular, no compre-

hensive measurements of the polarized fraction of point sources had been measured at meter

wavelengths, so we drew on measurements at 1.4 GHz.

To test the predictions made with the simulations, we constructed the most sensitive

polarized power spectra at these frequencies ever made. These power spectra were made
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from about six months of data from the PAPER array. Comparing the measured Q power

spectrum to the simulated, we find that the simulations overestimate the levels of power.

This yields a revised estimate of polarized leakage into the unpolarized, 21cm EoR power

spectrum — the revision is lower, but still at the level of leading models.

Because of the disagreement between the measured power spectra and the simulated ones,

we update the input parameters to the simulation. Since the distributions of source counts

and rotation measures are relatively accurately measured, we focus on the distribution of

polarized fractions. By a Bayesian analysis, we find that the data exclude our assumptions

to high significance, and prefer a mean polarized fraction of 2.2× 10−3, a factor of ten lower

than measured at 1.4 GHz. This new distribution of polarized fractions qualitatively agrees

with the few recent measurements of the polarized sky at meter wavelengths.

These new measurements show the importance of characterizing polarized foregrounds.

Future observations will require mitigation strategies for instrumental, polarized leakage

in order to detect and characterize the 21cm EoR power spectrum. Mitigation strategies

will incorporate both source detection and the updated design of instruments. Measuring

polarized sources at these frequencies will require new observations from arrays more suited

for imaging, as well as updated techniques for polarimetry. Instruments will also need to

limit beam leakage by uniformly illuminating their dishes, creating a primary beam which is

symmetric about 90◦ rotations. These tactics will limit polarized leakage and more smoothly

pave the way to measuring the ionization history of the IGM through the 21cm EoR power

spectrum.
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Glossary of

Symbols and

Abbreviations

α Right ascension, page 28

δ Declination, page 28

∆ν Bandwidth, page 42

∆2(k) Spherically-averaged power spectrum,

page 18

η Fourier-dual variable to frequency,

page 42

ν Frequency, page 25

Ω Angular extent of the primary beam,

page 42

ω⊕ Angular frequency of the Earth’s rota-

tion, page 38

Ωm Cosmic matter density in units of the

critical density ρc = 3H2/8πG, page 19

Φ Rotation measure, page 57

ψ Parallactic angle, page 30

τ Delay, page 31

τg Geometric delay, page 36

ξ(r) Correlation function of spin tempera-

ture field, page 17

X(u, v) Sampling function in the uv-plane,

page 27

A(l,m) Primary beam, page 27

Aeff Effective area of an antenna, page 48

~b Baseline (in meters), page 25

R Set of redundant baselines, page 141

D Set of all bandpowers in a measured

power spectrum, page 115

fν Fractional bandwidth, page 134

g Antenna gain, page 31

H Hour angle, page 29

H(z) Hubble parameter, page 13

p Polarized fraction, page 56

P (k) Power Spectrum of Spin Temperature,

page 17

Pk Power spectrum in the kth bin, page 115

S~

~

Stokes rotation matrix, page 33

ŝ Unit pointing vector, page 25

S Set of all bandpowers in a simulated

power spectrum, page 115

Sk Simulated power spectrum in the kth

bin, page 115
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GLOSSARY OF SYMBOLS AND ABBREVIATIONS

Ts Spin Temperature, page 11

Tsys System Temperature, page 103

V Visibility, calibration terms included,

page 32

V̂ (ν, f) Fringe-rate transformed visibility,

page 38

Ṽ (τ ) Delay-transformed visibility, page 36

V (u, v, ν) Visibility, page 27

W (ν) Window function in frequency, page 59

x Scale factor between the simulated and

measured power spectra, page 115

⊗ Kronecker outer product, page 31

Abbreviations

CMB Cosmic Microwave Background Radia-

tion, page 2

DFT Discrete Fourier transform, page 125

DRAO Dominion Radio Astrophysical Obser-

vatory of Canada, page 61

DRMT Discrete Rotation Measure Transform,

page 126

EoR Epoch of Reionization, page 3

GMRT Giant Metrewave Radio Telescope,

page 63

IGM Intergalactic Medium, page 3

LST Local sidereal time, page 28

Lyα Lyman alpha, page 3

NVSS NRAO VLA Sky Survey, page 61

PAPER The Donald C. Backer Precision Ar-

ray to Probe the Epoch of Reionization,

page 45

RFI Radio Frequency Interference, page 47

RMT Rotation measure transform, page 125

6C Sixth Cambridge Survey, page 77

TEC Total Electron Content of the iono-

sphere, page 112

VLA Very Large Array, page 61

VLSS VLA Large Sky Survey, page 77

WMAP Wilkinson Microwave Anisotropy

Probe, page 8

WSRT Westerbork Synthesis Radio Telescope,

page 63

150



References

[1] Beck, R., Anderson, J., Heald, G., Horneffer, A.,

Iacobelli, M., Köhler, J., Mulcahy, D., Pizzo, R.,

et al. The LOFAR view of cosmic magnetism. Astronomis-

che Nachrichten, 334:548–557 (2013). doi:10.1002/asna.

201311894. 124

[2] Beck, R., Frick, P., Stepanov, R., and Sokoloff, D. Rec-

ognizing magnetic structures by present and future radio

telescopes with Faraday rotation measure synthesis. A&A,

543:A113 (2012). doi:10.1051/0004-6361/201219094. 125

[3] Beck, R. and Wielebinski, R. Magnetic Fields in Galaxies,

page 641 (2013). doi:10.1007/978-94-007-5612-0_13. 58

[4] Becker, R. H., Fan, X., White, R. L., Strauss, M. A.,

Narayanan, V. K., Lupton, R. H., Gunn, J. E., Annis,

J., et al. Evidence for Reionization at z˜6: Detection of a

Gunn-Peterson Trough in a z=6.28 Quasar. AJ, 122:2850–

2857 (2001). doi:10.1086/324231. xiii, 5, 6

[5] Bernardi, G., Carretti, E., Fabbri, R., Sbarra, C.,

Poppi, S., Cortiglioni, S., and Jonas, J. L. A polar-

ized synchrotron template for cosmic microwave background

polarization experiments based on WMAP data. MNRAS,

351:436–446 (2004). doi:10.1111/j.1365-2966.2004.07797.x.

61

[6] Bernardi, G., de Bruyn, A. G., Brentjens, M. A., Cia-

rdi, B., Harker, G., Jelić, V., Koopmans, L. V. E.,

Labropoulos, P., et al. Foregrounds for observations of

the cosmological 21 cm line. I. First Westerbork measure-

ments of Galactic emission at 150 MHz in a low latitude

field. A&A, 500:965–979 (2009). doi:10.1051/0004-6361/

200911627. 68, 87, 88, 89, 122

[7] Bernardi, G., de Bruyn, A. G., Harker, G., Brent-

jens, M. A., Ciardi, B., Jelić, V., Koopmans, L. V. E.,

Labropoulos, P., et al. Foregrounds for observations of

the cosmological 21 cm line. II. Westerbork observations of

the fields around 3C 196 and the North Celestial Pole. A&A,

522:A67 (2010). doi:10.1051/0004-6361/200913420. 63, 64

[8] Bernardi, G., Greenhill, L. J., Mitchell, D. A., Ord,

S. M., Hazelton, B. J., Gaensler, B. M., de Oliveira-

Costa, A., Morales, M. F., et al. A 189 MHz, 2400

deg2 Polarization Survey with the Murchison Widefield

Array 32-element Prototype. ApJ, 771:105 (2013). doi:

10.1088/0004-637X/771/2/105. 63, 108, 118, 120, 122

[9] Bouwens, R. J., Illingworth, G. D., Oesch, P. A.,

Labbé, I., Trenti, M., van Dokkum, P., Franx, M., Sti-

avelli, M., et al. Ultraviolet Luminosity Functions from

132 z ˜ 7 and z ˜ 8 Lyman-break Galaxies in the Ultra-deep

HUDF09 and Wide-area Early Release Science WFC3/IR

Observations. ApJ, 737:90 (2011). doi:10.1088/0004-637X/

737/2/90. xiii, 5, 7

[10] Bowman, J. D., Morales, M. F., and Hewitt, J. N. Fore-

ground Contamination in Interferometric Measurements of

the Redshifted 21 cm Power Spectrum. ApJ, 695:183–199

(2009). doi:10.1088/0004-637X/695/1/183. 20, 41

[11] Brentjens, M. A. and de Bruyn, A. G. Faraday rota-

tion measure synthesis. A&A, 441:1217–1228 (2005). doi:

10.1051/0004-6361:20052990. 58, 92, 125

[12] Cohen, A. S., Lane, W. M., Cotton, W. D., Kassim,

N. E., Lazio, T. J. W., Perley, R. A., Condon, J. J.,

and Erickson, W. C. The VLA Low-Frequency Sky Survey.

AJ, 134:1245–1262 (2007). doi:10.1086/520719. 77

[13] Cohen, A. S., Röttgering, H. J. A., Jarvis, M. J., Kas-

sim, N. E., and Lazio, T. J. W. A Deep, High-Resolution

Survey at 74 MHz. ApJ Supp., 150:417–430 (2004). doi:

10.1086/380783. 78

[14] Condon, J. J., Cotton, W. D., Greisen, E. W., Yin,

Q. F., Perley, R. A., Taylor, G. B., and Broderick,

J. J. The NRAO VLA Sky Survey. AJ, 115:1693–1716

(1998). doi:10.1086/300337. 61, 65, 77

[15] Cotton, W. D. a New Method for Cross Polarized De-

lay Calibration of Radio Interferometers. Journal of Astro-

nomical Instrumentation, 1:1250001 (2012). doi:10.1142/

S2251171712500018. 143

[16] Datta, A., Bowman, J. D., and Carilli, C. L. Bright

Source Subtraction Requirements for Redshifted 21 cm

Measurements. ApJ, 724:526–538 (2010). doi:10.1088/

0004-637X/724/1/526. 20

[17] Datta, A., Bradley, R., Burns, J. O., Harker, G., Kom-

jathy, A., and Lazio, T. J. W. Effects Of The Ionosphere

On Ground-Based Detection Of The Global 21 CM Signal

From The Cosmic Dawn And The Dark Ages. ArXiv e-

prints (2014). 112

151



[18] de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M.,

Jonas, J., Landecker, T. L., and Reich, P. A model of dif-

fuse Galactic radio emission from 10 MHz to 100 GHz. MN-

RAS, 388:247–260 (2008). doi:10.1111/j.1365-2966.2008.

13376.x. 61

[19] Dillon, J. S., Liu, A., Williams, C. L., Hewitt, J. N.,

Tegmark, M., Morgan, E. H., Levine, A. M., Morales,

M. F., et al. Overcoming real-world obstacles in 21 cm

power spectrum estimation: A method demonstration and

results from early Murchison Widefield Array data. Phys.

Rev. D, 89(2):023002 (2014). doi:10.1103/PhysRevD.89.

023002. 20

[20] Fan, X., Strauss, M. A., Becker, R. H., White, R. L.,

Gunn, J. E., Knapp, G. R., Richards, G. T., Schneider,

D. P., et al. Constraining the Evolution of the Ioniz-

ing Background and the Epoch of Reionization with z˜6

Quasars. II. A Sample of 19 Quasars. AJ, 132:117–136

(2006). doi:10.1086/504836. 5

[21] Field, G. B. Excitation of the Hydrogen 21-CM Line.

Proceedings of the IRE, 46:240–250 (1958). doi:10.1109/

JRPROC.1958.286741. 14

[22] Furlanetto, S. R., Oh, S. P., and Briggs, F. H. Cos-

mology at low frequencies: The 21 cm transition and the

high-redshift Universe. PhysRep, 433:181–301 (2006). doi:

10.1016/j.physrep.2006.08.002. 11, 14, 19, 41

[23] Gaensler, B. M., Dickey, J. M., McClure-Griffiths,

N. M., Green, A. J., Wieringa, M. H., and Haynes, R. F.

Radio Polarization from the Inner Galaxy at Arcminute

Resolution. ApJ, 549:959–978 (2001). doi:10.1086/319468.

61

[24] Geil, P. M., Gaensler, B. M., and Wyithe, J. S. B.

Polarized foreground removal at low radio frequencies us-

ing rotation measure synthesis: uncovering the signature of

hydrogen reionization. MNRAS, 418:516–535 (2011). doi:

10.1111/j.1365-2966.2011.19509.x. 122

[25] Gunn, J. E. and Peterson, B. A. On the Density of Neu-

tral Hydrogen in Intergalactic Space. ApJ, 142:1633–1641

(1965). doi:10.1086/148444. 4, 5

[26] Hales, S. E. G., Baldwin, J. E., and Warner, P. J. The

6C survey of radio sources. II - The zone delta = 30-51 deg,

alpha = 08h30m-17h30m. MNRAS, 234:919–936 (1988). 77,

117, 121

[27] Hamaker, J. P. Understanding radio polarimetry. IV.

The full-coherency analogue of scalar self-calibration: Self-

alignment, dynamic range and polarimetric fidelity. A&A

Supp., 143:515–534 (2000). doi:10.1051/aas:2000337. 66,

139

[28] Hamaker, J. P. Understanding radio polarimetry. V. Mak-

ing matrix self-calibration work: processing of a simu-

lated observation. A&A, 456:395–404 (2006). doi:10.1051/

0004-6361:20065145. 66, 139

[29] Hamaker, J. P. and Bregman, J. D. Understanding radio

polarimetry. III. Interpreting the IAU/IEEE definitions of

the Stokes parameters. A&A Supp., 117:161–165 (1996).

66, 139

[30] Hamaker, J. P., Bregman, J. D., and Sault, R. J. Under-

standing radio polarimetry. I. Mathematical foundations.

A&A Supp., 117:137–147 (1996). 66, 139

[31] Harker, G. J. A., Pritchard, J. R., Burns, J. O.,

and Bowman, J. D. An MCMC approach to extract-

ing the global 21-cm signal during the cosmic dawn from

sky-averaged radio observations. MNRAS, 419:1070–1084

(2012). doi:10.1111/j.1365-2966.2011.19766.x. xiii, 15, 16

[32] Harris, F. J. On the Use of Windows for Harmonic Analy-

sis with the Discrete Fourier Transform. IEEE Proceedings,

66:51–83 (1978). 104

[33] Haslam, C. G. T., Salter, C. J., Stoffel, H., and Wil-

son, W. E. A 408 MHz all-sky continuum survey. II - The

atlas of contour maps. A&A Supp., 47:1 (1982). 61, 63, 64

[34] Helmboldt, J. F., Kassim, N. E., Cohen, A. S., Lane,

W. M., and Lazio, T. J. Radio Frequency Spectra of 388

Bright 74 MHz Sources. ApJ Supp., 174:313–336 (2008).

doi:10.1086/521829. 79

[35] Högbom, J. A. Aperture Synthesis with a Non-Regular Dis-

tribution of Interferometer Baselines. A&A Supp., 15:417

(1974). 101

[36] Jacobs, D. C. The Epoch of Reionization: Foregrounds

and calibration with PAPER. Ph.D. thesis, University of

Pennsylvania (2011). 101

[37] Jacobs, D. C., Aguirre, J. E., Parsons, A. R., Pober,

J. C., Bradley, R. F., Carilli, C. L., Gugliucci, N. E.,

Manley, J. R., et al. New 145 MHz Source Measurements

by PAPER in the Southern Sky. ApJ Letters, 734:L34

(2011). doi:10.1088/2041-8205/734/2/L34. 51, 52

[38] Jacobs, D. C., Parsons, A. R., Aguirre, J. E., Ali, Z.,

Bowman, J., Bradley, R. F., Carilli, C. L., DeBoer,

D. R., et al. A Flux Scale for Southern Hemisphere 21 cm

Epoch of Reionization Experiments. ApJ, 776:108 (2013).

doi:10.1088/0004-637X/776/2/108. 52, 53, 101, 142

[39] Jacobs, D. C., Pober, J. C., Parsons, A. R., Aguirre,

J. E., Ali, Z., Bowman, J., Bradley, R. F., Carilli,

C. L., et al. Multi-redshift limits on the 21cm power spec-

trum from PAPER. ArXiv e-prints (2014). 39, 52, 53, 93,

95, 104

152



[40] Jelić, V., de Bruyn, A. G., Mevius, M., Abdalla, F. B.,

Asad, K. M. B., Bernardi, G., Brentjens, M. A., Bus,

S., et al. Initial LOFAR observations of epoch of reioniza-

tion windows. II. Diffuse polarized emission in the ELAIS-

N1 field. A&A, 568:A101 (2014). doi:10.1051/0004-6361/

201423998. 60, 63, 118, 122

[41] Jelić, V., Zaroubi, S., Labropoulos, P., Bernardi, G.,

de Bruyn, A. G., and Koopmans, L. V. E. Realistic

simulations of the Galactic polarized foreground: conse-

quences for 21-cm reionization detection experiments. MN-

RAS, 409:1647–1659 (2010). doi:10.1111/j.1365-2966.2010.

17407.x. 63, 77, 119

[42] Kogut, A., Spergel, D. N., Barnes, C., Bennett, C. L.,

Halpern, M., Hinshaw, G., Jarosik, N., Limon, M.,

et al. First-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Temperature-Polarization Correla-

tion. ApJ Supp., 148:161–173 (2003). doi:10.1086/377219.

xiii, 8

[43] Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L.,

Gold, B., Hinshaw, G., Jarosik, N., Larson, D., et al.

Five-Year Wilkinson Microwave Anisotropy Probe Obser-

vations: Cosmological Interpretation. ApJ Supp., 180:330–

376 (2009). doi:10.1088/0067-0049/180/2/330. 7, 19

[44] Kovac, J. M., Leitch, E. M., Pryke, C., Carlstrom,

J. E., Halverson, N. W., and Holzapfel, W. L. Detec-

tion of polarization in the cosmic microwave background

using DASI. Nature, 420:772–787 (2002). doi:10.1038/

nature01269. 41

[45] Kronberg, P. P. and Newton-McGee, K. J. Remarkable

Symmetries in the Milky Way Disc’s Magnetic Field. PASA,

28:171–176 (2011). doi:10.1071/AS10045. 65, 89

[46] Landecker, T. L., Dewdney, P. E., Burgess, T. A.,

Gray, A. D., Higgs, L. A., Hoffmann, A. P., Hovey,

G. J., Karpa, D. R., et al. The synthesis telescope at the

Dominion Radio Astrophysical Observatory. A&A Supp.,

145:509–524 (2000). doi:10.1051/aas:2000257. 61

[47] Law, C. J., Gaensler, B. M., Bower, G. C., Backer,

D. C., Bauermeister, A., Croft, S., Forster, R.,

Gutierrez-Kraybill, C., et al. Spectropolarimetry with

the Allen Telescope Array: Faraday Rotation Toward

Bright Polarized Radio Galaxies. ApJ, 728:57 (2011). doi:

10.1088/0004-637X/728/1/57. 80

[48] Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., and

Hernquist, L. Detecting the Rise and Fall of 21 cm Fluctu-

ations with the Murchison Widefield Array. ApJ, 680:962–

974 (2008). doi:10.1086/587618. 22, 23, 41, 85, 86, 122

[49] Liu, A., Parsons, A. R., and Trott, C. M. Epoch of reion-

ization window. I. Mathematical formalism. Phys. Rev. D,

90(2):023018 (2014). doi:10.1103/PhysRevD.90.023018. 20

[50] Liu, A., Pritchard, J. R., Tegmark, M., and Loeb, A.

Global 21 cm signal experiments: A designer’s guide. Phys.

Rev. D, 87(4):043002 (2013). doi:10.1103/PhysRevD.87.

043002. 16

[51] Liu, A., Tegmark, M., Bowman, J., Hewitt, J., and

Zaldarriaga, M. An improved method for 21-cm fore-

ground removal. MNRAS, 398:401–406 (2009). doi:10.

1111/j.1365-2966.2009.15156.x. 20

[52] Liu, A., Tegmark, M., Morrison, S., Lutomirski, A., and

Zaldarriaga, M. Precision calibration of radio interferom-

eters using redundant baselines. MNRAS, 408:1029–1050

(2010). doi:10.1111/j.1365-2966.2010.17174.x. 141

[53] McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist,

L., and Furlanetto, S. R. Cosmological Parameter Esti-

mation Using 21 cm Radiation from the Epoch of Reioniza-

tion. ApJ, 653:815–834 (2006). doi:10.1086/505167. 14

[54] Mirocha, J., Harker, G. J. A., and Burns, J. O. In-

terpreting the Global 21 cm Signal from High Redshifts. I.

Model-independent constraints. ApJ, 777:118 (2013). doi:

10.1088/0004-637X/777/2/118. 16

[55] Moore, D. F., Aguirre, J. E., Parsons, A. R., Ja-

cobs, D. C., and Pober, J. C. The Effects of Polarized

Foregrounds on 21 cm Epoch of Reionization Power Spec-

trum Measurements. ApJ, 769:154 (2013). doi:10.1088/

0004-637X/769/2/154. 53, 73

[56] Moore, D. F. et al. New Measurements of Polarized Power

Spectra at 126 and 164 MHz. in prep. (2014). 39, 52, 53

[57] Morales, M. F., Bowman, J. D., and Hewitt, J. N. Im-

proving Foreground Subtraction in Statistical Observations

of 21 cm Emission from the Epoch of Reionization. ApJ,

648:767–773 (2006). doi:10.1086/506135. 122

[58] Morales, M. F., Hazelton, B., Sullivan, I., and Beard-

sley, A. Four Fundamental Foreground Power Spectrum

Shapes for 21cm Cosmology Observations. ApJ, 752:137

(2012). doi:10.1088/0004-637X/752/2/137. 20

[59] Oppermann, N., Junklewitz, H., Greiner, M., Enßlin,

T. A., Akahori, T., Carretti, E., Gaensler, B. M., Goo-

bar, A., et al. Estimating extragalactic Faraday rotation.

ArXiv e-prints (2014). 65

[60] Oppermann, N., Junklewitz, H., Robbers, G., Bell,

M. R., Enßlin, T. A., Bonafede, A., Braun, R., Brown,

J. C., et al. An improved map of the Galactic Faraday sky.

A&A, 542:A93 (2012). doi:10.1051/0004-6361/201118526.

xiv, 59, 65, 80, 81, 82, 89, 117, 119

153



[61] Paciga, G., Albert, J. G., Bandura, K., Chang, T.-C.,

Gupta, Y., Hirata, C., Odegova, J., Pen, U.-L., et al.

A simulation-calibrated limit on the H I power spectrum

from the GMRT Epoch of Reionization experiment. MN-

RAS, 433:639–647 (2013). doi:10.1093/mnras/stt753. 20,

22, 23

[62] Parsons, A., Pober, J., McQuinn, M., Jacobs, D., and

Aguirre, J. A Sensitivity and Array-configuration Study

for Measuring the Power Spectrum of 21 cm Emission from

Reionization. ApJ, 753:81 (2012). doi:10.1088/0004-637X/

753/1/81. 43, 53, 70, 81, 84, 109

[63] Parsons, A. R. and Backer, D. C. Calibration of

Low-Frequency, Wide-Field Radio Interferometers Using

Delay/Delay-Rate Filtering. AJ, 138:219–226 (2009). doi:

10.1088/0004-6256/138/1/219. 35

[64] Parsons, A. R., Backer, D. C., Foster, G. S., Wright,

M. C. H., Bradley, R. F., Gugliucci, N. E., Parashare,

C. R., Benoit, E. E., et al. The Precision Array for

Probing the Epoch of Re-ionization: Eight Station Results.

139:1468–1480 (2010). 45

[65] Parsons, A. R., Liu, A., Aguirre, J. E., Ali, Z. S.,

Bradley, R. F., Carilli, C. L., DeBoer, D. R., Dex-

ter, M. R., et al. New Limits on 21cm Epoch of Reion-

ization from PAPER-32 Consistent with an X-Ray Heated

Intergalactic Medium at z = 7.7. ApJ, 788:106 (2014). doi:

10.1088/0004-637X/788/2/106. xiii, xiv, 22, 23, 35, 39, 52,

53, 81, 93, 95, 97, 99, 101, 104, 107

[66] Parsons, A. R., Pober, J. C., Aguirre, J. E., Carilli,

C. L., Jacobs, D. C., and Moore, D. F. A Per-baseline,

Delay-spectrum Technique for Accessing the 21 cm Cos-

mic Reionization Signature. ApJ, 756:165 (2012). doi:

10.1088/0004-637X/756/2/165. xiii, 20, 37, 39

[67] Pen, U. L., Chang, T. C., Hirata, C. M., Peterson,

J. B., Roy, J., Gupta, Y., Odegova, J., and Sigurdson,

K. The GMRT EoR experiment: limits on polarized sky

brightness at 150 MHz. MNRAS, 399:181–194 (2009). doi:

10.1111/j.1365-2966.2009.14980.x. 63, 64, 73, 80, 122

[68] Pober, J. C., Liu, A., Dillon, J. S., Aguirre, J. E.,

Bowman, J. D., Bradley, R. F., Carilli, C. L., DeBoer,

D. R., et al. What Next-generation 21 cm Power Spectrum

Measurements can Teach us About the Epoch of Reioniza-

tion. ApJ, 782:66 (2014). doi:10.1088/0004-637X/782/2/

66. 22, 109

[69] Pober, J. C., Parsons, A. R., Aguirre, J. E., Ali, Z.,

Bradley, R. F., Carilli, C. L., DeBoer, D., Dexter,

M., et al. Opening the 21 cm Epoch of Reionization Win-

dow: Measurements of Foreground Isolation with PAPER.

ApJ Letters, 768:L36 (2013). doi:10.1088/2041-8205/768/

2/L36. xiii, 21, 52, 53, 84

[70] Pober, J. C., Parsons, A. R., Jacobs, D. C., Aguirre,

J. E., Bradley, R. F., Carilli, C. L., Gugliucci, N. E.,

Moore, D. F., et al. A Technique for Primary Beam Cal-

ibration of Drift-scanning, Wide-field Antenna Elements.

AJ, 143:53 (2012). doi:10.1088/0004-6256/143/2/53. 68,

69

[71] Pritchard, J. R. and Loeb, A. 21 cm cosmology in the

21st century. Reports on Progress in Physics, 75(8):086901

(2012). doi:10.1088/0034-4885/75/8/086901. 14

[72] Pshirkov, M. S., Tinyakov, P. G., Kronberg, P. P., and

Newton-McGee, K. J. Deriving the Global Structure of

the Galactic Magnetic Field from Faraday Rotation Mea-

sures of Extragalactic Sources. ApJ, 738:192 (2011). doi:

10.1088/0004-637X/738/2/192. 65

[73] Röttgering, H. LOFAR, a new low frequency ra-

dio telescope. NAR, 47:405–409 (2003). doi:10.1016/

S1387-6473(03)00057-5. 125

[74] Rybicki, G. B. and Lightman, A. P. Radiative processes

in astrophysics (1979). 55

[75] Sault, R. J., Hamaker, J. P., and Bregman, J. D. Under-

standing radio polarimetry. II. Instrumental calibration of

an interferometer array. A&A Supp., 117:149–159 (1996).

66, 139

[76] Sault, R. J., Teuben, P. J., and Wright, M. C. H. A Ret-

rospective View of MIRIAD. In R. A. Shaw, H. E. Payne,

and J. J. E. Hayes, editors, Astronomical Data Analysis

Software and Systems IV, volume 77 of Astronomical Soci-

ety of the Pacific Conference Series, page 433 (1995). 51

[77] Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E.,

Nolta, M. R., Bennett, C. L., Halpern, M., Hinshaw,

G., et al. First-Year Wilkinson Microwave Anisotropy

Probe (WMAP) Observations: Determination of Cosmo-

logical Parameters. ApJ Supp., 148:175–194 (2003). doi:

10.1086/377226. 7

[78] Stefan, I. I., Carilli, C. L., Green, D. A., Ali, Z.,

Aguirre, J. E., Bradley, R. F., DeBoer, D., Dexter,

M., et al. Imaging on PAPER: Centaurus A at 148 MHz.

MNRAS, 432:1285–1293 (2013). doi:10.1093/mnras/stt548.

52, 53

[79] Sunyaev, R. A. and Zeldovich, I. B. Microwave back-

ground radiation as a probe of the contemporary structure

and history of the universe. ARAA, 18:537–560 (1980). doi:

10.1146/annurev.aa.18.090180.002541. 10

[80] Taylor, A. R., Stil, J. M., and Sunstrum, C. A Rota-

tion Measure Image of the Sky. ApJ, 702:1230–1236 (2009).

doi:10.1088/0004-637X/702/2/1230. 65, 125

154



[81] Taylor, G. B., Carilli, C. L., and Perley, R. A., editors.

Synthesis Imaging in Radio Astronomy II, volume 180 of As-

tronomical Society of the Pacific Conference Series (1999).

25

[82] Taylor, J. and Lidz, A. What do observations of the

Lyman α fraction tell us about reionization? MNRAS,

437:2542–2553 (2014). doi:10.1093/mnras/stt2067. 5

[83] Thompson, A. R., Moran, J. M., and Swenson, G. W.,

Jr. Interferometry and Synthesis in Radio Astronomy, 2nd

Edition (2001). 25, 38, 139

[84] Tingay, S. J., Goeke, R., Bowman, J. D., Emrich, D.,

Ord, S. M., Mitchell, D. A., Morales, M. F., Booler,

T., et al. The Murchison Widefield Array: the Square

Kilometre Array Precursor at low radio frequencies. ArXiv

e-prints (2012). 125

[85] Tucci, M. and Toffolatti, L. The Impact of Polar-

ized Extragalactic Radio Sources on the Detection of CMB

Anisotropies in Polarization. Advances in Astronomy,

2012:624987 (2012). doi:10.1155/2012/624987. 68, 79, 121

[86] Westfold, K. C. The Polarization of Synchrotron Radia-

tion. ApJ, 130:241 (1959). doi:10.1086/146713. 55, 56

[87] White, M., Carlstrom, J. E., Dragovan, M., and

Holzapfel, W. L. Interferometric Observation of Cos-

mic Microwave Background Anisotropies. ApJ, 514:12–24

(1999). doi:10.1086/306911. 41

[88] Williams, C. L., Hewitt, J. N., Levine, A. M., de

Oliveira-Costa, A., Bowman, J. D., Briggs, F. H.,

Gaensler, B. M., Hernquist, L. L., et al. Low-frequency

Imaging of Fields at High Galactic Latitude with the

Murchison Widefield Array 32 Element Prototype. ApJ,

755:47 (2012). doi:10.1088/0004-637X/755/1/47. 79

[89] Wilson, T. L., Rohlfs, K., and Hüttemeister, S. Tools

of Radio Astronomy. Springer-Verlag (2009). doi:10.1007/

978-3-540-85122-6. 55, 60

[90] Wolleben, M., Landecker, T. L., Reich, W., and

Wielebinski, R. An absolutely calibrated survey of polar-

ized emission from the northern sky at 1.4 GHz. A&A,

448:411–424 (2006). doi:10.1051/0004-6361:20053851. xiv,

61, 62, 63

[91] Wouthuysen, S. A. On the excitation mechanism of the 21

cm interstellar hydrogen emission line. Physica, 18:75–76

(1952). doi:10.1016/S0031-8914(52)80143-0. 14

[92] Zahn, O., Reichardt, C. L., Shaw, L., Lidz, A., Aird,

K. A., Benson, B. A., Bleem, L. E., Carlstrom, J. E.,

et al. Cosmic Microwave Background Constraints on the

Duration and Timing of Reionization from the South Pole

Telescope. ApJ, 756:65 (2012). doi:10.1088/0004-637X/

756/1/65. xiii, 9, 10

[93] Zaldarriaga, M. Polarization of the microwave background

in reionized models. Phys. Rev. D, 55:1822–1829 (1997).

doi:10.1103/PhysRevD.55.1822. 8

[94] Zaldarriaga, M., Spergel, D. N., and Seljak, U. Mi-

crowave Background Constraints on Cosmological Parame-

ters. ApJ, 488:1–13 (1997). 7

[95] Zheng, H., Tegmark, M., Buza, V., Dillon, J. S.,

Gharibyan, H., Hickish, J., Kunz, E., Liu, A., et al. MI-

TEoR: a scalable interferometer for precision 21 cm cosmol-

ogy. MNRAS, 445:1084–1103 (2014). doi:10.1093/mnras/

stu1773. 141

155


	Title
	Copyright
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	I Preliminaries
	1 The Epic of Reionization
	1.1 The Early Universe
	1.2 How Do We Measure The Earliest Galaxies?
	1.2.1 High Redshift Lyman Alpha Emitters
	1.2.2 Hints from the CMB
	1.2.3 Hyperfine Transition of Neutral Hydrogen

	1.3 Spin Temperature
	1.4 Characterizing Fluctuations of the Spin Temperature
	1.5 Observational Prospects
	1.5.1 Foregrounds
	1.5.2 Current Upper Limits to the Power Spectrum


	2 Interferometry
	2.1 A Thought Experiment
	2.2 Polarimetry
	2.3 The Time and Frequency Dependence of Visibilities
	2.4 The Delay Spectrum

	3 The Donald C. Backer Precision Array to Probe the Epoch of Reionization
	3.1 Instrument Design
	3.2 Deployments of the PAPER Array


	II The Problem of Polarization
	4 Initial Thoughts
	4.1 Polarization at Meter Wavelengths
	4.1.1 Why is Synchrotron Emission Polarized?
	4.1.2 Faraday Rotation
	4.1.3 Methods of Depolarization

	4.2 Recent Observations
	4.3 Beam Leakage
	4.4 Sparse uv Sampling and Wide-field Polarimetry
	4.5 The Power Spectrum of a Single, Polarized Source

	5 Simulations
	5.1 Parameterizing the Polarized Sky
	5.2 Results
	5.3 Consistency Tests
	5.3.1 Two-Dimensional Power Spectrum and Diffuse Emission
	5.3.2 Correlating Polarization Vectors

	5.4 Mitigating Leakage

	6 Power Spectra
	6.1 Data Processing
	6.1.1 RFI Excision
	6.1.2 Compression
	6.1.3 Crosstalk Removal
	6.1.4 Calibration
	6.1.5 Foreground Removal
	6.1.6 Averaging Multiple Days
	6.1.7 Final Processing
	6.1.8 System Temperature

	6.2 Power Spectra
	6.2.1 Covariance Removal
	6.2.2 Results
	6.2.3 Ionospheric Effects

	6.3 Updated Polarization Fractions
	6.3.1 Scaling the Simulations
	6.3.2 Why is x Related to the Polarized Fraction?
	6.3.3 On the Applicability of the Simulations
	6.3.4 Comparison to Other Measurements
	6.3.5 Closing Remarks



	III Polarimetric Tools
	7 The Discrete Rotation Measure Transform
	7.1 Background and Justification
	7.2 The Mechanics of the DRMT
	7.2.1 Example Spectra
	7.2.2 Inverse Transform
	7.2.3 Noise Characteristics

	7.3 Comparison with the Discrete Fourier Transform

	8 New Methods for Polarization Calibration
	8.1 Polarization Calibration in Redundant Arrays
	8.2 Beamforming


	9 Conclusion
	Glossary of Symbols and Abbreviations
	References

