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Out of sheer luck and many footsteps, I made it. 

-Markus Zukus, The Book Thief 

 

“Do you think things always have an explanation?” 

"Yes. I believe that they do. But I think that with our human limitations we're not always 

able to understand the explanations. But you see, Meg, just because we don't understand 

doesn't mean that the explanation doesn't exist.” 

Madeleine L’Engle, A Wrinkle in Time 
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ABSTRACT 
 

DESIGN AND SYNTHESIS OF TARGETED CRYPTOPHANE BIOSENSORS FOR  

XENON-129 NMR/MRI 

Brittany A. Riggle 

Ivan J. Dmochowski 

To expand the utility of hyperpolarized (hp) 129Xe NMR for sensitive biodetection, a 

cryptophane host molecule can be specifically targeted to analytes of interest. This system 

has the potential to be used in conjunction with proton MRI for the diagnosis and staging 

of disease. Xenon was found previously to have high affinity (KD = 20-30 µM at room 

temperature) for trifunctionalized, water-soluble cryptophanes. Cryptophanes have been 

designed for increased water solubility and xenon affinity, and provide a broad (~300 ppm) 

chemical shift window. Importantly, new synthetic methods have enabled conjugation of a 

variety of targeting and solubilizing ligands, and increased access to enantiopure 

cryptophane. This dissertation reports my progress in three areas. The first involves studies 

with carbonic anhydrase, a useful model system for the design and characterization of 

xenon biosensors targeted to enzymes indicated in disease progression. Cryptophane 

functionalized with a benzenesulfonamide ligand and two water-solubilizing moieties 

bound to carbonic anhydrase II (CAII) with nanomolar affinity; Zn2+ coordination in the 

active-site channel was confirmed by X-ray crystallography. Using xenon biosensors 

tailored for CA, progress has been made in manipulating and better resolving the 129Xe 

NMR chemical shift, as required for multiplexing studies. The second study details the 
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development of a biosensor that labels cells in an acidic microenvironment. Cryptophane 

was conjugated to a peptide that undergoes a conformational change from random coil to 

alpha-helical as the pH decreases from 7.5 to 5.5. This conformational change stimulates 

membrane insertion, as validated with HeLa cell studies. With this compound we 

demonstrated the engineering of the largest published chemical shift change for 

cryptophane biosensor. We also utilized hp 129Xe chemical exchange saturation transfer 

(Hyper-CEST) NMR methods to achieve low-picomolar cryptophane detection, which 

creates new opportunities for bio-analysis and molecular imaging. Finally, a peptido-

cryptophane was developed that binds to calmodulin (CaM) protein. With this work we 

hope to not only demonstrate the development of a biophysical probe sensitive to changes 

in protein conformation but also generate a Ca2+ sensor. These three studies highlight the 

broad utility of cryptophane-129Xe NMR biosensors, and synthetic methods described 

herein lay the groundwork for future in vivo studies. 
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Chapter 1: Introduction 
 

 

 

 

  



 

2 

 

§ 1.1 Preamble 

Medical imaging is widely employed for visualizing normal and abnormal anatomy 

and physiology. The importance of imaging in the diagnosis and subsequent treatment of 

diseases like cancer has resulted in the development of a wide variety of imaging 

techniques. At the nexus of medicine and the physical sciences, the imaging field includes 

x-ray, ultrasound, positron emission tomography (PET), computed tomography (CT), 

single photon emission computed tomography (SPECT) and magnetic resonance imaging 

(MRI) as well as optical imaging and many more recent imaging modalities. Each of these 

techniques offers specific attributes with regard to spatial and temporal resolution, 

sensitivity, contrast, and level of radiation exposure. One important area of medical 

imaging—molecular imaging—overlaps with drug discovery efforts and focuses on 

targeting biomarkers with specific roles in disease pathology. Thus, by monitoring changes 

in number and distribution of specific biomarkers of interest, clinicians can monitor disease 

progression and tailor treatment appropriately. This thesis describes my research into the 

design of xenon-binding cryptophane biosensors, and additional steps on the path to 

developing hyperpolarized 129Xe MRI as a molecular imaging modality. This general 

introduction is meant to provide overall motivation for the development of targeted 129Xe 

biosensors as well as describe in broad strokes the chemistry previously accomplished by 

our research group and others. These studies culminated in the work described in Chapters 

2-4, and a consideration of future studies is provided in Chapter 5. Brief discussions of the 

techniques used to observe and characterize both Xe-cryptophane and biosensor-target 

interactions are first provided here in Chapter 1. 
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Authors Note: The sections of Chapter 1 denoted with an asterisk (*) were originally 

published in the chapter: Cryptophane-Based 129Xe NMR Biosensors and have been 

adapted here with permission from the Royal Society of Chemistry: 

Adapted from Riggle, B. A.; Wang, Y.; Roose, B. W.; Dmochowski, I. J., Cryptophane-

Based 129Xe NMR Biosensors. In Hyperpolarized Xenon-129 Magnetic Resonance: 

Concepts, Production, Techniques and Applications, Meersmann, T.; Brunner, E., Eds. 

Royal Society of Chemistry: Cambridge, 2015; 272-287. 

§ 1.2 Nuclear Magnetic Resonance Spectroscopy† 

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging 

(MRI) are a form of absorption spectroscopy in which nuclei in a magnetic field absorb 

and reemit electromagnetic radiation at radiofrequencies specific to the characteristics of a 

sample. In more general terms, NMR spectroscopy is a technique used to characterize the 

chemical structure and composition, as well as biological properties, of a sample. NMR, as 

it is applied to medical imaging, typically employs concepts of proton NMR. The long term 

goal of this work is to simultaneous employ proton MRI with xenon MRI to achieve both 

high resolution spatial context and ultrasensitive disease identification. Thus, this section 

                                                 

 

 

† Material in this section follows references: 1-3 Figures are adapted from: 1, 2 
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of the introduction will introduce the concept of proton NMR as well as compare and 

contrast it with the use of exogenously supplied xenon-129 nuclei. 

 

Figure 1.1. The two allowed spin states for a spin ½ nucleus. 

NMR exploits the magnetic properties of nuclei. Nuclei with either or both an odd 

atomic number or odd mass have a charge that spins on the nuclear axis thus generating a 

magnetic dipole along that axis. The quantum spin number I describes the angular 

momentum of this spinning charge where I is a physical constant corresponding to a given 

nucleus. There are 2I + 1 allowed spin states from -I to I which denote the number of 

orientations a nucleus may assume in an external and uniform magnetic field.2 When the 

nucleus has a non-spherical charge distribution that results in a magnetic moment (µ). For 

protons I = ½ and the allowed spin states are +½ and −½ which are clockwise and 

counterclockwise, respectively, as shown in Figure 1.1. For xenon-129 I = ½, but this spin 

state arises from an unpaired neutron.4 Because each nucleus is a charged particle, in an 

applied magnetic field any moving charge generates its own magnetic field, thus these spin 

states are not equal in energy. For protons, the lower energy spin state is +½ because it is 
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aligned with the applied magnetic field (B0) and −½ is higher in energy as it is counter 

aligned with the field, see Figure 1.2a.  

 

Figure 1. 2. Spin-state energy separation as a function of the applied magnetic field. For protons 
(a) and xenon-129 (b). 

These two energy states are populated in accordance with the Boltzmann 

distribution where a slight excess of nuclear spins is found in the lower energy state. 

Nuclear magnetic resonance occurs when the nuclei aligned with an applied magnetic field 

absorb energy and change their spin orientation with respect to the applied field. The 

energy absorbed is equal to the energy difference as given by the equation:  

𝐸𝑎𝑏𝑠 = (𝐸−1
2⁄ − 𝐸+1

2⁄ ) = ℎ𝜈 (1.1) 

The magnitude of the energy level separation is directly dependent on the nucleus in 

question and the strength of the magnetic field. As Figure 1.2 depicts, the energy difference 

between the two spin states increases as a function of the magnetic field strength as 

described by the equation: 
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Δ𝐸 = (
ℎ𝛾

2𝜋⁄ ) 𝑩0 
(1.2) 

Where the change in energy is proportional to the magnetic field strength because h 

(Planck’s constant), γ (the gyromagnetic ratio), and π are all constants. The gyromagnetic 

ratio is a constant for a given nucleus, in the case of protons γ = 42.6 MHz/T.5 However, 

in xenon-129, γ = -11.8 MHz/T.4 The negative value of the gyromagnetic ratio accounts 

for the different energy for the +½ and −½ spin states. As shown in Figure 1.2b, the −½ 

spin state is lower in energy than the +½ spin state for xenon-129. Thus, with protons the 

spin and magnetic moment are pointed in the same direction but with xenon the spin and 

magnetic moment point in opposite directions, but the understanding of how these nuclei 

function in an applied magnetic field is consistent. The term given in 1.2 can also be 

described with respect to frequency as: 

𝜈 = (
𝛾

2𝜋⁄ )𝑩𝟎 (1.3) 

Since: 

Δ𝐸 = ℎ𝜈 (1.4) 

The system is said to be in resonance when the frequency equals the applied B field and 

the energy is then absorbed by the proton raising it to the higher energy state. To describe 

it in another way, nuclei absorb energy because, as a result of the earth’s gravitational field, 

they precess in the applied magnetic field of the NMR spectrometer. This precession is 

usually likened to a spinning gyroscope (as shown in Figure 1.3) as the nucleus ‘wobbles’ 

about its axis. The angular velocity ω by which the nuclei precess is termed its Larmor 

frequency and is directly proportional to the strength of the applied magnetic field. Only 
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when the applied radiofrequency waves (ν1) are equal to the Larmor frequency (νL) can 

energy be absorbed and a spectrum be recorded. The radio frequency energy is introduced 

with a single burst covering the entire range of available frequencies for a given nuclei of 

interest thereby exciting the entire sample. As the excited nuclei return to the ground energy 

state, they radiate the previously absorbed energy which is recorded by a detector as a free 

induction decay (FID). The FID represents the entire energy radiated over time and can be 

converted to a spectrum as a function of frequency by a Fourier transform. 

 

Figure 1. 3. The precession of a spinning nucleus can be equated to that of a spinning toy top or 
gyroscope. 

It is helpful to consider the precessing nuclei in terms of Cartesian coordinates with 

a rotating reference frame. As the Boltzmann distribution of spins precesses about the z 

axis, aligned with the applied magnetic field, a net magnetization M0 is generated as shown 

in Figure 1.4. Again considering our Cartesian reference, the detection coil is in the xy 

plane thus M0 must be tipped into the xy plane for detection. To achieve this, ν1 is applied 

in the xy plane such that the applied magnetic field B1 is orthogonal to the main magnetic 

field B0. The signal is recorded after the applied pulse. The caveat being that the signal can 

only be detected until the nuclei relax back to their ground state.  
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There are two main types of relaxation processes termed longitudinal or spin-lattice 

relaxation (T1) and transverse or spin-spin relaxation (T2), shown in Figure 1.5. As the 

name implies, T1 relaxation results in the transfer of absorbed energy to the surrounding 

nuclei as thermal energy. This is indicated in the return of magnetization (M) to M0 in a 

decreasing spiral as depicted in Figure 1.5a, T1 relaxation results in a loss of signal 

intensity. The rate equation for the decay of magnetization (M) with time (t) is given by: 

𝑴 = 𝑴0(1 − 𝑒−𝑡/𝑇1) 
(1.5) 

Thus the magnetization giving rise to the signal decays faster with decreasing T1. We can 

refer back to the rotating frame of reference where the M is represented by a single 

stationary arrow in the yz plane with θ representing the angle between the magnetization 

vector and the applied field, thus as θ decreases the signal intensity decreases until M has 

relaxed to alignment with the applied magnetic field, Figure 1.5a. Variation in T1 is 

observed in different compounds and materials and is reduced by thermal motion 

increasing energy transfer in the sample, thus T1 is inversely proportional to temperature. 

Conversely, T2 transverse relaxation is an entropic process that results from the 

dephasing of nuclear spins, see Figure 1.5b. The components of the precessing nuclear 

spins begin to spin at slightly different frequencies. This fanning out reduces the net M 

along the y axis resulting is signal decay. T2 relaxation results in line-broadening, the rate 

of which is described by: 

𝑰 = 𝑰0(𝑒−𝑡/𝑇2) (1.6) 
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It is worth noting again that T1 and T2 are highly dependent on chemical composition and 

chemical structure and that T2 can approach, but not exceed T1. 

 

Figure 1. 4. The sum of the precessing nuclei in an applied magnetic field have a net magnetic 
moment, M0 aligned with the stationary magnetic field, B0. 

Proton NMR 

For 1H NMR sample acquisition, the sample is typically pure and well solubilized 

in a solvent containing no protons, is inert, has a low boiling point and is inexpensive. 

Deuterium labeled solvents are used to negate solvent proton signal. NMR spectrometers 

have a deuterium channel that can be locked on the B0 field. The field inhomogeneties are 

minimized by either manually or automatically adjusting 20-30 small “shim” magnets to 

bend the main magnetic field thereby tuning the field. 

The spectrum of a given compound is measured in frequency and is usually given 

either in hertz (Hz) or parts per million (ppm). The frequency of a nucleus is given by 

equation 1.3. While this represents the resonant frequency of a specific nuclei, the 

frequencies of various protons within a sample are complicated by shielding and 

deshielding effects. Thus the chemical shift of a specific nucleus in a sample is given by: 



 

10 

 

𝜈𝑒𝑓𝑓 = (
𝛾

2𝜋⁄ )𝑩𝟎(1 − 𝜎) (1.7) 

Where σ is the shielding constant. This shielding constant arises from the fact that electrons 

within a magnetic field circulate and generate their own magnetic field. Thus, the degree 

of shielding is directly reflective of the density of circulating electrons along with the 

inductive effect of other groups attached to, in the case of proton NMR, the primary carbon. 

The difference in the frequency of a proton from the frequency of a reference proton is 

termed chemical shift. 

 

Figure 1. 5. Stationary Cartesian reference of A. spin-lattice and B. spin-spin relaxation. 

Xenon NMR  

For 129Xe NMR sample acquisition, background signal from the buffer/sample is 

not an issue since 129Xe is not typically found in laboratory or medical settings. Similar to 

proton NMR, field inhomogeneities are minimized with the shim magnets, however, 

because of the lack of deuterium in buffered samples a standard is shimmed to generate a 

shim file that can then be applied to the xenon experiment.6 Unlike 1H NMR, 129Xe has a 

much larger frequency window approaching 300 ppm in water, which is highly dependent 
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on solvent and local environment (to be described in greater detail in Section 1.5 of this 

chapter). 129Xe is also highly sensitive to pressure (Δδ = 0.9 ppm/atm) and temperature (Δδ 

= 0.4 ppm/K).7 These attributes make xenon an excellent probe of solution physical 

properties. Exploiting environmental sensitivity is a key feature of hyperpolarized 129Xe as 

a contrast agent for MRI. Thus understanding shielding effects on xenon chemical shift is 

key for designing xenon based probes.  

 Relaxation mechanisms in 129Xe NMR are somewhat different from the standard 

T1 and T2 of proton NMR. For the longitudinal relaxation of xenon there are 5 component 

factors in non-solid phases that add up to give the overall T1: 

1

𝑇1
= (

1

𝑇1
)

𝐼𝑡
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1

𝑇1
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𝑇1
)

𝐸𝑜

 
(1.8) 

Where E and I refer to extrinsic and intrinsic mechanisms which are further categorized as 

transient Xe2 dimers, persistent Xe2 dimers, wall collisions, magnetic field gradients, and 

oxygen interactions. For solution phase 129Xe NMR we can ignore the second term in the 

above equation and it is generally held that both intrinsic terms can be disregarded in spin-

exchange optical pumping experiments (described later). The two main sources of T1 

relaxation are terms 3 and 5, wall and oxygen relaxation for gaseous xenon in a chamber. 

For biological NMR experiments, however, the most important factor is Xe-solvent 

interactions where by the presence of paramagnetic species, including O2 attenuate xenon 

signal. Table 1.1 details variations in T1 values in different solvents and biological fluids. 

Molecular oxygen serves to catalyze xenon relaxation via collisional dipolar coupling 

because of its permanent electronic magnetic dipole.8 Counterintuitively, Albert et al. 



 

12 

 

found the blood oxygenation increased T1 values relative to deoxygenated blood whereas 

in plasma oxygenation decreases the T1 value as a result of the paramagnetic nature of 

oxygen. This unexpected finding is a result of the strong paramagnetic properties of 

deoxyhaemoglobin which serve to induce attenuated relaxation times.9 The reverse 

findings in blood foam was attributed to hyperpolarization exchange dynamics.9, 10 Due to 

their long xenon relaxation times, the use of Intralipid solutions (20%), T1 = 40 s,11 or 

perfluorooctyl bromide (PFOB) emulsions, T1 = 110 s, have been proposed for in vivo 

imaging.12-14 That being said, transport times from areas of initial xenon introduction, such 

as the lungs, to areas of interest, e.g. the brain, are in the range of 5-7 s, thus T1 values in 

various tissue types and in both oxygenated and deoxygenated blood should be sufficiently 

long for imaging purposes.9 

T1 values are longer at higher fields which serve to better resolve different chemical 

shifts resulting from xenon exchanging between different environments (i.e. blood vs 

lipids).15 However, a strong field is not needed to detect a signal from hyperpolarized 129Xe 

because the polarization level is independent of field strength.15 This allows for “one-shot” 

imaging experiments with large signal-to-noise ratios at field strengths on par with that of 

Earth’s.15 This attribute has cost advantage where inexpensive spectrometers can be used 

to detect xenon signal even though field strength requirements would preclude the 

detection of proton signal on reasonable timescales.15 Aside from cost effectiveness, ultra-

low field MRI could expand the field for patients with pacemakers and other metal implants 

for whom this imaging technique is currently not available.15  
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Transverse relaxation in xenon-129 NMR is typically described by T2
* to account 

for all sources of dephasing.16 As with proton NMR there are static field effects from field 

inhomogeneities that result in the xenon dephasing with increased rates of dephasing being 

observed at higher field strengths.16 Additionally, the rapid exchange of xenon between 

different sites (such as a host molecule and the bulk) also effects transverse relaxation.16 A 

final point of note on different aspects affecting xenon relaxation is that if this system is 

used in vivo different considerations have to be made depending on what area of the body 

a clinician is imaging. Xenon can dissolve in tissue (solid-phase considerations), blood 

(solution-phase considerations), and air pockets, like in the lungs, (gas-phase 
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considerations). Thus a variety of pulse sequence programs will be needed to tune the 

resulting signal from different areas of interest. 

§ 1.3 Magnetic Resonance Imaging‡ 

Magnetic resonance imaging (MRI) is a versatile and commonly employed 

technique for the diagnosis and staging of disease. More than 30 million scans are 

performed in the United States every year. Importantly, MRI utilizes non-ionizing radiation 

and offers sub-millimeter spatial resolution and excellent soft tissue contrast and depth 

penetration. In the late 1960’s Raymond Damadian observed by NMR that malignant tissue 

had a different spectrum than normal tissue. Then, in 1973, Lauterbur proposed a method 

of converting NMR signal into an image. Magnetic resonance imaging is characterized by 

high spatial resolution, which is the ability to readily discern one object as separate from 

another object. There are three main factors that determine the chemical shift of a given 

proton in NMR: spin-density, longitudinal relaxation, and transverse relaxation. Images 

can be measured by changing pulse programs to weight these contributing factors 

differently. When considering tissues in general and humans (or animals) specifically, the 

proton concentration is directly affected by the water and lipid content of a given area. The 

relative differences are only on the order of 10-15% and thus these “spin-density” images 

suffer from poor contrast. It should be noted, however, that grey-white matter 

                                                 

 

 

‡ This section follows discussions in references: 5, 17-19 
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differentiation achieved in spin-density images is superior to that of computed tomography 

(CT) images. For T1 weighted images, increasing rigidity of the tissue reduces atomic 

collisions and typically leads to longer spin-lattice relaxation times. Because most tissues 

have high water content, typical T1 values are in the hundreds of milliseconds range. T2 

depends on local non-uniformities in the magnetic field. Molecular motion disturbs the 

distribution of non-uniformities thus increasing T2 relative to that of bulkier 

macromolecules. It may be helpful to compare the relative effects of different disease 

processes on the three variables influencing proton signal as seen in Table 1.2.18  

The signal generated in NMR spectroscopy can be converted into an image in a 

variety of ways. Initially, it is important to understand how the signal of one type of tissue 

in one part of the body can be differentiated from the signal from the same tissue in a 

different part of the body. The principle first proposed for spatial localization was described 

by Lauterbur. Simply put, he proposed making the frequency of the emitted radio waves 

reflect the position of the emitting protons. To do this, MR imaging instruments contain 

gradient coils which cause variations in the linear field. Using these gradient coils, spatial 

localization can be achieved in a variety of manners but the most straightforward is slice 

selection. 

Slice selection is achieved by applying a gradient field across the body along a 

coronal plane (orange gradient, Figure 1. 6). This generates an inhomogeneous field 

resulting in resonance frequency variations in the direction of the field gradient. The result 

is that each spin will each turn on an angle that is linearly dependent on the nucleus’ 

position, termed a phase roll. Thus, the frequency needed for the applied radiowave to be 
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in resonance changes resulting in selective excitation of the protons within the selected 

sagittal slice (blue bar, Figure 1. 6). Then, different signals are generated for different 

positions within the sagittal plane by employing gradients.  

 

Figure 1. 6. Depiction of slice selection where a gradient (orange wedge) is applied along the 
plane orthogonal to the imaging slice. A rf pulse that matches the narrow range of frequencies 
(generated by the gradient) is simultaneously applied (blue rectangle) along the desired imaging 
slice. 

The use of gradients to generate this phase roll results in a net decrease in signal. Because 

there are void areas from which there is no water signal (e.g., bone), the “wave length” of 

the phase roll directly corresponds to the distance between the areas generating water 

signal. Thus the magnitude of the signal for a particular phase roll pattern determines 

whether there is structural similarity between imaged areas. This description is simplified 

a bit to understand imaging in a one-dimensional plane but to extend the image to the 2-D 

images with which doctors are familiar, k-space must be considered. Spin patterns are 

generated from phase rolls and a vector k is assigned in the direction of change, the 

magnitude of which is indicative of spin density. Thus, the radio wave signal is presented 
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as a function of k, a Fourier technique. In this manner images within a 2-D plane are 

generated but by applying gradients in different directions and strengths and then 

overlaying the slices it is possible to generate a meaningful image in a process termed 

signal reconstruction. For the generation of MR images then, the spatial limitation is 

determined by the movement of water molecules, gradient strengths, and relaxation times. 

To mitigate these limitations then a variety of gradients are used in addition to the 

introduction of compounds which function to perturb relaxation times, namely, contrast 

agents. 

 

§ 1.4 Contrast Agents in Magnetic Resonance Imaging 

Proton (1H) magnetic resonance signals are abundant based on the high 

concentration of water, fat, and other biomolecules in vivo. Technicians can modulate the 

signal and contrast of the images with different pulse sequence programs in order to obtain 

drastically different images; highlighting differences in proton density, relaxation times, 

and chemical shift (lipids vs water).20 However, high background, coupled with the very 

small magnetic resonance signals obtained from individual proton nuclei, generally limit 



 

18 

 

the sensitivity of this technique.20 One consequence is that molecular signatures from 

protons in discrete environments (e.g., from specific biomolecules or acidic compartments 

in cells) are not readily detected. These challenges have motivated the development of MRI 

contrast agents to perturb the endogenous proton signals. All contrast agents decrease the 

longitudinal (T1) relaxation time and the transverse (T2) relaxation time, thereby increasing 

the relaxation rate. If an agent increases the longitudinal relaxation rate (1/T1) more than 

the transverse relaxation rate (1/T2) they are said to be T1 weighted and are termed positive 

contrast agents because they give rise to increased signal intensity. Conversely, T2 

weighted images result from the negative contrast achieved by an increase in 1/T2, usually 

with ferromagnetic iron oxide particles. The majority of contrast agents, however, are 

chelated gadolinium compounds whose paramagnetic properties reduce T1. Indeed, four of 

the six clinically approved intravenous contrast agents are gadolinium chelates. A 

relaxation rate change of 0.5 s-1 can produce observable contrast; thus, gadolinium contrast 

agents with typical relaxivities (r1 = 3-10 mM-1s-1) require minimum concentrations ~ 100 

µM, shown in Figure 1. 7.20 The design strategies employed for gadolinium-based agents 

must balance the need for strong organic ligand coordination (to mitigate toxicity) with the 

desire to markedly perturb relaxation times.21 Gadolinium serves to perturb water relaxivity 

by either directly (inner sphere) or indirectly (outer sphere) coordinating water molecule(s). 

Thus, an increase in the number of inner sphere waters coordinated (q) tends to increase 

relaxation rates. Again, because of the need to fully chelate the gadolinium ion, q is 

limited.21 One way to decrease longitudinal relaxation time is to slow the molecular 

rotational correlation time because slower tumbling leads to faster relaxation rates.20, 21 
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Thus, to slow tumbling times a wide variety of bulky scaffolds have been appended to the 

chelation complexes.22 In order to allow the detection of much rarer analytes, “super-

stoichiometric” strategies have been explored, which include incorporating numerous 

gadolinium agents within a single particle, as well as engineering enzyme reporters, where 

a single enzyme can change the coordination environment of many gadolinium agents.20-25 

Targeted contrast agents are typically bifunctional ligands with the cyclen or 

diethylenetriamine Gd3+ chelating core with nitrogen or oxygen donor atoms that are then 

appended with a ligand specific to the protein or enzyme of interest.25 Protein binding can 

serve to retard the tumbling time but can also affect the metal hydration by blocking the 

inner coordination sphere. The targeting must be achieved with high specificity while the 

complex must be inert and fully clear the body.25 Thus, these smart agents have the 

potential to strongly improve contrast, but remain limited both because they modulate 

endogenous signal and because the use of a heavy metal necessitates strong chelation. A 

parallel and potentially complementary strategy involves the use of exogenously supplied 

“hyperpolarized” nuclei, which include 13C, 3He, and 129Xe. 

 

Figure 1. 7. DOTA and DPTA gadolinium chelates for magnetic resonance imaging.21 
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§ 1.5 Exogenous Nuclei in NMR/MRI: Advantages of 129Xe*  

The intrinsic NMR chemical shift sensitivity, exceptional signal-to-noise, and 

chemical inertness of hyperpolarized xenon-129 (hp 129Xe) make it attractive for many 

magnetic resonance applications, and a natural complement to proton magnetic resonance 

imaging (MRI). For imaging studies, 129Xe is a viable alternative to 3He, which is rare and 

nonrenewable; moreover, among the noble gases, 129Xe (with 54 electrons) possesses 

unique capabilities for host-guest chemistry based on its volume (~40 Å3), significant 

polarizability (which yields high affinity for void spaces and good water solubility, as well 

as local environment sensitivity),26 and lack of radioactivity. These applications are 

enhanced by recent improvements in spin-exchange optical pumping methods that yield 

near unity 129Xe hyperpolarization.27 Pioneering biological imaging studies with hp 129Xe 

targeted the pulmonary void spaces in rat lungs.28 There have since been many additional 

xenon studies in the lungs, brain, and other tissues in both rat and humans, shown in Figure 

1. 8.29-33  

 

Figure 1. 8. Representative 129Xe MR images from living rat brain and lungs. Reprinted with 
permission from references:34, 35 
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These successes motivate greater use of hp 129Xe in human imaging, with the caveat 

that xenon is limited to areas where the gas will readily diffuse, after inhalation or direct 

injection. Although very soluble in organic solvents and lipid environments, xenon exhibits 

low affinity for endogenous proteins and other biomolecules; attempts to engineer high-

affinity xenon-binding sites into proteins have thus far been unsuccessful.36 Therefore, 

xenon should not localize to biomolecular targets in vitro or in vivo, unless biosensors with 

high xenon affinity are employed. Here, we summarize lessons learned over the past decade 

as we have worked to develop cryptophane-based hp 129Xe NMR biosensors for biological 

imaging applications. 

§ 1.6 Hyperpolarization of 129Xe 

Exogenously supplied nuclei that are not found in vivo, like xenon, already 

demonstrate an advantage over proton signal in that there is no “background”. Increasing 

the utility of this nucleus specifically is the ability to generate a pool of “hyperpolarized” 

nuclei. The hyperpolarized state is differentiated from Boltzmann spin distribution (see 

Figure 1. 9) and from a polarized state which refers to electron cloud perturbation as a 

result of local electric fields. While there are a variety of methods used to achieve a 

hyperpolarized state of various nuclei, spin exchange optical pumping (SEOP) is highly 

efficient for 129Xe. 
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Figure 1. 9. Boltzmann spin distribution compared to hyperpolarized spin of 129Xe. 

SEOP was originally developed in the 1960s for hyperpolarization of noble gases.37 

This method embeds rubidium in a high pressure gas mixture, at 64 psi, containing 89% 

helium, 10% nitrogen, and 1% xenon-129 (natural abundance). The helium acts as a buffer 

and the nitrogen acts as a quencher. The percentage of xenon can be increased but this 

results in a significant cost increase. The elevated pressure of this gas mixture significantly 

broadens the optical transition of rubidium, which is compatible with the use of a 

broadband, high-powered, semiconducting laser (typically 50 W or greater) with line 

widths at 1-3 nm to excite the alkali metal. More recently, much narrower line width lasers 

centered on 795 nm have been developed that make it possible to work more safely with 

lower pressure (non-broadened) Xe gas mixtures. This process, termed optical polarization, 

relies on the absorption of circularly polarized light photons (σ+) by Rb. The laser provided 

circularly polarized light is tuned to the D1 transition of Rb at 794.7 nm. The quenching 

nitrogen gas prevents rubidium depolarization. The laser is directed through a beam 

expander and a λ/4 wave plate to generate circularly polarized light.38 This process results 

in a ground state electron spin polarization of Rb. Next, as a result of the high pressure 

conditions, there are increased collisions between polarized Rb and Xe. These collisions 
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result in short-lived complexes generating isotropic hyperfine coupling or Fermi contact 

interactions which result in xenon spin polarization. This is depicted in Figure 1. 10, 

prepared by Yanfei Wang.  

 

Figure 1. 10. Hyperpolarization of 129Xe achieved via spin-exchange optical pumping. 

§ 1.7 Host-Guest Chemistry and the Synthesis of Cryptophane-A Derivatives*  

Most xenon biosensors developed to date employ an organic host molecule with a 

hydrophobic cavity that can reversibly bind xenon in aqueous solution. Host candidates 

with modest room-temp xenon association constants include: hemicarcerand (KA ≈ 200 M-

1), α-cyclodextrin (KA ≈ 20 M-1), and calix[4]arene derivatives (KA ≈ 14 M-1), shown in 
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Figure 1. 11.39-41 These affinities are on par with xenon-protein association constants (the 

highest being myoglobin at 200 M-1),42 which has limited their utility for most applications. 

Water-soluble cucurbit[6]uril has significantly higher xenon affinity (KA ≈ 3000 M-1) but 

presents synthetic challenges to achieve single-site functionalization for biomolecular 

targeting.43 Cucubitr[6]uril itself has a xenon affinity of only 490 M-1 but is commercially 

available in gram quantities.44 The most studied xenon-binding molecule to date is 

cryptophane-A (Figure 1. 12), in which two cyclotriguiacylene caps are tethered by three 

ethylene linkers generating an approximately 1 nm diameter cage molecule with an internal 

volume of approximately 85-89 Å3.45 Cryptophane-A was first synthesized in 1981 but it 

was not until 1998 that it was determined to have a room-temp xenon association constant 

of 3000 M-1 in a noncompeting organic solvent, C2D2Cl4 (deuterated 1,1,2,2-

tetrachloroethane).45, 46 Notably, cryptophane-A exhibits helical chirality (along the red 

axis depicted in Figure 1. 12) but is usually isolated and used as the racemic mixture of 

stereoisomers.  

 

Figure 1. 11. 129Xe host molecules with weak affinity. Hemicarcerand: KA≈ 200 M-1; α-
cyclodextrin: KA≈ 20 M-1; Calix[4]arene: KA≈ 14 M-1; and Cucubit[6]uril KA= 490 M-1 44 
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The design of xenon-binding molecules is informed by the work of Mecozzi and 

Rebek, who tabulated the known host-guest interactions dominated by dispersion forces 

and determined that a guest-to-host volume ratio of 0.55 ± 0.09 optimally balances 

favorable van der Waals (enthalpic) contributions with the entropic cost of host crowding.47 

[Notably, this empirical formula was not derived for host-guest interactions in water, where 

the hydrophobic effect yields favorable entropic contributions.]  

 

Figure 1. 12. Cryptophane-A. Macromolecular cage host molecule with axial chirality. 

Indeed, in work using hexa-carboxylic acid cryptophane derivatives in D2O, it was 

shown that increasing the size of the cryptophane cavity, going from two-carbon linkers 

(2,2,2) to three-carbon linkers (3,3,3), decreased the xenon association constant (KA ≈ 6800 

M-1 for cryptophane-222 and KA ≈ 1000 M-1 for cryptophane-333, Figure 1. 13) but also 

shifted the Xe@cryptophane peak by 30 ppm upfield.48, 49 Conversely, decreasing the cage 

internal volume to 81 Å3 using one-carbon (i.e., methylene) linkers, increased the room-

temp association constant to 10,000 M-1.50 These cryptophane derivatives have promising 
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features for use as xenon biosensors, including high xenon affinity and ease of 

manipulating 129Xe NMR chemical shift through cage design. 

 

Figure 1. 13. Structures and relative sizes and xenon-129 binding affinity of cryptophane-222 
(cryptophane-A) and cryptophane-333 (cryptophane-E).51 

Synthetic Mechanism of Cryptophane Cyclization  

The synthetic mechanisms for generating cryptophane cages have evolved steadily 

since their initial conception. In 1981, Gabard and Collet first published a “Synthesis of a 

D3-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a C3-Subunit” 

where they determined that formation of cyclotriguiacylene (CTG) from vanillyl alcohol 

could only be achieved with a phenol protected derivative using 65% perchloric acid. 

Subsequent formation of a single product, the D3 cage (in preference to the meso cage) was 

achieved at 90 ºC in formic acid which they attributed to a “stereospecific replication” 

process. This illustrates a “template effect” where the new ring forms in the same chirality 

as the parent C3 ring.45 In 1985, Collet and coworkers coined the term “cryptophane” 

harkening to the [1.1.1]orthocyclophane structure of the top and bottom components of the 
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cage molecule. Cryptophane describes a spherical, hollow host molecule with a lipophilic 

cavity formed by two cyclotriveratrylene (CTV) units joined by three alkoxy bridges, 

which results in three “windows” into the cage that allow for guest entry. In 1987, they 

strove to ascertain how different linkers and R groups affected the cage formation of which 

there are two options, syn or anti (Figure 1. 14a). The anti-conformation is chiral and has 

D3 symmetry and, when viewed along the C3 axis, the upper and lower CTV units are 

staggered by 50-60º whereas in the syn conformation, the CTV units are eclipsed and the 

cage has C3h symmetry and is achiral.52 The syn cage is chiral, however, when R ≠ R’. They 

found that O(CH2)2O linkers and linker with trans alkenes preferentially led to anti-

cryptophanes whereas O(CH2)3O  and cis alkenes yielded syn cages.52  This phenomenon 

is attributed to the position of the reactive veratryl ends with respect to the template ring.52 

Subsequent studies determined that for many applications, including further derivatization, 

the template method is superior (better yielding and applicable to a wider variety of 

derivatives) than the direct, or two-step method.53 The direct or two step method relies on 

the formation of a bis-vanillyl alcohol derivative followed by treatment with formic acid 

to form cryptophane. The template method, on the other hand, first promotes the 

intermolecular cyclization reaction between the vanillyl alcohol derivatives to form the 

corresponding CTV derivative, a comparison of these two methods is shown if Figure 1. 

14, panel B. The direct method has the distinction of being simple and fast. It can be done 

on a large scale but is usually low yielding, resulting in large quantities of polymer. 

Additionally, only cryptophanes with hexa-symmetrical subsubstituents can be generated. 

These cryptophanes have lower xenon affinities the reasons for which will be discussed in 
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detail later. The template method, on the other hand, is far more labor intensive with 5-6 

step syntheses.54 The final intramolecular cyclization is also low yielding and because it 

must be performed at ultra-low concentrations, is not readily scalable. Efficient 

intermolecular cyclization (for either method) requires electron-donating groups meta to 

the benzyl alcohol. In the template method the initial intermolecular reaction forms the 

CTV “cap” molecule that can then be coupled with a wide variety of benzyl alcohols (again 

conforming to the need for electron-donating groups at the meta position) before the final 

intramolecular, pre-organized cyclization via a Friedel-Crafts like mechanism, shown in 

Figure 1. 15.52 It should be noted that the steps depicting cation formation likely do not 

proceed in a concerted fashion but are depicted as such for the sake of clarity. 



 

29 

 

 

Figure 1. 14. Possible conformations of cryptophane host molecules either anti or syn shown in 
panel A. and the examples of Direct vs Templated cyclization for the synthesis of cryptophane-A 
and its derivatives in panel B.52 

A limitation of cryptophane host molecules is their poor water solubility. In 2007, 

our lab published a templated, 10-step synthesis for a water-soluble tri-functionalized 

cryptophane via tripropargyl cryptophane and a subsequent Cu(I)-catalyzed [3+2] azide-

alkyne cycloaddition (CuAAC) with azido-propionic acid which was prepared in one step 

from β-propiolactone (Figure 1. 16e).55 The resulting compound, termed tris-(triazole 

propionic acid)cryptophane (TTPC), had a room-temp xenon association constant of 
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17,300 M-1 in water, significantly higher than previously published cryptophane 

derivatives (Table 1.3).48, 55  

 

Figure 1. 15. Intramolecular cyclization mechanism to form cryptophane host molecules. 

We postulated that desolvation of xenon in water as well as displacement of water 

from the cryptophane cavity entropically drives Xe-cryptophane association. In order to 

investigate how the solubilizing linkers affect xenon binding, we synthesized, in 13 steps, 

a triacetic acid cryptophane-A derivative or TAAC (Figure 1. 16d), with the carboxylates 

~5 Å closer to the cavity.56 Interestingly, TAAC exhibited a marked increase in xenon 

binding affinity (Table 1.3). To investigate how the charge on the solubilizing groups 

affects xenon binding, we synthesized a tris-(triazole ethylamine)cryptophane (TTEC), 

following the same protocols as TTPC, while conjugating 3-azidoethylamine in the last 

step.57 As shown in Table 1.3, the amine groups afforded a cryptophane host with nearly 

1.3-fold improved xenon affinity, producing the highest known xenon affinity for any host 

molecule. For all three water-soluble cryptophanes, the Gibbs free energy had very similar 

enthalpic and entropic components (Table 1.3).  
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The favorable entropy term likely results from the dissolution of the clathrate shell 

surrounding xenon in water along with the release of water molecules from the cryptophane 

cavity. A key feature of this system is the use of three solubilizing moieties, which helps 

to keep the cryptophane in an open, xenon-accessible conformation. Furthermore, the type 

of solubilizing moiety and their distance from the cryptophane interior are postulated to 

modulate the number of waters binding inside the cavity, which compete with xenon 

binding.58 

 

Figure 1. 16. Derivatives of cryptophane-A. a. tripropargyl cryptophane (TPC); b. triallyl 
cryptophane (TAC); c. trihydroxy cryptophane (THC); d. triacetic acid cryptophane (TAAC); e. 
tris(triazole propionic acid) cryptophane (TTPC); and f. tris(triazole ethylamine) cryptophane 
(TTEC).54-57 

In 2011, we reported a shorter six-step synthesis of trifunctionalized cryptophanes 

shown in Figure 1. 16a and b with an improved yield of 6%.54 This built on the work of 
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Brotin et al. who reported a milder Sc(OTf)3 cyclization for cyclotriguiacylene formation, 

removing the need for low concentrations and protection/deprotection steps.59 The use of 

either tripropargyl cryptophane (Figure 1. 16a) with CuAAC or trihydroxy cryptophane 

(Figure 1. 16c) with amide coupling (following acetate addition) affords a facile means of 

functionalizing the cage with solubilizing or targeting moieties. It is notable that the tri-

functionalized cryptophanes TTPC, TAAC, and TTEC show similar water solubility to the 

reported hexa-functionalized cryptophanes and exhibit significantly better xenon-binding 

affinities. From our work we have postulated this is a result of cation chelation by the six 

carboxylates, which may block xenon entry and also stabilize water inside the cavity. Very 

recent work from the Saven laboratory at the University of Pennsylvania has demonstrated 

through molecular simulations that a key component in binding equilibrium is the removal 

of water confined within the cryptophane cavity.58 By comparing xenon-cryptophane 

binding in a variety of cages, they determined that while internal cage volume played a 

role, Xe binding was not perturbed by that alone.58 Indeed four cages with identical central 

cavities have wide range of Xe affinity with Ka values from 34,000 – 6800 M-1.58 

Desolvation of xenon is known to make binding of cryptophane entropically favorable.56, 

58 They found that hexa-acid cryptophanes have greater water occupancies in their core 

than trifunctionalized cryptophanes. Additionally, having charged groups on either side of 

the cryptophane pores seems to promote the formation of water clusters occluding the 

cavity.58 The cryptophane work performed to date has yielded a ~300 ppm chemical shift 

window for encapsulated xenon in water (by modulating the cage volume or appending 

ruthenium, see Figure 1. 29) as well as tens of micromolar xenon dissociation constants.50, 
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57, 60, 61 Thus, our research focus involves coupling the use of exogenously supplied xenon 

with targeted molecular imaging techniques. 

§ 1.8 Binding Characterization* 

Methods for measuring xenon binding parameters to host molecules have been 

refined in recent years. Early work used either changes in 1H NMR chemical shifts upon 

129Xe binding or integration of bound and free 129Xe resonances to calculate the binding 

affinity of cryptophane.55 These methods, however, suffer from large errors.48 To develop 

a more sensitive method for measuring xenon binding affinity for water-soluble 

cryptophane, we took advantage of xenon’s ability to quench fluorescence of organic 

chromophores by the heavy atom effect.62 This was previously shown by very efficient Xe 

quenching of pyrene bound to apomyoglobin.63 Using 15 µM TTPC (Figure 1. 16e), 

experiments were conducted at 293 K in 1 mM phosphate buffer at pH 7.2 by titrating a 

solution of 1-atm-saturated (5.05 mM) aqueous xenon. Fluorescence maximum intensity 

vs. xenon concentration (0-5.05 mM) data were fit to a single-site binding model: 

[𝑋𝑒@𝟏𝒆]

[𝑋𝑒] + [𝟏𝒆]
=

[𝑋𝑒]

[𝑋𝑒] + 𝐾𝐷
 

(1.9) 

We also demonstrated the utility of isothermal titration calorimetry (ITC) for measuring 

xenon-cryptophane association constants, which gives data in excellent agreement with the 

fluorescence quenching method.55, 56 ITC has the advantage of providing both enthalpic 

and entropic xenon-binding parameters for a single cryptophane concentration, but requires 

significantly more cryptophane sample, particularly as the enthalpic contribution to xenon-

cryptophane binding is only a few kcal/mole. 
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We further investigated the interactions between cryptophane and guest molecules 

by X-ray crystallography. Cryptophane is known to encapsulate a large size range of guests 

from methane (28 Å3) to chloroform (72 Å3), and these guests bind with similar affinity 

(KA ≈ 130-230 M-1).47, 64 In an effort to explain why xenon binds with so much higher 

affinity, we co-crystallized cryptophane-A derivatives, Figure 1. 16a, and b with methanol, 

xenon, and chloroform and found that the cavity internal volume (80–102 Å3) varied with 

guest size.65 Importantly, it was observed that in the xenon-bound structure, van der Waals 

interactions were nearly optimized, with an interior cavity volume of 85-89 Å3 and 

guest:host volume ratio of 0.47-0.49. 

§ 1.9 Cryptophane Biosensors: Targeted Detection* 

In developing the first xenon biosensor, Pines, Schultz, and coworkers elegantly 

demonstrated how to functionalize cryptophane to achieve the dual aims of targeting 

streptavidin and improving water solubility. In cryptophane-A, one methoxy group was 

replaced with a free hydroxyl group which was then converted to a carboxylic acid. 

Coupling of the carboxylic acid with the amino-terminus of a protected peptide on resin 

and subsequent coupling with a biotin linker afforded a water-soluble, targeted biosensor. 

Avidin binding generated a ~2.3 ppm upfield chemical shift change for hp 129Xe 

encapsulated in the biotin-conjugated biosensor.66 In a follow-up study, one resonance was 

observed for mono-allyl-substituted cryptophane-A. However, upon conjugating the 

cryptophane with a chiral CKR peptide two peaks appeared, 0.15 ppm apart. These peaks 

were attributed to the RL and LL diastereomers. After the cryptophane was further 

derivatized with the biotin linker through maleimide chemistry a new racemic chiral center 
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was formed, generating RLR, RLL, LLR, and LLL combinations for which four “bound” 

peaks were assigned.49 The observed sensitivity of xenon to diastereomerism is 

problematic for many biosensing applications, as it “dilutes” the xenon-biomarker signal, 

and complicates peak assignments as well as efforts to selectively irradiate 129Xe in a 

specific environment, as required for many NMR experiments.  

 

Figure 1. 17. Targeted cryptophane biosensors from the Dmochowski laboratory. Clockwise from 
top left: matrix metalloproteinase-7 (MMP-7) targeting, MMP-7 peptido-substrate cryptophane; 
carbonic anhydrase targeting, benzene sulfonamide cryptophane; αvβ3 integrin-receptor targeting, 

c[RGDyK] cryptophane; and folate receptor targeting, peptide-folic acid cryptophane.67-70 

Following up on this research, our laboratory demonstrated the ability of hp 129Xe 

to report on an enzyme cleavage event by appending racemic cryptophane with a peptide 

substrate for matrix metalloproteinase-7, a known cancer biomarker, shown in Figure 1. 

17. The 129Xe NMR spectra showed two peaks before cleavage and two new peaks after 

cleavage < 1 ppm upfield of the original peaks.67 Because the xenon signal was effectively 
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split between the diastereomers, a subsequent work, by Dutasta, Berthault, and others, 

utilized enantiopure cryptophane-A grafted with a 20-mer oligonucleotide.71 129Xe NMR 

spectra were measured for the biosensor alone, the biosensor with a complementary DNA 

strand, and biosensor with non-complementary DNA strand. The biosensor plus 

complementary strand was shifted 1.5 ppm upfield of the other two samples, and all three 

samples exhibited one bound peak, as expected for single enantiomers.71 Surprisingly, 

however, when the concentration was increased, both the biosensor alone and the biosensor 

plus noncomplementary strand were seen to foam and exhibit multiple Xe@biosensor 

peaks. It was hypothesized that this was the result of increased microemulsions and 

micelle/vesicle formation.71 This observation highlights the importance of developing 

highly water-soluble xenon biosensors.  

A subsequent work appended cryptophane-A with a peptide ligand to major 

histocompatibility complex (MHC). Specifically, Schlundt et al. used the hemagglutinin 

(HA) peptide which binds human leukocyte antigen (HLA) DR1. The design employed a 

solubilizing linker, which acted as a ~35 Å spacer between the cryptophane and the peptide 

binding moiety.72 129Xe NMR revealed one peak for the bound and unbound biosensor, 

with a Δδ of only 1 ppm.72 While the spacer improved solubility, it positioned the xenon 

too far from the peptide to generate a significant chemical shift change upon MHC binding. 

Heretofore, targeted xenon biosensors were mono-functionalized derivatives of 

cryptophane-A but our work with water-soluble TAAC, TTPC, and TTEC suggested that 

we could achieve both better xenon binding and simplified 129Xe NMR spectra with a tri-

functionalized cryptophane. Building on earlier work in our lab using mono-functionalized 
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cryptophane with a linear (RGD)4 repeat,73 we functionalized tripropargyl cryptophane 

(Figure 1. 16e) with a cyclic peptide RGDyK, known to have high affinity and specificity 

for αvβ3 integrin, and two 3-azidopropionic acids with CuAAC.74 Interestingly, despite the 

cryptophane chirality and potential for diastereomerism, we observed only one 

129Xe@biosensor NMR peak when the biosensor bound to αvβ3 integrin and it was 4.1 ppm 

downfield from the free biosensor. This demonstrated that using a well-solubilized 

cryptophane, it is possible to engage protein targets using short tethers and still obtain well-

resolved 129Xe NMR spectra. 

Targeting αvβ3 Integrin* 

In order to investigate the cell compatibility of xenon biosensors we fluorescently 

labeled our c[RGDyK]-cryptophane (see Figure 1. 17) and performed cell uptake, viability, 

and specificity studies. The MTT assay demonstrated  60% viability at 75 µM biosensor 

for three cell lines. Confocal microscopy studies with the cancer cell line, AsPC-1, and 

normal human fibroblasts, HFL-1, showed preferential biosensor uptake in AsPC-1 and 

further demonstrated that uptake could be blocked with antibody or excess c[RGDyK] 

peptide (Figure 1. 18). Flow cytometry confirmed 2-3-fold greater uptake over antibody 

and c[RGDyK] blocked cells and 4-fold greater uptake in AsPC-1 vs. HFL-1.74 Our studies 

also demonstrated targeting of αvβ3 integrin and αIIbβ3 integrin with nanomolar affinity and 

specificity and low cytotoxicity at concentrations required for NMR experiments. This 

work paved the way for cellular NMR spectroscopy and imaging experiments, which are 

now underway in our laboratory and elsewhere.75-77 
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Figure 1. 18. Cellular uptake studies using confocal microscopy. Alexa-fluorophore 488-labeled 
c[RGDyK]-cryptophane (1 µM) targeting AsPC-1 cells (a) after 1 h incubation and (b) with 
blocking co-treatment of 0.15 mg/mL anti-αv antibody. Adapted with permission from Seward et 
al.68 

Targeting Carbonic Anhydrase* 

A concurrent work sought to characterize how the proximity of cage binding 

modulated the xenon-129 chemical shift. For this study we synthesized a carbonic 

anhydrase-targeting cryptophane where a benzene sulfonamide ligand with three linker 

lengths (C6B, C7B, and C8B) was coupled to tripropargyl cryptophane (Figure 1. 17 and 

Figure 1. 20). Our laboratory has employed a carbonic anhydrase (CA) model system, 

because of its biomedical relevance for cancer detection.78-81 CA is a ubiquitous zinc 

metalloenzyme that catalyzes a simple but physiologically important reaction: the 

reversible hydration of carbon dioxide to form bicarbonate and a proton.82-84 Five classes 

of evolutionarily unrelated CA exist (α-, β-, γ-, δ-, and ζ-CAs), with humans expressing 

fifteen isoforms of α-CA.80 All fifteen isozymes share a conserved fold consisting of a 

central ten-stranded β-sheet surrounded by helical connections.85 The catalytic active site 

of α-CA is positioned at the base of a conical cavity approximately 15 Å wide and 15 Å 

deep and is comprised of a catalytic Zn2+ ion exhibiting tetrahedral coordination with three 
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conserved histidine residues and a hydroxide ion, see Figure 1. 19. In this work we targeted 

CAI and CAII isozymes because unlike the isozymes CAIX and CAXII indicated in cancer, 

CA I and II are well characterized and express readily in bacteria, thus providing an ideal 

model system. Both are cytosolic isoforms of α-CA with high structural homology. 

 

 

 

Figure 1. 19. Highly conserved active site residues of carbonic anhydrase. Shown is the His64 
mediated proton shuttle mechanism that aides in the interconversion of carbon dioxide and 
bicarbonate plus proton. 
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Figure 1. 20. 129Xe NMR of CA targeting biosensors. 129Xe NMR in 50 mM Tris, pH 8.0 of (a) C6B 
alone (96 µM); (b) C6B (188 µM) and CAI (141 µM); (c) C6B (148 µM) and CAII (123 µM); (d) 
C7B alone (186 µM); (e) C7B (136 µM) and CAI (100 µM); (f) C7B (132 µM) and CAII (105 µM); 
(g) C7B alone (121 µM); (h) C8B (189 µM) and CAI (141 µM); (i) C8B (189 µM) and CAII (153 
µM). Data from Chambers et al.70 

Biosensor binding to CA was characterized by 129Xe NMR spectroscopy and 

isothermal titration calorimetry (ITC).70 ITC measurements of biosensor binding to CAI 

and CAII gave dissociation constants in the 10-100 nM range for all three biosensors. 

Interestingly, the dissociation constants for the full-length biosensors were comparable to 

those of the biosensors lacking the cryptophane. All three biosensors showed distinct and 

reproducible 129Xe NMR chemical shifts upon binding CAI and CAII, respectively (Table 

1.4). The hp 129Xe NMR spectrum of racemic biosensors bound to CAI and CAII is shown 

as in Figure 1. 20. The unique 129Xe NMR chemical shifts for biosensors bound to CAI or 

CAII demonstrate the potential of xenon biosensors to discriminate between isoforms of 

α-CA. CAI and CAII are structurally homologous, thus it is expected that xenon tethered 

in the active-site channel experiences similar steric environments. However, the 
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distribution of hydrophobic and hydrophilic residues lining the active-site channels varies 

between CAI and CAII; the large electron cloud surrounding the encapsulated xenon 

nucleus is sensitive to these differences, and thus the two isoforms are distinguishable by 

hp 129Xe NMR spectroscopy. It is expected that CAIX and CAXII will also report 

characteristic 129Xe chemical shifts upon binding xenon biosensor, thereby allowing for the 

selective detection of these cancer biomarkers by MRS/MRI. Interestingly, racemic C7B 

bound to wild-type CAII reports two 129Xe NMR chemical shifts (Figure 1. 20). C8B also 

reports two chemical shifts when bound to CAI and CAII, respectively. It was initially 

hypothesized that the two observed 129Xe chemical shifts were the result of single-site 

diastereomerism, with the (+) and (−) enantiomers of C7B binding to the same site but 

interacting slightly differently with residues in the chiral active-site channel of CAII.86 

However, the 129Xe NMR spectra of enantiopure (+) and (−) C7B both report multiple 

“bound” chemical shifts for xenon.86 This highlights the potential for multi-site binding, 

with the two enantiomers occupying distinct sites in the active site cleft. The cause of 

observed multiple “bound” cryptophane peaks is discussed further in Chapter 2. 

 

The crystal structure of C8B bound to wild-type CAII was determined at 1.70 Å 

resolution by Aaron et al. in 2008 and is shown in Figure 1. 21.87 The occupancy of C8B 
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was refined to 0.5 (with the MoMo and PoPo enantiomers having occupancies of 0.25, 

respectively). An encapsulated xenon atom was confirmed by a Bijvoet difference Fourier 

map calculated from anomalous scattering data and refined with occupancy of 0.5. The 

overall fold of CAII is largely unperturbed by binding of C8B, and only a few 

conformational changes are observed along the active-site rim. Close examination of the 

interface between the biosensor and protein revealed only a few cryptophane-protein 

interactions, suggesting that the cryptophane experiences a high degree of translational and 

rotational freedom. Such biosensor mobility is advantageous for 129Xe NMR spectroscopy 

as it yields narrower line widths, thereby increasing the sensitivity of 129Xe NMR 

measurements in solution.87, 88 

 

Figure 1. 21. X-ray crystal structure of xenon encapsulated in C8B (only M0M0 enantiomer is 
shown for clarity) bound to CAII (PDB: 3CYU). The Xe atom is shown in green; the active-site 
Zn2+ is grey; C8B is shown with carbon (black), oxygen (red), nitrogen (blue), and sulfur (green). 
Reproduced from Aaron et al.89 
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Targeting Folate Receptor 

 A subsequent work sought to further characterize cell targeting and employed a 

different method of solubilization to ascertain the significance of types of solubilizing 

methods. In this study we used a mono-functionalized, PEGylated cryptophane with a 

leucine tethered folate recognition moiety (Figure 1. 17) synthesized in 20 nonlinear steps 

from four commercially available starting materials, depicted in Figure 1. 22a and b. The 

folate recognition moiety was synthesized in 5-steps as shown in Figure 1. 22a and then 

coupled to a PEGylated, azido peptide on solid support which was then “clicked” to mono-

propargyl cryptophane, Figure 1.20b to yield the folate receptor-targeting biosensor. Here 

we again use a long chain to solubilize the compound but have the targeting portion in 

close proximity to the binding cage. In this work, two versions of the final compound were 

generated, the first, labeled “Folate receptor targeting cryptophane” in Figure 1. 22 is the 

compound proposed for use in NMR/MRI studies. A derivative compound for use in 

localization imaging studies was generated by TCEP deprotection of cysteine and 

conjugation with a maleimide Cy3 dye. Confocal microscopy studies demonstrated 

specific targeting of cells over-expressing folate receptor with the biosensor targeting the 

receptor and subsequently being taken up by an endocytotic mechanism, Figure 1. 23. Flow 

cytometry studies demonstrated a 10-fold specificity for FR overexpressing KB cells over 

HT-1080 cells, as shown in Figure 1. 24a while demonstrating low toxicity at 

concentrations relevant for 129Xe NMR, Figure 1. 24b. The NMR again demonstrated two 

bound peaks, which exhibited unequal intensity. We attribute this to one of the 



 

44 

 

diastereomers of the poorly solvated cage maintaining a more collapsed conformation, thus 

reducing xenon affinity. The NMR of the folate-biosensor is shown in Figure 1. 25.  

 

Figure 1. 22. Synthetic scheme showing the formation of the folate recognition moiety (top) and 
the fluorescently labeled folate receptor targeting cryptophane (bottom).  The top scheme depicts 
the 5-step synthesis of [2-(trimethylsilyl)ethoxy]-2-N-[2-(trimethylsilyl)-ethoxycarbonyl]folic acid. 
The bottom scheme shows the synthesis of folate-targeting cryptophane and fluorescently 
labeled folate-targeting cryptophane, respectively. Monopropargyl cryptophane (synthesized in 12 
steps with a 3% overall yield) was coupled to the folate conjugated azidopeptide on solid support 
via Cu(I) mediated [3+2] azide-alkyne cycloaddion and cleaved from solid support in 80% purified 
yield. Subsequent conjugation of the folate targeting cryptophane yielded the fluorescent 
derivative in 20-30% purified yield. Adapted with permission from Khan, Riggle et al.69 
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Figure 1. 23. Confocal micrographs and corresponding brightfield images of 4 µM Cy3-labeled 
biosensor targeting FRα. Uptake was monitored in (a) KB; (b) HeLa; and (c) HT-1080 cells after 4 
h incubation at 37 ºC in folic acid depleted media. Uptake was blocked in (d) KB; (e) HeLa, and (f) 
HT-1080 cells pre-incubated in folic acid containing media. Adapted with permission from Khan, 
Riggle et al.69 
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Figure 1. 24. Flow cytometry (top) and MTT viability assay (bottom). Flow cytometry quantified 
cell uptake of 4 µM Cy3-labeled folate targeting cryptophane. Uptake in (a) KB (FR+, red) and (b) 
HT-1080 (FR-, blue) cells was compared to cells pre-incubated with folic acid (black). Cytotoxicity 
assays for folate-conjugated cryptophane (without dye) in KB (blue) and HT-1080 (red). Percent 
viability was determined via MTT assay after 24 h incubation with increasing concentrations of the 
biosensor. Adapted with permission from Khan, Riggle et al.69 
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Figure 1. 25. Hyperpolarized 129Xe NMR spectrum of folate receptor targeting cryptophane. 
Biosensor (60 µM) in acetate buffer at pH 5.0 (40 scans; S/N = 30:1 with 50 Hz line broadening). 
Adapted with permission from Khan, Riggle et al.69 

Paradigm Shift in Biosensor Design 

In 2010, the Pines laboratory demonstrated that if they mixed diacid cryptophane-

A with varying concentrations of Intralipid® they were able to achieve chemical shift 

changes (from that of the diacid cryptophane-A in buffer alone) approaching 10 ppm.90 

This work suggested that substantially larger chemical shifts could be obtained when the 

targeting biosensor was bound in close proximity to the cellular membrane. Indeed, in 

recent work the Schrӧder lab metabolically labeled sialic acid with a bioorthogonal azide.91 

Employing a cryptophane scaffold containing a strained alkyne they labeled cell 

membranes with cryptophane host molecules. The cages tethered to cells exhibited a strong 

downfield chemical shift of 10 ppm relative to the free biosensor. Thus moving forward 
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our lab has endeavored to decorate cell membranes with our targeting biosensors, as 

demonstrated in Chapter 3. 

Advantages of Targeted Xenon Biosensors 

 As these examples of targeted biosensors demonstrate, this new version of targeted 

or “smart” contrast agents can be made specific for bioreceptors or biomarkers of interest. 

This is an important consideration in the accurate diagnosis of malignant tissue. For 

example, mammography identifies masses that necessitate biopsy to determine whether 

they are malignant or benign. With targeted molecular imaging receptors strongly 

indicative of an aggressive cancer, like HER-2, could be targeted and invasive procedures 

only performed after positive identification. Mammography and other non-specific 

techniques also result in over-diagnosis, or the identification of small cancers that would 

have otherwise been asymptomatic and non-life threatening over the patient’s natural life 

span.92 Identification of these cancers may prompt chemotherapeutic or radiation 

treatments which carry their own adverse effects.92 Following this example, in cases where 

early positive identification of breast cancer is made, early treatment strongly improves 

survival.93 Thus there is a strong need for reliable early diagnosis of cancer such that 

treatment efficacy is high but unnecessary treatment exposure is mitigated. 

§ 1.10 Ultrasensitive Detection: HP Chemical Exchange Saturation Transfer 

The use of exogenously supplied hyperpolarized 129Xe improves detection limits of 

cryptophane-MRI contrast agents to the low micromolar range. However, the requirements 

of molecular imaging have made our lab and others endeavor to increase detection 
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sensitivity even further, approaching picomolar or even femtomolar detection regimes.  

One such paradigm, first described by Ward et al., exploited the exchanging populations 

for selective saturation and was so named chemical exchange saturation transfer (CEST).94 

These experiments employed barbituric acid and 5,6-dihydrouracil, both of which contain 

exchangeable protons. A tuned radio frequency (rf) pulse was applied selectively to 

saturate the signal from the barbituric acid. As a result of the amide protons exchanging 

more rapidly than the time scale of spin relaxation with the bulk solvent (H2O), the water 

signal was also depleted to a degree directly proportional to the concentration of the 

barbituric acid this is shown in Error! Reference source not found.. Thus, these results 

demonstrated an indirect detection method for achieving increased detection sensitivity. 

 

Figure 1. 26. Preliminary chemical exchange saturation transfer (CEST) experiment with 
barbituric acid. Direct detection 1H NMR shown (top) and CEST spectrum (bottom) demonstrating 
concentration-dependent quenching. Adapted with permission from Bai et al.38 
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The utility of this technique for hyperpolarized xenon NMR was first demonstrated 

by the Pines laboratory in 2006.95 In this application the detection technique is termed 

hyper-CEST to account for the presence of hyperpolarized nuclei. In these experiments, 

the Pines group tethered biotinylated cryptophane to agarose beads and collected 129Xe 

NMR spectra (Error! Reference source not found.b) and transverse 1H NMR images 

(Error! Reference source not found.a) overlaid with transverse 129Xe images (Figure 1. 

27c). They demonstrated > 3300-fold reduction in image acquisition time as well as 

sensitivity ~10,000 times better than previous CEST methods.  While these hyper-CEST 

experiments were performed at ~5 µM, they postulate that several straight-forward 

optimizations could decrease the detection limit by at least 60-fold; namely, the use of 

isotopically enriched xenon and optimized polarization procedures. Thus hyper-CEST is a 

promising technique for drastically increasing sensitivity of 129Xe NMR. 

 

Figure 1. 27. Initial hyper-CEST experiment using agarose beads labeled with biotinylated 
cryptophane. Adapted with permission from Klippel et al.95 
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Moving forward, advances in our lab and elsewhere produced significant 

improvements in detection sensitivity. Using TAAC (Figure 1. 16d), we demonstrated 1.4 

pM detection limits in buffered solutions, shown in Figure 1. 28.96 

 

Figure 1. 28. Hyper-CEST experiments demonstrating 1.4 pM detection sensitivity of TAAC. 
Adapted from Bai et al.38 

§ 1.11 Multiplexing Applications* 

Because of the large (~300 ppm) 129Xe NMR chemical shift window for 129Xe 

bound to cryptophanes in water, Pines et al. postulated in 2001 that hp 129Xe NMR should 

be amenable to multiplexed detection using a cocktail of cryptophane biosensors.66 One 

should ideally obtain only one “bound” peak for each biosensor, and these should be well 

resolved from each other (ideally > 5 ppm away) as well as from the “free” biosensor peaks. 
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This general idea is described in Figure 1. 29 where, in an MRI, signal from multiple 

targeted cryptophanes would be acquired simultaneously with proton anatomical reference 

images. The signal from multiple targets will help to negate false positives in tumor tissue 

identification. Already, large chemical shift changes (Δδ = 7.5 ppm) upon target 

complexation have been achieved in our laboratory with carbonic anhydrase targeting 

cryptophanes as well as the 10 ppm chemical shift obtained from the metabolically 

incorporated cryptophane discussed in the previous section.70, 91 However, additional work 

is needed to probe how the nature of the xenon biosensor-protein interaction, 

diastereomerism, and cryptophane solubility affect the 129Xe NMR spectrum. Recently, 

work in the Schrӧder laboratory demonstrated the first practical example of multiplexing 

with xenon host molecules where they mixed cryptophane and perfluoroctyl bromide 

(PFOB) nanodroplets and were able to label mammalian cells and demonstrate “two-color” 

contrast MRI shown in Figure 1. 30.97 
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Figure 1. 29. Exploiting 129Xe chemical environment sensitivity for multiplexing applications with 
cryptophane host molecules. 

 

Figure 1. 30. First multiplexed detection experiment with cryptophane. Demonstrated the ability 
to readily discern between PFOB- and cryptophane-labeled cells. Adapted with permission from 
Klippel et al.97 
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§ 1.12 Conspectus 

This dissertation describes the advances in the development of disease-targeted 

cryptophane biosensors for the use in 129Xe MRI/MRS. These biosensors couple targeted 

molecular imaging with the use of an exogenously supplied nucleus, 129Xe. Cryptophane 

cages can be readily functionalized via “click chemistry” to target a wide variety of 

overexpressed biomarkers indicated in cancer progression. Our work has endeavored to 

develop synthetic strategies to generate biosensors with the highest degree of specificity 

and largest xenon association constants possible. We have used the biosensors we have 

generated to investigate the biological applicability and utility of targeted xenon biosensors 

for use as contrast agents in NMR. The results of some of these studies are discussed in the 

following chapters.  
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Chapter 2: Benzenesulfonamide Biosensor Binding Mechanisms in Carbonic 

Anhydrase 
 

 

 

 

 

 

 

Section 3 of this chapter was originally published in Organic Letters. It has been adapted 

here with permission from the publisher: 

Reprinted with permission from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; 

D.N. Haase; and I.J. Dmochowski. Synthesis of Enantiopure, Trisubstituted Cryptophane-

A Derivatives. Org Lett. 2012, 14, (14) 3580-3583. Copyright 2012 American Chemical 

Society.  
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§ 2.1 Introduction 

Ubiquitous zinc metalloenzymes, carbonic anhydrase isozymes are found in a 

majority of living organisms because they serve to catalyze the reversible hydration of 

carbon dioxide to bicarbonate and proton. The medical community has a special interest in 

carbonic anhydrase, however, because some of the 15 human isozymes are upregulated in 

specific disease states and are believed to aid tumor metastasis in certain forms of cancer, 

see Table 2.1.80 Because of the high degree of homology in active-site conformation 

between the different isozymes of interest, the development of inhibitors and targeting 

ligands with isozyme specificity has been an area of considerable research. Our initial 

results with a carbonic anhydrase-targeting cryptophane demonstrated promising “bound” 

upfield chemical shifts of up to 7.2 ppm (see Chapter 1, Section 9) and a degree of isozyme 

discrimination between CAI and CAII. These data were convoluted, however, by the 

presence of multiple bound peaks. Thus a portion of my thesis work and ongoing studies 

in the laboratory have been devoted to elucidating the precise cause of the chemical shift 

variation in order to inform a variety of rationally designed biosensors specific to different 

isozymes of interest in the targeted molecular imaging of carbonic anhydrase. Additionally, 

this work may prove to further refine design specifications for a large variety of Xe-

cryptophane protein sensors.49, 67 

Initial hypotheses for the cause of multiple bound peaks centered on the chiral 

nature of the cryptophane host molecule as shown in Figure 1. 12. Due to the chiral nature 

of cryptophane-2,2,2 once the biosensor binds to the protein active site, diastereomers are 

formed. Xenon, highly sensitive to its local environment, has been shown to be sensitive 
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to a diastereomeric host molecule.49, 67 Thus we first endeavored to develop an enantiopure 

synthesis of trifunctionalized cryptophane-A derivatives because although other 

enantiopure syntheses have been published these routes were not to the trifunctionalized 

cryptophanes, which exhibit superior xenon binding as a result of improved cage solubility 

and decreased water encapsulation.56-58 Thus Section 2.2 describes several routes we have 

developed to trihydroxy cryptophane which can then be, as described in Section 2.3, 

isolated into the corresponding (+) and (–) enantiomers and propargylated for further 

conjugation to form the desired carbonic anhydrase biosensor. [It should be noted that this 

route is not limited to producing CA biosensors, rather, it results in enantiopure tripropargyl 

cryptophane which is the starting material for all of our currently used cryptophane 

biosensors.] 
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§ 2.2 Synthesis of Trihydroxy Cryptophane§ 

In order to achieve trifunctionalized, enantiopure cryptophane we use trihydroxy 

cryptophane which can be achieved via three more efficient routes than from tripropargyl 

cryptophane. 

 

Figure 2. 1. Depropargylation of TPC or TAC precursor to form THC precursor. 

Route 1: 

Tripropargyl cryptophane precursor, achieved in 5 steps, (2,7,12-Tris-[2-[4-

(hydroxymethyl)-2-propargyloxy-phenoxy]ethoxy]-3,8,13-trimethoxy-10,15-dihydro-2H-

tribenzo[a,d,g]cyclononene) was depropargylated to form trihydroxy precursor (6,6',6''-

((((3,8,13-Trimethoxy-10,15-dihydro-5H-tribenzo[a,d,g][9]annulene-2,7,12-triyl)tris-

(oxy))tris(ethane-2,1-diyl))-tris(oxy))tris(3-(hydroxymethyl)phenol)), Figure 2. 1. An 

oven dried round bottom flask was changed with TPC Precursor (1.0 eq.), and Pd(PPh3)2Cl 

(0.10 eq.) and was dissolved in triethylamine (25 mL), tetrahydrofuran (25 mL), and water 

                                                 

 

 

§ This section highlights the work of Taratula et al.54 
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(12 mL) and stirred at 80 ºC under inert atmosphere overnight. The work up entailed ethyl 

acetate extraction (3x) and the compiled organics were then washed with brine and dried 

over sodium sulfate and concentrated to a white powder under reduced pressure. The crude 

material was then purified by column chromatography (CH2Cl2 →MeOH:CH2Cl2 6:94, 

v/v) to yield 0.495 g (0.546 mmol, yield: 70% as a white solid). TLC (silica gel, 5% 

MeOH/CH2Cl2): Rf(7) = 0.16. mp: 89-91 °C. 1H NMR (DMSO-d6) δ(ppm): 8.88 (s, 3H), 

7.16 (s, 3H), 7.09 (s, 3H), 6.87 (d, J = 8.2 Hz, 3H), 6.78 (s, 3H), 6.65 (m,3H), 4.95 (t, J = 

5.8 Hz, 3H), 4.70 (d, J = 13.3 Hz, 3H), 4.33 (m, 6H), 4.18-4.29 (m, 12H), 3.68(s, 9H), 3.52 

(d, J = 13.3 Hz, 3H). 13C NMR (DMSO-d6) δ(ppm): 147.6, 146.8, 146.3, 145.3,135.9, 

132.6, 132.0, 117.1, 115.3, 114.4, 114.3, 114.0, 67.7, 67.5, 62.6, 55.9, 35.0. HRMS (m/z): 

[M+Na]+ calculated for C51H54O15, 929.3360; found, 929.3405. This method was very low 

yielding in my hands and difficult to purify as a result of the dark brown precipitate formed 

(from the catalyst) during the reaction. With the help of a talented undergrad, Mara 

Greenburg, it was determined that the reaction worked in an ~50% yield on an 80 mg scale, 

see Appendix B for 1H NMR. 

 

Figure 2. 2. Reduction of TPC to form THC precursor. 
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Route 2: 

From tripropargyl cryptophane, achieved in 6 steps, trihydroxy precursor was synthesized. 

For 0.050 g TPC (0.05 mmol, 1.0 eq.) Pd(PPh3)Cl2 (0.1 eq), THF (5 mL), Et3N (5 mL) and 

H2O (2.5 mL) was used. The solution was heated to 80 ºC and put to stirring under inert 

atmosphere overnight. The reaction was worked up by extracting 3x with ethyl acetate. The 

combined organics were washed with water and brine and dried over sodium sulfate. The 

resulting solvent mixture was concentrated under reduced pressure. Repeated trials with 

this method and then increasing the amount of catalyst up to 1 eq and/or substituting 

solvents for DMF/H2O as well as allowing the reaction to run longer universally yielded 

only small amounts of product by TLC. 

6 

Figure 2. 3. Synthesis of THC aldehyde precursor and subsequent reduction to form THC 
precursor. 

Route 3:  

Trihydroxy aldehyde precursor is first achieved in 3 steps, as shown in Figure 2. 3. This 

route utilized regioselective protection of the 4-hydroxyl group in the 3,4-

dihydroxybenzaldehyde as detailed by Plourde et al to couple the 3,4-dihydroxy 

benzaldehyde “hydroxyl linker” to the cap.98 This method negates the difficult meta linker 

synthesis and purification and the redundancy of first protecting and then deprotecting the 
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meta alcohol. Relying on the increased acidity of the para proton for preferential reaction 

at this position. The reaction proceeded rapidly in respectable yield (crude, by TLC) 

purification and characterization is ongoing. Crude NMR shown in Appendix B. [This 

route not previously published] 

 

Figure 2. 4. Cyclization of THC precursor by two routes to form THC. 

Cyclization to form trihydroxy cryptophane: 

Trihydroxy aldehyde precursor (0.110 g, 0.121 mmol, 1.0 eq.) was dissolved in THF (10 

mL) and methanol (250 mL) was added. Perchloric acid (60%, 250 mL) was then added 

dropwise into the cloudy solution at 0 °C. Scheme shown in Figure 2. 4. The reaction was 

allowed to warm to rt and stirred slowly for 24 h under N2. The reaction mixture was diluted 

by CH2Cl2 and neutralized by 1 M NaOH solution at 0 °C. The reaction mixture was 

extracted with CH2Cl2. The combined organic extracts were concentrated and washed with 

NaHCO3 solution and brine several times. The solution was filtered and dried over MgSO4. 

After removal of the solvent under vacuum, the residue was chromatographed on a silica 

gel column (CH2Cl2MeOH:CH2Cl2 2:98, v/v) to yield 0.067 g (0.079 mmol, 65% yield) as 

a white powder. TLC (silica gel, 5% MeOH/CH2Cl2): Rf(8) = 0.33 mp >200 °C (decomp.). 
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1H NMR (CDCl3) δ(ppm): 6.83 (s, 3H), 6.71 (s, 3H), 6.70 (s, 3H), 6.62 (s, 3H), 4.58 (dd, J 

=13.7 Hz, 6H), 4.27-4.24 (m, 12H), 3.79 (s, 9H), 3.42 (d, J = 13.8 Hz, 3H), 3.36 (d, J = 

13.8 Hz, 3H). 13C NMR (CDCl3) δ(ppm): 149.9, 148.1, 145.7, 144.8, 134.3, 133.6, 131.7, 

130.7, 122.1, 120.9, 115.7, 114.2, 70.1, 69.0, 53.5, 36.3, 36.2. HRMS (m/z): [M+Na]+ 

calculated for C51H48O12, 875.3043; found, 875.3062. The spectroscopic data matched 

those reported in the literature.56 Although Dr. Taratula published two routes to trihydroxy 

cryptophane, in my hands only the perchloric acid route has been accessible. 

§ 2.3 Synthesis of Enantiopure, Trisubstituted Cryptophane-A Derivatives 

The need for imaging agents and analytical tools that can report on the 

concentration and activity of various biomolecules in complex media has motivated the 

development of 129Xe NMR biosensors.53, 99 These agents have the potential to detect 

cancer and other diseases by localizing hyperpolarized (hp) 129Xe to a diseased tissue 

and/or by multiplexed detection of different protein biomarkers.53, 99 To date, cryptophane-

A organic cages, in which two cyclotriguaiacylene (CTG) units are connected by three 

ethylene oxide linkers, show the highest xenon binding affinity with dissociation constants 

of ∼25 μM at physiological temperature in aqueous solution.53, 55, 99 Functionalized 129Xe 

cryptophane biosensors can be targeted to different protein receptors and identified by 

changes to the frequency of the bound 129Xe nucleus.66, 71, 72 

The use of enantiopure cryptophanes is preferred over racemic mixtures, which 

have been shown to produce multiple, diastereomeric peaks upon binding to chiral protein 

surfaces.49, 67, 70 Similarly, complex hp 129Xe NMR spectra are observed when racemic 

cryptophanes are modified with chiral small molecules or peptides, based on 
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diastereomeric splitting.100-102 For the sensitive detection of chiral biological analytes, 

enantiopure cryptophanes that offer well resolved “bound” and “free” 129Xe NMR peaks 

should offer substantial advantages. Enantiopure cryptophanes have also been employed 

for chiral recognition of small guests.103 Here, we report a new method for producing 

enantiopure cryptophanes for many different applications.  

Results and Discussion 

Until now, the resolution of chiral cryptophanes and hemicryptophanes has 

typically required expensive HPLC methods and yielded only small quantities of optically 

pure material.104, 105 Another approach has been the synthesis of enantiopure cryptophanes 

from the optically pure CTG units, but one limitation is possible racemization of CTG 

during the subsequent synthetic steps.103 Recently, Dutasta and co-workers employed (−)-

camphanic chloride as a chiral resolving agent to resolve monocryptophanol through 

separation of the resulting diastereomers.106 The diastereomers were not separable by 

chromatography on silica gel or reversed-phase HPLC, but crystallographic resolution has 

recently been improved to give both enantiomers in 25% yield.107 However, this 

crystallographic method is time-consuming. The low yield of pure cryptophane 

diastereomers limits the production of enantiomerically pure cages for uses in xenon 

biosensors and host guest chemistry, broadly defined. 

Dutasta et al. previously demonstrated the chromatographic separation of 

trifunctionalized hemicryptophanes.108 We hypothesized that a pair of cryptophane-A 

diastereomers substituted with three chiral auxiliaries would also result in a significant 

difference in polarity. Indeed, substitution with three chiral resolving groups allowed 
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efficient separation and isolation of cryptophane diastereomers using silica gel column 

chromatography. Deprotection of the isolated diastereomers yielded the enantiopure 

trisubstituted cryptophanes, whose chemical and physical properties can be tuned at the 

three positions. 

According to Figure 2. 5a, diastereomers 2a and 2b were synthesized from 

trihydroxy cryptophane 1, (as described in Section 2.2) which was obtained by a previously 

published six-step route.54 Trihydroxy cryptophane 1 was reacted with 3.3 equivalents of 

(S)-Mosher’s acid in the presence of DMAP/Et3N. The Mosher’s acid moiety was chosen 

as a readily available and sterically bulky chiral resolving agent. The reaction proceeded 

relatively slowly and went to ∼70% completion after stirring for two days at 70 ºC in DMF. 

The resulting cryptophane-A diastereomers 2a and 2b were successfully separated by 

column chromatography (silica gel, Et2O/ CH2Cl2, 0.5:99.5, v/v) to give each enantiomer 

in 35% yield. Resolved diastereomers 2a-(S)-(−) and 2b-(S)-(+) were easily distinguished 

by 1H NMR spectroscopy (Figure 2. 5b), each showing four singlets with different 

chemical shift values for aromatic protons. In contrast, the aromatic region of the 

diastereomeric mixture exhibited eight singlets in the same region (Figure 2. 5b). The 

enantiopurity of the isolated diastereomers was confirmed by electronic circular dichroism 

(ECD) spectroscopy showing the same peaks with opposite signs (Figure 2. 6a). 



 

65 

 

 

Figure 2. 5. Synthesis of trisubstituted cryptophane diastereomers of cryptophane from trihydroxy 
cryptophane (a) and aromatic region of 1H NMR spectra for i. mixture of diastereomers; ii. 2a; and 
iii. 2b. Reprinted with permission from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; 
D.N. Haase; and I.J. Dmochowski. Synthesis of Enantiopure, Trisubstituted Cryptophane-A 
Derivatives. Org Lett. 2012, 14, (14) 3580-3583. Copyright 2012 American Chemical Society. 
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Figure 2. 6. ECD spectra of diastereomers 2a and 2b (~0.5 mM) in 1,4-dioxane (a) and hp 129Xe 
NMR spectrum of diastereomers 2a and 2b ~10 mM in C2D2Cl4 at 299 ± 2 K (b). Reprinted with 
permission from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; D.N. Haase; and I.J. 
Dmochowski. Synthesis of Enantiopure, Trisubstituted Cryptophane-A Derivatives. Org Lett. 
2012, 14, (14) 3580-3583. Copyright 2012 American Chemical Society. 
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Figure 2. 7. 129Xe NMR of a) 2a-(S)-(−); and b) 2a-(S)-(+). Reprinted with permission from O. 
Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; D.N. Haase; and I.J. Dmochowski. Synthesis 
of Enantiopure, Trisubstituted Cryptophane-A Derivatives. Org Lett. 2012, 14, (14) 3580-3583. 
Copyright 2012 American Chemical Society. 
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The interaction between xenon and the trisubstituted cryptophane diastereomers 2a 

and 2b was investigated by hp 129Xe NMR spectroscopy in a nonintercalating organic 

solvent, 1,1,2,2-tetrachloroethane-d2 (C2D2Cl4). Hyperpolarized 129Xe was mixed with a 

sample solution in an airtight NMR tube, and spectra were taken quickly with 

four transients (Figure 2. 6b). Standardized by the signal from dissolved hp 129Xe in 

C2D2Cl4,
46 hp 129Xe NMR chemical shifts for the mixture of diastereomers 2a-(−) (67.5 

ppm) and 2b-(+) (77.0 ppm) in C2D2Cl4 at 299 K were recorded 9.5 ppm apart (Figure 2. 

6b), which is the largest chemical shift difference reported for cryptophane diastereomers. 

Peaks were assigned by collecting the hp 129Xe NMR spectrum for both of the individual 

diastereomers (Figure 2. 7). Previously, for the mono-(−)-camphanic acid cryptophane 

diastereomers, a chemical shift difference of ∼7 ppm was observed for the two 

diastereomers.109 Notably, for the camphanic acid derivative, the more 

downfield peak arose from the cryptophane-(−) diastereomer, whereas with three Mosher 

acids it was the cryptophane-(+) diastereomer. With a 1:1 mixture of diastereomers 2a and 

2b, the two resonances are clearly resolvable (Figure 2. 6b) by hp 129Xe NMR 

spectroscopy. The isolated cryptophane diastereomers are useful precursors for preparing 

various enantiopure functionalized cryptophanes. Removal of the Mosher moieties occurs 

without loss of optical activity. Diastereomers 2a and 2b were deprotected via basic 

hydrolysis at 70 ºC, affording enantiopure trihydroxy cryptophanes 3a-(−) and 3b-(+) 

(Figure 2. 8). The recorded ECD spectra were mirror images (within experimental error) 

of each other, as expected for a pair of enantiomers (Figure 2. 9a). In the absence of an X-

ray crystal structure for the isolated enantiomers, the structural assignment for the two 
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enantiomers was made by reacting cryptophane 3b-(+) with methyl iodide to yield (+)-

cryptophane-A, Figure 2. 10. The recorded ECD spectrum (Figure 2. 9c) was found to be 

opposite of the previously reported spectrum for (−)-cryptophane-A.110 

 

Figure 2. 8. Synthesis of enantiopure, trifunctionalized cryptophanes 3-(−), 3-(+), 4-(−), and 4-(+). 
Reprinted with permission from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; D.N. 
Haase; and I.J. Dmochowski. Synthesis of Enantiopure, Trisubstituted Cryptophane-A 
Derivatives. Org Lett. 2012, 14, (14) 3580-3583. Copyright 2012 American Chemical Society. 
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Similarly to (+)-cryptophane-A, various trisubstituted enantiopure cryptophane 

derivatives could be easily synthesized from trihydroxy cryptophane enantiomers 3a-(−) 

and 3b-(+). For example, reaction with excess propargyl bromide gave the 

enantiomerically pure tripropargyl cryptophanes 4a-(−) and 4b-(+) (Figure 2. 8; Figure 2. 

9b).111, 112 We previously showed that alkyl azides can react with tripropargyl cryptophane 

in nearly quantitative yields via the Cu(I)-catalyzed Huisgen [3 + 2] cycloaddition reaction. 

This route gave enantiopure tripropargyl cryptophanes 4a-(−) and 4b-(+), each in 15% 

overall yield starting from racemic trihydroxy cryptophane 1-(±). 

 

Figure 2. 9. Electronic circular dichroism for a) 3a-(−) and 3a-(+); b) 4a-(−) and 4a-(+); c) (+)-
cryptophane-A. Reprinted with permission from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. 
Riggle; D.N. Haase; and I.J. Dmochowski. Synthesis of Enantiopure, Trisubstituted Cryptophane-
A Derivatives. Org Lett. 2012, 14, (14) 3580-3583. Copyright 2012 American Chemical Society. 
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Figure 2. 10. Synthesis of Cryptophane-A (+) 

In conclusion, an efficient synthesis of enantiopure trifunctionalized cryptophanes 

was developed using chromatographically resolved trisubstituted cryptophane 

diastereomers. ECD spectroscopy confirmed the expected chiroptical properties of the 

isolated diastereomeric and enantiomeric pairs. Hyperpolarized 129Xe NMR chemical shifts 

were recorded at 9.5 ppm apart for the cryptophane diastereomers. The potential for 

synthesizing gram-scale quantities of enantiomerically pure cryptophane would provide 

access to the various functionalized cryptophanes, precursors for many cryptophane-based 

enantiopure biosensors. Particularly, enantiopure Xe biosensors are desired to facilitate 

high-resolution X-ray crystallographic studies53, 65, 70, 71, 113 and to simplify the assignment 

of peaks in 129Xe NMR spectra. These methods are currently being applied to synthesizing 

enantiopure C8B. 

Materials and Methods 

General Methods. 1H NMR (360 and 500 MHz) and 13C NMR (90 and 125 MHz) spectra 

were obtained on Bruker DMX 360 and AMX 500 spectrometers at the University of 

Pennsylvania NMR facility and were recorded at room temperature in deuterated 

chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6) unless otherwise noted. The 1H and 
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13C NMR spectra were referenced to the central line of the residual solvent. 1H NMR and 

13C NMR chemical shifts (δ) are given in parts per million (ppm) and reported to a precision 

of ± 0.01 and ± 0.1 ppm, respectively. Proton coupling constants (J) are given in Hz and 

reported to a precision of ± 0.1 Hz. Column chromatography was performed using silica 

gel (60 Å pore size, 40-75 µm particle size) from Sorbent Technologies. Thin layer 

chromatography (TLC) was performed using silica gel plates (60 Å pore size, Whatman) 

with UV light at 254 nm as the detection method. High resolution mass spectrometry 

(HRMS) data were obtained using electrospray ionization (ESI) mass spectrometry on a 

Micromass Autospec at the Mass Spectrometry Center in the Chemistry Department at the 

University of Pennsylvania. Electronic circular dichroism (ECD) spectra were recorded at 

room temperature on a Chirascan™ Circular Dichroism Spectrometer using cells with a 

pathlength of 0.1 cm. UV-visible spectra were measured using a diode-array Agilent 

89090A spectrophotometer. 

Hyperpolarized 129Xe NMR spectroscopy. We utilized an in-house 129Xe hyperpolarizer 

based on the IGI.Xe.2000 system made by the former Nycomed-Amersham (now GE). 

Hyperpolarized gas supply (Concorde Gases) was a mixture of 89% N2, 10% He, and 1% 

natural abundance Xe (29.4% 129Xe). 129Xe nuclei were hyperpolarized to 10-15% after 

being cryogenically separated, accumulated, thawed, and collected in degassed airtight 

NMR tubes (CAV5, New Era).70 This traps ~2 atm of hyperpolarized Xe in the tube. After 

hyperpolarized Xe was retrieved, NMR tubes were shaken vigorously to mix Xe with 

cryptophane solutions. All 129Xe NMR measurements were made on a 500 MHz Bruker 

BioDRX NMR spectrometer at the University of Pennsylvania NMR Facility. RF pulse 
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frequency for 129Xe was 138.12 MHz. Samples were observed using a Bruker 5 mm 

PABBO NMR probe. 129Xe spectra were processed using standard protocols, and 129Xe 

NMR spectral calibration was performed as previously reported for cryptophane solutions 

in C2D2Cl4.
54 All air- and moisture-sensitive reactions were performed under inert 

atmosphere in glassware flamed under vacuum, and using anhydrous solvents. Standard 

workup procedures involved multiple (~3) extractions with the indicated organic solvent, 

followed by washing of the combined organic extracts with water or brine, drying over 

Na2SO4 and removal of solvents in vacuo. All yields are reported after purification by 

column chromatography or crystallization. 

Materials. Organic reagents and solvents were used as purchased from the following 

commercial sources: Sigma-Aldrich: dimethyl sulfoxide (DMSO, anhydrous, 99.9%), (S)-

(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride (Mosher’s acid chloride, 98%, 

Aldrich); Fisher: acetone (HPLC grade), sodium hydroxide, potassium hydroxide, 

hydrochloric acid, sodium sulfate (anhydrous), sodium chloride, sea sand (washed), 

potassium carbonate (K2CO3, anhydrous), methyl iodide, toluene (HPLC grade), ethyl 

acetate (EtOAc, HPLC grade), hexanes (HPLC grade), chloroform (CHCl3, HPLC grade), 

dichloromethane (CH2Cl2, HPLC grade), methyl alcohol (MeOH, HPLC grade), ethyl ether 

(Et2O, anhydrous); Acros Organics: 4-dimethylaminopyridine (DMAP), N,N-

dimethylformamide (DMF, anhydrous, 99.8%), sodium hydride (NaH, 60% dispersion in 

mineral oil), allyl bromide (99%), benzyl bromide (98%), propargyl bromide (80% solution 

in toluene), 3,4-dihydroxybenzaldehyde (97%), fluorobenzene (99%), dichloromethane 

(99.8%, extra dry, over molecular sieves), cesium carbonate (Cs2CO3, 99.5%), anhydrous 
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dimethylsulfoxide (DMSO), anhydrous dimethylformamide (DMF), methyl sulfoxide-d6, 

chloroform-d (CDCl3), acetone-d6, 4-hydroxy-3-methoxybenzyl alcohol (99%), 1,2-

dibromoethane, sodium borohydride (NaHB4, powder, 98%), scandium(III) 

trifluoromethanesulfonate (Sc(OTf)3, 95%); methyl alcohol (MeOH, extra dry, over 

molecular sieves), tetrahydrofuran (THF, extra dry, over molecular sieves), acetonitrile 

(CH3CN, anhydrous); Concord Specialty Gases: xenon gas (scientific grade). 

Triethylamine (Et3N, Acros) was distilled from KOH under nitrogen prior to use. 

Synthetic Procedures and Analytical Data 

Trihydroxy cryptophane (1) was obtained in six steps with an overall yield of 9.5%.54 

Cryptophane (2, diastereomeric mixture): An oven-dried flask was charged with 

trihydroxy cryptophane 1 (0.201 g, 0.236 mmol, 1.0 equiv), DMAP (0.010 g, 0.078 mmol, 

0.3 equiv), and triethylamine (2 mL) in DMF (12 mL). Finally, Mosher’s acid chloride 

(0.197 g, 0.778 mmol, 3.3 equiv) was added and the reaction mixture was stirred at 70 ºC 

for 2 days. The reaction mixture was cooled to rt followed by standard workup procedure 

using dichloromethane for extraction. The diastereomers were purified and separated by 

silica gel column chromatography (Et2O:CH2Cl2, 0.5:99.5, v/v) to yield 0.12 g (0.081 

mmol, yield: 34%) 2a and of 0.12 g (0.081 mmol, yield: 34%) 2b as white solids. Typically 

20-30% of the trihydroxy cryptophane starting material was recovered from the 

chromatography column. 

Diastereomer 2a-(S)-(−): mp >130 °C dec; TLC (silica gel, Et2O: CH2Cl2, 1:99, v/v): Rf(2a) 

= 0.63; 1H NMR (CDCl3) δ (ppm): 7.73-7.55 (m, 15H), 6.78 (s, 3H), 6.67 (s, 3H), 6.65 (s, 

3H), 6.59 (s, 3H), 4.67 (d, J = 13.8 Hz, 3H), 4.54 (d, J = 13.7 Hz, 3H), 4.37-3.91 (m, 12H), 
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3.82 (s, 9H), 3.50 (d, J = 12.6 Hz, 3H), 3.43 (s, 9H), 3.37 (d, J = 13.9 Hz, 3H); 13C NMR 

(CDCl3) δ (ppm): 164.6, 149.0, 148.9, 144.6, 138.8, 138.2, 133.2, 132.3, 132.0, 131.2, 

130.0, 128.5, 127.6, 122.6, 122.4, 117.0, 114.9, 68.8, 68.5, 56.0, 55.4, 36.2, 36.0; Shown 

in Figure 2. 11. HRMS (m/z): [M+Na]+ calculated for C81H69F9O18Na, 1523.4238; found, 

1523.4221. NMR spectra are shown in Appendix B. 

Diastereomer 2b-(S)-(+): mp >220 °C dec; TLC (silica gel, Et2O: CH2Cl2, 1:99, v/v): Rf(2b) 

= 0.60; 1H NMR (CDCl3) δ (ppm): 7.75-7.55 (m, 15H), 6.87 (s, 3H), 6.76 (s, 3H), 6.55 (s, 

3H), 6.44 (s, 3H), 4.68 (d, J = 13.9 Hz, 3H), 4.51 (d, J = 13.7 Hz, 3H), 4.26-3.88 (m, 12H), 

3.77 (s, 9H), 3.53 (d, J = 13.9 Hz, 3H), 3.48 (s, 9H), 3.31 (d, J = 13.9 Hz, 3H); 13C NMR 

(CDCl3) δ (ppm): 164.5, 149.8, 149.5, 146.0, 139.1, 139.0, 133.9, 133.2, 132.2, 131.3, 

130.0, 128.7, 128.1, 123.3, 122.4, 119.2, 114.7, 69.3, 69.2, 55.9, 36.6, 36.3; shown in 

Figure 2. 12. HRMS (m/z): [M+Na]+ calculated for C81H69F9O18Na, 1523.4238; found, 

1523.4202. NMR spectra are shown in Appendix B. 

Trihydroxy cryptophane 3a-(−): A solution of 2 M KOH (4 mL) was added to the solution 

of cryptophane 2a-(S)-(−) (0.051 g, 0.034 mmol) in THF (6 mL). The solution was stirred 

overnight at 70 °C. THF was removed under vacuum. Water was then added and the 

resulting solution was acidified with concentrated HCl and extracted with CH2Cl2. The 

solution was washed with water and the organic layer was dried over Na2SO4. The solvent 

was removed in vacuo and the crude mixture was purified by silica gel column 

chromatography (MeOH: CH2Cl2, 1:99, v/v) to yield 0.022 g (0.026 mmol, yield: 77%). 

TLC (silica gel, MeOH/CH2Cl2, 5:95, v/v): Rf(3a) = 0.33; mp >200 °C dec; 1H NMR and 

13C NMR spectra for 3a are identical to the spectra of the racemic (±) trihydroxy 
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cryptophane previously reported in our lab;54, 56 HRMS (m/z): [M+Na]+ calcd for 

C51H48O12Na, 875.3043; found, 875.3047. 

Trihydroxy cryptophane 3b-(+): Following the procedure for the synthesis of 3a, 

compound 2b-(S)-(+) (0.049 g, 0.033 mmol) in the presence of 2 M KOH (4 mL) in THF 

(6 mL) afforded 0.023 g (0.027 mmol, 81 % yield) of 3b as a white solid. TLC (silica gel, 

MeOH/CH2Cl2, 5:95,v/v): Rf(3b) = 0.33. mp >200 °C dec; 1H NMR and 13C NMR spectra 

for 3b are identical to the spectra of 3a and the racemic (±) trihydroxy cryptophane 

previously reported in our lab,54, 56 for confirmation, HRMS (m/z): [M+Na]+ calculated for 

C51H48O12Na 875.3043; found, 875.3041. 

Tripropargyl cryptophane 4a-(−): Compound 3a (0.041 g, 0.048 mmol, 1 equiv) and 

K2CO3 (0.033 g, 0.24 mmol, 5 equiv) were added into dry acetone (10 mL) under nitrogen. 

The mixture was stirred at rt for 30 min. The reaction mixture was cooled to 0°C and 

propargyl bromide (0.05 mL, 0.48 mmol, 10 equiv) was then added dropwise followed by 

stirring for 30 min at rt. Finally, the reaction mixture was refluxed for 2 days with stirring. 

The solvent was removed in vacuo and the crude mixture was purified by silica gel column 

chromatography (CH2Cl2→Acetone:CH2Cl2 5:95, v/v) to yield 0.024 g (0.025 mmol, 52% 

yield) of 4a as a white powder. mp >200 °C dec; TLC (silica gel, acetone: CH2Cl2, 1:9, 

v/v): Rf(4a) = 0.73; 1H NMR and 13C NMR spectra for 4a are identical to the spectra of the 

racemic (±) tripropargyl cryptophane previously reported in our lab;54 HRMS (m/z): 

[M+Na]+ calculated for C60H54O12Na, 989.3513; found, 989.3514. 

Tripropargyl cryptophane 4b-(+): Following the procedure for the synthesis of 4a, 

compound 3b (0.045 g, 0.053 mmol, 1 equiv) in the presence of K2CO3 (0.037 g, 0.27 
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mmol, 5 equiv) and propargyl bromide (0.06 mL, 0.53 mmol, 10 equiv) in dry acetone (10 

mL) afforded 0.028 g (0.029 mmol, 55% yield) of 4b as a white solid, mp >200 °C dec; 

TLC (silica gel, acetone: CH2Cl2, 1:9, v/v): Rf(4b) = 0.73. 1H NMR and 13C NMR spectra 

for 4b are identical to the spectra of 4a and the racemic (±) tripropargyl cryptophane 

previously reported in our lab; HRMS (m/z): [M+Na]+ calculated for C60H54O12Na, 

989.3513; found, 989.3533.  

UVvis Spectroscopy. A stock solution of 20 mgs tripropargyl cryptophane in 1,4-dioxane 

was prepared in a volumetric flask. Dilutions were made to generate a range of sample of 

known concentration. The absorbance of these samples were measured and used to 

calculate an extinction coefficient of 10,000 M-1cm-1, shown in Figure 2. 11. 

 

Figure 2. 11. Representative UV-vis spectrum of tripropargyl cryptophane (a); and Beer’s Law 
plot determining the extinction coefficient of tripropargyl cryptophane (b). Adapted with permission 
from O. Taratula; M.P. Kim; Y. Bai; J.P. Philbin; B.A. Riggle; D.N. Haase; and I.J. Dmochowski. 
Synthesis of Enantiopure, Trisubstituted Cryptophane-A Derivatives. Org Lett. 2012, 14, (14) 
3580-3583. Copyright 2012 American Chemical Society. 
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Cryptophane-A-(+): An excess of methyl iodide (0.035 g, 0.25 mmol, 10 equiv) was added 

to 3b-(+) (0.021 g, 0.025 mmol, 1 equiv) and K2CO3 (0.017 g, 0.13 mmol, 5 equiv) in dry 

acetone (5 mL) under nitrogen. The reaction mixture was refluxed for 2 days with stirring. 

The solvent was removed in vacuo and the crude was purified by silica gel column 

chromatography (CH2Cl2→Acetone:CH2Cl2 5:95, v/v) to yield 0.018 g (0.021 mmol, 85% 

yield) of 5 as a white powder. TLC (silica gel, acetone:CH2Cl2, 1:9, v/v): Rf(5) = 0.82; 1H 

NMR (CDCl3) δ (ppm): 6.77 (s, 6H), 6.68 (s, 6H), 4.61 (d, J = 13. Hz, 6H), 4.17 (m, 12H), 

3.81 (s, 9H), 3.42 (d, J = 13.8 Hz, 3H); 13C NMR (CDCl3) δ (ppm): 149.9, 146.9, 134.4, 

131.8, 121.0, 113.9, 69.6, 55.9, 36.4. HRMS (m/z): [M+Na]+ calculated for C54H54O12Na, 

917.3513; found, 917.3517. 
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§ 2.4 Enantiopure Cryptophane-129Xe NMR Biosensors Targeting Carbonic 

Anhydrase** 

Utilizing the synthetic strategies discussed in Section 2.3, we endeavored to 

determine if the + and – enantiomers of the carbonic anhydrase targeting cryptophane, 

C7B, bound CA in different ways and thus resulted in the observed multiple bound peaks. 

As shown in Figure 1. 20, C7B demonstrated the largest chemical shift from free biosensor 

(Δδ=7.5 pmm) and from the other bound peak (Δδ=4.2 ppm) and thus was selected for 

initial attempts to elucidated how diastereomers formation affects biosensor binding. 

Enantiopure C7B was achieved in two steps from enantiopure tripropargyl cryptophane as 

shown in Figure 2. 12. Enantiopurity was confirmed by circular dichroism spectroscopy as 

shown in Figure 2. 13. 

                                                 

 

 

** This section summarizes work published by Taratula et al. and the data figures are 

directly used from the paper in reference 86 
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Figure 2. 12. Synthesis of enantiopure cryptophane biosensors (−) and (+) C7B from enantiopure 
tripropargyl cryptophane. 

We had demonstrated with hp 129Xe NMR that C7B in 50 mM Tris at pH 8, has a 

chemical shift of 63.9 ppm. Upon addition of stoichiometric amounts of WT CAII, there 

are three observable peaks. The first is at 63.7 ppm which we attribute to unbound 

biosensor. The second and third are at 67.0 and 71.2 ppm, respectively. We attributed those 

two peaks to biosensor binding or otherwise interacting with the protein.  
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Figure 2. 13. Electronic Circular Dichroism for C7B-(─) and C7B-(+). Reproduced with 
permission from Taratula et al.86 

It is well documented in the literature that benzene sulfonamide binds CAII in 1:1 

stoichiometry.85 Thus we hypothesized that the different diastereomers formed upon active 

site binding was the most probable cause for the observed multiple peaks. We performed 

129Xe NMR with both the (+) and (−) C7B compounds at 0.5 and 1.0 equivalents. We 

endeavored to both assign each bound peak to a given diastereomers and to ascertain if 

they bound with equal affinity. The results, however, depicted a more convoluted binding 

interaction, see Figure 2. 14. The (+) enantiomer appears to bind CAII with higher affinity, 

at both 0.5 and 1.0 equivalents we observe no unbound peak. The (−) enantiomer, on the 

other hand, seems to bind more weakly as there is observable unbound biosensor even with 

1.0 equivalent of CAII but the (−) enantiomer gives the desired large (~7 ppm) chemical 

shift upon binding. Reexamining racemic C7B binding to WT CAII (Figure 2. 15) 
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definitively demonstrates that diastereomer formation does contribute to the presence of 

multiple bound peaks but that it isn’t the only contributing factor. 

 

Figure 2. 14. 129Xe NMR spectra of C7B-(─) and C7B-(+) in the before and after binding WT 
CAII. Reproduced with permission from Taratula et al.86 
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Figure 2. 15. 129Xe NMR spectrum of racemic C7B and WT CAII. Reproduced with permission 
from Taratula et al.86 

§ 2.5 Two-Site Hypothesis 

The need to understand how we generate specific chemical shifts was not 

completely resolved by the enantiopure C7B studies, thus we returned to the literature to 

find anomalies in benezene sulfonamide binding to CA. One paper mentioned, as an aside, 

that in crystallographic studies a benzenesulfonamide derivative was observed to bind to 

the external protein surface which they termed a “b” site shown in Figure 2. 16.  

The cause of this binding was attributed to the “relatively high concentrations of 

inhibitors employed in the crystal soaking protocol…”114 Nonetheless, we wondered if the 

cryptophane itself could be strengthening and thus promoting binding to this “b” site even 

in stoichiometric concentrations of biosensor. To determine if this was the case we 

produced two initial mutants, H94R--to abolish active-site binding and D19L--to abolish 

“b” site binding, see Figure 2. 17. Following on the initial enantiopure work with C7B, we 

decided to employ C8B for these studies as it is the only CA biosensor with which we 

obtained a bound crystal structure.89 Initial 129Xe NMR and ITC experiments (Figure 2. 
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17b, ITC data not shown) demonstrated single site binding between the biosensor and 

D19L CAII. However, attempts with H94R showed no signal by 129Xe NMR (data not 

shown) and the protein foamed extensively precluding any ITC measurements. Although 

these preliminary data do not prove whether the biosensors can bind to the “b” site they do 

show that removing the charged residue in the 19 position results in a single bound peak. 

We made further attempts to determine whether our CA biosensors bind to the purported 

“b” site. Benjamin Roose next expressed an H94A CAII mutant which was documented as 

being more stable in the literature. ITC data showed no binding (data not shown) and 129Xe 

NMR also showed no bound signal, while indicating biosensor free in solution, Figure 2. 

17c. Thus, these experiments with H94A succeeded in negating the “b site hypothesis.” All 

evidence for multi-site binding must result from biosensor binding in different 

conformations and in different regions of the active-site (‘a site’) channel. 

 

Figure 2. 16. Crystal structures of a benzenesulfonamide derivative bound to CAII i) enzyme 
active site or Site A; and  ii) an external binding site or Site B. 
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Figure 2. 17. Depiction of the two purported benzene sulfonamide binding sites on CA II and the 
proposed mutations, H94A in green and blue and D19L in magenta. 129Xe NMR shows A) two 
bound peaks for C8B with WT CAII; B) one bound peak for C8B with D19L CAII; and C) only an 
unbound peak for C8B with H94R CAII. 
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Utilizing C8B and a variety of protein double and triple mutants we were able to 

observe that the charged 19 residue is on a flexible portion of the protein and is in close 

enough proximity with the biosensor as to interact with it, possibly via the cryptophane 

propionates, and influence biosensor positioning relative to residues at the mouth of the 

active site channel. These perturbations then result in changes in the 129Xe chemical shift. 

Figure 2. 18 demonstrates the proximity of the two sites and demonstrates the 

conformational flexibility of the tail containing D19. A manuscript detailing these results 

is in preparation thus the data have been omitted from this dissertation.  

 

Figure 2. 18. WT CAII bound to benzene-sulfonamide substrates. The “b site” is found on a 
flexible loop of CA II which may facilitate D19 interaction with biosensor bound to the protein 
active site. 
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§ 2.6 Moving Forward 

The final component to that manuscript will be to repeat some of the double and 

triple protein mutant studies with enantiopure C8B. Although these specific compounds 

have not been previously prepared, I am utilizing our previously published routes to C7B, 

discussed in Sections 2-4 of this chapter. Studies comparing the results of racemic C8B to 

(+) and (−) enantiopure C8B with the variety of prepared CAII mutants should resolve 

many components that result in the observed multiple bound peaks. The synthesis will be 

completed by Mara Greenberg, a talented undergraduate student who I trained. 
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Chapter 3: Smart 129Xe NMR Biosensor for pH-Dependent Cancer Cell 

Labeling 
 

 

 

 

 

 

 

 

The content of this chapter was originally published in the Journal of the American 

Chemical Society. It has been adapted here with permission from the publisher: 

Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe 

NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-

5548. Copyright 2015 American Chemical Society.  
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§ 3.1 Introduction 

Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile and 

commonly employed techniques for the diagnosis and staging of disease.20 The 

development of targeted and stimuli-responsive (i.e., “smart”) contrast agents improves the 

capabilities of MRI/MRS for molecular imaging.115 Targeted therapeutic and diagnostic 

imaging techniques are typically directed to one or more receptors associated with a disease 

state. However, in cancer, as a result of large natural variations between cells and the 

heterogeneous nature of tissue within a tumor, there is also need for more general 

biomarkers.116, 117 For example, hypoxia and acidification occur in 90% of tumors and are 

key microenvironmental factors in progression and treatment resistance in solid tumors.118, 

119 The tumor microenvironment is acidified to levels approaching pH 6.0 from a normal 

pH of 7.4, which increases metastasis, mutation rate, and cell viability.117, 120-122 Therefore, 

being able to identify cells in acidic environments has practical importance in the design 

of cancer therapies and controlled-release drug delivery mechanisms.121 Additionally, 

acidic environments can mitigate the efficacy of weakly basic chemotherapeutics such as 

doxorubicin, further necessitating methodologies to probe extracellular pH (pHe).
123 Here, 

we present an ultrasensitive xenon-based MR contrast agent that can identify and label cell 

populations based on their acidic pHe. 

A variety of pH-responsive MR contrast agents have been designed previously, 

including Gd complexes,124, 125 tunable micelle-encapsulated polymers and 19F 

compounds,126, 127 and CEST agents,128-134 among others.135, 136 These probes enable 

measurements of solution pH but do not selectively label cells in acidic environments, e.g., 
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as needed for identifying small populations of cancer cells or performing cell tracking 

experiments. In parallel efforts over the past two decades, many strategies have been 

developed for labeling cells with MRI contrast agents such as membrane-targeting Gd 

chelates,23 monocrystalline iron-oxide particles (MIONs),137 micron-sized iron-oxide 

particles (MPIOs),138 ultrasmall dextran-coated iron oxide particles (USPIOs),139 and 

superparamagnetic iron oxide (SPIO) glycol chitosan.122, 140 Pioneering studies by the 

Tsourkas lab and others have explored pH-dependent cell labeling with these reagents, but 

there remain significant limitations, e.g., pH-responsive SPIO typically requires significant 

incubation time (~24 h) between administration and imaging.122 More generally, 

applications with conventional MRI contrast agents are limited by low detection sensitivity 

on a per-monomer basis (i.e., low mM). One strategy for improving NMR detection 

sensitivity involves the use of exogenously supplied “hyperpolarized” (hp) nuclei, e.g., 

129Xe, 13C, and 3He, with magnetic spin reservoirs that exceed the normal Boltzmann 

distribution by several orders of magnitude. Xe binds void spaces in materials,141 

proteins,142 and spores143 but shows highest affinity and useful exchange kinetics for a class 

of host molecules known as cryptophane.48, 50, 55-57, 86, 144, 145 Perturbation of the large (~42 

Å3 volume) 129Xe electron cloud can produce significant nuclear magnetic chemical shift 

changes and results in a nearly 300 ppm chemical shift window when bound to different 

cryptophanes in aqueous solution.50, 60, 61 

Based on these principles, we and others have developed 129Xe-cryptophane NMR 

biosensors66 for the sensitive detection of protein receptors,66-69, 73 enzymes,70 DNA,71 and 

metal ions in solution.113 In one proof-of-concept experiment, Berthault et al. decorated 
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cryptophane with six carboxylic acids to create a pH reporter: unique chemical shifts were 

measured over the pH 3.5-5.5 range with a total Δδ of 3.55 ppm.146 However, solubility 

issues precluded work near neutral pH.  

Recent studies have moved xenon biosensing from buffer solutions to lipid 

membrane suspensions and living cells. The Pines lab developed ultrasensitive methods 

for detecting cryptophane in solution using hp 129Xe chemical exchange saturation transfer 

(Hyper-CEST) NMR spectroscopy.95 They also discovered that cryptophane in association 

with a dilute suspension of sub-micron Intralipid vesicles yielded a 129Xe NMR peak that 

was shifted ~10 ppm downfield from the aqueous 129Xe-cryptophane peak;90 similar results 

were later obtained with different lipid compositions.147 The Schröder lab subsequently 

performed Hyper-CEST NMR spectroscopy and imaging studies in cells loaded with 

lipophilic cryptophane and found a similar 9-11 ppm downfield chemical shift change, 

likely due to membrane association.75, 97, 148 These studies highlight the large 129Xe NMR 

chemical shift changes that can be achieved by engineering cryptophane-lipid membrane 

interactions.  

Building on these examples, we set out to develop an ultrasensitive 129Xe NMR 

contrast agent for labeling cells in acidic microenvironments. Recent work from our 

laboratory96 and elsewhere149, 150 has demonstrated nM-to-pM detection of water-soluble 

cryptophane using Hyper-CEST NMR spectroscopy. Most recently, Witte et al. 

demonstrated effective contrast via Hyper-CEST by site-specific labeling of cell-surface 

glycans with nM concentrations of cryptophane.91 Thus, Hyper-CEST NMR should enable 

ultrasensitive detection of cryptophane-labeled cells that reside in acidic environments and 
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differentiation from “normal” cells residing in neutral pH environments, provided that 

cryptophane-cell interactions can be modulated over the pH range 5.5-7.5. 

 

Figure 3. 1. Reaction scheme for the formation of water soluble EALA-cryptophane (WEC). a. 1 
(1 eq), 2 (1 eq), CuSO4 (1 eq), TBTA (5 eq), 2,6-lutidine (1 eq), NaAsc (10 eq), 12 h; b. 3 (crude), 
4 (10 eq), CuSO4 (1 eq), TBTA (5 eq), 2,6-lutidine (1 eq), NaAsc (10 eq), 12 h. Adapted with 
permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-
Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 
American Chemical Society. 

We hypothesized that modifying cryptophane with an EALA-repeat peptide, 

WEAALAEALAEALAEHLAEALAEALEALAA,151 should modulate 129Xe NMR 

chemical shift in response to physiologic pH changes. By our strategy, 129Xe NMR 

chemical shift should vary both from pH-dependent peptide conformational changes as 

well as pH-dependent peptido-cryptophane-cell membrane association. The synthetic 
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EALA-repeat peptide was inspired originally by hemagglutinin (HA), which membrane 

inserts in low-pH environments.151 The poly-glutamic acid nature of the EALA-repeat 

peptide elevates the pKa to around 6, resulting in a conformational change from random 

coil (pH 7.5) to mostly alpha helical (pH 5.5), over this biologically relevant pH range.152 

As the glutamates are protonated, the EALA-repeat peptide becomes more helical and 

hydrophobic, and it inserts into lipophilic membranes.153 This pH-dependent membrane 

insertion has been used in living cells to facilitate endosomal escape of both nanocapsule 

and gene payloads.154-156 Thus, by appending cryptophane to a membrane-inserting EALA 

peptide, we endeavored to generate a xenon contrast agent capable of being “activated” in 

acidic cell environments to label cell membranes and give large 129Xe NMR chemical shift 

changes. We based the design on our previously reported tripropargyl cryptophane-A 

derivative (with two cyclotriveratrylene units tethered by three ethylene linkers),45 which 

should allow facile attachment of a pH-responsive peptide and also two water-solubilizing 

moieties (Figure 3.1) to mitigate the potential for cryptophane aggregation.97 

§ 3.2 Results and Discussion 

Synthetic Procedures 

Figure 3.1 shows the synthesis of the water-soluble EALA-cryptophane (WEC) 

pH-responsive biosensor 5, the details of which are provided in the Materials and Methods 

Section of this chapter. Briefly, the synthesis of tripropargyl cryptophane 1 was performed 

in six non-linear steps with modifications to previously published methods,54 with an 

overall yield of 6.4%. The yield for the five linear steps was 9.9%. The azido-EALA-repeat 

peptide 2 was prepared with standard Fmoc synthetic methods. The peptide was attached 
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to the cryptophane via copper(I)-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) to 

form 3.111, 112 The mono-peptide cryptophane was achieved in preference by controlling 

reaction stoichiometry. The resulting triazole-hexyl spacer kept the peptide in close 

proximity to the 129Xe nucleus while minimizing steric clashes with cryptophane during 

conjugation. Formation of compound 3 was confirmed by MALDI-MS and the yield 

quantified by analytical reverse-phase HPLC to be 60-80%. A solubilizing linker, 3-

azidopropionic acid 4, was synthesized in one step from the commercially available β-

propiolactone (see Material and Methods Section) 70, 74 and reacted with crude 3 via a 

second CuAAC. Starting from tripropargyl cryptophane 1, WEC 5 was isolated in ~40% 

yield after sequential CuAAC reactions with 2 and 4 and HPLC purification to remove 

unreacted EALA peptide and unreacted cryptophane. 

 

Figure 3. 2. pH titrations monitored by ECD spectroscopy for a. azido-EALA peptide and b. 
water-soluble EALA-cryptophane (WEC). Samples (30 µM) were in 10 mM sodium phosphate 
buffer over the pH range 5.5-7.5 at 298 K. Reprinted with permission from B.A. Riggle; Y. Wang; 
I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. 
Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical Society. 
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Electronic Circular Dichroism (ECD) Spectroscopy 

For ECD studies, all samples of azido-peptide 2 or WEC were prepared at 30 μM 

concentration in 10 mM sodium phosphate buffer, as confirmed by UV-vis spectroscopy 

(peptide: ε280 = 5,700 M-1cm-1, WEC: ε280 = 17,700 M-1cm-1) and pH adjusted with 1 M 

HCl or 1 M NaOH. We used CD spectroscopy to confirm that azido-peptide 2 maintained 

pH sensitivity (Figure 3.2a):151, 157, 158 indeed, percent helicity increased from 25% to 67% 

as the pH was decreased from 7.5 to 5.5 (Table 3.1). The CD signal at pH 5.5 had 

pronounced local minima at 208 and 222 nm, indicative of an alpha-helical secondary 

structure. At pH 7.5, the spectrum approached a minimum at 204 nm while subsequently 

decreasing in negative ellipticity at 222 nm, characteristic of a more disordered state. For 

WEC (Figure 3.2b and Figure 3.3), we observed a similar increase in EALA helicity from 

36% (pH 7.5) to 61% (pH 5.5) see Table 3.2. These data established that the peptide still 

undergoes a significant conformational change when conjugated to the cryptophane. 

Samples showed reproducible and reversible secondary structure changes between pH 5.5 

and 7.5 (Figure 3.4).  

 

Interestingly, WEC was more ordered at pH 7.5 than peptide alone, suggesting that 

the cryptophane elevated the conjugated peptide pKa. Similar pKa elevation was previously 
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observed for the analogous tris-propionic acid cryptophane, due to the bulky, hydrophobic 

cryptophane disfavoring ionization of the nearby propionates.55 

 

Figure 3. 3. Change in helicity as a function of pH of the azido-peptide (red) and WEC (blue). 
Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR 
Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. 
Copyright 2015 American Chemical Society. 
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Figure 3. 4. pH reversibility experiment shows the peptide can transition from disordered (pH 7.5, 
black) to alpha-helical (pH 5.5, blue), back to disordered structure (pH 7.5, red). Reprinted with 
permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-
Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 
American Chemical Society. 

Tryptophan Fluorescence  

The EALA-repeat peptide contains a single N-terminal tryptophan that we 

hypothesized should provide a useful local probe of peptide conformation, as well as 

peptide-cryptophane interaction. Fluorescence studies (λex = 280 nm) with peptide 2 

demonstrated blue-shifted and somewhat quenched Trp emission with decreasing pH: 352 

nm (pH 7.5) to 343 nm (pH 5.5), Figure 3.5a. Trp maximum emission wavelength for the 

WEC decreased from 336 nm to 322 nm over the same pH range (Figure 3.5b), which was 

considerably blue-shifted relative to peptide 2 alone, consistent with the Trp experiencing 

a less solvated environment near cryptophane. We note that the fluorescence signal for the 

amino acid tryptophan is typically not perturbed by pH changes in the range of 4-8,159 



 

98 

 

whereas Trp incorporated within peptides can exhibit emission that is very sensitive to the 

peptide folded state. Cryptophane fluoresces (λmax = 313 nm) with comparable intensity to 

Trp, which further blue-shifts the observed emission spectrum.55, 67 At all pH values, 

cryptophane quenched Trp emission, as compared to the free peptide (Figure 3.5c). Plots 

of F/F0 vs. pH (Figure 3.5c, where F is the fluorescence emission at a given pH and F0 is 

the maximal fluorescence emission at pH 7.5) confirmed that cryptophane quenching 

increased from pH 7.5 down to pH 5.5, where cryptophane-Trp interactions were 

presumably more prevalent with the relatively uncharged, alpha-helical peptide. This 

analysis is in agreement to an earlier work with a peptide-cryptophane conjugate where we 

examined the interaction between Trp-containing peptide and cryptophane with a 

temperature-dependent quenching assay and Stern-Volmer analysis.67 These experiments 

revealed that Trp(peptide)-cryptophane complex formation resulted in loss of Trp 

fluorescence. Previous studies identified high-affinity interactions between C60 (an 

aromatic molecule with similar dimensions and spherical shape to cryptophane) and Trp-

containing proteins, which also resulted in Trp fluorescence quenching and blue-shifted 

emission.160-162 These results support a mechanism by which the EALA peptide can 

mediate Trp-cryptophane complex formation in WEC (Figure 3.5d) and result in pH-

dependent Trp fluorescence quenching. Importantly, Trp-cryptophane pi-stacking 

interactions have the potential to deshield 129Xe within the cryptophane cavity, and produce 

a downfield chemical shift.163-165 
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Figure 3. 5. pH titration monitored by Trp fluorescence for a. azido-EALA peptide; b. water-
soluble EALA-cryptophane (WEC); c. plot of F/F0 for the λmax of peptide only (352 nm) and WEC 
(336 nm) as a function of pH; and, d. representation of alpha-helical and disordered peptide(Trp)-
cryptophane interaction. Samples (30 µM) were in 10 mM sodium phosphate buffer over the pH 
range 5.5-7.5 at 298 K. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A 
“Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, 
(16) 5542-5548. Copyright 2015 American Chemical Society. 

129Xe NMR Spectroscopy 

We initially performed hp 129Xe NMR studies to examine the sensitivity of the 

cryptophane-encapsulated 129Xe chemical shift to the nearby peptide conformational state. 

NMR samples were identically prepared at 30 μM concentrations in 10 mM sodium 
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phosphate buffer. Repeated trials at 300 ± 1 K ([Xe] = 6.2 mM)26 with the WEC at pH 7.5, 

6.5, and 5.5 gave reproducible chemical shifts (Figure 3.6). A single peak was observed at 

both pH 5.5 (67.6 ± 0.5 ppm) and pH 7.5 (64.2 ± 0.5 ppm), with a chemical shift difference 

of 3.4 ppm. Interestingly, although the cryptophane itself is a racemic mixture of 

stereoisomers and the EALA-repeat peptide is chiral, we did not observe a pair of 

diastereomeric peaks at pH 7.5 or pH 5.5 as we reported for previous peptide-cryptophane 

xenon biosensors67, 69 and has been seen for various racemic xenon biosensors complexed 

to protein active sites.113 We hypothesize that the two diastereomers provide a very similar 

environment for the bound xenon atom, and produce what appears to be a single 129Xe 

NMR peak at both pH values. In this case, the inclusion of solubilizing propionates 

promotes open, xenon-binding conformations of the cryptophane, regardless of peptide 

conformation. Conversely, the equal-intensity peaks observed at pH 6.5 (δ = 67.0 and 64.4 

ppm) may result from hp 129Xe experiencing very different environments within the two 

WEC diastereomers.  

 

Figure 3. 6. HP 129Xe NMR spectra (average of 16 scans, line-broadening = 60 Hz) of WEC (30 
µM) in 10 mM sodium phosphate buffer at 300 ± 1 K, with peak widths (FWHM) indicated in Hz: 
a. pH 5.5, 211 Hz; b. pH 6.5, 317 and 214 Hz; c. pH 7.5, 154 Hz. Reprinted with permission from 
B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell 
Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical 
Society. 
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Hyper-CEST 129Xe NMR 

To improve detection sensitivity of WEC over direct detection by nearly six orders 

of magnitude, we employed Hyper-CEST NMR spectroscopy. This indirect detection 

method took advantage of the exchanging 129Xe population between bulk aqueous solution 

and the xenon host molecule (Figure 3.7) by selectively saturating the bound signal (Figure 

3.7b). Because of xenon exchange, the selective depolarization resulted in a concomitant 

signal loss from the 129Xe@water peak, which was readily monitored (Figure 3.7a). This 

signal was compared with a reference measurement where an “off resonance” saturation 

was applied to account for the natural self-relaxation of hp 129Xe@water over time. 

 

Figure 3. 7. Hyper-CEST detection scheme for WEC-encapsulated 129Xe. a. Representative 
spectra are shown for i. the initial spectrum and ii. the resulting spectrum from selective “on 
resonance” saturation of the WEC-encapsulated 129Xe and commensurate bulk 129Xe@ H2O 
depolarization; b. selective radio frequency depolarization of WEC-encapsulated 129Xe. Reprinted 
with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for 
pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 
American Chemical Society. 
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Figure 3. 8. Hyper-CEST signal decay of 34 pM WEC at pH 7.5, 310 K. Depolarization rates 
were measured with radiofrequency pulses either on-resonance (64.2 ppm) or off-resonance 
(320.6 ppm) with hp 129Xe@WEC. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. 
Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. 
Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical Society. 

Using 34 pM WEC (pH 7.5, 310 K, [Xe] = 0.15 mM) indirect detection via Hyper-

CEST was performed by applying shaped radiofrequency saturation pulses at the 

129Xe@WEC resonant frequency and measuring the residual aqueous 129Xe signal for 

different saturation duration (Figure 3.8). WEC was observed to “catalyze” this 

depolarization process through on-resonance (64.2 ppm) saturation rf pulses with 

129Xe@WEC in pH 7.5 buffer. In contrast, saturation pulses applied off-resonance (320.6 

ppm) gave a depolarization time that approximated the natural T1 of hp 129Xe in water. 
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Figure 3. 9. Hyper-CEST scan of WEC (1 µM) at 300 K. Full image was collected with 5-ppm 
step and individual peaks with 1-ppm step at pH 7.5 and pH 5.9 (inset). Reprinted with permission 
from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent 
Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical 
Society. 

We also investigated the pH sensitivity of WEC-hp 129Xe NMR chemical shift to 

look at “normal” (pH 7.5) and acidic (pH 5.9) buffer solutions, Figure 3.9. Because 

depolarization efficiency is decreased with a narrower saturation pulse, WEC was 

employed at 1 µM concentrations, which is still at least 103-fold more dilute than 

demonstrated for 1H CEST pH reporters.166 Prior to detecting a free xenon signal, a loop 

of selective Dsnob-shaped saturation pulses was scanned over the chemical shift range of 

40-230 ppm in 5-ppm (700 Hz) steps, which corresponded to pulse length of 3748.6 µs and 

power of 77 µT. Two saturation responses centered at 195 ppm (129Xe@H2O) and 65 ppm 

(129Xe@WEC) were observed (Figure 3.9 full image). By decreasing the frequency 
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scanning step size to 1 ppm (138.2 Hz), which corresponded to shaped pulse length of 

19014 µs and power of 15 µT, we were able to distinguish the WEC-encapsulated 129Xe 

peak for pH 7.5 and pH 5.9 samples at 300 K (Figure 3.9, inset). The total time to record 

the Hyper-CEST NMR spectra was composed of xenon delivery time (20 s) and data 

collection time. For the latter, each data point required time T: 

𝑇 = (𝑠𝑝6 + 𝑑12) ∗ 𝐿6 + 𝑑1 + 𝑝1 

In the 5-ppm step scanning experiments, sp6 (saturation pulse length) = 3.748 ms, d12 

(delay between saturation pulses) = 20 µs, L6 (number of saturation cycles) = 400, d1 

(delay before acquisition pulse) = 0.5 s, p1 (acquisition pulse) = 22 µs. Thus, the total time 

needed to acquire the whole spectrum was 860 s. In the 1-ppm step scanning experiments, 

sp6 = 19.014 ms, L6 = 600, and the total time needed was 478 s. The observed pair of peaks 

at pH 5.9 was similar to hp 129Xe NMR data collected for 30 µM WEC by direct detection 

at pH 6.5 (Figure 3.6). As illustrated by these data, the Hyper-CEST 129Xe NMR spectrum 

readily distinguished between physiologically normal and acidic pH values. 

Cellular Hyper-CEST 129Xe NMR 

Finally, we investigated the utility of WEC in a biological setting through 129Xe 

NMR cell studies. Human cervical carcinoma (HeLa) cells were grown in a flask to 

confluency. Cells were washed and suspended in either pH 7.5 or 5.5 sodium phosphate 

buffer containing 5-10 µM WEC to give 1 x 107 cells/mL concentrations. Pluronic L-81 

(0.1% final conc.) was added to reduce foaming that can result from Xe bubbling.75 Cells 

were incubated in these conditions for 45-60 min and then transferred to an NMR tube. 

Spectra were acquired at both pH values with frequency scanning step size of 1 ppm (138.2 
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Hz), 400 cycles, which corresponded to shaped pulse length of 19014 µs and power of 15 

µT. Figure 3.10a shows xenon in cells (196.3 ppm, red trace) and xenon dissolved in 

aqueous solution of HeLa cells suspended in pH 7.5 buffer with WEC (192.3 ppm, blue 

trace). Figure 3.10b shows WEC-encapsulated xenon in the same sample. 129Xe@WECaq, 

pH 7.5 gave a chemical shift of 65.0 ppm, which corresponds to free biosensor in buffer at 

pH 7.5. 

In pH 5.5 experiments, Figure 3.10c shows two peaks, one for Xe@cells (198.0 

ppm, red trace) and one for Xe@aq (192.0 ppm, blue trace). Figure 3.10d shows the 

biosensor region of the same sample and exhibits two peaks, one at 68.0 ppm 

corresponding to free alpha-helical WEC in buffer (blue trace) and one at 78.4 ppm that 

we assign to WEC inserted in cell membrane (red trace). Notably, upon biosensor-

membrane insertion at pH 5.5, we observed a 13.4 ppm downfield chemical shift compared 

to biosensor-cell solutions at pH 7.5. Contrary to previous 129Xe NMR cell studies 

performed with a more lipophilic cryptophane, we did not observe cryptophane-membrane 

association at pH 7.5.90 This result is also consistent with previous studies with the EALA 

peptide that showed no membrane association at pH 7.5.167 By targeting acidic pHe as a 

general cancer biomarker, along with membrane association, we increased the chemical 

shift difference between Xe@biosensorcells and Xe@biosensoraq as compared to earlier 

studies.75, 97, 147 We note that in living organisms there will be additional factors (beyond 

pHe) that impact the 129Xe@biosensorcells chemical shift, including cell type and membrane 

composition. Follow-up studies will be required to assess this variability. 
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Figure 3. 10. Hyper-CEST 129Xe NMR spectra for 5-10 µM WEC in 10 mM sodium phosphate 
buffer with 0.1% Pluronic L-81 in a suspension of 1 x 107 cells/mL. Data were collected at pH 7.5, 
a. Xe@cells-red trace (196.3 ppm), Xe@aq-blue trace (192.3 ppm); b. Xe@WECaq (65.0 ppm); 
and at pH 5.5, c. Xe@cells-red trace (198.0 ppm), Xe@aq-blue trace (192.0 ppm); d. 
Xe@WECcells-red trace (78.4 ppm) and Xe@WECaq-blue trace (68.0 ppm). Exponential 
Lorentzian fits are shown as colored, solid lines and the corresponding sums are shown as solid 
black lines. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 
129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-
5548. Copyright 2015 American Chemical Society. 

§ 3.3 Conclusions 

In summary, by attaching a pH-responsive, membrane-inserting peptide and two 

water-solubilizing moieties to a tripropargyl cryptophane host, we were able to generate an 

ultrasensitive 129Xe NMR biosensor capable of labeling cells in acidic microenvironments. 

This xenon biosensor is unique for undergoing a rapid and reversible conformational 
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change (over a range of physiologic pH values) as well as functional changes: at pH 5.5, 

the pendant EALA-repeat peptide was mostly alpha-helical and gained membrane-

insertion capabilities. This represents a “smart” 129Xe MR contrast agent, and builds on 

previous examples of xenon biosensors that bind specific targets (e.g., protein receptors, 

DNA, cell-surface glycans) or undergo a modification event (i.e., enzyme-mediated 

peptide cleavage). 

Significantly, this study demonstrated that appending the peptide to the ~1 nm 

diameter, hydrophobic cryptophane did not significantly reduce its ability to undergo a 

conformational change. Circular dichroism, Trp fluorescence, and hp 129Xe NMR 

spectroscopies were employed to measure the change in helical character of the peptide in 

the pH range 5.5-7.5. EALA peptide helix formation resulted in a 129Xe NMR downfield 

chemical shift change of 3.4 ppm, which was likely enhanced by significant cryptophane 

interactions with the nearby, N-terminal Trp residue. This suggests a general strategy for 

engineering larger chemical shift changes with xenon biosensors, particularly to monitor 

molecular events occurring nanometers away from the xenon-cryptophane reporter. These 

data represent a significant advance over the previous example of a peptido-cryptophane 

biosensor, which monitored MMP-7 activity: only a 0.5 ppm chemical shift change was 

observed upon enzyme-mediated peptide cleavage, perhaps because the Trp was positioned 

much farther from the cryptophane.67 For some in vivo applications, it may be useful to 

maintain the full range of pH-dependent conformational changes of the EALA-repeat 

peptide, and it will be interesting to explore different peptides and conjugation strategies 

that work to achieve this goal. 
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The design of a cryptophane-EALA peptide conjugate capable of membrane 

insertion at acidic pH advances our long-range goal of developing ultrasensitive 129Xe MR 

contrast agents to aid in cancer diagnosis and treatment.153, 158 Picomolar (10-11 M) 

concentrations of WEC were detected by Hyper-CEST NMR, making this approach 8-9 

orders of magnitude more sensitive than commonly employed MR contrast agents. We 

demonstrated a 13.4 ppm downfield chemical shift change from disordered-peptide 

biosensor at pH 7.5 to the helical, membrane-inserted biosensor at pH 5.5. This represents 

the largest chemical shift change that has been engineered to date for a 

129Xe@cryptophane-biomolecule interaction, the magnitude of which should facilitate 

multiplexed detection in many experimental formats. The development and cellular 

implementation of this “smart” xenon biosensor are important steps towards future 

biomedical applications. 

§ 3.4 Materials and Methods 

General Information 

Instrumentation and Methods. 1H NMR (500 MHz) data were obtained in deuterated 

chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6) using a Bruker DMX 500 NMR 

spectrometer. Column chromatography was performed using silica gel (60 Å pore size, 40-

75 µm particle size) from Sorbent Technologies. Thin layer chromatography (TLC) was 

performed using silica gel plates (60 Å pore size, Silicycle) with UV light at 254 nm as the 

detection method. MALDI-MS data were collected using a Bruker Ultraflex III TOF/TOF 

mass spectrometer. All HPLC purifications were performed on a Varian Prostar 210 system 

equipped with a quaternary pump and diode array detector. All air- and moisture-sensitive 
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reactions were performed under inert atmosphere in glassware flamed under vacuum, using 

anhydrous dry solvents. Standard workup procedures involved multiple (~3) extractions 

with the indicated organic solvent, followed by washing of the combined organic extracts 

with water or brine, drying over Na2SO4 and removal of solvents in vacuo. All yields 

reported were determined after purification by column chromatography or reverse phase 

HPLC, unless otherwise noted. All data were collected using instruments in the Chemistry 

Department at the University of Pennsylvania. 

Materials. Organic reagents and solvents were used as purchased from the following 

commercial sources: Sigma-Aldrich: N,N-diisopropylethylamine (DIPEA); dimethyl 

sulfoxide (DMSO, anhydrous, 99.9%); Sigmacote®. Fisher: acetone (HPLC grade); 

chloroform (CH2Cl3, HPLC grade); dichloromethane (CH2Cl2, HPLC grade); ethyl acetate 

(EtOAc, HPLC grade); hexanes (HPLC grade); hydrochloric acid; methyl alcohol (MeOH, 

HPLC grade), perchloric acid (60%); Pluronic L-81; potassium carbonate (anhydrous); sea 

sand (washed); sodium chloride (NaCl); sodium hydroxide (NaOH); sodium sulfate 

(anhydrous). Novabiochem (currently EMD Millipore; Billerica, MA, USA): 6-

azidohexanoic acid; 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-

phosphate (HBTU). MarCor: deionized (DI) water filtered (18 MΩ). Acros Organics: β-

propiolactone (90%); cesium  carbonate (Cs2CO3, 99.5%); chloroform-d (CDCl3); 1,2-

dibromoethane; 3,4-dihydroxybenzaldehyde (97%); N,N-dimethylformamide (DMF, 

99.8%, anhydrous, acrosseal); dimethylsulfoxide-d6, 4-hydroxy-3-methoxybenzyl alcohol 

(99%); propargyl bromide (80% solution in toluene); scandium(III) trifluoro-

methanesulfonate (Sc(OTf)3, 95%); sodium borohydride (NaHB4, 98%); sodium hydride 
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(NaH, 60% dispersion in mineral oil); tetrahydrofuran (THF, extra dry, over sieves); 

triisopropylsilane (TIS). MG Industries (Linde Group, NJ): xenon gas (scientific grade). 

Synthetic Procedures 

 

Figure 3. 11. 6-step, non-linear synthesis of tripropargyl cryptophane (1). Yield = 9.9% for the five 
linear steps. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 
129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-
5548. Copyright 2015 American Chemical Society. 

Cryptophane Synthesis. Tripropargyl cryptophane was achieved in a 6-step synthesis with 

a 6.4% overall yield from two commercially available compounds, 3,4-

dihydroxybenzaldehyde and vanillyl alcohol shown in Figure 3.11. 

4-((2-bromoethoxy)-3-methoxyphenol) methanol (i): In a dry two-necked flask with a 

nitrogen inlet, vanillyl alcohol (10.0 g, 64.9 mmol, 1 eq) was combined with potassium 

carbonate (44.8 g, 324 mmol, 5 eq) in acetone (100 mL) and stirred at rt for 30 min. 1,2-

dibromoethane (56.3 mL, 650 mmol, 10 eq) was then added to the reaction via syringe. 



 

111 

 

The reaction flask was then transferred to a pre-heated oil bath at 57 °C and refluxed 

overnight. The organic components were isolated with EtOAc on aqueous workup and the 

final product was purified by column chromatography (1:1 to 7:3 hexanes:EtOAc, gradient 

method; TLC 1:1 hexanes:EtOAc Rf(i) = 0.43) to yield 10.2 g (39.1 mmol, 60% yield). The 

spectroscopic data match those reported in the literature.54 1H NMR CDCl3: 6.96 (s, 1H, 

aryl); 6.91 (d, 1H, aryl); 6.89 (d, 1H, aryl), 4.64 (s, 2H, CH2OH); 4.34 (t, 2H, OCH2CH2Br) 

3.89 (s, 3H, OCH3); 3.66 (t, 2H, OCH2CH2Br). 

2,7,12-Tris-(2-bromoethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-

tribenzo[a,d,g]cyclononene (ii, also known as cyclotriveratrylene) In a dry two-necked 

flask 8 g of 4-((2-bromoethoxy)-3-methoxyphenol methanol was combined with 0.50 g of 

scandium (III) trifluoromethanesulfonate and the reaction flask was put in vacuo for 1 h to 

remove moisture. An oil bath was preheated to 40 ºC. Dry dichloromethane (200 mL) was 

added to the reaction flask and the reaction was put to reflux overnight. Reaction progress 

was monitored by TLC (98% DCM/2% Et2O, Rf(ii) = 0.67). The reaction was quenched 

on completion with 1 M NaOH and extracted with DCM. The final product was purified 

by flash column chromatography (isocratic method 1% Et2O in DCM) to a yield of 70% 

(5.19 g, 7.12 mmol). The spectroscopic data match those previously described.54 1H NMR 

CDCl3: 6.94 (s, 3H, cap aryl); 6. 86 (s, 3H, cap aryl); 4.72 (d, 3H, Hax); 4.31 (t, 6H, OCH2 

CH2Br); 3.86 (s, 9, OCH3) 3.59 (t, 6H, OCH2CH2Br); 3.55 (d, 3H, Heq) 

3-propargyloxy-4-hydroxybenzaldehyde (iii) To a flame or oven-dried round bottom flask 

cooled under nitrogen, 7.24 g of 60% sodium hydride (2.5 eq, 302 mmol) was added under 

argon. Dry DMF (50 mL)was added via syringe and the reaction was put to stirring at rt. 
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In a separate dry flask, 10 g (1 eq, 72.4 mmol) of 3, 4-dihydroxybenzaldehyde was 

dissolved in 40 mL dry DMF under argon and stirred until a homogenous solution was 

achieved. The reaction flask containing NaH was put on ice and chilled to 0 ºC. The 

solution of 3, 4-dihydroxybenzaldehyde was added to the NaH dropwise over a period of 

~10 min. The flask was subsequently rinsed with an additional 10 mL of dry DMF and 

added dropwise to the reaction flask while still on ice. The reaction was then allowed to 

stir for 45 min or until gas ceased to evolve while slowly warming to rt. Subsequently, 6.44 

mL of propargyl bromide, 80% in toluene (0.8 eq, ρ = 1.34 g/mL, 57.9 mmol) was added 

dropwise to the reaction flask. The reaction was stirred for 4 h at rt and then placed on ice 

to quench with the addition of 1 M HCl. The reaction was extracted with EtOAc and 

purified by flash column chromatography with an isocratic method of 15% ethyl acetate in 

hexanes. Note, the desired meta-substituted product (Rf(iii) = 0.48) is not well resolved 

from the para substituted side product (Rf = 0.46). The final product was prepared in 65% 

yield (8.29 g, 47.1 mmol) with the spectroscopic data following our published protocols.67 

Product (meta): 1H NMR δ(ppm) CDCl3 (7.27): 9.84 (s, 1H, aldehyde); 7.53 (d, 1H, aryl); 

7.49 (dd, 1H, aryl), 7.09 (d, 1H, aryl); 6.28 (bs,1H, -OH); 4.84 (d, 3H, OCH2CCH);  2.60 

(t, 1H, OCH2CCH). Side product (para): 1H NMR CDCl3 (7.27): 9.86 (s, 1H, aldehyde); 

7.47 (d, 1H, aryl); 7.45 (dd, 1H, aryl), 7.12 (d, 1H, aryl); 5.84 (bs,1H, -OH); 4.86 (d, 3H, 

OCH2CCH);  2.62 (t, 1H, OCH2CCH). 

2,7,12-Tris-[2-[4-formyl-2-propargyloxyphenoxy]ethoxy]-3,8,13-trimethoxy-10,15-

dihydro-2H-tribenzo[a,d,g]cyclononene (iv):  An oil bath was preheated to 55 ºC. In a two-

necked round bottom flask 2.72 g of propargyl linker (iii), (3.3 eq, 15.48 mmol) and 5.05 
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g cesium carbonate (3.3 eq, 15.48 mmol) were combined and dried in vacuo for 1 h. Dry 

DMF (50 mL) was added to the reaction flask and stirred at rt for 30 min. Dry CTV (ii), (1 

eq, 4.69 mmol) was added to the reaction and the reaction flask was submerged in the 

heated oil bath and stirred overnight. The reaction was diluted with brine and extracted 

with DCM. Purified product was achieved from flash column chromatography, isocratic 

method 3% acetone in 97% DCM, Rf (iv) = 0.63. Final product was obtained in 68% yield 

(1.08 g, 1.06 mmol) and confirmed to agree with our previously published data.54 1H NMR 

δ(ppm) CDCl3 (7.27): 9.87 (s, 3H, Ph-CHO), 7.56 (s, 3H, aryl), 7.50 (d, J = 8.2 Hz, 3H, 

aryl), 7.05 (d, J = 8.2 Hz, 3H, aryl), 7.01 (s, 3H, aryl), 6.86 (s, 3H, aryl), 4.77 (d, 3H, Hax), 

4.74 (q, 6H, -O-CH2-CCH), 4.40-4.44 (m, 12H, Ph-CH2-OH, -O-CH2-CCH), 3.75 (s, 9H, 

-O-CH3), 3.57 (d, J = 13.8 Hz, 3H, Heq), 2.52 (t, J = 2.3 Hz, 3H, -O-CH2CCH). 

2,7,12-Tris-[2-[4-(hydroxymethyl)-2-propargyloxyphenoxy]ethoxy]-3,8,13-trimethoxy-

10,15-dihydro-2H-tribenzo[a,d,g]cyclononene (v) Compound iv was dissolved in a 1:1 

mixture of chloroform and THF. Next, MeOH was added slowly to ensure iv remained in 

solution. The reaction as then chilled to -10 ºC with a salted ice bath. NaBH4 was then 

added and the reaction stirred at 0 C for 20 min. The reaction was allowed to warm to rt 

and stir for 4 h. Reaction progress was monitored by TLC (5% MeOH in CH2Cl2), Rf(v) = 

0.25. Additional equivalents of NaHB4 were added as necessary, until quantitative 

conversion was observed. No further purification was necessary after aqueous work-up. In 

this manner, >90% yield (0.971 g, 0.951 mmol) was achieved. Spectroscopic data agreed 

with our previously published work.54 1H NMR δ(ppm) CDCl3 (7.27): 7.03 (s, 3H, aryl), 

6.98 (s, 3H, aryl), 6.89 (m, 6H, aryl), 6.82 (m, 3H, aryl), 4.74 (d, J = 13.6, 3H, Hax), 4.60 
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(m, 12H, Ph-CH2-OH, -O-CH2-CCH), 4.34 (m, 12H, -O-CH2-CH2-O-), 3.71 (s, 9H, -O-

CH3), 3.52 (d, J = 13.8 Hz, 3H, Heq), 2.45 (t, J = 2.2 Hz, 3H, -O-CH2CCH). 

Tripropargyl Cryptophane (1): Methanol (200 mL) was added to a 1 L reaction flask 

containing compound v (50.0 mg, 0.0490 mmol, 1 eq). The reaction was put to stirring in 

a salted ice bath (-10 °C) and fitted with an addition funnel. Perchloric acid (60%) (150 

mL) was added drop-wise over several hours. Once addition was complete, the reaction 

was allowed to slowly warm to rt and stir overnight. Afterwards, the reaction was again 

placed on a salted ice bath and more perchloric acid (50 mL) was added. The reaction was 

monitored by TLC (5% acetone in CH2Cl2) and subsequent 25 mL perchloric acid additions 

were performed as necessary to drive the reaction to completion. The reaction was 

quenched with the addition of dH2O and brine (200 mL each) and then extracted 3x with 

CH2Cl2 (100 mL). The combined organics were then washed with dH2O, sat. sodium 

bicarbonate, and brine (100 mL), dried over sodium sulfate and concentrated in vacuo. The 

crude material was purified by silica gel flash column chromatography (5% acetone in 

CH2Cl2, v/v) to yield 20.0 mg (0.0207 mmol, 40% yield) of 1 as a white powder. TLC 

(silica gel, 5% acetone in CH2Cl2, v/v); Rf(1)= 0.47. The spectroscopic data match those 

reported in the literature.54, 55 1H NMR δ(ppm) CDCl3 (7.27) : 6.91 (s, 3H, aryl), 6.80 (s, 

3H, aryl), 6.78 (s, 3H, aryl), 6.71 (s, 3H, aryl), 4.71 (d, 3H, Hax), 4.70 (d, 3H, Hax), 4.62 

(q, 9H, -O-CH2-CCH), 4.17 (m, 12H, -O-CH2-CH2-O), 3.83 (s, 9H, -O-CH3), 3.43 (d, J = 

13.8 Hz, 3H, Heq), 3.42 (d, J = 13.9 Hz, 3H, Heq), 2.71 (t, J = 2.3 Hz, 3H, -O-CH2-CCH). 

Peptide Synthesis and Purification. The EALA-repeat peptide, sequence: 

WEAALAEALAEALAEHLAEALAEALEALAA, was synthesized (100 micromole scale) by 
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solid-phase peptide synthesis, using Fmoc chemistry, on a Liberty 1 Automated Microwave 

Peptide Synthesizer located in the UPenn Biological Chemistry Resource Center. 

Piperidine (20%) in DMF was used as the deprotection agent, 0.5 M HBTU in DMF was 

used as the activator, and 2 M DIPEA in N-methyl-2-pyrrolidone (NMP) was used as the 

activator base. Five molar equivalents of the amino acid were used for each coupling on 

Rink Amide MBHA resin (0.59 mmol/g substitution, Novabiochem). Residue Ala30 used 

method 1 and His16 used method 3 and all other residues used method 2. Method 1: Initial 

30 s microwave deprotection (35 W, 75 °C), followed by 3-min microwave deprotection 

(35 W, 75 °C). Two consecutive coupling cycles were used. Both couplings were for 5 min 

under microwave power (25 W, 75 °C). The instrument was then paused and taken off-line 

while the unreacted resin was acetylated with a mixture of 2 mL acetic anhydride, 1.2 mL 

of N-methylmorpholine (NMM), and 16.8 mL of DMF. Method 2: Initial 30-s microwave 

deprotection (35 W, 75 °C), followed by a 3-min microwave deprotection (35 W, 75 °C). 

Two consecutive coupling cycles were used. Both couplings were for 5 min under 

microwave power (25 W, 75 °C). Method 3: Initial 30-s microwave deprotection (35 W, 

75 °C), followed by a 3-min microwave deprotection (35 W, 75 °C). Two consecutive 

coupling cycles were used. Both couplings were for 2 min at rt followed by 3 min under 

microwave power (25 W, 50 °C). The peptide then underwent a final deprotection (initial 

30 s microwave deprotection (35 W, 75 °C), followed by a 3 min microwave deprotection 

(35 W, 75 °C) leaving the peptide on resin with a free N-terminus. 

Azido-EALA peptide (2): The EALA peptide on resin in a sigmacoted vessel (0.1 mmol, 1 

eq) was incubated in an excess (~10 mL) of DMF with magnetic stirring for 30 min to 



 

116 

 

allow for resin swelling. DMF was subsequently removed by vacuum suction. The 6-

azidohexanoic acid (78.6 µL, 0.5 mmol, 5 eq) was combined with DMF (6 mL), HBTU 

(190 mgs, 0.5 mmol, 5 eq) and DIPEA (175 µL, 1.0 mmol, 10 eq) and added to the resin 

under magnetic stirring for 1 h. The reagent mixture was drained with vacuum suction and 

the resin was iteratively washed with MeOH, DCM, and DMF and then drained with 

vacuum. The resin was subjected to a second round of coupling with the same reagent 

mixture. After rinsing extensively, the resin was dried over DCM for 30 min on vacuum. 

The azido peptide was then dosed with a cleavage cocktail of 95% trifluoroacetic acid 

(TFA), 2.5% triisopropylsilane (TIS), and 2.5% dH2O and stirred for 2.25 h. The vessel 

was drained and the resulting solution was collected and reduced to approximately 1 mL 

on a rotary evaporator. The peptide was then precipitated from solution with cold diethyl 

ether and the resulting solid was isolated by centrifugation. The peptide was resuspended 

in HPLC solvents (1:1 acetonitrile : dH2O with 0.1% TFA). The azido-EALA peptide was 

purified using reverse-phase HPLC and monitored at 215 and 280 nm using a Zorbax RxC8 

semi-preparative column (9.4×250 mm, 5µm beads). The elution gradient was composed 

of two solvents: 0.1% aqueous TFA (solvent A) and a 0.1% solution of TFA in CH3CN 

(solvent B). The purification method went from 65% A to 40% A over 5 min, then from 

40% A to 25% A over 5 min, and then from 25% A to 0% A over 35 min at a flow rate of 

4 mL/min and with a 1 mL injection volume. The peptide eluted at 21.04 min, Figure 3.12. 

MALDI MS m/z calculated for N3-EALA C142H225N37O45 (M+H+) 3169.65; found 

3169.51, Figure 3.13. 
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Figure 3. 12. HPLC chromatogram of N3-EALA (2). UV absorbance monitored at 280 nm. Peak 
assignment based on MALDI-MS. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. 
Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. 
Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical Society. 

 

Figure 3. 13. MALDI-MS spectrum of N3-EALA peptide (2). Expected mass [M+H+] 3169.65; 
found 3169.51. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 
129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-
5548. Copyright 2015 American Chemical Society. 
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Solubilizing Linker Synthesis. 3-Azidopropionic acid was prepared from β-propiolactone 

by literature procedure and matched the reported 1H NMR spectrum.168  

3-azidopropionic acid (4). Briefly, sodium azide (4.5 g, 0.69 mmol, 1 eq) was dissolved in 

ddH2O water. β-propiolactone (4.4 mL, 0.069 mmol, 1 eq) was added dropwise and the 

reaction was allowed to stir at rt for 6 h. The reaction was neutralized with 1 M HCl and 

then extracted 3 times with diethyl ether. The organic layer was then dried over sodium 

sulfate and filtered through cotton. A clear oil in a 15% yield was recovered, requiring no 

further purification. 

WEC Biosensor Synthesis. The copper(I)-catalyzed [3+2] azide-alkyne cycloaddition 

(CuAAC) between N3-EALA peptide and cryptophane and the subsequent cycloaddition 

reaction between the cryptophane and 3-azidopropionic acid yielded the WEC biosensor. 

EALA-cryptophane (3). To conjugate the azido-EALA peptide to the tripropargyl 

cryptophane (1) CuAAC was utilized with modified conditions of those previously 

employed.67, 68, 70, 73 Firstly, 4 mg (1.0 eq) of 1 and 13 mg of 2 (1 eq) were dissolved in 1 

mL of dry methyl sulfoxide (DMSO) in a conical reaction vessel along with 1 cm of 18 g 

copper wire. The reaction mixture was put to stirring and degassed. In a separate vial, 10 

mg (5 eq) of tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methylamine (TBTA) copper ligand was 

dissolved in 60 μL of DMSO. Separate solutions of 0.6 M copper (II) sulfate (CuSO4) and 

4 M sodium ascorbate (NaAsc) in water were also prepared. To the TBTA solution, 6 μL 

of CuSO4 (1 eq), 0.5 μL of 2,6-lutidine (1 eq), and 9 μL (+)-sodium-ʟ-ascorbate (10 eq) 

were added sequentially, vortexing between additions. After addition of NaAsc, the 

mixture turned clear indicative of Cu(I) formation. The entire reagent mixture was then 
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added to the reaction vessel. The reaction vessel was again degassed and then covered with 

foil and allowed to stir overnight under nitrogen at rt. A small aliquot of reaction was 

removed (10 µL) and diluted in an HPLC solvent mixture, 50:50 mixture of acetonitrile 

and water with 0.1% trifluoroacetic acid. To verify product formation, analytical reverse-

phase HPLC was performed using a Zorbax RxC8 analytical column (4.6×150 mm, 5 µm 

beads) and monitored at 215 and 280 nm. The elution gradient was composed of two 

solvents: 0.1% aqueous TFA (solvent A) and a 0.1% solution of TFA in CH3CN (solvent 

B). The purification method went from 65% A to 40% A over 15 min, then from 40% A to 

18% A over 25 min, and then from 18% A to 0% A over 3 min at a flow rate of 1 mL/min 

with a 1 mL injection volume. The EALA-cryptophane eluted at 36.50 min, Figure 3.14. 

MALDI MS m/z calculated for EALA-cryptophane C202H279N37O57 (M+H+) 4136.01; 

found 4136.84, Figure 3.15.  
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Figure 3. 14. HPLC chromatogram of EALA-cryptophane (3). UV absorbance monitored at 280 
nm. Peak assignment based on MALDI-MS. Reprinted with permission from B.A. Riggle; Y. 
Wang; I.J. Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. 
Chem. Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical Society. 

 

Figure 3. 15. MALDI-MS spectrum of EALA-cryptophane (3). Expected mass [M+H+] 4136.01; 
found 4136.84. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 
129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-
5548. Copyright 2015 American Chemical Society. 
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Water-soluble EALA-cryptophane (WEC) (5). The crude reaction (3) was then dosed with 

4.6 μL 3-azidopropionic acid (4) (10 eq), and the same reagent mixture as in the previous 

reaction and allowed to stir overnight while covered, to yield the water-soluble EALA-

cryptophane (WEC) biosensor. The reaction was diluted 10-fold in 50:50 ACN:H2O and 

purified. Purification was achieved through reverse-phase HPLC employing the semi-

preparative version of the previous method by using a Zorbax RxC8 semi-preparative 

column (9.4×250 mm, 5 µm beads) with 4 mL/min flow rate. The pH sensor eluted at 33.87 

min, Figure 3.16. MALDI MS m/z calculated for WEC C208H289N43O61 (M+H+) 4366.08; 

found 4366.36, Figure 3.17. The pure fractions were then collected and diluted with 0.1 % 

ammonium hydroxide to 10% acetonitrile. Amicon-ultra-4mL 3K NMWL Centricon tubes 

were used to concentrate and buffer exchange the final product 5 into 10 mM sodium 

phosphate buffer at pH 7.5. 
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Figure 3. 16. HPLC chromatogram of WEC (5). UV absorbance monitored at 280 nm. Peak 
assignment based on MALDI-MS. Reprinted with permission from B.A. Riggle; Y. Wang; I.J. 
Dmochowski. A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. 
Soc. 2015, 137, (16) 5542-5548. Copyright 2015 American Chemical Society. 

 

Figure 3. 17. MALDI-MS spectrum of WEC (5). Expected mass [M+H+] 4366.08; found 4366.36. 
Reprinted with permission from B.A. Riggle; Y. Wang; I.J. Dmochowski. A “Smart” 129Xe NMR 
Biosensor for pH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, (16) 5542-5548. 
Copyright 2015 American Chemical Society. 
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Characterization Methods 

Electronic Circular Dichroism (ECD) Spectroscopy. All spectroscopy experiments were 

performed on the Aviv 410 CD spectrometer. Data were collected at 25 °C from 260-190 

nm, with a 30 s averaging time, 1 nm wavelength step, 1 s averaging time, and 1 nm 

bandwidth. The samples were prepared by concentrating the purified WEC to 30 µM in 10 

mM sodium phosphate at pH 7.5 and aliquoting the stock into five Eppendorf tubes and 

adjusting the pH to 5.5, 6.0, 6.5, 7.0, and 7.5 with a few microliters of 1 M HCl. The 

concentration was confirmed by measuring the absorbance at 280 nm, 𝜀280 =

17,700 𝑀−1 𝑐𝑚−1 and using an Agilent 89090A UV-visible spectrophotometer. 

Data Analysis. The molar ellipticity was calculated from the observed ellipticity (mdeg) 

and has the units of deg cm2 dmol-1. The molar ellipticity is given by equation 3.1 where C 

is the concentration of the peptide or biosensor, ℓ is the path length of the cuvette-0.1 cm, 

and 𝑛𝑟 is the number of residues-31.169 

[𝜃] =
𝜃𝜆

(𝐶 ∗ ℓ ∗ 𝑛𝑟 ∗ 10)
 

(3.1) 

The helical content of the peptide and biosensor was determined from circular dichroism 

studies at 30 μM concentrations and in accordance with literature precedent.170 Helicity 

was calculated using the formulas 3.2 and 3.3 where 𝑛𝑟 is the number of amide bonds in 

the peptide, in this case 31. Racemic cryptophane was employed for these experiments, 

and thus did not contribute to the measured CD signal. Data are shown in Tables 3.1 and 

3.2 and graphically in Figure 3.3. 
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%ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 = 100 ∗
[𝜃]222

[𝜃] 222 
𝑚𝑎𝑥

 
(3.2) 

[𝜃]222 = −40000 ∗ [1 −
2.5

𝑛𝑟

] 
𝑚𝑎𝑥  

(3.3) 

pH Reversibility. Repeated trials with the azido-peptide alone and with WEC showed that 

the peptide conformational change was reversible. Whether the sample was first prepared 

at pH 5.5 or at pH 7.5 and titrated to higher or lower pH in this range, the ECD signal 

confirmed the conformation aligned with what is shown in Figure 3.2. One example of this 

reversibility is shown in Figure 3.4. In this experiment the peptide sample at pH 7.5 shown 

in Figure 1a was titrated to pH 5.5 and the CD signal was measured. The same sample was 

then titrated back to pH 7.5 (labeled pH 7.5R) and the CD signal was measured and found 

to align with the original spectrum at pH 7.5. 

Tryptophan Fluorescence Studies. All fluorescence studies were carried out on Photon 

Technology International (PTI) QuantaMaster™ 40 fluorescence spectrometer 

(Birmingham, NJ, USA). The 30 µM samples at pH 5.5, 6.0, 6.5, 7.0, and 7.5 were removed 

from the CD cuvettes and placed in the fluorimeter. Fluorescence spectra were collected at 

25 °C in quartz cuvettes with a 1-cm path length. The samples were excited at 280 nm and 

emission data were collected from 300-400 nm. For all spectra the slit widths were 5 nm, 

scan rate was 60 nm/min, averaging time was 1 s, and the data interval was 1 nm. 

Hyperpolarized 129Xe NMR Spectroscopy. HP 129Xe was generated using spin-exchange 

optical pumping (SEOP) method with a home-built version of the previously commercially 

available Nycomed-Amersham (now GE) model IGI.Xe.2000 129Xe hyperpolarizer. A gas 

mixture of 89% helium, 10% nitrogen, and 1% natural abundance xenon (Linde Group, 
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NJ) was used as the hyperpolarizer input. 795 nm circularly polarized diode laser was used 

for optical pumping of Rb vapor. 129Xe was hyperpolarized to 10–15% after being 

cryogenically separated, accumulated, thawed, and collected in controlled atmosphere 

valve NMR tubes (New Era). After hp 129Xe collection, NMR tubes were shaken 

vigorously to mix cryptophane solutions with hp Xe. All 129Xe NMR measurements were 

carried out on a Bruker BioDRX 500 MHz NMR spectrometer (138.12 MHz frequency for 

129Xe), using a 10-mm BBO NMR probe. Sample temperature was controlled by VT unit 

on NMR spectrometer to 300 ± 1 K. Eburp2 shaped pulse was used to selectively excite 

Xe@WEC biosensor peak. Spectra were averaged over 16 scans. A delay of 0.5 s was 

given between scans to allow for xenon exchange. All acquired NMR spectra were 

processed with 60 Hz Lorentz broadening. Chemical shifts were referenced to free xenon 

gas of 0 atm at 0 ppm, shown in Figure 3.6. 

Hyper-CEST Frequency Scan Spectroscopy. Prior to applying saturation pulse, gas 

mixture including hp 129Xe was bubbled into a 10-mm NMR tube containing 2.5 mL 

sample solution by a home-built continuous-flow gas delivery setup. For each data point 

in the Hyper-CEST spectrum, the gas mixture was bubbled for 20 s, followed by a 3-s delay 

to allow bubbles to collapse. All Hyper-CEST experiments were carried out using a Bruker 

500 MHz NMR spectrometer, with 10-mm PABBO probe. A 90° hard pulse of this probe 

has pulse length of 22 µs. 

Hyperpolarized 129Xe Chemical Exchange Saturation Transfer Depolarization Curve. 

Saturation frequencies of Dsnob shaped pulse were positioned at (192.4 - 128.2) = 64.2 

ppm and (192.4 + 128.2) = 320.6 ppm, for “on” and “off” resonance, respectively. In each 
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experiment, pulse sequences of the following parameters were used: Pulse length tpulse = 

3.748 ms, field strength B1,max = 77 µT, delay between pulse = 20 µs, maximum number of 

saturation cycles = 6000. Data are shown in Figure 5. Sample temperature was controlled 

by VT unit on NMR spectrometer to 310 ± 1 K. Xenon was introduced by continuous flow. 

Cell Culture. Human cervical carcinoma (HeLa) cells in T-25 cell culture flasks in 

Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine serum and 1% 

penicillin/streptomycin were grown to 80% confluency. The medium was then removed 

and the cells were washed 3x with Dulbecco’s Phosphate Buffered Saline (DPBS). Cells 

were suspended with 0.25% trypsin incubation for 5 min. The trypsin was quenched with 

a 10-fold excess of DPBS. Cell suspension (10 µL) was removed and combined with 10 

µL of Trypan Blue. Cells were counted with a hemocytometer after 5-min incubation. 1 x 

107 cells/mL were used in all experiments. The cell suspension was then centrifuged for 7 

min at 2 krpm and the cell pellet was isolated. Cells were resuspended in 10 mM sodium 

phosphate buffer with 0.1% Pluronic L-8175 at either pH 5.5 or pH 7.5 and also 5-10 µM 

WEC. The cell/biosensor solution was gently vortexed to mix. After < 1-h incubation, the 

cell suspension was transferred to an NMR tube. 

§ 3.5 Acknowledgments 

This research was supported by NIH R01-GM097478, CDMRP-LCRP Concept 

Award #LC130824, and GM097478S1 for 795-nm laser purchase. We thank Dr. Rakesh 

Kohli for assistance with MALDI-MS (supported by NSF MRI-0820996). We thank Drs. 

George Furst and Jun Gu for assistance with NMR spectroscopy. We thank Dr. E. James 

Petersson for use of a fluorimeter. We also thank Dr. Christopher Lanci of the University 



 

127 

 

of Pennsylvania Biological Chemistry Resource Center for automated peptide synthesis 

supported by UPenn Laboratory for Research on the Structure of Matter (NSF MRSEC 

DMR 0520020, 1120901). Dr. Jacob Goldberg provided assistance with CD spectroscopy. 

We thank Dr. Rebecca Wissner for synthetic advice, Judith Currano and Sean Yeldell for 

editorial assistance. 

  



 

128 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: 129Xe as a Biophysical Probe of Protein Conformational Change  
 

 

 

 

 

 

 

 

 

 

The content of this chapter has been submitted for publication. It has been adapted here: 

Reprinted with permission from B.A. Riggle; M.L. Greenberg; Y. Wang; R.F. Wissner; 

E.J. Petersson; and I.J. Dmochowski. A “Turn-On” xenon-129 Biosensor for Calmodulin. 
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§ 4.1 Introduction 

 Calmodulin (CaM) is a small (17 kDa) calcium-binding messenger protein that is 

expressed in all eukaryotic cells. CaM transduces calcium signals to mediate a wide variety 

of processes from muscle contraction and metabolism to memory formation, inflammation 

and immune response. Because of the diverse roles CaM plays it is ubiquitously expressed 

throughout the body. CaM binds four Ca2+ ions, which activates binding to a variety of 

helix-forming peptide sequences with µM to nM KD values.171 A solution structure of apo-

CaM was solved and revealed Ca2+ binding induces necessary conformational changes for 

peptide binding.172  When CaM binds to cognate peptide it undergoes a dramatic 

conformational change (Figure 4. 1), which has been probed using many spectroscopic 

techniques.161, 171, 173-177 Here we investigate the potential for using sensitive 129Xe NMR 

spectroscopy to detect active CaM in solution.  

 

Figure 4. 1. Conformational change of calmodulin with the addition of 4 Ca2+ ions and 
subsequent folding in the presence of helical-peptido substrate. 

 Early work investigated the role of calcium-calmodulin and ion channel 

modulation. Specifically, researchers looked at the interaction of the CaM complex with 

cyclic nucleotide-activated cation channels that function to mediate olfactory and visual 

signal transduction.178 They determined that CaM binds to a 26-amino acid N-terminal 
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portion of the transmembrane channel for rat (r), bovine (b), and fish (f) olfactory cyclic 

nucleotide-activated channel (OCNC) but that Ca2+ is necessary for substrate binding.178, 

179
 The CaM binding region, despite a high degree of sequence flexibility, is characterized 

by several attributes, namely, a basic amphiphilic structure, the ability to form helix, and 

two aromatic or long chain aliphatic “anchor residues” 12 amino acids apart, shown boxed 

in blue in Figure 4. 2. 178, 180, 181 From the original 26 amino acid sequence, later work 

determined a 17-mer truncated peptide that also bound CaM, termed FRRIAR.173 The 

CaM-FRIARR interaction is a model for many protein-protein interactions, based on the 

burial of hydrophobic surface area and key electrostatic interactions, etc. CaM binds and 

regulates more than 30 target enzymes.172  

 

Figure 4. 2. Sequences of three in vivo substrates of CaM and the FRRIAR truncated substrate. 

 More recent work presented the NMR structure of calmodulin bound to α-

synuclein.182 The role of Ca2+-CaM in the function of α-synuclein of is of particular interest 

due to the role of α-synuclein in Parkinson’s disease. 

 Cryptophane xenon host-guest chemistry for use as targeted contrast agents in MRI 

is an area of considerable research.183 Our lab and others have developed 129Xe NMR 

biosensors for detecting proteins and other biomolecules and metal ions in solution.113, 184 

Less investigated is the potential for studying protein-protein interactions using 129Xe 
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NMR spectroscopy.68, 73 Xenon-129 has a spin-½ nucleus and high isotopic abundance of 

26.4%. Non-Boltzmann distributions of spins can be achieved by spin-exchange optical 

pumping (SEOP) in a processes termed hyperpolarization (hp). This characteristic coupled 

with the lack of endogenous xenon in vivo results in the potential for very large signal-to-

noise ratios, compared to traditional proton MRI. Due to xenon’s polarizable electron 

cloud, xenon exhibits appreciable affinity for small-molecule cryptophane hosts, and to a 

lesser extent, cucurbit[6]uril.44, 185 Cryptophanes can be made water-soluble and provide a 

hydrophobic cavity with internal volume well matched to that of Xe (D = 4.3 Å, V ~40 

Å3).55-57, 65 Our lab68-70, 73, 77 and others49, 66, 75, 95, 97, 147, 149 have designed a wide variety of 

cryptophane-xenon biosensors targeted to specific biomarkers indicated in cancer, 

including integrin and folate receptors, MMP-7, carbonic anhydrase. . . In these previous 

examples, cryptophane biosensor produced a specific hp 129Xe NMR chemical shift, which 

then shifted downfield upon introduction of protein analyte. 

 

Figure 4. 3. 129Xe “turn-on” NMR signal resulting from FRRIAR-TUC binding holo-calmodulin. 

 Cryptophane-based biosensors have been used to detect Zn2+ with xenon NMR113 

as well as Pd2+ and Cd2+.184 In both of these cases the authors tethered cryptophane with a 



 

132 

 

nitrilotriacetic acid group and relied on changes in the chemical shift to differentiate 

between the three ions. We have chosen a different approach whereby we indirectly detect 

the presence of Ca2+ ions through a protein conformational change and protein-peptide 

interaction. Herein, we demonstrate a novel turn-on detection approach whereby we detect 

biosensor binding to calmoduin protein through hp 129Xe-cryptophane NMR signal is 

absent until protein-peptide interaction occurs. We demonstrate a binary (ON/OFF) 129Xe 

signal in the presence and absence of Ca2+-activated CaM, Figure 4. 3. Building on our 

earlier work conjugating peptides to cryptophane, we present a synthetic route to conjugate 

the CaM-binding peptide, FRRIAR, to our tripropargyl cryptophane host molecule, Figure 

4. 4. 

§ 4.2 Results and Discussion 

Synthetic Procedures 

Figure 4. 4 shows the synthesis of the FRRIAR peptide-trifunctionalized, 

ultrasensitive cryptophane conjugate (FRRIAR-TUC) 5, the details of which are provided 

in the Materials and Methods Section. Briefly, the synthesis of tripropargyl cryptophane 1 

was performed in six non-linear steps with a yield for the five linear steps of 9.9%.77 Azido-

FRRIAR peptide 2 was prepared with standard Fmoc synthetic methods. The peptide was 

attached to the cryptophane via copper(I)-catalyzed [3+2] azide-alkyne cycloaddition 

(CuAAC) to form 3 after a 3 h reaction.111, 112 Mono-peptide cryptophane conjugates were 

achieved in preference by controlling reaction stoichiometry. The resulting triazole-hexyl 

spacer kept the peptide in close proximity to the 129Xe nucleus while minimizing steric 

clashes with calmodulin during protein binding. Formation of compound 3 was confirmed 
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by MALDI-MS and the yield quantified by analytical reverse-phase HPLC to be 

quantitative as all the azido-peptide was consumed (these data are provided in the Materials 

and Methods section). A solubilizing linker, 3-azidopropionic acid 4, was synthesized in 

one step from the commercially available β-propiolactone (see Material and Methods 

Section)70, 74 and reacted with crude 3 without the addition of more copper catalyst. Starting 

from tripropargyl cryptophane 1, FRRIAR-TUC 5 was isolated in ~70% yield after 

sequential CuAAC reactions with 2 and 4 and HPLC purification to remove TBTA and 

tris-triazole propionic acid cryptophane. 
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Figure 4. 4. Reaction scheme for the formation of FRRIAR peptide-trisubstituted ultrasensitive 
cryptophane (FRRIAR-TUC). a. 1 (1 eq), 2 (0.8 eq), CuBr (2 eq), TBTA (3 eq), 3 h; b. 3 (crude), 4 
(10 eq), 12 h. 

Initial attempts at synthesis were met with difficulty. [Note: all of the following 

attempts, unless otherwise noted, utilized the copper ligand TBTA]. Building off the work 

with EALA (see Chapter 3), 1.1 eq of FRRIAR were used. The reaction proceeded rapidly 

and resulted in the formation of di- and tri- substituted peptido-cryptophane which wasn’t 
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readily separable by HPLC. Subsequent attempts utilized reduced equivalents of FRRIAR 

peptide; 0.8:1 peptide to cryptophane. This resulted in preferential formation of only the 

mono-substituted product, however the reaction did not seem to proceed to completion 

rather it stalled after 1 h. As time passed the product seemed to disappear, see Figure 4. 5. 

Control studies in which FRRIAR peptide and cryptophane in DMSO but without reagents 

and FRRIAR peptide in DMSO alone were monitored by HPLC over time. These time 

course studies demonstrated that FRRIAR formed some sort of irreversible aggregate that 

could not be resolubilized in mixtures of acetonitrile and water or in buffer after DMSO 

was removed by lyophylization. Other reaction solvents were investigated. The 

requirements were a solvent that could readily dissolve both the hydrophobic tripropargyl 

cryptophane and hydrophilic FRRIAR peptide. Additionally, a copper source was needed 

that would be compatible with the chosen solvent. The solubility of cryptophane and 

FRRIAR was tested in trifluoroethanol (TFE) and both were found to be readily soluble. 

Unfortunately, both copper sulfate and sodium ascorbate precipitated upon addition though 

minimal product formation was observed. Next, TFE was employed as a co-solvent with 

DMSO but aggregation was still observed. Copper(I) bromide was substituted for copper 

sulfate with some success but the reaction precipitated over the timescale of the required 

multitude of semi-preparative HPLC runs. Attempts were made in mixtures of acetonitrile 

and water but afforded no product, possibly because acetonitrile coordinated the copper. 

Finally, the stability of FRRIAR was investigated in N,N-dimethylformamide (DMF). The 

peptide appeared to be stable long term in DMF but sodium ascorbate wasn’t soluble in 

DMF. Following literature precedent copper (II) bromide was used in conjunction with 
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triphenylphosphine to make a copper catalyst complex (in the absence of TBTA) which 

has been seen to efficiently result in triazole formation. Alas, this complex resulted in no 

product formation. Thus copper (I) bromide was again employed but this time in 100% 

DMF and found to work with strong efficacy. 

 

Figure 4. 5. Time-course HPLC of FRRIAR peptide degradation over time. Where the * denotes 
peptide-cryptophane conjugate formation, the ◊ indicates tripropargyl cryptophane, and the □ is 
FRRIAR peptide as confirmed by HPLC. No mass could be obtained on the increasing shoulder 
that elutes right before FRRIAR nor on the broad humps between 20 and 30 min at 12 h. 
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Gel Shift Assay 

 The binding of calmodulin protein to the peptide is readily observable by native gel 

shift assay as shown by Liu et al.178 This assay was performed using polyacrylamide gel 

electrophoresis (PAGE) and through it we are able to determine that binding is still 

achieved and the binding stoichiometry of FRRIAR-TUC biosensor. This assay supports 

the idea that the biosensor, FRRIAR-TUC binds in 1:1 stoichiometry with CaM in 

agreement with the peptide alone.178 These data are depicted in Figure 4. 18. At 0.25, 0.50, 

and 0.75 equivalents of FRRIAR-TUC biosensor two bands were observed--one band from 

CaM-Ca2+ and a second that migrated to a lesser degree, representing a complex of 

biosensor and CaM-Ca2+. This higher band increased in intensity with increasing 

equivalents of FRRIAR-TUC until it was a single band at 1:1 CaM-Ca2+:FRRIAR-TUC. 

This band migrated similarly to CaM-Ca2+:FRRIAR peptide.  

Moving forward, we wanted to verify that FRRIAR-TUC would not bind to 

calmodulin in the absence of Ca2+. Apo CaM was prepared and the native gel was repeated 

with FRRIAR and FRRIAR-TUC. These data indicate FRRIAR-TUC induces CaM protein 

folding only in the presence of Ca2+ ions, Figure 4. 6. Indeed, FRRIAR-TUC seems to 

discriminate between apo and holo CaM more readily than FRRIAR alone. 
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Figure 4. 6. Native gel shift assay, where sample are all 1:1 concentration of 10 µM CaM only or 
10 µM CaM plus either 10 µM FRRIAR or 10 µM FRRIAR-TUC. 1) Apo CaM only; 2) Holo CaM 
only; 3) Apo CaM + FRRIAR peptide; 4) Holo CaM +FRRIAR peptide; 5) Apo CaM + FRRIAR-
TUC; and 6) Holo CaM + FRRIAR-TUC. 

Tryptophan Fluorescence  

The FRRIAR peptide contains a single tryptophan residue towards the C-terminus 

that we hypothesized should provide a useful local probe of peptide and protein binding, 

as well as changes in peptide-cryptophane interaction.186-188 Fluorescence studies (λex = 

295 nm) with peptide 2 demonstrated a hypsochromic shift and increased Trp emission 

intensity upon binding of calmodulin protein, Figure 4. 7a. Trp emission maximum 

wavelength for the FRRIAR peptide decreased from 352 nm to 332 nm with increasing 

concentrations of CaM protein. This quenching phenomenon was also observed in a much 

narrower, and considerably blue shifted range with FRRIAR-TUC and CaM from 328 nm 

to 325 nm (Figure 4. 7b), consistent with the Trp experiencing a less solvated environment 

near cryptophane. Cryptophane fluoresces (λmax = 313 nm) with comparable intensity to 

Trp, which further contributes significantly to the observed emission spectrum.55, 67  
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Figure 4. 7. Calmodulin binding monitored by Trp fluorescence for a. FRRIAR peptide (30 µM) 
with varying concentrations of CaM protein (0, 7.5, 15, 22.5, or 30 µM) and; b. FRRIAR-TUC (30 
µM) with varying concentrations of CaM protein (0, 7.5, 15, 22.5, or 30 µM). 
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Figure 4. 8. Enthalpogram of FRRIAR-TUC (300 µM) titrated into CaM (30 µM). 

Biosensor Binding Studies 

 The binding interaction between FRRIAR-TUC and CaM was characterized using 

isothermal titration calorimetry as our laboratory has done with previous biosensors.70 

Titration experiments were performed in 10 mM HEPES, 1 mM CaCl2 pH 7.2. We 

determined ΔH = -18.1 kcal/mol, which gives a sub-micromolar dissociation constant of 

0.65 µM at rt, see Figure 4. 8. These data were someone convoluted by the presence of an 

initial dissociation process which may be the result of alleviating cryptophane-peptide 
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interactions before calmodulin binding can take place. Reversible cryptophane-FRRIAR 

association is not surprising as we have previously observed this phenomenon with other 

peptide-cryptophane constructs.67, 77 

 

Figure 4. 9. Electronic circular dichroism of FRRIAR (30 µM) and FRRIAR-TUC (10 µM) in 1:1 
MeCN:H2O at 298 K. Data are normalized to molar ellipticity (see materials and methods) 

Electronic Circular Dichroism 

Although NMR178, 179 and crystallographic189 studies indicate FRRIAR peptide is 

helical upon protein binding (Figure 4. 1), electronic circular dichroism studies 

demonstrate the peptide is fairly disordered (Figure 4. 9, red trace) when free in solution. 

Interestingly, after conjugating FRRIAR to cryptophane, the peptide exhibits a large 

increase in helicity (Figure 4. 9, blue trace) from 11 to 37%, (see Materials and Methods). 
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Because racemic cryptophane does not produce ECD signal, conjugation to the cage seems 

to promote helicity in FRRIAR peptide. For ECD studies, samples of FRRIAR peptide (30 

μM) and FRRIAR-TUC (10 µM) were prepared in 1:1 MeCN:H2O, as confirmed by UV-

vis spectroscopy (FRRIAR: ε280 = 6,970 M-1cm-1, FRRIAR-TUC: ε280 = 16,970 M-1cm-1). 

HPLC solvents were used to minimize observed light scattering from DMSO and 

HEPES.190 These data are in line with previous work where cryptophane was observed to 

promote helicity in a helix forming peptide, likely through cryptophane-peptide pi-stacking 

interactions.77 These data serve to further explain observations by ITC where there is an 

initial “dilution” effect before CaM binding.  

 

 

128Xe NMR Spectroscopy 

Finally, HP 129Xe NMR spectroscopy was employed to further investigate the 

biosensor-CaM interaction. Interestingly, the biosensor alone gave no hp 129Xe-

cryptophane NMR signal; only the hp 129Xe@H2O resonance was observed, Figure 4. 10. 

UV-Vis spectroscopy confirmed that significant quantity (~70 µM, ε280 = 16,970 M-1•cm-

1) of biosensor was in solution. Upon addition of equimolar calcium-activated CaM, 

FRRIAR-TUC produced strong 129Xe NMR signal corresponding to cryptophane-CaM 

complex formation Figure 4. 10. The two bound peaks (65.9, 67.6) were assigned to 
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diastereomers, which are formed when racemic biosensor is conjugated to the chiral 

peptide. Diastereomeric 129Xe NMR peaks have been observed previously for peptide-

cryptophane conjugates as well as for xenon biosensors bound to protein active sites..66, 70 

Only trace amounts of “free” biosensor was observed in the presence of calcium-bound 

CaM (at 62.9 ppm), which was assigned from previous literature examples of water-soluble 

cryptophane. The lack of hp 129Xe NMR signal corresponding to free biosensor is thus 

consistent in the presence or absence of CaM. Likewise, no hp 129Xe NMR signal was 

observed for biosensor in the presence of apo CaM, as FRIARR-CaM interaction is much 

weaker in the absence of calcium (as confirmed by gel electrophoresis, Figure 4. 6). These 

experiments demonstrate the first example of a “turn-on” xenon NMR biosensor, which 

results from the binding of FRRIAR-TUC to calcium-activated CaM. 

Our ECD and Trp fluorescence data suggest significant cryptophane-peptide 

interactions as has been previously demonstrated.67, 77 Such interactions may contribute to 

poor solubilisation of the cryptophane and should favour less xenon-accessible 

conformations resulting in an “OFF” signal from the biosensor. Upon calcium-activated 

CaM binding to the peptide, cryptophane-FRRIAR interactions are decreased and xenon 

biosensor signal is turned “ON”. 
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Figure 4. 10. 129Xe NMR spectra of CaM bound FRRIAR-TUC resulting in two bound signals, A. 
and FRRIAR-TUC alone and in the presence of apo CaM resulted in no bound signal. 

§ 4.3 Conclusions 

In summary, we report a straightforward synthesis for the first “turn-on” 

cryptophane biosensor, which was used to detect calcium-bound calmodulin protein. This 

so called turn-on effect improves signal-to-noise especially in scenarios where there are 

multiple biosensors with both “free” and “bound” signals. The observation of signal only 

in the presence of target analyte will also facilitate ultrasensitive detection using 

hyperpolarized chemical exchange saturation transfer (Hyper-CEST) NMR techniques.95 

For example, large, high-powered pulse widths that increase detection sensitivity can be 
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employed without interfering signal from untargeted biosensor(s). This work highlights a 

new paradigm in xenon biosensing, and future studies will help to elucidate the nature of 

peptide-cryptophane interactions that can produce the “OFF” state. 

§ 4.4 Materials and Methods 

General Information 

Instrumentation and Methods. 1H NMR (500 MHz) data were obtained in deuterated 

chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6) using a Bruker DMX 500 NMR 

spectrometer. Column chromatography was performed using silica gel (60 Å pore size, 40-

75 µm particle size) from Sorbent Technologies. Thin layer chromatography (TLC) was 

performed using silica gel plates (60 Å pore size, Silicycle) with UV light at 254 nm as the 

detection method. MALDI-MS data were collected using a Bruker Ultraflex III TOF/TOF 

mass spectrometer. All HPLC purifications were performed on a Varian Prostar 210 system 

equipped with a quaternary pump and diode array detector. All air- and moisture-sensitive 

reactions were performed under inert atmosphere in glassware flamed under vacuum, using 

anhydrous dry solvents. Standard workup procedures involved multiple (~3) extractions 

with the indicated organic solvent, followed by washing of the combined organic extracts 

with water or brine, drying over Na2SO4 and removal of solvents in vacuo. All yields 

reported were determined after purification by column chromatography or reverse phase 

HPLC, unless otherwise noted. All data were collected using instruments in the Chemistry 

Department at the University of Pennsylvania. 

Materials. Organic reagents and solvents were used as purchased from the following 

commercial sources: Sigma-Aldrich: N,N-diisopropylethylamine (DIPEA); copper(I) 
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bromide; dimethyl sulfoxide (DMSO, anhydrous, 99.9%); Sigmacote®; Tris-[(1-benzyl-

1H-1,2,3-triazol-4-yl)methyl]amine (TBTA). Fisher: acetone (HPLC grade); chloroform 

(CH2Cl3, HPLC grade); dichloromethane (CH2Cl2, HPLC grade); ethyl acetate (EtOAc, 

HPLC grade); hexanes (HPLC grade); hydrochloric acid; methyl alcohol (MeOH, HPLC 

grade), perchloric acid (60%); potassium carbonate (anhydrous); sea sand (washed); 

sodium chloride (NaCl); sodium hydroxide (NaOH); sodium sulfate (anhydrous). 

Novabiochem (currently EMD Millipore; Billerica, MA, USA): 6-azidohexanoic acid; 2-

(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). 

MarCor: deionized (DI) water filtered (18 MΩ). Acros Organics: β-propiolactone (90%); 

cesium  carbonate (Cs2CO3, 99.5%); chloroform-d (CDCl3); 1,2-dibromoethane; 3,4-

dihydroxybenzaldehyde (97%); N,N-dimethylformamide (DMF, 99.8%, anhydrous, 

acrosseal); dimethylsulfoxide-d6, 4-hydroxy-3-methoxybenzyl alcohol (99%); propargyl 

bromide (80% solution in toluene); scandium(III) trifluoromethanesulfonate (Sc(OTf)3, 

95%); sodium borohydride (NaHB4, powder, 98%); sodium hydride (NaH, 60% dispersion 

in mineral oil); tetrahydrofuran (THF, extra dry, over molecular sieves); triisopropylsilane 

(TIS). MG Industries (Linde Group, NJ): xenon gas (scientific grade). 

Synthetic Procedures 

Cryptophane Synthesis. Tripropargyl cryptophane was achieved in a 6-step synthesis with 

a 6.4% overall yield from two commercially available compounds, 3,4-dihydroxy-

benzaldehyde and vanillyl alcohol. Spectroscopic data agreed with literature values.77  

Peptide Synthesis and Purification. FRRIAR peptide was synthesized using standard solid 

phase peptide synthesis as described previously,77 and then N-terminally capped with 
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commercially available 6-azidohexanoic acid and purified by reverse-phase HPLC.77 

Alternatively, azido-FRRIAR was purchased from Anaspec as a purified white powder 

separated into 10 mg aliquots. 

Solubilizing Linker Synthesis. 3-Azidopropionic acid was prepared from β-propiolactone 

by literature procedure and matched the reported 1H NMR spectrum.168  

3-azidopropionic acid (4). Briefly, sodium azide (4.5 g, 0.69 mmol, 1 eq) was dissolved in 

ddH2O water. β-propiolactone (4.4 mL, 0.069 mmol, 1 eq) was added dropwise and the 

reaction was allowed to stir at rt for 6 h. The reaction was neutralized with 1 M HCl and 

then extracted 3 times. The organic layer was then dried over sodium sulfate and filtered 

through cotton. A clear oil in a 15% yield was recovered, requiring no further purification. 

FRRIAR-TUC Biosensor Synthesis. The copper(I)-catalyzed [3+2] azide-alkyne 

cycloaddition (CuAAC) between N3-EALA peptide and cryptophane and the subsequent 

cycloaddition reaction between the cryptophane and 3-azidopropionic acid yielded the 

FRRIAR-TUC biosensor. 

FRRIAR-cryptophane (3). To conjugate the azido-EALA peptide to the tripropargyl 

cryptophane (1) CuAAC was utilized with modified conditions of those previously 

employed.67, 68, 70, 73 Firstly, 5.3 mg (1.0 eq) of 1 and 10 mg of 2 (0.8 eq) were dissolved in 

1 mL of dry N,N-dimethylformamide (DMF) in a conical reaction vessel. The reaction 

mixture was put to stirring and degassed. In a separate vial, 16 mg (6 eq) of tris[(1-benzyl-

1H-1,2,3-triazol-4-yl)methylamine (TBTA) copper ligand was dissolved in 100 μL of 

DMF. A separate solution of 0.35 M copper (I) bromide (CuBr) in DMSO was also 

prepared. To the TBTA solution, 43 μL of CuBr (3 eq) was added, vortexing after addition. 
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The reagent mixture was then added to the reaction vessel. The reaction vessel was again 

degassed and then covered with foil and allowed to stir for 3 h under nitrogen at rt. A small 

aliquot of reaction was removed (2 µL) and diluted in HPLC solvent mixture, 50:50 

mixture of acetonitrile and water with 0.1% trifluoroacetic acid to 1 mL. To verify product 

formation, analytical reverse-phase HPLC was performed using a Grace C18 analytical 

column (250 × 4.6 mm, 5 µm beads) and monitored at 215 and 277 nm. The elution gradient 

was composed of two solvents: 0.1% aqueous TFA (solvent A) and a 0.1% solution of TFA 

in CH3CN (solvent B). The purification method went equilibrated at 90% A for 5 min. 

Then went from 90% A to 60% A over 3 min, then from 60% A to 22% A over 32 min, 

and finally decreased to 0% A over the next 5 min at a flow rate of 1 mL/min with a 1 mL 

injection volume. The FRRIAR-cryptophane conjugate eluted at 28.00 min, Figure 4. 11. 

MALDI-MS m/z calculated for FRRIAR-cryptophane C166H225N37O33 (M+H+) 3265.71; 

found 3265.76, Figure 4. 12. 
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Figure 4. 11. HPLC chromatogram of FRRIAR-cryptophane (3). UV absorbance monitored at 277 
nm. Product eluted at 28.00 min. Peak assignment based on MALDI-MS. 

 

Figure 4. 12. MALDI-MS spectrum of FRRIAR-cryptophane (3). Expected mass (M+H+) 3265.71; 
found 3265.76. 
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FRRIAR-trisubstituted ultrasensitive cryptophane (FRRIAR-TUC) (5). After 3 h the crude 

reaction (3) was then dosed with 6 μL 3-azidopropionic acid (4) (11 eq) and allowed to stir 

overnight while covered, to yield the FRRIAR-TUC biosensor. The reaction was diluted 

10-fold in 50:50 ACN:H2O and purified. Purification was achieved through reverse-phase 

HPLC employing a semi-preparative method and using a Grace C18 semi-preparative 

column (10 × 250 mm, 5 µm beads). The purification method went equilibrated at 90% A 

for 5 min. Then went from 90% A to 55% A over 3 min, then from 55% A to 51% A over 

7 min, and then from 51% A to 47% A over 13 min. Next went from 47% A to 40% A over 

6 min and finally decreased to 0% A over the next min at a flow rate of 4 mL/min with a 1 

mL injection volume. The biosensor eluted at 20.30 min Figure 4. 13. MALDI-MS m/z 

calculated for FRRIAR-TUC C208H289N43O61 (M+H+) 3496.02; found 3495.99, Figure 4. 

14. The pure fractions were then collected and lyophilized to a white powder and dissolved 

in a minimal amount of DMSO and then diluted to desired concentrations in 10 mM 

HEPES at pH 7.5 with and without 1 mM CaCl2. 
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Figure 4. 13. HPLC chromatogram of FRRIAR-TUC (5). UV absorbance monitored at 277 nm. 
Product eluted at 20.30 min. Peak assignment based on MALDI-MS. 

 

Figure 4. 14. MALDI-MS spectrum of FRRIAR-TUC (5). Expected mass (M+H+) 3496.02; found 
3495.99. 
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Calmodulin Protein Expression and Purification. Calmodulin (CaM) protein was 

expressed and purified following previously established protocols.173 Briefly, Escherichia 

coli BL21(DE3) cells were transformed with plasmid containing chicken CaM gene. 

Transformed cells were selected on the basis of ampicillin resistance. M9 minimal media 

(50 mL) supplemented with ampicillin (100 µg/mL) was inoculated with single colonies. 

An M9 salts solution (42.3 mM Na2HPO4, 22.0 mM KH2PO4, and 8.5 mM NaCl) was 

prepared and autoclaved. Autoclaved solutions of the following salts were added per liter 

of M9 salts: 10 mL of 10% NH4Cl, 1 mL of 2 M MgSO4, 1 mL of 15 mg/mL FeCl2 (in 1.0 

M HCl), 1 mL of 15 mg/mL ZnCl2 (in acidified H2O), and 2 mL of 10% Bacto™ Yeast 

Extract. The primary 50 mL culture was incubated at 37 °C with shaking at 250 rpm 

overnight. The cells were harvested at 5000 g for 15 min and the resulting pellet was 

resuspended in 1 L of M9 minimal media supplemented with ampicillin. The 1 L culture 

was incubated at 37 °C with shaking at 250 rpm until the absorbance at 600 nm reached an 

OD of 0.9 AU. The culture was induced with isopropyl D-galactoside (IPTG), and then 

incubated at 25 °C for an additional 12 h. The cells were again collected at 5000 g for 15 

min and the resulting pellet was suspended in 15 mL of MOPS resuspension buffer: 50 

mM 3-(N-morpholino)propanesulfonic acid (MOPS), 100 mM KCl, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 1 mM dithiothreitol, pH 7.5. Cell were lysed with 

lysozyme (150 µg/mL) for 1 h at room temperature followed by brief sonication. The cell 

lysate was cooled on ice for 5 min. CaCl2 was added to the sonicated lysate to a final 

concentration of 5 mM prior to centrifugation for 20 min at 30,000 g, 4 °C. CaM was 

purified from the cleared cell lysate using a phenylsepharose CL-4B column (resin bed 
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volume = 20 mL) with EDTA as eluent. The column was first equilibrated with 4 column 

volumes of Buffer A (50 mM Tris base, 1 mM CaCl2, pH 7.5). After the clear cell lysate 

was loaded and allowed to pass through the resin, the column was washed with 4 column 

volumes of Buffer A, 4 column volumes of high-salt Buffer B (50 mM Tris base, 0.5 M 

NaCl, 0.1 mM CaCl2, pH 7.5), and an additional 2 column volume washes of Buffer A to 

restore low-salt conditions. CaM was eluted with Buffer C (10 mM Tris base, 10 mM 

EDTA, pH 7.5) and collected in 4 mL fractions until absorbance at 280 nm was no longer 

detected. A second column purification was performed on the first batch of eluted fractions 

(re-saturated with CaCl2 to a concentration of 20 mM) to obtain CaM with high levels of 

purity. Column fractions were dialyzed against 10 mM ammonium bicarbonate (pH 8.0) 

and stored as a lyophilized powder at -20 °C. SDS-PAGE analysis was performed to 

analyze dialyzed CaM elution fractions. 
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Characterization Methods 

 

Figure 4. 15. Electronic circular dichroism spectrum of FRRIAR peptide showing a disordered 
conformation. 

Electronic Circular Dichroism (ECD) Spectroscopy. All ECD spectroscopy experiments 

were performed on the Aviv 410 CD spectrometer. Data were collected at 25 °C from 260-

190 nm, with a 30 s averaging time, 1 nm wavelength step, 1 s averaging time, and 1 nm 

bandwidth. The sample in Figure 4. 15 was prepared by dissolving lyophilized FRRIAR in 

10 mM HEPES, 1 mM CaCl2 pH 7.2 to 30 µM and serves as a control for peptide 

conformation irrespective of solvent conditions. The concentration for all experiments  was 

confirmed by measuring the absorbance at 280 nm, 𝜀280 = 6,970 𝑀−1𝑐𝑚−1 [FRRIAR] 

and 𝜀280 = 16,970 𝑀−1 𝑐𝑚−1 [FRRIAR-TUC] and using an Agilent 89090A UV-visible 

spectrophotometer.  

Data Analysis. The molar ellipticity was calculated from the observed ellipticity (mdeg) 

and has the units of deg cm2 dmol-1. The molar ellipticity is given by equation 4.1 where C 
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is the concentration of the peptide or biosensor, ℓ is the path length of the cuvette-0.1 cm, 

and 𝑛𝑟 is the number of residues-.169 

[𝜃] =
𝜃𝜆

(𝐶 ∗ ℓ ∗ 𝑛𝑟 ∗ 10)
 

(4.1) 

The helical content of FRRIAR and FRRIAR-TUC were determined from circular 

dichroism studies at 30 and 10 μM concentrations, respectively, and in accordance with 

literature precedent.170 The concentration variation is a result of the large difference in 

extinction coefficients (6970 vs 16970 M-1 • cm-1), because data are normalized to molar 

ellipticity they can be directly compared. Studies at various concentrations demonstrated 

reproducible percent helicity values. Helicity was calculated using the formulas 4.2 and 4.3 

where 𝑛𝑟 is the number of amino acids in the peptide, in this case 17. Racemic cryptophane 

was employed for these experiments, and thus did not contribute to the measured CD 

signal.145 Data are shown in Tables 4.1 and graphically in Figure 4. 9. These experiments 

were performed in 1:1 MeOH:H2O because even samples with 0.25% DMSO contributed 

to significant scattering below 210 nm as did the buffer to a lesser degree.190 Comparative 

studies between FRRIAR in buffer and FRRIAR in 1:1 MeCN:H2O demonstrated 

equivalent spectra. 

%ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 = 100 ∗
[𝜃]222

[𝜃] 222 
𝑚𝑎𝑥

 
(4.2) 

[𝜃]222 = −40000 ∗ [1 −
2.5

𝑛𝑟

] 
𝑚𝑎𝑥  

(4.3) 

Tryptophan Fluorescence Studies. All fluorescence studies with the peptide and CaM 

were carried out on Photon Technology International (PTI) QuantaMaster™ 40 
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fluorescence spectrometer (Birmingham, NJ, USA). Samples containing 0, 7.5, 15, 22.5, 

or 30 µM CaM and 30 µM FRRIAR peptide were prepared in 10 mM HEPES, 1 mM CaCl2 

pH 7.2 and placed in the fluorimeter. Fluorescence spectra were collected at 25 °C in quartz 

cuvettes with a 1-cm path length. The samples were excited at 295 nm and emission data 

were collected from 300-400 nm. For all spectra the slit widths were 5 nm, scan rate was 

60 nm/min, averaging time was 1 s, and the data interval was 1 nm. All fluorescence studies 

with the biosensor and CaM were prepared in the same manner and carried out on Cary 

Eclipse Fluorescence Spectrophotometer from Agilent (formally Varian). 

Hyperpolarized 129Xe NMR Spectroscopy. HP 129Xe was generated using spin-exchange 

optical pumping (SEOP) method with a home-built version of the previously commercially 

available Nycomed-Amersham (now GE) model IGI.Xe.2000 129Xe hyperpolarizer. A gas 

mixture of 89% helium, 10% nitrogen, and 1% natural abundance xenon (Linde Group, 

NJ) was used as the hyperpolarizer input. 795 nm circularly polarized diode laser was used 

for optical pumping of Rb vapor. 129Xe was hyperpolarized to 10–15% after being 

cryogenically separated, accumulated, thawed, and collected in controlled atmosphere 

valve NMR tubes (New Era). After hp Xe collection, NMR tubes were shaken vigorously 

to mix cryptophane solutions with hp Xe. All 129Xe NMR measurements were carried out 

on a Bruker BioDRX 500 MHz NMR spectrometer (138.12 MHz frequency for 129Xe), 

using a 5-mm BBO NMR probe. Sample temperature was controlled by VT unit on NMR 

spectrometer to 300 ± 1 K. Eburp1 shaped pulse was used to selectively excite 

Xe@FRRIAR-TUC biosensor peak. Spectra were averaged over 16 scans. A delay of 0.15s 

was given between scans to allow for xenon exchange. All acquired NMR spectra were 
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processed with 25 Hz Lorentz broadening. Chemical shifts were referenced to free xenon 

gas of 0 atm at 0 ppm. 

 

Figure 4. 16. Temperature-dependent circular dichroism spectroscopy of 30 µM apo calmodulin  

Thermal Melt of Calmodulin. To confirm that Apo CaM had been achieved temperature-

dependent circular dichroism (CD) spectroscopy was performed following literature 

protocol.173 Briefly, calcium containing CaM (holo-CaM) is thermostable (Tm > 90 ºC) 

thus, we measured the thermal unfolding of the apo protein which has a reported Tm of 55 

ºC.191 CD data were obtained from approximately 30 µM protein sample monitored at 222 

nm between 0 and 95 ºC using the variable temperature module with the Aviv 410 CD 

spectrometer. Data were collected every 1 ºC, using a 30 s averaging time, 2 min 

temperature equilibrium, and 1 nm band width. The resulting ellipticity (θD) measurements 

were converted to molar residue ellipticity values (θ) using equation 4.1, described above. 
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The fraction folded (ff) for apo protein was determined using linear baselines to fit the low 

(θF) and high (θU) temperature data, equations 4.4 and 4.5, respectively. 

𝜃𝐹 = 𝑚𝐹𝑇 + 𝑏𝐹 (4.4) 

𝜃𝑈 = 𝑚𝑈𝑇 + 𝑏𝑈 (4.5) 

The entirety of the data range was then fit to equation S6 where K = e-(ΔH-TΔS)/RT
, where ΔH 

and ΔS are adjustable parameters and R = 8.3145 J•mol-1•K-1. The resulting plot is shown 

in Figure 4. 16. 

𝜃 = 𝜃𝐹(𝑇)𝑓𝑓(𝑇) + 𝜃𝑈(𝑇)(1 − 𝑓𝑓(𝑇))  

Where: 𝑓𝑓 = 𝐾/(1 + 𝐾) 

(4.6) 

Our values agree quite favorably with the measured values associated with experiments 

performed in Goldberg et al. (not published) and are shown in Table S2.173 

Table 4.2: Calculated values for ΔH and ΔS from the thermal melt of apo calmodulin 

 Our Calculated Value Literature Valuea 

ΔH 1.43 x 105 kJ • mol-1 1.43 x 105 kJ • mol-1 

ΔS 444 J • mol-1 • K-1 438 J • mol-1 • K-1 

aThese values are associated with data analysis performed in Goldberg et al. while these values were not published in that 

manuscript they were provided by the authors for comparison. 

 

Gel Shift Assay. All gels were run on a Bio-Rad PowerPac™ Basic gel setup in 1x Tris-

glycine solution (prepared from a dilution of commercially available Tris-Glycine 10x 

Solution for Electrophoresis in ddH2O). Mini-protean®TGX™ precast gels, 4-15%, 30 

µL/well from Bio-Rad.  Initial characterization of CaM gel shift upon binding was achieved 

by preparing samples with 0, 10, or 20 µM FRRIAR (final concentration) with 10 µM CaM 
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(final concentration) and is shown in Figure 4. 17. For the FRRIAR-TUC titration gel, 

samples containing 0, 7.5, 15, 22.5, or 10 µM FRRIAR-TUC and 10 µM CaM were 

prepared in 10 mM HEPES, pH 7.2 with 1% DMSO, Figure 4. 18.  For the Apo/Holo 

binding gel, 10 µM (final concentration) of either apo or holo CaM was combined with 10 

µM FRRIAR (final concentration), 10 µM FRRIAR-TUC, or buffer, Figure 4. 6. Native 

Tris-Glycine Sample Buffer 2x from Novex (25 µL) was combined with 25 µL of each 

sample. Samples were incubated for 1 min after prep before being loaded onto a 4-15% 

gradient gel. The gel box was put on ice and run at 120 V for 1.5 h before being stained 

with Coomassie brilliant blue stain mixture (20 min) and then destained. The gel were 

imaged on the Typhoon FLA 7000 gel imager. 

 

Figure 4. 17. Native gel shift assay demonstrating retarded gel migration of CaM after binding 
FRRIAR and that it does so in 1:1 stoichiometry. 
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Figure 4. 18. Native gel shift assay, where sample are all 10 µM CaM (final concentration) plus 1. 
buffer; 2. 0.25 µM FRRIAR-TUC; 3. 0.50 µM FRRIAR-TUC; 4. 0.75 µM FRRIAR-TUC; 5. 10 µM 
FRRIAR-TUC; 6. 10 µM FRRIAR peptide; and 7. buffer. 

 

Figure 4. 19. Enthalpogram of FRRIAR peptide injected into calmodulin protein. 
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Isothermal Titration Calorimetry. All experiments were performed on a GE MicroCal™ 

ITC200 titration microcalorimeter at 298 K. Experiments were performed in high feedback 

mode with 1000 rpm stir speed, an initial injection delay of 60 s, 180 s spacing between 

injections, a differential power of 60, and a filter period of 5 s. An initial injection of 0.6 

µL was measured and removed from subsequent data analysis due to initial drop dilution 

this was followed by 19- 2 µL injections. Buffers were prepared in 1 L stock using ddH2O 

water and were purified by vacuum filtration at 0.22 µM. CaM protein was dialyzed against 

the desired buffer 2-3x. The buffer from the last dialysis was saved for subsequent use. 

Protein concentration was determined using UVvis A280, ε = 3000 M-1 cm-1 and was diluted 

in the buffer used for dialysis to a final concentration of 30 µM, 300 µL. Purified FRRIAR 

peptide as a lyophilized powder was dissolved in the buffer from dialysis as well as to 

ensure perfect buffer match to a final concentration of 300 µM, 100 µL as determined by 

UV-vis: A280 with ε = 6970 M-1 cm-1. The heat of binding was measured for each injection 

by measuring the power applied to the reference cell to maintain a temperature equal to 

that of the sample cell and was measured in microcalories per second. Values for binding 

enthalpy (ΔH), binding entropy (ΔS), binding stoichiometry (n), and association constant 

(KA) were determined by peak integration and data fitting of the heat evolved per mole of 

peptide injected using Origin software (version 7). Enthalpogram is shown in Figure 4. 19. 

A control was performed of buffer injected into buffer and of peptide injected into buffer 

(Figure 4. 20). 

Repeated attempts were next made to calculate binding affinity between FRRIAR-

TUC and CaM at various concentrations using ITC, however, no reliable data were 
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achieved. Resulting enthalopograms were somewhat suggestive of a “two-site” binding 

model which is likely reflective of an initial unfolding event to alleviate peptide-

cryptophane interactions or micelle disassembly to free up peptide for binding. Examples 

are shown in Figure 4. 8. 

 

Figure 4. 20. Enthalpograms of ITC controls. a. buffer titrated into buffer and b. FRRIAR titrated 
into buffer. Buffer is 10 mM HEPES 1 mM CaCl2 pH 7.2. 
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Chapter 5: Epilogue 
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This thesis has explored the nature of cryptophane-based xenon biosensors and has 

endeavored to elucidate design and synthesis strategies to generate biosensors with a high 

degree of target specificity coupled with large changes in chemical shift. The long-term 

goal is for this work to culminate in an array of targeted biosensors that can be employed 

in animal models, and ultimately humans, as a means of accurately diagnosing cancer in 

an ultrasensitive fashion.   

§ 5.1 Carbonic Anhydrase as Cancer Biomarkers 

Chapter 2 discussed our work with carbonic anhydrase targeting biosensors and our 

studies attempting to explicate the chemical shift variation achieved from differing linker 

lengths and the presence of multiple bound peaks. Our initial work was performed with 

ubiquitously studied carbonic anhydrase isozymes I and II but as with all work in the 

selective targeting and inhibition of specific carbonic anhydrase isozymes, we have also 

considered isozymes indicated in cancer, CA IX and XII.  These membrane-bound 

isozymes are upregulated in a multitude of cancers where they acidify the extracellular 

milieu192-195 and have been challenging to express and work with in an “ex cellula” context. 

However, there are a variety of cell lines that up-regulate these proteins. Thus, moving 

forward we hope to generate fluorescent versions of our CXB (Figure 5.1) biosensors to 

allow us to employ confocal microscopy and flow cytometry to visualize and quantify the 

specificity of our biosensors. Because these proteins are membrane-bound we anticipate 

an increase in the Δδ ppm as a result of bringing the cryptophane in close proximity to the 

cellular membrane, as discussed in Chapter 3. Furthermore, there are a wide array of 

targeting ligands for CA, some of which exhibit a degree of isozyme specificity that we 
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plan to couple with our fluorescence strategies to develop biosensors highly specific for 

CA IX and XII.80, 196 With these derivatives we plan to achieve large isozyme-dependent 

chemical shifts that can be used in cellular NMR/MRI for ultrasensitive detection. 

 

Figure 5. 1. Proposed synthesis of fluorescently labeled CXB derivatives where X=0, 1, or 2 
carbon spacers. 

§ 5.2 Stimuli-Responsive Cell Labeling as a Mechanism for Cancer Detection 

Building on our work with carbonic anhydrase and its role in extracellular 

acidification, Chapter 3 described a peptido-cryptophane that was used to label cells with 

acidic local environments. This system was unusual in the field of targeted cryptophane 

biosensors in that it targets a specific “stimulus” rather than an over-expressed receptor or 

up-regulated enzyme. While the WEC biosensor does not provide a read-out of specific pH 

values like some other studies have demonstrated,127, 134, 136 we were able to label cells only 
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when placed in an acidic environment and detect cell labeling at 103-fold improved 

concentration limits over other CEST reporters. Importantly, using the WEC biosensor we 

achieved the largest chemical shift change published to date. 

Moving forward this work could be improved by a peptide that undergoes a 

conformational change over a narrower pH range and by studying if relative peak ratios of 

the “bound” and “free” conformations can be utilized to provide a pH measurement. More 

importantly, this work introduced a new paradigm to the field of cryptophane biosensors. 

These methods can be applied to detect a wide range of stimuli in a wide variety of fashions. 

One important aspect to bear in mind when designing stimuli responsive biosensors is to 

generate a large change in chemical shift. Secondly, the biosensor can be targeted both 

directly to the stimulus, such as enzymatic cleavage of a peptide-substrate or indirectly as 

in the case of WEC where the xenon senses a change in conformation resulting in 

membrane insertion rather than directly sensing pH change. In a living system, biosensors 

that bind to receptors or proteins will either label the cells or be internalized via an 

endocytotic mechanism. Stimuli-responsive biosensors may physically bind to the diseased 

cell further necessitating a need to generate strong chemical shifts post targeting to 

deconvolute the resultant signal. Our work targeting MMP-7, described in Section 1.9, 

produced very small chemical shift variation pre- and post- enzymatic cleavage.67 Because 

the chemical shift change is a result of shielding/deshielding effects, we propose to improve 

the Δδ ppm for an enzymatic substrate tethered to cryptophane by using a highly 

fluorinated version of the peptide. Finally, for many studies, an “on-off” response will be 

sufficient, whereby cryptophane-labeled cells will produce observable hp 129Xe NMR/MRI 
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signal. Accumulation of cryptophane at diseased cells should provide a useful diagnostic 

agent, similarly to how FDG has enabled early cancer detection via PET imaging. 

§ 5.3 Employing Xe as an Ultrasensitive Probe for Applications in Chemical Biology 

Building on our work with WEC, Chapter 4 considers new uses of cryptophane-

129Xe NMR spectroscopy to probe protein dynamics. In the field of chemical biology there 

is a wide range of tools used to label proteins to study conformational changes and protein-

protein interactions. The development and use of these tools tends to be a tradeoff between 

sensitivity and level of perturbation. X-ray crystallography and neutron diffraction can be 

employed with macromolecular samples and can provide high-resolution structures but this 

information is obtained from solid crystals and thus may not represent dynamic 

information.197 Producing stable crystals can also require large screens to obtain ideal 

conditions which can consume large quantities of protein. Time-resolved crystallography 

helps to mitigate some of these concerns by generating molecular movies at atomic 

resolution.198 This technique is limited, however, to conformational rearrangements that do 

not disrupt crystal contacts and cannot be performed in vivo. Nuclear magnetic resonance 

(NMR) can be used to study protein samples in solution to obtain both dynamic and 

structural information through distance constraints determined by homo- and hetero-

nuclear through-bond and through-space correlations.199, 200 The limitation of this 

technique is the difficulty to perform these experiments and that inferences, as opposed to 

direct measurements, must made about line-broadening patterns. Importantly, the NMR 

time scale is typically too slow to capture the full range of dynamic motions in large 

conformational changes. Fluorescence spectroscopy methods require relatively small 
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amounts of protein and can be performed in live tissue and in complex solutions such as 

cell lysates. Fluorescence spectroscopy can also be performed relying on intrinsic 

characteristics of proteins such as tryptophan (W) signal. Conversely, proteins can be 

labeled with a wide variety of fluorophores from Green Fluorescent Protein (GFP) to much 

smaller molecules like fluorescein, acridone, coumarin, and Alexa Fluors.201 With smaller 

molecules you potentially have much decreased perturbation of the native structure but the 

fluorescence intensity is also reduced, thus precluding ultrasensitive detection. Thus the 

use of cryptophane labeling for xenon monitoring of protein dynamics may provide a 

complementary method to monitor protein dynamics in dilute solutions and in turbid 

media. 

 

Figure 5. 2. Synthesis of cryptophane labeled calmodulin protein. 

 Although our initial foray into this field involved labeling a peptide-substrate 

involved in bringing about a conformational change, this method is not limited to labeling 

peptides. Indeed through the incorporation of unnatural amino acids, bioorthogonal azides 

can be introduced into proteins, allowing protein labeling as demonstrated by Wissner et 
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al.174 We have initiated studies directly labeling calmodulin protein with cryptophane, 

following the reaction scheme in Figure 5.2 where the labeled protein was achieved as 

confirmed by MALDI-MS, Figure 5.3. The reaction was complicated by the presence of 

unlabeled protein as a result of aryl azide reduction, thus requiring further purification for 

accurate concentrations of labeled protein to be determined. Moving forward, however, it 

is reasonable to work with partially labeled batches of proteins as long as sufficient 

concentrations are used to obtain xenon signal. More importantly, this system should be 

optimized to increase xenon binding by first generating a cryptophane molecule that has 

been solubilized to promote an open, xenon binding conformation.65 One possible method 

to both improve solubility and improve labeling is to use a cryptophane such as the one 

depicted in Figure 5.4. 
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Figure 5. 3. MALDI-MS of cryptophane labeled calmodulin. Expected mass, M+H+=17702.5; 
Found, M+H+=17749. The mass 16747 corresponds with para-amino-phenylalanine 16709.4 
CaM. MALDI taken from crude reaction in DMSO and resulted in broad peaks. 

 

 

Figure 5. 4. Proposed synthesis of water-soluble, azido cryptophane for labeling alkyne-
incorporated protein. 
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§ 5.4 Final Remarks 

In this thesis we have demonstrated the utility of xenon-129 as an ultrasensitive 

contrast agent for NMR/MRI. Xenon hyperpolarization can be used to generate strong 

signal enhancement (>105) over thermally equilibrated samples. The chemical environment 

sensitivity of xenon can be exploited through host-guest chemistry using cryptophanes for 

which xenon has a very high affinity. The cryptophane host molecules can be 

functionalized with a wide variety of chemical handles to target any number of medically 

relevant disease biomarkers. Further increases in sensitivity can be achieved through 

indirect detection via hyperpolarized chemical exchange saturation transfer (Hyper-

CEST). Indeed, through this technique we have demonstrated picomolar detection of 

targeted biosensors. This host-guest system can also be applied as a biophysical probe in 

chemical biology to facilitate the study of protein dynamics. 

Moving forward, the field must demonstrate the utility of xenon biosensors in living 

systems. Thus far, synthetic and equipment limitations have limited our ability to study the 

efficacy of cryptophane in vivo. However, recent acquisition of a xenon polarizer and small 

animal MRI at the medical school of the University of Pennsylvania may prove to facilitate 

in vivo experiments in the near future. This will be a crucial test to ascertain the ultimate 

applicability of this approach to disease imaging. In parallel with cryptophane biosensors, 

the Dmochowski laboratory will continue to develop other small molecule (i.e., 

cucurbituril) as well as genetically encoded (i.e., protein) xenon biosensors, which will 

expand the range of applications. 
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Appendix A: List of Abbreviations 
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Appendix B: NMR Spectra 
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NMR of trihydroxy cryptophane precursor from Route 1 in Chapter 2.  
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Crude NMR of trihydroxy- aldehyde precursor to trihydroxy cryptophane from Route 3 in 

Chapter 2. 
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Crude NMR of trihydroxy- aldehyde precursor to trihydroxy cryptophane from Route 3 in 

Chapter 2, zoom. 
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