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Abstract 

This report is intended to describe and motivate a relationship between a class of nets and the 
fragment of linear logic built from the tensor connective. In this fragment of linear logic a net may 
be represented as a theory and a computation on a net as a proof. A rigorous translation is described 
and a soundness and completeness theorem is stated. The translation suggests connecticns between 
concepts from concurrency such as causal dependency and concepts from proof theory such as cut 
elimination. The main result of this report is a "cut reduction" theorem which establishes that any 
proof of a sequent can be transformed into another proof of the same sequent with the property that 
all cuts are "essential". A net-theoretic reading of this result tells that unnecessary dependencies from 
a computation can be eliminated resulting in a maximally concurrent computation. We note that it is 
possible to interpret proofs as arrows in the strictly symmetric strict monoidal category freely generated 
by a net and establish soundness of our proof reduction rules under this interpretation. Finally, we 
discuss how other linear connectives may be related to the concepts of internal and external choice. 

1 Introduction 

In this paper we explore the idea of describing the operational semantics of a net (the so-called "token 

game") in proof-theoretic terms. Under our approach, a net will correspond to a logical theory, and the 

token games on the net will be represented as proof trees in the "logic" of the net. This correspondence 

reveals an interesting relationship between concepts of proof theory (such as cut elimination) and funda- 

mental concepts in concurrency (such as causal dependency) as they are illustrated by net theory. Our 

proof-theore tic representation works for a certain class of nets in which events are uniquely determined 

by their pre and post conditions. Such nets are represented as sets of sequents i n  a fragment of linear 

logic based ,I the tensor connective. 

'This is an : :tended and revised version of the preliminary report which appeared in: Application and Theory of Petri 
Nets, edited by , i. De Michelis, June 1989. pp. 174-191. 

'Research oi both authors is supported by Office of Naval Research Grant N00014-88-K-0557. Elect~onic mail addresses 
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Linear logic is a system introduced by J. Y. Girard based on the inspiration of his work on a class of 

mathematical domains called coherence spaces [7,8]. One way of understanding propositional linear logic 

is to see it as a modification of propositional logic which takes seriously the concept of a resource. As 

such it is related to such systems as relevance logic which incorporate this concept as well (see [3] for a 

full discussion). Resources are also a familiar aspect of the theory of Petri nets. In what follows, we will 

attempt to convince the reader that the senses in which linear logic and Petri nets deal with resources have 

many things in common. Indeed, we will demonstrate a translation which characterizes the relationship 

exactly. 

However, the way linear logic and nets represent resources is only a part of what we feel is a 

much more important common characteristic of the two theories: the way in which they illustrate true 

concurrency. It is well-known that nets provide an intuitive and pictorial way of seeing many fundamental 

ideas of concurrent con~putation. In what follows, we will show how this intuition may also be seen in 

the theories and proof trees of (a fragment of) linear logic. 

Other researchers have independently looked at the relationship between Petri nets and linear logic. 

The work of Asperti [1,2] follows much the same basic intuition that we discuss below for the tensor 

connective. Carolyn Brown at the University of Edinburgh has proven a result similar to our soundness 

and completeness theorem and studied a fragement of linear logic formulae with additional connectives [4]. 

Narciso ~arti-01iet and Josk Meseguer [I  11 have discussed the relationship between Petri nets and linear 

logic from the point of view of category theory. We would like to acknowledge the assistance of Jean Yves 

Girard, who provided much of the inspiration for this investigation. We also thank Dexter Kozen, Prakash 

Panangaden, and Andre Scedrov for ideas and encouragement and acknowledge helpful discussions with 

Eike Best, Ursula Goltz, Ugo Montanan, and Wolfgang Reisig. 

Throughout the rest of the paper we will assume some familiarity with net theory and proof theory. 

Concepts and notations related to former can be found in [15] and [6 ] .  For the latter, [18] and [17] are 

excellent references. 

2 Relating Nets and Theories 

In this section we outline the fragment of linear logic on which this paper will be concentrating. The 

theory will be given in the form of a Gentzen style sequent calculus. 

A tensor formula is either a propositional atom or the tensor product A @ B of tensor formulas -4 

and B. A tensor sequent is a pair I' I- A where I' is a list of tensor formulae. A tensor theory is a set of 

tensor seqv:nts. Of course, any set of sequents T wi'l generate a tensor theory Th(T) which is the least 

set of sequ :nts containing T and closed under the rul:s in Figure 1. We say that r t- A is provable in T 
if I' I- A is in Th(T), We say that I' t- A is provablf if it is in Th(0). Let us say that a pair A t--I B is 
provable if A I- B and B t- A are both provable. It 1; lot hard to see from these axioms that the tensor 

connective is associative and commutative: 

Proposition 1 For any A, B ,  C, the sequenrs A @ B t 4 B 8 A and (A 8 B) 8 C t-4 A @ ( B  @ C )  are 
provable. I 



Structural , ?ules 

r7A7B'A'c(Exchange) - A A (Identity) I'l- A A , A F  B 
I ' ,B ,A,A I- C r , A t -  B (Cut) 

Logical Rules 

I ' I -A  A I - B  r , A ,  B I- C 
I ' , A t - A @ B  (@R) r , A @ B I - C  (@L) 

Figure 1: Structural and logical rules for a fragment of linear logic. 

Figure 2: Net No. 

However, the tensor connective is not absorptive; for example, the sequent A @ A I- A is not provable. It 

is therefore possible to think of a tensor formula as a multi-set (or "bag") of propositional atoms. Given 

a tensor formula A, let M(A) be the multi-set of propositional atoms determined by A. It follows from 

the proposition that tensor formulae A and B such that M(A) = M(B) are equivalent, i .e .  A I-4 B. 

Moreover, sequents r t- A and A I- A are equivalent in the sense that each can be derived from the other 

if the lists r and A determine the same multi-set of propositions. For this reason, we will treat sequents 

as pairs r I- A where r is a multi-set. 

For the purposes of this paper, a net N is a set SN of places together witti a set TlV of pairs of 

multi-sets over SN.  A pair t = ('t, t') E N is called a tramition of the net with pre-condition ' t  and 

post-condition t'. Of course, this is only one of the many flavors of nets that have been studied in the 

rich literature on such structures. Nets, as defined here, are similar to place/transition-systems as defined, 

for example, in [15]. However, our notion of net has less structure since there are no capacities and 

a transition is uniquely determined by its pre and post conditions. Moreover, a net in our iense does 

not have a specified initial marking. One of the appealing characteristics of nets is the waj they lend 

themselves to pictorial representation. For example, the r et No consisting of the pairs ({A), { 3 , B ,  C}) 
and ({B), {A}) is pictured as a labelled graph in Figure 2. 

Before we offer a technical definition of just how a net determines a theory, we will attempt to 

motivate the basic idea by means of examples. Consider the net Nl pictured in Figure 3. In this net, if 

we are given a token on the condition A, then it is possible to fire the event r Firing this event, exhausts 



Figure 3: A net Nl with concurrency and choice. 

the token on A  but provides a token on B. Logically, let us read the event r as an axiom A  t- B meaning 

"from A it is possible to obtain 3." Similar ideas apply to the events s, t and u which we may read as 

B l- D and A I- C and C t- E respectively. Now, event v requires a token on D and a token on E in 

order to fire and produce a token on F. We might therefore take D, E t- F as the logical content of v. 

In summary, let TI be the set of axioms 

A t - B  B I - D  
D , E  t- F 

A t - C  C F E  

Do these axioms somehow characterize the net "logically"? If one interprets the comma between the D 
and E in the way that one ordinarily does in logic, this tempts one to think of D ,  E I- F as D  A E k F .  

But something is now wrong with the proposed "logical interpretation" of the net. In particular, it is 

easy to check that A  t- F is provable from the axioms TI.  However, if one's interpretation of A  k F is 

"from the resource A  one is able to obtain the resource F," then the deduction is evidently incorrect. The 

problem lies in the fact that ordinary propositional logic does not support properly a concept of "proof 

resource." The culprit (in this case) is the rule from first order logic which gives us: 

A t - D  A t - E  

This rule clearly does not reflect the desired intuition about resources. If I can use $1 to buy a pepsi and 

$1 to buy a coke, then I can't expect to use $1 to buy both a pepsi and a coke. Of course, one can also 
write the conjunction rule as 

A l - D  A t - E  
A , A t - D A E  

but this only begs the issue, ;ince some instance of the thinning rule: 

would be used at a later step . I  the proof to remove the second copy of A  and this rule is just as suspect 

as the earlier version of the cl njunction rule. To deal with this problem, one needs a logic in which the 



Figure 4: A net N2 with a critical region. 

thinning rule is omitted and the second of the conjunction rules is used for the "and" connective that we 

have in mind. 

The proper rules are those given in Figure 1 for the linear logic tensor connective @. These rules 

keep track of the resources as needed. In linear logic, the sequent A l-. F is not provable in TI .  However, 

it is possible to check that A, A I- F i s  provable in T I ,  as we expect it should be. There are, in fact, 

several proofs of A, A l- F in T I ;  three of these are listed in Figure 5 (on page 7). We will come back to 

these proofs later to discuss how they relate to the net token games that move a token from the marking 

A, A to the marking F. 

To give a slightly larger exam,le, which we hope will suffice in giving the reader the general idea, 

consider the net N2 in Figure 4. This net comspands to the tensor theory T2 with the following six 

axioms: 

As one might expect, it will never be the case that from starting mark ng C ,  C', D ,  the resource A @ A' 
is obtained. More precisely, one can show that C @ C' @ D Y A @ At 8 A for any choice of linear 

proposition A. 
A formal definition may be now be expressed as follows. Let N be a net and lct S be the set of places 

of N. These will be the propositional atoms over which we form a set of tensor sequents as follows: 

C ( N )  = { A  k B 1 M ( A )  = -t and M(B) = t' for some t E T N }  



We will refer to C ( N )  as the tensor theory determined by N .  

On the other hand, let T be a set of tensor sequent5 in a language with propositional atoms S. The 

theory T determines a net N(T)  as the set T N ~ )  of pairs ( M ( A ) ,  M ( B ) )  such that A I- B is in T.  It is clear 

that N ( C ( N ) )  = N for any net N .  If A' t B' is an element of the set T whenever there is a sequent A t B 
in T such that M(A)  = M(Af )  and M(B)  = M(B1), then it will also be the case that C ( N ( T ) )  = T .  For 

example, thenet Nl inFigure3 has C(N1)  = ( A  I- B ,  B  t- D ,  A I- C, C I- E ,  D@E t F,  E @ D  t F ) .  

As the reader can guess from the examples, a marking M on a net N corresponds to a linear 

proposition A such that M(A) = M .  For example, the marking of the net N1 in Figure 4 is represented 

by the proposition C @ C' @ D. In general, we have the following: 

Theorem 2 (Soundness and Completeness) Given a net N and markings M and MI, the marking M' 
is in the forward marking set [ M )  of M if and only i f  the sequent A  I- A' is provable in the linear theory 

C ( N )  associated with N for any tensor formulae A and A' such that M(A)  = M and M (  A') = M'. I 

We may apply the Soundness and Completeness Theorem to show how a non-trivial result from net 

theory leads to a result for a fragment of linear logic. Given a finite net N ,  it is decidable whether 

M' E [M) for markings M and MI. This result is the culmination of a body of research which began 

with van Leeuwen [19] and has been worked on by a number of researchers [16 9,12,10,13]. Htre is an 

immediate consequence: 

Corollary 3 Let N be a finite net and L ( N )  its associated linear theory. It is decidable whether A I- B 

is provable in the theory L ( N )  for tensor formulae A  and B .  1 

Of course, the Corollary holds only for linear formulae in the small fragment of the system that wc 

have discussed. Getting an assessment of how this result compares to known results about linear logic 

involves expanding our discussion to a larger fragment of the calculus. Since rules from C ( N )  may be 

used arbitrarily often, they must be represented as linear logic propositions using the "of course" operator, 

written !A.  (Given a linear proposition A, the proposition ! A  represents the "pure propositional content" 

of A. In the current context we may think of it as an unlimited resource of A's.) Linear propositional logic 

with the ! operator is not known to be decidable. The result above suggcas that the decision yro~edurc 

for this calculus, if it exists, will not be easy to find. 

3 Proofs as Computations 

Let 1 s return now to our discussion of the net Nl in Figure 3 (on page 4). This net displays some of 

the i~ituitive representations of concepts which have made nets an appealing model for both theoreticians 

and , ractitioners. The events T and t "compete" for the resource A and t} e events s and u are capable 

of ru 11,ing concurrently if they have me necessary resources B and C. '.'here is a causal dependency 

betwt t 2 r and s: if T fires then s will be enabled. A similar dependency holds between t and u. If there 

is a li . e of computation which passes through T ,  s and another which passes through t ,  u, then these must 

"sync1 ronize" before v is enabled. Most of these intuitions are represented in one form or another in the 



Proof 1 

A t - C  

A t - A  
B t - B @ R  

A t - B @ R  
A , B l - C @ B  B l - D  

A , A l - A @ B  
C l - C @ R  

A @ B t - C @ B B L  B , C t - D @ C  
Cut 

D l -  D  
A , A ~ - C B B  C @ B F  D C B C : ~  

C k E @ R  
D , C l -  D @ E  

Cut 
A , A F  D @ C  D @ c ~ - D @ E @ ~  

A , A t - D @ E  
Cu 

D @ E t - F C u t  
A , A  I- F  

Proof 2. 

Proof 3. 

A , A l - D @ E  
@R 

D @ E t - F  
A ,At -  F 

Cut 

Figure 5: Three proofs that A, A t- F. 

proof trees of the linear theory L(N1). In particular, the cut rule corresponds to the concept of causal 

dependency or sequentializatior,. For example, to prove that A t- D, it is essential to use a cut. This 

relates to the fact that the event r must take place before the event s can be enabled. Basically, the only 

situation in which the cut rule is never needed for a proof is for a net whose theory is trivial since only 

in this case are there no causal dependencies! Hence, for the theory determined by a non-trivial net, we 

cannot expect that cut elimination is possible. 

Given an initial marking { A ,  A) on the net Nl, consider the following sequence of firings to produce 

F: first fire T, then fire t ,  then fire s ,  then fire u and then fire v. We can represent this by the following 

expression: 

((((l.4 11 T) ;(t  11 l ~ ) )  ; ( s  11 l c ) )  11 u ) )  ; 

where the semi-colon represents sequentialization, the parallel operator represents con urrency and an 

expressio.1 lx is the "idle event" on X. This computation is "maximally sequential" i I the sense that 

it makes no real use of the possibility of doing two things "at the same time." This c : responds to a 

linear logic proof in which there are many applications of the cut rule. This proof is givt i as Proof 1 in 

Figure 5. But there are other ways the firing sequence from A, A to F could be camed out For example: 



first fire T and t ,  then fire s and u, and after thi , fire v. The following expression represents this firing 

sequence: 

This computation, which corresponds to Proof 2 in Figure 5, has still not made "maximal" use of con- 

currency, although it is better than the first firing sequence. Although r and t are not constrained to fire 

in any particular order, the event s, for example, is not permitted to fire until t has fired. This restriction 

is not really intrinsic to the causal dependencies of the net. On the other hand, it is clear that no firing 

sequence will allow v to be fired before both s and t have done so. The "best" or most concurrent firing 

sequence is therefore the following: fire r and then s while also firing t and then u, after this, fire v. This 

is represented by the expression: 

((T ; s) I1 ( t  ; 4) ; v 
which corresponds the Proof 3 in Figure 5. 

Following these intuitions, it is desirable to provide a set of rewrite rules which will take proofs such 

as 1 and 2 and convert them to a "maximally concurrent" proof such as 3. This process resembles the 

cut elimination results from proof theory, but must differ in some ways since the cut elimination is being 

carried out in a theory in which cut elimination is impossible. A similar situation arises for cut elimination 

in a theory with equality where all but the cuts involving equational axioms can be eliminated. However, 

the "maximally concurrent" proof we desire cannot be otiained by a straight-forward translation of these 

ideas. Instead, it is necessary to rely on other intuitions about the correct forms. 

4 Cut reduction. 

In this section, we formalize the concepts intuitively discussed in the previous section. Our goal is to 

demonstrate a set of rewrite rules for transforming a given proof into r "maximally concurrent" proof 

of the same sequent. We begin by defining essential cuts and then state and prove the cut reduction 

theorem. The proof is based on giving a finite set of proof reduction rules which is shown to be strongly 

normalizing. 

Definition 1 An instance of the cut rule in a proof is trivial if at least one of the premisses is an axiom 

of the form A I- A. 

Definition 2 An instance of a cut rule in a proof is called essential if it is non-trivial and has the form 

r' I- A A I - B  
r t - B  

Cul 

where A is a netformula. 

Theorem 4 (Cut-Reduction) Given a net N and its associated deductive system C ( N ) .  I f  a sequent 
I? I- A is provable in C ( N ) ,  then there is a proof of this sequent in C ( N )  such that all cuts are essential. 



Intuitively, essential cuts seem to capture dependencies exactly as dictated by the underlying net. A 

proof is cur-reduced if all instances of cuts in it are essential. 

We will give a collection of rewrite rules for proofs and show the existence of a normalizing sequence. 

We will then strengthen this result by establishing that the set of reduction rules is strongly normalizing . 
The theorem above will immediately follow from the proposition that every normal proof is cut-reduced. 

Remark: Prawitz [14] distinguishes "normal form theorem", "normalization theorem", and "strong 

normalization theorem". In his terminology then, our cut-reduction theorem is a normal form theorem, the 

second theorem will be a normalization theorem, and the last one will be a strong normalization theorem. 

We begin by enumerating transformations on proofs. Assume that a proof P ends with an inessential 

cut, i.e. it has the following form: 

We will refer to the left and right sub-proofs as P' and P", respectively. The various transformations, 

based on the form of Pr and P", are: 

1. Axioms. This case is applicable when at least one of the sub-proofs is an axiom. 

1 .1  Pr is an axiom. We have the following transformation: 

1.2 PIr is an axiom. We transform P as follows: 

2. Permutation. This rule is applied when at least one of the sub-proofs P' and P" terminates with 

a logical rule with the main formula being different from the cut formula A or with an essential cut. 

Following are the various possibilities. 

2.1 Endsequent of Pr is obtained by an essential cut or a logical rule whose main fornula is differcni 

from the cut formula. We distinguish the following cases. 

2.1.1 The last rule is a @L. We obtain the new proof as follows: 

2.1.2 The last rule in P' is an essential cut. Note that sin1 e we allow at most one formula in the 

succedent of a sequent, the last rule of P' cannot be a @R in 2. 



Note in above that B is a netfomula. 

2.2 Similar to 2.1 above but for the sub-proof P". We distinguish the following cases. 

2.2.1 The last rule is a @L. 

A,C,D,A t- B r l - A  A , C , D , A  l- B 
r l - A  A , C @ D , A ~ - A " ~  I' ,A,C,Dl-  B 

Cut :A * 
r , A , C @ D l - B  

Cut:A 
I ' , A , c @ D ~ - B @ ~  

2.2.2 The last rule is a @R. We distinguish following two cases. 

2.2.2.1 Cut formula A in upper left sequent of the last rule of P". 

A',A I- B A" I- c @R r t -A  A / , A I -  B 
r l- A 

C&:A 
A', A'', A l- B 8 C * r ,Att-  B A" l- C 

C u : A  
r , n l , n "  I- B @ c I ' , A ~ , A ~ ~  !- B &i c @R 

2.2.2.2 Cut formula A in upler right sequent of the last rule of PN. 

at l- B A",A l- c r I- A A",A I- c 
T I - A  

C&:A 
A',A",A k- B @ c 

C u : A  
* A ' I - B  ~ , A " I -  c@, 

r,A',Attl-  B @ C  r ,A' ,Anl -  B @ C  

2.2.3 The last rule of P" is an essential cut. In this case, the cut formula cannot come from the upper 

right sequent of the essential cut above. Thus we have only one case to consider. 

r l - A  A1,AI- B 
C&:A r , ~ '  l- B B I - C  

r,nl I- c Cut: B 

Note once again that B belongs to some netaxiom in the two cases above. 

3. Logical. This is the case where the cut formula is the r lain formula of a logical rule in both P' 
and F" and is introduced only by this instance of the rule. TI e transformation in this case depends on 

the outermost logical symlml of the cut formula and since we only have one logical connective, there is 
only one case to consider lere. 



I?' k A1 Al ,Az ,A  I- BCuZAI 
I"' t- A2 r", A2 7 A t- B cur:& 

rtt, r t ,  A t- B 

Remark: It may seem that the rule 2.1.2 does not appear in its most general form and one may be 

tempted to consider the following as its most general form: 

I ' t - B  B F A  
I ' t -A 

Cut:B 
A , A t - C  

r , A t - C  Cut:A 

However, such a form is not only redundant but incorrect too. First, note that in the situation as 

above, the comma suggests that A, A t- C  is obtained by a @R or @L, and hence 2.2.1 or 2.2.2 would 

be applicable. An attempt to give a reduction rule based on the form above by permuting the the two 

cuts will make the cut on B inessential (unless A is empty, in which case 2.1.2 applies), thus destroying 

an important invariance property of these transformations. Also, note that in the case 3 above, the 

transformation splits a cut into two cuts but with cut formulas with less number of logical symbols. The 

transformation as presented first performs a cut on Al and then on A*. However, we could have done a 
cut on A2 before Al giving us another transformation. But including one or the other or both does not 

affect our results. 

The following lemma singles out an important property of the above transformations. 

Lemma 5 Let P  be aproof and let Pt be aproof obtained from P  by the applications of the transformations 

above, then the number of sequents (nodes) in Pi (viewed ar a tree) is less than or equal to the number of 

nodes in P,  i.e., the number of nodes in aproof is never increased by the application of the transformations 

above. 

Proof: Immediate. I 

Definition 3 A proof P is in normal form if there does not exist a proof P' such that P =. 7Jt (one step 

reduction) by the transformations above. 

Lemma 6 A proof P is in normal form iff it is cut-reduced. I 

Proof: (if part) Clearly P is trivially normal if it does not contain any inessential cut. 

(only if part) Assume on the cont-ary that P is normal and contain inessential cuts. In P choose 

an inessential cut above which there i: no other inessential cut. Clearly then one of the reduction rules 

given above is applicable to this (sub 1 proof P' in P depending on how the premisses of the (only) 

inessential cut in P' are obtained. Th s contradicts the assumption that P is normal. Hence a normal 
proof is cut-reduced. I 

The following lemma is our main : mma which shows the existence of a normalizing sequence of 

reduction. 



Lemma 7 If P is aproof of I? I- A which contaim only one (inessential) cut occurring as the last inference, 

then I' I- A is provable with no inessential cut. 

The proof of the theorem then immediately follows from the above lenma by an easy induction on 

the number of inessential cuts appearing in a proof. In any pmof consider an inessential cut above whose 

lower sequent no inessential cuts appear; thus satisfying the condition of the lemma. According to the 

lemma this (sub) proof can be transformed into another (equivalent) proof which does not contain this cut. 

In doing so, rest of the proof remains unchanged. We get a cut-reduced (equivalent) proof by repeating 

this process until all the inessential cuts have been eliminated. 

Proof: (of the main lemma) Easy induction on the number of nodes in a proof satisfying the condition 

of the lemma. I 
The following is now immediate. 

Theorem 8 Let P be a proof. Then there exists a sequence of reductions such that P =.* PI, and P' is in 

normal form. 1 

The following definition will be used in the proof of our next theorem. 

Definitim 4 The grade g of a formula A is the number of @ contained in A. The grade of an inessential 

cut is th: grade of its cut formula. 

Thus, by the definiuon above, grade of an essential cut is 0. 

Theorem 9 (Strong Normalization) There is no infinite reduction sequence beginning with any proof P'. 

Proof: We define a measure on proofs and show that each one step transformation reduces this measure. 

Let the complexity of a proof be a pair ( a ,  b), where 

a a = sum of the grade g of cut formulas of all inessential cuts in the proof. 

a b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the cut). 

Clearly, a cut-reduced proof has complexity (0,O). 

Now consider the three (main) classes of the transformations above. It is easy to see that application 

of these transformations in each case to a proof reduces its complexity. 

Axiom: Both a and b are reduced. 

Permutation: b is reduced keeping a he same. 

Logical: a is reduced. 

Thus, all reduction sequences terminate. I 
In Appendix A we have written out how the rewriting works on Proof 1 and . in Figure 5. 



5 Proofs as arrows. 

A variety of publications have focused on the category-theoretic characteristics of Petri nets. In this 

section we hope to demonstrate that the proof transformations which we describe in the previous section 

are compatible with at least one elegant theory of nets as categories. To this end, we note how proofs can 

be interpreted as arrows in the category 7[n/l of Degano, Meseguer, and Montanan [5] and then show 

that the proof reduction rules as presented above are sound with respect to this interpretation, i .e.  they 

transform arrows to equal arrows. 
Let N be a net and L ( N )  be the tensor theory determined by it. Also, let Proofs ( N )  denote the class 

of proofs in the theory C(N)  and let Mor ( N )  denote the class of morphisms of the strictly symmetric strict 

monoidal category 'T[N freely generated by N. We define our interpretation I : Proofs (N)  - Mor (M)  
as folIows, where in writing 

we mean a proof IT with conclusion r I- A. 

where t is in N. 

where f : r + A = I (  IT1 ) a n d g : A - B = I (  IT2 ). 
I- A A F B  

I11 n 2  
where f :  ? - + A = I ( I ' F A ) a n d g : A @ A -  B = I ( A , A F  B). 



Proposition 10 The proof reduction rules are sound with respect to the interpretation above. 

Proof: We just consider an illustrative case here. Consider the reduction rule 2.2.2.1. The function I 

yields an arrow cohesponding to the left hand side as follows. Let f : r -+ A, g : A' @ A + 3, and 

h : A'' --+ C. Then we have: 

( f  i ~ ~ ~ ~ ~ ~ )  0 (9 h)  : r 8 (A' 8 at1) -+ B @ c 
= ( f  @ (in1 8 iall)) 0 ( g  8 h) 

= ( ( f  @ ;A#)  @ ia l~)  0 (9 8 h) 

= ( ( f  @ i ~ f )  0 g )  8 (iAlr o h) 

= ((f @ i ~ ' )  0 g )  @ h 
= I (right hand side) I 

In view of the above proposition and the strong normalization theorem, the following is immediate. 

Corollary 11 Every proof reduces to a unique normal form modulo the interpretation. I 

It has long been argued by proof theorists that a notion of equivalence of proofs based on mere 

provability is too extensional and inadequate. But the question of the right notion of equivalence of 

proofs still remains open. Prawitz [14], for the system of Natural Deduction and his set of reduction 

rules, conjectured that two derivations represent the same proof if and only if they reduce to the same 

normal form. Now in view of corollary 11 above we may say something similar for the identification of 

ihe derivations in a tensor theory. However, it seems that such an identification does not quite capture the 

intuitive sense of equivalence (based on processes) that we have in mind for net computations and is still 

too extensional. For example, proof 2 and proof 3 of section 3 would be identified as the corresponding 

arrows are equal because - 8 - is a bifunctor. However, the process interpretation that we have in mind 

should not result in such an identification. Thus the sense in which proof 3 is not equivalent to proof 2 

(and in fact better) is lost in the denotational view that we have presented in this section. We are currently 

iooking at how to attach such intensional interpretations to proofs in our setting. We have made some 

partial progress towards this, though mostly via some ad hoc means. 

6 Choice Situations 

We have so far restricted attention to a rather small fragment of linear logic because this fragment is 

already suflicient to illustrate several important concepts that suggest interesting relationships between 

concurrent co~cputations and proofs. However, we belit ve that this is really only the beginning of the 

story. To give the reader a taste of how the theory can be further developed, we will give two simple 

examples that ~llustrate the potential role of the linear co lnectives known as "direct product" and "dircct 
sum." 

Given linear formulas, A and B, the expression A ,  i B is a linear formula pronounced "A direct 

product B". The &R rule is 
A r t - B  - 

r F A & B  



Intuitively, A  & B  can be obtained from the resources I' pn vided these resources can be used to obtain -4 

and can also be used to obtain B. Note carefully how this differs from the @R rule where the resources 

must be divided in two parts--one part for proving A  and the other for proving B .  The &L rules are 

Intuitively, the resources C  can be obtained from A  & B  provided they can be obtained either from A  or 

from B. 

Figure 6: A @  B @ C  I- ( D @ C ) & ( A @  E )  

The intuitive explanations given above are meant to suggest to the reader the idea that the direct 

product operator represents a form of choice. To see a very simple example which we hope will be 

convincing enough to capture the reader's interest, consider the net pictured in Figure 6. Following the 

theory that we have developed in the preceding sections, this net is represented-by the linear theory 

consisting of the sequents A  @ B  l- D and B @ C I- E. Now, given a starting marking of one token on 

each of A, B and C ,  it is clear that a token can be moved to at most one of the conditions D and E. 

One might say that "D V E" is an obtainable marking, but "D A E" is not. On the other hand, it scems 

that "D A E" is obtainable in the sense that either of the conditions D and E n ? q ~  be fiilf l!cd by some 

firing. In linear logic one may express this state of affairs with the formula (D @ C )  & ( A  @ E). Here is 

a proof of the proper statment: 

It is our feeling that the directproduct operator captures a form of external choice. On the other hand, 

the linear disjunction captures a concept of internal choice. Given two linear propositions A and B, one 

proves the linear disjunction A  $ B  of A and B  from hypotheses r by using one of the following rules: 



Coke 

Figure 7: Coca Cola implements $1 I- coke $ pepsi. 

In other words, the resource A $ B can be obtained from I' just in case either A or B can be. On the 

other hand, if one wishes to obtain C from I' and resource A $ B, then it must be shown that C can be 

obtained from both A and B. The rule is 

0 Coke 

Pepsi 

Figure 8: Pepsi Cola implements $1 I- coke $ pepsi. 

Coke 

Pepsi 

Figure 9: k n implementation with choice: $1 I- coke & pepsi. 

The intemal/extemal distincti In can be illustrated by a simple example which takes linear propositio.~~ 

as a specification language. Let 1 assume that we wish to contract a vendor to build us a machine for 

dispensing soft drinks for $1 and . I  ere are two possible flavors of drink that are available: coke and pepsi. 

If we do not actually care which o these is dispensed when a dollar is given to the machine, we may make 

the specification $1 I- coke $ pep! I. The choice of which beverage we are given in exchange for $1 will 



then be internal to the machine. : :or example, the machine which the Coca Cola company might design 

is pictured in Figure 7 and would dispense only coke. On the other hand, the Pepsi Cola company might 

design the machine in Figure 8 which dispenses only pepsi. In both cases, the tensor theories determined 

by the nets are strong enough that it is possible to prove the proposition $1 I- coke $ pepsi. Thus the 

machines have met the specification. If, on the other hand, we wish to insure that there is an external 

choice so that a user can pick the flavor of his preference, then we might have used the specification 

$1 I- coke & pepsi. This specification is not met by either of the machines in Figures 7 and 8 since this 

sequent is not provable in either of the linear theories associated with these machines. On the other hand, 

the net in Figure 9 does meet the specification, since its associated theory is strong enough to prove the 

specifying sequent. 

More research is needed to understand the possible significance of linear connectives in specification 

languages. While the example seems reasonable, it is worth keeping in mind that several other nets would 

meet the desired specification. For example, the net associated with the following theory 

$1 I- coke 

$1 I- pepsi 

pepsi t- $1 

which gives a $1 in exchange for a pepsi, also meets i!e specification! On the other hand, the net 

associated with the sequent $1 t- coke @ p .psi which dispenses both a coke and a pepsi for each $1 does 

not implement the specification. 

There are several more linear connectives which we will not discuss. No account with which we are 

familiar has addressed the linear logic negation, which seems to represent the dual of a resource-a "debt" 

perhaps. A treatment of negation would lead to an understanding.of the dual of the tensor called the par 

which seems to represent a concept of "concurrent debts". We mentioned earlier the unary operator ! 

which represents an unlimited resource. This operator plays a subtle role in the theory we have exposited; 

work of Carolyn Brown [4] provides helpful insight. All of the linear logic connectives seem to have 

their own significance in terms of computation on nets. (We have included a list of some of the rules of 

linear logic in Appendix B.) Work on the exploitation of these ideas is likely to be a profitable for the 

study of both concurrency and proof theory. 
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A Sar lple Proof Transformation 

We give some examples of cut-reduction below. At each step of the reduction, ;he inessential cut to 
which a reduction rule is applied is denoted Other choices of inessential cuts, if any, at a step to 
which a rule could have been applied are denoted =. Remaining inessential cuts are denoted &. 

B I - D  
A I - B  

C I - E @ R  
B , C l -  D @ E  8L 

B @ C l - D I E  A , A l - B @ C  
A.Al-  D @ E  

A F B  
A t  D 

BtDcul 
C l - E  

A t B  
B t D C u l  

A F C  
A l - D  

C k  ECul  

A .AI -  D @ E  
A l - E @ R  

D @ E k  Fcul 
A , A t F  

Example 2. 

A t - C  B t B  

A I- C 
A t - A  

B k B @ R  
A , B F C @ B  B t  1 

A F B  A , B F C @ B C U  a- B , C t  D @ C  @L Dl- D  
C t C @ R  

- A , A F C @ B  C @ B F  D & C c u  
C l -  @R 

- - D,CF D @ E  OL 
A , A k  D B C  D B C t -  D O E C u  

A,AF D & E  - 
D  C - i x  Cur 

A,AF F 



A t - C  B t - B @ R  B t - D  
At- B  A , B F C @ B  B , C t - D @ C  BL Dl-D 

C t - C @ R  

A , A l - C @ B  C @ B t - D @ C C u  
C t - E @ R  

- D , C + D @ E  @L % A,AF D @ C  D @ C t - D @ E C ,  

A , A k  D @ E  - 
D B E t - F c u l  

A , A k  F 

At- - 
2.2.2.2 
I 

A t - B  
c A F B B R  BI-BEI B t - D  B , C ~ - D @ C  BL 

C t - C @ R  
Dl-D 

A , A F C @ B  C @ B F  D @ C -  
C t - E @ R  

cut D I C t - D @ E  g L  

A , A ~  D @ C  D @ C t  D @ E C ,  
A,AI- D @ E  - D @ E k  

A,At-  F 

B t - D  
A t C  

C k C @ R  

A t - B @ ~  B , C + D @ C  @L D l - D  
A , A F C @ B  C @ B t - D @ C  

C F E @ R  
D,Ct-  D @ E  @L 3 A,At-  D @ C  a D @ C k D @ E C u l  

A,AF D @  E  - DBEFF,. 
A,AF F 

B l - D  
A F C  

C t - C @ R  
B,Ct-  D @ C  D t - D  

A  t- B  A,BF D @ C C ,  
C t - E @ R  

- D , C t - D @ E  8L 
A,AF D g C  D @ C t  D @ E C ,  

A,At-  D @ E  - D g E i F  
A , A k  F  

Cul 

At- B  
@ R 

A,BF D @ C ,  
Cul 

D , C t - D @ E  @, 
A , A  t- D @ C  D @ C t - D @ E c ,  - - D @ E t  Fcur  - 



Dl-  D  C  l- E.BR 
Al-  B 

Bl-Dc,'., 
A t C  D , C l -  D @  E  

A l - D  A , D l -  D @ E C ,  - lcull 
A , A l -  D @  E  D @ E l - F C U  

A , A t  F 

A t C  
A l - B  D l - D  

C t E ~ u t  

A t D  
B k D ~ u l  A ' E @ R  

A , D l - D @ E  
A , A l -  D @ E  D @ E l - F C U  

A , A k  F 



B Rules of Linear Logic 

Structural Rules 

r , A ,  B , A  I- @ 
Exchange 

I ' l -A,@ A , A t - A  
Cw 

~ , B , A , A  t- o r , n  t- @ , A  

Logical Rules 


