Practical type inference for arbitrary-rank types
Technical Appendix
Technical Report MS-CIS-05-14

Computer and Information Science
University of Pennsylvania

Dimitrios Vytiniotis Stephanie Weirich Simon Peyton-Jones
University of Pennsylvania Microsoft Research
{dimitriv,sweirich }@Qcis.upenn.edu simonpj@microsoft.com

September 27, 2005

Note: This document accompanies the paper “Practical type inference for arbitrary-rank types” [6]. Prior
reading of the main paper is required.

Contents

1 Introduction

2 Polymorphic subsumption relations

2.1
2.2
2.3
24

Odersky-Léaufer subsumption
Deep skolemisation subsumption—sequent-style L.
Connection of deep skolemisation and Mitchell’s relation

Final definition of deep skolemisation subsumption

3 Higher-rank type systems

3.1
3.2

3.3

3.4

Syntax-directed higher-rank type system oL o oL
Bidirectional type system (first version) Lo o
3.2.1 Shallow subsumption L L e
3.2.2 Connection of syntax-directed and bidirectional type system
Final version of the bidirectional system: deep skolemisation in polytype checking
3.3.1 Type-safety of the bidirectional system

Conservativity over Damas-Milner

4 A formalised type inference algorithm

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Type variables and substitutions
Unification e
Algorithmic version of Damas-Milner type inference
Algorithmic version of the bidirectional system
Properties of the type inference algorithm
Proofs about the algorithm
4.6.1 Completeness e
4.6.2 Soundness e
Principal Types o o e e

List of Figures

Tt W N

Syntax of terms L e
Syntax of types L e e e
Subsumption in the Odersky-Laufer type system
Subsumption with deep skolemisation o oo

Predicative version of F-eta subsumption

15
18

22
23
32
37
39
40
33
53

57
o7
58
58
61
63
65
68
79
81

ST BN NN

© o0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Alternative deep skolemisation subsumption 0oL 18

Non syntax-directed higher-rank type system 23
Syntax-directed higher-rank type systemo oo oL 24
Bidirectional higher-rank type system L L oo 32
Creating coercion terms L e e e e e 51
System-F with open types L 51
Bidirectional higher-rank type system with retyping functions 52
The non-syntax-directed Damas-Milner type system 54
The syntax-directed Damas-Milner type system 55
The world o e 56
Type inference algorithm for Damas-Milner system 59
Generalisation, instantiation and subsumption for Damas-Milner 60
Unification L e 61
Arrow Unification L 61
Weak prenex conversion L L oL e 62
Algorithmic instantiation Lo 62
Algorithmic subsumption L 63
Inference/Checking Algorithm 64
Algorithmic generalisation Lo 65

1 Introduction

This document is structured as follows: We first study several formalisations of polymorphic subsumption
relations in Section 2. In Section 3 we give the most interesting properties of several type systems for
higher-rank types, including the Odersky-Léaufer type system [5], and study the connection between them
and between the original Damas-Milner type system. We specifically focus on the bidirectional higher-rank
type system, which is the main type system of the paper “Practical type inference for arbitrary-rank types”.
Finally, in Section 4 we give the formalisation of a sound and complete algorithm for the bidirectional type
system. The algorithm is a straightforward extension of “Algorithm W” [3, 1].

The language that we use throughout the document is given in Figures 1 and 2. Our notation is standard.
We use S, P, 7 for the sets of o, p, and 7-types respectively. Substitutions, denoted with S, T, U, V are,
as usual, idempotent finite maps from variables to monotypes. We use dom(S) and range(S) to denote
the domain and the range of a substitution S respectively. We define S(a) = a whenever a ¢ dom(S5).
Overloading the notation, we write @ ¢ b to mean that the two sets of variables are disjoint; moreover
for two sets of variables X; and X5 we write X;, X5 to denote their union. Composition of substitutions,
S -V, is defined as usual: S- V(o) = S(V(c)). A comprehensive account of substitutions and their algebraic
properties is beyond the scope of this document and can be found elsewhere, for example in [2].

tbu = 4 integer literal
| =z variable
| \z.t abstraction
| \(z::0).t annotated abstraction
| tu application
| let z = w in ¢t let generalisation
| ti:o annotated term

Figure 1: Syntax of terms

2 Polymorphic subsumption relations

In this section we study the relations given in Figure 3, Figure 4, Figure 5, and Figure 6. We give transitivity,
reflexivity and substitution lemmas for all relations and we associate each other. We discuss the properties
and three different formalisations of the predicative fragment of Mitchell’s F-eta containment relation [4].

2.1 Odersky-Laufer subsumption

The Odersky-Laufer subsumption relation is given in Figure 3.
Lemma 2.1 (Substitution). If ot o1 < o9 then ot So1 < Sos, and the new derivation has the same
height.

o == VYa.p polytypes
p = T |o—o0o
T == a | 7— 7 | Int monotypes

Figure 2: Syntax of types

Kl < o

ad fiwio) Fla<p F a1 < po
ST SKOL
F o<Va.p

— SPEC
F Va.pr < p2

l l
|—0 0'3§0'1 }—0 O'2§0'4

FUN ﬁ—MONO
|—0l (0‘1—>0‘2)§(0’3—>0’4) FO TST

Figure 3: Subsumption in the Odersky-Laufer type system

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.

e Case SKOL. In this case we have that o9 = Va. pa, given that @ ¢ ftv(o1) and ot 01 < po. Consider the
substitution S-[a +— b] where b ¢ ftv(o1), @, vars(S). Then, by induction hypothesis: H! Sla — blog <
S[a — b]pa, or equivalently, ot So1 < S[a — b]pa. But now we can apply rule SKOL to get ot Soqp <

Vb.S[a — blps, or using a-renaming, F! Soy < S(Va. pa).

e Case SPEC. In this case 01 = Va.p, o2 = p2, and by the premises of the rule there exist some 7 such
that ' [a77]p < p2. We need to show that F' §(Va.p) < Sps, or F' Vb.S[a — blp < Sps for fresh
b & vars(S), fto(T). By rule SPEC it is enough to find types 7/ such that ot [b— 7/]S[a — blp < Spa,
and b ¢ wvars(S). Pick 7/ = S7. Then we have to show that: ! [b— ST]S[a+ blp < Spa, or
equivalently s [b— T]la— blp < Spa, or equivalently K [a—=T7]p < Sp2 and this follows by

induction hypothesis.
e Case FUN. Follows by the induction hypotheses and rule FUN.

e Case MONO. Trivial.

Lemma 2.2 (Reflexivity). Flo <o,

Proof. By induction on the size of 0. We proceed by case analysis on the structure of 0. The case when
o = 7 follows by rule MONO. The case when o = 01 — o5 follows by rule FUN since, by induction hypothesis,
ot o1 < o1 and ot 09 < 09. For the case when ¢ = Va.p, we know by induction hypothesis that ol p<p

and the result follows by an application of SPEC and SKOL.

Lemma 2.3 (Transitivity). If ol o1 < o9 and ot oo < o3 then pot o1 < 03.

Proof. We prove the lemma by induction on the sums of heights of the two derivations. We proceed by case
analysis on the last rule used in each derivation. We have the following combinations for the last rule of the

first and the last rule of the second derivation.

e Case SKOL-SKOL. In this case 0o = Va.ps and o3 = Vb.p3. By the premises of the first derivation we

have o1 < po and @ ¢ ftv(oy). By the premises of the second derivation we have

! Va.p2 < ps3

and b ¢ ftv(Va.ps). Consider a substitution [b — ¢| with € ¢ ftv(o1,09,03). Then by the substitution
lemma we get F! va. p2 < [b— c]ps. and this derivation has the same height as (1). Then we can apply
the induction hypothesis to get that oy < [b — c]ps and by rule SKOL we get o < Ve [0 — c|ps.

Using a-renaming, ot o1 < Vb.ps.

e Case SKOL-SPEC. Here 092 = Va.ps and o3 = p3. Then we have ot o1 < Va.ps given that

! o1 < p2 (2)
a ¢ fto(or) (3)

Additionally, for some T,
K [@= e < ps (4)

By the substitution lemma [a—=T]o1 < [a— T]p2 and the derivation has the same height as (2).
By (3) it follows that " oy < [a77]ps and by induction hypothesis, using (4), F' o1 < ps.

e Case SKOL-FUN/MONO. Can’t happen.

e Case SPEC-SKOL. Here 01 = Va.p1, 09 = po for some p3, and o3 = Vg.pg. By the premises of the first
derivation l
' [a=7lp1 < pa (5)

for some 7. By the premises of the second derivation! we get

!
" pa < ps (6)

and b ¢ ftv(ps). Consider a renaming substitution [b +— c], such that € ¢ ftv(oy,02,03). Then by the

substitution lemma and (6) we get ot p2 < [b+— c]ps with the same height. By this, (5), and induction

hypothesis [a—=T7]p1 < [b+ c]ps. By rule SPEC we get ! Va.p1 < [b— c]ps and by rule SKOL,

ot Va.p; < Ve.[b— c|ps. With an a-renaming ot Va.p1 < Vb.ps.

e Case SPEC-SPEC. Can’t happen.

e Case SPEC-FUN. We have that 0; = V@.p1, and that 0o = 091 — 022. By the premises we have that,
for some 7, [@—=7]p1 < oa. Therefore by induction hypothesis ot [a— 7]p1 < o3 and by applying
rule SPEC we are done.

e Case SPEC-MONO. Easy.

e Case FUN-SKOL. Here 01 = 011 — 012, 02 = 091 — 09292, and 03 = Va. p3. Moreover
ol
F o2 < p3 (7)

where @ ¢ ftv(oz). Consider a renaming substitution [a — b], such that b ¢ ftv(cy,09,03). By the
substitution lemma ' oy < [a — blps and this derivation has the same height as (7). Then by
induction hypothesis oy < [a — b]ps and by rule SKOL we get ol oy < V. [a — b]ps, or with an

. l —
a-renaming, F o < Va. ps.
e Case FUN-SPEC. Can’t happen.

e Case FUN-FUN. In this case we have that 01 = 011 — o012 and 09 = 091 — 099 and 03 = 031 — 039.
Moreover F 031 < 091 and ot o921 < 011 and by induction hypothesis we get that ot o031 < oq1. Also
we have that F! 012 < 099 and ot 092 < 039. Then, by induction hypothesis ot 012 < 039 and by
applying rule FUN we are done.

INotice that it is not the case that b must be empty; the reason is that our types are not in prenex form. Consider for
example the subsumption check F! Int — Va.a — a <Vec.Int — ¢ — c.

__, ost
ol o<o

—_ 0st _ _ _ 0st
o,00F 01 <03 a ¢ ftv(ey,0) TF o1 <p
— |05t RFUN S5F SKOL
ok O'1§(O’2—>0’3) ok g1 SVEp
ost _ ost o osk
F o3<o0) oF oy <7 g [@a=Tp<T
LFUN SPEC

— st — 05t L
03,0 (01 »09)<T & F° Va.p <1

Figure 4: Subsumption with deep skolemisation

e Case FUN-MONO. Easy.
e Case MONO-SPEC. Can’t happen.

e Case MONO-SKOL/FUN/MONO. Trivial.

O

The Odersky-Laufer subsumption is syntax-directed, and therefore has nice inversion properties. The fol-
lowing lemmas capture inversion.
Lemma 2.4 (Skolemisation inversion). Ifa ¢ ftv(o) and o < Va.p, then Flo < p.

Proof. Straightforward induction. O
Lemma 2.5 (Specialisation inversion). If ot Va.p1 < pa, then ot [a—=T|p1 < p2 for some T.

Proof. Straightforward induction. O

Lemma 2.6 (Fun inversion). If ot p1 < 03 — 04, then p1 = o1 — oo with Lol o3 < o1 and ks oo < 0y4.

Proof. Straightforward induction. O

2.2 Deep skolemisation subsumption—sequent-style

In Figure 4 we give a relation that performs the “skolemisation” step deeply to the right of arrow types. It
resembles a sequent-style presentation. Here are the most important properties about this relation.
Lemma 2.7 (Substitution). If & st o1 < oo then So st Soq1 < Sog, and the new derivation has the
same height.

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.

e Case SKOL. In this case we have that oy = Va.p, given that @ ¢ ftv(o1,7) and @ Pt oy < p. Consider
the substitution S - [a +— b] where b ¢ ftv(o1,7) and b ¢ @, vars(S). Then, by induction hypothesis:
S[a — b7 F°t S[a— bloy < S[a — b]p, or equivalently, S5 F** Soy < S[a — b]p. But now we can
apply rule SKOL to get S7 F°% Soqy < Vb. S[a + b]p, or, using a-renaming S& Pt oy < S(Va.p).

e Case SPEC. In this case 01 = Va.p, 0o = 72, and by the premises of the rule there exist some
7 such that & F°° [a=7lp < 172. We need to show that ST R S(Va.p) < Sto, or with an a-
renaming, S F°° Vb. Sla — blp < Sto for b & wvars(S), ftv(7,7). By rule SPEC it is enough to find

types 7/ such that §5 ' [b— 7/]S[a — blp < S7. Pick 77 = §7. Then it remains to show that

S& b= S7]S[a — blp < S7o, or S7 F S[b— r][a — blp < 87, or ST S[a=TFp < S,

but this holds by induction hypothesis.

e Case RFUN. Follows by induction hypothesis and application of rule RFUN.
e Case LFUN. Follows by induction hypothesis and application of rule LFUN.

e Case MONO. Trivial.
O

For the rest of this section we are going to give the connection between the Odersky-Léufer subsumption and
the deep skolemisation subsumption. Namely we show that two types are related in the deep skolemisation
subsumption iff their prenex forms are related in Odersky-Laufer.

Definition 2.8 (Prenex conversion). The function pt(-) : S — S is defined as follows:

T o=rT

Va.pr(o1) = p2 0=01 =02 ANO#T
pr(o2) =Va.ps

o) ={ @ ¢ fiv(on)

Vab.ps oc=Va.prANaT#0D
Et(Pl) =Vb.p2
bé¢a

Definition 2.9 (Function conversion). The function fun(-;-): (S x S) — S is defined as follows:

fun(z ;o) “ o=

’ fun(G1;01 —0) T
We naturally extend the pr(-) function for sequences of types, by mapping the prenex function across every
type in the sequence. The next lemmas give the algebraic properties of th pr(-) and fun(-;-) functions.
Lemma 2.10 (Prenex conversion preserves size). size(o) = size(pt(o)).

Proof. By structural induction on the type o. If ¢ = 7 then size(pr(7)) = size(7) by definition. If 0 = 01 —
o2, not a monotype, then pr(o; — o2) = Va.pr(oy) — pa, where Va.py = pr(os), thus size(pr(os)) =| @ |
+size(p2). By induction size(o2) =| @ | +size(p2). By induction size(o1) = size(pr(oq)). Then

size(o1 — 09) = size(oq) + size(oz) + 1
= size(pr(o1))+ | @ | +size(p2) + 1
= size(Va.pr(o1) — p2)

Lemma 2.11. fun(o1,0;0) =01 — fun(c ;o).

Proof. By induction on the size of 7. If @ = € then

fun(o1;0) = fun(e; o1 — o)
_ 01 — fun(e; o)

If T = 59,09 then

fun(o1,2,09;0) = fun(o1,02;092 — 0)

o1 — fun(Gg ;09 — o) (by induction)
01 — fun(Tq,09;0)

= 01— fun(c;0)

Lemma 2.12. pr(pr(o)) = pr(o).

Proof. By induction on the size of . If 0 = 7 then it is trivial. If ¢ = 07 — 092, where o # 7, then
pr(pt(or — 02)) = pr(Va.pr(oy) — p2), where pr(oz) = Va.ps and @ ¢ ftv(oy). By induction hypothesis, we
get:

pr(Va.p2) = Va.ps (1)
pe(pr(o1)) = pr(or) (2)
Now we have two cases:
e @ = (. In this case pr(Va.pr(oy) — p2) = pr(pr(o1) — p2). By (1), pr(p2) = p2 and using (2) and the
definition pe(pe(o1) — pa) = pe(e1) — pa.

e @ # (. In order to compute pr(Va.pr(o1) — p2) we have to compute pr(pr(cy) — p2). But
size(pe(o1) — p2) = size(pr(o1)) + size(p2) + 1 and using Lemma 2.10 we have that size(pr(oy) —
p2) = size(o1) + size(p2) + 1 and since @ # 0 this is less than size(c). Then by induction hypothesis
we get pr(pr(o1) — p2) = pr(o1) — p2. Using the definition pr(Va.pr(o1) — p2) = Va.pr(or) — po.

Finally if 0 = Va.p for @ # () we have that pr(Va.p) = Vab. p1, where Vb.p; = pr(p). Now, by induction, it
must be that pr(Vb.p1) = Vb.py. If b = 0 then pr(py) = p1. If b #) then by definition of prenex conversion
if must be that pr(¥b.p;) = Vbe. ps where pr(p;) = VE.po. But this means that ¢ = () and py = py, therefore
in every case pt(p;) = p;. Using this and the definition of prenex conversion pr(pr(Va.p)) = pr(Vab.p;) =
Yab. pP1- O

Corollary 2.13. If pt(o) = Va.p then pt(p) = p.

Proof. Easy corollary of Lemma 2.12. O
Lemma 2.14. Ifpr(o) =Va.p and @ ¢ ftv(c) then pr(fun(d ;o)) = Va. fun(pe(a) ; p).

Proof. By induction on 7. For @ = € we have that

pr(fun(e; o)) pr(o)
= Va.p

= Va.fun(pr(e) ; p)

For @ = 01,51 we have that
pr(fun(oy,01;0)) = pr(oy — fun(d1;0)) (by Lemma 2.11)
= Va.pt(o1) — p2
where Va.ps = pr(fun(a ; 0)). Hence by induction hypothesis pa = fun(pr(z1) ; p). Therefore we get
pt(fun(or,71;0)) = Va.pr(or) — fun(pe(@r ; p))
Va. fun(pr(oy), pr(@1) ; p) (by Lemma 2.11)
va. fun(pr(o1,01) ; p)
— va.fun(pe(d) ; p)

Lemma 2.15. Ifpt(o) =Va.p and @ ¢ ftv(o) then pr(fun(z;0)) = Va.pr(fun(T;p)) and pr(fun(a;p)) € P.

Proof. By Lemma 2.14 it is enough to show that

pr(fun(a ; p)) = fun(px(@) ; p)

We prove this by induction on @. For & = € we have that pr(fun(e; p)) = pr(p). Using Lemma 2.13,
pt(p) = p = fun(pr(e) ; p). For @ = 0151 we have pr(fun(o1,71 ; p)) = pr(oy — fun(dy ; p)). By induction
hypothesis pr(fun(ay ; p)) = fun(pr(a) ; p) Therefore

pr(or — fun(@1;p)) = pr(o1) — fun(pe(@i); p)
= fun(pr(01,71;p)
= fun(pe(T;p))

Lemma 2.16 (Arrow). If st o3<0y and T st oo < o then 03,0 st o1 — o0y <o0.
Proof. By induction on the size of o.

e Case 0 = 7. Then the assumptions match exactly the premises of rule LFUN and we are done by
applying that rule.

e Case 0 = 0, — o0p, 0 # 7. Then we have that & st
we see that 7,0, st

o9 < 0, — 03 and by easy inversion
o9 < 0. Now we can apply the induction hypothesis for o, to get that
03,0,0, post 01 — 09 < 03 and by applying rule RFUN we get back 03,0 st o1 — 09 < 04 — Op.

e Case 0 = Va.p, @ # (. Here we have that & oot 02 < Va.p and by inversion this can happen only
using the rule SkoL. Therefore it must be that @ ¢ ftv(o2,7) and then

7t oo < p (1)

Consider a substitution [@— ¢|, such that ¢ ¢ fiv(o1,03), T ¢ ftv(F, 02). By the substitution lemma
we get 7 F°F o5 < [a7¢]p. Moreover size([a™¢|p) = size(p). Then, by induction hypothesis we get
030 st o1 — 03 < [a ¢]p, and by SKOL we have 037 st o1 — 09 < Ve.[a ¢]p. We are done
with an a-renaming.

O

Lemma 2.17 (Prenex recursive calls). The number of recursive calls to pr(-) is preserved by substitution.
If pr(o) uses n recursive calls, then so does pt(So).

Proof. By induction on o. If 0 = 7, since range(S) € T the result is trivial. Suppose o0 = 01 — o2. Then
calls(pe(o1)) = calls(pr(So1)) by induction hypothesis. Moreover calls(pr(oz)) = calls(pr(Sos)) by induction
hypothesis as well and we are done. If o = Va. p then, assuming without loss of generality that @ ¢ vars(S)
we have that calls(pr(p)) = calls(pr(Sp)) by induction hypothesis and we are done. O

The next theorem says that if the prenex-canonical forms of two types are related in Odersky-Léaufer sub-
sumption, then the two types are related in st

Theorem 2.18. If pr(oy) = o}, pr(fun(c ; 02)) = o}, and ot o) < ob then s B 0y < 0.

Proof. By induction on the derivation K& o) < oh. We proceed by case analysis on the last rule used in the
derivation.

10

e Case MONO. In this case we have that F' 7 < 7. By inversion it must be that o1 = 7 and fun(7;02) = T,
which implies that o9 = 75 and @ = 7, for some 7T, 75. We want to show that

7ot fun(7T ;1) < 1 (1)

We prove (1) by induction on 7.
— Case T = e. Then fun(T; 2) = 72 and the claim follows by MONO.
— Case 7 = 7/, 7. In this case by the (inner) induction hypothesis we get
7 e fun(@ ;1) < 7 (2)

Moreover F** 7/ < 7/; using this and (2) with rule LFUN we get that 7/, 7 st

7' = fun(7';m2) < T,
and we get (1) by this and Lemma 2.11.

e Case SKOL. Here pt(oy) = o and pr(fun(7 ; o2)) = Va.p. By Lemma 2.15 it must be that p =
pr(fun(T ; p2)) where we also assumed that pr(o2) = Va.ps and @ ¢ ftv(a). Moreover ! pr(oy) <
Va.pe(fun(a ; p2)), given that @ ¢ ftv(pr(oy1)) = ftv(o) and

ol _
= pe(on) < pe(fun(@; pa)) 3)

By (3) and induction hypothesis it must be that & |ost o1 < p2 and by applying rule SKOL we get
_ | 0st — . _ _
g b o1 <Va.ps, since @ ¢ ftu(T,01).

e Case FUN. Here we have the following

pt(o1) = 0y — a (4)
pr(fun(c;0q)) = 05 — o) (5)
Fot oy — oy < oh — o) (6)
! oh <o} (7
Eg oy < oy (8)
By (4) it must be that
g1 = 001 — 002 (9)

For (5) we have two cases:
— 0 = e. In this case it must be that oo = 021 — 092. Moreover pr(o21) = o4, pr(oea) = oy,
pt(oo1) = o1, and pr(og2) = ob. Equivalently pr(fun(e; oo1)) = of, and by induction hypothesis

}_Dﬂ 0921 S 001 (10)

Similarly pr(fun(e; oa22)) = o), therefore by induction hypothesis

}—058 g2 S 0922 (11)

With (10) and (11) we can apply Lemma 2.16 to get 021 post 001 — 0g2 < 092 and by rule RFUN
F 601 — 002 < 091 — 02 as required.

— 0 =0,4,0. Then we have that

pr(fun(og,0 ;02)) = pr(og — fun(d’; o2))
% —

11

Then, by definition of pt(-) we have

pe(0,) = o} (12)
pe(fun(@ 5 0)) = o (13)

By (4) and (9) we have that pr(cg1) = of, or pt(fun(e; op1)) = of. From this and (12) and

induction hypothesis we get that

l_Dsé Oq S go1 (14)

From (4) and (9) we get pt(cg2) = 4. From this and (13) and induction hypothesis we have that

— }_Dsé

5] 002 < 02. From this and (14) and Lemma 2.16 we get 0,0 et 001 — 0g2 < 09, and

using (9) we get & st 01 < o9 as required.

e (Case SPEC. For this case we have

pr(o1) =Va.p (15)
pe(fun(a; o2)) = p2 (16)
' Ya . py < po (17)
@=L < po (18)

We wish to show that 7 F°* 01 < 03. We prove this claim with an inner induction on the number of
recursive calls to pr(-) from pr(oq). Specifically our induction hypothesis is the following:

IH: If pr(o?) has fewer recursive calls than pr(oy) then

(A) pr(fun(@*;03)) = I
(B) pr(o}) =Vb.p! o ol <ol
(C) F' b= 7ipt < pb

We proceed with a case analysis on the structure of o1, and without loss of generality let us assume
that oy is not a monotype as we would not be in the SPEC case?.

— Case 01 = 011 — 012. Then pr(o1) = Va.pr(o11) — p12 where
pt(O’lg) = Vﬁ.plg (19)

and @ ¢ ftv(o11). By (18) it must be that ot [a—=7](pr(o11) — p12) < p2, or

! pr(o11) — [@7=7|p12 < pa2. By inversion it must be that p; = 05 — ¢ and

FOZ 0'54 < pt(Ull) (20)
! [@—=7|p12 < o (21)

By (16) then it must be that
pe(fun(7 5 02)) = 03 — 0f (22)

We continue with case analysis on 7.

2To be precise, if the case was a trivial application of SPEC we could just appeal to the (outer) induction hypothesis to get
the result.

12

x Case & = e. Then it must be the case that oo = 031 — 092, such that pr(ce;) = 04 and
pr(oae) = oF. By (20) we have that pr(oa;) < pr(oi;) and by the (outer) induction
hypothesis

"DSE J921 S 011 (23)

Similarly by (21) we have that Fot [@=7]p12 < pr(oa2) and by an application of SPEC we

have F' Va. p12 < pr(oaz). But the height of this derivation is still one less than the height of
the derivation we are examining and therefore by (outer) induction hypothesis we have that

|—DSE g12 S 0929 (24)

From (23) and (24) and Lemma 2.16 we get that 091 st 011 — 012 < 099 and by applying
RFUN we are done.

* Case 0 = 09, 00. In this case pt(fun(7 ; o2)) = pr(co — fun(do ; o2)) which implies that
p(og) = o3’ (25)
pr(fun(ao; 02) = 03

From (26), (19), and (21) and the (inner) induction hypothesis (for o12) we get that
G0 F™ 012 < 0 (27)

From (25) and (20) and the outer induction hypothesis we get

}—DEE go S 011 (28)
From (27) and (28) and Lemma 2.16 we get ¢, 70 st 011 — 012 < 09, or equivalently
ﬁl—DSE 011 — 012 < 09.
— Case 01 = Vay.p11. Here we have that pt(o1) = Va1as. p12, such that Vas. p1a = pr(p11). From
this it follows that
Vay . [ar — T1)p1z = pr([ar — 71)p11) (29)
From Lemma 2.17 we know that the number of recursive calls of pr([az — 71p11) is the same as
that of pt(p11). We also know that

H! [=)o e < pe (30)

Then we can apply the inner induction hypothesis to get that & oo [a1 — 71]p11 < p2 and by
applying rule SPEC & post Vay.p11 < p2, as required.

Theorem 2.19. If pr(oy) = of, pr(fun(c;02)) = 0h, and & R o1 < oy then I oy < d}.
Proof. By induction on the derivation & post 01 < o3. We proceed by case analysis on the last rule used.

e Case MONO. In this case @ = ¢, 01 = 7 = 09, pr(o1) = 7, pr(fun(e; 7)) = 7 and the result follows by
rule MONO.

e Case RFUN. Here & F°° o1 < 09 — o3 given that 7,09 st o1 < o3. Then pr(fun(z ;o2 — 03)) =
pr(fun(T, o2 ; 03)) and by induction hypothesis we know that ot) < pr(fun(a,os; 03)).

13

e Case LFUN. In this case we have that

03,0 oot o1 — 03 <T (1)
}—DSE g3 S g1 (2)
7ot o9 < T (3)

Moreover we know that pr(o; — o2) = Va.pr(oy) — p2, with Va.py = pt(oz) and @ ¢ ftv(o1). On
the other hand pr(fun(os,7 ; 7) = pr(os) — pr(fun(a; 7)) by Lemma 2.15. So we need to show that
ot Va.pr(o1) — p2 < pr(oz) — pe(fun(z; 7)). By rule SPEC it is enough to show that ! pr(oy) —
[@—=T]p2 < pr(os) — pr(fun(a;7)). By rule FUN it is enough to show that ot pt(os) < pr(oy) and
K& [a 7T]p2 < pr(fun(a;7)). We have the former by induction hypothesis. For the latter, by induction
hypothesis we also have K& Va.pe < pt(fun(c ;7)) and by inversion this is derivable by SPEC; hence
! [a 7T]p2 < pr(fun(d ;7)) and we are done.

e Case sPEC. We have pr(Va.p) = of, pr(fun(a ;7)) = o = p,. Moreover & F** va.p < 71, given that

_, ost
o

[@=Tlp<m (4)

It must be that pt(Va.p) = Vab.p;, where @ ¢ b and Vb.p; = pr(p). This implies that [@ 7|Vb.p; =
pr([a=7]p). From this, equation (4), and induction hypothesis ! [a—=7|Vb.p1 < ph. Without loss
of generality assume as well b ¢ ftv(T) and then we have KNP [@=7T|p1 < ph. If b =0 then we just
apply SPEC and we are done. If b # (), then by inversion it must be the case that this was derivable
by SPEC, so K& [b— Tp][a—=T]p1 < ph and by applying rule SPEC we get that ot Vab.p; < ph as
required.

e Case SKOL. Here pt(o1) = of, pt(fun(a;Va.p)) = o), and & F** oy < Va.p, given that @ ¢ ftv(c,01)
and 7 F** 0y < p. Using Lemma 2.15 we get that pr(fun(T ; Va.p)) = Yab.pt(fun(; p1)), where
Vb.p1 = pr(p), b ¢ ftv(F),a. By induction hypothesis we have that ot a; < pr(fun(a ; p)), therefore
ol ot <Vb.pt(fun(T;p1)). If b = () then we apply SKOL and get the result. If b # () then by Lemma 2.4
we get that ol o} < pr(fun(a; p1)) and by applying rule SKOL we get the result.

O
Corollary 2.20 (Prenex subsumption). st o1 < o9 iff ot pr(o1) < pr(oq).
Proof. Direct consequence of Theorem 2.18 and Theorem 2.19. O
Corollary 2.21 (Reflexivity). F*t s <o
Proof. Directly follows by Corollary 2.20 and Lemma 2.2. O
Corollary 2.22 (Transitivity). If st o1 < oy and st o9 < o3 then post o1 < o3.
Proof. Directly follows by Corollary 2.20 and Lemma 2.3. O

14

Ho <o

b ¢ fto(Va.o) Flop <oy FH oy <oy
7 — SUB 7 TRANS
F'Va.o <Vb.[a—=T|o oy <os
Hlos<or Foy<oy H oy < oo
- FUN - ALL
Flop— o9 <o03— 04 F' Va.o1 <Va.os
DISTRIB

F'Va.o1 — 09 < (Va.o1) — Va.os

Figure 5: Predicative version of F-eta subsumption

2.3 Connection of deep skolemisation and Mitchell’s relation

The predicative fragment of the F-eta subsumption is given in Figure 5. Let us start by proving some lemmas
about it.
Lemma 2.23 (Reflexivity). F' o < 0.

Proof. Follows directly by rule SUB. O

Lemma 2.24 (Substitution). If H' o1 < o4 then ot So1 < Sos, and the new derivation has the same
height.

Proof. By induction on the height of the derivation. We proceed by case analysis on the last rule used.
e Case SUB. We have that F' Ya.o < Vb.[ar 7)o, given that b ¢ ftv(Va.o). Assume without loss

of generality that @, b ¢ vars(S) and then we have that S(Va.o) = Va.So and S(Vb.[a+ 7lo) =
Vb.[la — S7]So and the result follows by rule SUB, since b ¢ ftv(Va.So).

e Case FUN. Follows by the induction hypotheses and rule FUN.
e Case TRANS. Follows by the induction hypotheses and rule TRANS.

e Case ALL. We have that ' Va.o; < Va.09, given that F' 0y < 0. Consider the substitution S-[a —],
where ¢ & ftv(o1,02), ¢ ¢ vars(S). Then, by induction hypothesis ' S[a — c]oy < S[a +— c]oz and by
applying rule ALL we get ' Ve. S[a — c|oy < Ve.S[a — c|og, or equivalently, H' S(Va.o1) < S(Va.oq).

e Case DISTRIB. In this case we have that F' Va.01 — 0y < (Va.o1) — Va.oe. Assume without loss of
generality that a ¢ vars(S). Then S(Va.c; — 02) =Va.So; — Soy and the result follows by DISTRIB.

O

Lemma 2.25 (Useless quantifiers). If ¢ ¢ ftv(o) then ' Vé.o < o and ' o < Ve.o.

Proof. The first part follows by rule suBs for @ = ¢, b = (. The second follows by rule suBs for @ = 0,
b=c¢. O

ost

Lemma 2.26. IfF o1 < 09 thenF" 01 < 09.

15

Proof. By induction on the derivation of F' o1 < 5. We proceed by case analysis on the last rule used.

e Case SUB. We have that ' Va.o < Vb.[@aw 7|0 given that b ¢ ftv(Va.o). To show that F* va.o <

VE. [a 7]o it is enough by Theorem 2.19, and assuming pt(c) = V¢.p to show that ! Vac.p <
Vbe.[a 7|p, where we assumed as well that ¢ ¢ @, ftv(T, p). Equivalently it is enough to show that

F! vae.p < [@—T]p or by SPEC, that ! [a—=T,c—=c|p < [a—=T7|p, and this follows directly by
reflexivity of I—Dl, Lemma 2.2.

Case TRANS. Follows by induction hypothesis and Corollary 2.22.

Case FUN. In this case we have that 01 = 017 — 012 and 3 = 091 — 095. Moreover F' 091 < 017 and
F' 615 < 099. By induction hypothesis

Host o921 L o11 (1)
ot 012 < 022 (2)

The result then follows from (1), (2), Lemma 2.16, and an application of RFUN.

Case ALL. We have that H' Va.o; < Va.os given that H o1 < o9. By induction hypothesis st o1 < o3.
By Theorem 2.19 pt(o1) < pr(oz) and assume that pr(oy) = Vay . p1, pr(o2) = Vaz. p2. Equivalentlty
ot Vay.p1 < Vas.ps. By inversion ot [a1 = 7]p1 < p2 assuming without loss of generality that @, ¢
fto(¥ay .p1). Then also ot [a — a, a7 = T|p1 < p2 and by SPEC and SKOL we get ot Yaay.p1 < Vaasps.
Applying Theorem 2.18 we get the result.

Case DISTRIB. We have that
F'Va.o, — 09 < (Ya.o1) — (Va.o9) (3)

Now assume that pt(os) = Vb.py, where without loss of generality b ¢ a, ftv(c1). Then we have the
following;:

pr(Va.o1 — 02) =Vab.pr(o1) — p2 (4)
pr((Va.o1) — (Va.oq)) = Vab.pr(Va.o1) — po (5)

Now we know by reflexivity, Lemma 2.2, that K& p2 < p2. Moreover by an application of Lemma 2.2
and rule sPEC for F”' we have that - pr(Va.o1) < pr(o1). Then by rule FUN we get that Ho! pr(oy) —
p2 < pt(Va.o1) — pa and by rule SPEC K& Vab.pt(oy) — pa < pr(Va.o1) — p2. Then we can apply
SKOL and get K& Yab.pt(oy) — ps < Vab.pt(Va.o1) — po. From this, (4), (5), and Theorem 2.18 we
get that st Va.op — o9 < (Va.o1) — (Va.oo).

Lemma 2.27. If a ¢ ftv(c) then F' Va.fun(5 ; p) < fun(c;Va.p).

Proof. By induction on the size of 7. For @ = € we need to show that F' Va.p < Va.p. This follows by

Lemma 2.23. If ¢ = 01,71, by Lemma 2.11 and rule DISTRIB we have

H'VYa.o1 — fun(@y ; p) < (Va.o1) — Va. fun(; p)

However, by Lemma 2.25 we get that F' o; < Va@.o; and by induction hypothesis ' Va.fun(a; ; p) <

fun(oq ;Va.p). By rule FUN we have then
H' (Va.o1) — Va. fun(@ ; p) < o1 — fun(Fy ;Va.p)

Finally combining (1) and (2) with rule TRANS we get the result.

16

Lemma 2.28 (Skolemisation admissibility). If F' o1 < fun(c ; p) and @ ¢ ftv(c,01) then F' o7 <
fun(a ;Va.p).

Proof. From consecutive uses of ALL and the assumptions we get F' Va .o, < Va. fun(; p). By Lemma 2.25
F' o1 < Va.oy. By rule TRANS F' 0y < Va. fun(a; p). By Lemma 2.27 F' Va. fun(; p) < fun(c ;Va.p). We
get the result by application of rule TRANS. O

Lemma 2.29 (Specialisation admissibility). If - [a 7|01 < 09 then F' Ya.o; < 0.

Proof. By rule SUB we have that F' Va.o; < [a+ 7)oy and the result follows by rule TRANS. O

Lemma 2.30. Ifo Kok o1 < oy then F! oy < fun(T ; 03).
Proof. By induction on the derivation & Hoet 01 < 03. We proceed by case analysis on the last rule used.

e Case RFUN. Here & F°° 01 < 09 — o3 given that 7,09 st o1 < o03. By induction hypothesis
F o1 < fun(, 09 ; 03) and by definition F' o1 < fun (7 ; o9 — 03).

e Case LFUN. We have that 03,7 et o1 — o9 < T given that st o3 < o1 and @ st oy < T.
By induction hypothesis ' o3 < fun(Z; 7) and F' 03 < o;. With an application of FUN we get
' o1 — a9 < 03 — fun(a ; 7), or equivalently ' o — o9 < fun(os, @ ; 7) as required.

e Case SKOL. In this case & F°°' o < Ya.p, given that & Pt g < pand @ ¢ ftv(7,01). By induction
hypothesis ' o1 < fun(7 ; p) and by Lemma 2.28 ' oy < fun (7 ; Va.p).

e Case SPEC. We have that & Va.p < 1 given that & oo [a=7]p < 71. By induction hypothesis
' [@a=7]p < fun(7 ;1) and by Lemma 2.29 F' Va.p < fun(7 ; 71) as required.

e Case MONO. Follows by Lemma 2.23.

O
Corollary 2.31. st o1 < o9 iff ' 01 < 09.
Proof. Follows by Lemma 2.30 and Lemma 2.26. O

Corollary 2.32. (I—OZ) C (F") and consequently (I—ol) - (I—DEE).

Proof. Just notice that every rule of in Odersky-Léaufer subsumption is admissible in F'. Rule FUN already
exists, admissibility of MONO follows by reflexivity, admissibility of SKOL and SPEC follows from Lemma 2.28
and Lemma 2.29 respectively. O

17

dsk FF a7y < pa
agfvlo) B oor<p DEEP-SKOL LIF SPEC
a5k - T.01 <
= i 01 < g9 PL= P2
}_dsk 5 § o |_dsk) S o4
FUN ——F— MONO
Ik a5k
R (01 — 02) < (03 — 04) F <1

Figure 6: Alternative deep skolemisation subsumption

2.4 Final definition of deep skolemisation subsumption

Consider the definition of weak prenex conversion given below.
Definition 2.33 (Weak prenex conversion). The function pr(-): S — S is defined as follows:

T o=T

Va.01 = ps 0=01 =03 NOF#T
pr(o9) =Va.ps

pr(o) = a ¢ ftv(o1)

Yab. po oc=Va.pr Na#0
pr(p1) =Vb.p2
bé¢a

This is like normal prenex conversion but does not canonicalise the argument types in arrow types®. Based
on this definition we give a relation that is exactly like the Odersky-Laufer subsumption but in the SKOL
rule performs weak prenex conversion and skolemisation of the resulting outermost quantifiers. The relation
is given in Figure 6. In this section we prove that this relation is equivalent once again with FF and
consequently F".

Lemma 2.34 (Reflexivity). ok o < o

Proof. Easy induction. O
Lemma 2.35. pr(c) <o and ¥ o < pr(o).
Proof. By induction on ¢ appealing to reflexivity of }—dSk, Lemma 2.34. O

Lemma 2.36. pt(o) =Va.p; iff pr(o) =Va.p2 and pr(p2) = p1.

Proof. Easily follows by the definitions. O

Definition 2.37 (Canonical and prenex-canonical derivations). Let D denote a derivation tree of
FE W say that D is a canonical derivation iff rule SKOL is used once as the very last rule, and as the
very last rule of the left subtree of a tree ending with FUN. We also use the term prenex-canonical derivation
to refer to a canonical derivation where the last rule used was a trivial application of rule SKOL and can be

therefore omitted—equivalently the second type is a p-type in weak prenex form already.

3Notice as well that this relation is no longer syntax-directed.

18

Obviously a canonical derivation can be decomposed into a prenex-canonical derivation and a non-trivial
application of rule SKOL.

Lemma 2.38 (Substitution). If sk o1 < o9 then sk So1 < Sog, and the new derivation has the same
height and the same “shape” (that is, the rules in the new derivation are applied in the same order).

Proof. Similar to the proof of Lemma 2.1, with an easy lemma for commuting pr(-) and substitution. O

From Lemma 2.38 we get that substitution preserves canonical, or prenex-canonical derivations as a corollary.
Lemma 2.39. If sk o1 < 09 then there exists a canonical derivation of this with the same height.

Proof. By induction on sk 01 < 0. We proceed with case analysis on the last rule used.

e Case SKOL. In this case we have that F=" o1 < 09, given that

pr(o2) =Va.p (1)
a & ftv(o) (2)
Falsk o < p (3)

By induction, there exists a canonical derivation of sk o1 < p, in which SKOL is used above FUN and
is the last rule in the derivation. But it is easy to confirm that pr(p) = p, therefore the last application
of rule SKOL in that derivation was a trivial application and can be omitted. Then the new derivation
is canonical.

e (Case SPEC. Here we have that sk Va.pr < pg given that
dsk
F a7l < pe (4)

Now by induction there exists a canonical derivation of (4). The last rule is SKOL and we have that

 prlea) = b0})
b ¢ fo([a=7]p1) (6)
H e <) (7)

where (7) does not have SKOL as the last rule used. Then by (7) and rule SPEC we get F% gL py < 05

By (6) it must also be that b ¢ ftv(Va.p;). From this and (5) we can apply rule SKOL to get that

'_dSk Vﬁ.pl é P2

e Case FUN. In this case F*¥ (01 — 02) < (03 — 0y4), given that

dsk

[g3 S g1 (8)
sk 00 < 04 (9)

By induction hypothesis there exists a canonical derivation of (8) with the same height. Moreover by
induction there exists a canonical derivation of (9) with the same height. The last rule used was SKOL
and we have that

pr(cs) =Va.py (10)
a ¢ ftv(oz) (11)
}_dSk g9 S P4 (12)

Assume without loss of generality that @ ¢ ftv(o1,03,02) as well. Then notice that pr(cs — o4) =
Va.o3 — ps. By FUN and (8) and (12) we get that sk o1 — 03 < 03 — py4 and by applying rule SKOL
we get the result.

19

e Case MONO. Just apply trivially rule SKOL as the last rule of the derivation.

O

The above lemma shows that there is an algorithmic implementation that applies deep skolemisation at the
begining and when comparing the argument types of two functions only. The corresponding syntax-directed
presentation can be found in the main paper. In this document we use the non syntax-directed presentation
in combination with the the canonical and prenex-canonical derivations lemma.

Lemma 2.40. If ot pr(oy) < pr(og) then sk o1 < os.

Proof. By induction on the lexicographic pair of the height of the derivation of ot pr(o1) < pr(oz) and the
number of recursive calls of pr(c1). We have the following cases to consider.

e Case SKOL. Here pr(o1) = o and pr(oz) = Va.p. Then consider pr(oz) = Va.p'. It must be that
p = pr(p’) by Lemma 2.36. Moreover ! pr(oy) < Va.pr(p'), given that @ ¢ ftv(pr(oy)) = ftv(o) and

! pr(o) < pe(p) (1)

By (1) and induction hypothesis it must be that sk

F* 51 < o, since @ ¢ ftv(on).

o1 < p/ and by applying rule SKOL we get

e (Case SPEC. For this case we have

pr(o1) =Va.p (2)
pr(o2) = p2 (3)
F! @l < po (4)

We wish to show that sk o1 < 03. We proceed with a case analysis on the structure of oy, and
without loss of generality let us assume that o1 is not a monotype.

— Case 01 = 011 — 012. Then pr(o1) = Va.pr(o11) — p12 where
pr(o12) =Va.p1 (5)

and @ ¢ ftv(o11). By (4) it must be that ot [a—=7](pr(o11) — p12) < p2, Or ot pr(oyy) —
[T7|p12 < p2. By easy inversion it must be that py = 05‘ — of and

H' o4 < pr(on) (6)
! [T T)p1 < 0F (7)

By (3) then it must be that
pr(o2)) = 05 — 03 (8)

Then it must be the case that oy = 091 — 092, such that pr(oa;) = o5 and pr(oa) = 0. By (6)
we have that pr(oa1) < pr(oq; and by the induction hypothesis

dsk
F™ oo <on (9)

Similarly by (7) we have that H! [T|p12 < pr(oa2) and by an application of SPEC we have

K& Va.p12 < pt(oge). But the height of this derivation is still one less than the height of the
derivation we are examining and therefore by induction hypothesis we have that

"dSk 012 S 09292 (10)

From (9) and (10) and FUN we get that sk 011 — 019 < 091 — O99.

20

— Case 01 = Vay.p11. Here we have that pr(o1) = Vaiasa. p12, such that Vas. p12 = pr(p11). From

this it follows that

Vas . [a1 = 71)p12 = pr([ar = 71)p11)

(11)

From Lemma 2.17 we know that the number of recursive calls of pr([ar — 71)p11) is the same as

of pt(p11). We also know that

l
F [G2 = T2|[@1 = T1)p12 < p2

(12)

Then, we can apply the induction hypothesis to get that K [a1 = 71]p11 < p2 and by applying

dsk .
rule spEC F*** Va, .p11 < p2, as required.

e Case FUN. In this case we have the following

By (13) it must be that

01 =011 — 012
pr(o11) = o1
pt(Ulg) = Jé

And similarly by (14) we get

02 = 021 — 022
pr(o21) = 0%

pt(Ugg) = 0'4/1

By (19), (22), (16), and induction hypothesis F% 591 < o11. Similarly by (20), (23), (17), and

induction hypothesis sk 012 < 022. We get the result by applying rule FUN.

e Case MONO. Trivially follows by definition of pt(-) and rule MONO.

Lemma 2.41. IfF*" o, < oy then +* pr(or) < pr(oz).

Proof. By induction on the derivation sk o1 < 09. We proceed by case analysis on the last rule used.

e Case MONO. Directly folows by rule MONO.

e Case FUN. In this case we have that

dsk

F 7 o1 —09<03—04
dsk
F o3 <oy
dsk

F 0'2§0'4

21

Moreover we know that pr(oy — 02) = Va.pr(o1) — p2, with Va. ps = pr(oz) and @ ¢ ftv(o1). On the
other hand pr(o3 — 04) = Vb.pr(o3) — ps where pr(oy) = Vb.py and assume that b ¢ ftv(os, 02,07).
We need to show that Va.pt(o1) — pa < Vb.pt(o3) — ps. By rule SPEC it is enough to show
that H pt(o1) — [@a—=7|p2 < pt(os) — ps. By rule sKOL and FUN it is enough to show that
! pr(oz) < pr(oy) and ! [@a—=T]p2 < ps. We have the former by induction hypothesis. For the
latter, by induction hypothesis on (3) we also have F' va. p2 < Vb.py and by inversion this is derivable
by SPEC; hence - [@=T7]p2 < ps and we are done.

e Case SPEC. We have sk Va.p1 < po given that sk [@a=7]p1 < p2. By induction hypothesis
ot pr([a=T7]p1) < pr(pa), or ot [a—=Tlpr(p1) < pr(p2), or H! Va.pt(p1) < pr(pe) by transitivity of
o Equivalently, by definition of pr(-), ot pr(Va.p1) < pr(p2) as required.

e Case SKOL. Here " o1 < o9 given that

pr(oz) =Va.p (4)
a ¢ fto(o1) (5)
l_dsk o1 < p (6)

It must be that pt(oz) = Va.p' such that pr(p) = p’. Then by (6) and induction hypothesis !
pr(o1) < p’ and by an application of rule skoL with (5), we get et pr(o1) < Va.p', or equivalently
ot pt(o1) < pr(oq) as required.

O
Corollary 2.42. st o1 < o9 iff Fl oy < o9 iff K o1 < 0s.
Proof. Follows by Lemma 2.40, Lemma 2.41, Corollary 2.20, and Corollary 2.31. O

Having Corollary 2.42 enables us to switch between all the different formalisations of Mitchell’s F-eta sub-
sumption viewing all inference rules as theorems that hold independently of the formalisation we use each
time.

3 Higher-rank type systems

In this section we study type systems that support higher-rank types. We assume that the type systems of
Figure 7, Figure 8, and Figure 9 rely on a reflexive, transitive relation prube
lemma holds. This relation will stand either for deep skolemisation subsumption 2 or the original

Odersky-Laufer subsumption relation K

for which the substitution

subo .

Several properties of the type systems hold independently of whether is F°* or . For the lemmas

that are sensitive on the exact definition of F**’? we explicitly specify what U s,

In the following, we use the syntax:

T(p) = Va.p where @ = ftv(p) — ftv(T)

22

Rho-types p = 7|0 — 0’

——INT — VAR
T'Fi: Int L(z:0)Fz:0
Tz:7ht:0o Fz:obt:o
ABS AABS
'(\z.t): (r — o) 't (\(z::0).t): (0 —)
'Ht:(c—0d) l'Fu:o
I'Fu:o Nz:okFt:o
APP LET
'Ftu:o I'let £ = u in t: o’
'Ht:o
— ANNOT
'F(t::0):0
a ¢ fto(T) Pkt:o
'kt suba
— " aen £ os9 SUBS

Figure 7: Non syntax-directed higher-rank type system

3.1 Syntax-directed higher-rank type system

In this section we explore the connection between Figure 7 and Figure 8. For clarity let us refer to the
typing relation of the non syntax-directed system of Figure 7 as and to the typing relations of the

nsd?

syntax-directed version of Figure 8 as I, and }—isly.
Lemma 3.1. Let F*"*7 be either F*' or F°°. Then

1. if T t:pthenT b, t:p.

2. ifTHY t:0 thenT k-, t: 0.

Proof. We prove the two claims simultaneously by induction on the height of the syntax-directed derivation.
We proceed by case analysis on the last rule used in the derivation. For the first part we have the cases
below.

e Case INT. Directly follows by rule INT.
e Case VAR. We have that I' F; : p given that z : ¢ € I" and st

Moreover it is easy to see that F"*7

oc<p ByrulevaART F, _, z: 0.
o<p. BysuBsthenI'l, , z:p.

e Case ABs. Follows by induction hypothesis and rule ABS.

e Case AABS. Follows by induction hypothesis and rule AABS.

23

Rho-types p = 7|0 — 0’

'Ft:p
"inStUSp
— INT — VAR
I'-4:Int L(z:o)Fxz:p
Dz:rktip Nz:okt:p
ABS AABS
T (\z.t):(r—p) ' (\(z::0).t): (6 — p)

F'kt:(c—0d)
Fl—polyuzal

l_subo UISJ l_inst O'/SP
APP
'Ftu:p
T HW ¢, o
THY 4. o poube 5 <o
Tz:obt:p L st o < p
T ——— ANNOT
'Flet . = uw in t:p L'k (t::0) :p
poly . nst
F|_ t:o I— O'Sp
@ = fto(p) — fo(I)
'Ht:p : INST
T ¢ vgp o " Ya.p < [aT] p

Figure 8: Syntax-directed higher-rank type system

e Case APP. We have that I' -, ¢ u : p, given that

Tk, t:(oc—0o)

poly
I'Eg” u:on

sub
P”"olga

inst
ol <

By induction hypothesis and (1) we get '\, ., t : 0 — o’. Moreover from (3) we see that -

g —

o' < o1 — o' because rule FUN is admissible in both F' and F**. Then by rulesuBsT'k, , t: 01 — o',
Finally by induction hypothesis for (2) we have I' i ., u : o1. Applying rule ApP gives 'k, _, t w : ¢’

and since (F™*") C (F**”) we can apply rule SUBS to get T Foeg T U p.

e Case LET. Follows by induction hypothesis and rule LET.

24

e Case ANNOT. In this case I' - (¢::0) : p given that

Y ¢ (5)
b o5 <0 (6)
H o< (7)

/

By (5) and induction hypothesis I' -, ¢t : ¢’. By rule sSuBS I' k-, t : o and moreover from (6) we

have ™ & < p. Applying rule SUBS once again gives I' 5, _, ¢ : p as required.

o

For the second part we have that I’ ngly t:Va.p when @ = ftv(p) — ftv(I') and I -, ¢ : p. By induction
hypothesis I' -, ., t : p and by rule GENI' &, _, t : Va.p. O

ns ns

Lemma 3.2 (Substitution).

1. IfT'k, t:p then ST, t: Sp.

2. IfT }—Zzly t:o then ST l—fgly t:So.

Proof. Straightforward induction appealing to the substitution property for pube O

Lemma 3.3 (Weakening). Assume that poubo g 09t IfTy F, t:p2 and st I'y <Ty thenTy b, t:py
with F°* T1(p1) <Ta(p2). Consequently if Ty F?;ly t: o9 then I'y Fg;ly t: o1 with Pt o1 < 0.

Proof. The proof is by induction on the height of the derivation. We proceed with case analysis on the last
rule used in the derivation.

e Case INT. Directly follows by rule INT.

e Case VAR. We have that I's I, ; = : p2 given that z : 05 € I'; and

inst

F o2 < po (1)
Then, x : 01 € I'7 such that

l_Dsk g1 S g9 (2)

Assume that b = ftv(ps) — ftv(T'2). Then by the substitution lemma we get Ty b, z : [b— d]p2

for some d ¢ ftv(T'1,Ta, p2). By (1) and the substitution lemma we get F™" oy < [b— d]ps and by
transitivity of e

P o1 < [b— dlpa (3)

Moreover assume that o3 = Va.p; and without loss of generality assume that @ ¢ ftv(I'y). Then
™" 51 < p1. By (3) we get that P va.p, < [b — d]pz. Consider @ = ftv(p1) — ftv(T'1). Then
@ C @ and consequently F°° Va'.p; < [b— d|ps. Then it must be that d ¢ ftv(Va'.p1) because
otherwise d € ftv(I';). Then by SKOL admissibility Rt val .y < Yd.[b+ d]ps, or equivalently
F* T1(p1) < Ta(pa).

25

o Case ABS. Here we have that I's k,; (\z.t) : (T — p2), given that

Do,z:7hyt:pa (4)

Consider b = ftv(pg) — ftv(I'a,7) and a renaming substitution [b +— d] where d ¢ ftv(T'y,Ta, 7, p2).

Then by (4) and the substitution lemma we get I's,z : 7, ¢ : [b+— d]p2. By induction hypothesis
there exists a p; such that I'y,z : 7, ¢ : p1 and

R va. py <Vd. [0 — d)ps (5)

where @ = ftv(p1) — ftv(T'1, 7). By rule aBs we get I'1 F,; (\z.¢t) : (T — p1). We wish to show that

FDSEVELTH,DlgVEQ.THpQ (6)

where @1 = ftv(p1,7) — ftv(T) and @y = ftv(p2,7) — ftv(T). Notice that if ¢ = ftv(r) — ftv(T') then
@ = ac and @y = be. From (5), since by suB F Vd.[b — d|ps < [b — d]p2, and by transitivity we

get that

F* va.pr < [b— dlpo (7)

Then, by rule FUN R

transitivity and rule DISTRIB. By SUB and transitivity Pt vae.r — p1 <7 — [b d]p2. Now we
claim that ¢ ¢ ftv(Vac.T — p1) and d ¢ ftv(Vac.T — p1) similarly. The former because we quantified

over them, the latter because the opposite would mean that d € ftv(I';). Then we can apply SKOL

T = Va.py <17 — [b—d]ps and Pt va.r - p1 < 7 — [b+— d]p2 by

admissibility to get that Pt vae.r — p1 < Vdé.7 — [b+ d]py and by an a-renaming of d to b we
are done.

e Case AABS. Similar to the case for ABS.

e Case APP. Here we have I's b, ; t w : pp given that

Tobyt:(oc—0o') (8)
I by u:op (9)

et o1 <o (10)

F1* o' < po (11)

Consider a renaming substitution g, = ftv(o, o', p2) — ftv(T'2) to fresh g,, such that g, ¢ ftv(I'1). Then
by the substitution lemma (8) becomes

Lo by t: (o0 — 0y) (12)

where 0¢g = [g1 = g2]o and o(, = [g1 — g2]0o’. By induction hypothesis on (12) we get that there exists
a py with

Tibgt:pe (13)
F* T1(pe) < Vgy.00 — 0} (14)

Because of the choice of g,, from equation (14) we get

05t =

7 Ti(pe) < 09 — 0 (15)

There are two possible cases for p;. It is either a type variable a ¢ ftv(I'1) or it will be an arrow type

t t
o] — 05.

26

— Assume that p; = 0! — ¢4 and let @ = ftv(p;)—ftv(I'1). Then by equation (15) and Corollary 2.20
we get:

ot vab.pr(al) — pb < Ve.pr(og) — pf (16)
where
b ¢ fto(o1) (17)
¢ ¢ ftv(oo,T1,To,0t, 08) (18)
pr(og) = Vb.ph (19)
pe(oh) = Ve. g (20)

By (16) and (18) it must be that

Fvab.pe(ot) — pb < pr(oo) — pl (by inversion)
= FlamT, b n)pr(ot) — pb) < pr(oo) — p) (by inversion)
= H' @ rprof) = [@3570 5 nloh < pr(oo) = pf

ol
= pr(o0) < [@7 Talpe(or) (21)
ot [@7 7a, b — T|ps < 0 (22)
From Corollary 2.20 and (21)
F op < [am ot (23)

From (13) and the substitution lemma, we get

[y by t: [a=7g(of — ob) (24)
By the substitution lemma for (9) we have that I'y H; Wy : [g1 = g2)o1 and by transitivity of Ras
we get:
P g glor < [@ o] (25)
Dsé

Moreover, by induction hypothesis we have that I'y l—f;ly u : o such that b < [= g)or-

From this and (25) we get H*¢ o | < [a—=T,)of. Then, if [a— 7,]0k = Vg5.p1, Where without loss
inst

of generality gs ¢ ftv(I'1) we have that " [a ¥ 7,]0% < p1. We have all the premises of the rule
APP and applying it gives us that T'y - ¢ u : p;. Then it is the case that T';(p1) = 1 ([a ™ 74)08).
By (22) we get that

}_ [aabHTb]p2<pO
FU YD [a 7 Tl ph < Pl
}_

=
= Vb [a)eh < 06

where d = ftv(Ta, p) — ftv(T'1). But now we know that ¢ ¢ ftu(Vdb.[am 74)p), because it

must be that ftv(V% [a—=Ta]ph) C ftv(T'y), and by (18) ¢ ¢ ftv(I'y). Then we can apply rule

SKOL to get that F' Vdb. [a—= Ta]ph < Ve.p), and by Corollary 2.20 F** vd. [a—=Ta]ot < o).

By the substitution lemma for (10) we have }—Z};St oy < [g1 = gz2)p2 and by transitivity we have
that ' Vd.[a7.]o < [g17 ga]p2. Now it cannot be that g, € Vd.[ar 74]o because

Gy ¢ ftv(I'1). Then we can apply SKOL admissibility to get F*t v, [a—= Talol <Vg,.[91 — G2)p2
or by dropping useless quantifiers and a-renaming KSR [a/ 7,]ob < Ta(p2) as required.

27

— Assume that p; = a and let o ¢ ftv(I'1). Then by equation (14) and Corollary 2.20 we get:

F'Va.a < Ve.pr(og) — pp (26)

where
E¢ﬁv(0071—‘1,1—‘2) (27)
pe(oh) = Ve pl (28)

By (26) and (27) and inversion on ' it must be that

Flr —m < pr(oo) — po (29)
Now yet one more inversion gives
F! pr(og) < 7 (30)
H' <) (31)
From Corollary 2.20 and (30)
ot o9 <71 (32)

From (12) and the substitution lemma, we get
Fl '_sdt:Tl — T2 (33)

By the substitution lemma for (9) we have that T' l—fsl‘y u : [g1 7 ga)o1 and by induction hypoth-

esis and (32) we have
ost

Iy I—g;ly u: oy o <mn (34)
Then H" 7o < T9. We have all the premises of the rule APP and applying it gives us that
I Ftwu: 7. By (31) we get that

o Vd.1o < pj (35)

Where_g = fto(m2) — ftv(T'1). But now we know that ¢ ¢ ftv(Vd.7), because it must be that
fto(Vdb.[a T4)pt) C ftv(Ty), and by (27) € ¢ ftv(T'1). Then we can apply rule SKOL to get that

i Vd. T < Ve. pp, and by Corollary 2.20 R Vd.ry < oy. By the substitution lemma for (10)

we have l—?;St ol < [gr7 g2]p2 and by transitivity we have that H°° Vd. 7, < [gr7 g2]p2. Now
it cannot be that g, € Vd.7 because g, ¢ ftv(T'1). Then we can apply SKOL admissibility to
get st Vd .y <Vg,.[g1 7 g2)p2 or by dropping useless quantifiers and a-renaming Pt v, o <
T2(p2) as required.

e Case LET. In this case we have that I'; |, ; let = u in ¢: po, given that

Iy }—g;ly u:o (36)
Ty, :0b4t:p2 (37)
By induction hypothesis for (36) I'; F,; u : ¢’ such that F** 5/ < 0. By induction hypothesis for (37)

l_asé

we get I'y,z : 0’ k-, t: py such that T,z :0'(p1) <Ta,x:0(p2) or since o’ is generalised over I’y

and o is generalised over I'y this becomes Kok T1(p1) < Ta(p2) as required. Applying rule LET finishes
the case.

28

e Case ANNOT. We have that I's I, (¢::0) : pa, given that

Ty K% ¢ o (38)
P e <o (39)
l_znst o< 2 (40)

From (38) and induction hypothesis T'y l—f;ly t : 0" such that F°°* ¢” < ¢’. Then by (39) and transitivity

of " we have F*** ¢ < ¢. Consider a renaming substitution [b — d], where b = ftv(ps) — ftv(T'z)

and d ¢ ftv(T'1,T5,0",p2). Then by substitution lemma ™" o < [b+— d|ps. We need to show
that ©*% T5([F = djpa) < Ta([b= dlpa). But notice that fu((F— dpa) — fo(Ta) = d and d C
fto([b — d]p2) — ftv(T'2)) because d are fresh. The result then follows by rule SUB.

Lemma 3.4. Assume that F***7 is °°°. If '+ wsg Lo then ', t:p and Lot T(p) <

Proof. By induction on height of the non syntax-directed derivations. We proceed by case analysis on the
last rule used.

ost

e Case INT. The result follows by rule INT and we know that =~ Int < Int by reflexivity.

e Case VAR. Int thiscase 'l , z : 0, given that z : ¢ € I'. Then, assuming that o = Va.p and without

inst

loss of generality @ ¢ ftv(I'), we have that """ ¢ < p and by rule SUB we get that ' T'(p) < Va.p or
ost

by Corollary 2.31 " T'(p) < Va.p. By rule VAR we also get I' I, 7 : p as required.

o Case ABS. We have that I' -, (\z.t) : 7 — o given that I',z : 7 I, t : 0. By induction hypothesis
there exists a p such that I,z : 7 I, ¢ : p such that

Diz:7(p) <o (1)

Let b = ftv(p) — ftv(D', 7). By rule ABS we get that I' -, (\z.t) : 7 — p. We wish to show that

s [(t — p) <7 —o0. Let @ = ftv(r — p) — fto(T'). Split these variables in two sets @ = @; @z, such

that @ = a— ftv(7) and @2 = @ —@;. Then it must be that a; = b. Then we have the following (using

reflexivity and transitivity of }—OSE)

ost

F> Va.r—p Yaiaz.T — p

< Vas.(Vay.7) —Vay.p (by DISTRIB and ALL)
< (Vay.7)—Vay.p (by SUB)

< T-oVa.p (by Lemma 2.25)

< 7—>0 (by (1) and FUN)

(The use of DISTRIB is essential for this derivation and it is a reason why the claim fails when F s

used instead of F°F.)

e Case AABS. Similar argument as ABS taking into account that type annotations are closed.

o Case APP. In this case we have that I' -, ¢t u : ¢’ given that

Ik yt:(c—0) (2)
I'bqu:o (3)

29

By induction hypothesis there exists p; with
Ll t:p (4)
FT(p) <o — o' (5)
Moreover, by induction hypothesis for (3) we get
Phguspy (6)
F (o) <o (7)

In general there are two possible cases for p;. It can either be a type variable a ¢ ftv(T') or it will be
an arrow type.

— Assume that p, = 0! — of. Then by (5) F** Va.o! — of < ¢ — o, where @ = ftv(ct,ob) —
ftv(T'). By the prenex corollary, Corollary 2.20

hvab.pe(ol) — pl < Ve.pr(o) — pf (8)
where the following are true:

b ¢ fto(oy) €
¢ ¢ ftv(o, T, 0k, 08) (10
pe(os) = Vb.pj (11

By (8) and inversion on F! we get

ot vab.pe(at) — pb < pr(o) — o (by inversion)
= Flas7, b n)pr(ol) — pb) < pr(o) — o (by inversion)
= F e mlpol) — [0 Do nlph < pr(o) — of

From the last equation, by inversion we get that

= pe(o) < [T Tpe(od) (13)
H [b e el < (14)

From Corollary (2.20) and (13)
Flo < [@= 7,0t (15)

Now, from (4) and the substitution lemma, we get
[yt [a=7g)(0f — ok) (16)

By transitivity of (15) and (7) we have

0st

7 Tpa) < [a7 Talos (17)

By (15), (6), and (17) we can apply rule APP to get that I' -, ¢ u : p, such that et
pr and just pick p, such that all the quantifiers of [@ ¥ 7,]0% are replaced by variables not in T
Then it will be the case that T'(p,) = I'([a 74)0b). Consequently to finish the case we need to
show that

[e=Taloy <

ost |\

FYVd . [a Tg)os < o (18)

30

where d = ftv(p},75) — ftv(I'). By (14) we have
o [, B ol < of
= F'vb. el < o
= Vb [amT)ph < pf

But now we know that ¢ ¢ ftv(Vdb.[@aw 74]pb), because it must be that ftv(Vdb.[@a+ 74]pb)
fto(T'), and by (10) € ¢ fto(I'). Then we can apply rule SKOL to get that Fhvdb. =l
ve.p', and by Corollary 2.20 Pt vg. [@ 7T4]ol < o’ as required.

IA 1N

— Assume that p; = a. The argument is essentially the same. We give it more briefly. Here it must
be that a ¢ ftv(T') so that T'(a) = Va.a; otherwise (5) cannot be derivable. Then, by (5) we

have that K Va.a < o — o/, which, by Corollary 2.20 gives I Va.a < Ve.pr(o) — p’ where
pr(o’) = Ve.p’ and assume that ¢ ¢ ftv(o,T'). By inversion ' Ya.a < pr(o) — p/, and there
exist 71, T with F [a+— (11 — 72)]a < pr(o) — p’ or by one more inversion

F pe(o) <7 (19)
! T <p (20)
By the substitution lemma, Lemma 3.2, 'k, ¢ : 1 — 2. Moreover by Corollary 2.20 and (19)

we get that " o < 7. Therefore by (7) and transitivity of F°°%, F°* T(p,) < 7. Finally we

ost I(m2) < o’. But we have that
! T(m2) < p' and since we assumed that ¢ ¢ ftv('), ¢ ¢ ftv(T'(72)), therefore we can apply rule

SKOL to get ot [(m2) < Ve.p' and by this and Corollary 2.20 we are done.

can apply rule APP to get the result. We need to show that F

e Case LET. We have that I'F, ., let © = u in t:0’', given that
I'bqu:o (21)
Dyz:ob,t:o (22)

By induction hypothesis I' F; u : p such that et I'(p) < 0. Again by induction hypothesis I, z :

ok, t:p such that R Tz o(p') < o’. By Lemma 3.3 we get that I',z : T'(p) bk, ¢ : p”" such that
RET, 2 :T(p)(p") < T,z :0(p). But T,z : T(p)(p") = T(p") and F°°* T,z : o(p') < o’ by transitivity
of . The result follows by application of rule LET.

e Case ANNOT. In this case we have that I' I, (¢::0) : o, given that I' I, ¢ : 0. By induction

hypothesis there exists a p such that I' -, ¢ : p and o5t T(p) < 0. Then is the case that T l—f;ly t:T(p).

Moreover if o = Va.p; and without loss of generality @ ¢ ftv(T'), then et g < p1 and we are done

by applying rule ANNOT. Moreover it is easy to confirm that Pt T

a ¢ fto(T).

I'(p1) < Va.p1, since we assumed

O

subo

The above claim fails when is F!. For example it is derivable in the non-syntax directed system that

F.sqglet f=0Nz.\y.y) in f:Int ->Vb.b— b
but in the syntax-directed system we can only get that
Hjjly let f=(N\z.\y.y) in f:Vab.a > b—b
and it is not the case that ot Vab.a — b — b < Int — Vb.b — b, even though it is the case that

P Vab.a — b — b <TInt—Vb.b— b

31

Rho-types p == 7|0 —0

inst

—— INT |_6 O—Sp VAR
I'ksi:Int y(z:o)Fsz:p
Lo(z:m)bFytip ABsl T, (z:04) }—plfly t:o, o
LEy (\z.t): (17— p) Iky (\z.t):(0a — o)
|_suba' o_ago_w
Di(z:o)bytip AABS] T, (z:0z) l—plfly t:o, 9
AABS
Ik, (\(z::0).t): (0 — p) Ly (\(z::04).1): (00 — 0r)
Thyt:(o—0a') I‘I—plflyuza it ol < p
APP
Phstu:p
I‘_l—plfly t:o F}—pfflyuza
|_7.;Lst o< p ANNOT F,I Lo F(; t: 14 LET
T'ks (tiio) i p 'slet z = w in t:p
ol
r I—p5 “tio
a = fto(p) — fiv(I') a ¢ fto(I)
', t: Tk, t:
polyﬁ p_ GEN1 BT TR — y“ /i GEN2
HEy" t:Va.p M'Ey" t:Va.p
1mst
|_5 o<p
}_suba < P
T INST1 =
HTTTLS Va.p < [a—=T]p Fiﬁst 70 <, INST2

Figure 9: Bidirectional higher-rank type system

3.2 Bidirectional type system (first version)

In this section we give properties of the type system of Figure 9. Notice that this is not the final version of
the type system as it performs only shallow skolemisation in the rule GEN2. Nevertheless it is worth studying
its properties. We later extend it to the final version which also appears in the main paper.

inst

Lemma 3.5. If b 5 <pthent = o <p.

32

Proof. Directly follows by rule INST2. O
inst

Lemma 3.6. If I—igw o < p then '_i} o <p.

inst

Proof. By inversion it must be that o = Va.p; and p = [a— 7)p1. We need to show that Fy Va.pr <

[a— T]p1, or by rule INST2 prube Va.py < [@=7)p1. By rule suB ' Va.p; < [@a~ 7)p; and by Corol-
lary 2.31 Rl Va.p1 < [a— 7]p1. On the other hand, if 0 i 1! the result follows by an application of
SPEC and reflexivity, Lemma 2.2. O

Lemma 3.7. If ot o1 <oy and I—?{St o2 < po then Jp;. }—iﬁm o1 < p1 and ol p1 < pa.

Proof. Assume that o1 = Va.p;1 and o2 = Vb . paa. Without loss of generality assume that @ ¢ ftv(o2) and
b ¢ ftv(o1). Then it must be that

F VG 11 < VD poo (1)

By inversion on the assumption we get that
P2 = [b = Tb]pzz (2)

By (1) and inversion it must be that ot Va.p11 < pae. Then, by the substitution lemma ot Va.p11 <
[b — Tp]p22. Then by inversion again? ol [@=Tap11 < [b— Tpp22 for some T,. Taking p1 = [@— 74]p11
finishes the proof. O

Lemma 3.8. If ot o1 < o9 and I—iﬁSt o2 < pg then I—iﬁSt o1 < pa.

Proof. Follows by inversion of H7t and transitivity of prube O

subo

Lemma 3.9. Independently of whether =
true:

is F°' or }—asé, if ol 'y < T pointwise then the following are

1. IfTs '_Tr t: po then dp1 .14 oy tip and I p1 < po.
2. If T'y '_ll t:p1 and ot p1 < p2 then T’y '_il t:po.
3. IfTy I—pffly t: oo then doq .1 }—p{ly t:oq1 and ot o1 < os.

4. If Ty I—’ifly t:oyp and ot o1 < oy then I'q l—plfly t:os.

Proof. We prove the four claims simultaneously by induction on the height of the typing derivations. For
each claim we asssume that all are true for derivations of smaller height.

For the first part we have the following cases.

e Case INT. Follows by the same rule.

e Case VAR. In this case I'y l—ﬂ T : pg given that x : o9 € 'y and I—’?St o9 < po. It must be that

inst

z : o1 € I'1, such that ot 01 < 09. By Lemma 3.7 there exists p; such that l—ﬂ o1 < pp with

ol p1 < p2. and by applying rule VAR we are done.

4Notice that this inversion would fail if we were using F=t instead.

33

e Case ABsl. Here I's -y (\z.t) : 7 — p, given that I's,z : 7 b4 ¢ : p. By induction hypothesis
[y, 07k t:p' such that ol p' < p. By rule ABs1 we get I't -y (\z.?) : 7 — p'. And by Lemma 2.2

and rule FUN F' 7 — P <T—p.

e Case AABS1. In this case I's by \(z::0).t : 0 — p, given that I's,z : o 4 ¢ : p. By induction
hypothesis I'1,z : o -, t : p' for some p’ with K& p' < p and by rule AABS1 we get that I'; 4
\(z::0).t:0 — p’ and by rule FUN I—Ola—>p’ <o —p.

e Case APP. In this case

Poby tu:ps (1)
Poby t: (0 — o) (2)
Iy l—pifl‘y u:o (3)

"?;St o < ps (4)

By induction hypothesis there exists p’ such that T'y =4 ¢ : p" and Kl = ol < p'. By inversion it

must be that p’ = 01 — o} such that ' o < o1 and F o1 < ¢’. From this and (3) and induction
hypothesis it must be that I'y }—plfly u : 01 and by Lemma 3.7 there exists a p; with ot p1 < ps such

wnst

that =, o} < p1. By applying rule APP we are done.

inst

o Case ANNOT. Here I'y l—ﬂ (t::0) : pa, given that I'y I—plfly t: o and I—ﬂ o < pa. By reflexivity and
induction hypothesis I'; H; j Wilo. Applying rule ANNOT again gives the result, since ot p2 < po.

e Case LET. Finally T's l—ﬂ let z = u in ¢ : po, given that I's l—pfﬁly u:oand I'p,z: 0 l—ﬂ t: po.
By induction hypothesis I'y l—pT? Wy i o' such that F' o < 0. Then by induction hypothesis again
I'i,z:0 l—ﬂ t : p1 for some p; with ot p1 < p2. Applying LET finishes the case.

For the second part we have the following cases.

e Case INT. By inversion it must be also that ps = Int. Then the case follows by INT.

e Case VAR. In this caseI'y '_il x : p1 given that x : o5 € 'y and I—iﬁSt o2 < p1. It must be that x : 01 € T'q,

subo | inst
l_

such that F! 01 < 02. By Lemma 3.8 I—iﬁSt 01 < p1 and by transitivity of '_U o1 < p2. The

result follows by rule VAR.

e Case ABs2. Here I'y b (\z.t) : 04 — oy, given that I'y,z : 04 "plfly t: o,. We have that F' o, —
o, < pg for some py. By inversion py = 0§ — 05 with

o of <o, (5)
Fot or < 0f (6)

Then by induction hypothesis I'1, z : 0 l—plf Wy 0%. The result follows by applying rule ABS2 again.

e Case AABS2. In this case I'y \(z::0;).t : 04 — o, given that T's,z : o, }—plfly t : o, and

7 5, < oy. We have that ' 0, — o, < ps for some po. By inversion ps = 0¢ — o} with
ot 0f <o, (7)
s or < 0h (8)
By transitivity of F“*? and the fact that ' is a subset of l—suzw, and (7) we get that peube 08 < 0y

By induction hypothesis I', x : o, l—plf Wy o5 and by rule AABS2 we get the result.

34

e Case APP. In this case

Fg '_i} tu: P1 (9)
Lok ti(o—0a') (10)
Iy prly u:o (11)

Fi el < o (12)

By induction hypothesis there exists p’ such that I'y Byt o and ol p < o — o'. By inversion it

must be that p’ = o1 — of such that F' o < oy and + o} < o’. From this and (11) and induction
subo | inst

hypothesis it must be that T'; H, f Moy o1 and by transitivity of F
APP we are done.

 Fh o} < pa. By applying rule

e Case ANNOT. Here I'; b (£::0) : p1, given that I'y I—plfly t: o and I—iﬁSt o < p1. By reflexivity and

subo inst

induction hypothesis I'y l—plfly t : 0. By transitivity of we have that =™ o < ps, and by rule
ANNOT we are done.
e Case LET. Here I'y }_il let z = u in t : pp, given that I'y I—pffly u:oand I'g,x : o '_il t:opr.

By induction hypothesis T'y l—’}fly u : o so that ' o < 0. Then by induction hypothesis again
[,z :0" k- t:ps and applying LET finishes the case.

For the third part we have by inversion that oo = Vb. py, such that b = ftv(pz) — ftv(I's) and
Iy l_ﬂ t:pa (13)

Instead of using the induction hypothesis directly® consider a renaming substitution [b — d]| such that

d ¢ ftv(T1,T2,p2). Then by the substitution lemma, Lemma 3.13 on (13 we get 'y byt [dlp2
with the same height. Then we can apply the induction hypothesis to get that I'y = ¢ : p1, such that

F! 1 < [b— d]ps. By rule SPEC

P va.pr < (b dlps (14)
where @ = ftv(p1) — ftv(T'1). Now we claim that d ¢ fto(Va.p1). Suppose by contradiction that exists a
d € d such that d € ftv(Va.p1) = ftu(p1) N ftv(T'1). Then it must be that d € ftv(T'1), a contradiction. By
rule SKOL then and (14) we get ol Va.py <Vd.[b+— d]pa, or equivalently ot Va.p, < Vb.ps as required.

For the fourth part assume that o7 = Va.p; and o9 = Vg.pg. Without loss of generality assume that
b ¢ ftv(oq,T1). Then we have that K& Va.p1 < Vb.ps and by inversion K& V@.p1 < po. By inversion again®
we get
ol -
H [@=7lpy < p2 (15)
for some 7. We know that I's - p; and @ ¢ ftv(T2). Then by the substitution lemma, Lemma 3.13
[y by t:[a=7]p1. From (15) and by induction hypothesis I'1 b ¢ : po. By rule GEN2 we get the result.

O
Notice that the property holds independently of which relation the type system actually uses. However it

fails when the two types are related in ¥ instead of .
False Claim 3.10. IfI'F t: p1 and st p1 < p2 then 'y ¢ po.

5 Induction hypothesis would give that I'y I—ﬂ: p1 such that ot p1 < p2, but in general it is not true that if ot I't <T'g and

Fo! p1 < p2 then Fot T1(p1) < T2(p2). As a counterexample consider I'y = (z : (a — a) — Int), T2 = (¢ : (Va.a — a) — Int)
and p1 = p2 =a — a.
SNote that this step would fail if we were in st

35

Proof. Here’s a counterexample. Consider I' = u : Int, 07 = Va.a — Vb.b — Vc.b — ¢, 09 = Int —
Vc.Int — ¢, and 03 = Vabc.a — b — b — c. Then it is derivable that T' - (\z.z u) : (01 — 02) but it is
not derivable that I' - (\z.z u) : (63 — 02), although post o1 — 09 < 03 — 09. Notice that this property

fails again independently of F"*. O

Lemma 3.11.
L IfTEyt:pthenl by ¢:p.

2 IfTHY t o then DY 2 0.

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used in each derivation. For the first part we have the following cases to
consider.

e Case INT. Follows by the same rule.

inst inst

e Case VAR. In this case I' - 2 : p given that : 0 € I and ™ 0 < p. By Lemma 3.6 " ¢ < p and
by applying rule VAR we are done.

e Case ABsl. Here I' (\z.t) : 7 — p, given that T,z : 7 F4 t : p. By induction hypothesis
Iyz:7hyt:pand by rule GEN2 ',z 1 7 }—ﬁfly t: p. From this and rule ABS2 I' by (\z.t) : 7 — p.
e Case AABS1. In this case I' - \(z::0).t:0 — p, given that ',z : o 4 t : p. By induction hypothesis

subo

Iz :oky t:pand by rule GEN2 I',z : o I—plfly t : p. Moreover by reflexivity
applying rule AABS2 we are done.

o < o and by

inst

e Case APP. In tis case I' -y ¢ u : p, given that 'y ¢t : (0 — 0'), T Fﬁfly u:o,and 7 o' < p. By

inst

Lemma 3.6 o’ < p and we get the result by applying rule App.
e Case ANNOT. Here I' by (f::0) : p, given that I’ l—ﬂfly t:o and I—?th o < p. By Lemma 3.6 I—iﬁ“ oc<p
and we get the result by rule ANNOT.

e Case LET. Finally I' -, let = = u in ¢ : p, given that I’ oWy o and Iz :oby t:p. By

induction hypothesis I', z : o = ¢ : p and the result follows by rule LET.

The second part can be derived with rule GEN1. It is T l—’}fly t:Va.p, with@ = ftv(p) — ftv(T) and T k4 ¢ : p.
By induction hypothesis I' - ¢ : p and by using rule GEN2 we get I Fplfly t:Va.p as required.

O

inst inst

Lemma 3.12 (Instantiation Substitution). If-;" o < p then s So < Sp.

subo

Proof. For 6 =]} the result follows directly by the substitution property for . For § =f} by inversion
o =VYa.p; and p = [a+ 7]p1. Assume without loss of generality that @ ¢ vars(S). Then So = Va.Sp; and
Sp =la+ ST]Sp1. The result follows by rule INST1. O

Lemma 3.13 (Substitution).

1. If'kst:p then STt Sp.

2. IfT Y t 2o then STHYY t: So.

36

Proof. We prove all claims simultaneously by induction on the height of the derivations. For each of the
claims we assume that all claims hold for derivations of smaller height.

For the first part we have the following cases. Case INT follows by rule INT. Case VAR follows by Lemma 3.12.
Case ABS1 follows by induction hypothesis and rule ABs1. Case ABS2 follows by induction hypothesis and
rule ABS2. Case AABSI follows by induction hypothesis and rule AABS1. Case AABS2 follows bythe substi-
tution property of l—suba, induction hypothesis, and rule AABS2. Case APP follows by induction hypothesis,
Lemma 3.12, and rule App. Case ANNOT follows by induction hypothesis, Lemma 3.12, and rule ANNOT.
Case LET follows by induction hypothesis and rule LET.

For the second part we have the following cases.

e Case GEN1. We have that I" Fpﬁly t:Va.p, given that @ = ftv(p) — ftv(T') and T' = ¢ : p. Assume without

loss of generality that @ ¢ vars(S). Consider a substitution [a — b] such that b ¢ vars(S), ftv(T, p).
By induction hypothesis S[a — b]I' 4 ¢ : S[a — b]p, or equivalently STk, ¢ : S[a — b]p.

Now we can show that b = ftv([a — b]Sp)—ftv(ST). Suppose instead that thereisa b ¢ ftv([a — b]Sp)—
ftv(ST') which means that b € ftv(ST'), since we know that b € ftv([a — b]Sp). But then, since
b ¢ vars(S), it must be that b € ftv(T"), a contradiction. On the other hand, suppose that we have
a variable g € ftv([a — b]Sp) — ftv(ST) but g ¢ b. Note that it must be that g ¢ @ as well simply
because @ ¢ ftv([a — b]Sp). Then this means that there is some variable d € p such that g € ftv(Sd).
Now, d must be in fto(T'), otherwise d € @ and then g € @. But if d € ftw(I') then g € ftv(T), a
contradiction. Therefore it is indeed the case that b = ftv([a — b]Sp) — ftv(ST) and and we can apply
the rule GEN1 to get the result.

e Case GEN2. In this case T’ I—ﬂfly t:Va.p, given that @ ¢ fto(T') and T' b ¢ : p. Consider a substitution
[@¢] such that ¢ ¢ ftv(I'), vars(S). Then by induction hypothesis S[a=—¢|I' -, ¢ : S[@a~ ¢|p,

or equivalently, ST' -, ¢ : S[aw¢|p. Applying rule GEN2 we get ST |—le t : Ve.S[a—=¢]p, or
ST £ S(Va.p).

3.2.1 Shallow subsumption

Definition 3.14 (Shallow subsumption). We define a subset of the subsumption relation, K < -, which
we call shallow subsumption as follows:

b & fto(Va.p)
F' va.p <Vb.[a=Tp

SUB

Notice that shallow subsumption is essentially ML subsumption. The rule SUB is equivalent to the rule SUB
of the predicative F-eta subsumption.
Lemma 3.15. If poh o1 < oy then ot o1 <oy and st o1 < 0.

Proof. The first part follows by application of Lemma 2.2 (reflexivity), rule SPEC, and rule skoL. For the
second part, ' o1 < g5 by rule SUB, and by Corollary 2.31 we get st o1 < o9. O

Lemma 3.16. If R o1 < o3 then ftv(o1) C ftv(oz).

Proof. Tt must be that oy = V@.p and oy = Vb.[@ 7 7)p. Then for every c € ftv(Va.p) = ftv(p) — @ it must
be that ¢ € fto([a = 7]p). O

37

Lemma 3.17. " ST(p) < ST(Sp).

Proof. Let T'(p) = Ya.p where @ = ftv(p) — ftv(T'). Let g be a new set of variables, such that g ¢
ftu(D), vars(8), fto(p). Then ST(p) = ¥g. S ([T glp).

Now, let ST(Sp) = Vb.Sp, where b € ftv(Sp)—ftv(ST). We want to prove that " vy, S([a=glp) < Vb.Sp.
First we need to show that b ¢ ftv(ST(p)). By contradiction, assume that there exists a b € b such that
b € ftv(ST(p)). Therefore there exists d € ftv(T(p)) such that b € Sd. From this we get that d € ftv(p) and
d € ftv(T"). Then, since b € Sd, b € ST, which is a contradiction to the fact that b € ftv(Sp) — ftv(ST).
Therefore, it only remains to be shown that for some types 7T it is the case that [g7— 7]S([a— glp) = Sp.
Pick 7 = Sa. O

Lemma 3.18 (Shallow Subsumption Weakening). When U7 s either ' or Y the following are

true:
R ; ;
1. If F" o1 < 09 and FZﬁSt o9 < p then I—Zﬁm o1 < p.

2. If peh o1 < o9 and }—?St o9 < p then l—i#St o1 < p.

Moreover in each case the two derivations have the same height.
Proof. For the first part, by Lemma 3.15, [sube 01 < 0y. By inversion prube o9 < p, therefore by transitivity
% 51 < p and by rule INST2 we get the result.

For the second part, let 0y = Va.p; and oy = Vb.[av 7T4)p1, where b ¢ ftv(oy). By inversion p =
[b — Tp|[a T4)p1, or, since b ¢ ftv(o1), p = [a — S74|p1, where S = [b— 73]. We get the result by
applying rule INST1.]

Lemma 3.19 (Weakening). Given two contexts, T', T, if dom(T') = dom(T") and for all x € dom(T) it is
Fh D (2 <TI"(z) then the following are true:
9
1L IfTVE tipthen b4 t:p.
2. If "y t:pthenT by t:p.
3. IfT’ ijly t:o thenT Fplfly t:o.
4. If 17 prfly t:o thenT prfly t: o' where " o' < o.

Moreover, for each implication, the two derivations have the same height.

Proof. We prove the four goals simultaneously by induction on the height of the derivations. For each goal
the induction hypothesis asserts all others for any derivations of smaller height. We proceed by case analysis
on the last rule used.

For the first goal we have the following cases for the last rule used in the derivation of I/ Fotop.

inst

e Case VAR. We have that I" b4 @ @ p, given that I—lﬂ o <pand z:0 €I'. By our assumptions, there

exists a og such that z : o9 € I and ph 09 < 0. Then the result follows from Lemma 3.18 and by
applying rule VAR again.

e Case ABsl. Here I'' -, \z.t : 7 — p given that I,z : 7 -, ¢ : p. By induction hypothesis
Iz :7k, t:pand by the rule ABS1 we are done.

38

e Case AABS1. We have that T by \zo.t: 0 — pgiven that IMxz:o 4 t : p. By induction hypothesis
I'z:0ob, t:pand by applying rule AABS1 we are done.

poly inst
Fy

e Case APP. Here I 4 t w: p given that I t: 0 — o', I" u:o and " o’ < p. By induction

hypothesis I' -t : 00 — o' and T l—plfly u : o, and by applying rule APP we are done.

e Case LET. Here I" k- let = = u in t: p given that I" l—pffly u:oand I,z 10 b, t:p. By induction

hypothesis T' l—prly u : o' so that K" ¢/ < o. Then, by induction hypothesis I',z : 0’ - ¢ : p and by
applying the rule LET we are done.

For the second goal we have the following cases for the last rule used in the derivation of T - ptip

e (Case VAR. Similar to the case for VAR above.

e Case ABs2. We have that T' (\z.t) : 04 — 0, given that I',z : o, I—’ifly t : 0,. By induction
hypothesis ',z : o, Fplfly t: 0., and by applying rule ABS2 this case is done.

e Case AABS2. Here I Fy\z:i0y.1: 0, — 0, given that K& 0o <ozand I (z:0,) Fplfly t: o,.. Then,
by induction hypothesis we get that T, (z : o) ijly t : 0, and by rule AABS2 we are done.
e Case APP. Similar to the case for APP above.

e Case LET. Similar to the case for LET above.

For the third part, I Fﬁfly t : o can be derived using the GEN2 rule. Let o0 = Va.p and then we have that

I’ prly t: Va.p given that I'" = ¢ : p for @ ¢ ftv(I"). By induction hypothesis we get that I' - ¢ : p.
Moreover, since the two contexts are related pointwise in the shallow subsumption relation, by Lemma 3.16
we have that ftv(T') C fto(T”) hence b ¢ ftv(I"), and we can apply GEN2 to get the result.

Finally T l—pffly t : o is derivable using the GEN1 rule. Assume o = Va.p where I' -, ¢ : p and @ =
ftv(p) — fto(I'"). By induction hypothesis I' -, ¢ : p and because fto(I') C fto(I), using Lemma 3.16 it must
be that ftv(p) — ftv(T') C ftv(p) — ftv(T), which means that @ C € where ¢ = ftv(p) — ftv(T"). By applying
rule GEN1 we get the result and it is easy to confirm that Fhve. p <Va.p. O

3.2.2 Connection of syntax-directed and bidirectional type system
Lemma 3.20. Let F*" be 1. Then

1. if T, t:p then I' =4 p.

2. 4f T Ff;ly t:o thenT prfly o.

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used.

e Case INT. Directly follows by rule INT.
e Case VAR. Directly follows by rule VAR.

e Case ABs. Follows by induction hypothesis and rule ABS.

39

e Case ApP. We have that I' ; ¢ u : p given that

Thyt:(oc—0o') (1)
r l—f;ly U o (2)
peube o1 <o (3)

Hst ! <p (4)

By induction hypothesis for (1) we get I' k-, ¢ : 0 — o and moreover I' l—pffly t : o1, which, by

Lemma 3.11 gives T’ }—plfly t:o01. By (3) and Lemma 3.9 T I—pjly t : o and using (4) and APP we get the
result.

e Case LET. In this case we have that I' - 1et 2 = w in ¢ : p, given that
r I—g;ly u:o (5)
F,:z::al—fgly t:p (6)
Then by induction T" l—p{ly u:oand Iz ok, t:p. Applying rule LET finishes the case.

e Case ANNOT. We have that I' = (¢::0) : p, when

r ngly t:o (7)
l_subo 0_/ <o (8)
H o< (9)

By induction hypothesis we get I’ l—pffly t : ¢/, which by Lemma 3.11 gives T’ }—plfly t : o’. From this, (8),

and Lemma 3.9 it must be that T I—ﬁfly t : 0. From this and (9) we can apply rule ANNOT to get the
result.

For the second part, the case for GEN follows directly by rule GEN in the bidirectional system. O

If we replace the relation F“*° with F°°* the above theorem becomes false. The intuition is that type

annotations may induce some deep skolemisation subsumption that will succeed in the syntax-directed system
since there we generalise more and fail in the bidirectional where we check more! For example, consider
'=z:Ya.a - b—b—cu:Intand l—g;l‘y ((z u)::(Int — VYe.Int — ¢)) : Int — Ve.Int — ¢ but it

is not derivable that I' l—pffly ((z w)::(Int — Ve.Int — ¢)) : Int — Ve.Int — ¢ —in fact it is not typable
at all. Notice that if all annotations and types of binders in the context were in prenex form, then it is easy
to see that it would never make a difference whether F**° et

true.

was FOZ or and the theorem above would be

Naturally the other direction does not hold; the bidirectional system is more powerful than the simple syntax-
directed system. As an example let 0,y = Va.a — a, I’ = g : (054 — 0i4) — Int and consider inferring
I'kyg (\z.z) : Int. This will type-check, as it is checkable that T’ by \z.z: 044 — 0iq. Nevertheless it is

subo

not derivable that I' -, g = : Int as it will not be derivable that - Va.a — a < 0jq — 0i4.

3.3 Final version of the bidirectional system: deep skolemisation in polytype
checking

The bidirectional system with *% is a rich one but lacks two important properties, namely Lemma 3.20
becomes false when F**7 is F°°* and so does Lemma 3.9 when the types and contexts are related by oot

instead of F'.

40

Consider the alternative rule for H, lf Wy given below.

pr(c) =VYa.p
a o) Tk, t:
2L (p())ly LEp GEN2*
ey teo

Here’s an important property of this system.
Lemma 3.21. If 'k t: p and pr(p) = Va.po where @ ¢ ftv(T') then I' = t : po and the new derivation
has the same height.

Proof. By induction on the height of the derivation I' -, ¢ : p. We proceed with case analysis on the last
rule used.

e Case INT. Directly follows by rule INT.

inst

e Case VAR. We have that I' - z : p given that = o < p where z : 0 € I'. Equivalently Rt o < p.

Then it must be that I—dSk

This means that F*

o < p as well and there is a canonical derivation that uses SKOL at the end.
o < pg and by applying rule VAR again we get the result.

e Case ABs2. We have that I' (\z.t) : (6, — o) given that T, (z : 0,) }—plfly t: o, Itis easy

to see that ', (z : 0,) |—le t : pr(o,) and has the same height, since pr(o,) = pr(pr(o,)). Then
by inversion pr(o,) = Va.p, with @ ¢ ftv(c,,I') I',(z : 04) Fy t : pr and by applying rule GEN2*

T, (z:04) prly t: pr as well. By rule ABS2 we get ' ¢ : 0, — p; as required.

e Case AABS2. In this case I' b (\(z::04).1) : (04 — o) given that Y 5, < oy and T, (z:04) I—ﬂfly

t : o,. With the same argument as in the case for ABS2 it must be that T, (z : 0,) }—plfly t: pr where

pr(o,) =Va.p, with @ ¢ ftv(o,,T"). Moreover it is easy to check that oot pr(os) < 04. Applying rule

AABS2 again gives Iz : 0, - t: 04 — p, and finishes the case.

e Case APP. Here we have that I' - ¢ u : p given that

Lkyt:(o—0a) (1)
r I—plfly u:o (2)
o<y ®)

From (3) FIF o < p. Consider the canonical derivation that ends with SKOL. Then, assuming that
@ ¢ ftv(o’) as well without loss of generality sk o1 < po- Applying rule APP again gives the result.

e Case LET. In this case I' -5 1let = uw in ¢ : p given that I’ PO ¢ o and I'yz :0t5t:p. Notice

that since @ ¢ ftv(I') and ftv(o) € ftv(T') by inversion, it must be that @ ¢ ftv(T',z : o), therefore the
case is done by application of the induction hypothesis and rule LET.

e Case ANNOT. We have that I' - (¢::0) : p given that

I t:o (4)
Hi o <p (5)

With a similar argument as in the case for APP we get that sk o < po and applying rule ANNOT
finishes the case.

41

O

Some important properties first that carry along from Section 3 and still hold for this variation of the
bidirectional type system.
Lemma 3.22.

L IfTEyt:pthen Tt ¢:p.
2. IfT }—pﬁlyt:a thenFprlyt:U.

Proof. The proof of the first part is exactly like the proof of Lemma 3.11. For the second part we have
that T’ }—pgly t : o by rule GEN1 and assume that ¢ = Va.p where @ ¢ ftv(I'). Then T’ F4 t @ p which by
induction hypothesis gives us that I' - E: p. Now let pr(p) = Vb. pg such that b ¢ @, ftv(I'). By Lemma 3.21
['Fy t: po. But notice that pr(o) = Vab.po. Hence we can apply rule GEN2* to get the result. O

Lemma 3.23 (Substitution).

1. If T't=5 t - p then ST =5t : Sp.

2. IfT }—%Oly t:o then ST l—p;ly t:So.
Proof. Exactly like the proof of Lemma 3.13 except for the GEN2* case for the second subgoal. In that case
we have that I’ }—plfly t: o when pr(c) =Va.pand @ ¢ fto(I') and I' - ¢ : p. Then, consider a substitution
S - [a ¢ such that ¢ ¢ vars(S), ftv(T, p). By induction hypothesis STk, ¢ : S - [a— ¢|p. But notice that

pr(So) = S(pr(c)) = S(Va.p). With a renaming S(Va.p) = Ve.S[a ¢]p and we can apply rule GEN2*
to get the result. O

Lemma 3.24 (Weakening). Given two contexts, T', TV, if dom(T') = dom(T") and for all x € dom(T) it is
o [(z) <T'(x) then the following are true:

1L IfUVE tipthen by t:p.

2. IfIV by t:pthen Dby t:p.

3. LT Y t o then T HYY ¢ 2 0.

4. IfT I—pffly t:o then T }—pﬁly t:o where " o' < 0.

Moreover, for each implication, the two derivations have the same height.

Proof. The proof is the same essentially as in Lemma 3.19 except for the case for GEN2* in the third subgoal.
In this case I" l—plfly t : 0. Let pr(c) = Va.p and then we have that T l—plfly t: o given that IV) ¢ : p
for @ ¢ fto(I"). By induction hypothesis we get that I' i ¢ : p. Moreover, since the two contexts are
related pointwise in the shallow subsumption relation, by Lemma 3.16 we have that fitv(I") C ftv(T) hence
a ¢ fto(T'), and we can apply GEN2* to get the result. O

Now, even in this system we cannot arbitrarily strengthen contexts in the °°* relation and check the same
p-type”. For example, consider I'; = z : Vabc.a — Int - b — b — cand 'y =z :Va.a — Int — Vb.b —

7 This is somewhat ugly because it means that when a programmer writes her program and wants to revise the type
annotations in the rest of the program; he should change the type annotations so that the new types are only F! more general
and not ¢,

42

Ve.b — c¢. Then it is the case that I'y }_ll z True : Int — Vb.b — Vc.b — ¢ but this is not derivable when

T'; is replaced with I'y, although T'y is a more general context in the |ost way. However a very important
slight variation of the weakening lemma holds.
subo

Lemma 3.25. Independently of whether F
true:

}_Dsé

is ! or L if Ks I'y < Ty pointwise then the following are

1. IfTo I—ﬂ t:po then 3p1.1T1 I—ﬂ t:p1 and ot p1 < po.
2. If Ty '_ll t:p1 and ot p1 < p2 then T'q '_il t:po.
3. If Ty 7Y ¢ oy then 3o1. Ty HyY t - oy and ' 01 < 0.

4. If Ty }—plfly t:o1 and st o1 < og then Ty }—plfly t : 09. Notice the fourth claim that allows now for post
weakening.

Proof. The proof remains exactly the same as the proof of Lemma 3.9 except for the fourth part. Here we
have that I'y }—plfly t : o1 given that

pr(o1) =Va.p; (1)
a ¢ ftU(Fg) (2)
Pobyt:p (3)

We also have that F°* o1 < o0y or eguivalently sk o1 < o0y. Consider the canonical derivation of this

that ends with SKOL. Let pr(os) = Vb.py and without loss of generality b ¢ ftv(I'y), ftu(Va.p;). Then by
inversion it must be that F* o1 < p2. But sk pr(o1) < o1 therefore sk Va.p1 < pa, or since SKOL can

only be trivially applied +*" [@=7T|p1 < p2. By (3) and the substitution lemma - ¢ : [a= 7|p1 with the
same height. By induction hypothesis - ¢ : po and by applying rule GEN2* we are done.]

Corollary 3.26. If T H" t : o1 and F** 01 < o5 then T H}Y t : 0.

Proof. Special case of the fourth subclaim of Lemma 3.25. O
Lemma 3.27.

L IfTH,t:pthen 4 p.
2. IfT Fggly t:o thenT prfly o.

Proof. Exactly like the proof of Lemma 3.20 but now appealing to Corollary 3.26 in the cases for ANNOT
and APP. O

Notice now that Lemma 3.27 is independent of whether we use Fot or K

Lemma 3.28 (Weakening). Let U0 pe 105 Suppose that Ry < Ts. Then

1. if To byt pa then 3p1.T'1 4 2 p1 and st T1(p1) <Ta(ps).
2. 4f Lo by t:p1 and pr(p1) = p1 and pr(p2) = p2 and st p1 < p2 then Ty by t: pa.

3. if Ty prfly t: o9 then do1 .1 prfly t:oy and et o1 < 0.

43

4oif Do Y t oy and F°°° 0y < oy then Ty H)Y t 2 0.
Proof. We prove the four claims simultaneously by induction on the height of the derivations. For each claim
we assume that all others hold for derivations of smaller height. We proceed by case analysis on the last rule
used.

Part 1: We have the following cases.

e Case INT. Just pick Int as p; again.

e Case VAR. We have that I'; -y @ : p given that z : 09 € I'; and

inst

Fi o2 < po (1)
Then, z : oy € I'1 such that

ot o1 < o2 (2)

Assume that b = ftv(ps) — ftv(T'2). Then by the substitution lemma we get I' ooz [dlpe

for some d ¢ ftv(I';,T's, p2). By (1) and the substitution lemma we get I—Z:th o9 < [b+— d]ps and by

transitivity of st

F* o1 < [0 dlps (3)
Moreover assume that o3 = Va.p; and without loss of generality assume that @ ¢ ftv(I'y). Then
I—Z#St o1 < p1. By (3) we get that F* va.p < [b — d]pa. Consider @ = ftv(p1) — ftv(T'1). Then
@ C @ and consequently F°° Va'.p; < [b— d|ps. Then it must be that d & ftv(Va'.p;) because
otherwise d € ftv(I';). Then by SKOL admissibility R va'.py < Vd.[b+ d]ps, or equivalently
P T (o) < Talpa).

e Case ABs. Here we have that I's -y (\z.?) : (T — p2), given that

Po,z:7k4t:po (4)

Consider b = ftv(ps) — ftv(I'a,7) and a renaming substitution [b +— d] where d ¢ ftv(T'y,To, 7, p2).

Then by (4) and the substitution lemma we get ',z : 7 ¢ : [b+— d]p2. By induction hypothesis
there exists a p; such that I'y,z : 7 Fﬂ t:p; and

Rt Va. py < Vd.[b— d)ps (5)
where @ = ftv(p1) — ftv(I'1, 7). By the rule ABs we get that I't -, (\z.?) : (T — p1). We wish to show
that

FMEVEl.Tle <Vaz.7T — po (6)
where @; = ftv(p1,7) — fto(T') and @2 = ftv(pe,7) — ftv(T'). Notice that if © = ftv(7) — ftv(T") then
@, = ac and @y = be. From (5), since by SUB Pt v, [b— d]p2 < [b— d]p2, and by transitivity we
get that

H*va.py <[5 dlpa (7)

Then, by rule FUN o5t

transitivity and rule DISTRIB. By SUB and transitivity H* vae.r — p1 <7 — [b— d]ps. Now we
claim that ¢ ¢ ftv(Vac.T — p1) and d ¢ ftv(Vac.T — p1) similarly. The former because we quantified
over them, the latter because the opposite would mean that d € ftv(I'y). Then we can apply SKOL

T = Va.p <7 — [bodps and P Va.r — pp < 7 — [b dlps by

admissibility to get that Pt vae.r — p1 < Vde.7 — [b+ d]pz and by an a-renaming of d to b we
are done.

44

e Case AABS. Similar to the case for ABS.

e Case APP. In this case we have that I's I—ﬂ t u : pa given that

Dok t:(o—0a') (8)
Lobyu:o (9)
"?St o' < pa (10)

Counsider a renaming substitution g, = ftv(c, o', p2) — ftv(T'2) to fresh gy, such that g, ¢ ftv(I'1). Then
by the substitution lemma (8) becomes

Ty byt (00 — 0p) (11)
where 0¢g = [g1 = g2]o and o(, = [g1 — g2]0’. By induction hypothesis on (11) we get that there exists
a p; with

Fl Fﬂ‘ t: Pt (12)
R Topy) < Vgy.00 — o) (13)

Because of the choice of g5, from equation (13) we get

05t =

= Fl(ﬂt) S gy — 0'6 (14)

There are two possible cases for p;. It is either a type variable a ¢ ftv(T';) or it will be an arrow type
¢ ¢
0'1 — 0'2.

— Assume that p; = of — o} and let @ = ftv(p;)—ftv(T'1). Then by equation (14) and Corollary 2.20
we get:
! vab.pr(ot) — ph < Ve pe(og) — gl (15)

where

b ¢ fto(oy) (16)

¢ ¢ ftv(og, Ty, 2,01, 0%) (17)
(18)

(19)

pe(og) = Vb.ph

By (15) and (17) it must be that

Fhvab . pe(ot) — pb < pr(og) — 06 (by inversion)
= [a—=7a, b — 1] (pr(o}) — pb) < pr(oo) — pf (by inversion)
= @ ralpe(ol) — [@ 7, b e < pr(oo) — Pl

F” pe(og) < [a7= 7q)pr(o)) (20)
@ b b < v (21)
From Corollary (2.20) and (20)
P o0 < [a— Tg)o) (22)
From (12) and the substitution lemma, we get
Ty byt [@a7g)(0f — ob) (23)

45

By the substitution lemma for (9) we have that I's - u : 0 and by induction hypothesis and (22)
we have
Ty by u: [a 740 (24)

wnst

Then, if [a7 7,]05 = Vg;.p1, where without loss of generality g; ¢ ftu(T'1) we have that
[a— T,4)0é < p1. We have all the premises of the rule APP and applying it gives us that I'y - ¢ u
p1. Then it is the case that T'1(p;) = I'1([@7 74)0b). By (21) we get that

H [@=7a, b ol <
F! . [a—=T,.]p4 < pf)

=
= F'vdb. [a—=T.lps < p})

where d = ftv(Ta, p5) — ftv(T1). But now we know that ¢ ¢ ftv(Vdb.[a 74)p), because it

must be that ftv(V% [a=Ta]ph) C ftv(Ty), and by (17) ¢ ¢ ftv(T'1). Then we can apply rule

SKOL to get that F' Vdb. [a—= Ta]ph < Ve.p), and by Corollary 2.20 H** vd. [a—=Ta]ol < o).

By the substitution lemma for (10) we have }—L#ét oy < [01 = g2)p2 and by transitivity we have

that F°*

o ¢ ftv(T'1). Then we can apply SKOL admissibility to get Ft v [a—= Ta]ol <Vg,.[91 — g2)p2

Vd.[@a7 = T,)os < [g17 gz)p2- Now it cannot be that g, € Vd.[@ = 7)o} because

or by dropping useless quantifiers and a-renaming H** Vd. [@ T4)os < Ta(p2) as required.

Assume that p; = a and let a ¢ ftv(I';). Then by equation (14) and Corollary 2.20 we get:

! Y. a < Ve.pr(oo) — gl (25)

where
¢ ¢ ftv(oo,T1,T2) (26)
pr(ay) = Ve pp (27)

By (25) and (26) and inversion on F! it must be that

' — 7 < pr(oo) —) (28)
Now yet one more inversion gives
ol
F pr(og) <7 (29)
F o < b (30)
From Corollary (2.20) and (29)
I—DEE ao S T1 (31)

From (12) and the substitution lemma, we get
Libgtim — 7 (32)

By the substitution lemma for (9) we have that I'y - u : o and by induction hypothesis and (31)
we have
Fl F“ u T (33)

Then }—Zg“ Ty < T5. We have all the premises of the rule APP and applying it gives us that
'y Ftu:m. By (30) we get that

.y < gl (34)

46

Where_ﬁ = ftv(ra) — ftv(T'1). But now we know that ¢ ¢ ftv(Vd.72), because it must be that
fto(Vdb.[a T4)p%) C ftv(Ty), and by (26) ¢ ¢ ftv(I'1). Then we can apply rule SKOL to get that
i Vd . < Ve. pp, and by Corollary 2.20 R d.ry < oy. By the substitution lemma for (10)

inst

we have l—ﬂ oy < [g1 7 g2]p2 and by transitivity we have that post Vd.m < [01 = g2]p2. Now

it cannot be that g, € Vd. 7 because g, ¢ ftv(I'1). Then we can apply SKOL admissibility to
get |05t Yd.Ty <Vg,.[g1 7 g2)p2 or by dropping useless quantifiers and a-renaming Pt v, o <
I'y(p2) as required.

e Case LET. In this case we have that I'y by let @ = u in t: po, given that

|) Fpﬂow u:o (35)
Lo,z 04 t:ps (36)

By induction hypothesis for (35) I'1 -4 u : o’ such that Pt ! < 0. By induction hypothesis for (36)
we get ',z : o 4 t @ p1 such that st T,z :0'(p1) <Ta,z:0(ps) or since o’ is generalised over T’
and o is generalised over I'y this becomes ost T1(p1) < Ta(p2) as required. Applying rule LET finishes
the case.
e Case ANNOT. We have that I'y l—ﬂ (t::0) : pa, given that
Lobyt:o (37)
inst
Fo o< p2 (38)

By induction hypothesis for (37) I’y by t:o. Assume now that o = Va.p;. and without loss of
generality, @ ¢ ftv(I'1,I'3). Then I—iTT;St o < p1. Moreover T'yp; = o, since type annotations are closed.
Additionally p = [@+7]p1 for some 7. By applying rule ANNOT we get that I'1 -, (¢::0) : p1.
We finally have to show that oot Tip1 < Ta([av=7]p1). Since type annotations are closed this is
equivalent to showing that Pt o < Ty[@a™7|p1, or by SKOL admissibility it is enough to show that
K 5 < [a=7]p1, which follows by (38).

Part 2: For this part we have the cases below.

e Case INT. In this case it must be that ps = Int as well and we are done by rule INT.

e Case VAR. We have that I'y |—¢L x : p1, given that = : o5 € I'y and I—iﬁSt 02 < p1. It must be then that

x : o1 € I'y and by transitivity of }—DEE, I—iﬁSt 01 < p1 and by one more use of transitivity I—TSt o1 < pa.

Applying rule VAR finishes the case.

e Case ABS2. In this case 'y - (\z.t) : (0, — o) given that 'y, (z : 0,) I—ﬁfly t : o,.. By assumptions

et 04 — 0, < pg or equivalently,
sk 0o — 0 < po (39)

By (39), and since ps is already in weak prenex form by assumptions the only rule applicable is FUN.

Therefore by inversion it must be that ps = 021 — 092, such that sk 091 < o, and sk o, < 099.

Also it must be that pr(c,) = o, and pr(oe2) = o22. Then, by induction hypothesis we get that
Ty, (2 :091) |—le t : 092 and by applying rule ABS2 we get the result.

e Case AABS2. Here 'z - (\(z::04).t) : (0, — o) Where

I_suba Ou S O (40)
Iy, (x:0y) l—plfly t:o, (41)

47

By assumptions st 0q — 0 < pg Or equivalently
sk 04 — 0r < po (42)

By inversion on a canonical derivation of (42), it must be that p2 = 021 — 022, such that sk 091 < o,
and F* o, < 093. Also it must be that pr(c,) = o, and pr(caz) = 022. By (40) and transitivity of
F* we get F** 5, < 0,. Moreover, by induction hypothesis for (41) I'y, (z : o) H, it Wt 09y and the
result follows by AABS2.

Case APP. In this case we have that I's - t u : py given that

Dobyt:(o—0a') (43)
Iy '_ii u:o (44)
"ZTSt U/ < P1 (45)

Consider a renaming substitution g, = ftv(o,0’, p1) — ftv(T'2) to fresh g,, such that g, ¢ ftv(T'1). Then
by the substitution lemma (43) becomes

Lyby t: (o0 — ap) (46)

where 09 = [g1 — gz2]o and o, = [g1 — gzJo’. By induction hypothesis on (46) we get that there exists
a p; with

Libgtip: (47)
F* T1pe) < Gp-00 — 0 (48)
Because of the choice of g5, from equation (48) we get

05t ——

7 Ti(pe) < 09 — 0 (49)
Moreover if pJ = [g1 7 ga]p1, by (49) and (45) it must be that
FH i) < o0 — 4 (50)

There are two possible cases for p;. It is either a type variable a ¢ ftv(T';) or it will be an arrow type
¢ ¢
0'1 — 0'2.

— Assume that p; = of — o} and let @ = ftv(p;)—ftv(T'1). Then by equation (49) and Corollary 2.20

we get:
! vab . pr(ot) — pb < pr(oo) — pi (51)
where
b ¢ fto(of) (52)
pr(o) =Vb.pj (53)
pe(pt) = p1 (54)
Notice that we used the fact that p! is in weak prenex form in equation (54). By (51) it must
be that
Fhvab.pe(ot) — pb < pr(og) — plb (by inversion)
= a7, b 1)(pr(cot) — pb) < pr(oy) — pt (by inversion)
= F e lp(ol) — [@ 7w b= milp < pe(0) = ol

From the last equation, by inversion we get that

ol
" pe(o0) < [@7 Talpe(or) (55)
e b e s < ot (56)
From Corollary (2.20) and (55)
P 5y < [a=7g)ot (57)
From (47) and the substitution lemma, we get
Ly byt e [@=7a](0) — 03) (58)

By the substitution lemma for (44) we have that 'y y u : oo and by induction hypothesis
and (57) we have
[y by u: [a= 740 (59)

From (56) we have that F . [@ 74]ps < pi or by Corollary 2.20

st

F [Talos < b (60)

Consider the substitution V = [gz 7 g1]; then the last equation and (58), (59), and (60) become:

VI Ept: Viae G (61)
VI by u: Ve Tolot (62)
R Vg Talos < Vol (63)

But VI'; =T and Vp{ = p;, therefore by transitivity and (63) st Ve 74)ob < pa. Then we
can apply rule APP to get I'y bt u: pa.

Assume that p; = a and let a ¢ ftv(I'1). Then by equation (14) and Corollary 2.20 we get:
! Ya.a < pr(og) — p° (64)

since pr(p?) = pl. By (64) and inversion on ' it must be that

K 11 — Ty < pr(og) — pi (65)
Now yet one more inversion gives
F! pr(o) <7 (66)
' 72 < (67)
From Corollary (2.20) and (66)
ot oo < 71 (68)

From (12) and the substitution lemma, we get
Libgtim — 7 (69)

By the substitution lemma for (9) we have that I'y - u : o¢ and by induction hypothesis and (68)
we have

Fl }_ll u:T (70)
From (67) and Corollary 2.20 we have that

F oy <) (71)

49

Consider the substitution V = [gz = g1]; then the last equation and (69), (70), and (71) become:

VI by t: V=V (72)
VI '_U u:Vmn (73)
R Vi < Vol (74)

But VI; = I'y and Vp{ = p;, therefore by transitivity and (74) st

apply rule APP to get I'y b t u: po.

V1 < ps. Then we can

e Case ANNOT. Here I'y FU (t::0) : py given that

Lo b0 (75)

inst

|_U o< p1 (76)

By induction hypothesis for (75) T'y H W' . 5 and by transitivity of F°°* we obtain l—iﬁSt o < py. The
case is done by applying rule ANNOT once again.

e Case LET. In this case we have I'y FU let z = u in t: p; when
| I—pﬂoly u:o (77)
Po,ziobyt:p (78)

By induction hypothesis for (77) I'y l—pff Wy 1 o' such that P ¢/ < o. Then, by induction hypothesis

for (78) I'1,z : 0’ by ¢ : p2 and we are done with an application of rule LET.

Part 3: For this part, by rule GEN1 we have that o5 = Vb. py such that b = ftv(ps) —fto(I'z) and 'y Fo b po.
By induction hypothesis for some p1 I'y o ¢ : p1 and Ft oy < Va.p1, where @ = ftv(p1) — ftv(I'1). Applying
the rule GEN1 finishes the case since we get I'y l—pﬂoh’ t:Va.p:.

Part 4: By rule GEN2* we have that I'y l—plfly t : oy given that pr(oy) =Va.p; and @ ¢ ftv(T's) and
Loy t:p (79)

We also have that F°° o1 < o9, Or sk o1 < 09. We know that sk pr(o1) < o9 and by transitivity of sk

gL py < oo (80)

The canonical derivation of (80) must have the rule SKOL applied last. Assume then that pr(cz) = Vb.ps
and without loss of generality

b ¢ fto(l'y, o) (81)

Then it must be that F*" va. p1 < p2 and by inversion K [@—=T]p1 < p2, for some 7. Moreover
pr([a=7)p1) = [a= 7]p1 and pr(p2) = p2. From (79) and the substitution lemma we get

Lobyt:fa—7|m (82)

From (82) and induction hypothesis we get I'1 - # : p2 and because of (81) we can apply rule GEN2* to get
the result. O

50

pr(oc) =Va.p—t

pr(p1) =Vbpa —t a¢b
pr(Ya.p1) = Vab.py — Az : (Vab.ps).A.t (z [@])

PRPOLY

pr(oe) =Va.po—t a¢ ftu(or)
pr(o1 — 02) =Va.01 — pa — Ax:(Va.op — pa).Ay:o1.t (Aa.z [a] y)

PRFUN

PRMONO
pr(t)=7— Ax:T.2

l_dsk

c<o —t

pr(os) =Va.p—t

— dsk

a ¢ ftv(o F7 o1 <p—t

dskgf (1) 1=F 2 DEEP-SKOL
= 01 §O'2i—>)\$30'1.t1 (Aa.tg CL’)

H @y < pa o t

F Y aL py < pa o Az (Yaup).t (z [7])

SPEC

dsk dsk
FS O'gSCTlF—)tl FS O'2§04’—>t2

dsk

FUN
=

(01 = 02) < (03 — 04) — Ax:01 — 02.)\y:03.12 (z (81 y))

7 MONO

',

sk
T< T AL:T.Z

Figure 10: Creating coercion terms

't o
z:0€el
- ———INT
Fl_sza\/AR I'HF 4 Int
F,J::JlFFt:UQ 'ty =09 TH vy
a ABS 7 APP
' Az:ioy.t:o1 — oo ' tu:oy
T t:0 a ¢ fto(D) I t:Va.o
ja TABS G TAPP
" Aa.t:Va.o PE to1] : [a v o1]o

Figure 11: System-F with open types

51

Fl_(stlipl—)tg

st
#m o< pr—
INT 5 <p—f

e VAR
I'ksi:Int— 1 D(z:o)bsz:ip—fua

Di(z:m)Fytip—=t
Py (\z.t) i (1 —p) = Azt

ABS1

L, (z:04) Fplfly t:o,—t

Lhy (\z.t):(0g = 0r) = Az204. 1

ABS2

Lo(z:o)bptip—t
AABS1
Ly (\N(z::0).t): (0 —p) =~ Az:0.1

l_dSk 0q < 0y '_}f

L, (z:0,) Fplfly t:o,—t

AABS2
Ly (\(z::04).1) 1 (04 — 00) = Az00. [z (f 7)1

Fl—ﬂt:(a—>a')l—>t1 F}—plflyu:UHul Fﬂ?“a’ngf

APP
Phstu:ip— f(tw)

Fl—ﬁflyt:JHtl

‘ Fl—prlyu
|_ngst USPHf

Dz:obst:p—1ty
ANNOT

L0 u

ks (ki) ip—=f g

LET
I'kslet 2 = w in t:p— (Az:0.t) w

Fl—p;lytzal—>t1

a= ftv(p) — fto(I) pr(o) =Va.p— f
Phytip—t ad¢ fo() Thytip—t
50Ty — —— GEN1 5oly — GEN2
LEy" t:Va.p— Aa.ty TEy t:o—f(Aa.t)
st
Fs o <pr—1
dsk
inst - INST1 —F i S th 2
Fo Va.p < [a=7] pr Az (Va.p).x[7] st INST

'_U o< p—t

Figure 12: Bidirectional higher-rank type system with retyping functions

52

3.3.1 Type-safety of the bidirectional system

The semantics of the language is defined via a translation to System-F terms (where open types are allowed
and treated as arbitrary constants). Subsumption creates coercion terms that are applied appropriately. We
give an more suitable presentation of weak prenex conversion and the subsumption relation in Figure 10.
System-F semantics are given in Figure 11. The actual translation is given in Figure 12.

Lemma 3.29 (Weak prenex retyping). If pr(c) =Va.p+— t then F5 t: (Va.p) — o.

Proof. Easy induction. O

Lemma 3.30 (Subsumption retyping). If sk o1 < o9+t thentFf t:oy — 09.

Proof. Easy induction. O
Lemma 3.31 (Translation semantics).

1. IfTkstiip—ty then T FF &y : p.

2. IfTHY 1y ity then T HF 1y : 0.

Proof. Easy induction. O

Corollary 3.32 (Type soundness). The bidirectional system has the type soundness property.

Proof. By Lemma 3.31 the translation yields a well-typed System-F term. O

3.4 Conservativity over Damas-Milner

We show that the type systems we introduced are all conservative extensions of the Damas-Milner type
system, given in Figure 13 and Figure 14. Damas-Milner types are of the form Va.r.

Definition 3.33 (DM(T, t) predicate). Let the predicate DM(T, t) where t is a term and T' a context be
true iff:

o All types bound in I are DM types.
e t contains no type annotations.

Lemma 3.34. If DM(T,t) and TH'Y t:0 then Tk, t: 0.

Proof. The proof is by induction on the height of the derivation I' HM 4 . & which is completely straight-
forward and we ommit. O

However it is not true that if DM(T',t) and I' k., t : o then T Mt . o, since by rule SUBS we can

downgrade the type arbitrarily. What is true is that J0’.T FPM ¢ o' such that K o’ < 0.
Lemma 3.35. If DM(I',t) and 'k, t: 7 then 'k t: 7.
Proof. Consequence of Lemma 3.27. O

Lemma 3.36.

1. If F'Va.r < then [@a—=T|m = 72 for some T.

53

Rho-types p = 7

——INT — VAR
T's:Int L(z:0)Fz:0
T,(z:7)Ft:p FFt:T.Hp
ABS T'Fu:r
' (\z.t): (r—p) WAPP
F'Fu:o
Fz:okFt:p I'kFt:o
LET —— ANNOT
Pklet 2 = w in t:p Pk (ti:o):o
a ¢ fio(l) I'Ft:Va.p
IHt:p i — L)
TFt:Va.p Tht:fa=7p

Figure 13: The non-syntax-directed Damas-Milner type system

2. If st Va.11 < 7o then [a = 7|11 = 7o for some T.
Proof. The first part follows by inversion on ! For the second, just observe that the prenex forms of the
types are the types themselves, and by using Corollary 2.20 the result follows by the first part. O

Lemma 3.37. If DM(L',t) and 't t: p then p=T.

Proof. By induction on the derivation of I'-4 ¢ : p. None of the cases are interesting. O

Lemma 3.38. If DM(T,t) and "'k, t: p then p=.

Proof. By induction on the derivation of I' -4 ¢ : p. None of the cases are interesting. O

Lemma 3.39.
DM
1. IfDM(T,t) and 'y t o7 then T'HG" ¢ 7.
2. If DM(I,t) and U t: 7 then T I—S%M t:T.

Proof. We prove the two claims simultaneously by induction on the height of the derivations. We proceed
with case analysis on the last rule used.

e Case INT. Directly follows by INT.

inst

e Case VAR. We have that I' =5 z : 7, given that 5~ ¢ < 7, where z : 0 € I'. In the {} direction we
can just apply VAR. In the | direction we have by assumptions that o = Va.7 and it is the case that
peube Va.790 < 7. By Lemma 3.36, 7 = [a 72]70 and therefore ™ va. 7o < 7. We can then apply
rule VAR to get the result.

54

Rho-types p = 7

'Ft:p
"inStUSp
— INT - VAR
I'-4:Int L(z:o)Fxz:p
L,(z:m)Ft:p Phtir—p
ABS I'Fu:7 APP
Fl—(\w.t).(T—>p) —Fl—tu:p
D HW ¢
THY .o subs
F <o
T'Nz:okFt:p inst
LET = <p
I'Flet x = w in t:p ——— ANNOT
L'k (t::o):p
nst
N H" o < p
= fulp) — fro(T)
F'Et:p
poly — GEN st INST
FrE"" ¢:Va.p FvVa.p < [a—=7lp
subo /
F <0
a ¢ ftu(o)
subo subo —
F < F <
subo 7=p SKOL subLaHT] PrL=r2 SPEC WMONO
= o<Va.p = Va.p1 < po F T<T

Figure 14: The syntax-directed Damas-Milner type system

Case ABsl. Here we have that T’ l—ﬂ \z.t: 7 — 7o given that I,z : 7y }—ﬂ t : 5. By induction

Fz:m I—ZM t : 75 and applying rule ABS finishes the case.

Case ABs2. T’ '_U \x.t: 71 — 1o given that ',z : 7y }—plfly t : 1o, or by inversion I', x : 7y '_U t: 7. By

induction ', z : 7y FZM t : 75 and applying rule ABS finishes the case.

inst

Case APP. We have that I' -5 ¢ w : 7 given that I' Fptio— o, T l—ﬁfly v : o and

o' <71. By

Lemma 3.37 it must be that ¢ = 71 — 75. Then by induction T" I—ZiM t:1g — 1 and I I—SDdM U Ty

and by APP I |—stM t u: 7. But we know that l—ig‘gt 73 < 7, hence "7

T2 = T.

55

7o < 7 and it can only be that

Figure 15: The world

e Case LET. In this case I' -5 let £ = v in t: 7 given that

Fl—?lyu:a (1)
Fz:okst:T (2)

It must be the case that o = Va.p such that I' -, u : p and @ = ftv(p) — fto(I'). By Lemma 3.37 we
DM

get that p = 7 and by induction T’ I—ZM w:Ti. By GEN thenI' -, poly

induction hypothesis for (2) and application of LET we get the result.

u : o and ¢ is an DM type. By

The rest of the cases cannot happen. O

Lemma 3.40. Assume that H**7 is F°°% in what follows. If DM(T',t) and Tk, t : o then there exists a

o such that T FM ¢ . o' and F°°t o <og.

Proof. If 'k, ., t: 0, by Lemma 3.4 we get I' I, ¢ : p such that st T'(p) < 0. By Lemma 3.38 we get that

p = 7. Then by Lemma 3.35 we get that I' -, ¢ : 7 and by Lemma 3.39 we get " My By Hindley and
T sd
Milner’s result I' F”" ¢ : 7 and by rule cen T F*M ¢ : (7). O

DM
Lemma 3.41. If DM(T,t) and T I—S%M t:7thenT kg, t:7 and if Tk, "Wt .o then T I—isly t:o.

Proof. Straightforward induction. O

In conclusion, the world looks like Figure 15. In this figure we assume that F¥* i used and that the
bidirectional system uses the GEN2* rule. Solid lines correspond to unrestricted relations between type
systems, shadowed lines correspond to relations where the terms are unannotated and the contexts contain
only Damas-Milner types.

56

4 A formalised type inference algorithm

In this section, we give a precise but abstract specification of a type inference algorithm. The final version
of the bidirectional system was a syntax-directed system. A syntax-directed system is an important step
towards a type inference algorithm because the steps of the algorithm could be driven by the syntax of the
term, rather than having to search for a valid derivation.

However, a syntax-directed type system does not fully specify an inference algorithm. At certain points in
the syntax-directed system, guessing is still required—for example, in the rule INST, the rules do not specify
what types T should be used to instantiate the bound variables of a polytype. Because of this guess, typing
is non-deterministic. By making different choices for 7 we can show that a given term has many different
types.

The point of a type inference algorithm is to choose, out of all of these possible types, the one that is
the “best” or most-general. Below, we formally specify a type inference algorithm for the bidirectional
Odersky /Laufer system, based on the Damas-Milner “Algorithm W”. We begin by discussing type variables
(Section 4.1) and unification (Section 4.2). Then we give the formalisation of Algorithm W in Section 4.3
and finally extend it to higher-rank types in Section 4.4.

4.1 Type variables and substitutions

In the discussion so far we have encountered two distinct kinds of type variables: ordinary type variables
and meta type variables. Consider the syntax of Damas-Milner types:

Va.r
Int | 1 —72 | a

g

T

The type variable “a” is part of the concrete syntax of types: ¢ — Int and Va.a — a are both legal types.
On the other hand, “r” and “o” are meta-variables, part of the language that we use to discuss types, but
not part of the language of syntax of types themselves. For example, 7 — 7 is not itself a legal type. The
typing judgements for a type system (Figure 13, for example) uses both kinds of variables. It uses “a” to
mean “a type variable”, and “7” to mean “some type obeying the syntax of 7-types”.

In a type inference algorithm, however, meta type variables are represented explicitly. The Algorithm W

approach works as follows:

e When we must “guess” a monotype, such as in rule INST, we make up a fresh meta type variable, «.

e We carry around an idempotent substitution that maps meta type variables to monotypes (possibly
involving other meta type variables).

e As the algorithm progresses, we generate equality constraints, which we solve by unification, extending
the current substitution to reflect this solution.

For example, consider the application reverse [1,2], where reverse::Va.[a] — [a]. We can infer the type
of the application as follows. First, we instantiate the type of reverse with a fresh meta type variable, say
B, yielding the type [5] — [5]. Now, infer the type of [1,2], yielding [Int]. Now, since reverse is applied
to that list, we know that the equation [5] = [Int] must hold. We can solve this equation by the standard
unification algorithm, yielding the substitution [§ — Int].

To summarise, the basic infrastructure required by this approach is as follows:

e We distinguish between ordinary type variables (written a, b, c¢), and meta type variables (written

a, 3,7).

o7

e We need a source of fresh meta and ordinary type variables. The reason that we also require fresh
ordinary type variables is that whenever we are going “inside” a polytype we need to treat the bound
variables in the body of the type as completely fresh; therefore we need to replace them with fresh
type variables. This point will become more clear in Section 4.3.

e We thread an ever-growing, idempotent substitution through the algorithm. This substitution is a
finite map, that maps meta type variables (only!) to monotypes.

e We need a unification algorithm that takes the current substitution, and an equation between mono-
types, and extends the substitution to make the two types equal. Indeed, we use the term “unifier”
and “substitution” interchangeably.

The fact that meta type variables range only over monotypes is because our system is predicative: in rule
INST for example we only “guess” a 7-type, not a o-type. The syntax ftv(-) still denotes all free variables in
the argument—meta and ordinary. Sometimes we use frmo(-) to denote the free meta type variables of the
argument and fou(-) to denote the set of ordinary type variables of the argument.

4.2 Unification

In Figure 18 we give a unification procedure. It is written using inference rules, but it can be read very
directly as an algorithm. We present it here primarily to introduce the notation; the algorithm itself is
completely standard.

We give first-order unification in Figure 18. The inference rules can be seen as a procedure that, given an
initial unifier Sy and two types 7 and 75 returns a new substitution S;—which extends Sp—and unifies the
two types.

4.3 Algorithmic version of Damas-Milner type inference

Before doing type inference for higher-rank types, we begin by treating the original Damas-Milner system.
Figures 16 and 17 show the type inference algorithm for Damas-Milner type inference. These rules are closely
based on Figure 14: each rule in that figure has a corresponding rule in the algorithmic version.

The main judgement of the algorithm has the form
(S(),Ao) ; I'1t: p = (517.'41)

meaning that “given context I', an initial substitution Sy, a symbol supply Ay and term ¢, the algorithm
produces the type p, substitution S; and a set of remaining symbols A;. This judgement relies on auxillary
judgements for generalisation, instantiation and subsumption that correspond to the other judgements of
Figure 14.

The symbol supply A is an unordered collection of distinct type variables, and models the supply of “fresh”
type variables that is required by Algorithm W. Each judgement that needs fresh type variables takes a
symbol supply Ag as input, and produces a depleted supply A; as output. The notation AX is the disjoint
union of a finite set X and a supply A.

In a similar way, most judgements take as input a substitution Sy and return an extended substitution
S1. Unlike some presentations, we do not require that the returned type is a fixed point of the returned
substitution.

The growing substitution and diminishing symbol supply are “threaded” through each judgement. For
example, in rule APP of Figure 16, the incoming (Sp,.Ag) are used to infer the type of the function ¢; that

58

(S(),.Ao) ; | R A p = (51,./41)

(p output)

INT
(507./40) 3 I'4d:Int= (SQ,AQ)

z:0€l (Sy, Ao) Ko < p=> (S1,A1)
(So,.Ao) ;F Foao: p = (S1,A1)

VAR

(So,A());F,l':ﬁl_ t:p:> (817./41)
(S0, AoB);THEN\z.t: 8 — p=(5,A41)

ABS

(S0, Ao) ;T t:pr = (S1,A1)
(Sl,.Al) ;Fl— U p2 = (SQ,.AQ)
So b p1=ps — a= 53

(S, Apa) ;T F tu:a= (53 A4s)

APP

(So,Ag); T Oy o = (51,A1)
(S1,A1); 0,z 0k t:p= (52, A2)

(So, Ag);TH1let z = u in t: p = (52, As)

LET

(So, Ao) ;T HY 16" = (S, Ay)
(Sl,Al) Esh o’ <og= (SQ,AQ)
(S2, Ag) ™" 0 < p = (83, As)

(S9, Ag) ;T (t0):p=(S3,A3)

ANNOT

Figure 16: Type inference algorithm for Damas-Milner system

returns (S1,.41) which are used in inferring the type of the argument u; and the result (Ss,.43) is returned
from the application.

Figure 17 gives the judgements for instantiation, generalisation, and subsumption (compare to Figure 14).
The generalisation inference judgement

(So.Ao) ;T HY 0 = (81, Ar)

returns an inferred polytype o. Note that in the generalisation rule GEN we gather all the free meta type
variables of the returned type that are not in the context — hence the @ notation there. When gathering
these free meta type variables, we must be careful to appply the latest substitution S;, which reflects all the
constraints we have encountered so far. Any meta type variables @ that are mentioned only in Si(p) can
be generalised, by replacing them with ordinary type variables b, and then quantifying over b. We do not
extend S with this latter substitution; instead, we simply substitute in Si(p).

It is worth discussing the rule SKOL a little more.
(S0, A0) F" o < [a= Blp = (51,.41)

b ¢ ftu(Sio) b ¢ ftu(Si(Va.p))
(S0, Aod) "7 o < Va.p = (S, A1)

SKOL

59

(S(),.Ao) ;F l_poly t:o0= (Sl,.Al)

(o output)

(So, Ao) ;T t:p=(51,A1)
a = ftv(Sip) — fiv(S11)

(SmA()E) ;T |—p01y t:Vb. [@— 3]51/) = (51, 41) EN
(S0, Aop) e < p = (S1, Ar)
(p output)
———rst INST
(S0, A0B) F Ya.p < [a— Blp= (S, Ao)
(S0, Ag) " 01 < 0 = (S1,.A1)
(01,09 inputs)
(S0, Ao) " 0 < [a— blp = (81, A1)
b ¢ ftu(Sio) b ¢ fu(Si(Va.p))
- SKOL
(S0, Apb) F" o <Va.p= (5,A41)
(S0, Ao) F" [a = Blpr < pa = (S1, A1) one

(S0, Aof3) = Va.py < p2 = (S1,A1)

SO - T = Ty = Sl
(S0, Ag) 7 71 < 70 = (81, Ao)

MONO

Figure 17: Generalisation, instantiation and subsumption for Damas-Milner

For this rule we need to check if ¢ is more polymorphic than Va.p. The first thing that we need to confirm
is that o is more polymorphic than [a — b]p, that is, the body of Va.p where we have replaced the bound
variables with completely fresh type variables—hence the requirement for the symbol supply to also contain
fresh ordinary type variables. Intuitively this step assumes any unknown instantiation of Va.p and tries
to ensure that ¢ is more polymorphic that this instatiation. The algorithm will yield back a unifier S,
that may possibly contain b in its range—consider for example the returned unifier that takes some of the
meta, variables for an instantiation of o to monotypes containing b. However none of the free meta type
variables of Sjo and S;(Va.p) should be among b, because then these variables would escape their scope:
We do not want to allow unbound ordinary type variables in our returned types.

These rules form an algorithm because there is no guessing to be done. Not only is the derivation constrained
by the syntax of the term, but all guessing has been eliminated. For example, the guessing of the argument
type in the rule ABS is replaced with the generation of a fresh meta variable. Likewise, the guessing of 7
in the rules INST and SPEC uses a list of fresh meta variables instead. When types must be compared for
equality (in the rules APP and MONO) the algorithm instead uses unification to determine if there is some
substition for the metavariables that makes these types equal.

60

So|_71:7'2:>51

(71, 72 inputs)

T=QO0rT=a

— UREFL
So Fr=7= SQ
a € dom(Sy) a € dom(Sy)
So F Soax =7 =5 SoF Soa =7= 51
BVARI1 BVAR2
SoFa=7=5; SoFT=a=5
a ¢ dom(Sy) a ¢ dom(Sy)
a ¢ ftv(SoT) UVARL a ¢ fto(Sr) UVAR2
SoFa=71=[a— So7]- S SoFT=a=[aw ST]- S

50|—T12T12>51 Sll—TQZTé=>SQ

7 7 UFUN
SobFmn—om=m—-1=>2>5

Figure 18: Unification

(S(),.AO) (e p=0— o = (51,./41)

(p input,oc — ¢’ output)

Sol—’y:a—>,6:>51
(307“4@/6) FH’Y:aﬂﬁj(ShA)

UFUN-MONO

UFUN-ARROW

(So, Ag) ko — o' =0 — 0 = (S, Ao)

Figure 19: Arrow Unification

4.4 Algorithmic version of the bidirectional system

We now extend algorithm W to the bidirectional type system. The revised algorithm appears in Figures 21-
24.

The first important difference between the previous algorithm and this one is the definition of subsumption.

The new definition follows closely canonical derivations of F4% The new subsumption relation is given in

Figure 22.

In addition to the unification procedure we gave in previous section we also require a procedure that unifies
a type with an arrow type. The arrow unification judgement of the form

(S0, Ao) F7 p=01— p1 = (S1,A1)

takes an initial unifier Sy, an initial supply Ag and a type p. It produces a bigger unifier S; and an arrow
type that matches p once S; has been applied to these types. The rules are straightforward and given in
Figure 19.

61

Ao FPro— o = A
(¢" output)

T=QO0rT=a
PRMONO

Ao FPlm— 1= A

.A() P 0‘2’—>V5.p2:>./41

PRFUN
.AQ "prUl — 09 — Ya.oq — P2 :>.A1

Ao FP" [a— blp— Ve.p' = Ay
Aob FP" Va.p s Ybe.p = Ay

PRPOLY

Figure 20: Weak prenex conversion

(S0, Ag) 5™ o < p = (81, Ar)

(p output when § =f}, input when § =|})

AINST1

(S0, AoB) Fy™ Va.p < [a— Blp = (So, Ao)

(S0, A0) F™ & < p = (81, A1)
(So,Ao) gESt o< p= (S1,A1)

AINST2

Figure 21: Algorithmic instantiation

Weak-prenex conversion is given by the following judgement:
Ao FPlro—o = A

The rules are given in Figure 20; notice that it consumes symbols from the supply in order to “freshen” the
quantified variables of the types.

The instantiation relation has an algorithmic version, shown in Figure 21. The instantiation judgements are
given by (So,.Ao) }—gm o < p= (51,A1). Again, they take an initial unifier Sy and a supply Ay and either
check or infer that o is more polymorphic than p and return the rest of the supply A;, extending perhaps
the unifier to 9;.

The inference and checking judgements are given by (Sp, Ag) ;T 5 ¢ : p = (S1,.A1). In the case of inference,
just like in the Damas-Milner algorithm, we take a unifier Sy and a supply Ay and, in return back a type
p. In checking mode we check if we can assign the p type to the term ¢. In any case we return an extended
unifier, S7, as well as the rest of the supply, A;. Notice the use of arrow unification in the abstraction
checking judgements ALG-ABS1 and ALG-ABS2 as well as the application judgement ALG-APP.

Finally we have the polytype inference and checking judgements (So, Ag) ; T’ }—%Oly t:o= (5,A1). The
inference case is very alike the generalisation inference case of the Damas-Milner algorithm. The corre-
sponding checking judgement should be read as: “check that ¢ is at most as polymorphic as the term ¢”.
Notice the similarity of this rule compared to the SKOL rule of the subsumption judgement. We also have

62

(S0, Ao) ' o) < 0y = (S1,A1)

(01,09 inputs)

Ao FP oo — Va.p = Ay
(So, A1) F** o1 < p = (81, As)
a ¢ ftU(S10’1) a ¢ ftU(S10’2)
(S0, Ao) K™ 61 < 00 = (81, As)

ASKOL

(S0, Ao) H o) < oy = (51,A1)

(Sos Ao) F™* [a = Blp1 < p2 = (S1,.A1)

(So,AoB) b Va.pr < p2 = (S1,A1)

ASPEC

(S0, Ao) F~ p=01 — 02 = (51, A1)
(81, A1) ok o3 < o1 = (52, A2)
(82, A2) ks o2 < 04 = (53, A3)

TohT AFUN1
(S0, A0) F 7 p< o3 — 04 = (53, A3)

(So,.Ao) F— p =03 — 04 = (S1,.A1)
(S1,A1) ok o3 < 01 = (52, A2)
(S, Ag) F*** 0y < 04 = (S, As)

(So,A()) Fds}c* o1 — 09 < p = (Sg,Ag)

AFUN2

SO = T = To = Sl
(S0, Ao) R o <1y = (S1,Ao)

AMONO

Figure 22: Algorithmic subsumption

to peform weak-prenex conversion and make sure that the returned unifier does not unify some of the free
meta variables of the context or the polytype with these fresh variables.

4.5 Properties of the type inference algorithm

The soundness theorem states that if the algorithm determines that a term ¢ has a type p, then there is a
derivation using the rules in Figure 9 assigning the same type to .
Theorem 4.1 (Soundness).

1. Suppose Ay ¢ fto(I') and ([],Ao) ;T 4 t: p = (S,A1). Then for any substitution V with dom(V) =
fmu(ST, Sp) we have VST 4 t: VSp.

2. Suppose Ay ¢ ftv(T', p) and ([], Ao);T Fy t: p= (S, A1). Then for any substitution V with dom(V') =
fmv (ST, Sp) we have VST & t: VSp.

The role of the substitution V is auxiliary and at first reading one can completely ignore it. The reason is that
the algorithm may return some un-unified meta type variables. For example ([], 8); F \z.z : 8 — 8= ([J,{})-

63

(S(),.Ao) ; I |—5 t: p = (Sl,.A1)

(p output when 6 =1, input when § =)

z:0€l (So,Ag) H?‘“ oc<p=(5,A)
(S(),Ao) ; I F(; T:p= (Sl,Al)

ALG-VAR

(S(),Ao);].—‘,xlﬂkﬂt:pé (Sl,.Al)
(S0, AofB) ;i Ty \z.t: B — p= (51, 41)

ALG-ABS1

(S0, Ao) = p=04 — 0 = (S1, A1)
(S1,A41) ;0,2 : 0, I-ﬁfly t:o, = (52, A2)
(So,Ao) ;F |_U \z.t: p = (SQ,AQ)

ALG-ABS2

(‘S’Oa-"lo);ram:O-l_ﬂt:p:> (SlaAl)
(S0, A0) ;T \z::0.t: 0 — p = (51,A1)

ALG-AABS1

(SO7AO) = p=0q — Opr = (S17A1)
(S, A1) F** 6, < 04 = (S5, Ad)
(82, A2) i Tya s o Y 2 0 = (S5, As)

(S0, Ao); Ty \wiio,.t: p=(S3,A3)

ALG-AABS2

(SQ,A()) ;T |_TT t:p1 = (51,./41)
(Sl,.Al) [prL =0 — o = (SQ,AQ)
(82, A2) s THY w0 = (83, As3)
(S5, As) F5™ o' < p= (84, As)
(S0, A0) ;T s tw:p= (54, As)

ALG-APP

(S, Ag) ;T I—pffly u:o = (S,A)
(51,./41) o Ul—é t:p= (527./42)
(S0, Ag);TFslet © = u in t:p = (Sz, As)

ALG-LET

Figure 23: Inference/Checking Algorithm

Of course meta type variables do not appear syntactically in the bidirectional system. The substitution V
simply eliminates such meta variables from the returned types.

Completeness on the other hand says that if the bidirectional system assigns the type p to the term ¢, then
the algorithm can infer a type p’ that can produce p through some substitution.

Again, when we state this theorem, we must constrain the the symbol generator to be “fresh” from the
variables in the judgement.
Theorem 4.2 (Completeness). The algorithm is complete with respect to the syntaz-directed system.

1. Suppose that Ao ¢ fto(L,p). If Tty t:p then (], Ao) ;T b4 t 2 p" = (5,.A1) and there exists R such
that RSp' = p.

2. Suppose that Ao ¢ fto(T',p). If Tk t:p then ([, Ao) ;T by t:p= (5, A1) and Sp=p, ST =T.

64

(S(),.Ao) ;F |—p50[y t:o0= (Sl,.Al)

(o output when 6 =1, input when § =)

(S0, Ao) s T4 £ 2 p = (51, A1)
@ = ftv(S1p) — ftv(S1T)

= 2oly —— ALG-GEN1
(SO“AOb);F'_TT t:Vb.[aHb]Slpé(Sl,.Aﬂ
Ao FPr o= Va.p = Ay
(So,.Al) ; I FU t: p = (51,./42)
a ¢ fto(SiT) @ ¢ ftv(Si0) ALGGEND

(S0, Ao) s T Y™ 10 = (81, As)

Figure 24: Algorithmic generalisation

Combining completeness and soundness gives us a principal types property for the bidirectional system (see
also Section 4.7). It tells us that out of all the types that bidirectional system assigns to a term, there is a
best one (the principal one), such that all others are substitution instances of that one. That type is precisely
the one picked out by the algorithm.

4.6 Proofs about the algorithm

Definition 4.3 (Excluded-X substitution equivalence). Given a set of variables X, we define the
excluded-X equivalence relation on substitutions as:

Sl = SQ\X & Va ¢ X,Sl(a) = SQ((I)

Intuitively, two substitutions are excluded-X equivalent if they agree everywhere except perhaps for some
variables in X'. Recall that we write X7 ¢ X5, where X7, Xy are sets of variables, meaning that the two sets
are disjoint. A wunifier is a substitution whose domain contains only meta type variables. In what follows
symbols S, T, U, V denote unifiers unless stated explicitly otherwise. When we write [a — b] - S, since a
can’t be in the domain of a unifier S we mean the (renaming) substitutions of a for b in the range of S. On
the other hand [— b] - S denotes the substitution composition of [a — b] and S.

Let us start by proving some sanity checks and useful facts about unification. The first property that we
need is that when we start with a well-defined substitution, we end up with a well-defined substitution: For
our purposes the notion of a mathematically well-defined substitution will coincide with idempotency:

S is well-defined iff Vo . So = S(So)
Lemma 4.4 (Idempotency of unifiers). If Sy is idempotent and So b 71 = 72 = S then S is idempotent.
Proof. The proof is by induction on the definition of the unification procedure. The case for UREFL is trivial.

The cases for BVAR1, BVAR2, UFUN follow easily by applying the induction hypotheses. Let us consider the
case UVAR] (the case UVAR2 is similar). Here we have that Sy - a = 7 = Sj, given that

a ¢ dom(Sy) (1)
a ¢ fto(SoT) (2)
S = [ar— Sot] - So (3)

65

We show by induction on ¢ that 51510 = S1o. All the cases are easy or follow by induction hypothesis
except for the case where o = 8. If 8 = o we have Sia = Sp7, which means that:

515104 = Sls()’r
[OZ = S()T}S()S()T

= [ar So7]SoT (because Sy is idempotent)

= Sot (by (2))

== Sloz

Similarly, if 8 # « we have that
SlSlb = [QHSOT]So[aHSQT]SQﬂ

= [a SoT]SoS0s
= Ja+— S7]8505
= 50

O

It is a series of easy inductions to show that all unifiers mentioned throughout the paper are idempotent.
These proofs rely on the last lemma. We omit these proofs and assume that we only deal with well-defined
unifiers in the rest of the document.

Now a quick check about the variables of the unifiers. What this says is that our returned unifier is larger
than the input unifier and that it doesn’t contain symbols made out of thin air.
Lemma 4.5.]f So Fr=m= Sl then:

1. wars(S1) C vars(So) U ftv (71, 72)

2. dom(Sp) C dom(Sy)

3. range(S) C range(So) U ftv(ry, T2)
Proof. Easy induction. O

The next lemma establishes the soundness of unification.
Lemma 4.6 (Unification soundnesss). If Sy b 71 = 7o = S then Si71 = Si72 and there exists a
substitution R such that Sy = R - S. Moreover vars(R) C ftv(So71, So7z).

Proof. The proof is by induction on the derivation of unification. We examine all cases.

e Case UREFL. Trivially take R to be the empty substitution.

e Case UFUN. Here we have that So - 7 — 70 = 71 — 74 = S5 given that S 71 = 71 =
and S; 71 = 7, = S. By induction hypothesis S;m; = 17 and S; = Ry - Sy for some Ry and
vars(Ry) C ftv(Som1, So71). Also by induction hypothesis Samo = So74 and Sz = Ry - Sy for some Ra.
Then we have that

vars(Rg) C ftv(S172, S175)
= vars(Ra) C Ry (ftv(Sora, So74))
= UCLT’S(RQ) gﬂv(SOTl,SQT{) UﬁU(SoTQ,S()Té)

Then we have RoS171 = R2S17{, hence Som; = So7i and taking R = Ry - Ry finishes the case since
vars(R) C vars(Ry, Ry) as well.

66

e Case BVARI (the case for BVAR2 is similar). Here we have Sy - o = 7 = 51 given that Sy F Spa =7 =
S1 when a € dom(Sp). By induction hypothesis S;Soaw = S17 and S; = R - Sy for some R. Moreover
vars(R) C ftv(SoSoar, So7) and because of idempotency vars(R) C ftv(Spa, So7). Then RSySoax = Si7
and because Sy is idempotent RSpa = S17 or S1a = S17. Therefore taking the same R finishes the
case.

e Case UVARI1 (the case for UVAR2 is similar). Here So - o =7 = [— Sp7] - Sp given that

a ¢ dom(Sy) (1)
a ¢ fto(SoT) (2)

Then [a — Sp7]Socx = So7 because of (1) and So7 = [a — Sp7]SoT because of (2). Finally pick
R = [a +— Sp7]. Then vars(R) = ftv(a, SoT) = ftu(Soc, So7).

Lemma 4.7. If So b1 = 170 = S then fou(S171,S172) C fou(SoT1, SoT2)-

Proof. By unification soundness, Lemma 4.6, we have that fov(S;71, S172) = fov(S171) = fov(RSpm1) and we
know that fov(RSyr1) C fov(R) U fou(Sor1) C fov(Som1, So72). O

Next we establish completeness of unification, that is, we will show that if two types are unified by some
substitution, then our algorithm returns always a most general unifier.

Lemma 4.8 (Unification completeness). If SSym1 = SSo7o then unification of So, 71 and T2 succeeds,
that is, So = 11 = 70 = S1 such that S - So = R - S for some R. Moreover vars(S1) C vars(So), ftv(11, m2)
and vars(R) C vars(S, S1,5).-

Proof. Consider the following lexicographic pair to be a metric for a given unifier Sy, types 71 and 5.
p = {|range(So) U ftv(11, 2) |, size(m1) + size(12))

We show unification completeness by induction on the value of p (We can use the same metric to show
termination of unification as well). Observe first of all that the two types cannot be tow distinct type
variables. We proceed by case analysis on the possible forms of 7 and 9.

e Both of them are arrow types, that is 7y = 717 — 712 and 79 = 791 — T92. In this case we have that
SSo111 = SSp121 and SSyT12 = SSpTe2. By induction Sy F 711 = 791 = 51 such that for some R; we have
S-S0 = Ri1-S1. Now also by induction hypothesis (by Lemma 4.5 range(S;) C range(So)U ftv(711, T21))
S1 F T = 199 = S5 such that Ry - S = R - 53 for some R hence giving us S-Sy = R - S3 hence giving
us the result by UFUN.

e Assume that they both are ordinary variables: Then they have to be the same since the only rule
applicable would be UREFL and the case follows trivially.

e One of them is a meta variable and assume 71 = « (the case where 75 is a variable is symmetric).
Assume also that 79 = 7. Then, if 75 is exactly the same variable then UREFL is applicable and the
result follows easily.

If 7 = 7 # o we have the following cases:

— a € dom(Sp). In this case if we can show that SSy(Spa) = SSy7 then we will be done, as we will
be able to apply the induction hypothesis (| range(So) U ftv(a, 7) |>] range(So) U ftv(Socr, 7) |=|
range(So) U ftv(T) |, since a ¢ range(Sp) because Sy is idempotent) to get that Sy F Spa = 7 = 54
with S-Sy = R-S; and by rule BVAR] the case will be finished. But observe that the above
follows directly from the idempotency of S.

67

— o ¢ dom(Sp). Here we have the following cases for So7:
* So7 = . Then since o ¢ dom(Sp) we have that 7 = § for some 8 € dom(Sp). But this means
that we can apply rule BVAR2 with UREFL in its premise to get the result, taking R = §.
* « € ftv(SpT). This case can’t happen as it would require SSoax = SSy7 or Sa = S(Sp7) but
the sizes of the types in the left and right hand side can never be the same.

* a & ftu(Sp7T). In this case we can apply the rule UVAR] to get the result. Now we need to
find R such that S-Sy = R - [a— Sp7] - Sp. Since SSyax = SSp7 it must be that o € dom(.S)
and Sa = S(Sp7), which means we can write S as S = S’ [+— Sy7] since also « ¢ ftv(SyT).
Now just pick R = S’ and we are done.

O

From the soundness and completeness of the unification procedure we can derive two easy corrollaries for
the arrow unification procedure.
Lemma 4.9 (Arrow unification soundness and completeness).

1. If for some Ay such that Ag ¢ ftv(p),vars(So) it is (Ao, So) F p =0 — o' = (51, A1) then Sip =
Sio0 — S10’ and 3R such that Sy = R - Sy. Moreover ftv(c — o) C vars(Sy), ftv(p), (Ao — A1) and
vars(S1) C vars(So), ftv(p), (Ao — A1) and vars(R) C ftu(Sop), (Ao — A1).

2. If 8Sop = 09 — oy, then for any symbol supply Ao such that Ay ¢ vars(S,Sy) and Ay ¢ ftv(p, 00, 0}),
(Ao, S) F~ p=0 — o' = (51, A1) such that IR with S-Sy = R - S1\4y—4, and RS10 = oy and
RS10" = of,. Moreover vars(R) ¢ Ay and vars(S1) ¢ A;.

Proof. The soundness part is by induction on the arrow unification definition and appealing to unification
soundness, while the completeness part is by case analysis on the type structure and appealing to unification
completeness. O

Here’s a lemma about the free ordinary variables during arrow unification.
Lemma 4.10. If Ay ¢ ftv(p), vars(So) and (Ao, So) F— p = 01 — 02 = (51, A1) then fov(S1p, S101, S102) C
fou(Sop)-

Proof. Like the proof of Lemma 4.7. O

4.6.1 Completeness

In this section we show that the types that the type system attributes to terms can be considered “instances”
of types that the algorithm discovers. We need a series of auxilliary lemmas first.
Lemma 4.11. If AgFP" 0 — Va.p = Ay thena C Ay — Ay, ftv(o) = ftv(Va.p).

Proof. Easy induction on the definition of FP". O

Lemma 4.12.

1. If Ay & vars(Sy) U fto(o1,02) and (So, Ag) F*" 01 < 04 = (81, A1) then there exists R such that
S1=R- Sy, vars(S1) C vars(Sp) U ftu(o1,02) U (Ag — A1), and vars(R) C ftv(Soo1, Sooz) U (Ag — A1).

)

(
2. If Ay ¢ wars(So) U ftv(oy,02) and (So, Ao) HIF o) < oy = (81, A1) then there exists R such that
S1=R- Sy, vars(S1) C vars(Sy) U ftv(o1,02) U (Ag — A1), and vars(R) C ftv(Spo1, Soo2) U (Ag — A1).

68

Proof. The two claims can be proved simultaneously by induction on the height of the derivations, appealing
to the unification properties in the monotype case. [

The next lemma asserts that no ordinary type variables from the symbol supply escape in the “useful” range
of the unifiers.
Lemma 4.13.

1. If Ay ¢ vars(So) U fto(o1,02), (So, Ag) F*F o1 < 00 = (81, A1), and fov(Syor, Soos) € X, then
fOU(Sl(J'hSlO'Q) g X.

2. If Ay ¢ wars(Sy) U ftv(o1,02), (So,Ao) sk o1 < 03 = (51,A41), and fov(Syo1, Soo2) C X, then
fOU(S10’17510'2) g X.

Proof. We prove the two claims simultaneously by induction on height of the derivations.

For the first part we only have the case of AskoL. We have (Sy, . Ao) sk o1 < 09 = (51, Az), given that

Ag FPT O’QHVE.p@Al (].)
(S0, A1) F™ a1 < p = (81, 4s) 2)
Egéftv(Slal,Slag) (3)

Assume that fov(Spo1, Spoz) € X. We know that fov(Sy(o2)) = fov(Va.p), therefore fov(Spo, Sop) C Xa.
By induction hypothesis fov(S10,S1p) C Xa. But now, because @ ¢ ftv(S101) and @ ¢ ftv(S1(Va.p)) we
have that fov(Sy0, S1(Va.p)) C X.

For the second part we have the following cases for the last rule used in the derivation.

e Case ASPEC. Here we have that AgB ¢ vars(Sy) U ftu((Ya@.p1), p2) and (Sy, Aof) FR g o1 < po =

(S1,A1), given that (Sp,.Ao) sk [a — Blp1 < p2 = (S1,.A1). Assume that fov(So(Va.p1), Sop2) C X.

Then trivially fov(So([a — B]p1, Sop2) C X, since 5 ¢ dom(Sp). Then we can apply the induction
hypothesis to get that fov(S;([a — B]p1), S1p2) C X and therefore fov(S;(Va.p1), Sip2) C X.

e Case AFUNI (similarly for AFUN2). We have that Ay ¢ vars(Sy) U fto(p, o3, 04) and (S, Ag) F***
P § 03 — 04 = (Sg,.Ag), given that (So,A()) F p =01 — 02 = (51,./41), (51,./41) I_dSk o3 S g1 =
(52, Az), (51,.A1) sk 09 < 04 = (S3,A3). Assume that fov(Sop, Soos, Soos) C X.

Claim 1: fov(S1p, S101, S102) C X. This follows directly by Lemma 4.10.

Claim 2: fov(S103) C X. Clearly all the ordinary variables of o3 are in X, therefore we need to consider
the meta variables. Assume v € ftv(o3) and assume also that v ¢ ftv(oy, 09, p), because in the last case
we are done by the first claim. Now we need to consider what happens in the ordinary variables of 577.
If v ¢ dom(S;) we are trivially okay. If not, then observe that dom(S1) C vars(Sy) U ftv(p)U (Ao — A1)
by Lemma 4.12. Then we have two problematic cases.

— v € dom(Sp). Then there exists a 7 = Spy. If that type contains only ordinary variables,
then we are okay since S17 = Spy in that case and by assumptions these ordinary variables
are in X. Suppose however that there exists a ¢ € 7 such that ¢ € dom(S;)—if it is not
in the domain of S; we are again trivially okay, since S; extends Sy. Then it must be that
¢ € ftv(Spo1, Soo2) U (Ag — A;1). But it cannot be in Ay — A; because all variables of Sy are
disjoint from Ag. Then if it is in ftv(Spo1, Soo2) we also have that fov(S51¢) C fov (518001, S15002)
and then fov(S1¢) C fov(Si01,S102) C X by previous claim. therefore S;y C X.

69

— v ¢ dom(Sp) which means that v € vars(Ry) where Ry - Sp = S1. But then it must be that
v € ftu(Sop) U (Ag — A1). Tt cannot be the case that v € Ag — A1, so v € ftv(Spp) which means
that fov(S1v) € fov(S1S0p) and by idempotency fov(S1y) € fov(S1p C X because of the first
claim.

Then, by induction hypothesis we get that fov(Sy01) C fov(S203) C X.

Claim 3: fov(S209,504) C X. Again, we don’t care about the free ordinary variables of o and oy,
they are going to be in X by assumptions. Consider then a v € ftv(o2,04), such that v € dom(Se)—if
it is not in the domain we are again trivially okay. Then we want to examine what happens to Sa7.
It must be that v € vars(S1) U ftv(o1,03) U (A1 — Az). If v € ftv(oy,03) we are okay. If not, since 7
cannot be in A; — As, we are left with two cases:

— Here v € dom(S;). That means that there exists a 7 = Sy7v. If 7 contains only ordinary
variables or meta variables not in the domain of Sy we are okay. Consider now the case where
there exists a ¢ € 7 such that { € dom(S2). Then, (is in the extension of S;), therefore
¢ € ftv(S101,5103) U (A1 — Az). But it can’t be in A; — Ay as it is also in S; and the variables
of S are disjoint from A;. Then it must be in ftv(S101, S103) therefore fov(S2¢) C X, since
fO’U(SQC) g fO’U(SQSlUl, 52510'3) and fO’U(SQSlO'l, 52510'3) = fO’U(SQO’l, 520'3) Q X

— Here v ¢ dom(Sy). This means that v € vars(Rz) where Ry - S = S;. Then we know that
vars(Rg) C ftv(S105,5101) U (A1 — Ay), but v ¢ Ay, therefore v € ftv(S103,5101). Then
fou(S27y) € fov(S2S103,525101), or fou(S2y) € fov(Sa03, Sa01) C X.

Now we can apply the induction hypothesis again to get that fov(S302,S304) € X. At this point let
us consider again what we have established so far and what we want to prove. We want to prove the

following:
fov(Ssp) C X
fOU(SgO’g) g X
fov(Ss04) C X

But it is easily derivable from Lemma 4.9 and Lemma 4.12 that S3p = S301 — S302. But we already
have that fov(S309, S304) C X. Therefore we only need to establish that fov(S301, S303) C X.

Claim 4: fov(S301,S303) C X. Again, we don’t care about the free ordinary variables of o1 and o3;
these are in X' by assumptions. Consider v € ftv(os,01) and in fact let v ¢ ftv(oz, 04)—otherwise
we are ok. Also suppose that v € dom(S3) otherwise we are trivially okay. Then, it must be that
v € vars(S2) U ftv(oz,04) U (Az — As). There are two non-trivial cases.

— v € dom(S2). Then let 7 = Sa7y. If 7 does not contain meta variables, or contains meta variables
not in the domain of S3 we are okay. Consider the bad case where there exists a (€ 7 such
that ¢ € dom(Ss). Then ¢ € ftv(Sa02, S204) U (A2 — As). It can’t be in Ay — A3 because it is
also in Sy and Ss does not contain variables from As. So it must be in ftv(Sa049, S204), therefore
fou(S3¢) C X, since fov(S3¢) C ftv(S35202, S35204). Then also S3y C X.

— v ¢ dom(S2). Then it must be the case that v € Rg, where Rs - S; = S3. Then also vars(Rs) C
ftv(Sa202, S204) U (A — As), but we know that v ¢ As. Then fov(S37y) C fov(S559202, 5359204), or
fov(837) C fou(S302, 9304) C X.

e Case AMONO. Follows directly by Lemma 4.7.

Now two lemmas about the variables during inference and checking.

70

Lemma 4.14.

1. Ag ¢ fto(T) U vars(Sy) = 3R such that Sy = R- S
(S0, A0) s Tyt p = (51,A1) vars(S1) C ftv(T) Uwvars(Sy) U (Ag — A1)
ftv(p) C ftu(T') U vars(So) U (Ao — A1)
vars(R) C ftv(SoT) U (Ag — A1)
2. Ap ¢ fto(T) Uwars(So) U ftu(p) = 3R such that Sy = R - Sy

(S0, Ao) s Tyt p= (51,A41) vars(S1) C ftv(T) U ftv(p) U vars(So) U (Ag — A1)
vars(R) C ftv(SeT) U fiv(Sop) U (Ag — A1)
3. Ap ¢ fto(T') Uwvars(Sy) = 3R such that Sy = R- Sy
(S0, A0); T Fpﬁly t:o= (5,A) vars(S1) C fto(T") U vars(Sp) U (Ag — A1)

ftv(o) C ftv(T') U wvars(Sy) U (Ag — A1)
vars(R) C ftv(SoT) U (Ag — Ay)
4. Ao ¢ fto(T') Uwars(So) U ftv(e) = 3R such that S = R - Sy
(So,Ag); T Fplfly t:o=(5,A1) vars(S1) C ftv(T) U ftv(o) U vars(So) U (A — A1)
vars(R) C ftv(Sol') U fiv(Soo) U (Ag — Aq)

Proof. Straightforward induction on the derivations. O

Lemma 4.15.

1. Ao ¢ fto(T) U vars(Sp) = fou(S51T) U fov(S1p) C X
(S0, Ao) s Tyt p= (51,A41)
fov(SpT') C X

2. Ao ¢ ftv(T) Uwars(So) U fto(p) = fov(S1T) U fov(S1p) C X
(SO,AO) ;T l_U t:p= (51,./41)
fov(SoT") U fov(Sop) C X

3. Ao ¢ ftv(T) U wvars(Sp) = fov(S5iT) U fou(S10) C X
(S0, Ao) s THYY ¢ 0 = (1, A1)
fov(SpT') C X

4. Ao ¢ fto(T') Uwvars(So) U fto(o) = fov(SiI) U fov(S1o) C X
(So.Ao) s T HY ¢ p = (S1, A1)
fov(SpT') U fou(Soo) C X

Proof. We prove the four goals simultaneously by induction on the algorithmic relations. We are going to
use the results of Lemma 4.14 as well as Lemma 4.13 extensively.

For the first part we consider the following cases.

e Case ALG-VAR. We have that Ao ¢ fto(I') U vars(So) and (Sp, Ao) s I' =y @ p = (51,.A1), given that
z:o0 €I and (S, Ao) I—?St o < p=(5,A;). Assume that fov(SyI') C X. Then by an inversion we
see that S = Sp and fov(S1p) C fou(S10), because Ay — A; is going to be a set of meta variables not
in the variables of Sy.

e Case ALG-ABs1. Here let Ao ¢ fto(I') Uwvars(Sp) and (S, Ao3) ;' -y \z.t: 8 — p = (51,A1), given
that (So, Ao) ; T,z : By t:p= (51,A1). Assume fov(SpI') C &. Then also fou(Sp(I',z : 3)) C &,
since 8 ¢ vars(Sp). Then, by induction hypothesis fov(5T',513) C X and fov(S1p) C X. But that is
exactly what is required for this case.

e Case ALG-AABS1. Assume that Ag ¢ fto(I') Uvars(Sp) and (Sp, Ao); Ty \z ot 10— p= (51,A1),
given that (Sp, Ao) ; I,z o byt p= (51,A1). Assume fov(SpI") € X. Then also fov(So(I',z : o)) C
X, since annotations are closed. Then, by induction hypothesis fov(S1T, S10) C X and fov(S1p) C X
and we are done.

71

e Case ALG-APP. Here we have that Ag ¢ vars(So) U fto(I') and (S, Ag) ;I 4 ¢ u: p = (S84, Ag), given
that

(S0, Ao) s Tyt pr = (81, A1) (
(S1, A1) 7 p1 =0 — 0’ = (%, A2) (2
(S2,A2) s T Y™ w0 = (83, As) (
(S5, A3) Fp™ o' < p = (81, Ad) (

Let us assume that fov(SoI') C X. Then by induction we get that fov(S1p1) C X and fov(ST') C X.
Now, by the arrow unification variables lemma we get that fov(S20, Sac’, Sap1) C X. At this point we
need to show that fov(SaT") C X to be able to apply the induction hypothesis further.

Claim 1: fou(SI') C X. First, all the free ordinary variables of I are by assumptions in X. Then we
are interested to see what happens to the meta variables of I' and in particular those that are in the
domain of Sy. Consider v € dom(S2) such that v € ftv(I'). Then by previous lemmas we know that
v € vars(S1) U ftu(pr,0,0") U (A — Az). If v € ftu(p1,0,0") then we are okay. Also v ¢ A; — Aj since
it is a free variable of I". Then we have two cases.

— Suppose that v € dom(S7), that is, there exists a type 7 = S1y. If 7 does not contain meta
variables we are okay, since Sy = §1v = 7 in this case. However suppse that there exists a
variable ¢ € 7. If that ¢ is not in the domain of Sy then we are okay. If however ¢ € dom(S3) then
it is in the extension of Sj, therefore we get that ¢ € ftv(S1p1) U (A1 — Az). But it cannot be in
in A; — A since we know that vars(S1) ¢ Ay by previous lemma. Then fov(S2() € fov(S251p1)
or fov(S2C) € fov(S2p1) € X. Then also fov(Szy) C X since S is an extension of 5.

— Suppose that v ¢ dom(S1), then v € vars(Rg) where Sy = Ry - Sy, therefore v € ftv(S1p1) U (Ag —
As). But it cannot be in A; — As therefore fov(S2y) C fov(S251p1) = fov(S2p1) C X.

Now that we proved this claim, it is easy to confirm that the conditions are appropriate to apply the
induction hypothesis to get that fov(S3I") C X and fov(Ss0) C X. Now with a simple inversion we get
that S5 = Sy and fov(S3p) = fov(S30”). Then to finish the case we need to show that fov(S30’) C X.

Claim 2: fov(S30’) C X. The claim uses a similar proof technique as the previous claim.

e Case ALG-LET. Suppose Ay ¢ ftv(I') U ftv(So) and we have that (So,Ao) ;' by let z = u in ¢ :

p = (S2,Az), given that So,Ao) ;T Hy™ w: 0 = (S1,41) and S1, A1) ;Toa o P i p = (S, As).
Assume that fov(SI') € X. Then by induction we get that fov(SI') C X and fov(S10) € X. Then
it is easy to confirm using previous lemmas that A; ¢ fto(T') U vars(S1) and we can apply again the
induction hypothesis to get that fov(SeT, Sec) C X and fov(S2p) C X as required for this case.

The second part follows the structure of the first part using the technique shown in the claims above to
establish the appropriate conditions at each step.

For the third part, we have that Agb & ftv(T') Uvars(Sp) and (So, Agb) ;T I—pffly t:Vbh.[a— b]S1p = (S1,A1),
given that (Sp,.Ag) ;' t 1 p = (51,A1) and @ are the meta variables of ftv(S1p) — ftv(51I'). Assume that
fou(SeT) C X. Then we can apply the induction hypothesis to get that fov(SI') C X and fov(Sip) C X.
But then it must also be fov(Vb. [a — b]S1p) C X and this case is done.

For the fourth part, we have that Agb ¢ ftv(I')Uvars(So)Uftv(o) and (So, Ag);T l—ﬁfly t:o= (5,As), given
that Ao FP" o — Va.p = Ay, (S, A1);IFy t:p= (51, A2), and @ ¢ fto(Si 1, S10). Assume that fov(SoI")U
fov(So(0)) C X or equivalently fov(SoI") U fov(So(Va.p)) € X. Therefore fov(SoI') U fov(Spp) C Xa@. Then,
by induction hypothesis fov(S1T") U fov(S1p) C Xa. But now, since @ ¢ ftv(S1I') and @ ¢ ftv(S1(0)), it must
be that fov(S5:T) U fov(Si0) C X. O

72

Lemma 4.16 (Weak Prenex Conversion Completeness). If pr(So) = Va.p, then Ay F" o —
Vb.py, = A1, such that S(Vb.pp) =Va.p,.

Proof. Easy induction on o. Moreover by Lemma 4.11 it is also the case that b C Ay — A;. O

Now a completeness result for the algorithmic subsumption relation.
Lemma 4.17 (Algorithmic Subsumption Completeness). Suppose we are given unifiers S, Sp, a
context I' and two polytypes o1 and oo. Then

1. If sk SSoo1 < SSoos is canonical then Y Ag ¢ vars(S, Sp) U ftv(o1,02) we have that (A, Sp) sk o <

o2 = (51, A1) and 3R such that S - Sy = R - S1\4g—a,, and vars(R) ¢ Ay, vars(S) ¢ A;.

2. If+** 8Soo1 < SSyos is prenex-canonical then V.Ag ¢ vars(S, So)Uftv(o, 02) we have that (A, Sp) K

o1 < o3 = (51,A1) and AR such that S-Sy = R - S1\ ay—a,, and vars(R) ¢ Ay, vars(S) ¢ A;.

As a corollary, if sk SSpo1 < SSpoe VAo ¢ vars(S, So) U ftv(o1,02) we have that (A, Sp) sk o1 < 09 =
(51, A1) and 3R such that S-Sy = R - S1\A,—4,, and vars(R) ¢ Ay, vars(S) ¢ A;.

Proof. We prove the two goals simultaneously by induction on the height of the derivations. We proceed
with the last rule used.

Part 1: For this part the only rule that could have been used is rule SkOL. For this case we have that
|‘d5k 550(71 S SS()UQ, given that

pr(SSoo2) =Va.p, (1)
a & ftv(SSy01) (2)
FF 880y < Pa (3)

Consider an appropriate symbol supply Ag, such that Ay ¢ vars(S, So) U ftv(o1,02). By Lemma 4.16 we
have that Ag F?" o +— Vb.p, = Ay such that SSy(Vb.p,) = Va@.p,. By Lemma 4.11 b € Ay. This means
that SSppps = [a — b]p,. From this, the substitution lemma and (2), and (3) we get that FF SShay < SS0pp-
Moreover this last derivation is prenex-canonical, as (3). Therefore by induction (Sp,.41) e Py =
(S1,A2). and 3R such that S-Sy = R - S1\4,—4,, since Sp = S1. Equivalently S-Sy = R - S1\4,—4,-
Moreover vars(R) ¢ Az and vars(S;) ¢ As. Finally to be able to apply the rule ASKOL we need to show that
b ¢ ftv(S101, S109. Assume by contradiction that for some b € b it is the case that b € ftv(S101, S102). This
means that there exists a v € ftv(o1,02) and b € S;7y because b ¢ ftv(o1,02). Moreover by the freshness
conditions v ¢ Ay and therefore Then SSyy = RS17y. But then it must be b € vars(S, Sp), a contradiction.

Part 2: For this part we notice that a prenex-canonical derivation ends with a trivial SKOL application
which can be ommited; therefore we have to examine all other rules.

e Case MONO. In this case since SSyo; and SSyos are monotypes, it must be that o1 = 71 and o9 = 7
for some monotypes 71 and 7o. Pick an arbitrary Ay that satisfies the freshness conditions, that is
Ao ¢ ftv(o1), Ao ¢ ftv(oz), Ao ¢ vars(S) U vars(Sp). By Lemma 4.8 we have that Sy F 7 =7 = 5
and S-Sy = R - S5; for some R. Moreover vars(R) C wvars(S) U vars(Sp) U vars(S1) which means
vars(R) ¢ Ao. Finally vars(S1) C vars(Sp) U ftv(m1, 72), again disjoint from Ag. Then by applying the
rule AMONO we are done.

73

e Case FUN. In this case we have that SSyo1 = o}, — 0}y and SSpo2 = 04, — 0hy. Now, it must be
the case that 01 = p; and g9 = ps for some p; and ps because the substitution S - Sy returns back
arrow types and not quantified types. Also, it cannot be the case that both p; and ps are monotypes,
because then we would be in the MONO case. We split in cases depending on which of the two types is
a p arrow type.

Assume that p; = 011 — 012, and pick a supply Ag such that Ay & vars(S, Sp) U fiv(oy,02). Then it
must be that FF SSpo11 — SSpo1a < SSope. Since SSppe = oy — ohy by unification completeness
Lemma 4.9 (it is easy to confirm that the freshness conditions for A, are sufficient) we have that
(S(),.Ao) F— p2 = 021 — 022 = (Sl,Al) such that HRU with SSO = Ru . Sl\.AofAl and RuSlagl = 0'/21
and R, S1092 = 0by. Moreover vars(R,) ¢ A; and vars(S;) ¢ A;. Then by the premises of the rule
l—dSk 0'/21 S 011 Or l—dSk RuSlagl S SS()O'H or |—d5k Ru510'21 S RuS’lan since ft’U(O’H) ¢ (.Ao - .Al)
Then we can apply the induction hypothesis for the supply A; to get that (S1,.4;1) FIR o1 < o1p =
(S2,A2) and 3R; with R, - S1 = Ry - S2\ 4,—.4, which implies that S - Sy = Ry - S2\ 4,—4,. Moreover
vars(Ry) ¢ Ag and vars(Sz) ¢ Az. Now we also know by the premises of the rule that sk olo < by
or Fis* R1S5015 < R183095. Then it is easy to confirm that the freshness conditions hold for A,
to apply the induction hypothesis and get that (As, S2) sk o12 < 092 = (Asz,S53) and IR with
Ry - S = R - S35\ 4,—a, which gives us that S-Sy = Rz - S3\4,—4,. Moreover vars(R) ¢ Az and
vars(Ss) ¢ As. Then by applying rule AFUN1 and picking the same R we are done.

The case where py = 021 — 099 is similar.

e Case SPEC. Here it must be that o; is a polytype and assume that o7 = Va.p; and oo = po.
Assume also without loss of generality that @ ¢ vars(S,Sp). Then we have that sk va.S5Sp1 < p2
given that K [@=7]SSop1 < SSop2, @ ¢ 7. Then consider an arbitrary supply A3 such that
Ao ¢ vars(S, So) U ftv(o1, p2) and rewrite the last derivation as: sk [B+— 7]8S]a — Blp1 < SSop2,
Now because of the freshness conditions this is equivalent to F*** [B— T]SSop1 < [B — T]SSop2.

Now we need to be able to apply the induction hypothesis for Ay but we cannot do this directly
because T might contain variables in Ag. Instead we do the following: Separate the free variables of 7
in two sets. Let Xy = fto(T) N (ftv(SSopa, SSop1)) and Xy = ftv(T) — X;. We know by our assumptions
that Ap ¢ Xi, so the problematic set is X5. But simply consider a renaming substitution ¢ from
Xo to a set X' of variables disjoint from Ay. By the substitution lemma, Lemma 2.38, we get that
sk [B— QT]SSp1 < [B+— QT]SSop2. And now we can apply the induction hypothesis to get that
(S0, Ao) sk [a— B]lp1 < p2 = (S1,A1) and 3R such that [B+— Q7] S-Sy = R+ S1\4,—4, which
means that S-Sy = R-S1\ 4 5_4,- We also get that vars(S1) € Ai, vars(R) ¢ A;. Then the rule
ASPEC is applicable and taking the same R finishes the case.

O

Next an auxiliary corollary for algorithmic instantiation.
Corollary 4.18 (Algorithmic Instantiation Completeness).

L F 8Syo1 < SSopr = VA ¢ vars(8, 50) U fiv(1, p2)
(A, So) FZE“ o1 < p2 = (51,41)
ARs.t. S-Sy =R-S1\a,—a,

_ and vars(R) ¢ Ay, vars(S) ¢ Ay

o S <m = Vo (S, 59U (o
(A, 50) F 0 <y = (51, Ay)
dRs.t. S - SO =R Sl\Ao—A1
and RS1p4 = p2
and vars(R) ¢ Ay, vars(S) & A, ftv(ph) ¢ Ay

74

Proof. The first part easily follows from Lemma 4.17. For the second part it must be that o7 is a polytype
o1 = Va.p; and assume without loss of generality that @ ¢ vars(S, So). Then, using the rule INST we have
that I—Z;Tm Va.S5Sp1 < p2 given that }_vazstp [@—=7]SSop1 < p2 and this with an extra inversion using rule
INST1 gives us that [a = 7]SSop1 = po for that 7. Now the algorithm, using rule AINST will give us that
for an appropriate A3 we have that (Sp,.40/) I—?{St Va.p1 < ph = (S1,A1) when (S .Ap) l—lfrrmp [a— Blp1 <
ph = (51, A1). Now using the rule IINSTRHO we see that p = [a +— (]p1, S1 = Sy. Take R = [f+— 7] - S.
Then we have that S-S5y = R- S \E as required. Moreover the variable freshness conditions are also satisfied.
Finally we need to show that RS;ph = ps. We have that

RSipy = [B+ T|SS[a — Blp:
[B = 7]la — B]SSop1
= [a—=7]55%p1
= P2
O
Now the main completeness result.
Lemma 4.19 (Algorithmic Completeness).
LSSty t:p = VAg ¢ vars(S, So) U ftu(T') U ftu(p)

(SQ,A()) ;T l_TT t: ,0, = (S1,A1)
JR s.t. S-Sy =R-S1\ap—a, and RS1p' =p
ftu(p') ¢ A1, vars(R) ¢ Ay, vars(S1) ¢ Ay
2. S5k t:S8S%p = VA ¢ vars(S,S) U ftu(p) U fto(T).
(SQ,A()) ;T '_U t:p= (51,./41)
AR s.t. S-Sy =R-S\ay—Aa,
vars(R) ¢ Ay, vars(Sy) ¢ Ay
3. SST l—pffly t:o = VAo ¢ vars(S, So) U fto(T) U ftu(o)
(SosAo) s T HEY £ 0" = (81, Av)
3R s.t. S8 =R S \uya, and " RS0’ <4 0
ftv(c’) & Aq,vars(R) ¢ Ay, vars(S1) ¢ Az
4. SST prly t:S8S%0 = VYA ¢ vars(S,So)U ftv(o) U fto(T)
(S0, Ao) s THYY t: 0 = (81, Ar)
IR s.t. S-So=R-S\ay—a,
vars(R) ¢ Ay, vars(S) ¢ Ax

Proof. We prove simultaneously all goals, by induction on the height of the derivations. For each case the
induction hypothesis asserts that all goals hold for derivations of smaller heights. We proceed by case analysis
on the last rules used.

For the first part we have the following cases.

e Case VAR. The result follows easily from Corollary 4.18.

e Case ABsl. In this case we have that SSoI' - \z.¢: 7 — p, given that SSoI',z : 7 4 ¢ : p. Consider a

symbol supply Ao that satisfies the freshness conditions. This is the same as writing [5 — 7]SSoT, z :
Bty t: p, because of the freshness conditions. Then we can apply the induction hypothesis with Ao

to get that (S, Ag) ;T Byt p = (51, A1) and 3R such that [— 7]S - Sy = R-S1\4ag—a,, RS1p = p
and ftv(p’) ¢ Ay, ftv(S1) ¢ A1, ftu(R) ¢ A;. Then we can apply the rule ALG-ABS1 to get that
(So, AoB);T F\z.t: 3 — p' = (51, A1). But then RS, (5 — p') = RS18 — RS1p' =7 — p as required
and SSO :R'Sl\Aoﬁf.Ar

75

e Case AABsl. Here we have that SSoI' -y \z 0.t : 0 — p given that SSoI',z : o 4 ¢ : p. And
consider any supply Ag with the appopriate freshness conditions. Because the type annotations are
closed we can apply the induction hypothesis to get that (So,Ao) ; I,z : o b4 ¢ 1 p" = (51,A1) and
there exists an R such that S-Sy = R-S1\ a4g—a,, RS1p" = p, vars(R) ¢ Ay, vars(S) ¢ Ay, fto(p') ¢ A;x.
Finally we can apply rule ALG-AABS1 to get that (S0, Ao) ;' \z ot 0o — p = (5,A;) and
RSi(0c — p') =0 — RS1p' = 0 — p as required, since annotations are closed.

e Case APP. In this case we have SSyI' l—ﬂ t u: p, given that SSyT" l—ﬂ t:o— o, 85I }—plfly u:o

and I—?St o' < p. Consider any symbol supply Ag that satisfies the freshness conditions, that is,
Ao ¢ vars(S,5), Ao ¢ ftv(p), Ao ¢ fto(T). Then let us consider the set of variables X = ftv(c —
o) — (vars(S, Sp) U ftu(p) U ftu(T")) and let @ be a renaming substitution taking X to set of variables
disjoint from Ag. Then by the substitution lemma we can create derivations: SSoI' 4 ¢ : Qo — Qd’,

SSoI i—plfly u : Qo and st Qo' < p, and these derivations have the same height as the original
derivations. Now we can apply the induction hypothesis to get that (Sp, Ag);T Fotipn = (S1,. A1) such
that IRy with S-Sy = Ry - S1\ag—a,, vars(Ry) ¢ Az, vars(S1) ¢ Ax, ftv(p1) ¢ A1. R1S1p1 = Qo —
Qo’. Now it is easy to verify that A; satisfies the conditions of the arrow unification completeness
lemma, Lemma 4.9, to get that (S1,.41) F~ p1 = 00 — 0 = (52, A2) such that IRy with Ry - S =
Ry - So\4y—a,, R2S200 = Qo and RpSs0(), = Qo’. Finally also vars(Rs) ¢ A and vars(S2) ¢ As
and similarly for the free variables of 09 — o(. Then also S-Sy = Rs - S2\4,-4,. Taking into
account the freshness conditions as well, we can rewrite the premise of the rule SSI" Hy/ Wou: Qo as
Ry ST Fﬁf Wy R5S200. But now note that A, is appropriate to apply the induction hypothesis to get

that (Sz, A2)T" Fplfly u: o’ = (83, As), and IR such that Ry-So = R- S5\ 4,—.44, 50 S-So = R-S3\ 49— As5-

inst

However we have that + R3S30) < p and As is appropriate to apply Lemma 4.18 to get that
S3, A3)T F™" o < p/ = (Ss,A4) and exists R such that Rs - S3 = R - S4\ 4,4, and RSsp’ = p.
Moreover vars(R) ¢ A4 and vars(Sy) ¢ Aq and ftv(p’) ¢ A4. Therefore by applying the rule ALG-APP
we are done, picking the same R.

e Case LET. In this case we have that SSyT’ I—ﬂ let z = u in t : p given that SSyI" I—pﬁ)ly u o
and SSI',z : o b4 t @ p. Consider an appropriate Ag, such that Ag ¢ wvars(S,), Ao ¢ ftu(T),
Ag ¢ ftv(p). Now we don’t know that Ay ¢ ftv(o), however let us consider the set of variables
X = ftv(o)—(ftv(p)Uvars(S, Sp)Uvars(T')). Then consider a renaming substitution @ that take this set
of variables to a disjoint from A set. Then by the substitution lemma we have that SSyI" Fpﬂo Moy Qo
and has the same height. Similarly, applying the same @ to the other subderivation we get that SSyT, « :
Qo 4 t - p and has the same height. Now we are certain that the freshness conditions are met for the

subderivations we can apply the induction hypothesis to get that (Sg,.Ag);T H’ Moy ol = (S1,A1) and
3R; such that S-Sy = Ry-51\4,—.4,- Moreover sk Ry S10" <., Qo and vars(Ry) ¢ Ay, vars(Sy) ¢ Ax,
ftv(o’) ¢ Ai. Then, by Lemma 3.19 we have that SSoI',z : R1S10” b4 ¢ @ p and this derivation has
the same height as the derivation SSI',z : Qo 4 ¢ : p. Now, because ftv(I') € Ay — Ay it must be
that S - SoI' = R; - $1I". Then the derivation can be rewritten as RS,z : R1Si0’ '_fr t:p. Then A;
is appropriate to apply the induction hypothesis and get that (S1,.41); T,z : o Byt p = (52, As)
and IR such that Ry - S1 = R - So\a,—4,, and RSyp’ = p. Moreover vars(R) ¢ As, vars(S2) ¢ As,
ftu(p') ¢ As. Therefore S-Sy = R - S2\ 4,—4,, and by the rule ALG-LET we get the result.

For the second part we have the following cases.

e Case VAR. The result follows again from Corollary 4.18.

e Case ABS2. Here we have SSyI° Py Nzt SSop’, but since we are in the ABS2 case it must be that
SSop’) = 04 — o, for some types o, and o,. Then consider a supply A that satisfies the freshness
conditions. Therefore we have Ag ¢ vars(S,Sy) and Ag ¢ ftv(p’) U ftv(T"). Then it is easy to confirm

76

that the tape is appropriate for applying Lemma 4.9 to get that (Sp, Ag) F— p' = 09 — o, = (S1,.A1)
and 3R, such that S-Sy = Ry-S1\ 4,— 4, and R, S100 = 0, and R, S10(, = 0. Moreover vars(R,,) ¢ Az,
vars(S1) ¢ Ay, ftv(og) ¢ Ax, ftv(o})) ¢ Ai. Then, because also ftv(I') ¢ Ay the derivation can be

rewritten as R, $iT - \z.t : 0, — 0, and the immediate subderivation was R, ST,z : 04 I—plfly t:op.
This can again be rewritten as R, S5,z : R,S100 Fplfly t : R,S10,. Now, we know that A; is

appropriate to apply the induction hypothesis to get that (S;,.41);T,z : o Fﬁfly t:o0l = (S2,A2) and
there exists an R, such that R, - S1 = R - S2\ 4,—4, which implies S - Sy = R - S2\ 4,—4,. Moreover
vars(R) ¢ As, vars(Sy) ¢ As. Then we can apply the rule ALG-ABS2 to get the result and taking the
same R finishes the case.

Case AABS2. In this case we have that SSoI' b \z 10, .t : SSypo, where SSopo = o, — o] and

sk ol <o, and SST, 7 : 0, j Wy, o!.. Consider a supply A that satisfies the freshness conditions,
that is, Ag ¢ vars(S, So), Ao ¢ ftv(T)U ftv(pg). Then we can verify that Ag is appropriate for applying
Lemma 4.9 to get that (S, Ao) F— po = 04 — o = (51,.41) and IR, such that S-Sy = Ry, S1\Aq— A,
R,S104, =0, RySi0, =0l vars(R,) & A1, vars(S1) ¢ Ay, ftv(o,) ¢ Ay, ftv(o,) ¢ A;. Then, we can
rewrite FF ol <oy, as sk R,S10, < R, S10; because o, is closed. Then it is again not hard to verify
that the tape .A4; is appropriate to apply Lemma 4.17 to get that (S1,.41) FY gy < oy = (52, Az)
and 3Ry such that R, - S1 = Ry - S2\ 4,—.4, which implies § - Sy = Ry - S1\ 4o—A,, vars(Ry) ¢ Az and
vars(Sy) ¢ As. Then, from the premises of the rule we get that R1 ST,z : o, Fy t: R1S20,. Now
it is easy to verify that A5 in an appropriate supply to apply the induction hypothesis to get that
A2,)z 2 0y by t 2 0r = (53,A3) and IR with R1S = R - S3\ 4,4, which implies S-Sy = @ =
\ Ao—Ay; moreover vars(R) ¢ Az and vars(Ss) ¢ As. Then we have all the premises of rule ALG-AABS2
and by applying it we get the result; picking the same R finishes the case.

Case APP. In this case we have SSoI" l—ﬂ t u: SSyp, given that SSyI’ '_Tr t:o— o, SSoI |—le u:o

and SSeT I—ZﬁSt o' < 88yp. Consider any symbol supply A that satisfies the freshness conditions, that
is, Ag ¢ vars(S, So), Ao ¢ ftv(p), Ao ¢ ftu(T"). Then let us consider the set of variables X = ftv(c —
o) — (vars(S, So) U ftv(p) U ftu(T") and let @ be a renaming substitution taking X to set of variables
disjoint from Ag. Then by the substitution lemma we can create derivations: SSoI' -y t: Qo — Qo'

SSoT H 5 Wy Qo and SSpI" I—zﬁ‘gt Qo' < SSyp and these derivations have the same height as the original
derivations. Now we can apply the induction hypothesis to get that (So, Ao);I" 4 ¢ : p1 = (S1,.A1) such
that 3Ry with S-Sy = Ry - S1\ay—a,, vars(Ry) ¢ Ay, vars(S1) ¢ Ay, ftv(p1) ¢ A1. RiSip1 = Qo —
Qo’. Now it is easy to verify that A; satisfies the conditions of the unification completeness lemma,
Lemma 4.9 to get that (S1,41) F~ p1 = 09 — 0, = (S2,.A2) such that IRy with R1-S1 = Ra-S2\ 4, — A,,
R2S500 = Qo and RyS20(, = Qo’. Finally also vars(Rsz) ¢ Ag and vars(S2) ¢ As and similarly for the
free variables of o9 — 0¢. Then also S - Sy = Rz - S2\ 4,—4,. Then, taking into account the freshness
conditions as well, we can rewrite the premise of the rule SSpI" prly u: Qo as Ry Sl ijly u : Ry So0yq.

But note that A, is now appropriate to apply the induction hypothesis to get that (s, A2)T H, f Wy
oo = (53, A3), and IR3 such that Ry - So = R3 - S3\4,—a5, S0 S - So = R3 - S3\4,—4;- Then we have
that I—lﬁSt Qo' < 8Syp and we can rewrite this as sk R3S30(, < R3S3p and now Aj is appropriate to
apply Lemma 4.18 to get that S3, A3) }—lﬂm oy < p = (54, Ay) such that IR with R3-S3 = R-Ss\ 45—,
which also gives us S-Sy = R - Sg\4,—a, and vars(R) ¢ Ay, vars(Sy) ¢ A4. Then by applying the
rule ALG-APP and taking the same R we are done.

Case LET. In this case we have that SSyT’ '_i} let z = u in t : SSyp given that SSyI l—pffly u:o
and SSI',x @ o = t: SSpp. Conmsider an appropriate Ag, such that Ag ¢ vars(S, S), Ao ¢ ftv(I),
Ao ¢ ftv(p). Now we don’t know that Ay ¢ ftv(o), however let us consider the set of variables
X = ftv(o)—(ftv(p)Uvars(S, So)Uvars(I')). Then consider a renaming substitution @) that take this set
of variables to a disjoint from A set. Then by the substitution lemma we have that SSyI" l—pff Moy Qo
and has the same height. Similarly, applying the same @ to the other subderivation we get that

7

SSL',z : Qo by t: SSp and has the same height. Now we are certain that the freshness conditions are
met for the subderivations we can apply the induction hypothesis to get that (So,.A¢); T |—pr Woyiol =
(S1,A1) and 3Ry such that S-Sy = Ry - S1\4,—4,. Moreover sk R1 510" <., Qo and vars(Ry) ¢ Aj,
vars(S1) ¢ Ai, fto(o') ¢ Ai. Then, by Lemma 3.19 we have that SSoI',z : RiSi10” by ¢ SSop
and this derivation has the same height as the derivation SSoI',z : Qo by t : SSop. Now, because
fto(T) ¢ Ag — A; it must be that SSI' = Ry 51" and similarly SSop = R1S1p . Then the derivation
can be rewritten as R1 51T,z : R S10’ Fy t 2 RiS1p. Then A, is appropriate to apply the induction
hypothesis and get that (51, A1);0, 2 10’ - ¢: p= (52, A2) and IR such that Ry -5 = RS2\ 4, 4,-
Moreover vars(R) ¢ As, vars(S2) ¢ As. Therefore S-Sy = R - S5\ 4,—4,, and by the rule ALG-LET we
get the result, taking the same R.

Let us consider the third part now. The rule used here was GEN1. We have that SSyI’ I—pﬂOly t:Vb.[a— blp
given that T’ I—pffly t:p, @= ftu(p) — fto(T') and b ¢ ftv(p) — @. The inferred polytype can be rewritten as
o = SST'(p). Pick an appropriate symbol supply Agb ¢ vars(S), Aob ¢ vars(Sp), Aob & ftu(p) — (AU @),
and Agb ¢ ftv(I'). Then by induction hypothesis Ao, So) ; I' o ¢ : p' = (S1,.A1) and IR such that
S-Sy =R-S1\A,—4a,.- Moreover RS1p’ = p and ftv(p') ¢ A1, vars(Sy) ¢ Ay and vars(R) ¢ A;.

Now, by Lemma 4.15 we know that fov(S1p’) C fov(SiT') C fov(SoI'). But what that says is that if
b € fou(S1p’) b € fou(SeT) and hence also b € fov(SiT). So there cannot be any ordinary variables in
the returned type that are not in the context, this is why our notation uses @ instead of some general
set symbol X or @U@ in the ALG-GEN1 rule. This means that we can apply the rule ALG-GEN1 to get that
Ao, S) ;T l—prly t:o' = (81, A;) where o/ = S;T'(S1p’). We also pick the same R. Finally we need to show
that RS10’ <, 0. We have by Lemma 3.17 that

RSi0' = RS ST(S1p)
<a RSISIT(RS:1S1p)
= RST(RSiy)
= SSIL(RS1p') = 8ST(p) =0

For the fourth part the rule used was GEN2. It must be that SSoI' H, Jf Wy SSoo, given that

pr(8500) =Va.pa (1)
a ¢ ftv(SSol') (2)
SSoT Fy t: pa 3)

Consider a supply Ag ¢ vars(S), vars(Sy), ftv(T', o), By (1) and Lemma 4.16 we get
.AQ FPTUHVB.pbj.Al (4)

such that SSy(Vb.py) = Va@.p,. Moreover, by Lemma 4.11 we know that b € Ag; hence b ¢ vars(S, So). Then
SSops = [a — b]pe. By the substitution lemma for (3) and taking into account (2) we get SSoI' = ¢ : SSopy.
We can apply the induction hypothesis for the supply .A; since the last derivation has the same height as (3)
to get that

(So,.Al) 3 I FU t: Py = (317./42) (5)

Morever there exists R such that S-Sy = R-S1\ 4,—A4,, or equivalently S-Sy = R-S1\ 4,4, and vars(R) ¢ A
and vars(S;) ¢ Ay as required. To apply rule ALG-GEN2 for (4) and (5) we only need to show that
b ¢ ftu(SiT, Syo). Assume by contradiction that for some b € b it is the case that b € ftv(S,T, S1o). Then,
since b ¢ ftv(T,0) as b € Ap it must be that there exists a v € ftv([', o) such that b € S;y. Moreover
v ¢ Ag. Then SSyy = RSy and therefore b € vars(S, Sp), a contradiction to the freshness conditions of the
supply. [l

78

4.6.2 Soundness

For this section only we are going to assume that meta variables can also occur in the types of the syntax-
directed system; they are going to be treated as equivalent to ordinary variables.

Lemma 4.20 (Weak Prenex Conversion Soundness). If Ay ¢ ftv(o) and Ag FP" 0 — Va.p = A4
then pr(o) =Va.p.

Proof. Easy induction on the structure or o. O

Lemma 4.21 (Algorithmic Subsumption Soundness).

1.]f.AO ¢ ft’l)(o’l),.Ao ¢ ft’l}(O'Q), AO ¢ ’Ua?”S(So), (SQ,A()) l—dSk g1 S g9 = (Sl,.Al) then l—dSk 510'1 S 510'2.

2.]f.Ao ¢ ftU(O’l),AO ¢ ftU(O’g), .Ao ¢ UCL’I’S(SQ), (So,.Ao) |—d5k* g1 S g9 = (Sl,Al) then |—d5k 510'1 S 510'2.
Proof. We prove the two claims simultaneously by induction the height of the derivations.

Part 1: We have the case of ASKOL to consider. We are given a supply Agb such that Agb ¢ vars(Sp),
Aob ¢ ftv(o1,02. We have that (Sp, Agb) FF o) < oy = (81, Az), given that

Ao FPMoe — Va.p = Ay (1)
(S0, A1) FE o < p = (S1,A2) (2)
@ ¢ fto(Syo1, 8107) (3)

By (1) and Lemma (4.20) we get pr(o2) = ¥a.p and moreover we know by Lemma 4.11 that @ € Ag. Then,
by induction hypothesis for (2) we get sk S101 < Spp. it must be that pr(Sio2) = S1(Va.p, and because
of (3) pr(Sio2) = Va.S1p. Moreover by (3) again we can apply rule SKOL to get that K S101 < S04, as
required.

Part 2: We have the following cases to consider.

e Case ASPEC. In this case we have that for some appropriate Ao that satisfies the freshness conditions
Ao, So) sk Va.p1 < pa = (51,.A1) given that Ag, Sp) sk [a— B]lp1 < pa = (S1,.A1). By induction
hypothesis we have that sk Si[a — B]p1 < S1pa. Assume again that @ are not in the free variables

of the inputs of the judgement. Then this becomes K [a— S18]S1p1 < Si1ps and we can apply the
rule SPEC to get the result, again noticing that we can commute S; and the quantifier.

e Case AFUNL. Here we have that (Sp,.4p) sk p < o3 — 04 = (53, As) given that (Sp, Ag) F— p =
o1 — 03 = (S, A1), (S1,41) F*" 03 < 01 = (S5, Az), (S2, A2) H* oy < 04 = (S5,.A3). Now
by the arrow unification soundness, Lemma 4.9 we have that S1p = S107 — S102 and moreover 3R,
such that S; = Ry - Sy and vars(S1) ¢ A;. Then we can apply the induction hypothesis to get that
sk Sy03 < Se01 and moreover we know that IRo such that Sy = Ry - 51 and vars(S3) ¢ As. Finally,
again by induction we get that sk S309 < S304 and we know that dR3 such that S3 = R3 - S

and wvars(Ss) ¢ As. Then we wish to show also that sk S3p < Sso3 — Sszo4. Now we have

that S3p = R3R2S1p = R3R25101 — R3R2S5102. Then by the subsumption substitution lemma,

Lemma 2.38, we get that sk R35503 < R3S501 or sk S303 < R3R5S5101 and we can apply the rule

FUN to get the result.

e Case AFUN2. Similar to the case for AFUNI.

79

e Case MONO. In this case we have that (Sp,.4p) sk 71 < 79 = (51, Ag) given that Sy F 1 =7 = 5.
By the unification completeness lemma, Lemma 4.8 we get that Sy = S175 and therefore S171 = S179;
dsk
hence by rule mono " S1m < S17%.

Lemma 4.22 (Algorithmic Soundness).

1. Ag ¢ ftu(T') U vars(Sp) = STh,t:8)p
(So,.Ao) ;T Fﬁ t:p= (Sl,.Al)

2. Ap ¢ fto(T) Uwvars(Sp) U ftu(p) = Sk t:Sip
(S0, Ao) ;T Fy t:p = (81,41)

3. Ap ¢ fto(T) Uwvars(Sy) = ST l—pffly t:So
(S, Ao) s D HY £ = (81, Ar)

4. Ao ¢ fo(T) Uvars(So) U fto(o) = STHY t: 810
(S0, Ag); T '—plfly t:o=(5,A1)

Proof. By induction on the algorithmic relations. We proceed by case analysis on the last rule used.

For the first part we have to consider the following cases.

e Case ALG-VAR. Here we have that (Sp,Ag) ;T Fy2ip= (51,A1), given that z: 0 € T, (So, Ao) }—igst
o < p = (51,A1), and by a simple inversion we can verify that S; = Sy and, if 0 = Va.p', it must
be that p = [a +— B]p’ where 8 = Ay — A;. Then F?;St o < p by rules INST and INST1, and by the
substitution lemma I—?St S10 < S1p. Then we can apply the rule VAR to get that 511", z @ Sip.

e Case ALG-ABS1. Here (8o, AofB);I; 4 \z.t: 8 — p= (81,A1), given that (S, Ao); Iz : By t:p=
(51,A1). By induction hypothesis we get that S1I',z : S1b -, ¢ : S1p and IR such that S = R - Sp,
vars(S1) C fto(T) Uwars(So) U (Ao — A1) and ftv(p) C fto(T) Uwars(Sy) U (Ag —Az). Then by applying
the rule ABS we get that SiT° l—ﬂ \z.t: 50 — Sip as required.

e Case ALG-AABS1. Similar to the ALG-ABS1 case.

e Case ALG-APP. Here we have that (So,Ao) ;' 4 ¢ u : p = (S4,As), given that (Sp, Ag) ;T Fy ¢ :

p1 = (Sl,Al), (Sl,Al) F— pL =0 — o = (SQ,.AQ), (SQ,.AQ) ; T Fpifly U:o = (Sg,Ag), (Sg,Ag) FZTTTLSt
o' < p = (81, A4). By induction hypothesis we get that S;I' - ¢ : S;p1 and moreover 3R, such that
Sy = Ry1 -5 and vars(S1) C ftv(T) U vars(Sp) U (Ag — A1), ftu(pr) C fto(T) U vars(So) U (Ag — Aq).
Then we have the conditions to apply the arrow unification soundness to get that Syp; = Se0 — Sa0’
and 3Ry such that So = Ry - S and wvars(Ss) C ftv(p1) U vars(S1) U (A1 — Az). Then the conditions
are appropriate to apply the induction hypothesis to get that S3I" I—plf Moy S3o and JRs such that

S3 = R3- S5 and vars(Ss) C ftv(I') Uvars(Se)U(Az — As)Uftu(o). Finally note that Sy = 93, Az = A48

and asssume that ¢’ = Va.pg. Then p = [a — B]po because the instantiation inference relation is the
identity. Therefore also Fz%m Spo’ < Syp. Now by applying the substitution lemma we have that
R3Ry 51T Byt R3R2S51p1 or ST Byt R3(S20" — Sop’) or S4T Byt Ry0’ — Ryup’. Then we also

have that ST }—plfly u : Ryo’ and we can apply the rule APP to get the result.

e Case ALG-LET. The case uses a similar argument as the ALG-APP case.

The second part is similar to the proof of the first part appealing to the algorithmic subsumption soundness
lemma.

80

For the third part we have that (Sp,.4gb) ; T I—pﬁly t:Vb.[@— b]S1p = (S1,.A1) given that @ = ftv(S1p) —
fro($1T) and (Sp, Ao);I' 4 ¢+ p = (51, A1). By induction hypothesis we get that 51T 4 ¢ : S1p and we know
that for some R S; = R-S1, ftv(p) C vars(So)Uftv(T)U(Ag—.A1) and vars(S1) C vars(So)Ufto(T)U(Ag—.A1).
Then, we are certain that b ¢ ftv(S1p) — (@) and we can apply the rule GEN1 to get the result.

For the last part we have a supply Ag such that Ay ¢ fto(T,0) U vars(Sp). And (S, Ag) ; T I—ﬁfly t:o =
(51, Az), given that

Aol_prO'HVE.piAl (].)
(S0, A1) s Tyt p= (51, Az) (2)
a ¢ftv(SlF, 510') (3)

By Lemma 4.20 we get that pr(c) = Va.p. We can apply the induction hypothesis for (2) to get that
SiT Fy Sip. Additionally pr(Sio) = Si(Va.p), but @ € Ao, but we know that @notinftv(Sio therefore we
can commute the quantifier and the substitution to get that pr(Sio) = Va.S1p. Finally to be able to apply
rule GEN2* it must be that @ ¢ ftv(S1T") which we have by (3). O

As a corollary, returning to the original syntax-directed system where we did not allow meta type variables
in the returned types, we can apply a ground substitution V that will map all the meta-variables of the
types and the context to any monotype to get the result.

4.7 Principal Types

Here is the familiar principal types property for inference mode.
Theorem 4.23 (Principal Types).

1. If =y t: p there exists a P’ such that for all p with by U p it is the case that b4 t P and there exists
a subtitution R such that p = Rp'.

2. If Fp;ly t : o there exists a o' such that for all o with prfly t : o it is the case that Fp;ly t: o and
R <o.

Proof. The first part follows by the completeness and soundness theorems. The second part is derived by
the first part by inversion of prf % and the definition of F*". O

For checking mode a corresponding property is not true. Consider for example the two checking judgements
below:
Fy\g.(g 3,9 True) : (Va.a — Int) — (Int,Int)
Fy\g.(g9 3,9 True) : (Va.a — a) — (Int,Bool)
Suppose that there was a most general p such that
Fy\g-(g3,9 True) : p
dsk dsk

and V" p < (Va.a — Int) — (Int,Int), and -
p = 01 — 09 such that

p < (Ya.a — a) — (Int,Bool). Then it must be that

dsk
R Va.a — Int < 0

dsk
F*"Va.a — a <oy

dsk
l_

R (Int,Bool)

o2 < (Int, Int)

81

Assuming that pr(o1) = Va.p; by inversion it must be that

l—dSk Va.a — Int < py

dsk
B Va.a — a < pp

By inversion it must be that

dsk
e 71— Int < py

dsk
Fom—mn<n

Now it is easy to confirm that p; must be Int — Int, therefore also 0; = Int — Int.
would have to check that
Fy\g-(g9 3,9 True) : (Int — Int) — 03

But the above would fail as ¢ is used polymorphically.

References

Consequently we

[1] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Conference Record
of the 9th Annual ACM Symposium on Principles of Programming Languages, pages 207-12, New York,

1982. ACM Press.

[2] J. Roger Hindley. Basic simple type theory. Cambridge University Press, New York, NY, USA, 1997.

[3] R Milner. A theory of type polymorphism in programming. JCSS, 13(3), December 1978.

[4] John C. Mitchell. Polymorphic type inference and containment. Inf. Comput., 76(2-3):211-249, 1988.

[6] M Odersky and K Liufer. Putting type annotations to work. In 28rd ACM Symposium on Principles of
Programming Languages (POPL’96), pages 54—67. ACM, St Petersburg Beach, Florida, January 1996.

[6] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type inference

for arbitrary-rank types. Submitted to the Journal of Functional Programming, 2005.

82

