
Practical type inference for arbitrary-rank types

Technical Appendix

Technical Report MS-CIS-05-14

Computer and Information Science

University of Pennsylvania

Dimitrios Vytiniotis Stephanie Weirich
University of Pennsylvania

{dimitriv,sweirich}@cis.upenn.edu

Simon Peyton-Jones
Microsoft Research

simonpj@microsoft.com

September 27, 2005

Note: This document accompanies the paper “Practical type inference for arbitrary-rank types” [6]. Prior
reading of the main paper is required.

1

Contents

1 Introduction 4

2 Polymorphic subsumption relations 4

2.1 Odersky-Läufer subsumption . 4

2.2 Deep skolemisation subsumption—sequent-style . 7

2.3 Connection of deep skolemisation and Mitchell’s relation . 15

2.4 Final definition of deep skolemisation subsumption . 18

3 Higher-rank type systems 22

3.1 Syntax-directed higher-rank type system . 23

3.2 Bidirectional type system (first version) . 32

3.2.1 Shallow subsumption . 37

3.2.2 Connection of syntax-directed and bidirectional type system 39

3.3 Final version of the bidirectional system: deep skolemisation in polytype checking 40

3.3.1 Type-safety of the bidirectional system . 53

3.4 Conservativity over Damas-Milner . 53

4 A formalised type inference algorithm 57

4.1 Type variables and substitutions . 57

4.2 Unification . 58

4.3 Algorithmic version of Damas-Milner type inference . 58

4.4 Algorithmic version of the bidirectional system . 61

4.5 Properties of the type inference algorithm . 63

4.6 Proofs about the algorithm . 65

4.6.1 Completeness . 68

4.6.2 Soundness . 79

4.7 Principal Types . 81

List of Figures

1 Syntax of terms . 4

2 Syntax of types . 4

3 Subsumption in the Odersky-Läufer type system . 5

4 Subsumption with deep skolemisation . 7

5 Predicative version of F-eta subsumption . 15

2

6 Alternative deep skolemisation subsumption . 18

7 Non syntax-directed higher-rank type system . 23

8 Syntax-directed higher-rank type system . 24

9 Bidirectional higher-rank type system . 32

10 Creating coercion terms . 51

11 System-F with open types . 51

12 Bidirectional higher-rank type system with retyping functions 52

13 The non-syntax-directed Damas-Milner type system . 54

14 The syntax-directed Damas-Milner type system . 55

15 The world . 56

16 Type inference algorithm for Damas-Milner system . 59

17 Generalisation, instantiation and subsumption for Damas-Milner 60

18 Unification . 61

19 Arrow Unification . 61

20 Weak prenex conversion . 62

21 Algorithmic instantiation . 62

22 Algorithmic subsumption . 63

23 Inference/Checking Algorithm . 64

24 Algorithmic generalisation . 65

3

1 Introduction

This document is structured as follows: We first study several formalisations of polymorphic subsumption
relations in Section 2. In Section 3 we give the most interesting properties of several type systems for
higher-rank types, including the Odersky-Läufer type system [5], and study the connection between them
and between the original Damas-Milner type system. We specifically focus on the bidirectional higher-rank
type system, which is the main type system of the paper “Practical type inference for arbitrary-rank types”.
Finally, in Section 4 we give the formalisation of a sound and complete algorithm for the bidirectional type
system. The algorithm is a straightforward extension of “Algorithm W” [3, 1].

The language that we use throughout the document is given in Figures 1 and 2. Our notation is standard.
We use S, P, T for the sets of σ, ρ, and τ -types respectively. Substitutions, denoted with S ,T ,U ,V are,
as usual, idempotent finite maps from variables to monotypes. We use dom(S) and range(S) to denote
the domain and the range of a substitution S respectively. We define S (a) = a whenever a /∈ dom(S).
Overloading the notation, we write a /∈ b to mean that the two sets of variables are disjoint; moreover
for two sets of variables X1 and X2 we write X1,X2 to denote their union. Composition of substitutions,
S ·V , is defined as usual: S ·V (σ) = S (V (σ)). A comprehensive account of substitutions and their algebraic
properties is beyond the scope of this document and can be found elsewhere, for example in [2].

t , u ::= i integer literal
| x variable
| \x.t abstraction
| \(x::σ).t annotated abstraction
| t u application
| let x = u in t let generalisation
| t::σ annotated term

Figure 1: Syntax of terms

2 Polymorphic subsumption relations

In this section we study the relations given in Figure 3, Figure 4, Figure 5, and Figure 6. We give transitivity,
reflexivity and substitution lemmas for all relations and we associate each other. We discuss the properties
and three different formalisations of the predicative fragment of Mitchell’s F-eta containment relation [4].

2.1 Odersky-Läufer subsumption

The Odersky-Läufer subsumption relation is given in Figure 3.

Lemma 2.1 (Substitution). If �
ol

σ1 ≤ σ2 then �
ol

Sσ1 ≤ Sσ2, and the new derivation has the same
height.

σ ::= ∀a.ρ polytypes
ρ ::= τ | σ → σ
τ ::= a | τ → τ | Int monotypes

Figure 2: Syntax of types

4

�
ol

σ ≤ σ
′

a �∈ ftv(σ) �
ol

σ ≤ ρ
skol

�
ol

σ ≤ ∀a.ρ

�
ol

[a 	→ τ]ρ1 ≤ ρ2

spec
�
ol

∀a.ρ1 ≤ ρ2

�
ol

σ3 ≤ σ1 �
ol

σ2 ≤ σ4

fun
�
ol

(σ1 → σ2) ≤ (σ3 → σ4)
mono

�
ol

τ ≤ τ

Figure 3: Subsumption in the Odersky-Läufer type system

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.

• Case skol. In this case we have that σ2 = ∀a.ρ2, given that a /∈ ftv(σ1) and �
ol

σ1 ≤ ρ2. Consider the

substitution S · [a 	→ b] where b /∈ ftv(σ1), a, vars(S). Then, by induction hypothesis: �
ol

S [a 	→ b]σ1 ≤

S [a 	→ b]ρ2, or equivalently, �
ol

Sσ1 ≤ S [a 	→ b]ρ2. But now we can apply rule skol to get �
ol

Sσ1 ≤

∀b.S [a 	→ b]ρ2, or using α-renaming, �
ol

Sσ1 ≤ S (∀a.ρ2).

• Case spec. In this case σ1 = ∀a.ρ, σ2 = ρ2, and by the premises of the rule there exist some τ such

that �
ol

[a 	→ τ]ρ ≤ ρ2. We need to show that �
ol

S (∀a.ρ) ≤ Sρ2, or �
ol

∀b.S [a 	→ b]ρ ≤ Sρ2 for fresh

b /∈ vars(S), ftv(τ). By rule spec it is enough to find types τ ′ such that �
ol

[b 	→ τ ′]S [a 	→ b]ρ ≤ Sρ2,

and b /∈ vars(S). Pick τ ′ = Sτ . Then we have to show that: �
ol

[b 	→ Sτ]S [a 	→ b]ρ ≤ Sρ2, or

equivalently �
ol

S [b 	→ τ][a 	→ b]ρ ≤ Sρ2, or equivalently �
ol

S [a 	→ τ]ρ ≤ Sρ2 and this follows by
induction hypothesis.

• Case fun. Follows by the induction hypotheses and rule fun.

• Case mono. Trivial.

Lemma 2.2 (Reflexivity). �
ol

σ ≤ σ.

Proof. By induction on the size of σ. We proceed by case analysis on the structure of σ. The case when
σ = τ follows by rule mono. The case when σ = σ1 → σ2 follows by rule fun since, by induction hypothesis,

�
ol

σ1 ≤ σ1 and �
ol

σ2 ≤ σ2. For the case when σ = ∀a.ρ, we know by induction hypothesis that �
ol

ρ ≤ ρ
and the result follows by an application of spec and skol.

Lemma 2.3 (Transitivity). If �
ol

σ1 ≤ σ2 and �
ol

σ2 ≤ σ3 then �
ol

σ1 ≤ σ3.

Proof. We prove the lemma by induction on the sums of heights of the two derivations. We proceed by case
analysis on the last rule used in each derivation. We have the following combinations for the last rule of the
first and the last rule of the second derivation.

• Case skol-skol. In this case σ2 = ∀a.ρ2 and σ3 = ∀b.ρ3. By the premises of the first derivation we

have �
ol

σ1 ≤ ρ2 and a /∈ ftv(σ1). By the premises of the second derivation we have

�
ol

∀a.ρ2 ≤ ρ3 (1)

5

and b /∈ ftv(∀a.ρ2). Consider a substitution [b → c] with c /∈ ftv(σ1, σ2, σ3). Then by the substitution

lemma we get �
ol

∀a.ρ2 ≤ [b 	→ c]ρ3. and this derivation has the same height as (1). Then we can apply

the induction hypothesis to get that �
ol

σ1 ≤ [b 	→ c]ρ3 and by rule skol we get �
ol

σ1 ≤ ∀c.[b 	→ c]ρ3.

Using α-renaming, �
ol

σ1 ≤ ∀b.ρ3.

• Case skol-spec. Here σ2 = ∀a.ρ2 and σ3 = ρ3. Then we have �
ol

σ1 ≤ ∀a.ρ2 given that

�
ol

σ1 ≤ ρ2 (2)

a /∈ ftv(σ1) (3)

Additionally, for some τ ,

�
ol

[a 	→ τ]ρ2 ≤ ρ3 (4)

By the substitution lemma �
ol

[a 	→ τ]σ1 ≤ [a 	→ τ]ρ2 and the derivation has the same height as (2).

By (3) it follows that �
ol

σ1 ≤ [a 	→ τ]ρ2 and by induction hypothesis, using (4), �
ol

σ1 ≤ ρ3.

• Case skol-fun/mono. Can’t happen.

• Case spec-skol. Here σ1 = ∀a.ρ1, σ2 = ρ2 for some ρ2, and σ3 = ∀b.ρ3. By the premises of the first
derivation

�
ol

[a 	→ τ]ρ1 ≤ ρ2 (5)

for some τ . By the premises of the second derivation1 we get

�
ol

ρ2 ≤ ρ3 (6)

and b /∈ ftv(ρ2). Consider a renaming substitution [b 	→ c], such that c /∈ ftv(σ1, σ2, σ3). Then by the

substitution lemma and (6) we get �
ol

ρ2 ≤ [b 	→ c]ρ3 with the same height. By this, (5), and induction

hypothesis �
ol

[a 	→ τ]ρ1 ≤ [b 	→ c]ρ3. By rule spec we get �
ol

∀a.ρ1 ≤ [b 	→ c]ρ3 and by rule skol,

�
ol

∀a.ρ1 ≤ ∀c.[b 	→ c]ρ3. With an α-renaming �
ol

∀a.ρ1 ≤ ∀b.ρ3.

• Case spec-spec. Can’t happen.

• Case spec-fun. We have that σ1 = ∀a.ρ1, and that σ2 = σ21 → σ22. By the premises we have that,

for some τ , �
ol

[a 	→ τ]ρ1 ≤ σ2. Therefore by induction hypothesis �
ol

[a 	→ τ]ρ1 ≤ σ3 and by applying
rule spec we are done.

• Case spec-mono. Easy.

• Case fun-skol. Here σ1 = σ11 → σ12, σ2 = σ21 → σ22, and σ3 = ∀a.ρ3. Moreover

�
ol

σ2 ≤ ρ3 (7)

where a /∈ ftv(σ2). Consider a renaming substitution [a 	→ b], such that b /∈ ftv(σ1, σ2, σ3). By the

substitution lemma �
ol

σ2 ≤ [a 	→ b]ρ3 and this derivation has the same height as (7). Then by

induction hypothesis �
ol

σ1 ≤ [a 	→ b]ρ3 and by rule skol we get �
ol

σ1 ≤ ∀b.[a 	→ b]ρ3, or with an

α-renaming, �
ol

σ1 ≤ ∀a.ρ3.

• Case fun-spec. Can’t happen.

• Case fun-fun. In this case we have that σ1 = σ11 → σ12 and σ2 = σ21 → σ22 and σ3 = σ31 → σ32.
Moreover �

ol
σ31 ≤ σ21 and �

ol
σ21 ≤ σ11 and by induction hypothesis we get that �

ol
σ31 ≤ σ11. Also

we have that �
ol

σ12 ≤ σ22 and �
ol

σ22 ≤ σ32. Then, by induction hypothesis �
ol

σ12 ≤ σ32 and by
applying rule fun we are done.

1Notice that it is not the case that b must be empty; the reason is that our types are not in prenex form. Consider for

example the subsumption check �
ol

Int → ∀a.a → a ≤ ∀c.Int → c → c.

6

σ �
dsk

σ ≤ σ
′

σ, σ2 �
dsk

σ1 ≤ σ3

rfun
σ �

dsk
σ1 ≤ (σ2 → σ3)

a �∈ ftv(σ1, σ) σ �
dsk

σ1 ≤ ρ
skol

σ �
dsk

σ1 ≤ ∀a.ρ

�
dsk

σ3 ≤ σ1 σ �
dsk

σ2 ≤ τ
lfun

σ3, σ �
dsk

(σ1 → σ2) ≤ τ

σ �
dsk

[a 	→ τ] ρ ≤ τ1

spec
σ �

dsk
∀a.ρ ≤ τ1

mono
�
dsk

τ ≤ τ

Figure 4: Subsumption with deep skolemisation

• Case fun-mono. Easy.

• Case mono-spec. Can’t happen.

• Case mono-skol/fun/mono. Trivial.

The Odersky-Läufer subsumption is syntax-directed, and therefore has nice inversion properties. The fol-
lowing lemmas capture inversion.

Lemma 2.4 (Skolemisation inversion). If a /∈ ftv(σ) and �
ol

σ ≤ ∀a.ρ, then �
ol

σ ≤ ρ.

Proof. Straightforward induction.

Lemma 2.5 (Specialisation inversion). If �
ol

∀a.ρ1 ≤ ρ2, then �
ol

[a 	→ τ]ρ1 ≤ ρ2 for some τ .

Proof. Straightforward induction.

Lemma 2.6 (Fun inversion). If �
ol

ρ1 ≤ σ3 → σ4, then ρ1 = σ1 → σ2 with �
ol

σ3 ≤ σ1 and �
ol

σ2 ≤ σ4.

Proof. Straightforward induction.

2.2 Deep skolemisation subsumption—sequent-style

In Figure 4 we give a relation that performs the “skolemisation” step deeply to the right of arrow types. It
resembles a sequent-style presentation. Here are the most important properties about this relation.

Lemma 2.7 (Substitution). If σ �
dsk

σ1 ≤ σ2 then Sσ �
dsk

Sσ1 ≤ Sσ2, and the new derivation has the
same height.

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.

• Case skol. In this case we have that σ2 = ∀a.ρ, given that a /∈ ftv(σ1, σ) and σ �
dsk

σ1 ≤ ρ. Consider
the substitution S · [a 	→ b] where b /∈ ftv(σ1, σ) and b /∈ a, vars(S). Then, by induction hypothesis:

S [a 	→ b]σ �
dsk

S [a 	→ b]σ1 ≤ S [a 	→ b]ρ, or equivalently, Sσ �
dsk

Sσ1 ≤ S [a 	→ b]ρ. But now we can

apply rule skol to get Sσ �
dsk

Sσ1 ≤ ∀b.S [a 	→ b]ρ, or, using α-renaming Sσ �
dsk

Sσ1 ≤ S (∀a.ρ).

7

• Case spec. In this case σ1 = ∀a.ρ, σ2 = τ2, and by the premises of the rule there exist some

τ such that σ �
dsk

[a 	→ τ]ρ ≤ τ2. We need to show that Sσ �
dsk

S (∀a.ρ) ≤ Sτ2, or with an α-

renaming, Sσ �
dsk

∀b.S [a 	→ b]ρ ≤ Sτ2 for b /∈ vars(S), ftv(τ , σ). By rule spec it is enough to find

types τ ′ such that Sσ �
dsk

[b 	→ τ ′]S [a 	→ b]ρ ≤ Sτ2. Pick τ ′ = Sτ . Then it remains to show that

Sσ �
dsk

[b 	→ Sτ]S [a 	→ b]ρ ≤ Sτ2, or Sσ �
dsk

S [b 	→ τ][a 	→ b]ρ ≤ Sτ2, or Sσ �
dsk

S [a 	→ τ]ρ ≤ Sτ2,
but this holds by induction hypothesis.

• Case rfun. Follows by induction hypothesis and application of rule rfun.

• Case lfun. Follows by induction hypothesis and application of rule lfun.

• Case mono. Trivial.

For the rest of this section we are going to give the connection between the Odersky-Läufer subsumption and
the deep skolemisation subsumption. Namely we show that two types are related in the deep skolemisation
subsumption iff their prenex forms are related in Odersky-Läufer.
Definition 2.8 (Prenex conversion). The function pr(·) : S → S is defined as follows:

pr(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ σ = τ
∀a.pr(σ1) → ρ2 σ = σ1 → σ2 ∧ σ �= τ

pr(σ2) = ∀a.ρ2

a /∈ ftv(σ1)

∀ab.ρ2 σ = ∀a.ρ1 ∧ a �= ∅
pr(ρ1) = ∀b.ρ2

b /∈ a

Definition 2.9 (Function conversion). The function fun(· ; ·) : (S × S) → S is defined as follows:

fun(σ ; σ)

{
σ σ = ε
fun(σ1 ; σ1 → σ) σ = σ1, σ1

We naturally extend the pr(·) function for sequences of types, by mapping the prenex function across every
type in the sequence. The next lemmas give the algebraic properties of th pr(·) and fun(· ; ·) functions.
Lemma 2.10 (Prenex conversion preserves size). size(σ) = size(pr(σ)).

Proof. By structural induction on the type σ. If σ = τ then size(pr(τ)) = size(τ) by definition. If σ = σ1 →
σ2, not a monotype, then pr(σ1 → σ2) = ∀a.pr(σ1) → ρ2, where ∀a.ρ2 = pr(σ2), thus size(pr(σ2)) =| a |
+size(ρ2). By induction size(σ2) =| a | +size(ρ2). By induction size(σ1) = size(pr(σ1)). Then

size(σ1 → σ2) = size(σ1) + size(σ2) + 1
= size(pr(σ1))+ | a | +size(ρ2) + 1
= size(∀a.pr(σ1) → ρ2)

Lemma 2.11. fun(σ1, σ ; σ) = σ1 → fun(σ ; σ).

Proof. By induction on the size of σ. If σ = ε then

fun(σ1 ; σ) = fun(ε ; σ1 → σ)
= σ1 → σ
= σ1 → fun(ε ; σ)

8

If σ = σ2, σ2 then

fun(σ1, σ2, σ2 ; σ) = fun(σ1, σ2 ; σ2 → σ)
= σ1 → fun(σ2 ; σ2 → σ) (by induction)
= σ1 → fun(σ2, σ2 ; σ)
= σ1 → fun(σ ; σ)

Lemma 2.12. pr(pr(σ)) = pr(σ).

Proof. By induction on the size of σ. If σ = τ then it is trivial. If σ = σ1 → σ2, where σ �= τ , then
pr(pr(σ1 → σ2)) = pr(∀a.pr(σ1) → ρ2), where pr(σ2) = ∀a.ρ2 and a /∈ ftv(σ1). By induction hypothesis, we
get:

pr(∀a.ρ2) = ∀a.ρ2 (1)

pr(pr(σ1)) = pr(σ1) (2)

Now we have two cases:

• a = ∅. In this case pr(∀a.pr(σ1) → ρ2) = pr(pr(σ1) → ρ2). By (1), pr(ρ2) = ρ2 and using (2) and the
definition pr(pr(σ1) → ρ2) = pr(σ1) → ρ2.

• a �= ∅. In order to compute pr(∀a.pr(σ1) → ρ2) we have to compute pr(pr(σ1) → ρ2). But
size(pr(σ1) → ρ2) = size(pr(σ1)) + size(ρ2) + 1 and using Lemma 2.10 we have that size(pr(σ1) →
ρ2) = size(σ1) + size(ρ2) + 1 and since a �= ∅ this is less than size(σ). Then by induction hypothesis
we get pr(pr(σ1) → ρ2) = pr(σ1) → ρ2. Using the definition pr(∀a.pr(σ1) → ρ2) = ∀a.pr(σ1) → ρ2.

Finally if σ = ∀a.ρ for a �= ∅ we have that pr(∀a.ρ) = ∀ab.ρ1, where ∀b.ρ1 = pr(ρ). Now, by induction, it
must be that pr(∀b.ρ1) = ∀b.ρ1. If b = ∅ then pr(ρ1) = ρ1. If b �= ∅ then by definition of prenex conversion
if must be that pr(∀b.ρ1) = ∀bc.ρ2 where pr(ρ1) = ∀c.ρ2. But this means that c = ∅ and ρ2 = ρ1, therefore
in every case pr(ρ1) = ρ1. Using this and the definition of prenex conversion pr(pr(∀a.ρ)) = pr(∀ab.ρ1) =
∀ab.ρ1.

Corollary 2.13. If pr(σ) = ∀a.ρ then pr(ρ) = ρ.

Proof. Easy corollary of Lemma 2.12.

Lemma 2.14. If pr(σ) = ∀a.ρ and a /∈ ftv(σ) then pr(fun(σ ; σ)) = ∀a.fun(pr(σ) ; ρ).

Proof. By induction on σ. For σ = ε we have that

pr(fun(ε ; σ)) = pr(σ)
= ∀a.ρ
= ∀a.fun(pr(ε) ; ρ)

For σ = σ1, σ1 we have that

pr(fun(σ1, σ1 ; σ)) = pr(σ1 → fun(σ1 ; σ)) (by Lemma 2.11)
= ∀a.pr(σ1) → ρ2

where ∀a.ρ2 = pr(fun(σ1 ; σ)). Hence by induction hypothesis ρ2 = fun(pr(σ1) ; ρ). Therefore we get

pr(fun(σ1, σ1 ; σ)) = ∀a.pr(σ1) → fun(pr(σ1 ; ρ))
= ∀a.fun(pr(σ1), pr(σ1) ; ρ) (by Lemma 2.11)
= ∀a.fun(pr(σ1, σ1) ; ρ)
= ∀a.fun(pr(σ) ; ρ)

9

Lemma 2.15. If pr(σ) = ∀a.ρ and a /∈ ftv(σ) then pr(fun(σ ;σ)) = ∀a.pr(fun(σ ;ρ)) and pr(fun(σ ;ρ)) ∈ P.

Proof. By Lemma 2.14 it is enough to show that

pr(fun(σ ; ρ)) = fun(pr(σ) ; ρ)

We prove this by induction on σ. For σ = ε we have that pr(fun(ε ; ρ)) = pr(ρ). Using Lemma 2.13,
pr(ρ) = ρ = fun(pr(ε) ; ρ). For σ = σ1σ1 we have pr(fun(σ1, σ1 ; ρ)) = pr(σ1 → fun(σ1 ; ρ)). By induction
hypothesis pr(fun(σ1 ; ρ)) = fun(pr(σ1) ; ρ) Therefore

pr(σ1 → fun(σ1 ; ρ)) = pr(σ1) → fun(pr(σ1) ; ρ)
= fun(pr(σ1, σ1 ; ρ)
= fun(pr(σ ; ρ))

Lemma 2.16 (Arrow). If �
dsk

σ3 ≤ σ1 and σ �
dsk

σ2 ≤ σ then σ3, σ �
dsk

σ1 → σ2 ≤ σ.

Proof. By induction on the size of σ.

• Case σ = τ . Then the assumptions match exactly the premises of rule lfun and we are done by
applying that rule.

• Case σ = σa → σb , σ �= τ . Then we have that σ �
dsk

σ2 ≤ σa → σb and by easy inversion

we see that σ, σa �
dsk

σ2 ≤ σb . Now we can apply the induction hypothesis for σb to get that

σ3, σ, σa �
dsk

σ1 → σ2 ≤ σb and by applying rule rfun we get back σ3, σ �
dsk

σ1 → σ2 ≤ σa → σb .

• Case σ = ∀a.ρ, a �= ∅. Here we have that σ �
dsk

σ2 ≤ ∀a.ρ and by inversion this can happen only
using the rule skol. Therefore it must be that a /∈ ftv(σ2, σ) and then

σ �
dsk

σ2 ≤ ρ (1)

Consider a substitution [a 	→ c], such that c /∈ ftv(σ1, σ3), c /∈ ftv(σ, σ2). By the substitution lemma

we get σ �
dsk

σ2 ≤ [a 	→ c]ρ. Moreover size([a 	→ c]ρ) = size(ρ). Then, by induction hypothesis we get

σ3σ �
dsk

σ1 → σ2 ≤ [a 	→ c]ρ, and by skol we have σ3σ �
dsk

σ1 → σ2 ≤ ∀c.[a 	→ c]ρ. We are done
with an α-renaming.

Lemma 2.17 (Prenex recursive calls). The number of recursive calls to pr(·) is preserved by substitution.
If pr(σ) uses n recursive calls, then so does pr(Sσ).

Proof. By induction on σ. If σ = τ , since range(S) ∈ T the result is trivial. Suppose σ = σ1 → σ2. Then
calls(pr(σ1)) = calls(pr(Sσ1)) by induction hypothesis. Moreover calls(pr(σ2)) = calls(pr(Sσ2)) by induction
hypothesis as well and we are done. If σ = ∀a.ρ then, assuming without loss of generality that a /∈ vars(S)
we have that calls(pr(ρ)) = calls(pr(Sρ)) by induction hypothesis and we are done.

The next theorem says that if the prenex-canonical forms of two types are related in Odersky-Läufer sub-

sumption, then the two types are related in �
dsk

.

Theorem 2.18. If pr(σ1) = σ′
1
, pr(fun(σ ; σ2)) = σ′

2
, and �

ol
σ′

1
≤ σ′

2
then σ �

dsk
σ1 ≤ σ2.

Proof. By induction on the derivation �
ol

σ′
1
≤ σ′

2
. We proceed by case analysis on the last rule used in the

derivation.

10

• Case mono. In this case we have that �
ol

τ ≤ τ . By inversion it must be that σ1 = τ and fun(σ;σ2) = τ ,
which implies that σ2 = τ2 and σ = τ , for some τ , τ2. We want to show that

τ �
dsk

fun(τ ; τ2) ≤ τ2 (1)

We prove (1) by induction on τ .

– Case τ = ε. Then fun(τ ; τ2) = τ2 and the claim follows by mono.

– Case τ = τ ′, τ ′. In this case by the (inner) induction hypothesis we get

τ ′ �
dsk

fun(τ ′ ; τ2) ≤ τ2 (2)

Moreover �
dsk

τ ′ ≤ τ ′; using this and (2) with rule lfun we get that τ ′, τ ′ �
dsk

τ ′ → fun(τ ′;τ2) ≤ τ2,
and we get (1) by this and Lemma 2.11.

• Case skol. Here pr(σ1) = σ and pr(fun(σ ; σ2)) = ∀a.ρ. By Lemma 2.15 it must be that ρ =

pr(fun(σ ; ρ2)) where we also assumed that pr(σ2) = ∀a.ρ2 and a /∈ ftv(σ). Moreover �
ol

pr(σ1) ≤
∀a.pr(fun(σ ; ρ2)), given that a /∈ ftv(pr(σ1)) = ftv(σ) and

�
ol

pr(σ1) ≤ pr(fun(σ ; ρ2)) (3)

By (3) and induction hypothesis it must be that σ �
dsk

σ1 ≤ ρ2 and by applying rule skol we get

σ �
dsk

σ1 ≤ ∀a.ρ2, since a /∈ ftv(σ, σ1).

• Case fun. Here we have the following

pr(σ1) = σ′
1
→ σ′

2
(4)

pr(fun(σ ; σ2)) = σ′
3
→ σ′

4
(5)

�
ol

σ′
1
→ σ′

2
≤ σ′

3
→ σ′

4
(6)

�
ol

σ′
3
≤ σ′

1
(7)

�
ol

σ′
2
≤ σ′

4
(8)

By (4) it must be that
σ1 = σ01 → σ02 (9)

For (5) we have two cases:

– σ = ε. In this case it must be that σ2 = σ21 → σ22. Moreover pr(σ21) = σ′
3
, pr(σ22) = σ′

4
,

pr(σ01) = σ′
1
, and pr(σ02) = σ′

2
. Equivalently pr(fun(ε ; σ01)) = σ′

1
, and by induction hypothesis

�
dsk

σ21 ≤ σ01 (10)

Similarly pr(fun(ε ; σ22)) = σ′
4
, therefore by induction hypothesis

�
dsk

σ02 ≤ σ22 (11)

With (10) and (11) we can apply Lemma 2.16 to get σ21 �
dsk

σ01 → σ02 ≤ σ22 and by rule rfun

�
dsk

σ01 → σ02 ≤ σ21 → σ22 as required.

– σ = σa , σ′. Then we have that

pr(fun(σa , σ′ ; σ2)) = pr(σa → fun(σ′ ; σ2))
= σ′

3
→ σ′

4

11

Then, by definition of pr(·) we have

pr(σa) = σ′
3

(12)

pr(fun(σ′ ; σ2)) = σ′
4

(13)

By (4) and (9) we have that pr(σ01) = σ′
1
, or pr(fun(ε ; σ01)) = σ′

1
. From this and (12) and

induction hypothesis we get that

�
dsk

σa ≤ σ01 (14)

From (4) and (9) we get pr(σ02) = σ′
2
. From this and (13) and induction hypothesis we have that

σ′ �
dsk

σ02 ≤ σ2. From this and (14) and Lemma 2.16 we get σaσ′ �
dsk

σ01 → σ02 ≤ σ2, and

using (9) we get σ �
dsk

σ1 ≤ σ2 as required.

• Case spec. For this case we have

pr(σ1) = ∀a.ρ1 (15)

pr(fun(σ ; σ2)) = ρ2 (16)

�
ol

∀a.ρ1 ≤ ρ2 (17)

�
ol

[a 	→ τ]ρ1 ≤ ρ2 (18)

We wish to show that σ �
dsk

σ1 ≤ σ2. We prove this claim with an inner induction on the number of
recursive calls to pr(·) from pr(σ1). Specifically our induction hypothesis is the following:

IH: If pr(σi
1
) has fewer recursive calls than pr(σ1) then

(A) pr(fun(σi ; σi
2
)) = ρi

2

(B) pr(σi
1
) = ∀b.ρi

1

(C) �
ol

[b 	→ τ i]ρi
1
≤ ρi

2

⇒ σi �
dsk

σi
1
≤ σi

2

We proceed with a case analysis on the structure of σ1, and without loss of generality let us assume
that σ1 is not a monotype as we would not be in the spec case2.

– Case σ1 = σ11 → σ12. Then pr(σ1) = ∀a.pr(σ11) → ρ12 where

pr(σ12) = ∀a.ρ12 (19)

and a /∈ ftv(σ11). By (18) it must be that �
ol

[a 	→ τ](pr(σ11) → ρ12) ≤ ρ2, or

�
ol

pr(σ11) → [a 	→ τ]ρ12 ≤ ρ2. By inversion it must be that ρ2 = σA
2
→ σB

2
and

�
ol

σA
2
≤ pr(σ11) (20)

�
ol

[a 	→ τ]ρ12 ≤ σB
2

(21)

By (16) then it must be that
pr(fun(σ ; σ2)) = σA

2
→ σB

2
(22)

We continue with case analysis on σ.

2To be precise, if the case was a trivial application of spec we could just appeal to the (outer) induction hypothesis to get
the result.

12

∗ Case σ = ε. Then it must be the case that σ2 = σ21 → σ22, such that pr(σ21) = σA
2

and
pr(σ22) = σB

2
. By (20) we have that pr(σ21) ≤ pr(σ11) and by the (outer) induction

hypothesis

�
dsk

σ21 ≤ σ11 (23)

Similarly by (21) we have that �
ol

[a 	→ τ]ρ12 ≤ pr(σ22) and by an application of spec we

have �
ol

∀a.ρ12 ≤ pr(σ22). But the height of this derivation is still one less than the height of
the derivation we are examining and therefore by (outer) induction hypothesis we have that

�
dsk

σ12 ≤ σ22 (24)

From (23) and (24) and Lemma 2.16 we get that σ21 �
dsk

σ11 → σ12 ≤ σ22 and by applying
rfun we are done.

∗ Case σ = σ0, σ0. In this case pr(fun(σ ; σ2)) = pr(σ0 → fun(σ0 ; σ2)) which implies that

pr(σ0) = σA
2

(25)

pr(fun(σ0 ; σ2) = σB
2

(26)

From (26), (19), and (21) and the (inner) induction hypothesis (for σ12) we get that

σ0 �
dsk

σ12 ≤ σ2 (27)

From (25) and (20) and the outer induction hypothesis we get

�
dsk

σ0 ≤ σ11 (28)

From (27) and (28) and Lemma 2.16 we get σ0, σ0 �
dsk

σ11 → σ12 ≤ σ2, or equivalently

σ �
dsk

σ11 → σ12 ≤ σ2.

– Case σ1 = ∀a1.ρ11. Here we have that pr(σ1) = ∀a1a2.ρ12, such that ∀a2.ρ12 = pr(ρ11). From
this it follows that

∀a2.[a1 → τ1]ρ12 = pr([a1 → τ1]ρ11) (29)

From Lemma 2.17 we know that the number of recursive calls of pr([a1 → τ1]ρ11) is the same as
that of pr(ρ11). We also know that

�
ol

[a2 → τ2][a1 	→ τ1]ρ12 ≤ ρ2 (30)

Then we can apply the inner induction hypothesis to get that σ �
dsk

[a1 → τ1]ρ11 ≤ ρ2 and by

applying rule spec σ �
dsk

∀a1.ρ11 ≤ ρ2, as required.

Theorem 2.19. If pr(σ1) = σ′
1
, pr(fun(σ ; σ2)) = σ′

2
, and σ �

dsk
σ1 ≤ σ2 then �

ol
σ′

1
≤ σ′

2
.

Proof. By induction on the derivation σ �
dsk

σ1 ≤ σ2. We proceed by case analysis on the last rule used.

• Case mono. In this case σ = ε, σ1 = τ = σ2, pr(σ1) = τ , pr(fun(ε ; τ)) = τ and the result follows by
rule mono.

• Case rfun. Here σ �
dsk

σ1 ≤ σ2 → σ3 given that σ, σ2 �
dsk

σ1 ≤ σ3. Then pr(fun(σ ; σ2 → σ3)) =

pr(fun(σ, σ2 ; σ3)) and by induction hypothesis we know that �
ol

σ′
1
≤ pr(fun(σ, σ2 ; σ3)).

13

• Case lfun. In this case we have that

σ3, σ �
dsk

σ1 → σ2 ≤ τ (1)

�
dsk

σ3 ≤ σ1 (2)

σ �
dsk

σ2 ≤ τ (3)

Moreover we know that pr(σ1 → σ2) = ∀a.pr(σ1) → ρ2, with ∀a.ρ2 = pr(σ2) and a /∈ ftv(σ1). On
the other hand pr(fun(σ3, σ ; τ) = pr(σ3) → pr(fun(σ ; τ)) by Lemma 2.15. So we need to show that

�
ol

∀a.pr(σ1) → ρ2 ≤ pr(σ3) → pr(fun(σ ; τ)). By rule spec it is enough to show that �
ol

pr(σ1) →

[a 	→ τ]ρ2 ≤ pr(σ3) → pr(fun(σ ; τ)). By rule fun it is enough to show that �
ol

pr(σ3) ≤ pr(σ1) and

�
ol

[a 	→ τ]ρ2 ≤ pr(fun(σ ;τ)). We have the former by induction hypothesis. For the latter, by induction

hypothesis we also have �
ol

∀a.ρ2 ≤ pr(fun(σ ; τ)) and by inversion this is derivable by spec; hence

�
ol

[a 	→ τ]ρ2 ≤ pr(fun(σ ; τ)) and we are done.

• Case spec. We have pr(∀a.ρ) = σ′
1
, pr(fun(σ ; τ1)) = σ′

2
= ρ′

2
. Moreover σ �

dsk
∀a.ρ ≤ τ1, given that

σ �
dsk

[a 	→ τ]ρ ≤ τ1 (4)

It must be that pr(∀a.ρ) = ∀ab.ρ1, where a /∈ b and ∀b.ρ1 = pr(ρ). This implies that [a 	→ τ]∀b.ρ1 =

pr([a 	→ τ]ρ). From this, equation (4), and induction hypothesis �
ol

[a 	→ τ]∀b.ρ1 ≤ ρ′
2
. Without loss

of generality assume as well b /∈ ftv(τ) and then we have �
ol

∀b.[a 	→ τ]ρ1 ≤ ρ′
2
. If b = ∅ then we just

apply spec and we are done. If b �= ∅, then by inversion it must be the case that this was derivable

by spec, so �
ol

[b 	→ τb][a 	→ τ]ρ1 ≤ ρ′
2

and by applying rule spec we get that �
ol

∀ab.ρ1 ≤ ρ′
2

as
required.

• Case skol. Here pr(σ1) = σ′
1
, pr(fun(σ ; ∀a.ρ)) = σ′

2
, and σ �

dsk
σ1 ≤ ∀a.ρ, given that a /∈ ftv(σ, σ1)

and σ �
dsk

σ1 ≤ ρ. Using Lemma 2.15 we get that pr(fun(σ ; ∀a.ρ)) = ∀ab.pr(fun(σ ; ρ1)), where

∀b.ρ1 = pr(ρ), b /∈ ftv(σ), a. By induction hypothesis we have that �
ol

σ′
1
≤ pr(fun(σ ; ρ)), therefore

�
ol

σ′
1
≤ ∀b.pr(fun(σ ;ρ1)). If b = ∅ then we apply skol and get the result. If b �= ∅ then by Lemma 2.4

we get that �
ol

σ′
1
≤ pr(fun(σ ; ρ1)) and by applying rule skol we get the result.

Corollary 2.20 (Prenex subsumption). �
dsk

σ1 ≤ σ2 iff �
ol

pr(σ1) ≤ pr(σ2).

Proof. Direct consequence of Theorem 2.18 and Theorem 2.19.

Corollary 2.21 (Reflexivity). �
dsk

σ ≤ σ.

Proof. Directly follows by Corollary 2.20 and Lemma 2.2.

Corollary 2.22 (Transitivity). If �
dsk

σ1 ≤ σ2 and �
dsk

σ2 ≤ σ3 then �
dsk

σ1 ≤ σ3.

Proof. Directly follows by Corollary 2.20 and Lemma 2.3.

14

�
η

σ ≤ σ
′

b �∈ ftv(∀a.σ)
sub

�
η
∀a.σ ≤ ∀b.[a 	→ τ]σ

�
η

σ1 ≤ σ2 �
η

σ2 ≤ σ3

trans
�
η

σ1 ≤ σ3

�
η

σ3 ≤ σ1 �
η

σ2 ≤ σ4

fun
�
η

σ1 → σ2 ≤ σ3 → σ4

�
η

σ1 ≤ σ2

all
�
η
∀a.σ1 ≤ ∀a.σ2

distrib
�
η
∀a.σ1 → σ2 ≤ (∀a.σ1) → ∀a.σ2

Figure 5: Predicative version of F-eta subsumption

2.3 Connection of deep skolemisation and Mitchell’s relation

The predicative fragment of the F-eta subsumption is given in Figure 5. Let us start by proving some lemmas
about it.
Lemma 2.23 (Reflexivity). �

η
σ ≤ σ.

Proof. Follows directly by rule sub.

Lemma 2.24 (Substitution). If �
η

σ1 ≤ σ2 then �
ol

Sσ1 ≤ Sσ2, and the new derivation has the same
height.

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.

• Case sub. We have that �
η
∀a.σ ≤ ∀b.[a 	→ τ]σ, given that b /∈ ftv(∀a.σ). Assume without loss

of generality that a, b /∈ vars(S) and then we have that S (∀a.σ) = ∀a.Sσ and S (∀b.[a 	→ τ]σ) =
∀b.[a 	→ Sτ]Sσ and the result follows by rule sub, since b /∈ ftv(∀a.Sσ).

• Case fun. Follows by the induction hypotheses and rule fun.

• Case trans. Follows by the induction hypotheses and rule trans.

• Case all. We have that �
η
∀a.σ1 ≤ ∀a.σ2, given that �

η
σ1 ≤ σ2. Consider the substitution S ·[a 	→ c],

where c /∈ ftv(σ1, σ2), c /∈ vars(S). Then, by induction hypothesis �
η

S [a 	→ c]σ1 ≤ S [a 	→ c]σ2 and by
applying rule all we get �

η
∀c.S [a 	→ c]σ1 ≤ ∀c.S [a 	→ c]σ2, or equivalently, �

η
S (∀a.σ1) ≤ S (∀a.σ2).

• Case distrib. In this case we have that �
η
∀a.σ1 → σ2 ≤ (∀a.σ1) → ∀a.σ2. Assume without loss of

generality that a /∈ vars(S). Then S (∀a.σ1 → σ2) = ∀a.Sσ1 → Sσ2 and the result follows by distrib.

Lemma 2.25 (Useless quantifiers). If c /∈ ftv(σ) then �
η
∀c.σ ≤ σ and �

η
σ ≤ ∀c.σ.

Proof. The first part follows by rule subs for a = c, b = ∅. The second follows by rule subs for a = ∅,
b = c.

Lemma 2.26. If �
η

σ1 ≤ σ2 then �
dsk

σ1 ≤ σ2.

15

Proof. By induction on the derivation of �
η

σ1 ≤ σ2. We proceed by case analysis on the last rule used.

• Case sub. We have that �
η
∀a.σ ≤ ∀b.[a 	→ τ]σ given that b /∈ ftv(∀a.σ). To show that �

dsk
∀a.σ ≤

∀b.[a 	→ τ]σ it is enough by Theorem 2.19, and assuming pr(σ) = ∀c.ρ to show that �
ol

∀ac.ρ ≤
∀bc.[a 	→ τ]ρ, where we assumed as well that c /∈ a, ftv(τ , ρ). Equivalently it is enough to show that

�
ol

∀ac.ρ ≤ [a 	→ τ]ρ or by spec, that �
ol

[a 	→ τ , c 	→ c]ρ ≤ [a 	→ τ]ρ, and this follows directly by

reflexivity of �
ol

, Lemma 2.2.

• Case trans. Follows by induction hypothesis and Corollary 2.22.

• Case fun. In this case we have that σ1 = σ11 → σ12 and σ2 = σ21 → σ22. Moreover �
η

σ21 ≤ σ11 and
�
η

σ12 ≤ σ22. By induction hypothesis

�
dsk

σ21 ≤ σ11 (1)

�
dsk

σ12 ≤ σ22 (2)

The result then follows from (1), (2), Lemma 2.16, and an application of rfun.

• Case all. We have that �
η
∀a.σ1 ≤ ∀a.σ2 given that �

η
σ1 ≤ σ2. By induction hypothesis �

dsk
σ1 ≤ σ2.

By Theorem 2.19 �
ol

pr(σ1) ≤ pr(σ2) and assume that pr(σ1) = ∀a1.ρ1, pr(σ2) = ∀a2.ρ2. Equivalentlty

�
ol

∀a1.ρ1 ≤ ∀a2.ρ2. By inversion �
ol

[a1 → τ]ρ1 ≤ ρ2 assuming without loss of generality that a2 /∈

ftv(∀a1.ρ1). Then also �
ol

[a 	→ a, a1 	→ τ]ρ1 ≤ ρ2 and by spec and skol we get �
ol

∀aa1.ρ1 ≤ ∀aa2ρ2.
Applying Theorem 2.18 we get the result.

• Case distrib. We have that

�
η
∀a.σ1 → σ2 ≤ (∀a.σ1) → (∀a.σ2) (3)

Now assume that pr(σ2) = ∀b.ρ2, where without loss of generality b /∈ a, ftv(σ1). Then we have the
following:

pr(∀a.σ1 → σ2) = ∀ab.pr(σ1) → ρ2 (4)

pr((∀a.σ1) → (∀a.σ2)) = ∀ab.pr(∀a.σ1) → ρ2 (5)

Now we know by reflexivity, Lemma 2.2, that �
ol

ρ2 ≤ ρ2. Moreover by an application of Lemma 2.2

and rule spec for �
ol

we have that �
ol

pr(∀a.σ1) ≤ pr(σ1). Then by rule fun we get that �
ol

pr(σ1) →

ρ2 ≤ pr(∀a.σ1) → ρ2 and by rule spec �
ol

∀ab.pr(σ1) → ρ2 ≤ pr(∀a.σ1) → ρ2. Then we can apply

skol and get �
ol

∀ab.pr(σ1) → ρ2 ≤ ∀ab.pr(∀a.σ1) → ρ2. From this, (4), (5), and Theorem 2.18 we

get that �
dsk

∀a.σ1 → σ2 ≤ (∀a.σ1) → (∀a.σ2).

Lemma 2.27. If a /∈ ftv(σ) then �
η
∀a.fun(σ ; ρ) ≤ fun(σ ; ∀a.ρ).

Proof. By induction on the size of σ. For σ = ε we need to show that �
η
∀a.ρ ≤ ∀a.ρ. This follows by

Lemma 2.23. If σ = σ1, σ1, by Lemma 2.11 and rule distrib we have

�
η
∀a.σ1 → fun(σ1 ; ρ) ≤ (∀a.σ1) → ∀a.fun(σ1 ; ρ) (1)

However, by Lemma 2.25 we get that �
η

σ1 ≤ ∀a.σ1 and by induction hypothesis �
η
∀a.fun(σ1 ; ρ) ≤

fun(σ1 ; ∀a.ρ). By rule fun we have then

�
η

(∀a.σ1) → ∀a.fun(σ1 ; ρ) ≤ σ1 → fun(σ1 ; ∀a.ρ) (2)

Finally combining (1) and (2) with rule trans we get the result.

16

Lemma 2.28 (Skolemisation admissibility). If �
η

σ1 ≤ fun(σ ; ρ) and a /∈ ftv(σ, σ1) then �
η

σ1 ≤
fun(σ ; ∀a.ρ).

Proof. From consecutive uses of all and the assumptions we get �
η
∀a.σ1 ≤ ∀a.fun(σ ; ρ). By Lemma 2.25

�
η

σ1 ≤ ∀a.σ1. By rule trans �
η

σ1 ≤ ∀a.fun(σ ; ρ). By Lemma 2.27 �
η
∀a.fun(σ ; ρ) ≤ fun(σ ; ∀a.ρ). We

get the result by application of rule trans.

Lemma 2.29 (Specialisation admissibility). If �
η

[a 	→ τ]σ1 ≤ σ2 then �
η
∀a.σ1 ≤ σ2.

Proof. By rule sub we have that �
η
∀a.σ1 ≤ [a 	→ τ]σ1 and the result follows by rule trans.

Lemma 2.30. If σ �
dsk

σ1 ≤ σ2 then �
η

σ1 ≤ fun(σ ; σ2).

Proof. By induction on the derivation σ �
dsk

σ1 ≤ σ2. We proceed by case analysis on the last rule used.

• Case rfun. Here σ �
dsk

σ1 ≤ σ2 → σ3 given that σ, σ2 �
dsk

σ1 ≤ σ3. By induction hypothesis
�
η

σ1 ≤ fun(σ, σ2 ; σ3) and by definition �
η

σ1 ≤ fun(σ ; σ2 → σ3).

• Case lfun. We have that σ3, σ �
dsk

σ1 → σ2 ≤ τ given that �
dsk

σ3 ≤ σ1 and σ �
dsk

σ2 ≤ τ .
By induction hypothesis �

η
σ2 ≤ fun(σ ; τ) and �

η
σ2 ≤ σ1. With an application of fun we get

�
η

σ1 → σ2 ≤ σ3 → fun(σ ; τ), or equivalently �
η

σ1 → σ2 ≤ fun(σ3, σ ; τ) as required.

• Case skol. In this case σ �
dsk

σ1 ≤ ∀a.ρ, given that σ �
dsk

σ1 ≤ ρ and a /∈ ftv(σ, σ1). By induction
hypothesis �

η
σ1 ≤ fun(σ ; ρ) and by Lemma 2.28 �

η
σ1 ≤ fun(σ ; ∀a.ρ).

• Case spec. We have that σ �
dsk

∀a.ρ ≤ τ1 given that σ �
dsk

[a 	→ τ]ρ ≤ τ1. By induction hypothesis
�
η

[a 	→ τ]ρ ≤ fun(σ ; τ1) and by Lemma 2.29 �
η
∀a.ρ ≤ fun(σ ; τ1) as required.

• Case mono. Follows by Lemma 2.23.

Corollary 2.31. �
dsk

σ1 ≤ σ2 iff �
η

σ1 ≤ σ2.

Proof. Follows by Lemma 2.30 and Lemma 2.26.

Corollary 2.32. (�
ol

) ⊆ (�
η
) and consequently (�

ol
) ⊆ (�

dsk
).

Proof. Just notice that every rule of in Odersky-Läufer subsumption is admissible in �
η
. Rule fun already

exists, admissibility of mono follows by reflexivity, admissibility of skol and spec follows from Lemma 2.28
and Lemma 2.29 respectively.

17

�
dsk

σ ≤ σ
′

pr(σ2) = ∀a.ρ

a �∈ ftv(σ1) �
dsk

σ1 ≤ ρ
deep-skol

�
dsk

σ1 ≤ σ2

�
dsk

[a 	→ τ]ρ1 ≤ ρ2

spec
�
dsk

∀a.ρ1 ≤ ρ2

�
dsk

σ3 ≤ σ1 �
dsk

σ2 ≤ σ4

fun
�
dsk

(σ1 → σ2) ≤ (σ3 → σ4)
mono

�
dsk

τ ≤ τ

Figure 6: Alternative deep skolemisation subsumption

2.4 Final definition of deep skolemisation subsumption

Consider the definition of weak prenex conversion given below.
Definition 2.33 (Weak prenex conversion). The function pr(·) : S → S is defined as follows:

pr(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ σ = τ
∀a.σ1 → ρ2 σ = σ1 → σ2 ∧ σ �= τ

pr(σ2) = ∀a.ρ2

a /∈ ftv(σ1)

∀ab.ρ2 σ = ∀a.ρ1 ∧ a �= ∅
pr(ρ1) = ∀b.ρ2

b /∈ a

This is like normal prenex conversion but does not canonicalise the argument types in arrow types3. Based
on this definition we give a relation that is exactly like the Odersky-Läufer subsumption but in the skol

rule performs weak prenex conversion and skolemisation of the resulting outermost quantifiers. The relation

is given in Figure 6. In this section we prove that this relation is equivalent once again with �
dsk

and
consequently �η.

Lemma 2.34 (Reflexivity). �
dsk

σ ≤ σ.

Proof. Easy induction.

Lemma 2.35. �
dsk

pr(σ) ≤ σ and �
dsk

σ ≤ pr(σ).

Proof. By induction on σ appealing to reflexivity of �
dsk

, Lemma 2.34.

Lemma 2.36. pr(σ) = ∀a.ρ1 iff pr(σ) = ∀a.ρ2 and pr(ρ2) = ρ1.

Proof. Easily follows by the definitions.

Definition 2.37 (Canonical and prenex-canonical derivations). Let D denote a derivation tree of

�
dsk

. We say that D is a canonical derivation iff rule skol is used once as the very last rule, and as the
very last rule of the left subtree of a tree ending with fun. We also use the term prenex-canonical derivation
to refer to a canonical derivation where the last rule used was a trivial application of rule skol and can be
therefore omitted—equivalently the second type is a ρ-type in weak prenex form already.

3Notice as well that this relation is no longer syntax-directed.

18

Obviously a canonical derivation can be decomposed into a prenex-canonical derivation and a non-trivial
application of rule skol.

Lemma 2.38 (Substitution). If �
dsk

σ1 ≤ σ2 then �
dsk

Sσ1 ≤ Sσ2, and the new derivation has the same
height and the same “shape” (that is, the rules in the new derivation are applied in the same order).

Proof. Similar to the proof of Lemma 2.1, with an easy lemma for commuting pr(·) and substitution.

From Lemma 2.38 we get that substitution preserves canonical, or prenex-canonical derivations as a corollary.

Lemma 2.39. If �
dsk

σ1 ≤ σ2 then there exists a canonical derivation of this with the same height.

Proof. By induction on �
dsk

σ1 ≤ σ2. We proceed with case analysis on the last rule used.

• Case skol. In this case we have that �
dsk

σ1 ≤ σ2, given that

pr(σ2) = ∀a.ρ (1)

a �∈ ftv(σ1) (2)

�
dsk

σ1 ≤ ρ (3)

By induction, there exists a canonical derivation of �
dsk

σ1 ≤ ρ, in which skol is used above fun and
is the last rule in the derivation. But it is easy to confirm that pr(ρ) = ρ, therefore the last application
of rule skol in that derivation was a trivial application and can be omitted. Then the new derivation
is canonical.

• Case spec. Here we have that �
dsk

∀a.ρ1 ≤ ρ2 given that

�
dsk

[a 	→ τ]ρ1 ≤ ρ2 (4)

Now by induction there exists a canonical derivation of (4). The last rule is skol and we have that

pr(ρ2) = ∀b.ρ∗
2

(5)

b /∈ ftv([a 	→ τ]ρ1) (6)

�
dsk

[a 	→ τ]ρ1 ≤ ρ∗
2

(7)

where (7) does not have skol as the last rule used. Then by (7) and rule spec we get �
dsk

∀a.ρ1 ≤ ρ∗
2
.

By (6) it must also be that b /∈ ftv(∀a.ρ1). From this and (5) we can apply rule skol to get that

�
dsk

∀a.ρ1 ≤ ρ2.

• Case fun. In this case �
dsk

(σ1 → σ2) ≤ (σ3 → σ4), given that

�
dsk

σ3 ≤ σ1 (8)

�
dsk

σ2 ≤ σ4 (9)

By induction hypothesis there exists a canonical derivation of (8) with the same height. Moreover by
induction there exists a canonical derivation of (9) with the same height. The last rule used was skol

and we have that

pr(σ4) = ∀a.ρ4 (10)

a /∈ ftv(σ2) (11)

�
dsk

σ2 ≤ ρ4 (12)

Assume without loss of generality that a /∈ ftv(σ1, σ3, σ2) as well. Then notice that pr(σ3 → σ4) =

∀a.σ3 → ρ4. By fun and (8) and (12) we get that �
dsk

σ1 → σ2 ≤ σ3 → ρ4 and by applying rule skol

we get the result.

19

• Case mono. Just apply trivially rule skol as the last rule of the derivation.

The above lemma shows that there is an algorithmic implementation that applies deep skolemisation at the
begining and when comparing the argument types of two functions only. The corresponding syntax-directed
presentation can be found in the main paper. In this document we use the non syntax-directed presentation
in combination with the the canonical and prenex-canonical derivations lemma.

Lemma 2.40. If �
ol

pr(σ1) ≤ pr(σ2) then �
dsk

σ1 ≤ σ2.

Proof. By induction on the lexicographic pair of the height of the derivation of �
ol

pr(σ1) ≤ pr(σ2) and the
number of recursive calls of pr(σ1). We have the following cases to consider.

• Case skol. Here pr(σ1) = σ and pr(σ2) = ∀a.ρ. Then consider pr(σ2) = ∀a.ρ′. It must be that

ρ = pr(ρ′) by Lemma 2.36. Moreover �
ol

pr(σ1) ≤ ∀a.pr(ρ′), given that a /∈ ftv(pr(σ1)) = ftv(σ) and

�
ol

pr(σ1) ≤ pr(ρ′) (1)

By (1) and induction hypothesis it must be that �
dsk

σ1 ≤ ρ′ and by applying rule skol we get

�
dsk

σ1 ≤ σ2, since a /∈ ftv(σ1).

• Case spec. For this case we have

pr(σ1) = ∀a.ρ1 (2)

pr(σ2) = ρ2 (3)

�
ol

[a 	→ τ]ρ1 ≤ ρ2 (4)

We wish to show that �
dsk

σ1 ≤ σ2. We proceed with a case analysis on the structure of σ1, and
without loss of generality let us assume that σ1 is not a monotype.

– Case σ1 = σ11 → σ12. Then pr(σ1) = ∀a.pr(σ11) → ρ12 where

pr(σ12) = ∀a.ρ12 (5)

and a /∈ ftv(σ11). By (4) it must be that �
ol

[a 	→ τ](pr(σ11) → ρ12) ≤ ρ2, or �
ol

pr(σ11) →
[a 	→ τ]ρ12 ≤ ρ2. By easy inversion it must be that ρ2 = σA

2
→ σB

2
and

�
ol

σA
2
≤ pr(σ11) (6)

�
ol

[a 	→ τ]ρ12 ≤ σB
2

(7)

By (3) then it must be that
pr(σ2)) = σA

2
→ σB

2
(8)

Then it must be the case that σ2 = σ21 → σ22, such that pr(σ21) = σA
2

and pr(σ22) = σB
2

. By (6)
we have that pr(σ21) ≤ pr(σ11 and by the induction hypothesis

�
dsk

σ21 ≤ σ11 (9)

Similarly by (7) we have that �
ol

[a 	→ τ]ρ12 ≤ pr(σ22) and by an application of spec we have

�
ol

∀a.ρ12 ≤ pr(σ22). But the height of this derivation is still one less than the height of the
derivation we are examining and therefore by induction hypothesis we have that

�
dsk

σ12 ≤ σ22 (10)

From (9) and (10) and fun we get that �
dsk

σ11 → σ12 ≤ σ21 → σ22.

20

– Case σ1 = ∀a1.ρ11. Here we have that pr(σ1) = ∀a1a2.ρ12, such that ∀a2.ρ12 = pr(ρ11). From
this it follows that

∀a2.[a1 	→ τ1]ρ12 = pr([a1 	→ τ1]ρ11) (11)

From Lemma 2.17 we know that the number of recursive calls of pr([a1 → τ1]ρ11) is the same as
of pr(ρ11). We also know that

�
ol

[a2 	→ τ2][a1 	→ τ1]ρ12 ≤ ρ2 (12)

Then, we can apply the induction hypothesis to get that �
dsk

[a1 	→ τ1]ρ11 ≤ ρ2 and by applying

rule spec �
dsk

∀a1.ρ11 ≤ ρ2, as required.

• Case fun. In this case we have the following

pr(σ1) = σ′
1
→ σ′

2
(13)

pr(σ2) = σ′
3
→ σ′

4
(14)

�
ol

σ′
1
→ σ′

2
≤ σ′

3
→ σ′

4
(15)

�
ol

σ′
3
≤ σ′

1
(16)

�
ol

σ′
2
≤ σ′

4
(17)

By (13) it must be that

σ1 = σ11 → σ12 (18)

pr(σ11) = σ′
1

(19)

pr(σ12) = σ′
2

(20)

And similarly by (14) we get

σ2 = σ21 → σ22 (21)

pr(σ21) = σ′
3

(22)

pr(σ22) = σ′
4

(23)

By (19), (22), (16), and induction hypothesis �
dsk

σ21 ≤ σ11. Similarly by (20), (23), (17), and

induction hypothesis �
dsk

σ12 ≤ σ22. We get the result by applying rule fun.

• Case mono. Trivially follows by definition of pr(·) and rule mono.

Lemma 2.41. If �
dsk

σ1 ≤ σ2 then �
ol

pr(σ1) ≤ pr(σ2).

Proof. By induction on the derivation �
dsk

σ1 ≤ σ2. We proceed by case analysis on the last rule used.

• Case mono. Directly folows by rule mono.

• Case fun. In this case we have that

�
dsk

σ1 → σ2 ≤ σ3 → σ4 (1)

�
dsk

σ3 ≤ σ1 (2)

�
dsk

σ2 ≤ σ4 (3)

21

Moreover we know that pr(σ1 → σ2) = ∀a.pr(σ1) → ρ2, with ∀a.ρ2 = pr(σ2) and a /∈ ftv(σ1). On the
other hand pr(σ3 → σ4) = ∀b.pr(σ3) → ρ4 where pr(σ4) = ∀b.ρ4 and assume that b /∈ ftv(σ3, σ2, σ1).

We need to show that �
ol

∀a.pr(σ1) → ρ2 ≤ ∀b.pr(σ3) → ρ4. By rule spec it is enough to show

that �
ol

pr(σ1) → [a 	→ τ]ρ2 ≤ pr(σ3) → ρ4. By rule skol and fun it is enough to show that

�
ol

pr(σ3) ≤ pr(σ1) and �
ol

[a 	→ τ]ρ2 ≤ ρ4. We have the former by induction hypothesis. For the

latter, by induction hypothesis on (3) we also have �
ol

∀a.ρ2 ≤ ∀b.ρ4 and by inversion this is derivable

by spec; hence �
ol

[a 	→ τ]ρ2 ≤ ρ4 and we are done.

• Case spec. We have �
dsk

∀a.ρ1 ≤ ρ2 given that �
dsk

[a 	→ τ]ρ1 ≤ ρ2. By induction hypothesis

�
ol

pr([a 	→ τ]ρ1) ≤ pr(ρ2), or �
ol

[a 	→ τ]pr(ρ1) ≤ pr(ρ2), or �
ol

∀a.pr(ρ1) ≤ pr(ρ2) by transitivity of

�
ol

. Equivalently, by definition of pr(·), �
ol

pr(∀a.ρ1) ≤ pr(ρ2) as required.

• Case skol. Here �
dsk

σ1 ≤ σ2 given that

pr(σ2) = ∀a.ρ (4)

a �∈ ftv(σ1) (5)

�
dsk

σ1 ≤ ρ (6)

It must be that pr(σ2) = ∀a.ρ′ such that pr(ρ) = ρ′. Then by (6) and induction hypothesis �
ol

pr(σ1) ≤ ρ′ and by an application of rule skol with (5), we get �
ol

pr(σ1) ≤ ∀a.ρ′, or equivalently

�
ol

pr(σ1) ≤ pr(σ2) as required.

Corollary 2.42. �
dsk

σ1 ≤ σ2 iff �
η

σ1 ≤ σ2 iff �
dsk

σ1 ≤ σ2.

Proof. Follows by Lemma 2.40, Lemma 2.41, Corollary 2.20, and Corollary 2.31.

Having Corollary 2.42 enables us to switch between all the different formalisations of Mitchell’s F-eta sub-
sumption viewing all inference rules as theorems that hold independently of the formalisation we use each
time.

3 Higher-rank type systems

In this section we study type systems that support higher-rank types. We assume that the type systems of

Figure 7, Figure 8, and Figure 9 rely on a reflexive, transitive relation �
subσ

for which the substitution

lemma holds. This relation will stand either for deep skolemisation subsumption �
dsk

or the original

Odersky-Läufer subsumption relation �
ol

.

Several properties of the type systems hold independently of whether �
subσ

is �
dsk

or �
ol

. For the lemmas

that are sensitive on the exact definition of �
subσ

we explicitly specify what �
subσ

is.

In the following, we use the syntax:

Γ(ρ) = ∀a.ρ where a = ftv(ρ) − ftv(Γ)

22

Rho-types ρ ::= τ | σ → σ
′

Γ � t : σ

int
Γ � i : Int

var
Γ, (x : σ) � x : σ

Γ, x : τ � t : σ
abs

Γ � (\x.t) : (τ → σ)

Γ, x : σ � t : σ′

aabs
Γ � (\(x::σ).t) : (σ → σ′)

Γ � t : (σ → σ′)
Γ � u : σ

app
Γ � t u : σ′

Γ � u : σ
Γ, x : σ � t : σ′

let
Γ � let x = u in t : σ′

Γ � t : σ
annot

Γ � (t::σ) : σ

a �∈ ftv(Γ)
Γ � t : ρ

gen
Γ � t : ∀a.ρ

Γ � t : σ′

�
subσ

σ′ ≤ σ
subs

Γ � t : σ

Figure 7: Non syntax-directed higher-rank type system

3.1 Syntax-directed higher-rank type system

In this section we explore the connection between Figure 7 and Figure 8. For clarity let us refer to the
typing relation of the non syntax-directed system of Figure 7 as �nsd , and to the typing relations of the

syntax-directed version of Figure 8 as �sd and �
poly

sd .

Lemma 3.1. Let �
subσ

be either �
ol

or �
dsk

. Then

1. if Γ �sd t : ρ then Γ �nsd t : ρ.

2. if Γ �
poly

sd t : σ then Γ �nsd t : σ.

Proof. We prove the two claims simultaneously by induction on the height of the syntax-directed derivation.
We proceed by case analysis on the last rule used in the derivation. For the first part we have the cases
below.

• Case int. Directly follows by rule int.

• Case var. We have that Γ �sd x : ρ given that x : σ ∈ Γ and �
inst

σ ≤ ρ. By rule var Γ �nsd x : σ.

Moreover it is easy to see that �
subσ

σ ≤ ρ. By subs then Γ �nsd x : ρ.

• Case abs. Follows by induction hypothesis and rule abs.

• Case aabs. Follows by induction hypothesis and rule aabs.

23

Rho-types ρ ::= τ | σ → σ
′

Γ � t : ρ

int
Γ � i : Int

�
inst

σ ≤ ρ
var

Γ, (x : σ) � x : ρ

Γ, x : τ � t : ρ
abs

Γ � (\x.t) : (τ → ρ)

Γ, x : σ � t : ρ
aabs

Γ � (\(x::σ).t) : (σ → ρ)

Γ � t : (σ → σ′)

Γ �
poly

u : σ1

�
subσ

σ1 ≤ σ �
inst

σ′ ≤ ρ
app

Γ � t u : ρ

Γ �
poly

u : σ
Γ, x : σ � t : ρ

let
Γ � let x = u in t : ρ

Γ �
poly

t : σ′

�
subσ

σ′ ≤ σ

�
inst

σ ≤ ρ
annot

Γ � (t::σ) : ρ

Γ �
poly

t : σ

a = ftv(ρ) − ftv(Γ)
Γ � t : ρ

gen
Γ �

poly
t : ∀a.ρ

�
inst

σ ≤ ρ

inst
�
inst

∀a.ρ ≤ [a 	→ τ] ρ

Figure 8: Syntax-directed higher-rank type system

• Case app. We have that Γ �sd t u : ρ, given that

Γ �sd t : (σ → σ′) (1)

Γ �
poly

sd u : σ1 (2)

�
subσ

σ1 ≤ σ (3)

�
inst

σ′ ≤ ρ (4)

By induction hypothesis and (1) we get Γ �nsd t : σ → σ′. Moreover from (3) we see that �
subσ

σ →

σ′ ≤ σ1 → σ′ because rule fun is admissible in both �
ol

and �
dsk

. Then by rule subs Γ �nsd t : σ1 → σ′.

Finally by induction hypothesis for (2) we have Γ �nsd u : σ1. Applying rule app gives Γ �nsd t u : σ′

and since (�
inst

) ⊆ (�
subσ

) we can apply rule subs to get Γ �nsd t u : ρ.

• Case let. Follows by induction hypothesis and rule let.

24

• Case annot. In this case Γ � (t::σ) : ρ given that

Γ �
poly

sd t : σ′ (5)

�
subσ

σ′ ≤ σ (6)

�
inst

σ ≤ ρ (7)

By (5) and induction hypothesis Γ �nsd t : σ′. By rule subs Γ �nsd t : σ and moreover from (6) we

have �
inst

σ ≤ ρ. Applying rule subs once again gives Γ �nsd t : ρ as required.

For the second part we have that Γ �
poly

sd t : ∀a.ρ when a = ftv(ρ) − ftv(Γ) and Γ �sd t : ρ. By induction
hypothesis Γ �nsd t : ρ and by rule gen Γ �nsd t : ∀a.ρ.

Lemma 3.2 (Substitution).

1. If Γ �sd t : ρ then SΓ �sd t : Sρ.

2. If Γ �
poly

sd t : σ then SΓ �
poly

sd t : Sσ.

Proof. Straightforward induction appealing to the substitution property for �
subσ

.

Lemma 3.3 (Weakening). Assume that �
subσ

is �
dsk

. If Γ2 �sd t : ρ2 and �
dsk

Γ1 ≤ Γ2 then Γ1 �sd t : ρ1

with �
dsk

Γ1(ρ1) ≤ Γ2(ρ2). Consequently if Γ2 �
poly

sd t : σ2 then Γ1 �
poly

sd t : σ1 with �
dsk

σ1 ≤ σ2.

Proof. The proof is by induction on the height of the derivation. We proceed with case analysis on the last
rule used in the derivation.

• Case int. Directly follows by rule int.

• Case var. We have that Γ2 �sd x : ρ2 given that x : σ2 ∈ Γ2 and

�
inst

σ2 ≤ ρ2 (1)

Then, x : σ1 ∈ Γ1 such that

�
dsk

σ1 ≤ σ2 (2)

Assume that b = ftv(ρ2) − ftv(Γ2). Then by the substitution lemma we get Γ2 �sd x : [b 	→ d]ρ2

for some d /∈ ftv(Γ1,Γ2, ρ2). By (1) and the substitution lemma we get �
inst

σ2 ≤ [b 	→ d]ρ2 and by

transitivity of �
dsk

�
dsk

σ1 ≤ [b 	→ d]ρ2 (3)

Moreover assume that σ1 = ∀a.ρ1 and without loss of generality assume that a /∈ ftv(Γ1). Then

�
inst

σ1 ≤ ρ1. By (3) we get that �
dsk

∀a.ρ1 ≤ [b 	→ d]ρ2. Consider a ′ = ftv(ρ1) − ftv(Γ1). Then

a ⊆ a ′ and consequently �
dsk

∀a ′.ρ1 ≤ [b 	→ d]ρ2. Then it must be that d /∈ ftv(∀a ′.ρ1) because

otherwise d ∈ ftv(Γ1). Then by skol admissibility �
dsk

∀a ′.ρ1 ≤ ∀d.[b 	→ d]ρ2, or equivalently

�
dsk

Γ1(ρ1) ≤ Γ2(ρ2).

25

• Case abs. Here we have that Γ2 �sd (\x.t) : (τ → ρ2), given that

Γ2, x : τ �sd t : ρ2 (4)

Consider b = ftv(ρ2) − ftv(Γ2, τ) and a renaming substitution [b 	→ d] where d /∈ ftv(Γ1,Γ2, τ, ρ2).
Then by (4) and the substitution lemma we get Γ2, x : τ �sd t : [b 	→ d]ρ2. By induction hypothesis
there exists a ρ1 such that Γ1, x : τ �sd t : ρ1 and

�
dsk

∀a.ρ1 ≤ ∀d.[b 	→ d]ρ2 (5)

where a = ftv(ρ1) − ftv(Γ1, τ). By rule abs we get Γ1 �sd (\x.t) : (τ → ρ1). We wish to show that

�
dsk

∀a1.τ → ρ1 ≤ ∀a2.τ → ρ2 (6)

where a1 = ftv(ρ1, τ) − ftv(Γ) and a2 = ftv(ρ2, τ) − ftv(Γ). Notice that if c = ftv(τ) − ftv(Γ) then

a1 = ac and a2 = bc. From (5), since by sub �
dsk

∀d.[b 	→ d]ρ2 ≤ [b 	→ d]ρ2, and by transitivity we
get that

�
dsk

∀a.ρ1 ≤ [b 	→ d]ρ2 (7)

Then, by rule fun �
dsk

τ → ∀a.ρ1 ≤ τ → [b 	→ d]ρ2 and �
dsk

∀a.τ → ρ1 ≤ τ → [b 	→ d]ρ2 by

transitivity and rule distrib. By sub and transitivity �
dsk

∀ac.τ → ρ1 ≤ τ → [b 	→ d]ρ2. Now we
claim that c /∈ ftv(∀ac.τ → ρ1) and d /∈ ftv(∀ac.τ → ρ1) similarly. The former because we quantified
over them, the latter because the opposite would mean that d ∈ ftv(Γ1). Then we can apply skol

admissibility to get that �
dsk

∀ac.τ → ρ1 ≤ ∀dc.τ → [b 	→ d]ρ2 and by an α-renaming of d to b we
are done.

• Case aabs. Similar to the case for abs.

• Case app. Here we have Γ2 �sd t u : ρ2 given that

Γ2 �sd t : (σ → σ′) (8)

Γ2 �sd u : σ1 (9)

�
dsk

σ1 ≤ σ (10)

�
inst

⇑ σ′ ≤ ρ2 (11)

Consider a renaming substitution g
1

= ftv(σ, σ′, ρ2)− ftv(Γ2) to fresh g
2
, such that g

2
/∈ ftv(Γ1). Then

by the substitution lemma (8) becomes

Γ2 �sd t : (σ0 → σ′
0
) (12)

where σ0 = [g1 	→ g2]σ and σ′
0

= [g1 	→ g2]σ
′. By induction hypothesis on (12) we get that there exists

a ρt with

Γ1 �sd t : ρt (13)

�
dsk

Γ1(ρt) ≤ ∀g
2
.σ0 → σ′

0
(14)

Because of the choice of g
2
, from equation (14) we get

�
dsk

Γ1(ρt) ≤ σ0 → σ′
0

(15)

There are two possible cases for ρt . It is either a type variable a /∈ ftv(Γ1) or it will be an arrow type
σt

1
→ σt

2
.

26

– Assume that ρt = σt
1
→ σt

2
and let a = ftv(ρt)−ftv(Γ1). Then by equation (15) and Corollary 2.20

we get:

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ ∀c.pr(σ0) → ρ′

0
(16)

where

b /∈ ftv(σt
1
) (17)

c /∈ ftv(σ0,Γ1,Γ2, σ
t
1
, σt

2
) (18)

pr(σt
2
) = ∀b.ρt

2
(19)

pr(σ′
0
) = ∀c.ρ′

0
(20)

By (16) and (18) it must be that

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ pr(σ0) → ρ′

0
(by inversion)

⇒ �
ol

[a 	→ τa , b 	→ τb](pr(σ
t
1
) → ρt

2
) ≤ pr(σ0) → ρ′

0
(by inversion)

⇒ �
ol

[a 	→ τa]pr(σt
1
) → [a 	→ τa , b 	→ τb]ρ

t
2
≤ pr(σ0) → ρ′

0

From the last equation, by inversion we get that

�
ol

pr(σ0) ≤ [a 	→ τa]pr(σt
1
) (21)

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′

0
(22)

From Corollary 2.20 and (21)

�
dsk

σ0 ≤ [a 	→ τa]σt
1

(23)

From (13) and the substitution lemma, we get

Γ1 �sd t : [a 	→ τa](σt
1
→ σt

2
) (24)

By the substitution lemma for (9) we have that Γ2 �
poly

sd u : [g1 	→ g2]σ1 and by transitivity of �
dsk

we get:

�
dsk

[g1 	→ g2]σ1 ≤ [a 	→ τa]σt
1

(25)

Moreover, by induction hypothesis we have that Γ1 �
poly

sd u : σ′
1

such that �
dsk

σ′
1
≤ [g1 	→ g2]σ1.

From this and (25) we get �
dsk

σ′
1
≤ [a 	→ τa]σt

1
. Then, if [a 	→ τa]σt

2
= ∀g

3
.ρ1, where without loss

of generality g
3

/∈ ftv(Γ1) we have that �
inst

[a 	→ τa]σt
2
≤ ρ1. We have all the premises of the rule

app and applying it gives us that Γ1 � t u : ρ1. Then it is the case that Γ1(ρ1) = Γ1([a 	→ τa]σt
2
).

By (22) we get that

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′

0

⇒ �
ol

∀b.[a 	→ τa]ρt
2
≤ ρ′

0

⇒ �
ol

∀db.[a 	→ τa]ρt
2
≤ ρ′

0

where d = ftv(τa , ρt
2
) − ftv(Γ1). But now we know that c /∈ ftv(∀db.[a 	→ τa]ρt

2
), because it

must be that ftv(∀db.[a 	→ τa]ρt
2
) ⊆ ftv(Γ1), and by (18) c /∈ ftv(Γ1). Then we can apply rule

skol to get that �
ol

∀db.[a 	→ τa]ρt
2
≤ ∀c.ρ′

0
, and by Corollary 2.20 �

dsk
∀d.[a 	→ τa]σt

2
≤ σ′

0
.

By the substitution lemma for (10) we have �
inst

⇑ σ′
0
≤ [g1 	→ g2]ρ2 and by transitivity we have

that �
dsk

∀d.[a 	→ τa]σt
2
≤ [g1 	→ g2]ρ2. Now it cannot be that g

2
∈ ∀d.[a 	→ τa]σt

2
because

g
2

/∈ ftv(Γ1). Then we can apply skol admissibility to get �
dsk

∀d.[a 	→ τa]σt
2
≤ ∀g

2
.[g1 	→ g2]ρ2

or by dropping useless quantifiers and α-renaming �
dsk

∀d.[a 	→ τa]σt
2
≤ Γ2(ρ2) as required.

27

– Assume that ρt = a and let a /∈ ftv(Γ1). Then by equation (14) and Corollary 2.20 we get:

�
ol

∀a.a ≤ ∀c.pr(σ0) → ρ′
0

(26)

where

c /∈ ftv(σ0,Γ1,Γ2) (27)

pr(σ′
0
) = ∀c.ρ′

0
(28)

By (26) and (27) and inversion on �
ol

it must be that

�
ol

τ1 → τ2 ≤ pr(σ0) → ρ′
0

(29)

Now yet one more inversion gives

�
ol

pr(σ0) ≤ τ1 (30)

�
ol

τ2 ≤ ρ′
0

(31)

From Corollary 2.20 and (30)

�
dsk

σ0 ≤ τ1 (32)

From (12) and the substitution lemma, we get

Γ1 �sd t : τ1 → τ2 (33)

By the substitution lemma for (9) we have that Γ2 �
poly

sd u : [g1 	→ g2]σ1 and by induction hypoth-

esis and (32) we have

Γ1 �
poly

sd u : σ′
1
�
dsk

σ′
1
≤ τ1 (34)

Then �
inst

τ2 ≤ τ2. We have all the premises of the rule app and applying it gives us that
Γ1 � t u : τ2. By (31) we get that

�
ol

∀d.τ2 ≤ ρ′
0

(35)

where d = ftv(τ2) − ftv(Γ1). But now we know that c /∈ ftv(∀d.τ2), because it must be that
ftv(∀db.[a 	→ τa]ρt

2
) ⊆ ftv(Γ1), and by (27) c /∈ ftv(Γ1). Then we can apply rule skol to get that

�
ol

∀d.τ2 ≤ ∀c.ρ′
0
, and by Corollary 2.20 �

dsk
∀d.τ2 ≤ σ′

0
. By the substitution lemma for (10)

we have �
inst

⇑ σ′
0
≤ [g1 	→ g2]ρ2 and by transitivity we have that �

dsk
∀d.τ2 ≤ [g1 	→ g2]ρ2. Now

it cannot be that g
2
∈ ∀d.τ2 because g

2
/∈ ftv(Γ1). Then we can apply skol admissibility to

get �
dsk

∀d.τ2 ≤ ∀g
2
.[g1 	→ g2]ρ2 or by dropping useless quantifiers and α-renaming �

dsk
∀d.τ2 ≤

Γ2(ρ2) as required.

• Case let. In this case we have that Γ2 �sd let x = u in t : ρ2, given that

Γ2 �
poly

sd u : σ (36)

Γ2, x : σ �sd t : ρ2 (37)

By induction hypothesis for (36) Γ1 �sd u : σ′ such that �
dsk

σ′ ≤ σ. By induction hypothesis for (37)

we get Γ1, x : σ′ �sd t : ρ1 such that �
dsk

Γ1, x : σ′(ρ1) ≤ Γ2, x : σ(ρ2) or since σ′ is generalised over Γ1

and σ is generalised over Γ2 this becomes �
dsk

Γ1(ρ1) ≤ Γ2(ρ2) as required. Applying rule let finishes
the case.

28

• Case annot. We have that Γ2 �sd (t::σ) : ρ2, given that

Γ2 �
poly

sd t : σ′ (38)

�
subσ

σ′ ≤ σ (39)

�
inst

σ ≤ ρ2 (40)

From (38) and induction hypothesis Γ1 �
poly

sd t : σ′′ such that �
dsk

σ′′ ≤ σ′. Then by (39) and transitivity

of �
dsk

we have �
dsk

σ′′ ≤ σ. Consider a renaming substitution [b 	→ d], where b = ftv(ρ2) − ftv(Γ2)

and d /∈ ftv(Γ1,Γ2, σ
′, ρ2). Then by substitution lemma �

inst
σ ≤ [b 	→ d]ρ2. We need to show

that �
dsk

Γ1([b 	→ d]ρ2) ≤ Γ2([b 	→ d]ρ2). But notice that ftv([b 	→ d]ρ2) − ftv(Γ2) = d and d ⊆
ftv([b 	→ d]ρ2) − ftv(Γ2)) because d are fresh. The result then follows by rule sub.

Lemma 3.4. Assume that �
subσ

is �
dsk

. If Γ �nsd t : σ then Γ �sd t : ρ and �
dsk

Γ(ρ) ≤ σ.

Proof. By induction on height of the non syntax-directed derivations. We proceed by case analysis on the
last rule used.

• Case int. The result follows by rule Int and we know that �
dsk

Int ≤ Int by reflexivity.

• Case var. Int this case Γ �nsd x : σ, given that x : σ ∈ Γ. Then, assuming that σ = ∀a.ρ and without

loss of generality a /∈ ftv(Γ), we have that �
inst

σ ≤ ρ and by rule sub we get that �
η

Γ(ρ) ≤ ∀a.ρ or

by Corollary 2.31 �
dsk

Γ(ρ) ≤ ∀a.ρ. By rule var we also get Γ �sd x : ρ as required.

• Case abs. We have that Γ �nsd (\x.t) : τ → σ given that Γ, x : τ �nsd t : σ. By induction hypothesis
there exists a ρ such that Γ, x : τ �sd t : ρ such that

�
dsk

Γ, x : τ(ρ) ≤ σ (1)

Let b = ftv(ρ) − ftv(Γ, τ). By rule abs we get that Γ �sd (\x.t) : τ → ρ. We wish to show that

�
dsk

Γ(τ → ρ) ≤ τ → σ. Let a = ftv(τ → ρ) − ftv(Γ). Split these variables in two sets a = a1a2, such
that a1 = a − ftv(τ) and a2 = a −a1. Then it must be that a1 = b. Then we have the following (using

reflexivity and transitivity of �
dsk

):

�
dsk

∀a.τ → ρ = ∀a1a2.τ → ρ
≤ ∀a2.(∀a1.τ) → ∀a1.ρ (by distrib and all)
≤ (∀a1.τ) → ∀a1.ρ (by sub)
≤ τ → ∀a1.ρ (by Lemma 2.25)
≤ τ → σ (by (1) and fun)

(The use of distrib is essential for this derivation and it is a reason why the claim fails when �
ol

is

used instead of �
dsk

.)

• Case aabs. Similar argument as abs taking into account that type annotations are closed.

• Case app. In this case we have that Γ �nsd t u : σ′ given that

Γ �nsd t : (σ → σ′) (2)

Γ �nsd u : σ (3)

29

By induction hypothesis there exists ρt with

Γ �sd t : ρt (4)

�
dsk

Γ(ρt) ≤ σ → σ′ (5)

Moreover, by induction hypothesis for (3) we get

Γ �sd u : ρu (6)

�
dsk

Γ(ρu) ≤ σ (7)

In general there are two possible cases for ρt . It can either be a type variable a /∈ ftv(Γ) or it will be
an arrow type.

– Assume that ρt = σt
1
→ σt

2
. Then by (5) �

dsk
∀a.σt

1
→ σt

2
≤ σ → σ′, where a = ftv(σt

1
, σt

2
) −

ftv(Γ). By the prenex corollary, Corollary 2.20

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ ∀c.pr(σ) → ρ′ (8)

where the following are true:

b /∈ ftv(σt
1
) (9)

c /∈ ftv(σ,Γ, σt
1
, σt

2
) (10)

pr(σt
2
) = ∀b.ρt

2
(11)

pr(σ′) = ∀c.ρ′ (12)

By (8) and inversion on �
ol

we get

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ pr(σ) → ρ′ (by inversion)

⇒ �
ol

[a 	→ τa , b 	→ τb](pr(σ
t
1
) → ρt

2
) ≤ pr(σ) → ρ′ (by inversion)

⇒ �
ol

[a 	→ τa]pr(σt
1
) → [a 	→ τa , b 	→ τb]ρ

t
2
≤ pr(σ) → ρ′

From the last equation, by inversion we get that

�
ol

pr(σ) ≤ [a 	→ τa]pr(σt
1
) (13)

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′ (14)

From Corollary (2.20) and (13)

�
ol

σ ≤ [a 	→ τa]σt
1

(15)

Now, from (4) and the substitution lemma, we get

Γ �sd t : [a 	→ τa](σt
1
→ σt

2
) (16)

By transitivity of �
dsk

, (15) and (7) we have

�
dsk

Γ(ρu) ≤ [a 	→ τa]σt
2

(17)

By (15), (6), and (17) we can apply rule app to get that Γ �sd t u : ρr such that �
inst

[a 	→ τa]σt
2
≤

ρr and just pick ρr such that all the quantifiers of [a 	→ τa]σt
2

are replaced by variables not in Γ.
Then it will be the case that Γ(ρr) = Γ([a 	→ τa]σt

2
). Consequently to finish the case we need to

show that
�
dsk

∀d.[a 	→ τa]σt
2
≤ σ′ (18)

30

where d = ftv(ρt
2
, τa) − ftv(Γ). By (14) we have

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′

⇒ �
ol

∀b.[a 	→ τa]ρt
2
≤ ρ′

⇒ �
ol

∀db.[a 	→ τa]ρt
2
≤ ρ′

But now we know that c /∈ ftv(∀db.[a 	→ τa]ρt
2
), because it must be that ftv(∀db.[a 	→ τa]ρt

2
) ⊆

ftv(Γ), and by (10) c /∈ ftv(Γ). Then we can apply rule skol to get that �
ol

∀db.[a 	→ τa]ρt
2
≤

∀c.ρ′, and by Corollary 2.20 �
dsk

∀d.[a 	→ τa]σt
2
≤ σ′ as required.

– Assume that ρt = a. The argument is essentially the same. We give it more briefly. Here it must
be that a /∈ ftv(Γ) so that Γ(a) = ∀a.a; otherwise (5) cannot be derivable. Then, by (5) we

have that �
dsk

∀a.a ≤ σ → σ′, which, by Corollary 2.20 gives �
ol

∀a.a ≤ ∀c.pr(σ) → ρ′ where

pr(σ′) = ∀c.ρ′ and assume that c /∈ ftv(σ,Γ). By inversion �
ol

∀a.a ≤ pr(σ) → ρ′, and there

exist τ1, τ2 with �
ol

[a 	→ (τ1 → τ2)]a ≤ pr(σ) → ρ′ or by one more inversion

�
ol

pr(σ) ≤ τ1 (19)

�
ol

τ2 ≤ ρ′ (20)

By the substitution lemma, Lemma 3.2, Γ �sd t : τ1 → τ2. Moreover by Corollary 2.20 and (19)

we get that �
dsk

σ ≤ τ1. Therefore by (7) and transitivity of �
dsk

, �
dsk

Γ(ρu) ≤ τ1. Finally we

can apply rule app to get the result. We need to show that �
dsk

Γ(τ2) ≤ σ′. But we have that

�
ol

Γ(τ2) ≤ ρ′ and since we assumed that c /∈ ftv(Γ), c /∈ ftv(Γ(τ2)), therefore we can apply rule

skol to get �
ol

Γ(τ2) ≤ ∀c.ρ′ and by this and Corollary 2.20 we are done.

• Case let. We have that Γ �nsd let x = u in t : σ′, given that

Γ �nsd u : σ (21)

Γ, x : σ �nsd t : σ′ (22)

By induction hypothesis Γ �sd u : ρ such that �
dsk

Γ(ρ) ≤ σ. Again by induction hypothesis Γ, x :

σ �sd t : ρ′ such that �
dsk

Γ, x : σ(ρ′) ≤ σ′. By Lemma 3.3 we get that Γ, x : Γ(ρ) �sd t : ρ′′ such that

�
dsk

Γ, x : Γ(ρ)(ρ′′) ≤ Γ, x : σ(ρ′). But Γ, x : Γ(ρ)(ρ′′) = Γ(ρ′′) and �
dsk

Γ, x : σ(ρ′) ≤ σ′ by transitivity

of �
dsk

. The result follows by application of rule let.

• Case annot. In this case we have that Γ �nsd (t::σ) : σ, given that Γ �nsd t : σ. By induction

hypothesis there exists a ρ such that Γ �sd t : ρ and �
dsk

Γ(ρ) ≤ σ. Then is the case that Γ �
poly

sd t : Γ(ρ).

Moreover if σ = ∀a.ρ1 and without loss of generality a /∈ ftv(Γ), then �
inst

σ ≤ ρ1 and we are done

by applying rule annot. Moreover it is easy to confirm that �
dsk

Γ(ρ1) ≤ ∀a.ρ1, since we assumed
a /∈ ftv(Γ).

The above claim fails when �
subσ

is �
ol

. For example it is derivable in the non-syntax directed system that

�nsd let f = (\x.\y.y) in f : Int → ∀b.b → b

but in the syntax-directed system we can only get that

�
poly

sd let f = (\x.\y.y) in f : ∀ab.a → b → b

and it is not the case that �
ol

∀ab.a → b → b ≤ Int → ∀b.b → b, even though it is the case that

�
dsk

∀ab.a → b → b ≤ Int → ∀b.b → b

31

Rho-types ρ ::= τ | σ → σ

Γ �δ t : ρ δ ::= ⇑ | ⇓

int
Γ �δ i : Int

�
inst

δ σ ≤ ρ
var

Γ, (x : σ) �δ x : ρ

Γ, (x : τ) �⇑ t : ρ
abs1

Γ �⇑ (\x.t) : (τ → ρ)

Γ, (x : σa) �
poly

⇓ t : σr
abs2

Γ �⇓ (\x.t) : (σa → σr)

Γ, (x : σ) �⇑ t : ρ
aabs1

Γ �⇑ (\(x::σ).t) : (σ → ρ)

�
subσ

σa ≤ σx

Γ, (x : σx) �
poly

⇓ t : σr
aabs2

Γ �⇓ (\(x::σx).t) : (σa → σr)

Γ �⇑ t : (σ → σ′) Γ �
poly

⇓ u : σ �
inst

δ σ′ ≤ ρ
app

Γ �δ t u : ρ

Γ �
poly

⇓ t : σ

�
inst

δ σ ≤ ρ
annot

Γ �δ (t::σ) : ρ

Γ �
poly

⇑ u : σ

Γ, x : σ �δ t : ρ
let

Γ �δ let x = u in t : ρ

Γ �
poly
δ t : σ

a = ftv(ρ) − ftv(Γ)
Γ �⇑ t : ρ

gen1
Γ �

poly

⇑ t : ∀a.ρ

a �∈ ftv(Γ)
Γ �⇓ t : ρ

gen2
Γ �

poly

⇓ t : ∀a.ρ

�
inst
δ σ ≤ ρ

inst1
�
inst

⇑ ∀a.ρ ≤ [a 	→ τ] ρ
�
subσ

σ ≤ ρ
inst2

�
inst

⇓ σ ≤ ρ

Figure 9: Bidirectional higher-rank type system

3.2 Bidirectional type system (first version)

In this section we give properties of the type system of Figure 9. Notice that this is not the final version of
the type system as it performs only shallow skolemisation in the rule gen2. Nevertheless it is worth studying
its properties. We later extend it to the final version which also appears in the main paper.

Lemma 3.5. If �
subσ

σ ≤ ρ then �
inst

⇓ σ ≤ ρ.

32

Proof. Directly follows by rule inst2.

Lemma 3.6. If �
inst

⇑ σ ≤ ρ then �
inst

⇓ σ ≤ ρ.

Proof. By inversion it must be that σ = ∀a.ρ1 and ρ = [a 	→ τ]ρ1. We need to show that �
inst

⇓ ∀a.ρ1 ≤

[a 	→ τ]ρ1, or by rule inst2 �
subσ

∀a.ρ1 ≤ [a 	→ τ]ρ1. By rule sub �
η
∀a.ρ1 ≤ [a 	→ τ]ρ1 and by Corol-

lary 2.31 �
dsk

∀a.ρ1 ≤ [a 	→ τ]ρ1. On the other hand, if �
subσ

is �
ol

the result follows by an application of
spec and reflexivity, Lemma 2.2.

Lemma 3.7. If �
ol

σ1 ≤ σ2 and �
inst

⇑ σ2 ≤ ρ2 then ∃ρ1. �
inst

⇑ σ1 ≤ ρ1 and �
ol

ρ1 ≤ ρ2.

Proof. Assume that σ1 = ∀a.ρ11 and σ2 = ∀b.ρ22. Without loss of generality assume that a /∈ ftv(σ2) and
b /∈ ftv(σ1). Then it must be that

�
ol

∀a.ρ11 ≤ ∀b.ρ22 (1)

By inversion on the assumption we get that

ρ2 = [b 	→ τb]ρ22 (2)

By (1) and inversion it must be that �
ol

∀a.ρ11 ≤ ρ22. Then, by the substitution lemma �
ol

∀a.ρ11 ≤

[b 	→ τb]ρ22. Then by inversion again4 �
ol

[a 	→ τa]ρ11 ≤ [b 	→ τb]ρ22 for some τa . Taking ρ1 = [a 	→ τa]ρ11

finishes the proof.

Lemma 3.8. If �
ol

σ1 ≤ σ2 and �
inst

⇓ σ2 ≤ ρ2 then �
inst

⇓ σ1 ≤ ρ2.

Proof. Follows by inversion of �
inst

and transitivity of �
subσ

.

Lemma 3.9. Independently of whether �
subσ

is �
ol

or �
dsk

, if �
ol

Γ1 ≤ Γ2 pointwise then the following are
true:

1. If Γ2 �⇑ t : ρ2 then ∃ρ1.Γ1 �⇑ t : ρ1 and �
ol

ρ1 ≤ ρ2.

2. If Γ2 �⇓ t : ρ1 and �
ol

ρ1 ≤ ρ2 then Γ1 �⇓ t : ρ2.

3. If Γ2 �
poly

⇑ t : σ2 then ∃σ1.Γ1 �
poly

⇑ t : σ1 and �
ol

σ1 ≤ σ2.

4. If Γ2 �
poly

⇓ t : σ1 and �
ol

σ1 ≤ σ2 then Γ1 �
poly

⇓ t : σ2.

Proof. We prove the four claims simultaneously by induction on the height of the typing derivations. For
each claim we asssume that all are true for derivations of smaller height.

For the first part we have the following cases.

• Case int. Follows by the same rule.

• Case var. In this case Γ2 �⇑ x : ρ2 given that x : σ2 ∈ Γ2 and �
inst

⇑ σ2 ≤ ρ2. It must be that

x : σ1 ∈ Γ1, such that �
ol

σ1 ≤ σ2. By Lemma 3.7 there exists ρ1 such that �
inst

⇑ σ1 ≤ ρ1 with

�
ol

ρ1 ≤ ρ2. and by applying rule var we are done.

4Notice that this inversion would fail if we were using �
dsk

instead.

33

• Case abs1. Here Γ2 �⇑ (\x.t) : τ → ρ, given that Γ2, x : τ �⇑ t : ρ. By induction hypothesis

Γ1, x : τ �⇓ t : ρ′ such that �
ol

ρ′ ≤ ρ. By rule abs1 we get Γ1 �⇑ (\x.t) : τ → ρ′. And by Lemma 2.2

and rule fun �
ol

τ → ρ′ ≤ τ → ρ.

• Case aabs1. In this case Γ2 �⇑ \(x::σ).t : σ → ρ, given that Γ2, x : σ �⇑ t : ρ. By induction

hypothesis Γ1, x : σ �⇑ t : ρ′ for some ρ′ with �
ol

ρ′ ≤ ρ and by rule aabs1 we get that Γ1 �⇑

\(x::σ).t : σ → ρ′ and by rule fun �
ol

σ → ρ′ ≤ σ → ρ.

• Case app. In this case

Γ2 �⇑ t u : ρ2 (1)

Γ2 �⇑ t : (σ → σ′) (2)

Γ2 �
poly

⇓ u : σ (3)

�
inst

⇑ σ′ ≤ ρ2 (4)

By induction hypothesis there exists ρ′ such that Γ1 �⇑ t : ρ′ and �
ol

σ → σ′ ≤ ρ′. By inversion it

must be that ρ′ = σ1 → σ′
1

such that �
ol

σ ≤ σ1 and �
ol

σ′
1
≤ σ′. From this and (3) and induction

hypothesis it must be that Γ1 �
poly

⇓ u : σ1 and by Lemma 3.7 there exists a ρ1 with �
ol

ρ1 ≤ ρ2 such

that �
inst

⇑ σ′
1
≤ ρ1. By applying rule app we are done.

• Case annot. Here Γ2 �⇑ (t::σ) : ρ2, given that Γ2 �
poly

⇓ t : σ and �
inst

⇑ σ ≤ ρ2. By reflexivity and

induction hypothesis Γ1 �
poly

⇓ t : σ. Applying rule annot again gives the result, since �
ol

ρ2 ≤ ρ2.

• Case let. Finally Γ2 �⇑ let x = u in t : ρ2, given that Γ2 �
poly

⇑ u : σ and Γ2, x : σ �⇑ t : ρ2.

By induction hypothesis Γ1 �
poly

⇑ u : σ′ such that �
ol

σ′ ≤ σ. Then by induction hypothesis again

Γ1, x : σ′ �⇑ t : ρ1 for some ρ1 with �
ol

ρ1 ≤ ρ2. Applying let finishes the case.

For the second part we have the following cases.

• Case int. By inversion it must be also that ρ2 = Int. Then the case follows by int.

• Case var. In this case Γ2 �⇓ x : ρ1 given that x : σ2 ∈ Γ2 and �
inst

⇓ σ2 ≤ ρ1. It must be that x : σ1 ∈ Γ1,

such that �
ol

σ1 ≤ σ2. By Lemma 3.8 �
inst

⇓ σ1 ≤ ρ1 and by transitivity of �
subσ

�
inst

⇓ σ1 ≤ ρ2. The
result follows by rule var.

• Case abs2. Here Γ2 �⇓ (\x.t) : σa → σr , given that Γ2, x : σa �
poly

⇓ t : σr . We have that �
ol

σa →
σr ≤ ρ2 for some ρ2. By inversion ρ2 = σa

2
→ σr

2
with

�
ol

σa
2
≤ σa (5)

�
ol

σr ≤ σr
2

(6)

Then by induction hypothesis Γ1, x : σa
2
�
poly

⇓ t : σr
2
. The result follows by applying rule abs2 again.

• Case aabs2. In this case Γ2 �⇓ \(x::σx).t : σa → σr , given that Γ2, x : σx �
poly

⇓ t : σr and

�
subσ

σa ≤ σx . We have that �
ol

σa → σr ≤ ρ2 for some ρ2. By inversion ρ2 = σa
2
→ σr

2
with

�
ol

σa
2
≤ σa (7)

�
ol

σr ≤ σr
2

(8)

By transitivity of �
subσ

and the fact that �
ol

is a subset of �
subσ

, and (7) we get that �
subσ

σa
2
≤ σx .

By induction hypothesis Γ1, x : σx �
poly

⇓ t : σr
2

and by rule aabs2 we get the result.

34

• Case app. In this case

Γ2 �⇓ t u : ρ1 (9)

Γ2 �⇑ t : (σ → σ′) (10)

Γ2 �
poly

⇓ u : σ (11)

�
inst

⇓ σ′ ≤ ρ1 (12)

By induction hypothesis there exists ρ′ such that Γ1 �⇑ t : ρ′ and �
ol

ρ′ ≤ σ → σ′. By inversion it

must be that ρ′ = σ1 → σ′
1

such that �
ol

σ ≤ σ1 and �
ol

σ′
1
≤ σ′. From this and (11) and induction

hypothesis it must be that Γ1 �
poly

⇓ u : σ1 and by transitivity of �
subσ

, �
inst

⇑ σ′
1
≤ ρ2. By applying rule

app we are done.

• Case annot. Here Γ2 �⇓ (t::σ) : ρ1, given that Γ2 �
poly

⇓ t : σ and �
inst

⇓ σ ≤ ρ1. By reflexivity and

induction hypothesis Γ1 �
poly

⇓ t : σ. By transitivity of �
subσ

we have that �
inst

⇓ σ ≤ ρ2, and by rule
annot we are done.

• Case let. Here Γ2 �⇓ let x = u in t : ρ1, given that Γ2 �
poly

⇑ u : σ and Γ2, x : σ �⇓ t : ρ1.

By induction hypothesis Γ1 �
poly

⇑ u : σ′ so that �
ol

σ′ ≤ σ. Then by induction hypothesis again
Γ1, x : σ′ �⇓ t : ρ2 and applying let finishes the case.

For the third part we have by inversion that σ2 = ∀b.ρ2, such that b = ftv(ρ2) − ftv(Γ2) and

Γ2 �⇑ t : ρ2 (13)

Instead of using the induction hypothesis directly5 consider a renaming substitution [b 	→ d] such that
d /∈ ftv(Γ1,Γ2, ρ2). Then by the substitution lemma, Lemma 3.13 on (13 we get Γ2 �⇑ t : [b 	→ d]ρ2

with the same height. Then we can apply the induction hypothesis to get that Γ1 �⇑ t : ρ1, such that

�
ol

ρ1 ≤ [b 	→ d]ρ2. By rule spec

�
ol

∀a.ρ1 ≤ [b 	→ d]ρ2 (14)

where a = ftv(ρ1) − ftv(Γ1). Now we claim that d /∈ ftv(∀a.ρ1). Suppose by contradiction that exists a
d ∈ d such that d ∈ ftv(∀a.ρ1) = ftv(ρ1) ∩ ftv(Γ1). Then it must be that d ∈ ftv(Γ1), a contradiction. By

rule skol then and (14) we get �
ol

∀a.ρ1 ≤ ∀d.[b 	→ d]ρ2, or equivalently �
ol

∀a.ρ1 ≤ ∀b.ρ2 as required.

For the fourth part assume that σ1 = ∀a.ρ1 and σ2 = ∀b.ρ2. Without loss of generality assume that

b /∈ ftv(σ1,Γ1). Then we have that �
ol

∀a.ρ1 ≤ ∀b.ρ2 and by inversion �
ol

∀a.ρ1 ≤ ρ2. By inversion again6

we get

�
ol

[a 	→ τ]ρ1 ≤ ρ2 (15)

for some τ . We know that Γ2 �⇓ ρ1 and a /∈ ftv(Γ2). Then by the substitution lemma, Lemma 3.13
Γ2 �⇓ t : [a 	→ τ]ρ1. From (15) and by induction hypothesis Γ1 �⇓ t : ρ2. By rule gen2 we get the result.

Notice that the property holds independently of which relation the type system actually uses. However it

fails when the two types are related in �
dsk

instead of �
ol

.

False Claim 3.10. If Γ �⇓ t : ρ1 and �
dsk

ρ1 ≤ ρ2 then Γ �⇓ t : ρ2.

5 Induction hypothesis would give that Γ1 �
⇑
: ρ1 such that �

ol
ρ1 ≤ ρ2, but in general it is not true that if �

ol
Γ1 ≤ Γ2 and

�
ol

ρ1 ≤ ρ2 then �
ol

Γ1(ρ1) ≤ Γ2(ρ2). As a counterexample consider Γ1 = (x : (a → a) → Int), Γ2 = (x : (∀a.a → a) → Int)
and ρ1 = ρ2 = a → a.

6Note that this step would fail if we were in �
dsk

.

35

Proof. Here’s a counterexample. Consider Γ = u : Int, σ1 = ∀a.a → ∀b.b → ∀c.b → c, σ2 = Int →
∀c.Int → c, and σ3 = ∀abc.a → b → b → c. Then it is derivable that Γ �⇓ (\x.x u) : (σ1 → σ2) but it is

not derivable that Γ �⇓ (\x.x u) : (σ3 → σ2), although �
dsk

σ1 → σ2 ≤ σ3 → σ2. Notice that this property

fails again independently of �
subσ

.

Lemma 3.11.

1. If Γ �⇑ t : ρ then Γ �⇓ t : ρ.

2. If Γ �
poly

⇑ t : σ then Γ �
poly

⇓ t : σ.

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used in each derivation. For the first part we have the following cases to
consider.

• Case int. Follows by the same rule.

• Case var. In this case Γ �⇑ x : ρ given that x : σ ∈ Γ and �
inst

⇑ σ ≤ ρ. By Lemma 3.6 �
inst

⇓ σ ≤ ρ and
by applying rule var we are done.

• Case abs1. Here Γ �⇑ (\x.t) : τ → ρ, given that Γ, x : τ �⇑ t : ρ. By induction hypothesis

Γ, x : τ �⇓ t : ρ and by rule gen2 Γ, x : τ �
poly

⇓ t : ρ. From this and rule abs2 Γ �⇓ (\x.t) : τ → ρ.

• Case aabs1. In this case Γ �⇑ \(x::σ).t : σ → ρ, given that Γ, x : σ �⇑ t : ρ. By induction hypothesis

Γ, x : σ �⇓ t : ρ and by rule gen2 Γ, x : σ �
poly

⇓ t : ρ. Moreover by reflexivity �
subσ

σ ≤ σ and by
applying rule aabs2 we are done.

• Case app. In tis case Γ �⇑ t u : ρ, given that Γ �⇑ t : (σ → σ′), Γ �
poly

⇓ u : σ, and �
inst

⇑ σ′ ≤ ρ. By

Lemma 3.6 �
inst

⇓ σ′ ≤ ρ and we get the result by applying rule app.

• Case annot. Here Γ �⇑ (t::σ) : ρ, given that Γ �
poly

⇓ t : σ and �
inst

⇑ σ ≤ ρ. By Lemma 3.6 �
inst

⇓ σ ≤ ρ
and we get the result by rule annot.

• Case let. Finally Γ �⇑ let x = u in t : ρ, given that Γ �
poly

⇑ u : σ and Γ, x : σ �⇑ t : ρ. By
induction hypothesis Γ, x : σ �⇓ t : ρ and the result follows by rule let.

The second part can be derived with rule gen1. It is Γ �
poly

⇑ t : ∀a.ρ, with a = ftv(ρ)− ftv(Γ) and Γ �⇑ t : ρ.

By induction hypothesis Γ �⇓ t : ρ and by using rule gen2 we get Γ �
poly

⇓ t : ∀a.ρ as required.

Lemma 3.12 (Instantiation Substitution). If �
inst

δ σ ≤ ρ then �
inst

δ Sσ ≤ Sρ.

Proof. For δ =⇓ the result follows directly by the substitution property for �
subσ

. For δ =⇑ by inversion
σ = ∀a.ρ1 and ρ = [a 	→ τ]ρ1. Assume without loss of generality that a /∈ vars(S). Then Sσ = ∀a.Sρ1 and
Sρ = [a 	→ Sτ]Sρ1. The result follows by rule inst1.

Lemma 3.13 (Substitution).

1. If Γ �δ t : ρ then SΓ �δ t : Sρ.

2. If Γ �
poly

δ t : σ then SΓ �
poly

δ t : Sσ.

36

Proof. We prove all claims simultaneously by induction on the height of the derivations. For each of the
claims we assume that all claims hold for derivations of smaller height.

For the first part we have the following cases. Case int follows by rule int. Case var follows by Lemma 3.12.
Case abs1 follows by induction hypothesis and rule abs1. Case abs2 follows by induction hypothesis and
rule abs2. Case aabs1 follows by induction hypothesis and rule aabs1. Case aabs2 follows bythe substi-

tution property of �
subσ

, induction hypothesis, and rule aabs2. Case app follows by induction hypothesis,
Lemma 3.12, and rule app. Case annot follows by induction hypothesis, Lemma 3.12, and rule annot.
Case let follows by induction hypothesis and rule let.

For the second part we have the following cases.

• Case gen1. We have that Γ �
poly

⇑ t : ∀a.ρ, given that a = ftv(ρ)−ftv(Γ) and Γ � t : ρ. Assume without

loss of generality that a /∈ vars(S). Consider a substitution [a 	→ b] such that b /∈ vars(S), ftv(Γ, ρ).
By induction hypothesis S [a 	→ b]Γ �⇑ t : S [a 	→ b]ρ, or equivalently SΓ �⇑ t : S [a 	→ b]ρ.

Now we can show that b = ftv([a 	→ b]Sρ)−ftv(SΓ). Suppose instead that there is a b /∈ ftv([a 	→ b]Sρ)−
ftv(SΓ) which means that b ∈ ftv(SΓ), since we know that b ∈ ftv([a 	→ b]Sρ). But then, since
b /∈ vars(S), it must be that b ∈ ftv(Γ), a contradiction. On the other hand, suppose that we have
a variable g ∈ ftv([a 	→ b]Sρ) − ftv(SΓ) but g /∈ b. Note that it must be that g /∈ a as well simply
because a /∈ ftv([a 	→ b]Sρ). Then this means that there is some variable d ∈ ρ such that g ∈ ftv(Sd).
Now, d must be in ftv(Γ), otherwise d ∈ a and then g ∈ a. But if d ∈ ftv(Γ) then g ∈ ftv(Γ), a
contradiction. Therefore it is indeed the case that b = ftv([a 	→ b]Sρ)− ftv(SΓ) and and we can apply
the rule gen1 to get the result.

• Case gen2. In this case Γ �
poly

⇓ t : ∀a.ρ, given that a /∈ ftv(Γ) and Γ �⇓ t : ρ. Consider a substitution
[a 	→ c] such that c /∈ ftv(Γ), vars(S). Then by induction hypothesis S [a 	→ c]Γ �⇓ t : S [a 	→ c]ρ,

or equivalently, SΓ �⇓ t : S [a 	→ c]ρ. Applying rule gen2 we get SΓ �
poly

⇓ t : ∀c.S [a 	→ c]ρ, or

SΓ �
poly

⇓ t : S (∀a.ρ).

3.2.1 Shallow subsumption

Definition 3.14 (Shallow subsumption). We define a subset of the subsumption relation, �
sh

· ≤ ·, which
we call shallow subsumption as follows:

b �∈ ftv(∀a.ρ)
sub

�
sh

∀a.ρ ≤ ∀b.[a 	→ τ]ρ

Notice that shallow subsumption is essentially ML subsumption. The rule sub is equivalent to the rule sub

of the predicative F-eta subsumption.

Lemma 3.15. If �
sh

σ1 ≤ σ2 then �
ol

σ1 ≤ σ2 and �
dsk

σ1 ≤ σ2.

Proof. The first part follows by application of Lemma 2.2 (reflexivity), rule spec, and rule skol. For the

second part, �
η

σ1 ≤ σ2 by rule sub, and by Corollary 2.31 we get �
dsk

σ1 ≤ σ2.

Lemma 3.16. If �
sh

σ1 ≤ σ2 then ftv(σ1) ⊆ ftv(σ2).

Proof. It must be that σ1 = ∀a.ρ and σ2 = ∀b.[a 	→ τ]ρ. Then for every c ∈ ftv(∀a.ρ) = ftv(ρ)− a it must
be that c ∈ ftv([a 	→ τ]ρ).

37

Lemma 3.17. �
sh

SΓ(ρ) ≤ SΓ(Sρ).

Proof. Let Γ(ρ) = ∀a.ρ where a = ftv(ρ) − ftv(Γ). Let g be a new set of variables, such that g /∈
ftv(Γ), vars(S), ftv(ρ). Then SΓ(ρ) = ∀g.S ([a 	→ g]ρ).

Now, let SΓ(Sρ) = ∀b.Sρ, where b ∈ ftv(Sρ)−ftv(SΓ). We want to prove that �
sh

∀g.S ([a 	→ g]ρ) ≤ ∀b.Sρ.
First we need to show that b /∈ ftv(SΓ(ρ)). By contradiction, assume that there exists a b ∈ b such that
b ∈ ftv(SΓ(ρ)). Therefore there exists d ∈ ftv(Γ(ρ)) such that b ∈ Sd . From this we get that d ∈ ftv(ρ) and
d ∈ ftv(Γ). Then, since b ∈ Sd , b ∈ SΓ, which is a contradiction to the fact that b ∈ ftv(Sρ) − ftv(SΓ).
Therefore, it only remains to be shown that for some types τ it is the case that [g 	→ τ]S ([a 	→ g]ρ) = Sρ.
Pick τ = Sa.

Lemma 3.18 (Shallow Subsumption Weakening). When �
subσ

is either �
ol

or �
dsk

the following are
true:

1. If �
sh

σ1 ≤ σ2 and �
inst

⇓ σ2 ≤ ρ then �
inst

⇓ σ1 ≤ ρ.

2. If �
sh

σ1 ≤ σ2 and �
inst

⇑ σ2 ≤ ρ then �
inst

⇑ σ1 ≤ ρ.

Moreover in each case the two derivations have the same height.

Proof. For the first part, by Lemma 3.15, �
subσ

σ1 ≤ σ2. By inversion �
subσ

σ2 ≤ ρ, therefore by transitivity

�
subσ

σ1 ≤ ρ and by rule inst2 we get the result.

For the second part, let σ1 = ∀a.ρ1 and σ2 = ∀b.[a 	→ τa]ρ1, where b /∈ ftv(σ1). By inversion ρ =
[b 	→ τb][a 	→ τa]ρ1, or, since b /∈ ftv(σ1), ρ = [a 	→ Sτa]ρ1, where S = [b 	→ τb]. We get the result by
applying rule inst1.

Lemma 3.19 (Weakening). Given two contexts, Γ, Γ′, if dom(Γ) = dom(Γ′) and for all x ∈ dom(Γ) it is

�
sh

Γ(x) ≤ Γ′(x) then the following are true:

1. If Γ′ �⇑ t : ρ then Γ �⇑ t : ρ.

2. If Γ′ �⇓ t : ρ then Γ �⇓ t : ρ.

3. If Γ′ �
poly

⇓ t : σ then Γ �
poly

⇓ t : σ.

4. If Γ′ �
poly

⇑ t : σ then Γ �
poly

⇑ t : σ′ where �
sh

σ′ ≤ σ.

Moreover, for each implication, the two derivations have the same height.

Proof. We prove the four goals simultaneously by induction on the height of the derivations. For each goal
the induction hypothesis asserts all others for any derivations of smaller height. We proceed by case analysis
on the last rule used.

For the first goal we have the following cases for the last rule used in the derivation of Γ′ �⇑ t : ρ.

• Case var. We have that Γ′ �⇑ x : ρ, given that �
inst

⇑ σ ≤ ρ and x : σ ∈ Γ′. By our assumptions, there

exists a σ0 such that x : σ0 ∈ Γ and �
sh

σ0 ≤ σ. Then the result follows from Lemma 3.18 and by
applying rule var again.

• Case abs1. Here Γ′ �⇑ \x.t : τ → ρ given that Γ′, x : τ �⇑ t : ρ. By induction hypothesis
Γ, x : τ �⇑ t : ρ and by the rule abs1 we are done.

38

• Case aabs1. We have that Γ′ �⇑ \x ::σ.t : σ → ρ given that Γ′, x : σ �⇑ t : ρ. By induction hypothesis
Γ, x : σ �⇑ t : ρ and by applying rule aabs1 we are done.

• Case app. Here Γ′ �⇑ t u : ρ given that Γ′ �⇑ t : σ → σ′, Γ′ �
poly

⇓ u : σ and �
inst

⇑ σ′ ≤ ρ. By induction

hypothesis Γ �⇑ t : σ → σ′ and Γ �
poly

⇓ u : σ, and by applying rule app we are done.

• Case let. Here Γ′ �⇑ let x = u in t : ρ given that Γ′ �
poly

⇑ u : σ and Γ′, x : σ �⇑ t : ρ. By induction

hypothesis Γ �
poly

⇑ u : σ′ so that �
sh

σ′ ≤ σ. Then, by induction hypothesis Γ, x : σ′ �⇑ t : ρ and by
applying the rule let we are done.

For the second goal we have the following cases for the last rule used in the derivation of Γ′ �⇓ t : ρ.

• Case var. Similar to the case for var above.

• Case abs2. We have that Γ′ �⇓ (\x.t) : σa → σr , given that Γ′, x : σa �
poly

⇓ t : σr . By induction

hypothesis Γ, x : σa �
poly

⇓ t : σr , and by applying rule abs2 this case is done.

• Case aabs2. Here Γ′ �⇓ \x::σx.t : σa → σr given that �
ol

σa ≤ σx and Γ′, (x : σx) �
poly

⇓ t : σr . Then,

by induction hypothesis we get that Γ, (x : σx) �
poly

⇓ t : σr and by rule aabs2 we are done.

• Case app. Similar to the case for app above.

• Case let. Similar to the case for let above.

For the third part, Γ′ �
poly

⇓ t : σ can be derived using the gen2 rule. Let σ = ∀a.ρ and then we have that

Γ′ �
poly

⇓ t : ∀a.ρ given that Γ′ �⇓ t : ρ for a /∈ ftv(Γ′). By induction hypothesis we get that Γ �⇓ t : ρ.
Moreover, since the two contexts are related pointwise in the shallow subsumption relation, by Lemma 3.16
we have that ftv(Γ) ⊆ ftv(Γ′) hence b /∈ ftv(Γ), and we can apply gen2 to get the result.

Finally Γ′ �
poly

⇑ t : σ is derivable using the gen1 rule. Assume σ = ∀a.ρ where Γ′ �⇑ t : ρ and a =
ftv(ρ)− ftv(Γ′). By induction hypothesis Γ �⇑ t : ρ and because ftv(Γ) ⊆ ftv(Γ′), using Lemma 3.16 it must
be that ftv(ρ) − ftv(Γ′) ⊆ ftv(ρ) − ftv(Γ), which means that a ⊆ c where c = ftv(ρ) − ftv(Γ). By applying

rule gen1 we get the result and it is easy to confirm that �
sh

∀c.ρ ≤ ∀a.ρ.

3.2.2 Connection of syntax-directed and bidirectional type system

Lemma 3.20. Let �
subσ

be �
ol

. Then

1. if Γ �sd t : ρ then Γ �⇑ ρ.

2. if Γ �
poly

sd t : σ then Γ �
poly

⇑ σ.

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used.

• Case int. Directly follows by rule int.

• Case var. Directly follows by rule var.

• Case abs. Follows by induction hypothesis and rule abs.

39

• Case app. We have that Γ �sd t u : ρ given that

Γ �sd t : (σ → σ′) (1)

Γ �
poly

sd u : σ1 (2)

�
subσ

σ1 ≤ σ (3)

�
inst

σ′ ≤ ρ (4)

By induction hypothesis for (1) we get Γ �⇑ t : σ → σ′ and moreover Γ �
poly

⇑ t : σ1, which, by

Lemma 3.11 gives Γ �
poly

⇓ t : σ1. By (3) and Lemma 3.9 Γ �
poly

⇓ t : σ and using (4) and app we get the
result.

• Case let. In this case we have that Γ � let x = u in t : ρ, given that

Γ �
poly

sd u : σ (5)

Γ, x : σ �
poly

sd t : ρ (6)

Then by induction Γ �
poly

⇑ u : σ and Γ, x : σ �⇑ t : ρ. Applying rule let finishes the case.

• Case annot. We have that Γ � (t::σ) : ρ, when

Γ �
poly

sd t : σ′ (7)

�
subσ

σ′ ≤ σ (8)

�
inst

σ ≤ ρ (9)

By induction hypothesis we get Γ �
poly

⇑ t : σ′, which by Lemma 3.11 gives Γ �
poly

⇓ t : σ′. From this, (8),

and Lemma 3.9 it must be that Γ �
poly

⇓ t : σ. From this and (9) we can apply rule annot to get the
result.

For the second part, the case for gen follows directly by rule gen in the bidirectional system.

If we replace the relation �
subσ

with �
dsk

the above theorem becomes false. The intuition is that type
annotations may induce some deep skolemisation subsumption that will succeed in the syntax-directed system
since there we generalise more and fail in the bidirectional where we check more! For example, consider

Γ = x : ∀a.a → b → b → c, u : Int and Γ �
poly

sd ((x u)::(Int → ∀c.Int → c)) : Int → ∀c.Int → c but it

is not derivable that Γ �
poly

⇑ ((x u)::(Int → ∀c.Int → c)) : Int → ∀c.Int → c —in fact it is not typable
at all. Notice that if all annotations and types of binders in the context were in prenex form, then it is easy

to see that it would never make a difference whether �
subσ

was �
ol

or �
dsk

and the theorem above would be
true.

Naturally the other direction does not hold; the bidirectional system is more powerful than the simple syntax-
directed system. As an example let σid = ∀a.a → a, Γ = g : (σid → σid) → Int and consider inferring
Γ �⇑ g (\x.x) : Int. This will type-check, as it is checkable that Γ �⇓ \x.x : σid → σid . Nevertheless it is

not derivable that Γ �sd g x : Int as it will not be derivable that �
subσ

∀a.a → a ≤ σid → σid .

3.3 Final version of the bidirectional system: deep skolemisation in polytype
checking

The bidirectional system with �
dsk

is a rich one but lacks two important properties, namely Lemma 3.20

becomes false when �
subσ

is �
dsk

and so does Lemma 3.9 when the types and contexts are related by �
dsk

instead of �
ol

.

40

Consider the alternative rule for �
poly

⇓ given below.

pr(σ) = ∀a.ρ
a /∈ ftv(Γ) Γ �⇓ t : ρ

gen2*
Γ �

poly

⇓ t : σ

Here’s an important property of this system.
Lemma 3.21. If Γ �⇓ t : ρ and pr(ρ) = ∀a.ρ0 where a /∈ ftv(Γ) then Γ �⇓ t : ρ0 and the new derivation
has the same height.

Proof. By induction on the height of the derivation Γ �⇓ t : ρ. We proceed with case analysis on the last
rule used.

• Case int. Directly follows by rule int.

• Case var. We have that Γ �⇓ x : ρ given that �
inst

⇓ σ ≤ ρ where x : σ ∈ Γ. Equivalently �
dsk

σ ≤ ρ.

Then it must be that �
dsk

σ ≤ ρ as well and there is a canonical derivation that uses skol at the end.

This means that �
dsk

σ ≤ ρ0 and by applying rule var again we get the result.

• Case abs2. We have that Γ �⇓ (\x.t) : (σa → σr) given that Γ, (x : σa) �
poly

⇓ t : σr . It is easy

to see that Γ, (x : σa) �
poly

⇓ t : pr(σr) and has the same height, since pr(σr) = pr(pr(σr)). Then
by inversion pr(σr) = ∀a.ρr with a /∈ ftv(σa ,Γ) Γ, (x : σa) �⇓ t : ρr and by applying rule gen2*

Γ, (x : σa) �
poly

⇓ t : ρr as well. By rule abs2 we get Γ �⇓ t : σa → ρr as required.

• Case aabs2. In this case Γ �⇓ (\(x::σx).t) : (σa → σr) given that �
subσ

σa ≤ σx and Γ, (x : σx) �
poly

⇓

t : σr . With the same argument as in the case for abs2 it must be that Γ, (x : σx) �
poly

⇓ t : ρr where

pr(σr) = ∀a.ρr with a /∈ ftv(σa ,Γ). Moreover it is easy to check that �
dsk

pr(σa) ≤ σa . Applying rule
aabs2 again gives Γ, x : σx �⇓ t : σa → ρr and finishes the case.

• Case app. Here we have that Γ �⇓ t u : ρ given that

Γ �⇑ t : (σ → σ′) (1)

Γ �
poly

⇓ u : σ (2)

�
inst

⇓ σ′ ≤ ρ (3)

From (3) �
dsk

σ′ ≤ ρ. Consider the canonical derivation that ends with skol. Then, assuming that

a /∈ ftv(σ′) as well without loss of generality �
dsk

σ′ ≤ ρ0. Applying rule app again gives the result.

• Case let. In this case Γ �δ let x = u in t : ρ given that Γ �
poly

⇑ u : σ and Γ, x : σ �δ t : ρ. Notice
that since a /∈ ftv(Γ) and ftv(σ) ∈ ftv(Γ) by inversion, it must be that a /∈ ftv(Γ, x : σ), therefore the
case is done by application of the induction hypothesis and rule let.

• Case annot. We have that Γ �⇓ (t::σ) : ρ given that

Γ �
poly

⇓ t : σ (4)

�
inst

⇓ σ ≤ ρ (5)

With a similar argument as in the case for app we get that �
dsk

σ ≤ ρ0 and applying rule annot

finishes the case.

41

Some important properties first that carry along from Section 3 and still hold for this variation of the
bidirectional type system.
Lemma 3.22.

1. If Γ �⇑ t : ρ then Γ �⇓ t : ρ.

2. If Γ �
poly

⇑ t : σ then Γ �
poly

⇓ t : σ.

Proof. The proof of the first part is exactly like the proof of Lemma 3.11. For the second part we have

that Γ �
poly

⇑ t : σ by rule gen1 and assume that σ = ∀a.ρ where a /∈ ftv(Γ). Then Γ �⇑ t : ρ which by

induction hypothesis gives us that Γ �⇓ t : ρ. Now let pr(ρ) = ∀b.ρ0 such that b /∈ a, ftv(Γ). By Lemma 3.21

Γ �⇓ t : ρ0. But notice that pr(σ) = ∀ab.ρ0. Hence we can apply rule gen2* to get the result.

Lemma 3.23 (Substitution).

1. If Γ �δ t : ρ then SΓ �δ t : Sρ.

2. If Γ �
poly

δ t : σ then SΓ �
poly

δ t : Sσ.

Proof. Exactly like the proof of Lemma 3.13 except for the gen2* case for the second subgoal. In that case

we have that Γ �
poly

⇓ t : σ when pr(σ) = ∀a.ρ and a /∈ ftv(Γ) and Γ �⇓ t : ρ. Then, consider a substitution
S · [a 	→ c] such that c /∈ vars(S), ftv(Γ, ρ). By induction hypothesis SΓ �v t : S · [a 	→ c]ρ. But notice that
pr(Sσ) = S (pr(σ)) = S (∀a.ρ). With a renaming S (∀a.ρ) = ∀c.S [a 	→ c]ρ and we can apply rule gen2*

to get the result.

Lemma 3.24 (Weakening). Given two contexts, Γ, Γ′, if dom(Γ) = dom(Γ′) and for all x ∈ dom(Γ) it is

�
sh

Γ(x) ≤ Γ′(x) then the following are true:

1. If Γ′ �⇑ t : ρ then Γ �⇑ t : ρ.

2. If Γ′ �⇓ t : ρ then Γ �⇓ t : ρ.

3. If Γ′ �
poly

⇓ t : σ then Γ �
poly

⇓ t : σ.

4. If Γ′ �
poly

⇑ t : σ then Γ �
poly

⇑ t : σ′ where �
sh

σ′ ≤ σ.

Moreover, for each implication, the two derivations have the same height.

Proof. The proof is the same essentially as in Lemma 3.19 except for the case for gen2* in the third subgoal.

In this case Γ′ �
poly

⇓ t : σ. Let pr(σ) = ∀a.ρ and then we have that Γ′ �
poly

⇓ t : σ given that Γ′ �⇓ t : ρ
for a /∈ ftv(Γ′). By induction hypothesis we get that Γ �⇓ t : ρ. Moreover, since the two contexts are
related pointwise in the shallow subsumption relation, by Lemma 3.16 we have that ftv(Γ) ⊆ ftv(Γ′) hence
a /∈ ftv(Γ), and we can apply gen2* to get the result.

Now, even in this system we cannot arbitrarily strengthen contexts in the �
dsk

relation and check the same
ρ-type7. For example, consider Γ1 = x : ∀abc.a → Int → b → b → c and Γ2 = x : ∀a.a → Int → ∀b.b →

7 This is somewhat ugly because it means that when a programmer writes her program and wants to revise the type

annotations in the rest of the program; he should change the type annotations so that the new types are only �
ol

more general

and not �
dsk

.

42

∀c.b → c. Then it is the case that Γ2 �⇓ x True : Int → ∀b.b → ∀c.b → c but this is not derivable when

Γ2 is replaced with Γ1, although Γ1 is a more general context in the �
dsk

way. However a very important
slight variation of the weakening lemma holds.

Lemma 3.25. Independently of whether �
subσ

is �
ol

or �
dsk

, if �
ol

Γ1 ≤ Γ2 pointwise then the following are
true:

1. If Γ2 �⇑ t : ρ2 then ∃ρ1.Γ1 �⇑ t : ρ1 and �
ol

ρ1 ≤ ρ2.

2. If Γ2 �⇓ t : ρ1 and �
ol

ρ1 ≤ ρ2 then Γ1 �⇓ t : ρ2.

3. If Γ2 �
poly

⇑ t : σ2 then ∃σ1.Γ1 �
poly

⇑ t : σ1 and �
ol

σ1 ≤ σ2.

4. If Γ2 �
poly

⇓ t : σ1 and �
dsk

σ1 ≤ σ2 then Γ1 �
poly

⇓ t : σ2. Notice the fourth claim that allows now for �
dsk

weakening.

Proof. The proof remains exactly the same as the proof of Lemma 3.9 except for the fourth part. Here we

have that Γ2 �
poly

⇓ t : σ1 given that

pr(σ1) = ∀a.ρ1 (1)

a /∈ ftv(Γ2) (2)

Γ2 �⇓ t : ρ1 (3)

We also have that �
dsk

σ1 ≤ σ2 or equivalently �
dsk

σ1 ≤ σ2. Consider the canonical derivation of this
that ends with skol. Let pr(σ2) = ∀b.ρ2 and without loss of generality b /∈ ftv(Γ1), ftv(∀a.ρ1). Then by

inversion it must be that �
dsk

σ1 ≤ ρ2. But �
dsk

pr(σ1) ≤ σ1 therefore �
dsk

∀a.ρ1 ≤ ρ2, or since skol can

only be trivially applied �
dsk

[a 	→ τ]ρ1 ≤ ρ2. By (3) and the substitution lemma �⇓ t : [a 	→ τ]ρ1 with the
same height. By induction hypothesis �⇓ t : ρ2 and by applying rule gen2* we are done.

Corollary 3.26. If Γ �
poly

⇓ t : σ1 and �
dsk

σ1 ≤ σ2 then Γ �
poly

⇓ t : σ2.

Proof. Special case of the fourth subclaim of Lemma 3.25.

Lemma 3.27.

1. If Γ �sd t : ρ then Γ �⇑ ρ.

2. If Γ �
poly

sd t : σ then Γ �
poly

⇑ σ.

Proof. Exactly like the proof of Lemma 3.20 but now appealing to Corollary 3.26 in the cases for annot

and app.

Notice now that Lemma 3.27 is independent of whether we use �
dsk

or �
ol

.

Lemma 3.28 (Weakening). Let �
subσ

be �
dsk

. Suppose that �
dsk

Γ1 ≤ Γ2. Then

1. if Γ2 �⇑ t : ρ2 then ∃ρ1.Γ1 �⇑ t : ρ1 and �
dsk

Γ1(ρ1) ≤ Γ2(ρ2).

2. if Γ2 �⇓ t : ρ1 and pr(ρ1) = ρ1 and pr(ρ2) = ρ2 and �
dsk

ρ1 ≤ ρ2 then Γ1 �⇓ t : ρ2.

3. if Γ2 �
poly

⇑ t : σ2 then ∃σ1.Γ1 �
poly

⇑ t : σ1 and �
dsk

σ1 ≤ σ2.

43

4. if Γ2 �
poly

⇓ t : σ1 and �
dsk

σ1 ≤ σ2 then Γ1 �
poly

⇓ t : σ2.

Proof. We prove the four claims simultaneously by induction on the height of the derivations. For each claim
we assume that all others hold for derivations of smaller height. We proceed by case analysis on the last rule
used.

Part 1: We have the following cases.

• Case int. Just pick Int as ρ1 again.

• Case var. We have that Γ2 �⇑ x : ρ2 given that x : σ2 ∈ Γ2 and

�
inst

⇑ σ2 ≤ ρ2 (1)

Then, x : σ1 ∈ Γ1 such that

�
dsk

σ1 ≤ σ2 (2)

Assume that b = ftv(ρ2) − ftv(Γ2). Then by the substitution lemma we get Γ2 �⇑ x : [b 	→ d]ρ2

for some d /∈ ftv(Γ1,Γ2, ρ2). By (1) and the substitution lemma we get �
inst

⇑ σ2 ≤ [b 	→ d]ρ2 and by

transitivity of �
dsk

�
dsk

σ1 ≤ [b 	→ d]ρ2 (3)

Moreover assume that σ1 = ∀a.ρ1 and without loss of generality assume that a /∈ ftv(Γ1). Then

�
inst

⇑ σ1 ≤ ρ1. By (3) we get that �
dsk

∀a.ρ1 ≤ [b 	→ d]ρ2. Consider a ′ = ftv(ρ1) − ftv(Γ1). Then

a ⊆ a ′ and consequently �
dsk

∀a ′.ρ1 ≤ [b 	→ d]ρ2. Then it must be that d /∈ ftv(∀a ′.ρ1) because

otherwise d ∈ ftv(Γ1). Then by skol admissibility �
dsk

∀a ′.ρ1 ≤ ∀d.[b 	→ d]ρ2, or equivalently

�
dsk

Γ1(ρ1) ≤ Γ2(ρ2).

• Case abs. Here we have that Γ2 �⇑ (\x.t) : (τ → ρ2), given that

Γ2, x : τ �⇑ t : ρ2 (4)

Consider b = ftv(ρ2) − ftv(Γ2, τ) and a renaming substitution [b 	→ d] where d /∈ ftv(Γ1,Γ2, τ, ρ2).
Then by (4) and the substitution lemma we get Γ2, x : τ �⇑ t : [b 	→ d]ρ2. By induction hypothesis
there exists a ρ1 such that Γ1, x : τ �⇑ t : ρ1 and

�
dsk

∀a.ρ1 ≤ ∀d.[b 	→ d]ρ2 (5)

where a = ftv(ρ1)− ftv(Γ1, τ). By the rule abs we get that Γ1 �⇑ (\x.t) : (τ → ρ1). We wish to show
that

�
dsk

∀a1.τ → ρ1 ≤ ∀a2.τ → ρ2 (6)

where a1 = ftv(ρ1, τ) − ftv(Γ) and a2 = ftv(ρ2, τ) − ftv(Γ). Notice that if c = ftv(τ) − ftv(Γ) then

a1 = ac and a2 = bc. From (5), since by sub �
dsk

∀d.[b 	→ d]ρ2 ≤ [b 	→ d]ρ2, and by transitivity we
get that

�
dsk

∀a.ρ1 ≤ [b 	→ d]ρ2 (7)

Then, by rule fun �
dsk

τ → ∀a.ρ1 ≤ τ → [b 	→ d]ρ2 and �
dsk

∀a.τ → ρ1 ≤ τ → [b 	→ d]ρ2 by

transitivity and rule distrib. By sub and transitivity �
dsk

∀ac.τ → ρ1 ≤ τ → [b 	→ d]ρ2. Now we
claim that c /∈ ftv(∀ac.τ → ρ1) and d /∈ ftv(∀ac.τ → ρ1) similarly. The former because we quantified
over them, the latter because the opposite would mean that d ∈ ftv(Γ1). Then we can apply skol

admissibility to get that �
dsk

∀ac.τ → ρ1 ≤ ∀dc.τ → [b 	→ d]ρ2 and by an α-renaming of d to b we
are done.

44

• Case aabs. Similar to the case for abs.

• Case app. In this case we have that Γ2 �⇑ t u : ρ2 given that

Γ2 �⇑ t : (σ → σ′) (8)

Γ2 �⇓ u : σ (9)

�
inst

⇑ σ′ ≤ ρ2 (10)

Consider a renaming substitution g
1

= ftv(σ, σ′, ρ2)− ftv(Γ2) to fresh g
2
, such that g

2
/∈ ftv(Γ1). Then

by the substitution lemma (8) becomes

Γ2 �⇑ t : (σ0 → σ′
0
) (11)

where σ0 = [g1 	→ g2]σ and σ′
0

= [g1 	→ g2]σ
′. By induction hypothesis on (11) we get that there exists

a ρt with

Γ1 �⇑ t : ρt (12)

�
dsk

Γ1(ρt) ≤ ∀g
2
.σ0 → σ′

0
(13)

Because of the choice of g
2
, from equation (13) we get

�
dsk

Γ1(ρt) ≤ σ0 → σ′
0

(14)

There are two possible cases for ρt . It is either a type variable a /∈ ftv(Γ1) or it will be an arrow type
σt

1
→ σt

2
.

– Assume that ρt = σt
1
→ σt

2
and let a = ftv(ρt)−ftv(Γ1). Then by equation (14) and Corollary 2.20

we get:

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ ∀c.pr(σ0) → ρ′

0
(15)

where

b /∈ ftv(σt
1
) (16)

c /∈ ftv(σ0,Γ1,Γ2, σ
t
1
, σt

2
) (17)

pr(σt
2
) = ∀b.ρt

2
(18)

pr(σ′
0
) = ∀c.ρ′

0
(19)

By (15) and (17) it must be that

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ pr(σ0) → ρ′

0
(by inversion)

⇒ �
ol

[a 	→ τa , b 	→ τb](pr(σ
t
1
) → ρt

2
) ≤ pr(σ0) → ρ′

0
(by inversion)

⇒ �
ol

[a 	→ τa]pr(σt
1
) → [a 	→ τa , b 	→ τb]ρ

t
2
≤ pr(σ0) → ρ′

0

From the last equation, by inversion we get that

�
ol

pr(σ0) ≤ [a 	→ τa]pr(σt
1
) (20)

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′

0
(21)

From Corollary (2.20) and (20)

�
dsk

σ0 ≤ [a 	→ τa]σt
1

(22)

From (12) and the substitution lemma, we get

Γ1 �⇑ t : [a 	→ τa](σt
1
→ σt

2
) (23)

45

By the substitution lemma for (9) we have that Γ2 �⇓ u : σ0 and by induction hypothesis and (22)
we have

Γ1 �⇓ u : [a 	→ τa]σt
1

(24)

Then, if [a 	→ τa]σt
2

= ∀g
3
.ρ1, where without loss of generality g

3
/∈ ftv(Γ1) we have that �

inst

⇑

[a 	→ τa]σt
2
≤ ρ1. We have all the premises of the rule app and applying it gives us that Γ1 � t u :

ρ1. Then it is the case that Γ1(ρ1) = Γ1([a 	→ τa]σt
2
). By (21) we get that

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ′

0

⇒ �
ol

∀b.[a 	→ τa]ρt
2
≤ ρ′

0

⇒ �
ol

∀db.[a 	→ τa]ρt
2
≤ ρ′

0

where d = ftv(τa , ρt
2
) − ftv(Γ1). But now we know that c /∈ ftv(∀db.[a 	→ τa]ρt

2
), because it

must be that ftv(∀db.[a → τa]ρt
2
) ⊆ ftv(Γ1), and by (17) c /∈ ftv(Γ1). Then we can apply rule

skol to get that �
ol

∀db.[a 	→ τa]ρt
2
≤ ∀c.ρ′

0
, and by Corollary 2.20 �

dsk
∀d.[a 	→ τa]σt

2
≤ σ′

0
.

By the substitution lemma for (10) we have �
inst

⇑ σ′
0
≤ [g1 → g2]ρ2 and by transitivity we have

that �
dsk

∀d.[a 	→ τa]σt
2
≤ [g1 	→ g2]ρ2. Now it cannot be that g

2
∈ ∀d.[a 	→ τa]σt

2
because

g
2

/∈ ftv(Γ1). Then we can apply skol admissibility to get �
dsk

∀d.[a 	→ τa]σt
2
≤ ∀g

2
.[g1 	→ g2]ρ2

or by dropping useless quantifiers and α-renaming �
dsk

∀d.[a 	→ τa]σt
2
≤ Γ2(ρ2) as required.

– Assume that ρt = a and let a /∈ ftv(Γ1). Then by equation (14) and Corollary 2.20 we get:

�
ol

∀a.a ≤ ∀c.pr(σ0) → ρ′
0

(25)

where

c /∈ ftv(σ0,Γ1,Γ2) (26)

pr(σ′
0
) = ∀c.ρ′

0
(27)

By (25) and (26) and inversion on �
ol

it must be that

�
ol

τ1 → τ2 ≤ pr(σ0) → ρ′
0

(28)

Now yet one more inversion gives

�
ol

pr(σ0) ≤ τ1 (29)

�
ol

τ2 ≤ ρ′
0

(30)

From Corollary (2.20) and (29)

�
dsk

σ0 ≤ τ1 (31)

From (12) and the substitution lemma, we get

Γ1 �⇑ t : τ1 → τ2 (32)

By the substitution lemma for (9) we have that Γ2 �⇓ u : σ0 and by induction hypothesis and (31)
we have

Γ1 �⇓ u : τ1 (33)

Then �
inst

⇑ τ2 ≤ τ2. We have all the premises of the rule app and applying it gives us that
Γ1 � t u : τ2. By (30) we get that

�
ol

∀d.τ2 ≤ ρ′
0

(34)

46

where d = ftv(τ2) − ftv(Γ1). But now we know that c /∈ ftv(∀d.τ2), because it must be that
ftv(∀db.[a 	→ τa]ρt

2
) ⊆ ftv(Γ1), and by (26) c /∈ ftv(Γ1). Then we can apply rule skol to get that

�
ol

∀d.τ2 ≤ ∀c.ρ′
0
, and by Corollary 2.20 �

dsk
∀d.τ2 ≤ σ′

0
. By the substitution lemma for (10)

we have �
inst

⇑ σ′
0
≤ [g1 	→ g2]ρ2 and by transitivity we have that �

dsk
∀d.τ2 ≤ [g1 	→ g2]ρ2. Now

it cannot be that g
2
∈ ∀d.τ2 because g

2
/∈ ftv(Γ1). Then we can apply skol admissibility to

get �
dsk

∀d.τ2 ≤ ∀g
2
.[g1 	→ g2]ρ2 or by dropping useless quantifiers and α-renaming �

dsk
∀d.τ2 ≤

Γ2(ρ2) as required.

• Case let. In this case we have that Γ2 �⇑ let x = u in t : ρ2, given that

Γ2 �
poly

⇑ u : σ (35)

Γ2, x : σ �⇑ t : ρ2 (36)

By induction hypothesis for (35) Γ1 �⇑ u : σ′ such that �
dsk

σ′ ≤ σ. By induction hypothesis for (36)

we get Γ1, x : σ′ �⇑ t : ρ1 such that �
dsk

Γ1, x : σ′(ρ1) ≤ Γ2, x : σ(ρ2) or since σ′ is generalised over Γ1

and σ is generalised over Γ2 this becomes �
dsk

Γ1(ρ1) ≤ Γ2(ρ2) as required. Applying rule let finishes
the case.

• Case annot. We have that Γ2 �⇑ (t::σ) : ρ2, given that

Γ2 �⇓ t : σ (37)

�
inst

⇑ σ ≤ ρ2 (38)

By induction hypothesis for (37) Γ1 �⇓ t : σ. Assume now that σ = ∀a.ρ1. and without loss of

generality, a /∈ ftv(Γ1,Γ2). Then �
inst

⇑ σ ≤ ρ1. Moreover Γ1ρ1 = σ, since type annotations are closed.
Additionally ρ2 = [a 	→ τ]ρ1 for some τ . By applying rule annot we get that Γ1 �⇑ (t::σ) : ρ1.

We finally have to show that �
dsk

Γ1ρ1 ≤ Γ2([a 	→ τ]ρ1). Since type annotations are closed this is

equivalent to showing that �
dsk

σ ≤ Γ2[a 	→ τ]ρ1, or by skol admissibility it is enough to show that

�
dsk

σ ≤ [a 	→ τ]ρ1, which follows by (38).

Part 2: For this part we have the cases below.

• Case int. In this case it must be that ρ2 = Int as well and we are done by rule int.

• Case var. We have that Γ2 �⇓ x : ρ1, given that x : σ2 ∈ Γ2 and �
inst

⇓ σ2 ≤ ρ1. It must be then that

x : σ1 ∈ Γ1 and by transitivity of �
dsk

, �
inst

⇓ σ1 ≤ ρ1 and by one more use of transitivity �
inst

⇓ σ1 ≤ ρ2.
Applying rule var finishes the case.

• Case abs2. In this case Γ2 �⇓ (\x.t) : (σa → σr) given that Γ2, (x : σa) �
poly

⇓ t : σr . By assumptions

�
dsk

σa → σr ≤ ρ2 or equivalently,

�
dsk

σa → σr ≤ ρ2 (39)

By (39), and since ρ2 is already in weak prenex form by assumptions the only rule applicable is fun.

Therefore by inversion it must be that ρ2 = σ21 → σ22, such that �
dsk

σ21 ≤ σa and �
dsk

σr ≤ σ22.
Also it must be that pr(σr) = σr and pr(σ22) = σ22. Then, by induction hypothesis we get that

Γ1, (x : σ21) �
poly

⇓ t : σ22 and by applying rule abs2 we get the result.

• Case aabs2. Here Γ2 �⇓ (\(x::σx).t) : (σa → σr) where

�
subσ

σa ≤ σx (40)

Γ2, (x : σx) �
poly

⇓ t : σr (41)

47

By assumptions �
dsk

σa → σr ≤ ρ2 or equivalently

�
dsk

σa → σr ≤ ρ2 (42)

By inversion on a canonical derivation of (42), it must be that ρ2 = σ21 → σ22, such that �
dsk

σ21 ≤ σa

and �
dsk

σr ≤ σ22. Also it must be that pr(σr) = σr and pr(σ22) = σ22. By (40) and transitivity of

�
dsk

we get �
dsk

σ21 ≤ σx . Moreover, by induction hypothesis for (41) Γ1, (x : σx) �
poly

⇓ t : σ22 and the
result follows by aabs2.

• Case app. In this case we have that Γ2 �⇓ t u : ρ1 given that

Γ2 �⇑ t : (σ → σ′) (43)

Γ2 �⇓ u : σ (44)

�
inst

⇓ σ′ ≤ ρ1 (45)

Consider a renaming substitution g
1

= ftv(σ, σ′, ρ1)− ftv(Γ2) to fresh g
2
, such that g

2
/∈ ftv(Γ1). Then

by the substitution lemma (43) becomes

Γ2 �⇑ t : (σ0 → σ′
0
) (46)

where σ0 = [g1 	→ g2]σ and σ′
0

= [g1 	→ g2]σ
′. By induction hypothesis on (46) we get that there exists

a ρt with

Γ1 �⇑ t : ρt (47)

�
dsk

Γ1(ρt) ≤ g
2
.σ0 → σ′

0
(48)

Because of the choice of g
2
, from equation (48) we get

�
dsk

Γ1(ρt) ≤ σ0 → σ′
0

(49)

Moreover if ρ0

1
= [g1 	→ g2]ρ1, by (49) and (45) it must be that

�
dsk

Γ1(ρt) ≤ σ0 → ρ0

1
(50)

There are two possible cases for ρt . It is either a type variable a /∈ ftv(Γ1) or it will be an arrow type
σt

1
→ σt

2
.

– Assume that ρt = σt
1
→ σt

2
and let a = ftv(ρt)−ftv(Γ1). Then by equation (49) and Corollary 2.20

we get:

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ pr(σ0) → ρ1

1
(51)

where

b /∈ ftv(σt
1
) (52)

pr(σt
2
) = ∀b.ρt

2
(53)

pr(ρ0

1
) = ρ1

1
(54)

Notice that we used the fact that ρ0

1
is in weak prenex form in equation (54). By (51) it must

be that

�
ol

∀ab.pr(σt
1
) → ρt

2
≤ pr(σ0) → ρ1

1
(by inversion)

⇒ �
ol

[a 	→ τa , b 	→ τb](pr(σ
t
1
) → ρt

2
) ≤ pr(σ0) → ρ1

1
(by inversion)

⇒ �
ol

[a 	→ τa]pr(σt
1
) → [a 	→ τa , b 	→ τb]ρ

t
2
≤ pr(σ0) → ρ1

1

48

From the last equation, by inversion we get that

�
ol

pr(σ0) ≤ [a 	→ τa]pr(σt
1
) (55)

�
ol

[a 	→ τa , b 	→ τb]ρ
t
2
≤ ρ1

1
(56)

From Corollary (2.20) and (55)

�
dsk

σ0 ≤ [a 	→ τa]σt
1

(57)

From (47) and the substitution lemma, we get

Γ1 �⇑ t : [a 	→ τa](σt
1
→ σt

2
) (58)

By the substitution lemma for (44) we have that Γ2 �⇓ u : σ0 and by induction hypothesis
and (57) we have

Γ1 �⇓ u : [a 	→ τa]σt
1

(59)

From (56) we have that �
ol

∀b.[a 	→ τa]ρt
2
≤ ρ1

1
or by Corollary 2.20

�
dsk

[a 	→ τa]σt
2
≤ ρ0

1
(60)

Consider the substitution V = [g2 	→ g1]; then the last equation and (58), (59), and (60) become:

V Γ1 �⇑ t : V [a 	→ τa](σt
1
→ σt

2
) (61)

V Γ1 �⇓ u : V [a 	→ τa]σt
1

(62)

�
dsk

V [a 	→ τa]σt
2
≤ V ρ0

1
(63)

But V Γ1 = Γ1 and V ρ0

1
= ρ1, therefore by transitivity and (63) �

dsk
V [a 	→ τa]σt

2
≤ ρ2. Then we

can apply rule app to get Γ1 �⇓ t u : ρ2.

– Assume that ρt = a and let a /∈ ftv(Γ1). Then by equation (14) and Corollary 2.20 we get:

�
ol

∀a.a ≤ pr(σ0) → ρ0

1
(64)

since pr(ρ0

1
) = ρ1

1
. By (64) and inversion on �

ol
it must be that

�
ol

τ1 → τ2 ≤ pr(σ0) → ρ1

1
(65)

Now yet one more inversion gives

�
ol

pr(σ0) ≤ τ1 (66)

�
ol

τ2 ≤ ρ1

1
(67)

From Corollary (2.20) and (66)

�
dsk

σ0 ≤ τ1 (68)

From (12) and the substitution lemma, we get

Γ1 �⇑ t : τ1 → τ2 (69)

By the substitution lemma for (9) we have that Γ2 �⇓ u : σ0 and by induction hypothesis and (68)
we have

Γ1 �⇓ u : τ1 (70)

From (67) and Corollary 2.20 we have that

�
dsk

τ2 ≤ ρ0

1
(71)

49

Consider the substitution V = [g2 	→ g1]; then the last equation and (69), (70), and (71) become:

V Γ1 �⇑ t : V τ1 → V τ2 (72)

V Γ1 �⇓ u : V τ1 (73)

�
dsk

V τ2 ≤ V ρ0

1
(74)

But V Γ1 = Γ1 and V ρ0

1
= ρ1, therefore by transitivity and (74) �

dsk
V τ2 ≤ ρ2. Then we can

apply rule app to get Γ1 �⇓ t u : ρ2.

• Case annot. Here Γ2 �⇓ (t::σ) : ρ1 given that

Γ2 �
poly

⇓ t : σ (75)

�
inst

⇓ σ ≤ ρ1 (76)

By induction hypothesis for (75) Γ1 �
poly

⇓ t : σ and by transitivity of �
dsk

we obtain �
inst

⇓ σ ≤ ρ2. The
case is done by applying rule annot once again.

• Case let. In this case we have Γ2 �⇓ let x = u in t : ρ1 when

Γ2 �
poly

⇑ u : σ (77)

Γ2, x : σ �⇓ t : ρ1 (78)

By induction hypothesis for (77) Γ1 �
poly

⇑ u : σ′ such that �
dsk

σ′ ≤ σ. Then, by induction hypothesis
for (78) Γ1, x : σ′ �⇓ t : ρ2 and we are done with an application of rule let.

Part 3: For this part, by rule gen1 we have that σ2 = ∀b.ρ2 such that b = ftv(ρ2)−ftv(Γ2) and Γ2 �⇑ t : ρ2.

By induction hypothesis for some ρ1 Γ1 �⇑ t : ρ1 and �
dsk

σ2 ≤ ∀a.ρ1, where a = ftv(ρ1)− ftv(Γ1). Applying

the rule gen1 finishes the case since we get Γ1 �
poly

⇑ t : ∀a.ρ1.

Part 4: By rule gen2* we have that Γ2 �
poly

⇓ t : σ1 given that pr(σ1) = ∀a.ρ1 and a /∈ ftv(Γ2) and

Γ2 �⇓ t : ρ1 (79)

We also have that �
dsk

σ1 ≤ σ2, or �
dsk

σ1 ≤ σ2. We know that �
dsk

pr(σ1) ≤ σ2 and by transitivity of �
dsk

�
dsk

∀a.ρ1 ≤ σ2 (80)

The canonical derivation of (80) must have the rule skol applied last. Assume then that pr(σ2) = ∀b.ρ2

and without loss of generality
b /∈ ftv(Γ1, σ1) (81)

Then it must be that �
dsk

∀a.ρ1 ≤ ρ2 and by inversion �
dsk

[a 	→ τ]ρ1 ≤ ρ2, for some τ . Moreover
pr([a 	→ τ]ρ1) = [a 	→ τ]ρ1 and pr(ρ2) = ρ2. From (79) and the substitution lemma we get

Γ2 �⇓ t : [a 	→ τ]ρ1 (82)

From (82) and induction hypothesis we get Γ1 �⇓ t : ρ2 and because of (81) we can apply rule gen2* to get
the result.

50

pr(σ) = ∀a.ρ �→ t

pr(ρ1) = ∀b.ρ2 	→ t a /∈ b
prpoly

pr(∀a.ρ1) = ∀ab.ρ2 	→ λx:(∀ab.ρ2).Λa.t (x [a])

pr(σ2) = ∀a.ρ2 	→ t a �∈ ftv(σ1)
prfun

pr(σ1 → σ2) = ∀a.σ1 → ρ2 	→ λx:(∀a.σ1 → ρ2).λy:σ1.t (Λa.x [a] y)

prmono
pr(τ) = τ 	→ λx:τ.x

�
dsk

σ ≤ σ
′ �→ t

pr(σ2) = ∀a.ρ 	→ t1
a �∈ ftv(σ1) �

dsk
σ1 ≤ ρ 	→ t2

deep-skol
�
dsk

σ1 ≤ σ2 	→ λx:σ1.t1 (Λa.t2 x)

�
dsk

[a 	→ τ]ρ1 ≤ ρ2 	→ t
spec

�
dsk

∀a.ρ1 ≤ ρ2 	→ λx:(∀a.ρ).t (x [τ])

�
dsk

σ3 ≤ σ1 	→ t1 �
dsk

σ2 ≤ σ4 	→ t2
fun

�
dsk

(σ1 → σ2) ≤ (σ3 → σ4) 	→ λx:σ1 → σ2.λy:σ3.t2 (x (t1 y))

mono
�
dsk

τ ≤ τ 	→ λx:τ.x

Figure 10: Creating coercion terms

Γ �F t : σ

x : σ ∈ Γ
var

Γ �F x : σ
int

Γ �F i : Int

Γ, x : σ1 �F t : σ2

abs
Γ �F λx:σ1.t : σ1 → σ2

Γ �F t : σ1 → σ2 Γ �F u : σ1

app
Γ �F t u : σ2

Γ �F t : σ a /∈ ftv(Γ)
tabs

Γ �F Λa.t : ∀a.σ

Γ �F t : ∀a.σ
tapp

Γ �F t [σ1] : [a 	→ σ1]σ

Figure 11: System-F with open types

51

Γ �δ t1 : ρ �→ t2

int
Γ �δ i : Int 	→ i

�
inst

δ σ ≤ ρ 	→ f
var

Γ, (x : σ) �δ x : ρ 	→ f x

Γ, (x : τ) �⇑ t : ρ 	→ t1
abs1

Γ �⇑ (\x.t) : (τ → ρ) 	→ λx:τ.t1

Γ, (x : σa) �
poly

⇓ t : σr 	→ t1
abs2

Γ �⇓ (\x.t) : (σa → σr) 	→ λx:σa.t1

Γ, (x : σ) �⇑ t : ρ 	→ t1
aabs1

Γ �⇑ (\(x::σ).t) : (σ → ρ) 	→ λx:σ.t1

�
dsk

σa ≤ σx 	→ f

Γ, (x : σx) �
poly

⇓ t : σr 	→ t1
aabs2

Γ �⇓ (\(x::σx).t) : (σa → σr) 	→ λx:σa.[x 	→ (f x)]t1

Γ �⇑ t : (σ → σ′) 	→ t1 Γ �
poly

⇓ u : σ 	→ u1 �
inst

δ σ′ ≤ ρ 	→ f
app

Γ �δ t u : ρ 	→ f (t1 u1)

Γ �
poly

⇓ t : σ 	→ t1

�
inst

δ σ ≤ ρ 	→ f
annot

Γ �δ (t::σ) : ρ 	→ f t1

Γ �
poly

⇑ u : σ 	→ u1

Γ, x : σ �δ t : ρ 	→ t1
let

Γ �δ let x = u in t : ρ 	→ (λx:σ.t1) u1

Γ �
poly
δ t : σ �→ t1

a = ftv(ρ) − ftv(Γ)
Γ �⇑ t : ρ 	→ t1

gen1
Γ �

poly

⇑ t : ∀a.ρ 	→ Λa.t1

pr(σ) = ∀a.ρ 	→ f
a /∈ ftv(Γ) Γ �⇓ t : ρ 	→ t1

gen2
Γ �

poly

⇓ t : σ 	→ f (Λa.t1)

�
inst
δ σ ≤ ρ �→ t

inst1
�
inst

⇑ ∀a.ρ ≤ [a 	→ τ] ρ 	→ λx:(∀a.ρ).x [τ]
�
dsk

σ ≤ ρ 	→ t
inst2

�
inst

⇓ σ ≤ ρ 	→ t

Figure 12: Bidirectional higher-rank type system with retyping functions

52

3.3.1 Type-safety of the bidirectional system

The semantics of the language is defined via a translation to System-F terms (where open types are allowed
and treated as arbitrary constants). Subsumption creates coercion terms that are applied appropriately. We
give an more suitable presentation of weak prenex conversion and the subsumption relation in Figure 10.
System-F semantics are given in Figure 11. The actual translation is given in Figure 12.
Lemma 3.29 (Weak prenex retyping). If pr(σ) = ∀a.ρ 	→ t then �F t : (∀a.ρ) → σ.

Proof. Easy induction.

Lemma 3.30 (Subsumption retyping). If �
dsk

σ1 ≤ σ2 	→ t then �F t : σ1 → σ2.

Proof. Easy induction.

Lemma 3.31 (Translation semantics).

1. If Γ �δ t1 : ρ 	→ t2 then Γ �F t2 : ρ.

2. If Γ �
poly

δ t1 : σ 	→ t2 then Γ �F t2 : σ.

Proof. Easy induction.

Corollary 3.32 (Type soundness). The bidirectional system has the type soundness property.

Proof. By Lemma 3.31 the translation yields a well-typed System-F term.

3.4 Conservativity over Damas-Milner

We show that the type systems we introduced are all conservative extensions of the Damas-Milner type
system, given in Figure 13 and Figure 14. Damas-Milner types are of the form ∀a.τ .
Definition 3.33 (DM(Γ, t) predicate). Let the predicate DM(Γ, t) where t is a term and Γ a context be
true iff:

• All types bound in Γ are DM types.

• t contains no type annotations.

Lemma 3.34. If DM(Γ, t) and Γ �
DM

t : σ then Γ �nsd t : σ.

Proof. The proof is by induction on the height of the derivation Γ �
DM

t : σ which is completely straight-
forward and we ommit.

However it is not true that if DM(Γ, t) and Γ �nsd t : σ then Γ �
DM

t : σ, since by rule subs we can

downgrade the type arbitrarily. What is true is that ∃σ′.Γ �
DM

t : σ′ such that �
dsk

σ′ ≤ σ.
Lemma 3.35. If DM(Γ, t) and Γ �sd t : τ then Γ �⇑ t : τ .

Proof. Consequence of Lemma 3.27.

Lemma 3.36.

1. If �
ol

∀a.τ1 ≤ τ2 then [a 	→ τ]τ1 = τ2 for some τ .

53

Rho-types ρ ::= τ

Γ � t : σ

int
Γ � i : Int

var
Γ, (x : σ) � x : σ

Γ, (x : τ) � t : ρ
abs

Γ � (\x.t) : (τ → ρ)

Γ � t : τ → ρ
Γ � u : τ

app
Γ � t u : ρ

Γ � u : σ
Γ, x : σ � t : ρ

let
Γ � let x = u in t : ρ

Γ � t : σ
annot

Γ � (t::σ) : σ

a �∈ ftv(Γ)
Γ � t : ρ

gen
Γ � t : ∀a.ρ

Γ � t : ∀a.ρ
inst

Γ � t : [a 	→ τ] ρ

Figure 13: The non-syntax-directed Damas-Milner type system

2. If �
dsk

∀a.τ1 ≤ τ2 then [a 	→ τ]τ1 = τ2 for some τ .

Proof. The first part follows by inversion on �
ol

. For the second, just observe that the prenex forms of the
types are the types themselves, and by using Corollary 2.20 the result follows by the first part.

Lemma 3.37. If DM(Γ, t) and Γ �⇑ t : ρ then ρ = τ .

Proof. By induction on the derivation of Γ �⇑ t : ρ. None of the cases are interesting.

Lemma 3.38. If DM(Γ, t) and Γ �sd t : ρ then ρ = τ .

Proof. By induction on the derivation of Γ �⇑ t : ρ. None of the cases are interesting.

Lemma 3.39.

1. If DM(Γ, t) and Γ �⇑ t : τ then Γ �
DM

sd t : τ .

2. If DM(Γ, t) and Γ �⇓ t : τ then Γ �
DM

sd t : τ .

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used.

• Case int. Directly follows by int.

• Case var. We have that Γ �δ x : τ , given that �
inst

δ σ ≤ τ , where x : σ ∈ Γ. In the ⇑ direction we
can just apply var. In the ⇓ direction we have by assumptions that σ = ∀a.τ0 and it is the case that

�
subσ

∀a.τ0 ≤ τ . By Lemma 3.36, τ = [a 	→ τ2]τ0 and therefore �
inst

∀a.τ0 ≤ τ . We can then apply
rule var to get the result.

54

Rho-types ρ ::= τ

Γ � t : ρ

int
Γ � i : Int

�
inst

σ ≤ ρ
var

Γ, (x : σ) � x : ρ

Γ, (x : τ) � t : ρ
abs

Γ � (\x.t) : (τ → ρ)

Γ � t : τ → ρ
Γ � u : τ

app
Γ � t u : ρ

Γ �
poly

u : σ
Γ, x : σ � t : ρ

let
Γ � let x = u in t : ρ

Γ �
poly

t : σ′

�
subσ

σ′ ≤ σ

�
inst

σ ≤ ρ
annot

Γ � (t::σ) : ρ

Γ �
poly

t : σ

a = ftv(ρ) − ftv(Γ)
Γ � t : ρ

gen
Γ �

poly
t : ∀a.ρ

�
inst

σ ≤ ρ

inst
�
inst

∀a.ρ ≤ [a 	→ τ] ρ

�
subσ

σ ≤ σ
′

a �∈ ftv(σ)

�
subσ

σ ≤ ρ
skol

�
subσ

σ ≤ ∀a.ρ

�
subσ

[a 	→ τ] ρ1 ≤ ρ2
spec

�
subσ

∀a.ρ1 ≤ ρ2

mono
�
subσ

τ ≤ τ

Figure 14: The syntax-directed Damas-Milner type system

• Case abs1. Here we have that Γ �⇑ \x.t : τ1 → τ2 given that Γ, x : τ1 �⇑ t : τ2. By induction

Γ, x : τ1 �
DM

sd t : τ2 and applying rule abs finishes the case.

• Case abs2. Γ �⇓ \x.t : τ1 → τ2 given that Γ, x : τ1 �
poly

⇓ t : τ2, or by inversion Γ, x : τ1 �⇓ t : τ2. By

induction Γ, x : τ1 �
DM

sd t : τ2 and applying rule abs finishes the case.

• Case app. We have that Γ �δ t u : τ given that Γ �⇑ t : σ → σ′, Γ �
poly

⇓ u : σ and �
inst

δ σ′ ≤ τ . By

Lemma 3.37 it must be that σ = τ1 → τ2. Then by induction Γ �
DM

sd t : τ1 → τ2 and Γ �
DM

sd u : τ1

and by app Γ �
DM

sd t u : τ2. But we know that �
inst

δ τ2 ≤ τ , hence �
subσ

τ2 ≤ τ and it can only be that
τ2 = τ .

55

Γ �
DM

t : σ1 Γ �
DM

poly

sd t : σ2

Γ �nsd t : σ3 Γ �
poly

sd t : σ4

Γ �
poly

⇑ t : σ5 Γ �
poly

⇓ t : σ6

�
dsk

=

=

=

�
sh

=

=

=

=

Figure 15: The world

• Case let. In this case Γ �δ let x = u in t : τ given that

Γ �
poly

⇑ u : σ (1)

Γ, x : σ �δ t : τ (2)

It must be the case that σ = ∀a.ρ such that Γ �⇑ u : ρ and a = ftv(ρ) − ftv(Γ). By Lemma 3.37 we

get that ρ = τ1 and by induction Γ �
DM

sd u : τ1. By gen then Γ �
DM

poly

sd u : σ and σ is an DM type. By

induction hypothesis for (2) and application of let we get the result.

The rest of the cases cannot happen.

Lemma 3.40. Assume that �
subσ

is �
dsk

in what follows. If DM(Γ, t) and Γ �nsd t : σ then there exists a

σ′ such that Γ �
DM

t : σ′ and �
dsk

σ′ ≤ σ.

Proof. If Γ �nsd t : σ, by Lemma 3.4 we get Γ �sd t : ρ such that �
dsk

Γ(ρ) ≤ σ. By Lemma 3.38 we get that

ρ = τ . Then by Lemma 3.35 we get that Γ �⇑ t : τ and by Lemma 3.39 we get Γ �
DM

sd t : τ . By Hindley and

Milner’s result Γ �
DM

t : τ and by rule gen Γ �
DM

t : Γ(τ).

Lemma 3.41. If DM(Γ, t) and Γ �
DM

sd t : τ then Γ �sd t : τ and if Γ �
DM

poly

sd t : σ then Γ �
poly

sd t : σ.

Proof. Straightforward induction.

In conclusion, the world looks like Figure 15. In this figure we assume that �
dsk

is used and that the
bidirectional system uses the gen2* rule. Solid lines correspond to unrestricted relations between type
systems, shadowed lines correspond to relations where the terms are unannotated and the contexts contain
only Damas-Milner types.

56

4 A formalised type inference algorithm

In this section, we give a precise but abstract specification of a type inference algorithm. The final version
of the bidirectional system was a syntax-directed system. A syntax-directed system is an important step
towards a type inference algorithm because the steps of the algorithm could be driven by the syntax of the
term, rather than having to search for a valid derivation.

However, a syntax-directed type system does not fully specify an inference algorithm. At certain points in
the syntax-directed system, guessing is still required—for example, in the rule inst, the rules do not specify
what types τ should be used to instantiate the bound variables of a polytype. Because of this guess, typing
is non-deterministic. By making different choices for τ we can show that a given term has many different
types.

The point of a type inference algorithm is to choose, out of all of these possible types, the one that is
the “best” or most-general. Below, we formally specify a type inference algorithm for the bidirectional
Odersky/Läufer system, based on the Damas-Milner “Algorithm W”. We begin by discussing type variables
(Section 4.1) and unification (Section 4.2). Then we give the formalisation of Algorithm W in Section 4.3
and finally extend it to higher-rank types in Section 4.4.

4.1 Type variables and substitutions

In the discussion so far we have encountered two distinct kinds of type variables: ordinary type variables
and meta type variables. Consider the syntax of Damas-Milner types:

σ ::= ∀a.τ
τ ::= Int | τ1 → τ2 | a

The type variable “a” is part of the concrete syntax of types: a → Int and ∀a.a → a are both legal types.
On the other hand, “τ” and “σ” are meta-variables, part of the language that we use to discuss types, but
not part of the language of syntax of types themselves. For example, τ → τ is not itself a legal type. The
typing judgements for a type system (Figure 13, for example) uses both kinds of variables. It uses “a” to
mean “a type variable”, and “τ” to mean “some type obeying the syntax of τ -types”.

In a type inference algorithm, however, meta type variables are represented explicitly. The Algorithm W
approach works as follows:

• When we must “guess” a monotype, such as in rule inst, we make up a fresh meta type variable, α.

• We carry around an idempotent substitution that maps meta type variables to monotypes (possibly
involving other meta type variables).

• As the algorithm progresses, we generate equality constraints, which we solve by unification, extending
the current substitution to reflect this solution.

For example, consider the application reverse [1,2], where reverse :: ∀a.[a] → [a]. We can infer the type
of the application as follows. First, we instantiate the type of reverse with a fresh meta type variable, say
β, yielding the type [β] → [β]. Now, infer the type of [1,2], yielding [Int]. Now, since reverse is applied
to that list, we know that the equation [β] = [Int] must hold. We can solve this equation by the standard
unification algorithm, yielding the substitution [β 	→ Int].

To summarise, the basic infrastructure required by this approach is as follows:

• We distinguish between ordinary type variables (written a, b, c), and meta type variables (written
α, β, γ).

57

• We need a source of fresh meta and ordinary type variables. The reason that we also require fresh
ordinary type variables is that whenever we are going “inside” a polytype we need to treat the bound
variables in the body of the type as completely fresh; therefore we need to replace them with fresh
type variables. This point will become more clear in Section 4.3.

• We thread an ever-growing, idempotent substitution through the algorithm. This substitution is a
finite map, that maps meta type variables (only!) to monotypes.

• We need a unification algorithm that takes the current substitution, and an equation between mono-
types, and extends the substitution to make the two types equal. Indeed, we use the term “unifier”
and “substitution” interchangeably.

The fact that meta type variables range only over monotypes is because our system is predicative: in rule
inst for example we only “guess” a τ -type, not a σ-type. The syntax ftv(·) still denotes all free variables in
the argument—meta and ordinary. Sometimes we use fmv(·) to denote the free meta type variables of the
argument and fov(·) to denote the set of ordinary type variables of the argument.

4.2 Unification

In Figure 18 we give a unification procedure. It is written using inference rules, but it can be read very
directly as an algorithm. We present it here primarily to introduce the notation; the algorithm itself is
completely standard.

We give first-order unification in Figure 18. The inference rules can be seen as a procedure that, given an
initial unifier S0 and two types τ1 and τ2 returns a new substitution S1—which extends S0—and unifies the
two types.

4.3 Algorithmic version of Damas-Milner type inference

Before doing type inference for higher-rank types, we begin by treating the original Damas-Milner system.
Figures 16 and 17 show the type inference algorithm for Damas-Milner type inference. These rules are closely
based on Figure 14: each rule in that figure has a corresponding rule in the algorithmic version.

The main judgement of the algorithm has the form

(S0,A0) ; Γ � t : ρ ⇒ (S1,A1)

meaning that “given context Γ, an initial substitution S0, a symbol supply A0 and term t , the algorithm
produces the type ρ, substitution S1 and a set of remaining symbols A1. This judgement relies on auxillary
judgements for generalisation, instantiation and subsumption that correspond to the other judgements of
Figure 14.

The symbol supply A is an unordered collection of distinct type variables, and models the supply of “fresh”
type variables that is required by Algorithm W. Each judgement that needs fresh type variables takes a
symbol supply A0 as input, and produces a depleted supply A1 as output. The notation AX is the disjoint
union of a finite set X and a supply A.

In a similar way, most judgements take as input a substitution S0 and return an extended substitution
S1. Unlike some presentations, we do not require that the returned type is a fixed point of the returned
substitution.

The growing substitution and diminishing symbol supply are “threaded” through each judgement. For
example, in rule app of Figure 16, the incoming (S0,A0) are used to infer the type of the function t ; that

58

(S0,A0) ; Γ � t : ρ ⇒ (S1,A1)
(ρ output)

int
(S0,A0) ; Γ � i : Int ⇒ (S0,A0)

x : σ ∈ Γ (S0,A0) �
inst

σ ≤ ρ ⇒ (S1,A1)
var

(S0,A0) ; Γ � x : ρ ⇒ (S1,A1)

(S0,A0) ; Γ, x : β � t : ρ ⇒ (S1,A1)
abs

(S0,A0β) ; Γ � \x.t : β → ρ ⇒ (S1,A1)

(S0,A0) ; Γ � t : ρ1 ⇒ (S1,A1)
(S1,A1) ; Γ � u : ρ2 ⇒ (S2,A2)

S2 � ρ1 = ρ2 → α ⇒ S3
app

(S0,A0α) ; Γ � t u : α ⇒ (S3,A2)

(S0,A0) ; Γ �
poly

u : σ ⇒ (S1,A1)
(S1,A1) ; Γ, x : σ � t : ρ ⇒ (S2,A2)

let
(S0,A0) ; Γ � let x = u in t : ρ ⇒ (S2,A2)

(S0,A0) ; Γ �
poly

t : σ′ ⇒ (S1,A1)

(S1,A1) �
sh

σ′ ≤ σ ⇒ (S2,A2)

(S2,A2) �
inst

σ ≤ ρ ⇒ (S3,A3)
annot

(S0,A0) ; Γ � (t :: σ) : ρ ⇒ (S3,A3)

Figure 16: Type inference algorithm for Damas-Milner system

returns (S1,A1) which are used in inferring the type of the argument u; and the result (S2,A2) is returned
from the application.

Figure 17 gives the judgements for instantiation, generalisation, and subsumption (compare to Figure 14).
The generalisation inference judgement

(S0,A0) ; Γ �
poly

t : σ ⇒ (S1,A1)

returns an inferred polytype σ. Note that in the generalisation rule gen we gather all the free meta type
variables of the returned type that are not in the context — hence the α notation there. When gathering
these free meta type variables, we must be careful to appply the latest substitution S1, which reflects all the
constraints we have encountered so far. Any meta type variables α that are mentioned only in S1(ρ) can
be generalised, by replacing them with ordinary type variables b, and then quantifying over b. We do not
extend S1 with this latter substitution; instead, we simply substitute in S1(ρ).

It is worth discussing the rule skol a little more.

(S0,A0) �
sh

σ ≤ [a 	→ b]ρ ⇒ (S1,A1)

b /∈ ftv(S1σ) b /∈ ftv(S1(∀a.ρ))
skol

(S0,A0b) �
subσ

σ ≤ ∀a.ρ ⇒ (S1,A1)

59

(S0,A0) ; Γ �
poly

t : σ ⇒ (S1,A1)
(σ output)

(S0,A0) ; Γ � t : ρ ⇒ (S1,A1)
α = ftv(S1ρ) − ftv(S1Γ)

gen
(S0,A0b) ; Γ �

poly
t : ∀b.[α 	→ b]S1ρ ⇒ (S1,A1)

(S0,A0) �
inst

σ ≤ ρ ⇒ (S1,A1)
(ρ output)

inst
(S0,A0β) �

inst
∀a.ρ ≤ [a 	→ β]ρ ⇒ (S0,A0)

(S0,A0) �
sh

σ1 ≤ σ2 ⇒ (S1,A1)
(σ1, σ2 inputs)

(S0,A0) �
sh

σ ≤ [a 	→ b]ρ ⇒ (S1,A1)

b /∈ ftv(S1σ) b /∈ ftv(S1(∀a.ρ))
skol

(S0,A0b) �
sh

σ ≤ ∀a.ρ ⇒ (S1,A1)

(S0,A0) �
sh

[a 	→ β]ρ1 ≤ ρ2 ⇒ (S1,A1)
spec

(S0,A0β) �
sh

∀a.ρ1 ≤ ρ2 ⇒ (S1,A1)

S0 � τ1 = τ2 ⇒ S1

mono
(S0,A0) �

sh
τ1 ≤ τ2 ⇒ (S1,A0)

Figure 17: Generalisation, instantiation and subsumption for Damas-Milner

For this rule we need to check if σ is more polymorphic than ∀a.ρ. The first thing that we need to confirm
is that σ is more polymorphic than [a 	→ b]ρ, that is, the body of ∀a.ρ where we have replaced the bound
variables with completely fresh type variables—hence the requirement for the symbol supply to also contain
fresh ordinary type variables. Intuitively this step assumes any unknown instantiation of ∀a.ρ and tries
to ensure that σ is more polymorphic that this instatiation. The algorithm will yield back a unifier S1,
that may possibly contain b in its range—consider for example the returned unifier that takes some of the
meta variables for an instantiation of σ to monotypes containing b. However none of the free meta type
variables of S1σ and S1(∀a.ρ) should be among b, because then these variables would escape their scope:
We do not want to allow unbound ordinary type variables in our returned types.

These rules form an algorithm because there is no guessing to be done. Not only is the derivation constrained
by the syntax of the term, but all guessing has been eliminated. For example, the guessing of the argument
type in the rule abs is replaced with the generation of a fresh meta variable. Likewise, the guessing of τ
in the rules inst and spec uses a list of fresh meta variables instead. When types must be compared for
equality (in the rules app and mono) the algorithm instead uses unification to determine if there is some
substition for the metavariables that makes these types equal.

60

S0 � τ1 = τ2 ⇒ S1
(τ1, τ2 inputs)

τ = α or τ = a
urefl

S0 � τ = τ ⇒ S0

α ∈ dom(S0)
S0 � S0α = τ ⇒ S1

bvar1
S0 � α = τ ⇒ S1

α ∈ dom(S0)
S0 � S0α = τ ⇒ S1

bvar2
S0 � τ = α ⇒ S1

α /∈ dom(S0)
α /∈ ftv(S0τ)

uvar1
S0 � α = τ ⇒ [α 	→ S0τ] · S0

α /∈ dom(S0)
α /∈ ftv(S0τ)

uvar2
S0 � τ = α ⇒ [α 	→ S0τ] · S0

S0 � τ1 = τ ′
1
⇒ S1 S1 � τ2 = τ ′

2
⇒ S2

ufun
S0 � τ1 → τ2 = τ ′

1
→ τ ′

2
⇒ S2

Figure 18: Unification

(S0,A0) �
→

ρ = σ → σ
′ ⇒ (S1,A1)

(ρ input, σ → σ′ output)

S0 � γ = α → β ⇒ S1

ufun-mono
(S0,Aαβ) �→ γ = α → β ⇒ (S1,A)

ufun-arrow
(S0,A0) � σ → σ′ = σ → σ′ ⇒ (S0,A0)

Figure 19: Arrow Unification

4.4 Algorithmic version of the bidirectional system

We now extend algorithm W to the bidirectional type system. The revised algorithm appears in Figures 21-
24.

The first important difference between the previous algorithm and this one is the definition of subsumption.

The new definition follows closely canonical derivations of �
dsk

. The new subsumption relation is given in
Figure 22.

In addition to the unification procedure we gave in previous section we also require a procedure that unifies
a type with an arrow type. The arrow unification judgement of the form

(S0,A0) �
→ ρ = σ1 → ρ1 ⇒ (S1,A1)

takes an initial unifier S0, an initial supply A0 and a type ρ. It produces a bigger unifier S1 and an arrow
type that matches ρ once S1 has been applied to these types. The rules are straightforward and given in
Figure 19.

61

A0 �
pr

σ �→ σ
′ ⇒ A1

(σ′ output)

τ = α or τ = a
prmono

A0 �pr τ 	→ τ ⇒ A0

A0 �pr σ2 	→ ∀a.ρ2 ⇒ A1

prfun
A0 �pr σ1 → σ2 	→ ∀a.σ1 → ρ2 ⇒ A1

A0 �pr [a 	→ b]ρ 	→ ∀c.ρ′ ⇒ A1

prpoly
A0b �pr ∀a.ρ 	→ ∀bc.ρ′ ⇒ A1

Figure 20: Weak prenex conversion

(S0,A0) �
inst
δ σ ≤ ρ ⇒ (S1,A1)

(ρ output when δ =⇑, input when δ =⇓)

ainst1
(S0,A0β) �

inst

⇑ ∀a.ρ ≤ [a 	→ β]ρ ⇒ (S0,A0)

(S0,A0) �
dsk

σ ≤ ρ ⇒ (S1,A1)
ainst2

(S0,A0) �
inst

⇓ σ ≤ ρ ⇒ (S1,A1)

Figure 21: Algorithmic instantiation

Weak-prenex conversion is given by the following judgement:

A0 �pr σ 	→ σ′ ⇒ A1

The rules are given in Figure 20; notice that it consumes symbols from the supply in order to “freshen” the
quantified variables of the types.

The instantiation relation has an algorithmic version, shown in Figure 21. The instantiation judgements are
given by (S0,A0) �

inst

δ σ ≤ ρ ⇒ (S1,A1). Again, they take an initial unifier S0 and a supply A0 and either
check or infer that σ is more polymorphic than ρ and return the rest of the supply A1, extending perhaps
the unifier to S1.

The inference and checking judgements are given by (S0,A0) ; Γ �δ t : ρ ⇒ (S1,A1). In the case of inference,
just like in the Damas-Milner algorithm, we take a unifier S0 and a supply A0 and, in return back a type
ρ. In checking mode we check if we can assign the ρ type to the term t . In any case we return an extended
unifier, S1, as well as the rest of the supply, A1. Notice the use of arrow unification in the abstraction
checking judgements alg-abs1 and alg-abs2 as well as the application judgement alg-app.

Finally we have the polytype inference and checking judgements (S0,A0) ; Γ �
poly

δ t : σ ⇒ (S1,A1). The
inference case is very alike the generalisation inference case of the Damas-Milner algorithm. The corre-
sponding checking judgement should be read as: “check that σ is at most as polymorphic as the term t”.
Notice the similarity of this rule compared to the skol rule of the subsumption judgement. We also have

62

(S0,A0) �
dsk

σ1 ≤ σ2 ⇒ (S1,A1)
(σ1, σ2 inputs)

A0 �pr σ2 	→ ∀a.ρ ⇒ A1

(S0,A1) �
dsk∗

σ1 ≤ ρ ⇒ (S1,A2)
a /∈ ftv(S1σ1) a /∈ ftv(S1σ2)

askol
(S0,A0) �

dsk
σ1 ≤ σ2 ⇒ (S1,A2)

(S0,A0) �
dsk∗

σ1 ≤ σ2 ⇒ (S1,A1)

(S0,A0) �
dsk∗

[a 	→ β]ρ1 ≤ ρ2 ⇒ (S1,A1)
aspec

(S0,A0β) �
dsk∗

∀a.ρ1 ≤ ρ2 ⇒ (S1,A1)

(S0,A0) �
→ ρ = σ1 → σ2 ⇒ (S1,A1)

(S1,A1) �
dsk

σ3 ≤ σ1 ⇒ (S2,A2)

(S2,A2) �
dsk∗

σ2 ≤ σ4 ⇒ (S3,A3)
afun1

(S0,A0) �
dsk∗

ρ ≤ σ3 → σ4 ⇒ (S3,A3)

(S0,A0) �
→ ρ = σ3 → σ4 ⇒ (S1,A1)

(S1,A1) �
dsk

σ3 ≤ σ1 ⇒ (S2,A2)

(S2,A2) �
dsk∗

σ2 ≤ σ4 ⇒ (S3,A3)
afun2

(S0,A0) �
dsk∗

σ1 → σ2 ≤ ρ ⇒ (S3,A3)

S0 � τ1 = τ2 ⇒ S1

amono
(S0,A0) �

dsk∗
τ1 ≤ τ2 ⇒ (S1,A0)

Figure 22: Algorithmic subsumption

to peform weak-prenex conversion and make sure that the returned unifier does not unify some of the free
meta variables of the context or the polytype with these fresh variables.

4.5 Properties of the type inference algorithm

The soundness theorem states that if the algorithm determines that a term t has a type ρ, then there is a
derivation using the rules in Figure 9 assigning the same type to t .
Theorem 4.1 (Soundness).

1. Suppose A0 /∈ ftv(Γ) and ([],A0) ; Γ �⇑ t : ρ ⇒ (S ,A1). Then for any substitution V with dom(V) =
fmv(SΓ,Sρ) we have VSΓ �⇑ t : VSρ.

2. Suppose A0 /∈ ftv(Γ, ρ) and ([],A0) ;Γ �⇓ t : ρ ⇒ (S ,A1). Then for any substitution V with dom(V) =
fmv(SΓ,Sρ) we have VSΓ �⇓ t : VSρ.

The role of the substitution V is auxiliary and at first reading one can completely ignore it. The reason is that
the algorithm may return some un-unified meta type variables. For example ([], β); � \x.x : β → β ⇒ ([], {}).

63

(S0,A0) ; Γ �δ t : ρ ⇒ (S1,A1)
(ρ output when δ =⇑ , input when δ =⇓)

x : σ ∈ Γ (S0,A0) �
inst

δ σ ≤ ρ ⇒ (S1,A1)
alg-var

(S0,A0) ; Γ �δ x : ρ ⇒ (S1,A1)

(S0,A0) ; Γ, x : β �⇑ t : ρ ⇒ (S1,A1)
alg-abs1

(S0,A0β) ; Γ �⇑ \x.t : β → ρ ⇒ (S1,A1)

(S0,A0) �
→ ρ = σa → σr ⇒ (S1,A1)

(S1,A1) ; Γ, x : σa �
poly

⇓ t : σr ⇒ (S2,A2)
alg-abs2

(S0,A0) ; Γ �⇓ \x.t : ρ ⇒ (S2,A2)

(S0,A0) ; Γ, x : σ �⇑ t : ρ ⇒ (S1,A1)
alg-aabs1

(S0,A0) ; Γ �⇑ \x::σ.t : σ → ρ ⇒ (S1,A1)

(S0,A0) �
→ ρ = σa → σr ⇒ (S1,A1)

(S1,A1) �
dsk

σa ≤ σx ⇒ (S2,A2)

(S2,A2) ; Γ, x : σx �
poly

⇓ t : σr ⇒ (S3,A3)
alg-aabs2

(S0,A0) ; Γ �⇓ \x::σx.t : ρ ⇒ (S3,A3)

(S0,A0) ; Γ �⇑ t : ρ1 ⇒ (S1,A1)

(S1,A1) �
→ ρ1 = σ → σ′ ⇒ (S2,A2)

(S2,A2) ; Γ �
poly

⇓ u : σ ⇒ (S3,A3)

(S3,A3) �
inst

δ σ′ ≤ ρ ⇒ (S4,A4)
alg-app

(S0,A0) ; Γ �δ t u : ρ ⇒ (S4,A4)

(S0,A0) ; Γ �
poly

⇑ u : σ ⇒ (S1,A1)

(S1,A1) ; Γ, x : σ �δ t : ρ ⇒ (S2,A2)
alg-let

(S0,A0) ; Γ �δ let x = u in t : ρ ⇒ (S2,A2)

Figure 23: Inference/Checking Algorithm

Of course meta type variables do not appear syntactically in the bidirectional system. The substitution V
simply eliminates such meta variables from the returned types.

Completeness on the other hand says that if the bidirectional system assigns the type ρ to the term t , then
the algorithm can infer a type ρ′ that can produce ρ through some substitution.

Again, when we state this theorem, we must constrain the the symbol generator to be “fresh” from the
variables in the judgement.
Theorem 4.2 (Completeness). The algorithm is complete with respect to the syntax-directed system.

1. Suppose that A0 /∈ ftv(Γ, ρ). If Γ �⇑ t : ρ then ([],A0) ; Γ �⇑ t : ρ′ ⇒ (S ,A1) and there exists R such
that RSρ′ = ρ.

2. Suppose that A0 /∈ ftv(Γ, ρ). If Γ �⇓ t : ρ then ([],A0) ; Γ �⇓ t : ρ ⇒ (S ,A1) and Sρ = ρ, SΓ = Γ.

64

(S0,A0) ; Γ �
poly
δ t : σ ⇒ (S1,A1)

(σ output when δ =⇑ , input when δ =⇓)

(S0,A0) ; Γ �⇑ t : ρ ⇒ (S1,A1)

α = ftv(S1ρ) − ftv(S1Γ)
alg-gen1

(S0,A0b) ; Γ �
poly

⇑ t : ∀b.[α 	→ b]S1ρ ⇒ (S1,A1)

A0 �pr σ 	→ ∀a.ρ ⇒ A1

(S0,A1) ; Γ �⇓ t : ρ ⇒ (S1,A2)

a /∈ ftv(S1Γ) a /∈ ftv(S1σ)
alg-gen2

(S0,A0) ; Γ �
poly

⇓ t : σ ⇒ (S1,A2)

Figure 24: Algorithmic generalisation

Combining completeness and soundness gives us a principal types property for the bidirectional system (see
also Section 4.7). It tells us that out of all the types that bidirectional system assigns to a term, there is a
best one (the principal one), such that all others are substitution instances of that one. That type is precisely
the one picked out by the algorithm.

4.6 Proofs about the algorithm

Definition 4.3 (Excluded-X substitution equivalence). Given a set of variables X , we define the
excluded-X equivalence relation on substitutions as:

S1 = S2\X ⇔ ∀a /∈ X,S1(a) = S2(a)

Intuitively, two substitutions are excluded-X equivalent if they agree everywhere except perhaps for some
variables in X . Recall that we write X1 /∈ X2, where X1, X2 are sets of variables, meaning that the two sets
are disjoint. A unifier is a substitution whose domain contains only meta type variables. In what follows
symbols S ,T ,U ,V denote unifiers unless stated explicitly otherwise. When we write [a 	→ b] · S , since a
can’t be in the domain of a unifier S we mean the (renaming) substitutions of a for b in the range of S . On
the other hand [α 	→ b] · S denotes the substitution composition of [α 	→ b] and S .

Let us start by proving some sanity checks and useful facts about unification. The first property that we
need is that when we start with a well-defined substitution, we end up with a well-defined substitution: For
our purposes the notion of a mathematically well-defined substitution will coincide with idempotency:

S is well-defined iff ∀σ.Sσ = S (Sσ)

Lemma 4.4 (Idempotency of unifiers). If S0 is idempotent and S0 � τ1 = τ2 ⇒ S1 then S1 is idempotent.

Proof. The proof is by induction on the definition of the unification procedure. The case for urefl is trivial.
The cases for bvar1, bvar2, ufun follow easily by applying the induction hypotheses. Let us consider the
case uvar1 (the case uvar2 is similar). Here we have that S0 � α = τ ⇒ S1, given that

α /∈ dom(S0) (1)

α /∈ ftv(S0τ) (2)

S1 = [α 	→ S0τ] · S0 (3)

65

We show by induction on σ that S1S1σ = S1σ. All the cases are easy or follow by induction hypothesis
except for the case where σ = β. If β = α we have S1α = S0τ , which means that:

S1S1α = S1S0τ
= [α 	→ S0τ]S0S0τ
= [α 	→ S0τ]S0τ (because S0 is idempotent)
= S0τ (by (2))
= S1α

Similarly, if β �= α we have that

S1S1b = [α 	→ S0τ]S0[a 	→ S0τ]S0β
= [α 	→ S0τ]S0S0β
= [α 	→ S0τ]S0β
= S1β

It is a series of easy inductions to show that all unifiers mentioned throughout the paper are idempotent.
These proofs rely on the last lemma. We omit these proofs and assume that we only deal with well-defined
unifiers in the rest of the document.

Now a quick check about the variables of the unifiers. What this says is that our returned unifier is larger
than the input unifier and that it doesn’t contain symbols made out of thin air.
Lemma 4.5. If S0 � τ1 = τ2 ⇒ S1 then:

1. vars(S1) ⊆ vars(S0) ∪ ftv(τ1, τ2)

2. dom(S0) ⊆ dom(S1)

3. range(S1) ⊆ range(S0) ∪ ftv(τ1, τ2)

Proof. Easy induction.

The next lemma establishes the soundness of unification.
Lemma 4.6 (Unification soundnesss). If S0 � τ1 = τ2 ⇒ S1 then S1τ1 = S1τ2 and there exists a
substitution R such that S1 = R · S. Moreover vars(R) ⊆ ftv(S0τ1,S0τ2).

Proof. The proof is by induction on the derivation of unification. We examine all cases.

• Case urefl. Trivially take R to be the empty substitution.

• Case ufun. Here we have that S0 � τ1 → τ2 = τ ′
1
→ τ ′

2
⇒ S2 given that S0 � τ1 = τ ′

1
⇒ S1

and S1 � τ ′
1

= τ ′
2
⇒ S2. By induction hypothesis S1τ1 = S1τ

′
1

and S1 = R1 · S0 for some R1 and
vars(R1) ⊆ ftv(S0τ1,S0τ

′
1
). Also by induction hypothesis S2τ2 = S2τ

′
2

and S2 = R2 · S1 for some R2.
Then we have that

vars(R2) ⊆ ftv(S1τ2,S1τ
′
2
)

⇒ vars(R2) ⊆ R1(ftv(S0τ2,S0τ
′
2
))

⇒ vars(R2) ⊆ ftv(S0τ1,S0τ
′
1
) ∪ ftv(S0τ2,S0τ

′
2
)

Then we have R2S1τ1 = R2S1τ
′
1
, hence S2τ1 = S2τ

′
1

and taking R = R2 · R1 finishes the case since
vars(R) ⊆ vars(R1,R2) as well.

66

• Case bvar1 (the case for bvar2 is similar). Here we have S0 � α = τ ⇒ S1 given that S0 � S0α = τ ⇒
S1 when α ∈ dom(S0). By induction hypothesis S1S0α = S1τ and S1 = R · S0 for some R. Moreover
vars(R) ⊆ ftv(S0S0α,S0τ) and because of idempotency vars(R) ⊆ ftv(S0α,S0τ). Then RS0S0α = S1τ
and because S0 is idempotent RS0α = S1τ or S1α = S1τ . Therefore taking the same R finishes the
case.

• Case uvar1 (the case for uvar2 is similar). Here S0 � α = τ ⇒ [α 	→ S0τ] · S0 given that

α /∈ dom(S0) (1)

α /∈ ftv(S0τ) (2)

Then [α 	→ S0τ]S0α = S0τ because of (1) and S0τ = [α 	→ S0τ]S0τ because of (2). Finally pick
R = [α 	→ S0τ]. Then vars(R) = ftv(α,S0τ) = ftv(S0α,S0τ).

Lemma 4.7. If S0 � τ1 = τ2 ⇒ S1 then fov(S1τ1,S1τ2) ⊆ fov(S0τ1,S0τ2).

Proof. By unification soundness, Lemma 4.6, we have that fov(S1τ1,S1τ2) = fov(S1τ1) = fov(RS0τ1) and we
know that fov(RS0τ1) ⊆ fov(R) ∪ fov(S0τ1) ⊆ fov(S0τ1,S0τ2).

Next we establish completeness of unification, that is, we will show that if two types are unified by some
substitution, then our algorithm returns always a most general unifier.
Lemma 4.8 (Unification completeness). If SS0τ1 = SS0τ2 then unification of S0, τ1 and τ2 succeeds,
that is, S0 � τ1 = τ2 ⇒ S1 such that S · S0 = R · S1 for some R. Moreover vars(S1) ⊆ vars(S0), ftv(τ1, τ2)
and vars(R) ⊆ vars(S ,S1,S0).

Proof. Consider the following lexicographic pair to be a metric for a given unifier S0, types τ1 and τ2.

μ = 〈|range(S0) ∪ ftv(τ1, τ2) |, size(τ1) + size(τ2)〉

We show unification completeness by induction on the value of μ (We can use the same metric to show
termination of unification as well). Observe first of all that the two types cannot be tow distinct type
variables. We proceed by case analysis on the possible forms of τ1 and τ2.

• Both of them are arrow types, that is τ1 = τ11 → τ12 and τ2 = τ21 → τ22. In this case we have that
SS0τ11 = SS0τ21 and SS0τ12 = SS0τ22. By induction S0 � τ11 = τ21 ⇒ S1 such that for some R1 we have
S ·S0 = R1 ·S1. Now also by induction hypothesis (by Lemma 4.5 range(S1) ⊆ range(S0)∪ ftv(τ11, τ21))
S1 � τ12 = τ22 ⇒ S2 such that R1 · S1 = R · S2 for some R hence giving us S · S0 = R · S2 hence giving
us the result by ufun.

• Assume that they both are ordinary variables: Then they have to be the same since the only rule
applicable would be urefl and the case follows trivially.

• One of them is a meta variable and assume τ1 = α (the case where τ2 is a variable is symmetric).
Assume also that τ2 = τ . Then, if τ2 is exactly the same variable then urefl is applicable and the
result follows easily.

If τ2 = τ �= α we have the following cases:

– α ∈ dom(S0). In this case if we can show that SS0(S0α) = SS0τ then we will be done, as we will
be able to apply the induction hypothesis (| range(S0) ∪ ftv(α, τ) |�| range(S0) ∪ ftv(S0α, τ) |=|
range(S0)∪ ftv(τ) |, since α /∈ range(S0) because S0 is idempotent) to get that S0 � S0α = τ ⇒ S1

with S · S0 = R · S1 and by rule bvar1 the case will be finished. But observe that the above
follows directly from the idempotency of S0.

67

– α /∈ dom(S0). Here we have the following cases for S0τ :

∗ S0τ = α. Then since α /∈ dom(S0) we have that τ = β for some β ∈ dom(S0). But this means
that we can apply rule bvar2 with urefl in its premise to get the result, taking R = S .

∗ α ∈ ftv(S0τ). This case can’t happen as it would require SS0α = SS0τ or Sα = S (S0τ) but
the sizes of the types in the left and right hand side can never be the same.

∗ α /∈ ftv(S0τ). In this case we can apply the rule uvar1 to get the result. Now we need to
find R such that S · S0 = R · [α 	→ S0τ] · S0. Since SS0α = SS0τ it must be that α ∈ dom(S)
and Sα = S (S0τ), which means we can write S as S = S ′ · [α 	→ S0τ] since also α /∈ ftv(S0τ).
Now just pick R = S ′ and we are done.

From the soundness and completeness of the unification procedure we can derive two easy corrollaries for
the arrow unification procedure.
Lemma 4.9 (Arrow unification soundness and completeness).

1. If for some A0 such that A0 /∈ ftv(ρ), vars(S0) it is (A0,S0) � ρ = σ → σ′ ⇒ (S1,A1) then S1ρ =
S1σ → S1σ

′ and ∃R such that S1 = R · S0. Moreover ftv(σ → σ′) ⊆ vars(S0), ftv(ρ), (A0 − A1) and
vars(S1) ⊆ vars(S0), ftv(ρ), (A0 −A1) and vars(R) ⊆ ftv(S0ρ), (A0 −A1).

2. If SS0ρ = σ0 → σ′
0

then for any symbol supply A0 such that A0 /∈ vars(S ,S0) and A0 /∈ ftv(ρ, σ0, σ
′
0
),

(A0,S0) �→ ρ = σ → σ′ ⇒ (S1,A1) such that ∃R with S · S0 = R · S1\A0−A1
and RS1σ = σ0 and

RS1σ
′ = σ′

0
. Moreover vars(R) /∈ A1 and vars(S1) /∈ A1.

Proof. The soundness part is by induction on the arrow unification definition and appealing to unification
soundness, while the completeness part is by case analysis on the type structure and appealing to unification
completeness.

Here’s a lemma about the free ordinary variables during arrow unification.
Lemma 4.10. If A0 /∈ ftv(ρ), vars(S0) and (A0,S0) �

→ ρ = σ1 → σ2 ⇒ (S1,A1) then fov(S1ρ,S1σ1,S1σ2) ⊆
fov(S0ρ).

Proof. Like the proof of Lemma 4.7.

4.6.1 Completeness

In this section we show that the types that the type system attributes to terms can be considered “instances”
of types that the algorithm discovers. We need a series of auxilliary lemmas first.
Lemma 4.11. If A0 �pr σ 	→ ∀a.ρ ⇒ A1 then a ⊆ A0 −A1, ftv(σ) = ftv(∀a.ρ).

Proof. Easy induction on the definition of �pr .

Lemma 4.12.

1. If A0 /∈ vars(S0) ∪ ftv(σ1, σ2) and (S0,A0) �
dsk

σ1 ≤ σ2 ⇒ (S1,A1) then there exists R such that
S1 = R · S0, vars(S1) ⊆ vars(S0)∪ ftv(σ1, σ2)∪ (A0 −A1), and vars(R) ⊆ ftv(S0σ1,S0σ2)∪ (A0 −A1).

2. If A0 /∈ vars(S0) ∪ ftv(σ1, σ2) and (S0,A0) �
dsk∗

σ1 ≤ σ2 ⇒ (S1,A1) then there exists R such that
S1 = R · S0, vars(S1) ⊆ vars(S0)∪ ftv(σ1, σ2)∪ (A0 −A1), and vars(R) ⊆ ftv(S0σ1,S0σ2)∪ (A0 −A1).

68

Proof. The two claims can be proved simultaneously by induction on the height of the derivations, appealing
to the unification properties in the monotype case.

The next lemma asserts that no ordinary type variables from the symbol supply escape in the “useful” range
of the unifiers.
Lemma 4.13.

1. If A0 /∈ vars(S0) ∪ ftv(σ1, σ2), (S0,A0) �
dsk

σ1 ≤ σ2 ⇒ (S1,A1), and fov(S0σ1,S0σ2) ⊆ X , then
fov(S1σ1,S1σ2) ⊆ X .

2. If A0 /∈ vars(S0) ∪ ftv(σ1, σ2), (S0,A0) �
dsk∗

σ1 ≤ σ2 ⇒ (S1,A1), and fov(S0σ1,S0σ2) ⊆ X , then
fov(S1σ1,S1σ2) ⊆ X .

Proof. We prove the two claims simultaneously by induction on height of the derivations.

For the first part we only have the case of askol. We have (S0,A0) �
dsk

σ1 ≤ σ2 ⇒ (S1,A2), given that

A0 �pr σ2 	→ ∀a.ρ ⇒ A1 (1)

(S0,A1) �
dsk∗

σ1 ≤ ρ ⇒ (S1,A2) (2)

a /∈ ftv(S1σ1,S1σ2) (3)

Assume that fov(S0σ1,S0σ2) ⊆ X . We know that fov(S0(σ2)) = fov(∀a.ρ), therefore fov(S0σ,S0ρ) ⊆ Xa.
By induction hypothesis fov(S1σ,S1ρ) ⊆ Xa. But now, because a /∈ ftv(S1σ1) and a /∈ ftv(S1(∀a.ρ)) we
have that fov(S1σ,S1(∀a.ρ)) ⊆ X .

For the second part we have the following cases for the last rule used in the derivation.

• Case aspec. Here we have that A0β /∈ vars(S0) ∪ ftv((∀a.ρ1), ρ2) and (S0,A0β) �
dsk∗

∀a.ρ1 ≤ ρ2 ⇒

(S1,A1), given that (S0,A0) �
dsk∗

[a → β]ρ1 ≤ ρ2 ⇒ (S1,A1). Assume that fov(S0(∀a.ρ1),S0ρ2) ⊆ X .
Then trivially fov(S0([a 	→ β]ρ1,S0ρ2) ⊆ X , since β /∈ dom(S0). Then we can apply the induction
hypothesis to get that fov(S1([a 	→ β]ρ1),S1ρ2) ⊆ X and therefore fov(S1(∀a.ρ1),S1ρ2) ⊆ X .

• Case afun1 (similarly for afun2). We have that A0 /∈ vars(S0) ∪ ftv(ρ, σ3, σ4) and (S0,A0) �
dsk∗

ρ ≤ σ3 → σ4 ⇒ (S3,A3), given that (S0,A0) �→ ρ = σ1 → σ2 ⇒ (S1,A1), (S1,A1) �
dsk

σ3 ≤ σ1 ⇒

(S2,A2), (S1,A1) �
dsk∗

σ2 ≤ σ4 ⇒ (S3,A3). Assume that fov(S0ρ,S0σ3,S0σ4) ⊆ X .

Claim 1: fov(S1ρ,S1σ1,S1σ2) ⊆ X . This follows directly by Lemma 4.10.

Claim 2: fov(S1σ3) ⊆ X . Clearly all the ordinary variables of σ3 are in X , therefore we need to consider
the meta variables. Assume γ ∈ ftv(σ3) and assume also that γ /∈ ftv(σ1, σ2, ρ), because in the last case
we are done by the first claim. Now we need to consider what happens in the ordinary variables of S1γ.
If γ /∈ dom(S1) we are trivially okay. If not, then observe that dom(S1) ⊆ vars(S0)∪ ftv(ρ)∪ (A0 −A1)
by Lemma 4.12. Then we have two problematic cases.

– γ ∈ dom(S0). Then there exists a τ = S0γ. If that type contains only ordinary variables,
then we are okay since S1γ = S0γ in that case and by assumptions these ordinary variables
are in X . Suppose however that there exists a ζ ∈ τ such that ζ ∈ dom(S1)—if it is not
in the domain of S1 we are again trivially okay, since S1 extends S0. Then it must be that
ζ ∈ ftv(S0σ1,S0σ2) ∪ (A0 − A1). But it cannot be in A0 − A1 because all variables of S0 are
disjoint from A0. Then if it is in ftv(S0σ1,S0σ2) we also have that fov(S1ζ) ⊆ fov(S1S0σ1,S1S0σ2)
and then fov(S1ζ) ⊆ fov(S1σ1,S1σ2) ⊆ X by previous claim. therefore S1γ ⊆ X .

69

– γ /∈ dom(S0) which means that γ ∈ vars(R1) where R1 · S0 = S1. But then it must be that
γ ∈ ftv(S0ρ) ∪ (A0 −A1). It cannot be the case that γ ∈ A0 −A1, so γ ∈ ftv(S0ρ) which means
that fov(S1γ) ∈ fov(S1S0ρ) and by idempotency fov(S1γ) ∈ fov(S1ρ ⊆ X because of the first
claim.

Then, by induction hypothesis we get that fov(S2σ1) ⊆ fov(S2σ3) ⊆ X .

Claim 3: fov(S2σ2,S2σ4) ⊆ X . Again, we don’t care about the free ordinary variables of σ2 and σ4,
they are going to be in X by assumptions. Consider then a γ ∈ ftv(σ2, σ4), such that γ ∈ dom(S2)—if
it is not in the domain we are again trivially okay. Then we want to examine what happens to S2γ.
It must be that γ ∈ vars(S1) ∪ ftv(σ1, σ3) ∪ (A1 −A2). If γ ∈ ftv(σ1, σ3) we are okay. If not, since γ
cannot be in A1 −A2, we are left with two cases:

– Here γ ∈ dom(S1). That means that there exists a τ = S1γ. If τ contains only ordinary
variables or meta variables not in the domain of S2 we are okay. Consider now the case where
there exists a ζ ∈ τ such that ζ ∈ dom(S2). Then, ζ is in the extension of S1), therefore
ζ ∈ ftv(S1σ1,S1σ3) ∪ (A1 −A2). But it can’t be in A1 −A2 as it is also in S1 and the variables
of S1 are disjoint from A1. Then it must be in ftv(S1σ1,S1σ3) therefore fov(S2ζ) ⊆ X , since
fov(S2ζ) ⊆ fov(S2S1σ1,S2S1σ3) and fov(S2S1σ1,S2S1σ3) = fov(S2σ1,S2σ3) ⊆ X .

– Here γ /∈ dom(S1). This means that γ ∈ vars(R2) where R2 · S1 = S2. Then we know that
vars(R2) ⊆ ftv(S1σ3,S1σ1) ∪ (A1 − A2), but γ /∈ A1, therefore γ ∈ ftv(S1σ3,S1σ1). Then
fov(S2γ) ∈ fov(S2S1σ3,S2S1σ1), or fov(S2γ) ∈ fov(S2σ3,S2σ1) ⊆ X .

Now we can apply the induction hypothesis again to get that fov(S3σ2,S3σ4) ⊆ X . At this point let
us consider again what we have established so far and what we want to prove. We want to prove the
following:

fov(S3ρ) ⊆ X

fov(S3σ3) ⊆ X

fov(S3σ4) ⊆ X

But it is easily derivable from Lemma 4.9 and Lemma 4.12 that S3ρ = S3σ1 → S3σ2. But we already
have that fov(S3σ2,S3σ4) ⊆ X . Therefore we only need to establish that fov(S3σ1,S3σ3) ⊆ X .

Claim 4: fov(S3σ1,S3σ3) ⊆ X . Again, we don’t care about the free ordinary variables of σ1 and σ3;
these are in X by assumptions. Consider γ ∈ ftv(σ3, σ1) and in fact let γ /∈ ftv(σ2, σ4)—otherwise
we are ok. Also suppose that γ ∈ dom(S3) otherwise we are trivially okay. Then, it must be that
γ ∈ vars(S2) ∪ ftv(σ2, σ4) ∪ (A2 −A3). There are two non-trivial cases.

– γ ∈ dom(S2). Then let τ = S2γ. If τ does not contain meta variables, or contains meta variables
not in the domain of S3 we are okay. Consider the bad case where there exists a ζ ∈ τ such
that ζ ∈ dom(S3). Then ζ ∈ ftv(S2σ2,S2σ4) ∪ (A2 − A3). It can’t be in A2 − A3 because it is
also in S2 and S2 does not contain variables from A2. So it must be in ftv(S2σ2,S2σ4), therefore
fov(S3ζ) ⊆ X , since fov(S3ζ) ⊆ ftv(S3S2σ2,S3S2σ4). Then also S3γ ⊆ X .

– γ /∈ dom(S2). Then it must be the case that γ ∈ R3, where R3 · S2 = S3. Then also vars(R3) ⊆
ftv(S2σ2,S2σ4)∪ (A2 −A3), but we know that γ /∈ A2. Then fov(S3γ) ⊆ fov(S3S2σ2,S3S2σ4), or
fov(S3γ) ⊆ fov(S3σ2,S3σ4) ⊆ X .

• Case amono. Follows directly by Lemma 4.7.

Now two lemmas about the variables during inference and checking.

70

Lemma 4.14.

1. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ ∃R such that S1 = R · S0

(S0,A0) ; Γ �⇑ t : ρ ⇒ (S1,A1) vars(S1) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 −A1)

ftv(ρ) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 −A1)
vars(R) ⊆ ftv(S0Γ) ∪ (A0 −A1)

2. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(ρ) ⇒ ∃R such that S1 = R · S0

(S0,A0) ; Γ �⇓ t : ρ ⇒ (S1,A1) vars(S1) ⊆ ftv(Γ) ∪ ftv(ρ) ∪ vars(S0) ∪ (A0 −A1)

vars(R) ⊆ ftv(S0Γ) ∪ ftv(S0ρ) ∪ (A0 −A1)
3. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ ∃R such that S1 = R · S0

(S0,A0) ; Γ �
poly

⇑ t : σ ⇒ (S1,A1) vars(S1) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 −A1)

ftv(σ) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 −A1)
vars(R) ⊆ ftv(S0Γ) ∪ (A0 −A1)

4. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(σ) ⇒ ∃R such that S1 = R · S0

(S0,A0) ; Γ �
poly

⇓ t : σ ⇒ (S1,A1) vars(S1) ⊆ ftv(Γ) ∪ ftv(σ) ∪ vars(S0) ∪ (A0 −A1)

vars(R) ⊆ ftv(S0Γ) ∪ ftv(S0σ) ∪ (A0 −A1)

Proof. Straightforward induction on the derivations.

Lemma 4.15.

1. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ fov(S1Γ) ∪ fov(S1ρ) ⊆ X
(S0,A0) ; Γ �⇑ t : ρ ⇒ (S1,A1)

fov(S0Γ) ⊆ X
2. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(ρ) ⇒ fov(S1Γ) ∪ fov(S1ρ) ⊆ X

(S0,A0) ; Γ �⇓ t : ρ ⇒ (S1,A1)

fov(S0Γ) ∪ fov(S0ρ) ⊆ X
3. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ fov(S1Γ) ∪ fov(S1σ) ⊆ X

(S0,A0) ; Γ �
poly

⇑ t : σ ⇒ (S1,A1)

fov(S0Γ) ⊆ X
4. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(σ) ⇒ fov(S1Γ) ∪ fov(S1σ) ⊆ X

(S0,A0) ; Γ �
poly

⇓ t : ρ ⇒ (S1,A1)

fov(S0Γ) ∪ fov(S0σ) ⊆ X

Proof. We prove the four goals simultaneously by induction on the algorithmic relations. We are going to
use the results of Lemma 4.14 as well as Lemma 4.13 extensively.

For the first part we consider the following cases.

• Case alg-var. We have that A0 /∈ ftv(Γ) ∪ vars(S0) and (S0,A0) ; Γ �⇑ x : ρ ⇒ (S1,A1), given that

x : σ ∈ Γ and (S0,A0) �
inst

⇑ σ ≤ ρ ⇒ (S1,A1). Assume that fov(S0Γ) ⊆ X . Then by an inversion we
see that S1 = S0 and fov(S1ρ) ⊆ fov(S1σ), because A0 −A1 is going to be a set of meta variables not
in the variables of S0.

• Case alg-abs1. Here let A0β /∈ ftv(Γ)∪ vars(S0) and (S0,A0β) ; Γ �⇑ \x.t : β → ρ ⇒ (S1,A1), given
that (S0,A0) ; Γ, x : β �⇑ t : ρ ⇒ (S1,A1). Assume fov(S0Γ) ⊆ X . Then also fov(S0(Γ, x : β)) ⊆ X ,
since β /∈ vars(S0). Then, by induction hypothesis fov(S1Γ,S1β) ⊆ X and fov(S1ρ) ⊆ X . But that is
exactly what is required for this case.

• Case alg-aabs1. Assume that A0 /∈ ftv(Γ)∪ vars(S0) and (S0,A0) ; Γ �⇑ \x ::σ.t : σ → ρ ⇒ (S1,A1),
given that (S0,A0) ; Γ, x : σ �⇑ t : ρ ⇒ (S1,A1). Assume fov(S0Γ) ⊆ X . Then also fov(S0(Γ, x : σ)) ⊆
X , since annotations are closed. Then, by induction hypothesis fov(S1Γ,S1σ) ⊆ X and fov(S1ρ) ⊆ X
and we are done.

71

• Case alg-app. Here we have that A0 /∈ vars(S0) ∪ ftv(Γ) and (S0,A0) ; Γ �⇑ t u : ρ ⇒ (S4,A4), given
that

(S0,A0) ; Γ �⇑ t : ρ1 ⇒ (S1,A1) (1)

(S1,A1) �
→ ρ1 = σ → σ′ ⇒ (S2,A2) (2)

(S2,A2) ; Γ �
poly

⇓ u : σ ⇒ (S3,A3) (3)

(S3,A3) �
inst

⇑ σ′ ≤ ρ ⇒ (S4,A4) (4)

Let us assume that fov(S0Γ) ⊆ X . Then by induction we get that fov(S1ρ1) ⊆ X and fov(S1Γ) ⊆ X .
Now, by the arrow unification variables lemma we get that fov(S2σ,S2σ

′,S2ρ1) ⊆ X . At this point we
need to show that fov(S2Γ) ⊆ X to be able to apply the induction hypothesis further.

Claim 1: fov(S2Γ) ⊆ X . First, all the free ordinary variables of Γ are by assumptions in X . Then we
are interested to see what happens to the meta variables of Γ and in particular those that are in the
domain of S2. Consider γ ∈ dom(S2) such that γ ∈ ftv(Γ). Then by previous lemmas we know that
γ ∈ vars(S1)∪ ftv(ρ1, σ, σ′)∪ (A1 −A2). If γ ∈ ftv(ρ1, σ, σ′) then we are okay. Also γ /∈ A1 −A2 since
it is a free variable of Γ. Then we have two cases.

– Suppose that γ ∈ dom(S1), that is, there exists a type τ = S1γ. If τ does not contain meta
variables we are okay, since S2γ = §1γ = τ in this case. However suppse that there exists a
variable ζ ∈ τ . If that ζ is not in the domain of S2 then we are okay. If however ζ ∈ dom(S2) then
it is in the extension of S1, therefore we get that ζ ∈ ftv(S1ρ1) ∪ (A1 −A2). But it cannot be in
in A1 −A2 since we know that vars(S1) /∈ A1 by previous lemma. Then fov(S2ζ) ∈ fov(S2S1ρ1)
or fov(S2ζ) ∈ fov(S2ρ1) ⊆ X . Then also fov(S2γ) ⊆ X since S2 is an extension of S1.

– Suppose that γ /∈ dom(S1), then γ ∈ vars(R2) where S2 = R2 ·S1, therefore γ ∈ ftv(S1ρ1)∪ (A1 −
A2). But it cannot be in A1 −A2 therefore fov(S2γ) ⊆ fov(S2S1ρ1) = fov(S2ρ1) ⊆ X .

Now that we proved this claim, it is easy to confirm that the conditions are appropriate to apply the
induction hypothesis to get that fov(S3Γ) ⊆ X and fov(S3σ) ⊆ X . Now with a simple inversion we get
that S3 = S4 and fov(S3ρ) = fov(S3σ

′). Then to finish the case we need to show that fov(S3σ
′) ⊆ X .

Claim 2: fov(S3σ
′) ⊆ X . The claim uses a similar proof technique as the previous claim.

• Case alg-let. Suppose A0 /∈ ftv(Γ) ∪ ftv(S0) and we have that (S0,A0) ; Γ �⇑ let x = u in t :

ρ ⇒ (S2,A2), given that S0,A0) ; Γ �
poly

⇑ u : σ ⇒ (S1,A1) and S1,A1) ; Γ, x : σ �
poly

⇑ t : ρ ⇒ (S2,A2).
Assume that fov(S0Γ) ⊆ X . Then by induction we get that fov(S1Γ) ⊆ X and fov(S1σ) ⊆ X . Then
it is easy to confirm using previous lemmas that A1 /∈ ftv(Γ) ∪ vars(S1) and we can apply again the
induction hypothesis to get that fov(S2Γ,S2σ) ⊆ X and fov(S2ρ) ⊆ X as required for this case.

The second part follows the structure of the first part using the technique shown in the claims above to
establish the appropriate conditions at each step.

For the third part, we have that A0b /∈ ftv(Γ)∪vars(S0) and (S0,A0b) ;Γ �
poly

⇑ t : ∀b.[α 	→ b]S1ρ ⇒ (S1,A1),
given that (S0,A0) ; Γ �⇑ t : ρ ⇒ (S1,A1) and α are the meta variables of ftv(S1ρ)− ftv(S1Γ). Assume that
fov(S0Γ) ⊆ X . Then we can apply the induction hypothesis to get that fov(S1Γ) ⊆ X and fov(S1ρ) ⊆ X .
But then it must also be fov(∀b.[α 	→ b]S1ρ) ⊆ X and this case is done.

For the fourth part, we have that A0b /∈ ftv(Γ)∪vars(S0)∪ftv(σ) and (S0,A0);Γ �
poly

⇓ t : σ ⇒ (S1,A2), given
that A0 �pr σ 	→ ∀a.ρ ⇒ A1, (S0,A1);Γ �⇓ t : ρ ⇒ (S1,A2), and a /∈ ftv(S1Γ,S1σ). Assume that fov(S0Γ)∪
fov(S0(σ)) ⊆ X or equivalently fov(S0Γ) ∪ fov(S0(∀a.ρ)) ⊆ X . Therefore fov(S0Γ) ∪ fov(S0ρ) ⊆ Xa. Then,
by induction hypothesis fov(S1Γ)∪ fov(S1ρ) ⊆ Xa. But now, since a /∈ ftv(S1Γ) and a /∈ ftv(S1(σ)), it must
be that fov(S1Γ) ∪ fov(S1σ) ⊆ X .

72

Lemma 4.16 (Weak Prenex Conversion Completeness). If pr(Sσ) = ∀a.ρa then A0 �pr σ 	→
∀b.ρb ⇒ A1, such that S (∀b.ρb) = ∀a.ρa .

Proof. Easy induction on σ. Moreover by Lemma 4.11 it is also the case that b ⊆ A0 −A1.

Now a completeness result for the algorithmic subsumption relation.
Lemma 4.17 (Algorithmic Subsumption Completeness). Suppose we are given unifiers S, S0, a
context Γ and two polytypes σ1 and σ2. Then

1. If �
dsk

SS0σ1 ≤ SS0σ2 is canonical then ∀A0 /∈ vars(S ,S0) ∪ ftv(σ1, σ2) we have that (A,S0) �
dsk

σ1 ≤
σ2 ⇒ (S1,A1) and ∃R such that S · S0 = R · S1\A0−A1

, and vars(R) /∈ A1, vars(S) /∈ A1.

2. If �
dsk

SS0σ1 ≤ SS0σ2 is prenex-canonical then ∀A0 /∈ vars(S ,S0)∪ftv(σ1, σ2) we have that (A,S0) �
dsk∗

σ1 ≤ σ2 ⇒ (S1,A1) and ∃R such that S · S0 = R · S1\A0−A1
, and vars(R) /∈ A1, vars(S) /∈ A1.

As a corollary, if �
dsk

SS0σ1 ≤ SS0σ2 ∀A0 /∈ vars(S ,S0) ∪ ftv(σ1, σ2) we have that (A,S0) �
dsk

σ1 ≤ σ2 ⇒
(S1,A1) and ∃R such that S · S0 = R · S1\A0−A1

, and vars(R) /∈ A1, vars(S) /∈ A1.

Proof. We prove the two goals simultaneously by induction on the height of the derivations. We proceed
with the last rule used.

Part 1: For this part the only rule that could have been used is rule skol. For this case we have that

�
dsk

SS0σ1 ≤ SS0σ2, given that

pr(SS0σ2) = ∀a.ρa (1)

a �∈ ftv(SS0σ1) (2)

�
dsk

SS0σ1 ≤ ρa (3)

Consider an appropriate symbol supply A0, such that A0 /∈ vars(S ,S0) ∪ ftv(σ1, σ2). By Lemma 4.16 we
have that A0 �pr σ 	→ ∀b.ρb ⇒ A1 such that SS0(∀b.ρb) = ∀a.ρa . By Lemma 4.11 b ∈ A0. This means

that SS0ρb = [a 	→ b]ρa . From this, the substitution lemma and (2), and (3) we get that �
dsk

SS0σ1 ≤ SS0ρb .

Moreover this last derivation is prenex-canonical, as (3). Therefore by induction (S0,A1) �
dsk∗

σ1 ≤ ρb ⇒
(S1,A2). and ∃R such that S · S0 = R · S1\A1−A2

, since S0 = S1. Equivalently S · S0 = R · S1\A0−A2
.

Moreover vars(R) /∈ A2 and vars(S1) /∈ A2. Finally to be able to apply the rule askol we need to show that
b /∈ ftv(S1σ1,S1σ2. Assume by contradiction that for some b ∈ b it is the case that b ∈ ftv(S1σ1,S1σ2). This
means that there exists a γ ∈ ftv(σ1, σ2) and b ∈ S1γ because b /∈ ftv(σ1, σ2). Moreover by the freshness
conditions γ /∈ A0 and therefore Then SS0γ = RS1γ. But then it must be b ∈ vars(S ,S0), a contradiction.

Part 2: For this part we notice that a prenex-canonical derivation ends with a trivial skol application
which can be ommited; therefore we have to examine all other rules.

• Case mono. In this case since SS0σ1 and SS0σ2 are monotypes, it must be that σ1 = τ1 and σ2 = τ2

for some monotypes τ1 and τ2. Pick an arbitrary A0 that satisfies the freshness conditions, that is
A0 /∈ ftv(σ1), A0 /∈ ftv(σ2), A0 /∈ vars(S) ∪ vars(S0). By Lemma 4.8 we have that S0 � τ1 = τ2 ⇒ S1

and S · S0 = R · S1 for some R. Moreover vars(R) ⊆ vars(S) ∪ vars(S0) ∪ vars(S1) which means
vars(R) /∈ A0. Finally vars(S1) ⊆ vars(S0)∪ ftv(τ1, τ2), again disjoint from A0. Then by applying the
rule amono we are done.

73

• Case fun. In this case we have that SS0σ1 = σ′
11

→ σ′
12

and SS0σ2 = σ′
21

→ σ′
22

. Now, it must be
the case that σ1 = ρ1 and σ2 = ρ2 for some ρ1 and ρ2 because the substitution S · S0 returns back
arrow types and not quantified types. Also, it cannot be the case that both ρ1 and ρ2 are monotypes,
because then we would be in the mono case. We split in cases depending on which of the two types is
a ρ arrow type.

Assume that ρ1 = σ11 → σ12, and pick a supply A0 such that A0 /∈ vars(S ,S0) ∪ ftv(σ1, σ2). Then it

must be that �
dsk

SS0σ11 → SS0σ12 ≤ SS0ρ2. Since SS0ρ2 = σ′
21

→ σ′
22

by unification completeness
Lemma 4.9 (it is easy to confirm that the freshness conditions for A0 are sufficient) we have that
(S0,A0) �

→ ρ2 = σ21 → σ22 ⇒ (S1,A1) such that ∃Ru with S ·S0 = Ru ·S1\A0−A1
and RuS1σ21 = σ′

21

and RuS1σ22 = σ′
22

. Moreover vars(Ru) /∈ A1 and vars(S1) /∈ A1. Then by the premises of the rule

�
dsk

σ′
21

≤ σ11 or �
dsk

RuS1σ21 ≤ SS0σ11 or �
dsk

RuS1σ21 ≤ RuS1σ11 since ftv(σ11) /∈ (A0 − A1).

Then we can apply the induction hypothesis for the supply A1 to get that (S1,A1) �
dsk∗

σ21 ≤ σ11 ⇒
(S2,A2) and ∃R1 with Ru · S1 = R1 · S2\A1−A2

which implies that S · S0 = R1 · S2\A0−A2
. Moreover

vars(R1) /∈ A2 and vars(S2) /∈ A2. Now we also know by the premises of the rule that �
dsk

σ′
12

≤ σ′
22

or �
dsk

R1S2σ12 ≤ R1S2σ22. Then it is easy to confirm that the freshness conditions hold for A2

to apply the induction hypothesis and get that (A2,S2) �
dsk

σ12 ≤ σ22 ⇒ (A3,S3) and ∃R with
R1 · S2 = R · S3\A2−A3

which gives us that S · S0 = R2 · S3\A0−A3
. Moreover vars(R) /∈ A3 and

vars(S3) /∈ A3. Then by applying rule afun1 and picking the same R we are done.

The case where ρ2 = σ21 → σ22 is similar.

• Case spec. Here it must be that σ1 is a polytype and assume that σ1 = ∀a.ρ1 and σ2 = ρ2.

Assume also without loss of generality that a /∈ vars(S ,S0). Then we have that �
dsk

∀a.SS0ρ1 ≤ ρ2

given that �
dsk

[a 	→ τ]SS0ρ1 ≤ SS0ρ2, a /∈ τ . Then consider an arbitrary supply A0β such that

A0β /∈ vars(S ,S0) ∪ ftv(σ1, ρ2) and rewrite the last derivation as: �
dsk

[β 	→ τ]SS0[a 	→ β]ρ1 ≤ SS0ρ2,

Now because of the freshness conditions this is equivalent to �
dsk

[β 	→ τ]SS0ρ1 ≤ [β 	→ τ]SS0ρ2.

Now we need to be able to apply the induction hypothesis for A0 but we cannot do this directly
because τ might contain variables in A0. Instead we do the following: Separate the free variables of τ
in two sets. Let X1 = ftv(τ)∩ (ftv(SS0ρ2,SS0ρ1)) and X2 = ftv(τ)−X1. We know by our assumptions
that A0 /∈ X1, so the problematic set is X2. But simply consider a renaming substitution Q from
X2 to a set X of variables disjoint from A0. By the substitution lemma, Lemma 2.38, we get that

�
dsk

[β 	→ Qτ]SS0ρ1 ≤ [β 	→ Qτ]SS0ρ2. And now we can apply the induction hypothesis to get that

(S0,A0) �
dsk

[a 	→ β]ρ1 ≤ ρ2 ⇒ (S1,A1) and ∃R such that [β 	→ Qτ] · S · S0 = R · S1\A0−A1
which

means that S · S0 = R · S1\A0β−A1
. We also get that vars(S1) /∈ A1, vars(R) /∈ A1. Then the rule

aspec is applicable and taking the same R finishes the case.

Next an auxiliary corollary for algorithmic instantiation.
Corollary 4.18 (Algorithmic Instantiation Completeness).

1. �
inst

⇓ SS0σ1 ≤ SS0ρ2 ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(σ1, ρ2)

(A,S0) �
inst

⇓ σ1 ≤ ρ2 ⇒ (S1,A1)

∃Rs.t. S · S0 = R · S1\A0−A1

and vars(R) /∈ A1, vars(S) /∈ A1

2. �
inst

⇑ SS0σ1 ≤ ρ2 ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(σ1, ρ2)

(A,S0) �
inst

⇑ σ1 ≤ ρ′
2
⇒ (S1,A1)

∃Rs.t. S · S0 = R · S1\A0−A1

and RS1ρ
′
2

= ρ2

and vars(R) /∈ A1, vars(S) /∈ A1, ftv(ρ′
2
) /∈ A1

74

Proof. The first part easily follows from Lemma 4.17. For the second part it must be that σ1 is a polytype
σ1 = ∀a.ρ1 and assume without loss of generality that a /∈ vars(S ,S0). Then, using the rule inst we have

that �
inst

⇑ ∀a.SS0ρ1 ≤ ρ2 given that �
instρ

⇑ [a 	→ τ]SS0ρ1 ≤ ρ2 and this with an extra inversion using rule
inst1 gives us that [a 	→ τ]SS0ρ1 = ρ2 for that τ . Now the algorithm, using rule ainst will give us that

for an appropriate A0β we have that (S0,A0β) �
inst

⇑ ∀a.ρ1 ≤ ρ′
2
⇒ (S1,A1) when (S,A0) �

instρ

⇑ [a 	→ β]ρ1 ≤

ρ′
2
⇒ (S1,A1). Now using the rule iinstrho we see that ρ′

2
= [a 	→ β]ρ1, S1 = S0. Take R = [β 	→ τ] · S .

Then we have that S ·S0 = R ·S1\β as required. Moreover the variable freshness conditions are also satisfied.
Finally we need to show that RS1ρ

′
2

= ρ2. We have that

RS1ρ
′
2

= [β 	→ τ]SS0[a 	→ β]ρ1

= [β 	→ τ][a 	→ β]SS0ρ1

= [a 	→ τ]SS0ρ1

= ρ2

Now the main completeness result.
Lemma 4.19 (Algorithmic Completeness).

1. SS0Γ �⇑ t : ρ ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(Γ) ∪ ftv(ρ)

(S0,A0) ; Γ �⇑ t : ρ′ ⇒ (S1,A1)

∃R s.t. S · S0 = R · S1 \A0−A1
and RS1ρ

′ = ρ
ftv(ρ′) /∈ A1, vars(R) /∈ A1, vars(S1) /∈ A1

2. SS0Γ �⇓ t : SS0ρ ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(ρ) ∪ ftv(Γ).

(S0,A0) ; Γ �⇓ t : ρ ⇒ (S1,A1)

∃R s.t. S · S0 = R · S\A0−A1

vars(R) /∈ A1, vars(S1) /∈ A1

3. SS0Γ �
poly

⇑ t : σ ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(Γ) ∪ ftv(σ)

(S0,A0) ; Γ �
poly

⇑ t : σ′ ⇒ (S1,A1)

∃R s.t. S · S0 = R · S1 \A0−A1
and �

dsk
RS1σ

′ ≤sh σ
ftv(σ′) /∈ A1, vars(R) /∈ A1, vars(S1) /∈ A1

4. SS0Γ �
poly

⇓ t : SS0σ ⇒ ∀A0 /∈ vars(S ,S0) ∪ ftv(σ) ∪ ftv(Γ)

(S0,A0) ; Γ �
poly

⇓ t : σ ⇒ (S1,A1)

∃R s.t. S · S0 = R · S\A0−A1

vars(R) /∈ A1, vars(S1) /∈ A1

Proof. We prove simultaneously all goals, by induction on the height of the derivations. For each case the
induction hypothesis asserts that all goals hold for derivations of smaller heights. We proceed by case analysis
on the last rules used.

For the first part we have the following cases.

• Case var. The result follows easily from Corollary 4.18.

• Case abs1. In this case we have that SS0Γ �⇑ \x.t : τ → ρ, given that SS0Γ, x : τ �⇑ t : ρ. Consider a

symbol supply A0β that satisfies the freshness conditions. This is the same as writing [β 	→ τ]SS0Γ, x :
β �⇑ t : ρ, because of the freshness conditions. Then we can apply the induction hypothesis with A0

to get that (S0,A0) ; Γ �⇑ t : ρ′ ⇒ (S1,A1) and ∃R such that [β 	→ τ]S · S0 = R · S1\A0−A1
, RS1ρ

′ = ρ
and ftv(ρ′) /∈ A1, ftv(S1) /∈ A1, ftv(R) /∈ A1. Then we can apply the rule alg-abs1 to get that
(S0,A0β) ;Γ � \x.t : β → ρ′ ⇒ (S1,A1). But then RS1(β → ρ′) = RS1β → RS1ρ

′ = τ → ρ as required
and S · S0 = R · S1\A0β−A1

.

75

• Case aabs1. Here we have that SS0Γ �⇑ \x :: σ.t : σ → ρ given that SS0Γ, x : σ �⇑ t : ρ. And
consider any supply A0 with the appopriate freshness conditions. Because the type annotations are
closed we can apply the induction hypothesis to get that (S0,A0) ; Γ, x : σ �⇑ t : ρ′ ⇒ (S1,A1) and
there exists an R such that S ·S0 = R ·S1\A0−A1

, RS1ρ
′ = ρ, vars(R) /∈ A1, vars(S) /∈ A1, ftv(ρ′) /∈ A1.

Finally we can apply rule alg-aabs1 to get that (S0,A0) ; Γ �⇑ \x :: σ.t : σ → ρ′ ⇒ (S1,A1) and
RS1(σ → ρ′) = σ → RS1ρ

′ = σ → ρ as required, since annotations are closed.

• Case app. In this case we have SS0Γ �⇑ t u : ρ, given that SS0Γ �⇑ t : σ → σ′, SS0Γ �
poly

⇓ u : σ

and �
inst

⇑ σ′ ≤ ρ. Consider any symbol supply A0 that satisfies the freshness conditions, that is,
A0 /∈ vars(S ,S0), A0 /∈ ftv(ρ), A0 /∈ ftv(Γ). Then let us consider the set of variables X = ftv(σ →
σ′) − (vars(S ,S0) ∪ ftv(ρ) ∪ ftv(Γ)) and let Q be a renaming substitution taking X to set of variables
disjoint from A0. Then by the substitution lemma we can create derivations: SS0Γ �⇑ t : Qσ → Qσ′,

SS0Γ �
poly

⇓ u : Qσ and �
inst

Qσ′ ≤ ρ, and these derivations have the same height as the original
derivations. Now we can apply the induction hypothesis to get that (S0,A0);Γ �⇑ t : ρ1 ⇒ (S1,A1) such
that ∃R1 with S · S0 = R1 · S1\A0−A1

, vars(R1) /∈ A1, vars(S1) /∈ A1, ftv(ρ1) /∈ A1. R1S1ρ1 = Qσ →
Qσ′. Now it is easy to verify that A1 satisfies the conditions of the arrow unification completeness
lemma, Lemma 4.9, to get that (S1,A1) �→ ρ1 = σ0 → σ′

0
⇒ (S2,A2) such that ∃R2 with R1 · S1 =

R2 · S2\A1−A2
, R2S2σ0 = Qσ and R2S2σ

′
0

= Qσ′. Finally also vars(R2) /∈ A2 and vars(S2) /∈ A2

and similarly for the free variables of σ0 → σ′
0
. Then also S · S0 = R2 · S2\A0−A2

. Taking into

account the freshness conditions as well, we can rewrite the premise of the rule SS0Γ �
poly

⇓ u : Qσ as

R2S2Γ �
poly

⇓ u : R2S2σ0. But now note that A2 is appropriate to apply the induction hypothesis to get

that (S2,A2)Γ �
poly

⇓ u : σ′ ⇒ (S3,A3), and ∃R such that R2 ·S2 = R ·S3\A2−A3
, so S ·S0 = R ·S3\A0−A3

.

However we have that �
inst

R3S3σ
′
0
≤ ρ and A3 is appropriate to apply Lemma 4.18 to get that

S3,A3)Γ �
inst

σ′
0
≤ ρ′ ⇒ (S3,A4) and exists R such that R3 · S3 = R · S4\A3−A4

and RS4ρ
′ = ρ.

Moreover vars(R) /∈ A4 and vars(S4) /∈ A4 and ftv(ρ′) /∈ A4. Therefore by applying the rule alg-app

we are done, picking the same R.

• Case let. In this case we have that SS0Γ �⇑ let x = u in t : ρ given that SS0Γ �
poly

⇑ u : σ
and SS0Γ, x : σ �⇑ t : ρ. Consider an appropriate A0, such that A0 /∈ vars(S ,S0), A0 /∈ ftv(Γ),
A0 /∈ ftv(ρ). Now we don’t know that A0 /∈ ftv(σ), however let us consider the set of variables
X = ftv(σ)−(ftv(ρ)∪vars(S ,S0)∪vars(Γ)). Then consider a renaming substitution Q that take this set

of variables to a disjoint from A0 set. Then by the substitution lemma we have that SS0Γ �
poly

⇑ u : Qσ
and has the same height. Similarly, applying the same Q to the other subderivation we get that SS0Γ, x :
Qσ �⇑ t : ρ and has the same height. Now we are certain that the freshness conditions are met for the

subderivations we can apply the induction hypothesis to get that (S0,A0);Γ �
poly

u : σ′ ⇒ (S1,A1) and

∃R1 such that S ·S0 = R1 ·S1\A0−A1
. Moreover �

dsk
R1S1σ

′ ≤sh Qσ and vars(R1) /∈ A1, vars(S1) /∈ A1,
ftv(σ′) /∈ A1. Then, by Lemma 3.19 we have that SS0Γ, x : R1S1σ

′ �⇑ t : ρ and this derivation has
the same height as the derivation SS0Γ, x : Qσ �⇑ t : ρ. Now, because ftv(Γ) /∈ A0 − A1 it must be
that S · S0Γ = R1 · S1Γ. Then the derivation can be rewritten as R1S1Γ, x : R1S1σ

′ �⇑ t : ρ. Then A1

is appropriate to apply the induction hypothesis and get that (S1,A1) ; Γ, x : σ′ �⇑ t : ρ′ ⇒ (S2,A2)
and ∃R such that R1 · S1 = R · S2\A1−A2

, and RS2ρ
′ = ρ. Moreover vars(R) /∈ A3, vars(S2) /∈ A3,

ftv(ρ′) /∈ A3. Therefore S · S0 = R · S2\A0−A2
, and by the rule alg-let we get the result.

For the second part we have the following cases.

• Case var. The result follows again from Corollary 4.18.

• Case abs2. Here we have SS0Γ �⇓ \x.t : SS0ρ
′, but since we are in the abs2 case it must be that

SS0ρ
′) = σa → σr for some types σa and σr . Then consider a supply A0 that satisfies the freshness

conditions. Therefore we have A0 /∈ vars(S ,S0) and A0 /∈ ftv(ρ′) ∪ ftv(Γ). Then it is easy to confirm

76

that the tape is appropriate for applying Lemma 4.9 to get that (S0,A0) �
→ ρ′ = σ0 → σ′

0
⇒ (S1,A1)

and ∃Ru such that S ·S0 = Ru ·S1\A0−A1
and RuS1σ0 = σa and RuS1σ

′
0

= σr . Moreover vars(Ru) /∈ A1,
vars(S1) /∈ A1, ftv(σ0) /∈ A1, ftv(σ′

0
) /∈ A1. Then, because also ftv(Γ) /∈ A1 the derivation can be

rewritten as RuS1Γ �⇓ \x.t : σa → σr and the immediate subderivation was RuS1Γ, x : σa �
poly

⇓ t : σr .

This can again be rewritten as RuS1Γ, x : RuS1σ0 �
poly

⇓ t : RuS1σ
′
0
. Now, we know that A1 is

appropriate to apply the induction hypothesis to get that (S1,A1) ; Γ, x : σ0 �
poly

⇓ t : σ′
0
⇒ (S2,A2) and

there exists an R, such that Ru · S1 = R · S2\A1−A2
which implies S · S0 = R · S2\A0−A2

. Moreover
vars(R) /∈ A2, vars(S2) /∈ A2. Then we can apply the rule alg-abs2 to get the result and taking the
same R finishes the case.

• Case aabs2. In this case we have that SS0Γ �⇓ \x :: σx.t : SS0ρ0, where SS0ρ0 = σ′
a → σ′

r and

�
dsk

σ′
a ≤ σx and SS0Γ, x : σx �

poly

⇓ t : σ′
r . Consider a supply A0 that satisfies the freshness conditions,

that is, A0 /∈ vars(S ,S0), A0 /∈ ftv(Γ)∪ ftv(ρ0). Then we can verify that A0 is appropriate for applying
Lemma 4.9 to get that (S0,A0) �

→ ρ0 = σa → σr ⇒ (S1,A1) and ∃Ru such that S ·S0 = Ru ·S1\A0−A1
,

RuS1σa = σ′
a , RuS1σr = σ′

r , vars(Ru) /∈ A1, vars(S1) /∈ A1, ftv(σa) /∈ A1, ftv(σr) /∈ A1. Then, we can

rewrite �
dsk

σ′
a ≤ σx as �

dsk
RuS1σa ≤ RuS1σx because σx is closed. Then it is again not hard to verify

that the tape A1 is appropriate to apply Lemma 4.17 to get that (S1,A1) �
dsk

σa ≤ σx ⇒ (S2,A2)
and ∃R1 such that Ru · S1 = R1 · S2\A1−A2

which implies S · S0 = R1 · S1\A0−A2
, vars(R1) /∈ A2 and

vars(S1) /∈ A2. Then, from the premises of the rule we get that R1S2Γ, x : σx �⇓ t : R1S2σr . Now
it is easy to verify that A2 in an appropriate supply to apply the induction hypothesis to get that
A2,S2)Γ, x : σx �⇓ t : σr ⇒ (S3,A3) and ∃R with R1S2 = R · S3\A2−A3

which implies S · S0 = Q =
\A0−A3

; moreover vars(R) /∈ A3 and vars(S3) /∈ A3. Then we have all the premises of rule alg-aabs2

and by applying it we get the result; picking the same R finishes the case.

• Case app. In this case we have SS0Γ �⇑ t u : SS0ρ, given that SS0Γ �⇑ t : σ → σ′, SS0Γ �
poly

⇓ u : σ

and SS0Γ �
inst

⇓ σ′ ≤ SS0ρ. Consider any symbol supply A0 that satisfies the freshness conditions, that
is, A0 /∈ vars(S ,S0), A0 /∈ ftv(ρ), A0 /∈ ftv(Γ). Then let us consider the set of variables X = ftv(σ →
σ′) − (vars(S ,S0) ∪ ftv(ρ) ∪ ftv(Γ) and let Q be a renaming substitution taking X to set of variables
disjoint from A0. Then by the substitution lemma we can create derivations: SS0Γ �⇑ t : Qσ → Qσ′,

SS0Γ �
poly

⇓ u : Qσ and SS0Γ �
inst

⇓ Qσ′ ≤ SS0ρ and these derivations have the same height as the original
derivations. Now we can apply the induction hypothesis to get that (S0,A0);Γ �⇑ t : ρ1 ⇒ (S1,A1) such
that ∃R1 with S · S0 = R1 · S1\A0−A1

, vars(R1) /∈ A1, vars(S1) /∈ A1, ftv(ρ1) /∈ A1. R1S1ρ1 = Qσ →
Qσ′. Now it is easy to verify that A1 satisfies the conditions of the unification completeness lemma,
Lemma 4.9 to get that (S1,A1) �

→ ρ1 = σ0 → σ′
0
⇒ (S2,A2) such that ∃R2 with R1·S1 = R2·S2\A1−A2

,
R2S2σ0 = Qσ and R2S2σ

′
0

= Qσ′. Finally also vars(R2) /∈ A2 and vars(S2) /∈ A2 and similarly for the
free variables of σ0 → σ0. Then also S · S0 = R2 · S2\A0−A2

. Then, taking into account the freshness

conditions as well, we can rewrite the premise of the rule SS0Γ �
poly

⇓ u : Qσ as R2S2Γ �
poly

⇓ u : R2S2σ0.

But note that A2 is now appropriate to apply the induction hypothesis to get that (S2,A2)Γ �
poly

⇓ u :
σ0 ⇒ (S3,A3), and ∃R3 such that R2 · S2 = R3 · S3\A2−A3

, so S · S0 = R3 · S3\A0−A3
. Then we have

that �
inst

⇓ Qσ′ ≤ SS0ρ and we can rewrite this as �
dsk

R3S3σ
′
0
≤ R3S3ρ and now A3 is appropriate to

apply Lemma 4.18 to get that S3,A3) �
inst

⇓ σ′
0
≤ ρ ⇒ (S4,A4) such that ∃R with R3 ·S3 = R ·S4\A3−A4

which also gives us S · S0 = R · S4\A0−A4
and vars(R) /∈ A4, vars(S4) /∈ A4. Then by applying the

rule alg-app and taking the same R we are done.

• Case let. In this case we have that SS0Γ �⇓ let x = u in t : SS0ρ given that SS0Γ �
poly

⇑ u : σ
and SS0Γ, x : σ �⇓ t : SS0ρ. Consider an appropriate A0, such that A0 /∈ vars(S ,S0), A0 /∈ ftv(Γ),
A0 /∈ ftv(ρ). Now we don’t know that A0 /∈ ftv(σ), however let us consider the set of variables
X = ftv(σ)−(ftv(ρ)∪vars(S ,S0)∪vars(Γ)). Then consider a renaming substitution Q that take this set

of variables to a disjoint from A0 set. Then by the substitution lemma we have that SS0Γ �
poly

⇑ u : Qσ
and has the same height. Similarly, applying the same Q to the other subderivation we get that

77

SS0Γ, x : Qσ �⇓ t : SS0ρ and has the same height. Now we are certain that the freshness conditions are

met for the subderivations we can apply the induction hypothesis to get that (S0,A0) ; Γ �
poly

⇑ u : σ′ ⇒

(S1,A1) and ∃R1 such that S · S0 = R1 · S1\A0−A1
. Moreover �

dsk
R1S1σ

′ ≤sh Qσ and vars(R1) /∈ A1,
vars(S1) /∈ A1, ftv(σ′) /∈ A1. Then, by Lemma 3.19 we have that SS0Γ, x : R1S1σ

′ �⇓ t : SS0ρ
and this derivation has the same height as the derivation SS0Γ, x : Qσ �⇓ t : SS0ρ. Now, because
ftv(Γ) /∈ A0 − A1 it must be that SS0Γ = R1S1Γ and similarly SS0ρ = R1S1ρ . Then the derivation
can be rewritten as R1S1Γ, x : R1S1σ

′ �⇓ t : R1S1ρ. Then A1 is appropriate to apply the induction
hypothesis and get that (S1,A1) ;Γ, x : σ′ �⇓ t : ρ ⇒ (S2,A2) and ∃R such that R1 ·S1 = R ·S2\A1−A2

.
Moreover vars(R) /∈ A3, vars(S2) /∈ A3. Therefore S · S0 = R · S2\A0−A2

, and by the rule alg-let we
get the result, taking the same R.

Let us consider the third part now. The rule used here was gen1. We have that SS0Γ �
poly

⇑ t : ∀b.[a 	→ b]ρ

given that Γ �
poly

⇑ t : ρ, a = ftv(ρ) − ftv(Γ) and b /∈ ftv(ρ) − a. The inferred polytype can be rewritten as

σ = SS0Γ(ρ). Pick an appropriate symbol supply A0b /∈ vars(S), A0b /∈ vars(S0), A0b /∈ ftv(ρ) − (a ∪ α),
and A0b /∈ ftv(Γ). Then by induction hypothesis A0,S0) ; Γ �⇑ t : ρ′ ⇒ (S1,A1) and ∃R such that
S · S0 = R · S1\A0−A1

. Moreover RS1ρ
′ = ρ and ftv(ρ′) /∈ A1, vars(S1) /∈ A1 and vars(R) /∈ A1.

Now, by Lemma 4.15 we know that fov(S1ρ
′) ⊆ fov(S1Γ) ⊆ fov(S0Γ). But what that says is that if

b ∈ fov(S1ρ
′) b ∈ fov(S0Γ) and hence also b ∈ fov(S1Γ). So there cannot be any ordinary variables in

the returned type that are not in the context, this is why our notation uses α instead of some general
set symbol X or α ∪ a in the alg-gen1 rule. This means that we can apply the rule alg-gen1 to get that

A0,S0) ; Γ �
poly

⇑ t : σ′ ⇒ (S1,A1) where σ′ = S1Γ(S1ρ
′). We also pick the same R. Finally we need to show

that RS1σ
′ ≤sh σ. We have by Lemma 3.17 that

RS1σ
′ = RS1S1Γ(S1ρ

′)

≤sh RS1S1Γ(RS1S1ρ
′)

= RS1Γ(RS1ρ
′)

= SS0Γ(RS1ρ
′) = SS0Γ(ρ) = σ

For the fourth part the rule used was gen2. It must be that SS0Γ �
poly

⇓ t : SS0σ, given that

pr(SS0σ) = ∀a.ρa (1)

a /∈ ftv(SS0Γ) (2)

SS0Γ �⇓ t : ρa (3)

Consider a supply A0 /∈ vars(S), vars(S0), ftv(Γ, σ), By (1) and Lemma 4.16 we get

A0 �pr σ 	→ ∀b.ρb ⇒ A1 (4)

such that SS0(∀b.ρb) = ∀a.ρa . Moreover, by Lemma 4.11 we know that b ∈ A0; hence b /∈ vars(S ,S0). Then
SS0ρb = [a 	→ b]ρa . By the substitution lemma for (3) and taking into account (2) we get SS0Γ �⇓ t : SS0ρb .
We can apply the induction hypothesis for the supply A1 since the last derivation has the same height as (3)
to get that

(S0,A1) ; Γ �⇓ t : ρb ⇒ (S1,A2) (5)

Morever there exists R such that S ·S0 = R ·S1\A1−A2
, or equivalently S ·S0 = R ·S1\A0−A2

and vars(R) /∈ A2

and vars(S1) /∈ A2 as required. To apply rule alg-gen2 for (4) and (5) we only need to show that
b /∈ ftv(S1Γ,S1σ). Assume by contradiction that for some b ∈ b it is the case that b ∈ ftv(S1Γ,S1σ). Then,
since b /∈ ftv(Γ, σ) as b ∈ A0 it must be that there exists a γ ∈ ftv(Γ, σ) such that b ∈ S1γ. Moreover
γ /∈ A0. Then SS0γ = RS1γ and therefore b ∈ vars(S ,S0), a contradiction to the freshness conditions of the
supply.

78

4.6.2 Soundness

For this section only we are going to assume that meta variables can also occur in the types of the syntax-
directed system; they are going to be treated as equivalent to ordinary variables.
Lemma 4.20 (Weak Prenex Conversion Soundness). If A0 /∈ ftv(σ) and A0 �pr σ 	→ ∀a.ρ ⇒ A1

then pr(σ) = ∀a.ρ.

Proof. Easy induction on the structure or σ.

Lemma 4.21 (Algorithmic Subsumption Soundness).

1. If A0 /∈ ftv(σ1),A0 /∈ ftv(σ2), A0 /∈ vars(S0), (S0,A0) �
dsk

σ1 ≤ σ2 ⇒ (S1,A1) then �
dsk

S1σ1 ≤ S1σ2.

2. If A0 /∈ ftv(σ1),A0 /∈ ftv(σ2), A0 /∈ vars(S0), (S0,A0) �
dsk∗

σ1 ≤ σ2 ⇒ (S1,A1) then �
dsk

S1σ1 ≤ S1σ2.

Proof. We prove the two claims simultaneously by induction the height of the derivations.

Part 1: We have the case of askol to consider. We are given a supply A0b such that A0b /∈ vars(S0),

A0b /∈ ftv(σ1, σ2. We have that (S0,A0b) �
dsk

σ1 ≤ σ2 ⇒ (S1,A2), given that

A0 �pr σ2 	→ ∀a.ρ ⇒ A1 (1)

(S0,A1) �
dsk∗

σ1 ≤ ρ ⇒ (S1,A2) (2)

a /∈ ftv(S1σ1,S1σ2) (3)

By (1) and Lemma (4.20) we get pr(σ2) = ∀a.ρ and moreover we know by Lemma 4.11 that a ∈ A0. Then,

by induction hypothesis for (2) we get �
dsk∗

S1σ1 ≤ S1ρ. it must be that pr(S1σ2) = S1(∀a.ρ, and because

of (3) pr(S1σ2) = ∀a.S1ρ. Moreover by (3) again we can apply rule skol to get that �
dsk

S1σ1 ≤ S1σ2, as
required.

Part 2: We have the following cases to consider.

• Case aspec. In this case we have that for some appropriate A0β that satisfies the freshness conditions

A0,S0) �
dsk∗

∀a.ρ1 ≤ ρ2 ⇒ (S1,A1) given that A0,S0) �
dsk∗

[a 	→ β]ρ1 ≤ ρ2 ⇒ (S1,A1). By induction

hypothesis we have that �
dsk

S1[a 	→ β]ρ1 ≤ S1ρ2. Assume again that a are not in the free variables

of the inputs of the judgement. Then this becomes �
dsk

[a 	→ S1β]S1ρ1 ≤ S1ρ2 and we can apply the
rule spec to get the result, again noticing that we can commute S1 and the quantifier.

• Case afun1. Here we have that (S0,A0) �
dsk∗

ρ ≤ σ3 → σ4 ⇒ (S3,A3) given that (S0,A0) �→ ρ =

σ1 → σ2 ⇒ (S1,A1), (S1,A1) �
dsk

σ3 ≤ σ1 ⇒ (S2,A2), (S2,A2) �
dsk∗

σ2 ≤ σ4 ⇒ (S3,A3). Now
by the arrow unification soundness, Lemma 4.9 we have that S1ρ = S1σ1 → S1σ2 and moreover ∃R1

such that S1 = R1 · S0 and vars(S1) /∈ A1. Then we can apply the induction hypothesis to get that

�
dsk

S2σ3 ≤ S2σ1 and moreover we know that ∃R2 such that S2 = R2 · S1 and vars(S2) /∈ A2. Finally,

again by induction we get that �
dsk

S3σ2 ≤ S3σ4 and we know that ∃R3 such that S3 = R3 · S2

and vars(S3) /∈ A3. Then we wish to show also that �
dsk

S3ρ ≤ S3σ3 → S3σ4. Now we have
that S3ρ = R3R2S1ρ = R3R2S1σ1 → R3R2S1σ2. Then by the subsumption substitution lemma,

Lemma 2.38, we get that �
dsk

R3S2σ3 ≤ R3S2σ1 or �
dsk

S3σ3 ≤ R3R2S1σ1 and we can apply the rule
fun to get the result.

• Case afun2. Similar to the case for afun1.

79

• Case mono. In this case we have that (S0,A0) �
dsk∗

τ1 ≤ τ2 ⇒ (S1,A0) given that S0 � τ1 = τ2 ⇒ S1.
By the unification completeness lemma, Lemma 4.8 we get that S1τ1 = S1τ2 and therefore S1τ1 = S1τ2;

hence by rule mono �
dsk

S1τ1 ≤ S1τ2.

Lemma 4.22 (Algorithmic Soundness).

1. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ S1Γ �⇑ t : S1ρ

(S0,A0) ; Γ �⇑ t : ρ ⇒ (S1,A1)

2. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(ρ) ⇒ S1Γ �⇓ t : S1ρ

(S0,A0) ; Γ �⇓ t : ρ ⇒ (S1,A1)

3. A0 /∈ ftv(Γ) ∪ vars(S0) ⇒ S1Γ �
poly

⇑ t : S1σ

(S0,A0) ; Γ �
poly

⇑ t : σ ⇒ (S1,A1)

4. A0 /∈ ftv(Γ) ∪ vars(S0) ∪ ftv(σ) ⇒ S1Γ �
poly

⇓ t : S1σ

(S0,A0) ; Γ �
poly

⇓ t : σ ⇒ (S1,A1)

Proof. By induction on the algorithmic relations. We proceed by case analysis on the last rule used.

For the first part we have to consider the following cases.

• Case alg-var. Here we have that (S0,A0) ; Γ �⇑ x : ρ ⇒ (S1,A1), given that x : σ ∈ Γ, (S0,A0) �
inst

⇑

σ ≤ ρ ⇒ (S1,A1), and by a simple inversion we can verify that S1 = S0 and, if σ = ∀a.ρ′, it must

be that ρ = [a 	→ β]ρ′ where β = A0 − A1. Then �
inst

⇑ σ ≤ ρ by rules inst and inst1, and by the

substitution lemma �
inst

⇑ S1σ ≤ S1ρ. Then we can apply the rule var to get that S1Γ �⇑ x : S1ρ.

• Case alg-abs1. Here (S0,A0β);Γ; �⇑ \x.t : β → ρ ⇒ (S1,A1), given that (S0,A0);Γ, x : β �⇑ t : ρ ⇒
(S1,A1). By induction hypothesis we get that S1Γ, x : S1b �⇑ t : S1ρ and ∃R such that S1 = R · S0,
vars(S1) ⊆ ftv(Γ)∪ vars(S0)∪ (A0 −A1) and ftv(ρ) ⊆ ftv(Γ)∪ vars(S0)∪ (A0 −A1). Then by applying
the rule abs we get that S1Γ �⇑ \x.t : S1β → S1ρ as required.

• Case alg-aabs1. Similar to the alg-abs1 case.

• Case alg-app. Here we have that (S0,A0) ; Γ �⇑ t u : ρ ⇒ (S4,A4), given that (S0,A0) ; Γ �⇑ t :

ρ1 ⇒ (S1,A1), (S1,A1) �
→ ρ1 = σ → σ′ ⇒ (S2,A2), (S2,A2) ; Γ �

poly

⇓ u : σ ⇒ (S3,A3), (S3,A3) �
inst

⇑

σ′ ≤ ρ ⇒ (S4,A4). By induction hypothesis we get that S1Γ �⇑ t : S1ρ1 and moreover ∃R1 such that
S1 = R1 · S1 and vars(S1) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 − A1), ftv(ρ1) ⊆ ftv(Γ) ∪ vars(S0) ∪ (A0 − A1).
Then we have the conditions to apply the arrow unification soundness to get that S2ρ1 = S2σ → S2σ

′

and ∃R2 such that S2 = R2 · S1 and vars(S2) ⊆ ftv(ρ1) ∪ vars(S1) ∪ (A1 − A2). Then the conditions

are appropriate to apply the induction hypothesis to get that S3Γ �
poly

⇓ u : S3σ and ∃R3 such that

S3 = R3 ·S2 and vars(S3) ⊆ ftv(Γ)∪vars(S2)∪(A2−A3)∪ftv(σ). Finally note that S4 = S3, A3 = A4β
and asssume that σ′ = ∀a.ρ0. Then ρ = [a 	→ β]ρ0 because the instantiation inference relation is the

identity. Therefore also �
inst

⇑ S4σ
′ ≤ S4ρ. Now by applying the substitution lemma we have that

R3R2S1Γ �⇑ t : R3R2S1ρ1 or S4Γ �⇑ t : R3(S2σ
′ → S2ρ

′) or S4Γ �⇑ t : R4σ
′ → R4ρ

′. Then we also

have that S4Γ �
poly

⇓ u : R4σ
′ and we can apply the rule app to get the result.

• Case alg-let. The case uses a similar argument as the alg-app case.

The second part is similar to the proof of the first part appealing to the algorithmic subsumption soundness
lemma.

80

For the third part we have that (S0,A0b) ; Γ �
poly

⇑ t : ∀b.[α 	→ b]S1ρ ⇒ (S1,A1) given that α = ftv(S1ρ) −
ftv(S1Γ) and (S0,A0);Γ �⇑ t : ρ ⇒ (S1,A1). By induction hypothesis we get that S1Γ �⇑ t : S1ρ and we know
that for some R S1 = R·S1, ftv(ρ) ⊆ vars(S0)∪ftv(Γ)∪(A0−A1) and vars(S1) ⊆ vars(S0)∪ftv(Γ)∪(A0−A1).
Then, we are certain that b /∈ ftv(S1ρ) − (α) and we can apply the rule gen1 to get the result.

For the last part we have a supply A0 such that A0 /∈ ftv(Γ, σ) ∪ vars(S0). And (S0,A0) ; Γ �
poly

⇓ t : σ ⇒
(S1,A2), given that

A0 �pr σ 	→ ∀a.ρ ⇒ A1 (1)

(S0,A1) ; Γ �⇓ t : ρ ⇒ (S1,A2) (2)

a /∈ ftv(S1Γ,S1σ) (3)

By Lemma 4.20 we get that pr(σ) = ∀a.ρ. We can apply the induction hypothesis for (2) to get that
S1Γ �⇓ S1ρ. Additionally pr(S1σ) = S1(∀a.ρ), but a ∈ A0, but we know that anotinftv(S1σ therefore we
can commute the quantifier and the substitution to get that pr(S1σ) = ∀a.S1ρ. Finally to be able to apply
rule gen2* it must be that a /∈ ftv(S1Γ) which we have by (3).

As a corollary, returning to the original syntax-directed system where we did not allow meta type variables
in the returned types, we can apply a ground substitution V that will map all the meta-variables of the
types and the context to any monotype to get the result.

4.7 Principal Types

Here is the familiar principal types property for inference mode.
Theorem 4.23 (Principal Types).

1. If �⇑ t : ρ there exists a ρ′ such that for all ρ with �⇑ t : ρ it is the case that �⇑ t : ρ′ and there exists
a subtitution R such that ρ = Rρ′.

2. If �
poly

⇑ t : σ there exists a σ′ such that for all σ with �
poly

⇑ t : σ it is the case that �
poly

⇑ t : σ′ and

�
sh

σ′ ≤ σ.

Proof. The first part follows by the completeness and soundness theorems. The second part is derived by

the first part by inversion of �
poly

⇑ and the definition of �
sh

.

For checking mode a corresponding property is not true. Consider for example the two checking judgements
below:

�⇓ \g.(g 3, g True) : (∀a.a → Int) → (Int, Int)

�⇓ \g.(g 3, g True) : (∀a.a → a) → (Int, Bool)

Suppose that there was a most general ρ such that

�⇓ \g.(g 3, g True) : ρ

and �
dsk

ρ ≤ (∀a.a → Int) → (Int, Int), and �
dsk

ρ ≤ (∀a.a → a) → (Int, Bool). Then it must be that
ρ = σ1 → σ2 such that

�
dsk

∀a.a → Int ≤ σ1

�
dsk

∀a.a → a ≤ σ1

�
dsk

σ2 ≤ (Int, Int)

�
dsk

σ2 ≤ (Int, Bool)

81

Assuming that pr(σ1) = ∀a.ρ1 by inversion it must be that

�
dsk

∀a.a → Int ≤ ρ1

�
dsk

∀a.a → a ≤ ρ1

By inversion it must be that

�
dsk

τ1 → Int ≤ ρ1

�
dsk

τ2 → τ2 ≤ ρ1

Now it is easy to confirm that ρ1 must be Int → Int, therefore also σ1 = Int → Int. Consequently we
would have to check that

�⇓ \g.(g 3, g True) : (Int → Int) → σ2

But the above would fail as g is used polymorphically.

References

[1] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Conference Record
of the 9th Annual ACM Symposium on Principles of Programming Languages, pages 207–12, New York,
1982. ACM Press.

[2] J. Roger Hindley. Basic simple type theory. Cambridge University Press, New York, NY, USA, 1997.

[3] R Milner. A theory of type polymorphism in programming. JCSS, 13(3), December 1978.

[4] John C. Mitchell. Polymorphic type inference and containment. Inf. Comput., 76(2-3):211–249, 1988.

[5] M Odersky and K Läufer. Putting type annotations to work. In 23rd ACM Symposium on Principles of
Programming Languages (POPL’96), pages 54–67. ACM, St Petersburg Beach, Florida, January 1996.

[6] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type inference
for arbitrary-rank types. Submitted to the Journal of Functional Programming, 2005.

82

