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Abstract

Resonance energy transfer has become an indispensable experimental
tool for single-molecule and single-cell biophysics. Its physical underpin-
nings, however, are subtle: It involves a discrete jump of excitation from
one molecule to another, and so we regard it as a strongly quantum-
mechanical process. And yet, its kinetics differ from what many of us
were taught about two-state quantum systems; quantum superpositions
of the states do not seem to arise; and so on. Although J. R. Oppenheimer
and T. Forster navigated these subtleties successfully, it remains hard to
find an elementary derivation in modern language. The key step involves
acknowledging quantum decoherence. Appreciating that aspect can be
helpful when we attempt to extend our understanding to situations where
Forster’s original analysis is not applicable.

The phenomenon of nonradiative resonance energy transfer, often called “Forster”
or “fluorescence” resonance energy transfer (FRET), has become a central tool
in biophysical instrumentation [1], starting from the demonstration that it could
be observed at the single-molecule level in room-temperature, aqueous solu-
tion [2]. Today FRET-based sensors detect intra- and intermolecular motions,
local chemical environment, and even mechanical forces [3], both in vitro and
even inside living cells, with high time resolution.

FRET displays both classical and quantum aspects. When we discuss it,
we often imagine an excitation state of a fluorophore as a discrete thing that
can be transferred from a donor to an acceptor fluorophore intact, as basketball
players pass the ball. That picture never mentions the possibility of quantum-
mechanical superposition states, in which an excitation is delocalized (simul-
taneously located on two different fluorophores), even though we know that
two-state quantum systems generally do show that phenomenon. Also, most
descriptions tacitly assume that the transfer can be described by a fixed proba-
bility per unit time; that is, the transfer follows a rate equation with first-order
kinetics. Again, however, two-state quantum mechanical transitions generally
do not behave in this classical way (see Sect. 1 below).

In short, although we might have expected behavior intermediate between
the classical and quantum regimes, instead FRET seems to involve fluorophores
simultaneously displaying strongly quantum behavior (discrete energy levels),
but also strongly classical behavior (no superpositions, localized excitations,
first-order rate equations). It is worthwhile to see how this is possible.

The original quantum derivations by Oppenheimer and Forster [4-6] ap-
pealed to the “golden rule” of quantum mechanics [8]. However, Physics text-
books present that result in a way that seems applicable only for transitions to
or from a continuum of states—not the discrete electron energy levels of donor
and acceptor fluorophores. Despite that discrepancy, these early derivations
gave accurate results because the “golden rule” approach implicitly incorporates
the crucial feature of fast quantum decoherence [9,10]. The aim of the present
note is to keep that feature in plain view, using terminology borrowed from
quantum electronics, e.g. [11]. Although known to specialists, this approach is
simple enough to deserve wider currency.



For historical details about the discovery of FRET, see [9,12,13]. More
details about this derivation are given in [14].

1 Isolated two-state system

To focus on the key issues, we will not discuss the process that excites the
donor, nor the eventual fluorescence of the acceptor, instead concentrating on
the transfer of the excitation from one to the other. We will also make some
simplifying assumptions:

e We suppose that only two electronic states of the donor are relevant: the
ground state |D0> and one excited state |D*>. Similarly, we consider
only two acceptor states |A0> and |A*>. We are particularly interested in
transitions between joint states of the form

1) = |Dsdo), [2) = [Dods), (1)

whose energies are nearly equal (the resonance condition). Direct transi-
tions between those two states, without any photon emission, are therefore
compatible with energy conservation.

e We will eventually define a “decoherence time” T, and assume that it
is much shorter than the hopping time (7' < Q7! below). We will also
assume that T is much shorter than the mean waiting time before loss
processes other than FRET deexcite the donor (7' < 7 below).

The transition between the states in Eq. 1 would be easy to describe in
a world containing only two atoms [15, chapts. 7-9]. Suppose for a moment
that the two states of interest have exactly the same electronic-state energy
in isolation (they are exactly resonant). Make the convenient convention that
these energy values are F; = E5 = 0. When the two atoms are brought near
each other, they will have a coupling giving rise to a Hamiltonian operator with
an off-diagonal entry in the 1,2 basis, which we may take to be real:

H:[g m (2)

The system’s evolving state can then be expanded as

|U(t)) = al(t)|1) +b(t)|2), (3)

where the coefficient functions obey the Schrodinger equation:

o[8[

Consider the solution with the initial state ’\I/(O)> = ‘1>; at later times, we
find that |b(t)[? = sin?(Qt/2), where Q = 2V/h. Interpreting this quantity as



the probability to find the system in state 2, we conclude that the probability
initially increases with time as t2. But this means that the initial growth rate
of the probability is zero, contrary to the first-order kinetics observed in FRET.
Moreover, at almost every time the state is a quantum superposition of |1>
and |2>, in contrast to the “basketball” picture of resonance energy transfer
alluded to above. Finally, the solution just found is oscillatory: The system
periodically reverts to being completely in state 1, in contrast to the one-way
transfer characteristic of FRET.

2 Two-state system with environment

2.1

To see where we have gone astray, we must remember that our two fluorophores
are hardly alone: They are just a subsystem of the entire world. Each constantly
suffers collisions with surrounding water molecules, as well as less obvious influ-
ences involving fluctuating electric fields in its neighborhood and so on. A good
fluorophore is robust to such disturbances, in the sense that they rarely knock
it into a different electronic state. Nevertheless, environmental influences can
affect the quantum-mechanical phase of a fluorophore’s state, by momentarily
perturbing its energy levels during each collision. One way to incorporate this
effect is by coupling both the donor and acceptor to a “bath,” for instance, of
harmonic oscillators [16,17]. But the exact nature of the bath turns out not to
be very important, leading us to suspect that there must be an approach that
is not so explicit, and hence is computationally simpler.

A state measurement that could in principle be made internally to the donor—
acceptor subsystem s corresponds to an observable O that acts only on the
subsystem’s two-dimensional state space Hg. Given a pure state, we can express
the measured value of such an observable without needing to know anything
about the environment e:

(0) = ((¥|Oly),  for a pure state |¥) = |¢)), @ |¢),. (4)

Unfortunately, even if we could prepare a pure initial state, it would quickly
evolve into an entangled state due to the interactions between s and ¢. However,
we can still compactly summarize the effect of the environment on the measured
values of observables that, like O, refer only to the subsystem. To do this, we
introduce a Hermitian operator p on Hg called the density operator, defined by
constructing the dyad }\Il><\I/| and taking the trace over the environment state
space [18,19]:

p = Tre (|W)(9]). (5)

In our problem, p can be represented by a two-dimensional matrix with respect
to the basis |1>, |2> If we know p, then the measured value of any subsystem
observable can be expressed as

(0) = Trs (pO) for any state, represented by p. (6)



In order for this formulation to be useful, we need to be able to compute p,
at least approximately. This is not difficult when s is perfectly isolated from its
environment, because in that case a pure (unentangled) state remains pure:

|U(t)) = ”(/J(t)>§ ® ‘¢<t)>e for isolated subsystem. (7)

Here |(t)) 5 denotes the time development of the subsystem under its Hamil-
tonian, independent of that of the environment, [¢(t)),.

Still restricting to the case of an isolated subsystem, the time development
of p is determined by Hg, the subsystem’s Hamiltonian operator:

d 1
dit) = E[Hs, o] for isolated subsystem. (8)

Notice that Eqgs. 3, 5, and 7 give
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This formula shows that the diagonal elements of p (“populations”) reflect the
respective probabilities to be in the two states. Unlike the off-diagonal elements
(“coherences”), the populations are unaffected if we change basis states to new
versions differing by phases from the old ones, for example, |1’ > = e19f1>.

2.2

As mentioned earlier, interactions with the environment ¢ will destroy the simple
form of Eq. 7, converting an initially pure state to one that is entangled with
the environment. Although these interactions are complicated, Sect. 2.1 above
suggested that they could be summarized by saying that the subsystem’s phase
is altered by the many environmental particles that interact with it. When we
perform the trace operation in Eq. 5, the entanglement leads to the sum of many
random phase factors in the off-diagonal elements of p, effectively suppressing
them within some decoherence time scale T' [20, chap. 3]. The diagonal terms
are unaffected, however.

We must also extend the simplified discussion above (Eq. 2) by allowing for
the possibility that the energies of |1> and |2> may not be exactly equal. Thus,
let H=Hg + V, where Hy is diagonal with eigenvalues F; and FEy and V is the
off-diagonal interaction operator appearing in Eq. 2. Eq. 8 then becomes

d 1

252 = V.0l (10)
dpi; 1 1 .

= Vel + (Bi = Ey)p) — piy for i #j. (11)

The environment enters via the last term above, which contains the decoherence
time scale T



The donor can also lose its excitation directly, without transfer of energy to
the acceptor. We approximate this effect as a decay term in the equation for

o d 1 1
P11
= —[V — —p11- 12
a ih[ ;P11 7011 (12)

(Eq. 10 neglects the analogous effect for acceptor deexcitation, which is not
relevant to our discussion.) Egs. 10-12 are sometimes called “Pauli master
equations,” or “Redfield equations” [21].

3 FRET

3.1 Formal solution

Forster studied the situation in which the decoherence rate, 1/7', is much faster
than either the transition rate, Q = 2V/h, or the donor deexcitation rate, 1/7
(the “fast decoherence” limit). Typical numbers for chromophores in solution
are 1/T ~ 10's7! [22], compared with typical rates for donor fluorescence
and mixing 77! =~ Q ~ 108s7!. Forster realized that in this situation, the
environment effectively supplies a continuum of final states, even though the
subsystem states of interest are discrete. This observation may have motivated
him to apply the “golden rule,” initially developed for the emission of a photon
into an explicit continuum of final states. Rather than appeal to this black box,
however, we can equally well proceed simply by expansion in powers of T2, as
follows.

Let S = (E; — E2)/h. Change variables to the four real quantities U = p11,
W = paa, X = (p12 — p21)/i, and Y = p13 + pa1. Then the dynamical equations
take the real form

dU/dt = —3QX - U/r

dw/dt = 10X

dX/dt = QU - W) - X/T — SY
dy/dt = -Y/T + SX.

(13)

This is a set of coupled linear differential equations with constant coefficients,
so its solutions will be combinations of exponentials.

Let Z(t) be the 4-component vector with entries U (t), W (t), X (t), and Y (¢),
so that Eq. 13 can be written symbolically as dZ/dt = MZ, where M is a 4 x 4
matrix. When the coupling €2 = 0, we easily find one solution:

U(t)

W (t _
Zy(t) = X((t)) —e P'By where Bj=
Y (t)
This solution describes spontaneous deexcitation of the donor, for example, via
fluorescence.

and Sy =1/T. (14)
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At small but nonzero 2, we expand all quantities in powers of ¢ = (TQ).
For example, we expand the matrix M as My 4+ eM’, with

-1

-7 0 0 0 0 0 -T7'2 0

_ 0 0 0 0 ;o 0 0 T2 0
Mo = 0 o0 -1t —g |@M=1 0 g 0 0
o o0 s -7 0 0 0 0

Then we again seek a trial solution to Eqgs. 13 that is exponentially changing
in time. Expanding the eigenvalue 3 as By + €’ + €23"” + - - -, the first-order
terms in the eigenvalue equation give (Mg + Sol) B’ + (M’ + 5'T) By = 0, while
the second-order terms give (Mg + Bol) B” + (M’ + 5'T)B’ + 3" By = 0.

Multiplying both sides of the first-order equation by the transpose Bf and
using Eq. 14 gives 3/ = —BiM’'By. Substituting the known By and M’ gives
B’ = 0. At the next order, however,

T71

/1 1
=s—. 1
p 214 (TS)? (15)
Altogether, we find
0272 2V2T
— -1 —_— -1 . 1
b=m i rmse =T TR B (16)

3.2 Numerical example

To see the physical implication of Eq. 16, it is instructive to solve Egs. 13 nu-
merically. If we prepare the initial state Z(0) = By, then strictly speaking, the
initial rate of decrease of py; is the first component of MBy, that is, —1/7. And
the initial rate of increase of poo is the second component, that is, 0. However,
after a brief transient these behaviors change. Figure 1 shows a numerical so-
lution with sample parameter values. We see that, although the time course of
p22 is indeed initially flat, it soon starts to increase exponentially. Similarly, al-
though pi1(#) initially starts to fall with slope —1/7, it soon starts to fall as e =%,
with 8 given by Eq. 16. These effective first-order rate constants describe the
excitation transfer. The second contribution in Eq. 16 shows that the transfer
rate has a sharp maximum as a function of the energy difference. Importantly,
the area under that peak does not depend on the value of the decoherence time
T, as long as T is small enough to justify the approximations made.

3.3 Qualitative discussion

We can now look back and identify the origin of the characteristic physical
features of FRET. In general, irreversibility in classical or quantum physics
stems from a system “getting lost in phase space” [10]: The probability of
returning to an initial state is vanishingly small. For a single atom emitting
a photon into vacuum, irreversibility stems from the continuum of available



photon states; in FRET, it stems from entanglement with the surroundings
(decoherence).

In the limit of fast decoherence (T' — 0), the third and fourth of Eqns. 13
say that Y rapidly relaxes to zero, whereas the other coherence X adiabatically
tracks the quantity TQ(U — W). Substituting that value for X into the first
two equations shows that, on the resonance S = 0, the population difference
U — W has a contribution to its time dependence proportional to TQ?, as we
indeed found (Eq. 16). In words, fast decoherence suppresses the effects of
mixed quantum states, but one coherence is constantly “pumped up” by the
population difference, and feeds back negatively to it.

3.4 Electric dipole approximation

To apply Eq. 16 to FRET, we now recall that the interaction energy of two
electric dipoles is proportional to the product of their electric dipole moments
dp and d,, and to the inverse cube of the distance between them. Thus, in a
molecular separation regime where dipole interactions dominate, V' in Eq. 16
is proportional to r*3<2|dD ~dy|1 >, yielding the famous orientation dependence
of the FRET rate [23]. The rate is also proportional to r~¢, another key feature
of FRET [24,25]. (Note, however, that at very long distances our assump-
tion of instantaneous (electrostatic) interaction fails. More detailed quantum-
electrodynamics calculations show a gradual crossover to r~2 behavior at large
r, as we might have expected naively from the exchange of a real photon [26].)

So far, we have assumed definite (exact) values for the donor’s excited and
ground state energies, and similarly for the acceptor. Actually, however, each
of these energies changes over time due to molecular motions, that is, changes
of the positions of the atomic nuclei. Accordingly, we now introduce realistic
(that is, broad) probability distributions of these energies, and average the mean
rate for energy transfer over those distributions. The sharply peaked form of
Eq. 16 as a function of Fy — Fy then implies that the mean FRET rate will
be proportional to the overlap integral of the two distributions, another key
feature of FRET. In fact, in the stated limit Forster was able to find a prediction
with no free parameters for the FRET rate, in terms of the donor’s measured
emission spectrum and fluorescence rate, the acceptor’s measured excitation
spectrum and fluorescence cross section, the medium’s index of refraction, and
the distance and relative orientation between donor and acceptor.

In particular, the derivation just outlined explains a surprising aspect of
FRET, which is that there can be highly specific energy transfer between two
particular molecular species, despite the multitude of other directions into which
the donor could instead emit a photon, and the crush of other molecules that
could instead receive the energy:

e To understand the dominance of FRET over photon emission, note that
the “near fields” of a fluctuating dipole fall off with distance as 2, inde-
pendent of its frequency. The “radiation fields” fall off more slowly, as r !,

and they do depend on frequency. Turning these statements around, at



small distances the near fields are stronger by a factor of (A/r)2, where \
is the wavelength of light corresponding to donor fluorescence. The square
of this ratio can exceed 10%.

e Turning to the other nearby molecules, the sharply peaked form of Eq. 16
ensures that only those with a transition resonant with the donor’s emis-
sion (overlapping spectra) will have significant probability per unit time
to gain energy from it.

3.5 Limitations

Although the approximations made by Oppenheimer and Forster are often ex-
cellent for FRET used as a lab technique, later work has shown that they, and
the physical picture that they support, do not hold in other situations, such as
in photosynthetic apparatus.

First, we assumed that the interaction between two molecules can be ap-
proximated as a dipole-dipole interaction. For the tightly spaced photosynthetic
chromophores, this approximation is not always valid. Not only does the mul-
tipole approximation break down, but “exchange interactions” (direct contact
between the fluorophores’ electron clouds) start to be significant—the Dexter
mechanism.

Second, the derivation of Eq. 16 assumed that excitation transfer is much
slower than quantum decoherence. In that situation, we got a simple rate law
for excitation transfer, and a nice picture of localized excitations. But there is
a hierarchy of substructures in the photosynthetic apparatus, and within some
of them the transfers are extremely fast. In this situation, it makes more sense
to regard a whole array of chromophores as a single “supermolecule,” with
delocalized excitations called “Frenkel excitons.” The supramolecular units in
turn transfer excitons among themselves via FRET-like processes. For more
about these systems, see [27-33].

4

FRET will continue to be the technique of choice for many more advances
in single-molecule and single-cell biophysics, including some not yet imagined.
This Perspective has pointed out that viewed as a physical phenomenon, FRET
displays aspects not familiar from undergraduate (or even graduate) training
in physics or chemistry, and these are key to its usefulness. Indeed, there were
many missteps along the way to understanding FRET [9, 12, 13], but I have
argued that an appreciation of the role of quantum decoherence leads directly
to the main features.
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Caption

Figure 1: Diagonal elements of the density matrix (“populations”) with sample pa-
rameter values QT = 0.05, T'//7 = 0.01, and ST = 0.05. These values are less extreme
than the realistic ones mentioned in Sect. 3.1; they were chosen to make the crossover
behavior visible in the graph. For comparison, the dotted line shows a single expo-
nential that asymptotically matches the acceptor population at long times.
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