A One Degree of Freedom Juggler
in a Two Degree of Freedom Environment

M. Bihler, D. E. Koditschek, and P. J. Kindlmann !

Center for Systems Science
Yale University, Department of Electrical Engineering

Abstract

We develop a formalism for describing and analyzing a very simple
representative of a class of robotic tasks which require “dynamical
dexterity”, among them the task of juggling. We introduce and re-
port on our preliminary empirical experience with a new class of
control algorithms for this task domain that we call “mirror algo-
rithms”.

1 Introduction

We are interested in robotic task domains involving dynamical en-
vironments. In particular, we feel that a number of novel control
problems arise in the context of coupling computer controlled me-
chanical manipulators to dynamically active environments whose in-
put structure changes in response to the robot’s actions. In this
paper we consider a simple representative from a range of robotic
tasks associated with dexterous capabilities that might be grouped
under the general rubric of “juggling”. We understand this term to
include those tasks requiring throwing and catching, or (as in this
paper) beating and batting, or any other interaction with an ob-
ject (or multiple objects) which would otherwise fall freely in the
earth’s gravitational field. Such tasks share the property of present-
ing non-trivial dynamical environments whose characteristics change
intermittently subject to excitation from the robot. It seems fair to
say that the only systematic work in this realm to date has been the
pioneering research of Raibert [3].

In a previous paper [1], we developed a formalism for describing
and analyzing a particular task called the “vertical one-juggle”. This
involves controlling the trajectory of a single body — a “puck” —
constrained to lie on a (“Irictionless”) plane turned into the earth’s
gravitational field by repeated impacts with a bar actuated at a rev-
olute joint — a one degree of freedom “robot” — in such a fashion
that the puck, regardless of its initial position and velocity, eventu-
ally attains a stable periodic orbit passing through some arbitrarily
specified apex point on the juggling plane. In that paper, we under-
took merely to characterize the “environmental control problem.”
Namely, adopting the phenomenological point of view of the puck,
we examined the controllability and stabilizability of the fourth or-
der dynamical system resulting from its response to the two possible
robot inputs: time and velocity of impact. The intent was to un-

!This work has been supported in part by PMI Corporation, GMF
Robotics Corporation, Inmos Corporation and the the National Science
Foundation under grant DMC-8552851, a Presidential Young Investigator
Award held by the second author.

IEEE Catalog Number 88TH0234-5

91

derstand the consequences of any logically possible impact sequence.
This abstract characterization completely ignored the fact that the
robot is itself a dynamical control system. Left unexamined were
the questions of whether a particular schedule of impacts could be
achieved by a real robot, and how the robot might be best be com-
manded to achieve that schedule.

In this paper we present our preliminary empirical experience
with a computer controlled one degree of freedom revolute robot
and frictionless puck on a near-vertical plane. We first attempt to
implement an environmental control policy which obtains from a lo-
cal linear analysis of the abstract environmental control problem.-
Impact schedules resulting from this policy, while provably correct,
(they achieve local stablity around any desired vertical one-juggle),-
are seen to lack robustness (in a sense to be made precise below),-
and no robot control procedure that we have employed to date to
implement such a schedule succeeds even in keeping the puck aloft,
much less in effecting a stable vertical one-juggle. We next intro-
duce a family of surfaces in the six dimensional space resulting from
the cross product of the second order robot phase space with the
fourth order puck phase space. Trajectories in the puck phase space,
when “lifted” onto this surface and then projected down to the robot
phase space, yield explicit robot reference trajectories. The lifted and
projected trajectories have an intuitively appealing character which
leads us to name this procedure the mirror algorithm. When our
robot is forced toward this surface, that is, when we force it to track
the trajectory specified by a mirror algorithm applied to a free falling
puck, the result is a successful vertical one-juggle. We present data
from a variety of experiments which demonstrate this success. We
defer to a paper presently in preparation the proof that the mirror
algorithm results in a correct environmental control law.

The paper is organized as follows, In the next section we provide
a description of the experimental apparatus in question, and develop
a simplified mathematical model of the robot-puck dynamical inter-
action. In Section 3 we review the earlier results presented in [i]
which formalize the notion of a “vertical one-juggle” and prove that
it is achievable. Finally, in Section 4 we describe the results of our
experiments to date.

2 The Empirical and Analytical Setting

2.1 Experimental Apparatus
Pucf(‘
gg:ls::n HPIDCS "Digitizing Table”
1 Puck
Biltard
Cushion
S
= S ﬂ‘:u_“."ﬁ‘_
TR
[@0@4prmcs e
] IRERAREEEERTEN
{ Direct Drive

Development System
Uses IBM AT as
Human Interface

Motor Controlier Molor

Figure 1: The Yale Juggler

The physical apparatus consists of a puck, which slides on an in-
clined plane and is batted successively by a simple “robot”: a bar
with billiard cushion rotating in the juggling plane as depicted in fig-
ure 1. All intelligent sensor and controller functions are performed
by a three node distributed computational network formed from the
Inmos transputer based Yale XP/DCS control node [2]. The Inmos
T800 is a 32 bit 10 MIPs RISC chip which includes an onboard float-
ing point unit capable of 1 Milop performance. Each transputer pro-
vides four independent 5, 10 or 20 MHz serial DMA channels, so any
node can communicate with up to four neighbors while simultane-
ously executing its own program with no affect upon either computa-
tional or communications rate (after initial start up overhead). Our
XP/DCS CPU board complements thie Transputer’s modular and
flexible character by providing fast external memory, support for the
four serial communication links, two fiber optic links, and an 1/0 ex-
pansion connector. The board’s backplane connector is pin compat-
ible with the INMOS ITEM Development System. The plug-in I/O
board enhances the Transputer’s computational and communication
power with a bidirectional latched 32 bit IO bus with full handshak-
ing support. Ialf of this board is allotted to a wire-wrap prototyping
area allowing for easy customization to specific I/0 needs. The cost
of each mother/daughter board set at the time of writing is slightly
over.$2000.

In order to move the bar according to some puck dependent con-
tral algorithm, the puck’s position and velocity in both directions
on the plane must be measured. Presently, this is accomplished by
placing an oscillator inside the puck and burying a grid in the jug-
gling plane, thus imitating a big digitizing tablet. On the back of the
plane, a simplified T8-based XP/DCS node is used as a smart sensor.
It measures the voltages induced in the loops by the puck. The puck
position in the plane is computed from the zero and first order mo-
ments, This information is used to estimate the puck’s state: we use
a standard linear observer to reduce measurement noise in position
and velocity data. Each puck state measurement is communicated
asynchronously via fiber optics to the Motor Controller Node. This
sampling and communication process is performed at a rate of 1kilz.
In the near future we intend to introduce a vision system in order to
handle several pucks, or move off the plane into three space. We are
fairly confident that the attendant decrease in sampling rate will not

92

affect the experimental results significantly.

The main control node is the Motor Controller, dedicated to com-
manding a high torque dc servo actuator donated to the robotics lab-
oratory by the PMI Corporation. This Yale XP/DCS node receives
puck information from the sensor node, reports logging data to the
logging node, and implements the control algorithm. Specifically, this
involves interfacing to the motor, performing noise filtering, detect-
ing puck states (up,top,down,impact), computing the desired motor
position and velocity for the next impact, implementing a control
strategy to achieve that, and predicting the puck states. Of course,
numerous safety checks and considerable general housekeeping must
be performed as well. The sampling time of this process is about 600
psec.

For debugging and documentation, data about the puck as well
as the motor are logged online to a third node on a standard INMOS
B004 board in the IBM/AT.

The experiences with the XP/DCS, the transputer and the devel-
opment environment derived from this application are very encour-
aging. No single number can capture the ease of use and the little
time spent with system overhead. Given the T800’s intrinsic float-
ing point capability, and the mathematical function library, formulas
were programmed {in OCCAM, the C-like native compiler) almost
directly from the blackboard with no attempt at code optimization.
In spite of substantial calculations, and a great deal of data logging
and error handling overhead, very high sampling rates were achieved.
The system operates capably in a high EMI environment in conse-
quence of the low cost 5MHz fiber optic units from Hewlett Packard
built into the Yale XP/DCS boards.

2.2 A Simplified Mathematical Model

In the following discussion, refer to the sketch of the system given
in Figure 2. Let p; denote the ball position at impact; p;, the ball
velocity just before; and p';, the velocity just after impact, all as
seen from frame Fy in the robot’s base. As announced above, we
ignore the robot’s dynamics: actuator positions and velocities are
assumed to be specified arbitrarily and are not at all influenced by the
interaction with the ball. This derivation is based on the following
additional simplifying assumptions.

First, we assume here that all interactions between ball and robot
during impact can be modelied adequately as an instantaneous event,.
Namely, the velocity component of the ball perpendicular to the bar,
after impact j is given as in [4],

lé; = -« ‘z'_,- + (1 + a)uz‘j

n
where lé; is the perpendicular velocity component of the ball after
impact in the F) coordinate frame, o € (0,1) is the “coefficient of
restitution”, and ua; = ||p;]|6 is the linear velocity of the robot at
the impact point p;. Moreover, it is assumed that the puck’s velocity
component parallel to the robot bar are unchanged by the impact.
Finally, spin effects and friction during flight are neglected as well.

Under these conditions, the velocity of the ball after impact in
the F; coordinate frame with origin at p; is

w10
p-"m[O —a

To transform this back into Fy we use

. 0 . ’
} b + [1+a}“1,J=AIPj +buz; (2)

cos f;

sinf); cosd;

o

While §; = arctan 2 is a function of the ball position at the

J
moment of impact, we assume that the robot velocity is independent
of the ball velocity, thus

—sin f;]

'p; = RYpj,
and, (2) may be written as

Pj = Mjp; + bjuj, 3)

where
A '

Mj é RjAR}‘; b]' = R]'b .

Denote the space of control inputs as If = IR2, the state space as
W = IR? and the complete state of the ball as

g
i
—
=T~
[—
It
N B ™ 8

This defines a discrete dynamical system,

L
f(w;,) = [p’ TPt = OuL;]

w; =
s+ P; — 2auyj

|

with @ = [10 }
29

The quantity u; ; denotes the time elapsed between impact j and
(j+1). Evidently, this interval uniquely specifies 8,1, the angle of the
Tobot’s joint at the next impact: we may regard u; ; as a robot control
input to the environment. Recall, that ug,; is the linear velocity of
the robot at the instant of impact at point p; — a second control
input. Thus, the robot acts upon the environment at intermittent
times and positions which are a function of their mutual dynamical
interaction.

p; + (Mip; + bjua,j)u,; — auf ;
M;p; + bjua,; — 20w 5

] ()

Figure 2: The Impact Event

93

3 The Environmental Control Problem

In this section we review the results presented in our earlier paper
[1). In Section 3.1 we provide a formal definition of the task, and in
Section 3.2 we show that the task is achievable.

3.1 The Vertical One-Juggle

Probably the simplest systematic behavior of this environment imag-
inable (after the rest position), is a periodic vertical motion of the
puck in its plane. Specifically, we would like to be able to specify -
an arbitrary “apex” point in the juggling plane, and from arbitrary
initial puck conditions, force the puck to attain a purely vertical pe-
riodic trajectory which passes through that apex point at its zenith.

Since a purely vertical trajectory requires zero horizontal velocity,
z = 0, and a fixed vertical impact velocity, *, from a specified impact
height, z = 0, implies a specified zenith position, we are led to the
following definition. Let the task subspace of the vertical one-juggle
be the plane

Téspan ={weW:&=0, z=0}.

SO D
-0 oo

We will say that a feedback law, g : W — U, constitutes a vertical
one-juggle with respect to the task, w* € 7, if w* is a fixed point of
the closed loop system,

* * AN
w = fg(w) fy(w) = f(w,g(w)),
and is a stable attractor of the resulting discrete dynamics.

Proposition 3.1 Given the discrete dynamical control system, (4),
and a point, w* € W, there exists a feedback law, g : W — U such
that w* is a fized point of the closed loop map,

w* = fy(w"),

~if and only if

() wreT;
(i) g(w)=u 2 [~2ls]z
14

Proof: Consider the fixed point condition

p+p u —au}]
Lf
P — 2auy

w= f(w, g(w)) = [

Elimination of §’ directly results in

1) =0
(2) uj(w*)= -2z~

g
With these conditions and

P = Mp+buy = auy
we obtain two more conditions

3 z*=0
(@) uj(w*)= 135

where conditions (1),(3){(2),(4)] are equivalent to (i)[(ii)].

This result shows, on the one hand, that only a point in 7" may
be fixed by feedback, and, on the other hand, that an appropriate
constant, ¥* may be found to fix any point of 7. We remark, in
passing, that the same constant offset, u* fixes every point on a line
in the task plane, hence by itself, could not possibly stabilize any
particular point on that line (here, stabilize is being used to denote
the property of attractivity as well as stability).

3.2 Local Stabilizability of the Task Plane

We next observe that the system is locally controllable at any point
in the task set. Since this implies local stablilizability — that is, the
existence of an affine feedback law which arbitrarily places the poles
of the linearized closed loop system — it serves to demonstrate that
the vertical one-juggle as defined in Section 3.1 is logically achievable.

Proposition 3.2 If
w*eT -0,

and g fires w*,
f(w*; g(w*)) = w*,
then system’ (4) is locally controllable at (w*, g(w*)).

Proof: According to Proposition 3.1 , g fixes w* if and only
if g(w*) = w*. Thus the system is locally controllable if and
only if -

A = [Dyf](w*, g(w")) = [Dw f] (w*, v*)
B = [Dufl(w*, g(w*)) = [Duf] (w*, ")

comprise a completely controllable pair.

Taking partial derivatives of (4) gives

1 20E% vt 0 0 0
a=10 1 0 -—avz* | 5 | & 1+ a)vz*
1o 2% 0 ' 0 0
0 0 0 —a —g 1+a

where v denotes the constant

v=—=

g

1t suffices to show that four of the eight columns of the ma-
trix (B, AB, A2B, A3B) are linearly independent. The four
columns (B, A?B) we consider are

0 0 452 (20 - 3) Bl(l+0)3-a)

“lp(l+ae) #(22-20+1) -Ir(l-a+e?)

0 0 4 (1-0) -LEZ(1+0)2-0)
—-g 1+« —alyg o?(1+4)

The determinant of this matrix,

16 2*¢
F;—*—za(l + 0)2

is nonzero for any w* € 7 — 0.

o

According to linear control theory, if (4, B) is a completely con-
trollable pair then for any desired set of poles whose complex ele-
ments appear in conjugate pairs,

A= {’\i}?zl cc

94

there exists a matrix, Ky € IR?*4 such that the closed loop spectrum
achieves that set,

spectrum (A + BKp) = A.

Now suppose that the feedback algorithm, g, is chosen to be

9(w) £ v + Ka(w — w*). (5)

Since

[Dufel(w*) =[Duf](w*,g(w)) + [Duf](w", g(w")) [Dug] (")

= A+ BK,,

it follows that any KA for which A*C D! C C(the open unit disk
in the complex plain) yields a feedback law, g, which achieves the
vertical one-juggle as defined in Section 3.1.

A few remarks are now in order. The local nature of our task
definition — asymptotic stability of a fixed point — afforded an easy
proof that it may actually be attained. Local notions have played an
historically predominant role in systems theory for just this reason.
Indeed, decades worth of succssful activity in the theory and practice
of linear control are a testament to the suitability of this point of
view. However, as is well known, fixed parameter local conditions
may be deceptively reassuring.

To begin with, the determination that a particular equilibrium
state is asymptotically stable provides very little help in estimating
the domain of attraction and the domain of “containment” around
that state. The former is comprised of those initial conditions which
tend asymptotically toward the equilibrium state, while the latter
is comprised of those initial conditions which are guaranteed to re-
main in some specified neighborhood of the equilibrium state. Since
our juggling plane, in contrast to its analytical model developed in
Section 2.2, is not truly infinite, achieving a particular containment
region will be crucial to the success of any real juggling strategy,
regardless of its domain of attraction.

If it is stable, trajectories are assured to be contained in a suffi-
ciently small neighborhood of an equilibrium state by the guarantee
that they originate in some still smaller neighborhood. The relation-
ship between the region of origin and region of containment may be
conservatively estimated by recourse to a Lyapunov function. How-
ever, a constructive proceedure for determining Lyapunov functions
is available in general only for linear systems. Thus, if the feed-
back law is determined using local linear techniques, estimating the
domain of containment may be conveniently accomplished only in
a conservatively small neighborhood of the equilibrium state which
may be of little practical use.

A second important and well known property of asymptotically
stable linear systems is that of structural stability. As long as the
closed loop linear system is “hyperbolic” — in this case, as long as
its eigenvalues are not on the unit circle in T— sufficiently small
perturbations i its parameters will not cause a loss of stability. Yet
structural stability, a necessary attribute of any physically mani-
fested process, is not yet sufficient to ensure a physically prescrib-
able process: synthesis requires robustness. A robust process admits
a uniform measure of perturbation over a set of data points afford-
ing a means of determining just how small “small deviations” from
the nominal may be. Since the parameters of the ultimate closed
loop system with spectrum A are chosen according to a numerical
procedure which finds a matrix Kj, as a function of the pair A, B,
a controllable but ill conditioned pair may result in large depar-
tures of the closed loop parameters from their desired values either
because the numerical procedure is very sensitive or because of small
departures in implementation from the numerically determined value
of K. Thus, pole placement in the face of ill conditioned data is not
robust. ’

4 Robot Implementation

The preceding analysis was intended as an abstract justification of
the possibility of achieving the vertical one-juggle by addressing the
effect of arbitrary impact sequences upon the robot’s environment.
In this section we describe our preliminary efforts to implement a
successful vertical one-juggle with the physical apparatus sketched
in Section 2.1. First, in Section 4.1, we describe the failure of our
efforts to turn the discrete impact rule (5) into a practicable juggling
algorithm. Then, in Section 4.2, we introduce a new synthesis pro-
cedure for realizing a vertical one-juggle which explicitly takes the
robot control problem into account. This procedure accomplishes the
specified task: we provide data from representative runs of successful
vertical one-juggles.

4.1 Impact Schedules Resulting from the Linearized
Discrete Dynamics

For a variety of task points, w* € 7, we chose a variety of spectra,
A, in the open unit disk, D!, determined K using a numerical pro-
cedure, and determined an ideal impact schedule according to the
affine feedback law, g, described by (5). We then induced our robot
to deliver a close approximation of this impact schedule via an ad hoc
procedure described below. In no case of this series of experiments
did we observe a successful vertical one-juggle. Even the best runs
ended with the puck striking the boundaries of the juggling plane
after three successive impacts. Our explanation for this failure now
follows.

First, numerical simulation showed that the domain of contain-
ment of the idealized closed loop discrete dynamical system resulting
from (5) was unacceptably small. For certain arbitrarily chosen val-

ues of w*, pole assignments, A, could be found that resulted in a large
domain of attraction. However, we could find no pole assignments
for physically realizable settings of w* which achieved a domain of at-
traction whose diameter along the 3 axis of W was greater than 6 %
of the value 2*. In all of these simulations, the trajectories within the
domain of attraction leave the physical boundaries of actual juggling
plane. For typical settings, the domain of containment within the
juggling plane was no larger than 2 % of the desired fixed point mag-
nitude. This is smaller than the error tolerance of the puck position
sensing sensing system. We conclude that the linearized analysis of
even this simplified discrete nonlinear system is inadequate to the
desired task. In formal terms, the very definition of the task in 3.1
may be too weak.

Second, for all values of w* examined, numerical tests revealed
that the pair (A4, B), while completely controllable, was poorly con-
ditioned. We conclude that our experimental gain settings were not
sufficiently close approximations of K even to guarantee stability,
much less containment.

Of course, the key to success or failure of even a practicable feed-
back scheme stemming from the discrete analysis would depend upon
the details of how the robot is commanded to implement the impact
schedule required by (5). For, as we have previously described, the
analysis of the environmental control problem in Section 3, provides
an abstract characterization of what is logically possible assuming
that the robot is a perfect “feedback agent”. It remains entirely
silent concerning the manner in which a particular impact schedule
is achieved. Several different implementation procedures were at-
tempted; the best performance seemed to result from the following
procedure:

1. Since the feedback algorithm (5) is based upon the states of the
puck just before impact, a “start-up” procedure at time j = 1is

95

required. For simplicity, we start from the desired apex point,
and assume that the first impact occurs at 1w, = w*: the robot
is commanded to hit the puck with a velocity obtained from
applying the feedback law (5) to the estimated impact state:
uj=1 = g(11). Of course, in this case, g(w*) yields ug j=1 = u}
given in Proposition 3.1.

. Just before the actual first impact, we measure and estimate
the true state of the puck before impact, wy, and evaluate the
feedback law, g(w;) to get a desired time inverval to next hit,
@iy j=1. Now we use the dynamical model (4) to predict 1, with
u3 set to the actual measured impact velocity, and u; set at the
nominal value, @y ;4.

3. The desired velocity of the next impact, U3 j=2, is determined
by applying the feedback law to the predicted next impact
point, g(i;). Now 1, prescribes the robot’s angle, 8;, at sec-
ond impact, and, together with up j—5, prescribes the robot’s
angular velocity, 8; at second impact.

. To implement the desired robot states for the second impact,
we use a simple open loop fixed torque control strategy which
works as follows. Acceleration from a rest position to §; takes
time t,.c. Together with @, this yields the robot’s rest position.
During the puck flight, its states are predicted ... in advance.
When the predicted position crosses 8;, the robot starts accel-
erating until the second impact occurs. Measurements made
after the fact show that this strategy yields satisfactory accu-
racy.

5. The procedure continues using the measured estimate of the
forthcoming impact, w;, to obtain a value for uy,; from g(w;),
(5), and a predicted next impact state, wWi41, from the model
(4), to generate a value for uy ;11 from g(1;41).

Neither this strategy nor any of its variations resulted in a viable
vertical one-juggle. Even had the linearized analysis resulted in a ro-
bust feedback law with a physically realizable region of containment
we now list some of the reasons for our feeling that it fails to provide
a satisfactory synthetic framework in the present task domain.

An initially attractive feature of the discrete analysis is that it
confirms the intuition that only state information at impact should
be required for a successful juggling algorithm — that full trajec-
tory information is redundant. Conceptual appeal notwithstanding,
in reality state information at or very near the impact event is ex-
ceedingly difficult to measure. Our experimental apparatus, for ex-
ample, derives estimates of the state at impact by recourse to full
state information during flight. The discrete analysis is “blind” to
such realities: it does not “tell” the designer how best to use the
continuous data.

Just as they necessarily rely upon the accuracy of the impact
state measurement, algorithms resulting from the discrete analysis
critically depend upon the accuracy of the impact parameters and
idealizations of the model — the coefficient of restitution; the validity
of the zero friction assumption; a zero puck diameter — because this
information is explicitly used to compute the next desired impact
‘states and the next robot inputs. These features do not contribute
to a practicable scheme. It is necessary, for example, to correct: for
the error between the next predicted and the actual impact position.
How to do that, is left to the designer.

Finally, and obviously, as pointed out in the very beginning of
the paper, this algorithm only specifies desired robot control inputs
to the environment at the moment of impact. It is completely up
to the designer to solve the robot control problem, and this leads
to the kind of ad hoc implementations exemplified by steps 1 - 5
above. We seek, instead, some automatic procedure for generating
successful and provably correct robotic juggling behavior.

4.2 The Mirror Algorithm and its Implementation

We now introduce a procedure which meets the goals stated in the
previous paragraph. To appreciate the intuitive origins of the new
algorithm, consider first the problem of a prismatic one degree of
freedom robot in a one degree of freedom environment. That is,
there is a single puck (of unit mass) constrained to fall in only the
vertical direction, and a piston which moves up and down to stike
it precisely. If it is desired to bring the puck to a periodic orbit
(allowing only instantaneous contact to preclude simply resting the
puck on a fixed piston) whose zenith js zq, then note that the total
energy of the puck,

1,
. =52 + 92,
when it attains this zenith at zero velocity is
Nd = 9%d-

Supposing that r measures the height of the robot, consider a robot
trajectory determined by the following rule

—x(w)z. (6)
The reader may note that an impact occurs either in the case of exact
tracking r(t) = z(t), or otherwise, only when both the robot and the
puck achieve zero height. In the latter case, the robot describes a
distorted “mirror” reflection of the puck’s trajectory. The reader may
note as well that since we neglect friction during the puck’s flight,

we may assume that 7 = 0, hence,

r= —-{K’,o + Kl[Tld - TI(Z’ 2)]}2

* = —k(w)z.

Now passing to the discrete impact system, it is now not hard to
show that with

we satisfy the fixed point condition of Proposition 3.1 (in the appro-
priately smaller dimensional phase space). Further analysis reveals
the appropriate choice of k; to stabilize this fixed point. Thus, we
have a procedure which makes explicit use of the full puck trajectory,
completely specifies the robot’s behavior, and results in a provably

correct vertical one-juggle, when the robot and environment have the

same “cartesian” degrees of freedom.

We now describe the manner in which this idea “scales” to the
case of a one degree of freedom revolute robot operating in the two
degree of freedom cartesian environment presented in Section 3. Con-
sider a scalar valued function,

p:PxXW-=1R,

on the phase space of the two degree of freedom puck, W, and a
one degree of freedom robot, whose angular position and velocity we
denote by p = (6,8). In particular, define

o(p, w) 29+ k(w) - atan (2) — kg (z — z").,

where k(w) was defined in (6). Notice that § is free in ¢, hence,
denoting the configuration space of the robot as C, so that P £
TC = C x IR, we may think of it as a scalar valued map on C X W.
Since 8¢ /38 # 0, the zero level,

SE ¢l = {(8,w) €C X W : (8, w) = 0},

defines a smooth co-dimension one surface in C X W according to the
implicit function theorem. Similarly, the “impact surface”, the zero
level of a

¥(p,w) = 0 - atan (z/a),

\ . . A
defines another smooth co-dimension one surface in 7 = 9~0} C
C x W. Note that 7 intersects S transversely, since grad ¢ is linearly

96

independent of grad ¢ , thus, S N Z is a smooth three-dimensional
manifold in C X W, again using the implicit function theorem applied
to the IR? valued map, f & (¢,%). In particular, this manifold -
may be parametrized by (z,#,), as is seen by solving f = 0. This
reasoning shows that the discrete dynamical system on (z,#, 2, #) of
Section 3 induces a lower dimensional discrete dynamical system on
(x,#,%) as long as any robot trajectory is assumed to lie in.S. We
defer to a paper presently in preparation the proof that this family of
dynamical systems may be stabilized around point in the task plane
w* € T — {0} by a suitable adjustment of the gains kg, K1, K9.

It is evident any trajectories in W generate trajectories in S, and,
therefore, in P according to the rule :

6 = —k{w) - atan (g) + Ky (z — z*).

Thus, having chosen the feedback gains, ko, to fix a desired task
point, w*, and &y, k; to make it an attractor, according to the rea-
soning sketched above, the actual robot implementation is immedi-
ate. We simply force our robot to track the desired trajectory using
standard PD techniques. This procedure results in empirical success
as illustrated by the sample plots of actual runs presented in the
figures below.

In all of the figures, the units are in inches (rescaled — made
skinnier to fit on the conference mats) from the motor axis which
is perpendicular to the plane. In each run, the desired apex point
was set at ¢ = 11 and z = 31 inches, the puck was dropped from
an arbitrary initial position (marked on the plot), and roughly 10
impacts were recorded. The juggler functions reliably for many more
impacts (as the video demonstration accompanying this paper shows)
but there is a problem displaying the continuous trajectories clearly -
on the plots. Figure 3 shows a run from an initial condition to the
right and considerably below the apex point. Figure 4 shows a run
from an initial condition to the left and considerably below the apex
point. Figures 5 and 6 show runs from initial conditions higher from
both left and right than the apex point.

Acknowledgements

We would like to acknowledge the INMOS Corporation, GMF Robotics
Corporation, and PMI Corporation whose support, in conjunction
with an NSF Presidential Young Investigator Award held by the sec-
ond author, has made_ this research possible.

References

[1] M. Biihler and D. E. Koditschek. A prelude to juggling. In
Conference Presentation: 26" IEEE Conference on Decision and
Control, pages (paper available from authors — not in proceed-
ings), Los Angeles, CA., Dec. 1987.

[2] F. Levin, M. Biihler, and D. E. Koditschek. The Yale Real-Tiine
Distributed Control Node. In Oregon State University Conference
on Parallel Processing, page , Oregon State University, Portland,
QOre., Apr 1988.

[3] Marc H. Raibert. Legged Robots That Balance. MIT Press, Cam-
bridge, MA, 1986.

[4] J. L. Synge and B. A. Griffith. Principles of Mechanics. McGraw
Hill, London, 1959. ’

' 64.0 - ' 64.0 -

56.0 - 56.0 1 i,}
48.0 1 48.0 -
40.0 A | 40.0 |

32.0 W 32.0

24.0 - 24.0

16.0 4 16.0 S

8.00 8.00 -

.000 T T 1 —~— . .000 1 1 T 1
.000 4.00 8.00 12.0 16.0 .000 4.00 8.00 12.0 16.0
Figure 3: Initial Condition Low and to the Right | Figure 5: Initial Condition High and to the Right

64.0 - 64.0 1

56.0 - 56.0 -

48.0 - 48.0 A1

40.0 A 40.0 -

32.0 4 32.0 |

24.0 - 24-0‘11

16.0 1 16.0 A

8.00 - 8.00 -

.000 T ? -t - .000 1 ~ T 1
.000 4.00 8.00 i2.0 16.0 .000 4.00 8.00 12.0 16.0

Figure 4: Initial Condition Low and to the Left Figure 6: Initial Condition High and to the Left

97

