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ABSTRACT

MODERN OPTIMIZATION IN OBSERVATIONAL STUDIES

Colin B. Fogarty

Dylan S. Small

Perhaps the best known use of modern techniques for optimization in observational studies

is within matching algorithms, wherein treated units are placed into matched sets with sim-

ilar control units to adjust for overt biases. While the intuitive appeal of matching has been

long understood, its ascent in popularity can be attributed in large part to computational

advances in network flow optimization. This dissertation explores how modern optimization

can be leveraged to address other problems in observational studies. First, we demonstrate

how, in the absence of covariate overlap, the maximal box problem can be used to define an

interpretable study population wherein inference can be conducted without extrapolating

on important variables. Next, we discuss how integer programming can be used to perform

inference, construct confidence intervals, and provide sensitivity analyses for meaningful

causal estimands in matched observational studies when the outcomes of interest are binary.

Third, we present a method utilizing convex optimization for conducting a sensitivity analy-

sis when there are multiple outcome variables of interest which, we show, can help attenuate

the loss in power from accounting for multiple comparisons when assessing the robustness of

a study’s findings to unmeasured confounding. Finally, we present methods for conducting a

sensitivity analysis for the average treatment effect with continuous outcome variables with

and without assuming a known direction of effect.
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CHAPTER 1 : Introduction

In an ideal world there would be no need for observational studies; any hypothesized causal

relationship would be tested through controlled randomized experiments, with randomiza-

tion conferring both a “reasoned basis for inference” (Fisher, 1935) and protection against

unmeasured confounding. While ethical and logistical constraints make this experimental

ideal impossible to attain, researchers should not be deterred from striving towards it when

seeking answers to questions that can only be assessed through observational data.

H.F. Dorn advised that the planner of an observational study should always ask himself

the question, “how would the study be conducted if it were possible to do it by controlled

experimentation?”(Dorn, 1953, p. 680). The idea that the analysis of observational studies

should be made experiment-like was strongly advocated by William Cochran, and has proven

profoundly influential not only in how observational studies are planned, but also in how they

are analyzed. Matching is one strategy which can be viewed in this light. In an observational

study employing matching, treated individuals are placed into matched sets with similar

control individuals in an attempt to replicate a block randomized experiment. With the

advent of the propensity score (Rosenbaum and Rubin, 1983) and advances in optimization

routines for matching (Rosenbaum, 1991; Hansen and Klopfer, 2012), matching has entered

mainstream usage. In my research, I have demonstrated that advances in optimization

that aided matching’s ascent can also be leveraged to address a host of seemingly unrelated

issues commonly encountered in the design and analysis of observational studies. Through

developing methods for estimation and inference in matched observational studies, I hope

to further promote the usefulness of matching in the analysis of non-randomized studies.

Not only does matching facilitate estimation of and inference for causal effects assuming no

unmeasured confounding, but it also provides a framework for assessing the robustness of a

study’s conclusions to unmeasured confounding through a sensitivity analysis (Rosenbaum,

2002a, Section 4).
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Each of the four chapters within the body of the chapter contains a single, self-contained,

paper. In the first paper, we investigate the causal effect of admission to an ICU versus to

a hospital ward on 60 day mortality rates for sepsis patients. In conducting this analysis,

we encountered a problem common in observational studies: a lack of overlap with respect

to important covariates. In this application, a lack of overlap arises because many ICU

patients are more severely ill than any hospital ward patient. We cannot possibly infer

the effect of the admission decision on mortality for the these patients, as we lack patients

admitted to hospital wards with whom their outcomes can be fairly compared. Assessment of

causal effects for those individuals would represent an analysis of “extreme counterfactuals,”

resulting in an extrapolation to which the data cannot honestly attest (King and Zeng, 2006).

Rather, inference must be restricted to the area of common support (i.e., those patients

who were less gravely ill at presentation). Through the maximal box problem (Eckstein

et al., 2002), we define a study population by incorporating existing methods for identifying

individuals outside the area of common support with respect to important covariates while

yielding inclusion criteria which are readily interpretable as intervals of values for these

variables. By limiting ourselves to important covariates, we are able to verify the efficacy

of our method through the use of visual aids such as scatterplots. We then use matching

within this study population to adjust for overt biases for all covariates, and we only proceed

with inference if the balance between the two groups is deemed acceptable. In this way,

practitioners can transparently describe the individuals remaining in the study population,

and hence the individuals to whom the resulting statistical analysis applies. This paper is

joint work with Mark Mikkelsen, David Gaieski, and Dylan Small, and will appear in the

Journal of the American Statistical Association: Applications and Case Studies.

The second paper discusses difficulties encountered when using randomization inference

and the potential outcomes framework in the analysis of observational studies with binary

outcomes. Unlike with continuous outcomes, the only natural causal estimands have corre-

sponding hypothesis tests that are composite in nature when the outcome variable of interest

is binary. This means that there are many allocations of potential outcomes which yield the

2



same hypothesized value of the causal estimand. Examples of such estimands are the risk

difference, risk ratio, and the effect ratio. To reject a null hypothesis for a causal parameter

of this sort, we must reject the null for all allocations of the potential outcomes which sat-

isfy the null. The situation is further complicated when conducting a sensitivity analysis,

as inference must also account for the potential existence of unmeasured confounding with

a range of impacts on the assignment of interventions. We show that hypothesis testing

for a composite null with binary outcomes can be performed by solving an integer linear

program under the assumption of no unmeasured confounding. When conducting a sensi-

tivity analysis, an integer quadratic program is required. Under mild assumptions, these

optimization problems yield the worst-case p-value within the composite null. We show that

our formulation is strong, in that the optimal objective value for our integer program closely

approximates that of the corresponding continuous relaxation. This allows hypothesis test-

ing and sensitivity analyses to be conducted efficiently even with large sample sizes and

large matched sets. We further demonstrate through a simulation study the importance of a

thoughtful formulation in solving large-scale discrete optimization problems. This paper is

joint work with Pixu Shi, Mark Mikkelsen, and Dylan Small, and will appear in the Journal

of the American Statistical Association: Theory and Methods.

In the third paper, we discuss how modern optimization lends support towards demon-

strating “multiple operationalism" (Campbell, 1988) in an observational study, wherein one

predicts a particular direction of effect for multiple outcome variables under the causal the-

ory in question. This strategy is in line with Fisher’s advocating of “elaborate theories”

as a means to help bridge the gap between association and causation in an observational

study; however, when testing hypotheses on multiple outcomes multiple comparisons must

be taken into account. This is true not only when assuming no unmeasured confounding,

but also when assessing how robust a study’s findings are to unmeasured confounding in

the subsequent sensitivity analysis. Concerns over a loss in power may lead practitioners

to instead investigate the outcome variable they believe a priori will be most affected by

the intervention, thus reducing the extent to which Fisher’s advice is followed in practice.

3



We demonstrate that when performing multiple comparisons in a sensitivity analysis, the

loss in power from controlling the familywise error rate can be attenuated. This is because

unmeasured confounding cannot have a different impact on the probability of assignment to

treatment for a given individual depending on the outcome being analyzed. Existing meth-

ods for testing the overall truth of multiple hypotheses allow this to occur by combining the

results of sensitivity analyses performed on individual outcomes. By solving a quadratically

constrained linear program, we are able to perform a sensitivity analysis while avoiding this

logical inconsistency. We show that this allows for uniform improvements in the power of a

sensitivity analysis when compared to combining individual sensitivity analyses. This is true

not only for testing the overall null across outcomes, but also for testing null hypotheses on

specific outcome variables when using certain sequential rejection procedures. We illustrate

our method through an example examining the impact of smoking on naphthalene levels in

the body. This paper is joint work with Dylan Small, and will appear in the Journal of the

American Statistical Association: Theory and Methods.

In the fourth paper, we present methods for conducting a sensitivity analysis for perhaps the

most common summary measure of a treatment’s effect, the average treatment effect, with

continuous outcome variables, Our analysis follows the standard approach for inference on

the average treatment effect in randomized experiments by restricting the set of potential

outcomes under consideration to those which satisfy an estimated bound on the variance of

the average treatment effect. We show that while the problem could be formulated as a large

integer program, a solution can be attained to the problem in its greatest generality in linear

time. We further discuss the incorporation of an assumption of a known direction of effect,

and how integer programming can be used to conduct a sensitivity analysis in this case.

We then compare the sensitivity of inferences to unmeasured confounding under a host of

assumptions on the potential outcomes, including the assumption of an additive treatment

effect. This work remains in progress and is inspired by recent work of Paul Rosenbaum.

As an aside, it goes without saying that “inspired by the work of Paul Rosenbaum" is an

accurate descriptor of this dissertation in its entirety.
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CHAPTER 2 : Discrete Optimization for Interpretable Study Populations and

Randomization Inference in an Observational Study of Severe Sepsis

Mortality

Joint work with Mark Mikkelsen, David Gaieski, and Dylan Small

2.1. Introduction

2.1.1. Severe Sepsis Incidence and Mortality

Severe sepsis is a leading cause of morbidity and mortality worldwide. It is defined as a

systematic inflammatory response to infection that is accompanied by acute organ dysfunc-

tion. Angus et al. (2001) estimate that severe sepsis afflicts roughly 750,000 individuals in

the United States per year, of whom an estimated 215,000 perish. Gaieski et al. (2013) note

that cases of severe sepsis appear to be on the rise. In a recent study, Liu et al. (2014)

found that sepsis contributed to one in every two to three deaths in two complementary

hospital cohorts, and suggest that “improved treatment of sepsis (potentially a final hospital

pathway for multiple other underlying conditions) could offer meaningful improvements in

population mortality.”

A critical decision along this pathway is whether to admit a patient to an intensive care

unit (ICU), or rather to an appropriate hospital ward. It is estimated that approximately

50 percent of severe sepsis patients in the United States are admitted to an ICU after

presentation to an emergency department, with the rest being admitted to a hospital ward

(Angus and van der Poll, 2013). Recent evidence suggests that admission to a non-ICU

setting may be increasing (Whittaker et al., 2015). Severe sepsis varies in degree of gravity

at time of presentation to the emergency department. In general, sicker patients tend to

be placed in the ICU, and those exhibiting less severe symptoms are often admitted to the

hospital ward. Furthermore, Brun-Buisson et al. (1996) and Rohde et al. (2013) note that

there are systematic ways in which the epidemiology, site of infection, and organ dysfunctions

5



appear to vary between ICU and hospital ward patients.

The existing literature offers contrasting opinions on the optimal process of care for severe

sepsis patients. Esteban et al. (2007) argue that there is a large population of patients not

admitted to the ICU who could “potentially benefit from more aggressive resuscitation and

innovative therapies” that are available in the ICU. They found that severe sepsis patients

in hospital wards had a higher estimated mortality rate than those who were admitted to

the ICU, although their result was not statistically significant. On the other hand, Levy

et al. (2008) found that admission to an ICU covered by intensivists may result in worse

health outcomes, in part because patients may receive unnecessary (but potentially harmful)

therapies or procedures. It is feasible, then, that certain severe sepsis patients may be better

off if they were admitted to the hospital ward, as they would not be subjected to interventions

in the ICU that are not warranted given their condition. In keeping with this hypothesis,

Sundararajan et al. (2005) found that severe sepsis mortality rates among non-ICU patients

were lower than those among ICU patients.

The goal of our analysis is to assess the causal effect of ICU admission versus hospital ward

admission on health outcomes. To be precise, we aim to compare the average health out-

comes if all individuals were admitted to the ICU with the average outcomes if all patients

were admitted to the hospital ward. We use data from a retrospective observational cohort

study wherein hospital admissions of individuals with severe sepsis to the Hospital of the

University of Pennsylvania between January 2005 and December 2009 were examined; see

Whittaker et al. (2015) for further details on the data set. We only consider patients without

hemodynamic septic shock (a patient has hemodynamic septic shock if the patient has severe

sepsis coupled with hypotension after initial fluid resuscitation) because patients with hemo-

dynamic septic shock are almost exclusively admitted to the ICU (ProCESS Trial, 2014).

Investigators identified 1507 remaining individuals with severe sepsis but not hemodynamic

septic shock, of whom 695 were admitted to an ICU and 812 were admitted to a hospi-

tal ward. Thirty covariates detailing demographic information, comorbidities, emergency

6



Table 1: Covariate Means and Standard Deviations, Original Population and Study Popu-
lation for Tier 1 Covariates. The first two columns are the covariate means (standard de-
viations) in the initial study population, and the last two columns are the covariate means
(standard deviations) in the study population defined in Section 2.4.3.

Original Population Study Population
Covariate ICU Ward ICU Ward
Age 60.1 55.1 60.56 55.88

(17.4) (18.4) (17.1) (18.3)
Charlson comorbity index 2.52 2.41 2.43 2.48

(2.81) (2.64) (2.70) (2.65)
Initial serum lactate 4.26 2.56 3.22 2.61

(2.98) (1.23) (1.24) (0.956)
APACHE II score 17.7 13.6 16.9 13.8

(6.37) (5.27) (5.46) (4.73)

department process of care, and site of infection were identified by expert consultation as

germane to the hospital pathway and to health outcomes. We separated our covariates into

three tiers of importance based on an a priori assessment (i.e. before examining the data

set) of their effect on admission decisions and mortality. Our health outcome is a binary

variable that takes on the value 1 if a patient died any time between the date of hospital

admission and 60 days after hospital admission. The tier 1 covariates are listed in Table

1 along with their means and standard deviations among ICU and hospital ward patients,

while the remaining covariates are summarized in Appendix A.1.

A subgroup of severe sepsis patients who are of particular interest to the critical care com-

munity are those with cryptic septic shock. These are severe sepsis patients who have normal

levels of systolic blood pressure (so do not have hemodynamic septic shock) yet exhibit high

levels of initial serum lactate (≥ 4 mmol/L) (Puskarich et al., 2011). Initial serum lactate

levels refer to the amount of lactic acid in the blood upon presentation to an emergency de-

partment. Initial serum lactate levels have been associated with mortality for severe sepsis

patients independent of organ dysfunction, and are therefore thought to be a highly use-

ful biomarker for risk-stratifying patients upon presentation to an emergency department

(Mikkelsen et al., 2009). Some believe that cryptic septic shock patients should be classified

7



as septic shock patients and admitted to an ICU by default, while others suggest that there

may be no benefit to such a protocol; see Jones (2011) and Rivers et al. (2011) for both

sides of the debate. Hence, in addition to comparing ICU versus hospital ward mortality

among all severe sepsis patients without hemodynamic septic shock, we would further like

to compare mortality within the subgroup of cryptic septic shock patients, as this subgroup

may exhibit mortality outcomes that differ from other severe sepsis patients. While only

10% of patients admitted to the hospital wards had cryptic septic shock in our sample, this

number was 44% for patients admitted to the ICU.

2.1.2. From Observational Study to Idealized Experiment

Randomization inference provides an appealing framework even when the data are not the

result of a randomized experiment. This is in keeping with the advice of H.F. Dorn, as relayed

in Cochran (1965), that “the planner of an observational study should always ask himself

the question, ‘how would the study be conducted if it were possible to do it by controlled

experimentation?’ ” Through matching on observed covariates, we attempt to mimic a well-

balanced randomized experiment. Matching methods encourage researcher blinding, since

matched sets can and should be constructed without looking at the outcome of interest.

Using randomizations within this idealized experiment as the basis for inference also allows us

to assess the robustness of a study’s finding to unmeasured confounding through a sensitivity

analysis. See Rosenbaum (2002a) for a discussion of using randomization inference within

observational studies.

Towards this end, we employ covariate matching to account for measured confounders that

may bias our comparison of 60 day mortality rates if all patients had been admitted to

the ICU versus if all patients had been admitted to the hospital ward, and then conduct

inference with respect to the match that is produced; see Stuart (2010) for a comprehensive

overview of common matching algorithms. Full matching, the algorithm used herein, is

a type of matching algorithm that optimally assigns individuals into strata consisting of

either one treated unit and many control units or one control unit and many treated units,
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and is particularly appealing for studies where the ratio of treated individuals to control

individuals is close to 1:1. See Rosenbaum (1991) and Hansen (2004) for additional details

on full matching.

In Section 2.2, we discuss the randomized experiment that full matching aims to replicate.

We begin our analysis in Section 2.3, where we discuss an issue encountered within our

comparison of hospital wards and ICU that is common to many observational studies: an

inherent lack of covariate overlap. In Section 2.4, we discuss how the maximal box problem

marries together existing methods for addressing lack of covariate overlap with the intuitive

appeal of a study population whose boundaries are clearly defined in terms of important

covariates.

Section 2.5 lays out the necessary framework for conducting inference on the average treat-

ment effect in the idealized experiment we aim to uncover. Difficulties arise due to the

composite nature of a null hypothesis on the average treatment effect, in that different al-

locations of potential outcomes can yield the same average treatment effect while inducing

different randomization distributions for its estimate. We overcome these difficulties by find-

ing a sharp upper bound on the variance of the estimated average treatment effect over all

elements of the composite null, which under a normal approximation allows us to carry out

inference for the composite null in question. In Section 2.6, we apply our methodology to

our sepsis example.

Though seemingly unrelated, our solutions for defining an interpretable study population

and conducting randomization inference on the average treatment effect with binary out-

comes both utilize methods from discrete optimization. Traditionally, discrete optimization

problems were viewed as tractable if the worst-case instance could be solved by an algo-

rithm that grows polynomially in the instance’s size, and statisticians have typically limited

themselves to using algorithms of this type. Both of the problems we pose are NP-hard,

meaning that there is no known polynomial time algorithm for the worst-case instances of

these problems. However, there have been recent advances in solving typical cases of these
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problems such that a typical case of these problems can often be solved in a reasonable

amount of time (Schrijver, 2003). In a recent paper, Zubizarreta (2012) highlighted the

usefulness of mixed integer programming for attaining well balanced matched sets. We il-

lustrate that when applying the methods described in this paper to our data set, solutions

can be attained in a matter of seconds. Through the methods developed in this work, we

hope to further emphasize the usefulness of discrete optimization for observational studies

and statistics in general.

2.2. Review of Causal Inference via Matching

2.2.1. Notation For a Stratified Randomized Experiment

Suppose there are I total strata, the ith of which contains ni ≥ 2 individuals. In each

stratum, mi ≥ 1 individuals receive the treatment, ni −mi individuals receive the control,

and min{mi, ni − mi} = 1. Furthermore, mi is fixed across randomizations, resulting in

ni distinct assignments to treatment and control for the ith stratum. Assignments are

independent between distinct strata. Under the potential outcomes framework with binary

responses, each individual has two potential binary outcomes: one under treatment, rT ij ,

and one under control, rCij , which are 1 if an event would occur and 0 otherwise. The true

treatment effect for individual j in stratum i is δij = rT ij−rCij , and is unobservable as each

individual receives either treatment or control. The observed response for each individual

is Rij = rT ijZij + rCij(1− Zij), where Zij is an indicator variable that takes the value 1 if

individual j in stratum i is assigned to the treatment; see, for example, Neyman (1923) and

Rubin (1974). Each individual has observed covariates xij .

There are N =
∑I

i=1 ni individuals in the study, of whom NT =
∑I

i=1mi receive the

treatment and NC = N − NT receive the control. Let R = (R11, R12, ..., RI,nI
)T and

Z = (Z11, Z12, ..., ZI,nI
)T . Let Ω be the set of

∏I
i=1 ni possible values z of Z under the given

stratification. In a randomized experiment, randomness is modeled through the assignment

vector; each z ∈ Ω has probability 1/|Ω| of being selected. Hence, quantities dependent
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on the assignment vector such as Z and R are random, whereas rT ij , rCij , xij are fixed

quantities. Let F = {rT ij , rCij ,xij , i = 1, .., I, j = 1, ..., ni}. For a randomized experiment,

we can then write that P(Zij = 1|F ,Z ∈ Ω) = mi/ni, i = 1, .., I; j = 1, ..., ni and that

P(Z = z|F ,Z ∈ Ω) = 1/|Ω|.

2.2.2. Matching and Observational Studies

In an observational study, we begin with an unmatched study population of size N . Match-

ing methods aim to create strata where the constituent individuals have similar covariate

values, or at a minimum similar probabilities of assignment to treatment (Rosenbaum and

Rubin, 1983; Stuart, 2010). Once a match is obtained, the acceptability of the result-

ing stratification is assessed for covariate balance through the use of various diagnostics,

the most common of these being the standardized difference (Rosenbaum, 2010). Let the

notation introduced in Section 2.2.1 now apply to the stratification yielded by the match-

ing algorithm. If the match passes the balance diagnostics, randomization inference then

proceeds under the assumptions of no unmeasured confounding, common support for the

assignment probabilities, and equal probabilities of assignment within a matched set. The

assumption of no unmeasured confounding states that given the observed covariates, the

probabilities of assignment to treatment are independent of the potential outcomes, that

is P(Zij = 1|xij) = P(Zij = 1|xij , rT ij , rCij), i = 1, ..., I; j = 1, ..., ni. This proba-

bility is known as the propensity score, and we denote it by e(xij). The assumption

of common support for the assignment probabilities can be written as 0 < e(xij) < 1,

i = 1, ..., I; j = 1, ..., ni. Finally, the assumption of equal probability of treatment assign-

ment within a matched set can be written as e(xij) = e(xik) for all i = 1, ..., I; j, k = 1, ..., ni.

Under these assumptions, we have that P(Zij = 1|F ,Z ∈ Ω) = mi/ni, i = 1, .., I; j = 1, ..., ni

and that P(Z = z|F ,Z ∈ Ω) = 1/|Ω|, thus recovering the randomized experiment described

in Section 2.2.1.
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2.3. Lack of Common Support

2.3.1. Imbalance Caused by Limited Covariate Overlap

We begin by conducting a full match on our entire study population. As was previously

noted, we have 30 pre-treatment covariates that were deemed important for both the proba-

bility of admission to the ICU versus the ward and for the outcome. Of these, 13 contained

missing values; see Appendix A.1 for the percentages of missing observations for these 13

covariates. To account for this, we include 13 new missingness indicators, and fill in the miss-

ing values with the mean of the covariates. As is discussed in Rosenbaum and Rubin (1984)

and Rosenbaum (2010, Section 9.4), this facilitates balancing both the observed covariates

and the pattern of missingness between the two groups being compared. We also include an

indicator for whether an individual has cryptic septic shock. We thus have 44 covariates that

could be used in constructing our matched sets. In determining which variables to match

on, the avoidance of various types of “collider-bias” (Greenland, 2003) must be considered.

We first do not control for any post-treatment variables in order to avoid biases that stem

from controlling for the consequence of an exposure. One particular type of collider bias,

M -bias, can be induced even when only controlling for pre-treatment variables. Despite

this, we choose to control for all 44 of these pre-treatment covariates because of the work of

Ding and Miratrix (2014), simulation studies of Liu et al. (2012), and arguments of Rubin

(2009) that suggest that biases stemming from not controlling for a relevant pre-treatment

covariate tend to be more substantial than those that are caused by M -bias.

We use rank-based Mahalanobis distance with a propensity score caliper of 0.2 standard devi-

ations as our distance metric between ICU and hospital ward patients, where the propensity

scores are estimated via a logistic regression of our covariates on the treatment indicator;

for further discussion on the role of propensity score calipers in multivariate matching, see

Rosenbaum (2010, Section 8.3). In addition, we match exactly on the cryptic septic shock

indicator, meaning that each stratum produced by the full match must either contain all

cryptic septic shock patients or none. We use standardized differences, defined as a weighted
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difference in means divided by the pooled standard deviation between groups before match-

ing, to assess balance in our resulting match for the remaining covariates (Stuart and Green,

2008). A common rule of thumb is to deem the balance of a resulting match acceptable if

all absolute standardized differences fall below 0.1 (Rosenbaum, 2010). We modify this rule

slightly based on our covariate importance tiers, using thresholds of 0.05, 0.10, and 0.15 for

the standardized differences of tiers 1, 2, and 3 respectively. Thus, we require more stringent

balance for those covariates that are deemed to be of highest importance for the admission

decision and for mortality.

We first perform an unrestricted full matching. Without any restrictions, full matching can

produce extremely large strata. When applied to our data set, there are strata with ratios

of hospital ward patients to ICU patients of 37:1, 1:21, 1:32, and 1:65. Noting the potential

for outlandishly large strata, Hansen (2004) advocates placing a bound on the maximal

allowable strata size in order to increase the effective sample size (and thus, the power of

the resulting analysis). In keeping with this, we also performed full matches with restricted

ratios of hospital ward patients to ICU patients within each stratum, with ratios ranging

from 2:1, 1:2 to 15:1, 1:15. Neither the unrestricted full match nor any of the restricted

full matches resulted in an adequately balanced matched sample based on our standardized

difference thresholds.

Our failure to attain a suitably balanced stratification does not suggest a deficiency with

full matching; to the contrary, no matching algorithm should be able to produce a suitably

balanced stratification without discarding individuals, as there is a severe lack of covariate

overlap between patients admitted to the ICU and patients admitted to the hospital wards.

Two covariates that were out of balance in all of the restricted ratio matches were initial

serum lactate levels and APACHE II scores. As is described in Section 2.1, initial serum

lactate is believed to be important for both the admission decision and for health outcomes,

while the APACHE II score is a measure of disease severity using physiologic variables and

chronic health conditions (Knaus et al., 1985). As Figure 1 displays, virtually all of the
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Figure 1: Lack of Common Support and the Maximal Box. This figure shows a scatter plot of
initial serum lactate levels and APACHE II scores. The plot also shows the maximal box, which is
the solution to the optimization problem posed in Section 2.4. The rectangular boundaries represent
the study population identified as having a common support, wherein subsequent inference will be
restricted. It was formed by finding the rectangle containing the largest number of filled points,
subject to excluding all hollow points in the plot. The triangles represent ICU patients, and the
circles represent hospital ward patients. Whether a point is filled or hollow is described in Section
2.4.3 in detail, and has to do with whether or not it was determined that a given individual was in
the area of viable common support for his or her observed tier 1 covariates. Points are jittered to
avoid overplotting.

patients admitted to the hospital ward lie in the lower left hand quadrant of the scatterplot

of APACHE II scores versus initial serum lactate levels. Naturally, this lack of overlap arises

because many ICU patients are more severely ill than any hospital ward patient. We cannot

possibly infer the effect of admission to the ICU versus the hospital ward on mortality for

the severely ill ICU patients, as we lack patients admitted to the hospital wards with which

the outcomes of those ICU patients can be fairly compared. Assessment of causal effects

for those individuals would represent an analysis of “extreme counterfactuals,” resulting in

an extrapolation to which the data cannot honestly attest (King and Zeng, 2006). Rather,

inference about the effect of being admitted to an ICU or a hospital ward on mortality must

be restricted to the area of common support (i.e., those patients who were less gravely ill at

14



presentation), a fact to which restricted ratio full matches bear testament in their inability

to attain suitable balance.

2.3.2. Different Types of Overlap

Before proceeding, we discuss a few different notions of covariate overlap. The first notion,

which we call strong overlap, is that for every treated unit in the data, there is a control

unit that has similar or the same covariate values and that for every control unit, there

is a treated unit that has similar or the same covariate values. While strong overlap is

most desirable and can be readily diagnosed in low dimensions through visual tools such as

scatterplots, it is difficult to obtain when there are a moderate or high number of covari-

ates because of the curse of dimensionality. The second notion, which we call interpolation

overlap, is that for any treated unit, an estimate of that treated unit’s counterfactual con-

trol potential outcome given the unit’s covariates can be inferred through an interpolation

rather than an extrapolation of the observed control outcomes and that for any control

unit, an estimate of that control’s unit counterfactual potential outcome can also be in-

ferred through interpolation. King and Zeng (2006) present an operational way to check

for interpolation overlap by means of the convex hull of the treated and control covariate

distributions. According to their criterion, one is performing interpolation if a given treated

(control) individual is in the convex hull of the control (treated) covariate distributions, and

is performing extrapolation otherwise. Interpolation overlap then exists if all treated units

are in the convex hull of the control units, and all control units are in the convex hull of the

treated units. Unfortunately, as noted in King and Zeng (2006) their interpolation overlap

criterion is also difficult to satisfy in moderate and high dimensions. In Appendix A.2, we

demonstrate through a simulation study that even when the treated and control covariate

distributions are identical, the number of individuals for which “interpolation” is identified

as being performed by the convex hull diagnostic decreases substantially as the covariate

dimension increases.

15



2.3.3. Existing Methods for Achieving Overlap

A lack of overlap is typically addressed by defining a study population restriction wherein

adequate overlap can be attained. Many methods are motivated by the fact that, asymp-

totically, strong overlap is present if and only if the propensity score at a given covariate

value, e(xj), is bounded away from 0 and 1 for all individuals j ∈ {1, ...N}. In this sense,

the propensity score provides a scalar indication of both the existence of and the extent

of covariate overlap. Dehejia and Wahba (1999) recommend removing treated units whose

propensity scores are larger than the maximal propensity score among the control units,

and removing control units whose propensity score are smaller than the minimal propensity

score among the treated units. Crump et al. (2009) define a study population by seeking

the subset of the covariate space which minimizes the efficiency bound for the variance of

the study population average treatment effect. Based on this optimality criterion, they find

that for a wide range of distributions a close approximation to the optimal selection rule is

to drop all units with estimated propensity scores outside of [0.1, 0.9]. One concern with

propensity score approaches for attaining overlap for finite sample inference is that while

boundedness away from 0 and 1 implies strong overlap asymptotically, for finite samples

treated (control) individuals with nonzero propensity scores may still lack comparable con-

trol (treated) individuals in terms of their observed covariates. Another concern is that these

propensity scores must be estimated, so that individuals with nonzero estimated propensity

scores may nonetheless fall outside the area of overlap.

Other methods directly deal with the covariates themselves when defining a new study

population. King and Zeng (2006) identify a multivariate space wherein one performs in-

terpolation rather than extrapolation by removing treated individuals whose covariates lie

outside of the convex hull of the covariates for the control individuals, and removing control

individuals whose covariates lie outside of the convex hull of the covariates for the treated

individuals. Rosenbaum (2012) describes a method for optimal subsampling wherein one

chooses an upper bound on how many treated units can be removed from the resulting
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matched sample. Hill and Su (2013) employ Bayesian Additive Regression Trees (Chipman

et al., 2010) to identify areas of common support, using the fact that the variability of

individual-level conditional expectations tend to increase drastically in such areas. Indi-

viduals are then classified as being inside or outside the area of common support based on

thresholds for these variances.

Though easy to implement and often accompanied by theoretical justifications, the resulting

study population returned by these methods is often unappealing as it may be difficult to

interpret in terms of the covariates themselves. This makes it difficult to succinctly and

transparently describe the individuals to whom the performed inference applies. Further-

more, for study populations defined by propensity scores alone, a researcher’s notion of

which individuals have high or low “propensity” for treatment may be vastly different from

the individuals designated as such through fitting a propensity score model to the data.

A practitioner not participating in the study could then have a misconception of the in-

dividuals to whom the inference applies based on his or her preconceived notion of which

individuals are likely to receive treatment or control. In his Design of Observational Studies

book, Rosenbaum advises that when excluding extreme individuals “it is usually better to

go back to the covariates themselves, xj , perhaps redefining the population under study to

be a subpopulation of the original population” (Rosenbaum, 2010, Section 3.3.3). Stuart

(2010) further echoes this sentiment, arguing that “it can help the interpretation of results

if it is possible to define the discard rule using one or two covariates” (Stuart, 2010, page

15).

To illustrate the potential confusion arising from a study population definition in terms of

propensity scores, suppose we decided to apply the suggestion of Crump et al. (2009) to

our tier 1 covariates in order to define our study population. In its most succinct form, the

resulting study population would be defined as {i : logit(3.5− 0.0049(agei) + 0.069(CCIi)−

0.46(init. ser. laci) − 0.12(APACHE IIi)) ∈ [0.1, 0.9]}. The boundaries of this set would

likely hold little meaning to practitioners, as it is hard to characterize qualitatively the
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individuals who fall within these bounds. Inference performed on this subset would pertain

to a set of individuals who lack a clear characterization on the basis of the covariates of

interest themselves, limiting how actionable the findings may be.

Traskin and Small (2011) suggest a tree based approach for defining an internally valid

study population based on values of covariates alone. In the first step of their method,

the practitioner uses a pre-existing method for study population definition of her choice;

any of those described at the beginning of this section would be valid choices. For each

individual, this outputs an indicator of whether or not that individual belongs to the area

of common support (and hence, should be included in the new study population). The user

next fits a regression tree of a designated depth that aims to minimize the probability of

misclassification, and defines the study population based on the resulting tree (rather than

by the method used in the initial step). While resulting in a markedly more interpretable

study population, by their very nature trees result in interval restrictions that are path

dependent, rather than intervals that are universally applicable for all individuals.

Restrictions to rectangular regions of the covariate space are appealing as they can be explic-

itly defined in terms of the intersection of a series of intervals, rather than as a complicated

function of the observed covariates. Each interval pertains to a unique covariate, allowing

one to paint a coherent description of the resulting study population through covariate-

specific constraints. This allows the practitioner to clearly understand the restriction that

each covariate imposes on the study population. Currently, little guidance exists on how

to define these covariate based inclusion criterion. Ad-hoc choices based on inspection may

discard large proportions of individuals, and further may fail to discard individuals who are

identified as problematic.

2.3.4. An Attainable Objective

As outlined in this section, there are inherent difficulties with attaining strong overlap

in high dimensions. We thus instead seek to define a study population characterized by
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three principles which are both attainable and verifiable. Firstly, we would like the study

population to demonstrate overlap with respect to those covariates deemed most important

for the treatment and the outcome. By focusing on attaining overlap for a small set of

important covariates, both strong and interpolation overlap can be potentially obtained for

a reasonably sized study population. Furthermore, the overlap with respect to these most

important covariates can be verified using visual aids such as scatterplots. Secondly, the

resulting study population should be such that balance can be attained on all covariates. As

balance is a property of the marginal distributions for the treated and control individuals,

standard metrics such as standardized differences can speak to balance being attained for

all covariates. Finally, we would like our study population to have a simple definition in

terms of important covariates while not being overly wasteful in discarding individuals.

Our approach to achieving these goals is two-fold. We begin by constructing, through the

solution to the maximal box problem, a study population that incorporates existing methods

for identifying individuals outside the area of common support with respect to important

covariates, retains as many viable individuals as possible, and is readily interpretable based

on important covariates as it defined through the intersection of interval restrictions. After

this, we use full matching to arrive upon a stratification that mimics a well-balanced ran-

domized experiment within this study population. We then proceed with inference in the

resulting study population only if the balance on all covariates is deemed acceptable.

2.4. Defining a Study Population

2.4.1. The Maximal Box Problem

A box [`,u] is defined to be a closed interval (hyperrectangle) of Rp,

[`,u] := {x ∈ Rp : `i ≤ xi ≤ ui ∀i ∈ {1, .., p}}

Suppose one has a finite collection of vectors {xj}, j = 1, ..., N, that can be partitioned
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into two disjoint sets of “positive” points, X+ and “negative” points, X−. The maximal

box problem aims to find the lower and upper boundaries of a box, [˜̀, ũ], such that the

corresponding box contains the maximal number of points in X+ while containing none of

the points in X−. Explicitly, [˜̀, ũ] is the arg max of the following optimization problem

(MB, for maximal box):

maximize |[`,u] ∩ X+| (MB)

subject to |[`,u] ∩ X−| = 0,

where the notation |A| denotes the number of elements of set A. Henceforth, we refer to

|[`,u] ∩ X+| as the cardinality of a box [`,u].

Eckstein et al. (2002) describe the problem in detail. They prove that the problem is NP-

hard in general, but is polynomial time for any fixed dimension p. They provide an efficient

branch and bound algorithm for solving it, which they show to have modest computation

time in practice. They also provide a mixed integer programming formulation of the problem,

which facilitates its use with freely available and commercial solvers.

2.4.2. From Maximal Boxes to Study Populations

Let D(xj ,X,Z) be a binary decision rule that determines whether or not a point xj needs

to be excluded from the analysis to ensure covariate overlap (1 if not, 0 if so). For example,

the recommendations of Dehejia and Wahba (1999), DDW (xj ,X,Z), and the rule proposed

in Crump et al. (2009) (the simplified version of the rule), DC(xj ,X,Z), can be written in

this form as:

DDW (xj ,X,Z) =


1 {ê(xj) ≤ max{ê(xk) s.t. Zk = 0}} if Zj = 1

1 {ê(xj) ≥ min{ê(xk) s.t. Zk = 1}} if Zj = 0

DC(xj ,X,Z) = 1 {ê(xj) ∈ [0.1, 0.9]}
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Our sets of positive and negative points are then defined based on the selected decision rule,

with X+ := {xj : D(xj ,X,Z) = 1}, and X− := {xj : D(xj ,X,Z) = 0}. We then solve

(MB) using these designations of positive and negative points. The resulting maximal box is

one that contains the largest possible number of observations who could feasibly have been

in the study population, while eliminating all individuals who were designated for exclusion.

The study population defined by the maximal box has a clear interpretation in terms of

the covariates themselves: an individual is in the study population if ˜̀ ≤ xj ≤ ũ, and is

excluded otherwise.

We note that as p (the number of covariates used to define the maximal box) increases, the

number of positive points in corresponding maximal box is non-decreasing. At the same

time, this increases the potential computational burden, as there are at most |X+|2p pos-

sible candidates for the boundaries of the maximal box (Eckstein et al., 2002). Thus, in

practice we recommend forming the boundaries on the maximal box based on values of the

most important covariates. Note that defining a study population on the basis of impor-

tant covariates can also be justified on the basis of interpretability. If one defined a study

population using a maximal box formed from a large number of covariates, the resulting

study population would likely be just as cryptic as one determined solely by the estimated

propensity scores. Further, Hill and Su (2013) argue that methods for common support re-

striction should primarily consider those covariates that are most important for the outcome.

As such, we seek to define a study population based on the most important pre-treatment

covariates. We also recommend using covariates that are not binary for constructing the

maximal box as the resulting restriction would either eliminate one of the categories entirely,

or (more commonly) be the whole range [0,1]. If there is a binary covariate of considerable

importance, we recommend accounting for it by either exactly matching or almost exactly

matching on the binary covariate; see Rosenbaum (2010, Sections 9.1 and 9.2) for details.

There is a possibility that the resulting maximal box only contains a small fraction of the

positive points. This means there is no easy way to define a region of good overlap between
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the treated and control individuals without eliminating the vast majority of the data. In

Appendix A.3, we discuss an extension of the maximal box problem posed in Eckstein et al.

(2002) that may be appropriate in this setting. This generalization allows for a small number,

C, of points marked for exclusion (negative points) to be included within the bounds of the

maximal box, which would in turn allow for the incorporation of more positive points; see

Appendix A.3 for more discussion on the ramifications of choosing C > 0. In our example,

we proceed with C = 0, thus requiring the exclusion of all points marked as being outside

the area of viable support.

2.4.3. Application to Our Original Population

As defining a maximal box with all 44 covariates would yield a highly unwieldy 44 dimen-

sional box with limited interpretability, we instead aim to construct a maximal box using

our four tier 1 covariates: age, Charlson comorbidity index, APACHE II scores, and initial

serum lactate levels. Our approach is to fit a propensity score model using a logistic regres-

sion on our four tier 1 covariates, and to then employ the simplified criterion of Crump et al.

(2009) with these propensity scores to determine which observations had to be removed.

We use this reduced propensity score model because individuals within the area of common

support on our important variables may be nonetheless extreme with respect to other, less

important, covariates, which may in turn lead to them being marked for removal if we used

the full propensity score model. As our focus is on attaining covariate overlap and balance

for our most important variables while seeking balance on all other variables, we wanted our

exclusion metric to reflect lying in the area of covariate overlap with respect to our most

important variables. See Appendix A.4 for a more detailed discussion of this goal and the

behavior of alternative strategies. Denoting the tier 1 covariate for individual j as x(1)
j , our

decision rule is DC,Tier1(xj ,X,Z) = 1

{
ê
(
x

(1)
j

)
∈ [0.1, 0.9]

}
. This results in 108 individu-

als being marked for exclusion. We have implemented the branch and bound algorithm of

Eckstein et al. (2002) in the R programming language (R Development Core Team, 2014),

and used it to find our study population; a script for our implementation is provided in the
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supplementary materials. For this data set, our implementation took 2 seconds to run on a

desktop computer with a 3.40 GHz processor and 16.0 GB RAM.

We created a maximal box using all four tier 1 covariates, and also created one using only

initial serum lactate and APACHE II scores. The cardinalities of these boxes were very close

to one another (1214 and 1208 respectively). As such, we use the box defined using only

initial serum lactate and APACHE II scores for enhanced interpretability. The resulting

maximal box is displayed as the rectangle in Figure 1. As can be seen, the study population

under investigation can be explicitly defined as those individuals in our initial study whose

APACHE II scores are between 5 and 29 and whose initial serum lactate levels are between

1.2 and 5.8 mmol/L. Our study population thus restricts analysis to those individuals who

had less severe, but not the least severe, conditions upon presentation to the emergency

department. The study population defined by the maximal box includes 701 out of 812

patients admitted into the wards and 507 out of 695 patients admitted to the ICU, resulting

in 1208 out of the original 1507 individuals being available for further study; furthermore, it

contains 86.3% of all individuals whose estimated propensity scores were deemed acceptable

by our decision rule. Table 1 shows the means and standard deviations of the tier 1 covariates

among this study population; values for the other covariates can be found in Appendix A.1.

As can be seen, restricting ourselves to this study population improved pre-matching balance

for many of the covariates.

We now proceed with a full matching on our study population of 1208 individuals whose

condition upon presentation was less severe. In so doing, we follow a procedure analogous to

the one described in Section 3.1 within our newly defined study population. We first refit our

propensity score model using all 44 covariates for the 1208 individuals in our newly defined

study population to exploit the so-called balancing property of the propensity score within

our population of interest (Rosenbaum and Rubin, 1983). We use rank-based Mahalanobis

distance based on all 44 covariates with a propensity score caliper of 0.2 standard deviations

computed only for patients in our study population to define distance between ICU and
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Figure 2: Covariate Imbalances Before and After Full Matching, Study Population. The dotplot
(a Love plot) shows the absolute standardized differences without matching, and after conducting
a restricted 1:7, 7:1 full matching on our study population. The vertical dotted lines correspond
to the standardized difference tolerances for each of the three covariate tiers. Although not shown
here, all standardized differences corresponding to our 13 missingness indicators had standardized
differences below 0.1, indicating that the pattern of missing data was also balanced between the ICU
and hospital ward groups.

hospital ward patients. Further, we require exact matching for the cryptic septic shock

indicator. Using the resulting distance matrix, we run a series of full matches with ratios

of 1:k, k:1, starting with k = 2 and increasing k until a suitably balanced matched sample

could be attained. We found that a 1:7, 7:1 full match was able to adhere to the standardized

difference tolerances defined in Section 2.3.1, as is displayed in Figure 2.

At this point we have obtained a matched data set that is easy to characterize in terms

of bounds on two important covariates and demonstrates balance on all of our covariates.

Moving forward, we will treat this match as though it were instead a block randomized

experiment with strata of maximal size 8, where in each stratum either one unit is randomly

assigned the treatment and the rest receive the control, or one unit is randomly assigned

the control and the rest receive the treatment. Using randomizations within this idealized
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experiment as the basis for statistical inference, our goal is to assess not only whether there

is a substantial difference in mortality rates depending on admission to the ICU or the

hospital ward, but also to measure the extent of the effect. In order to do so, we now discuss

performing inference and constructing confidence intervals for the average treatment effect

in our idealized experiment.

2.5. Randomization Inference for the Average Treatment Effect with Binary Out-
comes

The average treatment effect with binary outcomes (also known as the causal risk difference)

is the difference between the proportion of positive responses among the potential outcomes

under treatment and the potential outcomes under control, δ := (1/N)
∑I

i=1

∑ni
j=1 δij . It it

identifiable under the assumption of strong ignorability (Rosenbaum and Rubin, 1983), and

an unbiased estimator of the average treatment effect under a stratified design is given by

δ̂ :=
∑I

i=1(ni/N)δ̂i, where δ̂i =
∑ni

j=1 (ZijRij/mi − (1− Zij)Rij/(ni −mi)) is the estimated

average treatment effect within stratum i (Rosenbaum, 2002a, Section 2.5).

We consider tests of the null hypothesis that (1/N)
∑I

i=1

∑ni
j=1 δij = δ0, δ0 ∈ {d/N : d ∈

[−N,N ] ∩ Z}, where Z denotes the set of all integers. In reality, a null hypothesis of this

form is a large collection of hypotheses on the set of treatment effects, δ = [δ11, δ12, ..., δI,nI
].

Let Dδ0 be the set of all δ such that (1/N)
∑I

i=1

∑ni
j=1 δij = δ0 and such that the treatment

effects are compatible with the observed data. The latter requirement means that if unit j

in stratum i received the treatment in the observed experiment, the value of rT ij is fixed at

Rij and hence δij can equal either Rij or Rij − 1. If said unit received the control, the value

of rCij is fixed at Rij , and δij can equal either −Rij or 1−Rij . To reject a null hypothesis

(1/N)
∑I

i=1

∑ni
j=1 δij = δ0, we require that we reject the null hypothesis that the allocation

of treatment effects equals δ for all δ ∈ Dδ0 .
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2.5.1. Existing Methods

Inspired by the work of Neyman (1923), randomization inference for the average treatment

effect is typically conducted by finding a consistent estimator of an upper bound on the

variance of the estimated ATE resulting in randomization inference that asymptotically has

the proper Type I error rate; see Ding (2014) among many. Robins (1988) improves upon

the upper bound of Neyman (1923) for binary outcomes under an unstratified design and

uses the resulting upper bound to create confidence intervals that are narrower than those

based on a Wald-type procedure. More recently, Aronow et al. (2014) provide asymptotically

sharp upper bounds on var(δ̂) under general potential outcomes.

For a stratified design, the variance for the estimated ATE is

var(δ̂) =

I∑
i=1

n2
i

N2

(
S2
T i

mi
+

S2
Ci

ni −mi
−
S2
δi

ni

)
(2.1)

where S2
T i =

∑ni
j=1(rT ij − r̄T i)

2/(ni − 1), S2
Ci =

∑ni
j=1(rCij − r̄Ci)

2/(ni − 1), and S2
δi =∑ni

j=1(δij − δ̄i)2/(ni − 1). The procedures of Neyman (1923), Robins (1988) and Aronow

et al. (2014) can be readily extended to stratified designs wheremi and ni−mi are sufficiently

large for each stratum i. However, these procedures have deficiencies when there are strata

for which either mi or ni −mi = 1, as these procedures require an estimate of the variance

of the treated and control groups in each stratum. When mi or ni − mi = 1, unbiased

estimators for S2
T i or S2

Ci do not exist. Matched sets returned by pair matching, fixed

ratio matching, variable ratio matching and full matching have this property, rendering the

existing bounding techniques based solely on in-sample estimates inapplicable.

Rigdon and Hudgens (2014) present two methods for conducting randomization inference

and constructing confidence intervals for the average treatment effect with binary outcomes

in an unstratified design. The first method proceeds by combining two tests on the at-

tributable effect of Rosenbaum (2001) and Rosenbaum (2002b) through means of a Bonfer-

roni correction. They then mention that this approach, while potentially conservative, can be
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readily applied to stratified randomized experiments. In the second method, hypothesis test-

ing proceeds by conducting randomization inference on δ for all δ ∈ Dδ0 , meaning that this

procedure has level α for testing the corresponding composite null. Confidence intervals are

then constructed by inverting tests for values under the null δ0 ∈ {d/N : d ∈ [−N,N ] ∩ Z},

where Z again denotes the set of all integers. In their description, inference is conducted by

explicitly performing a randomization test for each δ ∈ Dδ0 . Noting the inherent computa-

tional burden in this process as N increases in an unstratified experiment, they suggest a

Monte Carlo procedure to approximate the required permutation test. For stratified exper-

iments, they suggest that this approach becomes computationally unwieldy quite quickly,

thus advocating the use of a potentially conservative method based on the attributable effect

in this setting.

Our procedure combines elements of the classical Neyman approach and the hypothesis test

inversion approach of Rigdon and Hudgens (2014). Our approach is not purely Neymanian

in that although we are testing Neyman’s null hypothesis, we do not proceed by seeking a

consistent upper bound on var(δ̂); rather, we explicitly compute the largest value of var(δ̂)

possible among the elements of Dδ0 for each null hypothesis. The resulting bound on the

variance of the average treatment effect for a given null hypothesis is sharp, as it is attained

by a member of the composite null δ∗ ∈ Dδ0 . As a test of a composite null hypothesis is size

α only if the supremum over all elements of the composite null of the probability of rejection

is α, asymptotically our testing procedure has size α so long as a normal approximation is

justified. This is because since the numerator is the same for the test statistic for any null in

Dδ0 , namely δ̂− δ0, the p-value computed under a normal approximation will be maximized

by the member of the composite null with the largest denominator of the test statistic, i.e,

the member with the largest variance. Rejection on the basis of this worst-case p-value then

implies rejection for all elements of the composite null. For finite samples, discrepancies in

actual versus advertised size stem only from the strength of the normal approximation. We

show in Appendix A.5 that for our case study, the true distribution of the average treatment

corresponding to the worst-case allocations of potential outcomes is well approximated by a
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normal distribution. In Appendix A.6, we discuss why our standard errors are necessarily

larger than those attained in other testing scenarios (for example, in testing Fisher’s sharp

null).

As will be discussed in Section 2.5.2, the use of a normal approximation allows us to over-

come the computational issues encountered in Rigdon and Hudgens (2014). This normal

approximation can be justified under very mild conditions. Let σ2
i = n2

i (S
2
T i/mi+S2

Ci/(ni−

mi) − S2
δi/ni) be the contribution to var(Nδ̂) from stratum i (i.e.,

∑I
i=1 σ

2
i /N

2 = var(δ̂)),

and let Σ =
∑I

i=1 σ
2
i . Let n

∗ be an upper bound on the maximal size of a stratum.

Theorem 1. If Σ→∞ as I →∞, then (Nδ̂ −Nδ)/
√

Σ
d→ N (0, 1).

Proof. Since our outcomes are binary, the maximal contribution of an individual summand

niδ̂i to
∑I

i=1 niδ̂i = Nδ̂ is bounded in absolute value by n∗. Using Lyapunov’s central limit

theorem applied to a sequence of independent bounded random variables (Lehmann, 2004,

Corrolary 2.7.1), we have that (Nδ̂ − Nδ) d→ N (0,Σ) as I → ∞ provided that Σ → ∞ as

I →∞.

This requirement precludes a certain type of degeneracy. Namely, it cannot be the case that

only finitely many strata have nonzero variances for δ̂i. This, coupled with a bound on the

maximal stratum size, suffices for asymptotic normality to hold.

2.5.2. Integer Programming for the Maximal Variance

In theory, the maximal variance for a given composite null, H0 : δ = δ0, could be found by

enumerating all 2N possible allocations of unobserved binary potential outcomes, comput-

ing var(δ̂) through (2.1) for each allocation, and finding the maximal variance among the

allocations that satisfy δ ∈ Dδ0 . Such a naïve approach quickly becomes computationally

infeasible: in our application, this would would require enumerating 21208 sets of potential

outcomes.

Our approach is to instead pose the problem of maximizing the variance within a composite
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null as an integer program. Roughly stated, the resulting integer program optimizes the

variance over the values of the unobserved potential outcomes, subject to the resulting allo-

cation of potential outcomes being a member of the composite null. Though many equivalent

formulations of the desired optimization problem are possible, the one we choose explicitly

avoids symmetric solutions, known to cripple the computation time of integer programs

(Margot, 2010), by having each decision variable correspond to a unique distribution on the

contribution to the overall estimated average treatment effect from a given stratum. Our ap-

proach exploits three essential facts. Firstly, there is often symmetry between strata in that

(a) ni = ni′ , (b)
∑ni

j=1 ZijRij =
∑n′i

j=1 Zi′jRi′j and (c)
∑ni

j=1(1−Zij)Rij =
∑n′i

j=1(1−Zi′j)Ri′j

for symmetric strata i and i′, meaning that any allocation of potential outcomes for stratum

i is also a feasible allocation for stratum i′. Secondly, there is often symmetry within strata

in that Zij = Zik and Rij = Rik for symmetric individuals j and k in stratum i, meaning

that the var(δ̂i) remains the same if the values for the unobserved potential outcome are

permuted among symmetric individuals in stratum i. Finally, there is independence between

strata which allows us to sum stratum-wise variance contributions together to arrive at the

overall variance of the estimated average treatment effect. In combination, these three facts

allow this seemingly daunting optimization problem to be solved in a matter of seconds. See

Appendix A.7 for a detailed discussion of our integer programming formulation.

2.6. Inference for Severe Sepsis Mortality

We now proceed with randomization inference on the study population defined by our max-

imal box in Section 2.4.3. As a reminder, this consists of severe sepsis patients without

hemodynamic septic shock, with initial serum lactate between 1.2 and 5.8 mmol/L, and

with APACHE II scores between 5 and 29. Of the 1208 patients in our study population,

701 were admitted to the hospital ward and 507 were admitted to the ICU. Our causal

estimand is the difference between 60 day mortality rates if all patients had been admitted

to the ICU and if all patients had been admitted to the hospital ward. Before matching,

the unadjusted (and hence potentially biased) estimates for these rates under ICU and hos-
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Table 2: Estimated differences in severe sepsis mortality between patients admitted to the
ICU and the hospital ward in our study population, both overall and among patients with
cryptic septic shock. Positive values favor hospital ward admission, and negative values favor
ICU admission. The standard errors reported are the Wald-estimates (i.e. the maximal
standard errors at the estimated average treatment effects) and confidence intervals were
constructed by inverting a series of tests as described in Section 2.5.1.

Overall Cryptic S.S.
Estimated ATE 4.3% -0.8%

(SE) (3.7%) (9.0%)
95% Conf. Int. [-3.0%; 11%] [-18%; 17%]

pital ward admissions are 24.3% and 12.0% respectively overall, and are 27.7% and 21.2%

respectively within the cryptic septic shock subgroup.

After adjusting for measured confounders through covariate matching, the estimated mortal-

ity rates under ICU and hospital ward admission are 19.4% and 15.1% respectively overall,

and are 26.0% and 26.8% respectively within the cryptic septic shock subgroup. Table 2

shows the estimated average treatment effects (the differences between proportions under

ICU and hospital ward admission) both in our overall study population and among the cryp-

tic septic shock subgroup. We also report 95% confidence intervals, which were formed by

inverting a series of hypothesis tests as discussed in Section 2.5.1. Both of these confidence

intervals contain 0, indicating that we lack substantial evidence to suggest that there is a

nonzero effect both overall and in the cryptic septic shock subgroup. Through our imple-

mentation, we were able to construct the reported confidence intervals in 0.42 seconds using

Gurobi (free for academic use), and 0.72 seconds to solve using lpSolve (free for all users)

on a desktop computer with a 3.40 GHz processor and 16.0 GB RAM. This demonstrates

that confidence intervals can be constructed using our integer programming formulation

efficiently using both commercial and freely available solvers.

2.7. Discussion

As expected, we found that common support was not present for the most severely ill

sepsis patients. The subset of septic shock patients, which include those with hemodynamic
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compromise or evidence of hypoperfusion, are routinely admitted directly to the ICU and

therefore an observational study cannot address the effect of these triage decisions. For the

population with substantial common support, our findings suggested that there was no clear

benefit to direct ICU admission for non-shock, severe sepsis patients. In fact, recognizing

our wide confidence intervals, the magnitude of the potential benefit of direct ICU admission

after adjusting for all measured confounders through matching at the leftmost extreme of

our confidence interval was relatively small at 3%. While larger studies are required to

substantiate our findings, under the assumption of no unmeasured confounding our analysis

finds no evidence to suggest that the common practice in hospitals with strained ICUs

(occupancy rates approaching 100%) to defer ICU admission for many severe sepsis patients

results in demonstrable harm for those who are less severely ill at the time of presentation

to the emergency department.

By using the maximal box problem to define a study population for further analysis, we

arrived at a study population with a readily interpretable definition in terms of important

covariates wherein acceptable balance could be attained. One downside of our method

is that it is not guaranteed that suitable balance can be attained in the resulting study

population. That is, one may arrive at a study population defined in terms of important

covariates where it is difficult to find a matching procedure that attains suitable balance on

all covariates. One option is to simply iterate: covariates for which suitable balance cannot

be achieved can be used in defining a study population through the maximal box problem,

and then one could again try to attain balance within the proposed study population. An

interesting area for future research would be to create a procedure where the returned

study population is guaranteed to have a match with acceptable balance. With fixed ratio

matching, recent work on mixed-integer programming matching (Zubizarreta, 2012) and

cardinality-matching (Zubizarreta et al., 2014) may provide insight into how to incorporate

the balancing constraints into the optimization problem.

In our application, we determined which covariates were most important for the treatment
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and the outcome (and hence those for which we seek verifiable overlap) through consultation

with subject matter experts. In other applications, practitioners may not want to rely solely

on prior information for determining which covariates are important and rather allow the

data itself to attest to this. While model selection for the propensity score model can be

conducted without concern, one must be careful when assessing the impact of covariates on

the outcome variable as it could potentially bias the resulting inference by compromising the

“researcher blinding” that makes matching so appealing (Rubin and Waterman, 2006). One

path forward would be to employ sample splitting, thus assessing importance of covariates

for the outcome using data that is not involved in the matched analysis.

Through our analysis of the impact of ward versus ICU admission on 60 day mortality rates,

we have shown that the applicability of discrete optimization in causal inference extends far

beyond matching algorithms. In fact, discrete optimization provides a powerful set of tools

for solving many problems common to observational studies and, more broadly, statistics

in general. The availability of efficient solvers can serve as the impetus for new methods

that trade potentially unverifiable model assumptions for an increase in computation time.

This is not to say that computational burden should not be considered when developing

statistical methodology; rather, it is to caution against limiting the imagination solely on

the basis of the computational power of the present day. As history has borne out, what is

intractable today may be feasible tomorrow.
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CHAPTER 3 : Randomization Inference and Sensitivity Analysis for Composite

Null Hypotheses with Binary Outcomes in Matched Observational

Studies

Joint work with Pixu Shi, Mark Mikkelsen, and Dylan Small

3.1. Introduction

3.1.1. Challenges for Matched Observational Studies with Binary Outcomes

Matching is a simple, transparent and convincing way to adjust for overt biases in an obser-

vational study. In a study employing matching, treated subjects are placed into strata with

control subjects on the basis of their observed covariates. In each stratum, there is either

one treated unit and one or more similar control units, or one control unit and one or more

similar treated units (Hansen, 2004; Rosenbaum, 2010; Stuart, 2010). The overall covariate

balance between the two groups is then assessed with respect to the produced stratification,

and inference is only allowed to proceed if the balance is deemed acceptable. This procedure

encourages researcher blinding, as both the construction of matched sets and the assessment

of balance proceed without ever looking at the outcome of interest just as they would in a

blocked randomized trial.

Despite our best efforts, observational data can never achieve their randomized experimental

ideal as the assignment of interventions was conducted outside of the researcher’s control.

Nonetheless, randomization inference provides an appealing framework within which to op-

erate for matched observational studies. The analysis initially proceeds as though the data

arose from a blocked randomized experiment, with the strata constructed through matching

now regarded as existing before random assignment occurred. Randomization inference uses

only the assumption of random assignment of interventions to provide a “reasoned basis for

inference” in a randomized study (Fisher, 1935). In the associated sensitivity analysis for an

observational study, departures from random assignment of treatment within each block due
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to unmeasured confounders are considered. The sensitivity analysis forces the practitioner

to explicitly acknowledge greater uncertainty about causal effects than would be present in a

randomized experiment due to the possibility that unmeasured confounders affect treatment

assignment and the outcome (Rosenbaum, 2002a, Section 4).

With binary outcomes, randomization inference and sensitivity analyses in matched obser-

vational studies raise computational challenges that have heretofore limited their use. When

the outcome is continuous rather than binary and an additive treatment effect is plausible,

hypothesis testing and sensitivity analyses for the treatment effect can be conducted for a

simple null hypothesis, and confidence intervals can then be found by inverting a series of

such tests. This is a straightforward task, since the potential outcomes under treatment and

control for each individual are uniquely determined by the hypothesized treatment effect

(Hodges and Lehmann, 1963). Inference under no unmeasured confounding merely requires

a simple randomization test, and a sensitivity analysis can be performed with ease through

the asymptotically separable algorithm of Gastwirth et al. (2000). When dealing with binary

responses, however, an additive treatment effect model is inapplicable: if an effect exists it

is most likely heterogeneous, as the intervention may cause an event for one individual while

not causing the event for another. As such, confidence intervals are instead constructed for

causal estimands whose corresponding hypothesis tests are composite in nature, meaning

there are many allocations of potential outcomes which yield the same hypothesized value

of the causal estimand; see Rosenbaum (2001, 2002b) for further discussion. To reject a

null hypothesis for a causal parameter of this sort, we must reject the null for all values of

the potential outcomes which satisfy the null. The situation is further complicated when

conducting a sensitivity analysis, as inference must also account for the existence of an un-

measured confounder with a range of impacts on the assignment of interventions within a

matched set. We now illustrate these points by investigating the causal effect of one post-

hospitalization protocol versus another after an acute care stay on hospital readmission

rates.
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3.1.2. Motivating Example: Effect of Post-Acute Care Protocols on Hospital Readmission

At the time of discharge after an acute care hospitalization, a fundamental question arises:

to where should the patient be discharged? The long-term goal shared by providers and

patients envisions a transition home and a return to normalcy, yet a premature discharge

home without appropriate guidance could impede a durable recovery.

An important measure of whether a patient has achieved a durable recovery is whether the

patient does not need to be readmitted to the hospital within a certain period of time. Differ-

ent avenues for reducing rehospitalization rates have recently garnered significant attention

nationwide (Jencks et al., 2009), and post-acute care is one mechanism through which hos-

pital readmission rates may be improved (Ottenbacher et al., 2014). For individuals who

are not gravely ill, post-acute care entails more intensive discharge options than a simple

discharge home without further supervision such as discharge home while receiving visits

from skilled nurses, physical therapy, and other additional health benefits (referred to hence-

forth as “home with home health services”); or discharge to an acute rehabilitation center.

Post-acute care use is on the rise in the United States; however, post-acute care services

can be quite costly, sometimes even rivaling the cost of a hospital readmission (Mechanic,

2014). It is thus of interest to assess the relative merits of various post-acute care protocols

for reducing hospital readmission rates.

We aim to assess the causal effect of being discharged to an acute rehabilitation center

versus home with home health services on hospital readmission rates through a retrospective

observational study. Hospital records for acute medical and surgical patients discharged from

three hospitals in the University of Pennsylvania Hospital system between 2010 and 2012

were collected; see Jones et al. (2015) for more details on this study. Within this data set,

there are 4893 individuals assigned to acute rehabilitation and 35,174 individuals assigned

to home with home health services, for 40,067 total individuals. We would like to assess

whether discharge to acute rehabilitation reduces the causal risk of hospital readmission

relative to discharge home with home health services. Beyond testing this hypothesis, we
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would also like to create confidence intervals for causal parameters that effectively summarize

the impact of discharge location on hospital readmission rates in our study population. Two

causal estimands of interest for this comparison are the causal risk difference, which is the

difference in proportions of readmitted patients if all patients had been assigned to acute

rehabilitation versus that if all patients had been discharged home with home health services;

and the causal risk ratio, which is the ratio of these two proportions.

Through the use of matching with a variable number of controls (Ming and Rosenbaum,

2000), individuals assigned to acute rehabilitation were placed in matched sets with varying

numbers of home with home health services individuals (ranging from 1 to 20) who were

similar on the basis of their observed covariates. We used rank-based Mahalanobis distance

with a propensity score caliper (estimated by logistic regression) of 0.2 as our distance metric

to perform the matching. We further required exact balance on the indicator of admission

to an intensive care unit to better control for whether an individual had a critical illness. In

Appendix B.1, we demonstrate that this stratification resulted in acceptable balance on the

basis of the standardized differences between the groups.

In the stratified experiment that our match aims to mimic, randomization inference can be

readily used to test Fisher’s sharp null of no effect. Under Fisher’s sharp null, the unobserved

potential outcomes are assumed to equal the observed potential outcomes for each individual.

The sharp null can then be assessed by noting that within each stratum, the number of

treated individuals for whom an event is observed follows a hypergeometric distribution.

The total number of treated individuals with events across all strata is then distributed as

the sum of independent hypergeometric distributions, forming the basis for what has become

known as the Mantel-Haenszel test (Mantel and Haenszel, 1959; Rosenbaum, 2002a).

Testing a null on the causal risk difference or the causal risk ratio presents challenges not

encountered when testing the sharp null, as many allocations of potential outcomes could

yield the same causal parameter. For example, if we are testing the null that the causal

risk difference is 0 without making further assumptions on the potential outcomes, the
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allocation under Fisher’s null is merely one of many choices (i.e., it is merely one element

of the composite null). Conducting a hypothesis test and performing a sensitivity analysis

requires assessing tail probabilities for all elements of the composite null, both under the

assumption of no unmeasured confounding and while allowing for an unmeasured confounder

of a range of strengths. Direct enumeration of all possible combinations of potential outcomes

is computationally infeasible for even moderate sample sizes. In our motivating example,

there are 240,067 possible combinations of potential outcomes, even without considering values

for the unmeasured confounder.

We instead aim to find the combination of potential outcomes and unmeasured confounders

that results in the worst-case p-value for the test being conducted. If the null hypothesis

corresponding to this worst-case allocation can be rejected, we can then reject all elements

of the composite null. Rosenbaum (2002b) uses a similar approach for inference on the

attributable effect, a quantity which is closely related to the risk difference. There it is shown

that under the assumption of a nonnegative treatment effect (i.e., the treatment may cause

an event, but does not preclude an event from happening if it would have happened under the

control) a simple enumerative algorithm yields an asymptotic approximation to the worst-

case p-value for this composite null. This is because the impact on the p-value of attributing

an observed event to the treatment (stating that the unobserved potential outcome under

control is 0) can be well approximated through asymptotic separability (Gastwirth et al.,

2000), such that one can satisfy the null while finding the worst-case allocation by sorting

the strata on the basis of their impact on the p-value and attributing the proper number of

effects by proceeding down the sorted list. Recent works by Yang et al. (2014) and Keele

et al. (2014) discuss how the attributable effect can also be used to define estimands of

interest in instrumental variable studies.

Unfortunately, in the absence of a known direction of effect finding the worst-case allocation

does not simplify in the same manner. This is because finding the potential outcome alloca-

tion with the largest impact on the p-value on a stratum-wise basis does not readily yield an
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allocation that satisfies the composite null. The problem is not separable on a stratum-wise

basic even asymptotically, as the requirement that the composite null must be true neces-

sarily links the strata together in a complex manner. There are two non-complementary

forces at play in the required optimization problem: for some strata, the potential outcome

allocations should maximize the impact on the p-value, while in other strata the missing

potential outcome allocations should work towards satisfying the composite null. For our

motivating example, there are over 300,000 types of contributions to the p-value that must

be considered in the sensitivity analysis when we do not assume a known direction of effect

(as is shown in Section 3.6.1). Explicit enumeration is intractable here, as we must consider

which allowed combinations of these contributions maximize the p-value while satisfying the

null in question. As such, a different approach is required to make the computation feasible.

3.1.3. Integer Programming as a Path Forward

In this paper, we show that hypothesis testing for a composite null with binary outcomes

can be performed by solving an integer linear program under the assumption of no un-

measured confounding. When conducting a sensitivity analysis by allowing for unmeasured

confounding of a certain strength, an integer quadratic program is required. These optimiza-

tion problems yield the worst-case p-value within the composite null so long as a normal

approximation to the test statistic is justified. We show that our formulation is strong, in

that the optimal objective value for our integer program closely approximates that of the

corresponding continuous relaxation. As we demonstrate through simulation studies and

real data examples, this allows hypothesis testing and sensitivity analyses to be conducted

efficiently even with large sample sizes despite the fact that integer programming is NP-

hard in general, as discrete optimization solvers heavily utilize continuous relaxations in

their search path. Through comparing our formulation to an equivalent binary program

in the supplementary material, we also demonstrate that recent advances in optimization

software (Jünger et al., 2009) alone are not sufficient for solving the problem presented

herein; rather, a thoughtful formulation remains essential for solving large-scale discrete
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optimization problems expeditiously.

3.2. Causal Inference after Matching

3.2.1. Notation for a Stratified Randomized Experiment

Suppose there are I independent strata, the ith of which contains ni ≥ 2 individuals, that

were formed on the basis of pre-treatment covariates. In each stratum, mi individuals receive

the treatment and ni −mi individuals receive the control, and min{mi, ni −mi} = 1. We

proceed under the stable unit treatment value assumption (SUTVA), which entails that

(1) there is no interference, i.e. that the observation of one unit is not affected by the

treatment assignment of other units; and (2) there are no hidden levels of the assigned

treatment, meaning that the treatments for all individuals with the same level of observed

treatment are truly comparable (Rubin, 1986). Let Zij be an indicator variable that takes

the value 1 if individual j in stratum i is assigned to the treatment. Each individual has

two sets of binary potential outcomes: one under treatment, {rT ij , dT ij}, and one under

control, {rCij , dCij}. rT ij and rCij are the primary outcomes of interest, while dT ij and

dCij are indicators of whether or not an individual would actually take the treatment when

randomly assigned to the treatment or control group. The observations for each individual

are Rij = rT ijZij + rCij(1−Zij) and Dij = dT ijZij + dCij(1−Zij); see Neyman (1923) and

Rubin (1974) for more on the potential outcomes framework. In the classical experimental

setting, dT ij−dCij = 1 ∀i, j, and hence all individuals take the administered treatment. For a

randomized encouragement design, Zij represents the encouragement to take the treatment

(which is randomly assigned to patients), while dT ij and dCij are the actual treatment

received if Zij = 1 and Zij = 0 respectively (Holland, 1988). Matched observational studies

assuming strong ignorability (Rosenbaum and Rubin, 1983) aim to replicate a classical

stratified experiment, whereas matched studies employing an instrumental variable strive

towards a randomized encouragement design, with Zij being the instrumental variable.

There are N =
∑I

i=1 ni total individuals in the study. Each individual has observed covari-
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ates xij and unobserved covariate uij . Let R = [R11, R12, ...,, RInI
]T , Ri = [Ri1, ..., Rini ]

T ,

and let the analogous definitions hold for D,Di, Z,Zi. Let rT = [rT11, ..., rTInI
], rT i =

[rT i1, ..., rT ini ], and let the analogous definitions hold for the other potential outcomes and

the unobserved covariate. Let X be a matrix whose rows are the vectors xij . Finally, let Ω

be the set of
∏I
i=1 ni possible values of Z under the given stratification. In a randomized

experiment, randomness is modeled through the assignment vector; each z ∈ Ω has prob-

ability 1/|Ω| of being selected, where the notation |B| denotes the number of elements in

the set B. Hence, quantities dependent on the assignment vector such as Z, R and D are

random, whereas F = {rT , rC ,dT ,dC ,X,u} contains fixed quantities. For a randomized

experiment, P(Zij = 1|F ,Z ∈ Ω) = mi/ni, and P(Z = z|F ,Z ∈ Ω) = 1/|Ω|.

3.2.2. Conducting a Sensitivity Analysis

In an observational study, the I strata are still generated based on pre-treatment covariates

but are only created after treatment assignment has taken place. Furthermore, the treatment

assignment was conducted outside of the practitioner’s control which may introduce bias

due to the existence of unmeasured confounders. We follow the model for a sensitivity

analysis of Rosenbaum (2002a, Section 4), which states that failure to account for unobserved

covariates may result in biased treatment assignments within a stratum. This model can

be parameterized by a number Γ = exp(γ) ≥ 1 which bounds the extent to which the odds

ratio of assignment can vary between two individuals in the same matched stratum. Letting

πij = P(Zij = 1|F), we can write the allowed deviation as 1/Γ ≤ πij(1−πik)/(πik(1−πij)) ≤

Γ. This model can be equivalently expressed in terms of the observed covariates xij and

the unobserved covariate uij (assumed without loss of generality to be between 0 and 1),

as log (πij/(1− πij)) = ζ(xij) + γuij , where ζ(xij) = ζ(xik), i = 1, ..., I, 1 ≤ j, k ≤ ni. See

Rosenbaum (2002a, Section 4.2) for a discussion of the equivalence between these models.

The probabilities of each possible allocation of treatment and control are given by P(Z =

z|F ,Z ∈ Ω) = exp(γzTu)/
∑

b∈Ω exp(γbTu), where u = [u11, u12, ..., uI,ni ]. If Γ = 1,

the distribution of treatment assignments corresponds to the randomization distribution
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discussed in Section 4.2.1. For Γ > 1, the resulting distribution differs from that of a

randomized experiment with the extent of the departure controlled by Γ.

Consider a simple hypothesis test based on a test statistic of the form T = ZTq, where

q = q(rT , rC ,dT ,dC) is a permutation invariant, arrangement increasing function. Most

commonly employed statistics are of this form; see Rosenbaum (2002a, Section 2.4) for a

detailed discussion. Without loss of generality reorder the elements of q such that within

each stratum qi1 ≤ qi2 ≤ .. ≤ qini . For a given value of Γ and for fixed values of the potential

outcomes, a sensitivity analysis proceeds by finding tight upper and lower bounds on the

upper tail probability, P(T ≥ t), by finding the worst-case allocation of the unmeasured

confounder u. One then finds the value of Γ such that the conclusions of the study would

be materially altered. The more robust a given study is to unmeasured confounding, the

larger the value of Γ must be to alter its findings.

As is demonstrated in Rosenbaum and Krieger (1990) for strata with mi = 1, for each

Γ an upper bound on P(T ≥ t) is found at a value of the unobserved covariate u+ ∈

U+
1 × ...×U+

I , where U+
i consists of ni − 1 ordered binary vectors (each of length ni) with

0 = u+
i1 ≤ u+

i2... ≤ u+
ini

= 1. Similarly, a lower bound on P(T ≥ t) is found at a vector

u− ∈ U−1 × ...×U−I with 1 = u−i1 ≥ u
−
i2... ≥ u

−
ini

= 0. Under mild regularity conditions on q,

T is well approximated by a normal distribution. Large sample bounds on the tail probability

can be expressed in terms of corresponding bounds on standardized deviates. These results

can readily extended to stratifications yielded by a full match through a simple redefinition

of Z and q; see Rosenbaum (2002a, Section 4, Problem 12).

3.3. Composite Null Hypotheses

3.3.1. Estimands of Interest

To motivate our discussion, we will focus on three causal estimands of interest with binary

outcomes. Note however that the general framework for inference and sensitivity analyses

presented herein can be applied to any causal estimand for binary potential outcomes with
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an associated test statistic that can be written as ZTq for a function q(·) that satisfies the

conditions outlined in Section 3.2.2. The causal parameters we will consider are the causal

risk difference, causal risk ratio, and the effect ratio, defined as:

Risk Difference δ :=
1

N

I∑
i=1

ni∑
j=1

(rT ij − rCij)

Risk Ratio ϕ :=

∑I
i=1

∑ni
j=1 rT ij∑I

i=1

∑ni
j=1 rCij

Effect Ratio λ :=

∑I
i=1

∑ni
j=1(rT ij − rCij)∑I

i=1

∑ni
j=1(dT ij − dCij)

.

As mentioned in the introduction, the causal risk difference measures the difference in pro-

portions of observed events had all the individuals received the treatment and observed

events had all individuals received the control. Similarly, the causal risk ratio measures the

ratio of these two proportions. Each of these estimands has merits and shortcomings relative

to the other, owing to the fact that the risk difference measures an effect on an absolute

scale while the risk ratio measures an effect on a relative scale; see Appendix B.2 for further

discussion of these two measures. These estimands are appropriate under strong ignorability

(Rosenbaum and Rubin, 1983); in the corresponding idealized experiment, there are simply

treated and control individuals, and all individuals comply with their assigned treatment

regimen.

The effect ratio is a ratio of two average treatment effects, and hence serves as an assess-

ment of the relative magnitude of the two treatment effects (Baiocchi et al., 2010; Yang

et al., 2014). It is a causal estimand of interest in instrumental variable studies. In the

idealized experiment being mimicked, Zij represents the randomized encouragement to take

the treatment or control, while dT ij and dCij indicate whether the treatment would be taken

if Zij = 1 and Zij = 0 respectively. The effect ratio then represents the ratio of the effect

of the encouragement on the outcome to the effect of the encouragement on the treatment

received. If the encouragement (1) is truly randomly assigned within strata defined by the
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observed covariates; and (2) can only impact the outcome of an individual if the encour-

agement changes the individual’s choice of treatment regimen (the exclusion restriction:

dT ij = dCij ⇒ rT ij = rCij), Z is then an instrument for the impact of the treatment on

the response (Angrist et al., 1996). The parameter λ still has an interpretation in terms

of relative magnitude of the two effects even if the exclusion restriction is not met, but the

exclusion restriction coupled with monotonicity (dT ij ≥ dCij , also referred to as assuming

“no defiers”) give λ an additional interpretation as the average treatment effect among indi-

viduals who are compliers, i.e. individuals for which dT ij−dCij ; this is commonly referred to

as the local average treatment effect. While we will not always assume monotonicty holds,

we will make the assumption that the encouragement has an aggregate positive effect, i.e.∑I
i=1

∑ni
j=1 dT ij − dCij > 0, such that the effect ratio is well defined.

3.3.2. Testing a Composite Null

Note first that a null hypothesis on δ, ϕ, or λ corresponds to a composite null hypothesis

on the values of the potential outcomes, as multiple potential outcome allocations yield the

same value for the causal parameter. Let Θ(rT , rC ,dT ,dC) be a function that maps a given

set of potential outcomes to the corresponding causal parameter value of interest, θ. We call

a set of potential outcomes {rT , rC ,dT ,dC} consistent with a null hypothesis H0 : θ = θ0

for a causal parameter θ if the following conditions are satisfied:

(A1) Consistency with observed data: ZijrT ij+(1−Zij)rCij = Rij ; ZijdT ij+(1−Zij)dCij =

Dij

(A2) Consistency with assumptions made on potential outcomes

(A3) Agreement with the null hypothesis: Θ(rT , rC ,dT ,dC) = θ0

The first condition recognizes that we know the true values for half of the potential outcomes

based on the observed data. The second condition means that if the practitioner has made

additional assumptions on the potential outcomes, those assumptions must be satisfied in
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the allocations of potential outcomes under consideration. Assumptions could include a

known direction of effect, monotonicity, the exclusion restriction, and combinations thereof.

The third condition signifies that when testing a null hypothesis, we must only consider

allocations of potential outcomes where the corresponding causal parameter takes on the

desired value.

Let H(θ0) represent the set of potential outcomes satisfying conditions A1 - A3. As the

size of a composite null hypothesis test is the supremum of the sizes of the elements of the

composite null, to reject the null H0 : θ = θ0 at level α, we must reject the null for all

{rT , rC ,dT ,dC} ∈ H(θ0) at level α. As direct enumeration of H(θ0) is a laborious (and

likely computationally infeasible) task, we instead aim to find a single worst-case allocation

{rT , rC ,dT ,dC}∗ such that rejection of {rT , rC ,dT ,dC}∗ at level α implies rejection for all

{rT , rC ,dT ,dC} ∈ H(θ0).

We consider test statistics of the form T (θ0) =
∑I

i=1 Ti(θ0) with expectation 0 under the null

at Γ = 1. Let ψ(θ0; rT i, rCi,dT i,dCi) = E[Ti(θ0)]. Thus,
∑I

i=1 ψ(θ0; rT i, rCi,dT i,dCi) = 0

if and only if Θ(rT , rC ,dT ,dC) = θ0. For our three estimands of interest, the stratum-wise

contributions to the test statistic are

Ti(δ0) = −niδ0 + ni

ni∑
j=1

(ZijRij/mi − (1− Zij)Rij/(ni −mi))

Ti(ϕ0) = ni

ni∑
j=1

(ZijRij/mi − ϕ0(1− Zij)Rij/(ni −mi))

Ti(λ0) = ni

ni∑
j=1

(Zij(Rij − λ0Dij)/mi − (1− Zij)(Rij − λ0Dij)/(ni −mi)) ,
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with respective stratum-wise expectations

ψ(δ0; rT i, rCi,dT i,dCi) = −niδ0 +

ni∑
j=1

(rT ij − rCij)

ψ(ϕ0; rT i, rCi,dT i,dCi) =

ni∑
j=1

(rT ij − ϕ0rCij)

ψ(λ0; rT i, rCi,dT i,dCi) =

ni∑
j=1

(rT ij − λ0dT ij − (rCij − λ0dCij)).

To express these statistics in the required form for conducting a sensitivity analysis, define

Z̃ such that Z̃ij = Zij if mi = 1 and Z̃ij = 1− Zij if mi > 1. If mi = 1, define q(·) as:

(q(δ0; rT i, rCi,dT i,dCi))j = ni

−δ0 + rT ij/mi −
∑
k 6=j

rCik/(ni −mi)


(q(ϕ0; rT i, rCi,dT i,dCi))j = ni

rT ij/mi −
∑
k 6=j

ϕ0rCik/(ni −mi)


(q(λ0; rT i, rCi,dT i,dCi))j = ni

(rT ij − λ0dT ij)/mi −
∑
k 6=j

(rCik − λ0dCik)/(ni −mi)

 .

The analogous definition holds when mi > 1: simply redefine q(·) within stratum i such

that the proper contribution is given to Ti(·) if unit j in stratum i receives the control (and

thus, all other units receive the treatment). The test statistic Z̃Tq(·) then has the required

form for conducting a sensitivity analysis.

Under mild regularity conditions, Lyapunov’s central limit theorem yields that all three of

the test statistics T (θ0) under consideration are well approximated by a normal distribution

for Γ ≥ 1. See Chapter 2 for a discussion with regards to the risk difference (the risk ratio

follows through similar arguments), and see Baiocchi et al. (2010) for a discussion for the

effect ratio. Finding the worst-case allocation {rT , rC ,dT ,dC}∗ at a given Γ can be well

approximated by finding the allocation of potential outcomes and unobserved confounder

that results in the worst-case standardized deviate. While this observation simplifies our

task, it alone is not sufficient for making both inference and sensitivity analyses feasible
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for our estimands of interest; rather, we must exploit other features of the optimization

problem.

3.4. Symmetric Tables

We now introduce the required framework and notation for our optimization problem.

Though many equivalent formulations are possible, the one we describe has a decision vari-

able for each unique distribution on a stratum’s contribution to the test statistic. This is

an extension of the formulation given in Chapter 2, which was catered towards maximiz-

ing the variance of the estimated causal risk difference under no unmeasured confounding.

In Section 3.5.3, we discuss the elements of our formulation which facilitate solving the

corresponding integer program efficiently.

Let T zrdi = {j : Zij = z,Rij = r,Dij = d}, (z, r, d) ∈ {0, 1}3, i ∈ {1, ..., I}, denote the

eight possible partitions of indices of individuals in stratum i into sets based on their value

of the encouraged treatment, observed response, and taken treatment. Within each set, all

members share the same value of either rT ij or rCij , and of either dT ij or dCij . For example,

if j, k ∈ T 011
i , then rCij = rCik = dCij = dCik = 1, yet the values of rT ij , rT ik, dT ij , dT ik are

unknown. Note that for the stratifications under consideration
∑

(r,d)∈{0,1}2 |T 0rd
i | = ni−mi,∑

(r,d)∈{0,1}2 |T 1rd
i | = mi, and the minimum of these two quantities is always 1. |T zrdi | can

be thought of as the value in cell (z, r, d) of a 23 factorial table that counts the number of

individuals with each combination of (z, r, d) in stratum i.

Under no assumption on the structure of the potential outcomes, there are 22ni possible

sets of potential outcomes in stratum i that are consistent with the observed data, each

of which results in a particular distribution for the contribution to the test statistic from

stratum i, Ti(θ0). Fortunately, one need never consider all 22ni allocations. First, without

any assumptions on the potential outcomes, the 22ni possible sets of potential outcomes

in stratum i only yield
∏

(z,r,d)∈{0,1}3(|T zrdi | + 1)2 unique distributions for Ti(θ0). To see

this, note that the test statistics under consideration are permutation invariant within each
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stratum. Let us examine the set T 000
i as an illustration. Here, we have dCij = rCij = 0 for

all j ∈ T 000
i . Of the 2|T

000
i | pairings [rTij , rCij ], there are only |T 000

i | + 1 non-exchangeable

allocations of values for {rT ij : j ∈ T 000
i }: (0, 0..., 0), (1, 0, ..., 0), ..., and (1, 1, ..., 1). An

analogous argument shows that there are only |T 000
i | + 1 non-exchangeable arrangements

for dT ij , thus resulting in (|T 000
i | + 1)2 total non-exchangeable allocations. The same logic

yields a contribution of (|T zrdi |+ 1)2 for each of the other seven partitions.

Additional structure is often imposed on the potential outcomes on top of consistency with

the observed data. For example, in the classical experiment we have that dT ij−dCij = 1 ∀i, j,

meaning that all patients comply with their assigned treatment. Hence, the four partitions

where Zi −Di 6= 0 are empty, and in the remaining partitions dT ij and dCij are fixed at 1

and 0 respectively. This results in only
∏

(z,r)∈{0,1}2(|T zrzi | + 1) allowed non-exchangeable

allocations within stratum i; note the lack of a square in the expression. This is also shown

in Rigdon and Hudgens (2015, Section 3). Other assumptions such as a known direction of

effect, monotonicity, and the exclusion restriction can be seen to similarly reduce the set of

allowed non-exchangeable allocations.

It would seem as though we must consider at most
∏I
i=1

∏
(z,r,d)∈{0,1}3(|T zrdi |+ 1)2 different

distributions for T (θ0) =
∑I

i=1 Ti(θ0) in our optimization problem. Fortunately, note first

that we assume independence between strata, and further note that we are using a normal

approximation to conduct inference. Hence, both the expectations and variances sum be-

tween strata and we do not need to consider covariances between strata. Further, in the

same way that there were a limited number of non-exchangeable allocations of potential

outcomes in each stratum due to repetition, many observed 23 factorial tables in the data

are repeated multiple times. For example, the matching with multiple controls described in

Section 3.1 returned 4893 strata, of which only 234 were unique.
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3.4.1. Expectation, Variance, and Null Deviation

We now introduce the requisite notation to exploit these facts to facilitate inference. Let

Ci = (|T 000
i |, ..., |T 111

i |) be the observed counts of the 23 tables for stratum i. C = {C1, ..., CI}

is a (multi)set, where the number of unique elements equals the number of unique 23 tables

observed in the data, which will typically be much less than its dimension. Let S be the

number of unique tables, and let s ∈ {1, ..., S} index the unique tables. Define I(i) to be

a function returning the index of the unique table corresponding to the table observed in

stratum i. Hence, I(i) = I(`) if and only if Ci = C`. Let Ms = |I−1(s)| be the number of

strata where unique table s was observed, and let ñs = nb for any b ∈ I−1(s) be the number

of observations in unique table s. Finally, let Ps be the number of allowed non-exchangeable

potential outcomes for unique table s, and let {[rT [sp], rC[sp],dT [sp],dC[sp]]}, p ∈ {1, ..., Ps}

be the set of allowed potential outcome allocations that are consistent with unique table s,

where tablewise consistency refers to adherence to conditions A2 and A3 within table s.

Without loss of generality, we assume that the observed statistic, tθ0 , is larger than its

expectation under the null at Γ = 1, 0. In upper bounding the upper tail probability

P (T (θ0) ≥ tθ0), we thus restrict our search to the set of unobserved confounders u+ ∈ U+

as discussed in Section 3.2.2. The analogous procedure would hold for u− ∈ U− if tθ0 < 0.

For the sth unique table, and the pth set of allowed potential outcome allocations consistent

within table s, s ∈ {1, ..., S}, p ∈ {1, .., Ps}, form

q(θ0)[sp]j = (q(θ0; rT [sp], rC[sp],dT [sp],dC[sp]))j . Reorder the q(θ0)[sp]j such that q(θ0)[sp]1 ≤

q(θ0)[sp]2 ≤ .. ≤ q(θ0)[sp]ñs
. For a given value of Γ ≥ 1, we define µ(θ0)[sp]a and ν(θ0)[sp]a,

a ∈ {1, ...ñs − 1}, as

µ(θ0)[sp]a =

∑a
j=1 q(θ0)[sp]j + Γ

∑ñs
j=a+1 q(θ0)[sp]j

a+ Γ(ñs − a)
, (3.1)
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and

ν(θ0)[sp]a =

∑a
j=1(q(θ0)[sp]j)

2 + Γ
∑ñs

j=a+1(q(θ0)[sp]j)
2

a+ Γ(ñs − a)
− (µ(θ0)[sp]a)

2. (3.2)

This notation is reminiscent of that of Gastwirth et al. (2000). The index a corresponds to the

the vector of unmeasured confounders u+ with a zeroes followed by ñs−a ones. µ(θ0)[sp]a and

ν(θ0)[sp]a represent the expectation and variance of the contribution to the test statistic T (θ0)

from a matched set with observed table s, consistent set of potential outcomes p, and alloca-

tion of unmeasured confounders a. Let µθ0 = [µ(θ0)[11]1, ..., µ(θ0)[SPS ],ñS−1], and let νθ0 =

[ν(θ0)[11]1, ..., ν(θ0)[SPS ],ñS−1]. Finally, recalling the definition of ψ(·) from Section 3.3 as the

expectation of the contribution to the test statistic T (θ0) from stratum i, define ψ(θ0)[sp]j =

(ψ(θ0; rT [sp], rC[sp], dT [sp],dC[sp]))j , and define ψθ0 = [ψ(θ0)[11]1, ..., ψ(θ0)[SPS ],ñS−1].

3.5. Inference and Sensitivity Analysis

Let x[sp]a be an integer variable denoting how many times the set of potential outcomes p that

is consistent with unique table s with allocation of unmeasured confounders a is observed in

the data, s ∈ {1, ..., S}, p ∈ {1, ..., Ps}, a ∈ {1, ..., ñs − 1}, and let x = [x[11]1, .., x[SPs],ñS−1].

For a given θ0 being tested, µ(θ0)[sp]ax[sp]a and ν(θ0)[sp]ax[sp]a represent the contribution

to the overall mean and variance of the test statistic if the pth set of potential outcomes

in unique table s with allocation of unmeasured confounders a is observed x[sp]a times,

and µTθ0x and νTθ0x represent the overall expectation and variance across all unique tables,

potential outcomes and unmeasured confounders.
∑Ps

p=1

∑ñs−1
a=1 x[sp]a then represents how

many times the sth unique table was observed in the data, a number which we defined to

be Ms. Hence,
∑Ps

p=1

∑ñs−1
a=1 x[sp]a = Ms.

Note that through our formulation we have restricted optimization to the set of observations

that adhere to conditions A1 (consistency with the observed data) and A2 (consistency with

any other assumptions made by the modeler on the potential outcomes) of Section 3.3.2.

We enforce condition A3 (that the null must be true in the resulting allocation of potential
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outcomes) through adding a linear constraint to our optimization problem: ψTθ0x = 0. The

following integer program facilitates hypothesis testing and confidence interval construction

under no unmeasured confounding (Section 3.5.1), as well as a sensitivity analysis for any

Γ > 1 (Section 3.5.2):

minimize
x

(tθ0 − µTθ0x)2 − κ(νTθ0x) (P1)

subject to
Ps∑
p=1

ñs−1∑
a=1

x[sp]a = Ms ∀s

ψTθ0x = 0

x[sp]a ∈ Z ∀s, p, a

x[sp]a ≥ 0 ∀s, p, a,

where Z are the integers and κ > 0 is a positive constant to be described. The above formu-

lation is sufficient for tests on the risk difference and risk ratio. For the effect ratio, we can

impose the constraint of an aggregate positive effect of the intervention,
∑I

i=1

∑ni
j=1 dT ij −

dCij > 0, through an additional linear inequality.

3.5.1. Hypothesis Testing and Confidence Intervals Under No Unmeasured Confounding

For conducting inference under pure randomization (that is, under Γ = 1), the value of

µTθ0x is fixed to the expectation of the test statistic under the null, 0. Hence, (tθ0 −µTθ0x) is

constant as well, and (MV) reduces to an integer linear program. This program is equivalent

to finding the largest variance over all feasible x. Call the optimal vector x∗θ0 , and call the

corresponding maximal variance νTθ0x
∗
θ0
. The worst-case deviate for testing θ = θ0 can then

be found by setting zθ0 = tθ0/
√
νTθ0x

∗
θ0
.

To form a 100 × (1 − α)% confidence interval at Γ = 1, we simply invert a series of tests.

Explicitly, we find upper and lower bounds, θu and θ`, such that θ` =

SOLVE
{
θ : tθ/

√
νTθ x

∗
θ = z1−α/2

}
and θu = SOLVE

{
θ : tθ/

√
νTθ x

∗
θ = zα/2

}
, where zq is

the q quantile of a standard normal distribution. These endpoints can be found through a
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grid search over θ, or by using the bisection algorithm.

3.5.2. Sensitivity Analysis through Iterative Optimization

For Γ > 1, (MV) is instead an integer quadratic program. First, note that we reject the

null with a two-sided alternative at size α if (tθ0 − µTθ0x)2/(νTθ0x) ≥ χ2
1,1−α for all values

of the potential outcomes that are consistent with the null being tested, where χ2
1,1−α is

the 1 − α quantile of a χ2
1 distribution. Equivalently, we need only determine whether

(tθ0 − µTθ0x)2 − χ2
1,1−α(νTθ0x) ≥ 0 for all feasible x. This can be done by minimizing (MV)

with κ = χ2
1,1−α over all feasible x, and checking whether or not the objective value at x∗θ0

is greater than zero.

One may also be interested in knowing the worst-case deviate itself (equivalently, the worst-

case p-value), rather than simply knowing the result of the test. The optimal vector x∗θ0

for (MV) at κ = χ2
1,1−α need not result in the worst-case deviate; however, we now show

that we can find the worst-case p-value through an iterative procedure based on (MV). To

proceed, we find the value κ = κ∗ such that the minimal objective value of (MV) equals 0.

As is proved in Dinkelbach (1967), such a value of κ∗ exactly equals the minimal squared

deviate. Interpreted statistically, the value κ∗ is the maximal critical value for the squared

deviate such that the null could be still be rejected, which is equivalent to the value of the

deviate itself. Although finding this zero could be performed using a grid search, we instead

solve for the optimal x∗θ0 through the following algorithm.

1. Start with an initial value κ(0).

2. In iteration i ≥ 1, set κ = κ(i−1) in (MV).

3. Solve the resulting program, and set κ(i) = (tθ0 − (µTθ0x
∗(i)
θ0

))2/(νTθ0x
∗(i)
θ0

).

4. If κ(i) = κ(i−1) terminate the algorithm: set x∗θ0 = x
∗(i)
θ0

, and set κ∗ = κ(i).

5. Otherwise, return to step 2. Repeat until convergence.
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Note that the sequence {κ(i)} is bounded below by 0. It is also monotone decreasing for i ≥ 1,

as (tθ0−µTθ0x
∗(i+1)
θ0

)2−κ(i)(νTθ0x
∗(i+1)
θ0

) ≤ (tθ0−µTθ0x
∗(i)
θ0

)2−κ(i)(νTθ0x
∗(i)
θ0

) = 0, which implies

κ(i) ≥ (tθ0 − (µTθ0x
∗(i+1)))2/(νTθ0x

∗(i+1)
θ0

) = κ(i+1). Hence, this algorithm will converge to a

stationary point κ∗. In practice, we find that this is achieved very quickly, frequently within

2 or 3 steps. At κ∗, note that it must be the case that the objective value in (MV) equals

0. This means that at the termination of the iterative procedure, we have converged to the

minimal deviate. The maximal p-value is then Φ(−
√
κ∗) for a one-sided test or 2×Φ(−

√
κ∗)

for a two-sided test, where Φ(·) is the CDF of a standard normal distribution.

3.5.3. Computation Time

In the past, researchers have been dissuaded from suggesting methodology that requires

the solution of an integer program, as problems of this sort are NP-hard in general. In

this section, we present simulation studies to assuage fears that our integer linear (Γ = 1)

and quadratic (Γ > 1) programs may have excessive computational burden. Before doing

so, we discuss two properties of an integer programming formulation that substantially

influence the performance of integer programming solvers: the strength of the corresponding

continuous relaxation, and the avoidance of symmetric feasible solutions (Bertsimas and

Tsitsiklis, 1997).

A strong formulation of an integer program is one for which the polyhedron defined by the

constraint set, P = {x : Ax ≤ b,x ∈ R}, is close to the integer hull, PI = Conv{x : x ∈

P ∩Z}. In an ideal world, the integer hull and the relaxed polyhedron would align, meaning

that any linear programming relaxation would be guaranteed to have an integral optimal

solution since any linear program has an optimal solution at the vertex of its corresponding

polyhedron. For a quadratic program, having PI = P does not guarantee coincidence of the

true and relaxed optimal solutions, as a quadratic program may have a solution at an edge.

Nonetheless, having P far from PI can hamper the progress of a mixed integer programming

solver, as it increases the number of cuts required by branch-and-cut algorithms to strengthen

the continuous relaxation (Mitchell, 2002).
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A symmetric formulation is one in which variables can be permuted without changing the

structure of the problem. Formulations of this sort can also cripple standard integer pro-

gramming solvers even with modest problem size. This is due in large part to the generation

of isomorphic solution paths by branch-and-bound and branch-and-cut algorithms, which

in turn complicates the process by which a given node is proven optimal or suboptimal.

Although methods exist to detect symmetry groups in a given formulation, formulations

that explicitly avoid such groups are strongly preferred; see Margot (2010) for a discussion

of these points.

We now present simulation studies to demonstrate that neither weakness nor symmetry of

formulation proves inimical to conducting hypothesis testing and sensitivity analyses using

the methodology outlined in this paper, even with large data sets and large stratum sizes. In

our first setting, in each of 1000 iterations we sample 1250 matched sets from the strata in our

motivating example from Section 3.1.2. We assign treated individuals and control indivduals

an outcome of 1 with probability 0.75 and 0.25 respectively. Each iteration thus has strata

ranging in size from 2 to 21, and each data set has an average of roughly 10,000 individuals

within it. Large strata affect computation time, as they result in larger numbers of non-

exchangeable potential outcome allocations within a stratum and fewer duplicated 2 × 2

tables in the data. In our data set, 25% of the matched strata had one acute rehabilitation

individual and 20 home with home health services patients. This simulation setting thus

produces particularly challenging optimization problems: on average, each iteration had

170,000 variables over which to optimize. As we demonstrate in Appendix B.3, the number

of variables, itself affected by the number and size of the unique observed tables, is a primary

determinant of computation time for the optimization routine.

We conduct two hypothesis tests in each iteration: a null on the causal risk difference,

δ = 0.2, and on the causal risk ratio, ϕ = 1.75. For both of the causal estimands being

assessed, we test the stated nulls with two-sided alternatives at Γ = 1 (no unmeasured

confounders, integer linear program) and Γ = 3 (unmeasured confounding exists, integer
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quadratic program). We record the required computation time for each data set, which

includes both the time taken to define the necessary constants for the problem and also the

time required to solve the optimization problem. To measure the strength of our formulation,

we also recorded whether or not the initial continuous relaxation had an optimal solution

which was itself integral, and if not the relative difference in optimal objective function values

between the integer and continuous formulations (defined to be the absolute difference of

the two, divided by the absolute value of the relaxed value). Simulations were conducted

on a desktop computer with a 3.40 GHz processor and 16.0 GB RAM. The R programming

language was used to formulate the optimization problem, and the R interface to the Gurobi

optimization suite was used to solve the optimization problem.

Table 12 shows the results of this simulation study. As one can see, our formulation yields

optimal solutions in well under a minute for both the integer linear and integer quadratic

formulations despite the magnitude of the problem at hand. The strength of our formulation

is further evidenced by the typical discrepancy between the integer optimal solution and that

of the continuous relaxation. For testing the causal risk difference, we found that in all of the

simulations performed assuming no unmeasured confounding the integer program and its

linear relaxation had the same optimal objective value. When testing at Γ = 3 the quadratic

relaxation differed from the integer programming solution in roughly 2/3 of the simulations;

however, the resulting average relative gap between the two was a minuscule 3×10−4%. For

testing the causal risk ratio, the objective values tended not to be identically equal at Γ = 1

or Γ = 3, which has to do with the existence of fractional values in the row of the constraint

matrix enforcing the null hypothesis; nonetheless, the average gap among those iterations

where there was a difference was 4 × 10−5% for the linear program, and 0.002% for the

quadratic program. This suggests not only that we have arrived upon a strong formulation,

but that one could in practice accurately approximate (MV) by its continuous relaxation.

Appendix B.3 contains additional simulation studies which serve not only to further illustrate

the strength of our formulation, but also to provide insight into what elements of the problem
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Table 3: Computation times for tests of δ = 0.2 and ϕ = 1.75 at Γ = 1 (integer linear
program) and Γ = 3 (integer quadratic program), along with percentages of coincidence of
the integer and relaxed objective values, and average gaps between integer solution and the
continuous relaxation if a difference existed between the two.

H0 Avg. Time (s), Avg. Time (s),
%(objint = objrel)

Avg Gap
Γ Integer Relaxation If Different

δ = 0.2; Γ = 1 5.88 5.59 100% NA
δ = 0.2; Γ = 3 9.77 7.14 36.9% 3× 10−4%

ϕ = 1.75; Γ = 1 5.86 5.62 0% 4× 10−5%

ϕ = 1.75; Γ = 3 10.85 7.82 3.2% 0.002%

affect computation time. We present simulations varying the value of Γ used, the number

of matched sets, the null hypothesis being tested, the magnitude of the true effect, and the

prevalence of the outcome under treatment and control in order to assess the impact of

each of these factors on the time required to define the required constants and to carry out

the optimization. We then compare our formulation to an equivalent, but highly symmetric,

formulation in order to highlight the importance of avoiding symmetry for achieving a strong

formulation with reasonable computation time. We also present a simulation study akin to

the one presented in this section but using real data for the outcome variables as opposed

to simulated outcomes. Finally, we provide advice for using our procedure under time

constraints for the optimization routine.

3.6. Data Examples

We employ our methodology in two data examples. In Section 3.6.1, we present hypothesis

testing and a sensitivity analysis for the causal risk difference and causal risk ratio in our

motivating example from Section 3.1, wherein we compare hospital readmission rates for two

different post-hospitalization protocols after an acute care hospitalization. In Section 3.6.2,

we reexamine the instrumental variable study of Yang et al. (2014) comparing mortality

rates for premature babies being delivered by c-section versus vaginal births. In addition to

inference, confidence intervals, and sensitivity analyses, we also provide point estimators for

the causal estimands of interest. These are formed by using our test statistic, T (θ), as an
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estimating equation for an m-estimator (Van der Vaart, 2000), i.e θ̂ := SOLVE{θ : T (θ) =

0}; see Appendix B.4 for further discussion.

As will be shown, the findings in both of our examples exhibit varying degrees of sensitivity

to unmeasured confounding: under the strongest assumptions, we fail to reject the null of

no treatment effect after Γ = 1.157 in our first example and after Γ = 1.67 in our second.

To provide context for the levels of robustness possible in a well designed observational

study, Section 4.3.2 of Rosenbaum (2002a) notes that the finding of a causal relationship

between smoking and lung cancer in Hammond (1964) continued to be significant until

Γ = 6, meaning that an unmeasured confounder would have had to increase the odds of

smoking by a factor of six while nearly perfectly predicting lung cancer in order to overturn

the study’s finding.

3.6.1. Risk Difference and Risk Ratio

We now return to our study of the impact of discharge to an acute rehabilitation center

versus to home with home health services on hospital readmission rates after an acute care

hospitalization. We use sixty day hospital readmission after initial hospital discharge as our

outcome of interest. In terms of counterfactuals, we want to compare sixty day hospital

readmission rates if all patients had been sent to acute rehabilitation with readmission rates

if all patients had been assigned to home with home health services. We define Rij = 1

if an individual was readmitted to the hospital, and 0 otherwise. We let Zij = 1 if an

individual was assigned to acute rehabilitation. The marginal proportions of sixty day

hospital readmission after accounting for observed confounders through matching are 0.206

for acute rehabilitation, and 0.243 for home with home health services. We will analyze this

data set with and without the assumption of a known direction of effect. When assuming a

direction of effect we assume that it is nonpositive in this example, meaning that going to

acute rehabilitation can never hurt an individual: an individual who would not be readmitted

to the hospital within sixty days after being discharged to home with home health services

could not have been readmitted to the hospital within sixty days after being discharged to
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acute rehabilitation.

The estimated risk difference is δ̂ = −0.0369 (favoring acute rehabilitation) regardless of

whether we assume a nonpositive treatment effect. We construct confidence intervals by

inverting a series of hypothesis tests on {δ0}. Without assuming a nonpositive treatment

effect, we find a 95% confidence interval for δ of [-0.0557; -0.0175]. With the assumption of

a nonpositive effect, the 95% confidence interval shrinks to [-0.0535; -0.0202]. We conduct

inference on the risk ratio, ϕ, in a similar manner. The estimated risk ratio was ϕ̂ = 0.848

(favoring acute rehabilitation); 95% confidence intervals for ϕ are [0.773; 0.927] and [0.780;

0.916] without and with assuming a nonpositive treatment effect respectively.

The results of a sensitivity analysis for a test of δ = 0 ⇔ ϕ = 1 with a lower one-sided

alternative are shown in Table 4. As one can see, the result is sensitive to unobserved

biases under both scenarios, but far more so when we do not make an assumption on the

direction of effect. To better understand this, it is useful to think of the corresponding

integer programs that result in these worst-case bounds. The optimization problem with

the assumption of a nonpositive treatment effect has 2,830 variables associated with it, with

variables only corresponding to a choice of vector u−i in a given stratum. Without making

this assumption, the number of variables grows to 321,860, as we must consider all non-

exchangeable allocations of potential outcomes and all choices for the vector of unmeasured

confounders. The difference in problem size impacts not only robustness against unmeasured

confounding, but also computation time. The computations for each value of Γ > 1 shown

took an average of 1.5 seconds under the assumption of non-negativity, but 75 seconds

without this assumption. See Appendix B.5 for a discussion of why the assumption of a

known direction of effect has such a substantial impact. Considering the sheer size of the

problem, this bears testament to the strength of our formulation: for all of the Γ values

tested, the continuous relaxation had an integer solution.
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Table 4: Sensitivity analysis for a one-sided test with alternative hypothesis δ < 0 ⇔ ϕ <
1. Worst case p-values are shown with (rightmost column) and without (middle column)
assuming a known direction of effect.

Γ rT ij R rCij rT ij ≤ rCij
1.000 1.0×10−4 6.1×10−6

1.080 0.0306 0.0016
1.095 0.050 0.0028
1.157 0.420 0.050

3.6.2. Effect Ratio

Yang et al. (2014) present an observational study comparing the effect of cesarian section

versus vaginal delivery on the survival of premature babies of 23-24 weeks gestational age,

where Rij = 1 if a baby survives. The analysis used whether or not a baby was delivered

at a hospital with “high” rates of c-section as a potential instrumental variable. We present

a sensitivity analysis for these data under combinations of assumptions of varying strength.

In so doing, we aim to assess the impact of various assumptions on the inference’s perceived

sensitivity to unmeasured confounding. 1489 pairs of babies were formed, with a baby in

the “high” group being matched to baby in the “low” group who was similar on the basis of

all other pre-treatment covariates. Let Zij = 1 if the baby was delivered at a hospital with

a high c-section rate, and let Dij = 1 if the baby was delivered by a c-section. As such, the

“randomized encouragement” is the type of hospital at which the baby was delivered, and

the treatment of interest is the actual method of delivery.

We present inference on the effect ratio under all eight combinations of enforcing and not

enforcing a nonnegative direction of effect (DE) : rT ij ≥ rCij ∀i, j; monotonicty (MO):

dT ij ≥ dCij ∀i, j , and the exclusion restriction (ER): dT ij = dCij ⇒ rT ij = rCij ∀i, j. In

the context of this example, the effect ratio is the ratio of the increase in survival rate to

the increase in rate of c-sections for premature babies of 23-24 weeks gestational age that

occurs with being delivered at a hospital with a high rate of c-sections. If we additionally

assume that both monotonicity and the exclusion restriction hold, then the effect ratio has

58



Table 5: Minimal value of Γ such that conclusion of the hypothesis test on λ is reversed
under eight combinations of assumptions.

H0 : λ = 0
No (DE) No (DE) Yes (DE) Yes (DE)
No (MO) Yes (MO) No (MO) Yes (MO)

No (ER) 1.292 1.292 1.677 1.677
Yes (ER) 1.292 1.371 1.677 1.677

H0 : λ = 0.1
No (DE) No (DE) Yes (DE) Yes (DE)
No (MO) Yes (MO) No (MO) Yes (MO)

No (ER) 1.213 1.220 1.407 1.409
Yes (ER) 1.225 1.270 1.408 1.410

the additional interpretation of being the effect of delivering at a hospital with high rates

of c-sections among babies who would have been delivered by c-section if and only if they

were delivered at a hospital with a high rate of c-sections.

Under any combination of assumptions, the estimated effect ratio is λ̂ = 0.866. Assuming

none of (DE), (MO), (ER), the 95% confidence interval is [0.50; 1.47], and there are 256

decision variables in the optimization problem. Assuming all of (DE), (MO), (ER), the 95%

confidence interval shrinks to [0.58; 1], and there are 49 decision variables in the optimization

problem.

In Table 6, we present the values of Γ required to overturn the rejection of the nulls that

λ = 0 and λ = 0.1, both with an upper one-sided alternative at α = 0.05. For the null of

λ = 0, this test boils down to a test on the average treatment effect, but with a range of

restrictions on the potential outcomes. Once a nonnegative direction of effect is imposed

(the bottom four cells of the table), the test of λ = 0 simply becomes a test of Fisher’s

sharp null; see Appendix B.5 for further discussion. Because of this, the assumptions of

monotonicity and the exclusion restriction cannot impact the sensitivity analysis at λ = 0

unless non-negativity is not enforced. Furthermore, without assuming a direction of effect,

monotonicity can only affect the performed inference if it is enforced in concert with the

exclusion restriction at λ = 0 and vice versa. For λ = 0.1, the test no longer corresponds

exclusively to one of Fisher’s sharp null when non-negativity is imposed. We thus see that
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each assumption impacts the study’s robustness against unmeasured confounding to varying

degrees. For all combinations of assumptions and each value of Γ tested, the corresponding

integer quadratic program solved in under 2 seconds.

3.7. Discussion

Our formulation exploits attributes of the randomization distributions for our proposed

test statistics which are unique to inference after matching. While this is sufficient for

our purposes, one resulting limitation is that our method will likely not be practicable in

observational studies or randomized clinical trials where there either are no strata, or where

each stratum contain a large number of both treated and control individuals; see Rigdon

and Hudgens (2015) for a discussion of the difficulties of conducting randomization inference

with binary outcomes in these settings. In these settings, the work of Cornfield et al. (1959)

presents a method for sensitivity analysis for the risk ratio, and Ding and Vanderweele

(2014) extend this approach to the risk difference. Another limitation is that as with any

NP-hard endeavor, it is difficult to anticipate ahead of time how long our method will take

on a given data set with a given match structure; however, through a host of simulation

studies presented both in Section 3.5.3 and Appendix B.3 we have provided further insight

into these matters for practitioners interested in using our methods.

We have framed hypothesis testing and sensitivity analyses for composite null hypotheses

with binary outcomes in matched observational studies as the solutions to integer linear

(Γ = 1) and quadratic (Γ > 1) programs. An interesting consequence of our formulation is

that it readily yields a method for performing a sensitivity analysis for simple null hypothe-

ses under general outcomes without reliance on the asymptotically separable algorithm of

Gastwirth et al. (2000); see Appendix B.6 for details and a data example. We have shown

that our method can be practicable even with large data sets and large stratum sizes. We

have further demonstrated through simulation studies and real data examples that our for-

mulation explicitly avoids issues known to hinder the performance of integer programming

algorithms such as looseness of formulation and symmetry. In so doing, we hope to shed
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further light on the usefulness of integer programming for solving problems in causal infer-

ence.
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CHAPTER 4 : Sensitivity Analysis for Multiple Comparisons in Matched

Observational Studies through Quadratically Constrained Linear

Programming

Joint work with Dylan Small

4.1. Introduction

4.1.1. Unmeasured Confounding with Multiple Outcomes

Conclusions drawn from an observational study should be subjected to additional scrutiny

due to their vulnerability to unmeasured confounding. Unlike with a randomized experiment,

a covariate which has not been adjusted for in the primary analysis may very well drive

the observed relationship, thus nullifying the study’s original finding. This necessitates an

additional step known as a sensitivity analysis to assess the robustness of an observational

study’s conclusions. A sensitivity analysis seeks an answer to the following question: how

extreme would hidden bias have to be in order for the conclusions of a study to be materially

altered? A study whose findings could be overturned with a small amount of unmeasured

confounding invites warranted skepticism, while a study’s conclusions are bolstered if a large

degree of unmeasured confounding is required.

A sensitivity analysis computes worst-case bounds on the desired inference at a given level

of unmeasured confounding. In observational studies employing matching to adjust for

overt biases, the corresponding sensitivity analysis has been well studied when there is a

single outcome variable of interest; see Section 4 of Rosenbaum (2002a) for a comprehensive

overview. It is parameterized by a number Γ ≥ 1 which controls the allowable departure

from purely random assignment for individuals who are similar on the basis of their observed

covariates: two individuals in the same matched set can, due to the presence of unmeasured

confounding, differ in their odds of assignment to treatment by at most Γ. Higher values of Γ

thus allow for unmeasured confounding to more substantially bias the treatment assignment
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probabilities for individuals in the same matched set. As discussed in Section 4.2.2, the

impact of unmeasured confounding can be encoded by a scalar latent variable, uij , which

represents the aggregate impact of unmeasured confounding on the assignment probabilities

for individual j in matched set i. Individuals in the same matched set with higher values

for uij have higher probabilities of assignment to treatment. At each level of Γ, one finds

the vector of unmeasured confounders for all individuals in the study, u, which maximizes

the p-value, hence yielding the worst possible inference for a given departure from purely

random assignment.

Matched observational studies may seek to investigate the impact of a single treatment on

multiple outcome variables; see Sabia (2006), Voigtländer and Voth (2012), and Obermeyer

et al. (2014) for recent examples from policy analysis, economics, and health care. When

there are multiple outcome variables of interest, there may exist unmeasured factors that

influence a particular outcome while not impacting others. In order for these factors to

affect the performed inference (and hence, to be confounders in the sense of VanderWeele

and Shpitser (2013)), these factors must also impact the treatment assignment probabili-

ties. Figure 3 demonstrates that these factors yield an aggregate impact on the assignment

probabilities (U in the figure) despite affecting the outcomes differently. Controlling for the

aggregate impact of unmeasured confounding on the assignment probabilities is sufficient

for identifying the causal effect of the treatment on all of the outcome variables of interest,

as these probabilities are themselves a minimally sufficient adjustment set (Rosenbaum and

Rubin, 1983). The reader should keep in mind that uij truly reflects a dimension reduc-

tion of all unmeasured confounders to their relevant scalar component for impacting the

assignment probabilities, and hence that this model for a sensitivity analysis does not limit

the potential impact of unmeasured confounding on any of the outcome variables. Moving

forward, we will refer to uij interchangeably as the “unmeasured confounder" and “unob-

served covariate" for individual j in matched set i, as is conventional in sensitivity analyses

following the model of Rosenbaum (2002a).
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U

W1 W2
W12

Z

R1 R2

Figure 3: A Directed Acyclic Graph (DAG) showing how our method accounts for unmeasured
confounding on multiple outcome variables by controlling for their joint effect on the treatment.
W1,W2,W12 represent unmeasured factors which affect outcome R1, outcome R2, and both outcomes
respectively. U is an aggregate measure of the impact of {W1,W2,W12} on the treatment assignment
vector, Z. For any known value of U , only the direct causal pathway of the treatment, Z, on the
outcome variables, R1 and R2, remains open if we condition on U (denoted by the square around
U). Implicit in this diagram is that adjustment has been made for any observed pre-treatment
confounders, X.

When conducting a sensitivity analysis with multiple outcomes, the unmeasured confounder

which affects assignment probabilities in the worst-case manner for outcome k, u∗k, may not

be worst-case for outcome k′; in fact, it may actually result in more favorable inference for

outcome k′. As is noted in Rosenbaum and Silber (2009), naïvely combining the results

of outcome-specific sensitivity analyses while accounting for multiple comparisons is unduly

conservative precisely because of this: it allows the worst-case unmeasured confounder to

affect the probabilities of assignment to treatment differently from one outcome to the next

for the same test subject. Consequently, a uniform improvement in the power of a sensitivity

analysis for testing the overall null hypothesis for any subset of outcomes could be attained by

eliminating this logical inconsistency. As tests for the overall null hypothesis with respect

to subsets of outcomes form the basis of multiple comparisons procedures such as closed

testing (Marcus et al., 1976), hierarchical testing (Meinshausen, 2008), and the inheritance

procedure (Goeman and Finos, 2012), such an advance would also uniformly improve the

power of a sensitivity analysis for testing null hypotheses for particular outcomes while

strongly controlling the familywise error rate.
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The approaches for conducting a sensitivity analysis with a single outcome heavily utilize

the fact that within each matched set, the search for the worst-case unmeasured confounder

can be restricted to a readily enumerable set of binary vectors (Rosenbaum and Krieger,

1990). When testing whether the treatment has an effect on at least one of many outcome

variables of interest, this is no longer the case. Thus, the potential gain in power cannot

be actualized through simple extensions of existing methods. In this work, we present a

new formulation of the required optimization problem as a quadratically constrained linear

program which allows one to claim improved robustness to unmeasured confounding in an

observational study with multiple outcomes when testing the overall null. This can, in turn,

improve the reported robustness of individual level outcomes through its incorporation into

certain sequential rejection procedures (Goeman and Solari, 2010). To illustrate these ideas,

we now present an observational study on the impact of smoking on naphthalene levels in

the body.

4.1.2. Motivating Example: Naphthalene Exposure in Smokers

Naphthalene is a simple polycyclic aromatic hydrocarbon (PAH) which has been linked to

numerous adverse health outcomes. Exposure to excessive amounts of naphthalene can cause

hemolysis (abnormal damage to or destruction of red blood cells in the body), which can in

turn lead to hemolytic anemia (Todisco et al., 1991; Sanctucci and Shah, 2000). Further,

naphthalene has been shown to be carcinogenic in animal studies (Hecht, 2002), prompting

the International Agency for Research on Cancer (IARC) to label it as “possibly carcinogenic

to humans” (IARC, 2002). Given the potential for adverse health outcomes from exposure to

naphthalene, it is of interest to assess the impact of other sources of exposure to naphthalene

on levels of naphthalene metabolites found in the body.

In the 2007-2008 National Health and Nutrition Examination Survey (NHANES), urinary

concentrations of two monohydroxylated naphthalene metabolites, 1- and 2-naphthol (also

known as α- and β-naphthol) were collected for 1706 patients from a representative sample

of adults aged 20 and older in the United States. Through this study, we seek to address
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the following question: after controlling for other sources of exposure and other relevant de-

mographic variables, does smoking (one source of exposure to naphthalene) lead to elevated

naphthalene metabolite levels in our study population? If this were the case, it would lend

further credence to the belief that naphthalene is a useful biomarker for exposure to PAHs

through inhalation (Nan et al., 2001; Hecht, 2002; Preuss et al., 2004), and it may serve to

further highlight the health risks from smoking.

Through full matching (Hansen, 2004), 453 current smokers were placed into matched sets

with 1253 non-current smokers who were similar on the basis of pre-treatment variables

which, following the criterion for confounder selection of VanderWeele and Shpitser (2011),

were deemed important to the decision to be a smoker or the outcomes; see Appendix C.1

for further details on the performed matching. Our two outcome variables were the urinary

concentrations of 1- and 2-naphthol. Using an aligned rank test (Hodges and Lehmann,

1962) within the stratification yielded by our full match, we sought to determine whether

there was evidence for smoking causing elevated levels for at least one of the two metabolites,

and also whether smoking caused elevated metabolite levels for 1-naphthol and 2-naphthol

considered individually. Assuming a multiplicative treatment effect model (additive on the

log-scale), under no unmeasured confounding smoking was estimated to elevate urinary

concentrations by a factor of 4.66 and 3.29 for 1- and 2-naphthol respectively using a Hodges-

Lehman estimator (Hodges and Lehmann, 1963), with 95% confidence intervals of [4.00;

5.41] and [2.92; 3.69] attained by inverting a series of tests on the value of the multiplicative

effect (Lehmann, 1963). Correcting for multiple comparisons using Holm-Bonferroni (Holm,

1979), the asymptotically separable algorithm of Gastwirth et al. (2000) applied individually

to each metabolite yielded strong insensitivity to unmeasured confounding: the minimum

and maximum of the two outcome-specific findings were below 0.025 and 0.05 respectively

until a Γ of 7.78. This means that an unmeasured confounder would have to result in a

difference in the odds of smoking for two individuals in the same matched set by a factor of

7.78 while nearly perfectly predicting naphthalene metabolite concentrations to render our

results insignificant.
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Based on these results, we can also attest to the robustness of a rejection of the overall null of

no effect for either naphthalene metabolite: we have evidence for significance of at least one

naphthalene metabolite at Γ = 7.78. As previously mentioned, this is conservative as using

Holm-Bonferroni to combine individual sensitivity analyses allows for differing worst-case

confounders for each outcome for the same individual. Naturally, the worst-case unmeasured

confounder for 2-naphthol need not be the worst-case confounder for 1-naphthol. In fact, at

Γ = 7.78 the worst-case u for 2-naphthol actually yields a significant result for 1-naphthol,

and similarly the worst-case u for 1-naphthol makes our result for 2-naphthol significant.

Through the methodology presented in this paper, it can be determined there is no vector

of hidden covariates that simultaneously makes 1- and 2-naphthol insignificant at this level

of unmeasured confounding. In fact, it takes a Γ of 10.22 to overturn the rejection of

the overall null of no effect for either naphthalene metabolite. Thus Γ = 7.78 actually

understates the robustness of a test of overall significance. Furthermore, we show in Section

4.5 that through a closed testing procedure we can actually claim robustness of the particular

metabolites up until Γ = 7.83 for 1-naphthol and Γ = 8.20 for 2-naphthol, which are the

same levels of robustness to unmeasured confounding that would have been arrived upon

without controlling for multiple comparisons.

Section 4.2 provides notation for and a review of randomization inference and sensitivity

analysis within a matched observational study. Section 4.3 introduces testing and sensitivity

analysis for the overall null hypothesis when there are multiple outcomes. After highlighting

the room for improvement relative to combining sensitivity analyses for each outcome, Sec-

tion 4.4 formulates a quadratically constrained linear program which allows us to perform

a sensitivity analysis for the overall null hypothesis while enforcing that for each outcome,

the unmeasured confounder must be the same for each individual. Section 4.5 describes

how our method can facilitate strong familywise error control for testing null hypotheses on

particular outcomes through its incorporation into certain sequential rejection procedures.

In Section 4.6, we present a simulation study demonstrating the potential gains in power of

a sensitivity analysis on the overall null and on outcome-specific nulls using this procedure.
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We return to our motivating example in Section 4.7, where we elucidate the improvements

in reported robustness to unmeasured confounding attained through our procedure as they

pertain to testing elevated naphthalene levels in smokers.

4.2. Notation for a Matched Observational Study

4.2.1. A Stratified Experiment with Multiple Outcomes

We now present notation for the idealized experiment targeted by matching algorithms

wherein each treated unit is placed in a matched set with one or more control units. This

framework can be trivially extended to dealing with strata resulting from full matching, such

as the one presented in Section 4.1.2; see Rosenbaum (2002a, Section 4, Problem 12) for

details. Suppose there are I independent strata, the ith of which contains ni ≥ 2 individuals,

that were formed on the basis of pre-treatment covariates. In each stratum, 1 individual

receives the treatment and ni − 1 individuals receive the control. There are K outcome

variables collected for each individual. For each outcome k, individual j in stratum i has

two potential outcomes: one under treatment, rT ijk, and one under control, rCijk; let rT ij

and rCij be theK-dimensional vector of potential outcomes for this individual. The observed

response vector for each individual is Rij = rT ijZij +rCij(1−Zij), where Zij is an indicator

variable that takes the value 1 if individual j in stratum i is assigned to the treatment; see,

for example, Neyman (1923) and Rubin (1974). Each individual has a vector of observed

covariates xij and an unobserved covariate uij .

There are N =
∑I

i=1 ni total individuals in the study. Let Z = [Z11, Z12, ...,, ZInI
]T be the

binary vector of treatment assignments, and let R, rT , and rC be the N × K matrices of

observed responses and potential outcomes under treatment and control. Let Ω be the set

of
∏I
i=1 ni possible values of Z under the given stratification. In randomization inference

for a randomized experiment, randomness is modeled solely through the assignment to

treatment or to control (Fisher, 1935). Quantities dependent on Z, such as the observed

outcomes R, are random, while rT ij , rCij ,xij , and uij are fixed across randomizations. Let
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F be the set of such fixed quantities. For a randomized experiment adhering to this design

P(Zij = 1|F ,Z ∈ Ω) = 1/ni and P(Z = z|F ,Z ∈ Ω) = 1/|Ω|, where |A| denotes the number

of elements in a finite set A.

4.2.2. Randomization Inference and Sensitivity Analysis

For each outcome k, we consider hypotheses of the form Hk : fTk(rT ijk) = fCk(rCijk) ∀i, j

for specified functions fTk(·) and fCk(·). For example, Fisher’s sharp null of no effect can be

tested through fTk(rT ijk) = rT ijk and fCk(rCijk) = rCijk, and a test of an additive treatment

effect τk can be tested by setting fTk(rT ijk) = rTijk and fCk(rCijk) = rCijk + τk. While

tests for Neyman’s weak null of no average treatment effect cannot be accommodated within

the framework that follows, other choices of fTk(·) and fCk(·) can yield tests allowing for

subject-specific causal effects such as tests of effect modification, dilated treatment effects,

displacement effects, tobit effects, and attributable effects; see Rosenbaum (2002a, Section

5) and Rosenbaum (2010, Sections 2.4-2.5) for an overview.

From our data alone we observe Fijk = fTk(rT ijk)Zij + fCk(rCijk)(1 − Zij); let Fk =

[F11k, ..., FInIk] . Under Hk, the vectors fCk = [fCk(rC11k), ..., fCk(rCInIk)] and fTk =

[fTk(rT11k), ..., fTk(rTInIk)] are known to be equal, and hence are entirely specified. Fur-

ther, they are constant across randomizations as they are known functions of the potential

outcomes. Hence, under the null Fk = fTk = fCk ∈ F , which in turn allows us to use ran-

domization inference to test Hk. Specifically, under Hk and under the stratified experiment

discussed in Section 4.2.1 the null distribution of a test statistic tk(Z,Fk) can be written as:

P{tk(Z,Fk) ≥ a|F ,Z ∈ Ω;Hk} =
|z ∈ Ω : tk(z, fCk) ≥ a|

|Ω|
, (4.1)

where we use fCk in the right-hand side to emphasize that this distribution is known under

the null.

The distribution of tk(Z,Fk) in (4.1) is appropriate if the observed data truly resulted

from the randomized experiment described in Section 4.2.1. In an observational study
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employing matching, we aim to replicate this idealized randomized experiment by creating

strata wherein individuals are similar on the basis of their observed covariates, xij (Ming

and Rosenbaum, 2000; Hansen, 2004; Stuart, 2010). While this seeks to control for observed

confounders, individuals placed in a given stratum i may be different on the basis of the

unobserved covariate uij . If this uij is influential for the assignment of treatments and the

response, the distribution in (4.1) may yield highly misleading inferences.

We follow the model for a sensitivity analysis discussed in Rosenbaum (2002a, Section 4),

which states that failure to account for unobserved covariates may result in biased treatment

assignments within a stratum. This model can be parameterized by a number Γ = exp(γ) ≥

1 which bounds the extent to which the odds ratio of assignment can vary between two

individuals who are in the same matched stratum. Under this formulation, the probability

of a given allocation of treatment and control within the stratification under consideration

can be stated in the form P(Z = z|F ,Z ∈ Ω) = exp(γzTu)/
∑

b∈Ω exp(γbTu), where u =

[u11, u12, ..., uI,ni ] ∈ [0, 1]N =: U is a vector of unmeasured confounders for the individuals

in the study. Note that Γ = 1 corresponds to the randomization distribution discussed in

Section 4.2.1, while for Γ > 1 the resulting distribution differs from that of a randomized

experiment, with Γ controlling the extent of this departure.

We consider test statistics of the form tk(Z,Fk) =
∑I

i=1

∑ni
j=1 Zijqijk, where qijk are func-

tions of Fk. Under Hk these values become functions of fCk, and hence are known quantities

fixed across randomizations. Let qk = [q11k, ..., qInIk], and let qik = [qi1k, ..., qinik]. Many

commonly employed statistics can be written in this form. For example, suppose we are

testing Fisher’s sharp null, so that Fijk = Rijk, within the block-randomized experiment de-

scribed in Section 4.2.1. Setting qijk =
∑

j′ 6=j(Fijk−Fij′k)/(I(ni−1)), tk(Z,Fk) is the mean

over the I matched sets of the average treated-minus-control difference in each matched set

for outcome k. In the case of a matched pairs design, ni = 2 ∀i, this yields the paired

permutation t-test. If qijk are the ranks of the aligned response Fijk−
∑ni

j′=1 Fij′k/ni from 1

to N , then a test on tk(Z,Fk) yields the aligned rank test of Hodges and Lehmann (1962).
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To recover Wilcoxon’s signed rank statistic for a matched pairs design, let dik be the ranks

of |Fi1k − Fi2k| from 1 to I, and let qijk = dik1{Fijk > Fij′k}. See Rosenbaum (2002a) for

additional examples and further discussion.

For any given value of Γ ≥ 1, a sensitivity analysis proceeds by finding the allocation of

the unmeasured confounder u∗ which maximizes the p-value for the hypothesis test being

conducted. While not explicitly noted, this worst-case unmeasured confounder can vary

with the value of Γ under investigation. One then finds the smallest value of Γ such that the

conclusions of the study would be altered (i.e., such that the conclusion of the hypothesis

test would change from rejecting to failing to reject the null hypothesis). The more robust

a given study is to unmeasured confounding, the larger the value of Γ must be to alter its

findings. Under mild regularity conditions on qk, the distribution under the null of tk(Z,Fk)

converges to that of a normal random variable as I → ∞ for the worst-case confounder u∗

at any Γ. An example of regularity conditions on the constants qijk is that the Lindeberg

condition holds for the random variables Bik :=
∑ni

j=1 Zijqijk (Lehmann, 2004, Theorem

A.1.1). While the value of Γ itself does not affect the limiting distribution, it does influence

the rate at which this limit is reached as larger values of Γ allow for larger discrepancies

in the assignment probabilities within a matched set. Under asymptotic normality, large

sample bounds on the tail probability can instead be expressed in terms of corresponding

bounds on standardized deviates.

For further discussion of sensitivity analyses, including illustrations and alternate models,

see Cornfield et al. (1959), Marcus (1997), Imbens (2003), Yu and Gastwirth (2005), Wang

and Krieger (2006), Egleston et al. (2009), Hosman et al. (2010), VanderWeele and Arah

(2011), Zubizarreta et al. (2013), Liu et al. (2013) and Ding and Vanderweele (2014).
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4.3. Sensitivity Analysis for Overall Significance

4.3.1. Testing the Overall Null Hypothesis

We begin with notation for the truth of the null hypotheses on all K outcomes; extensions of

notation to dealing with subsets of outcomes, which will in turn facilitate strong familywise

error control for testing individual outcomes, will be made in Section 4.5. There are K

hypotheses, H1, ...,HK , and we are interested in testing the overall truth of the hypotheses

{H1, ..,HK} while strongly controlling the familywise error rate at level α for a range of Γ.

Ho :

K∧
k=1

Hk

Ha :
K∨
k=1

Hc
k

We will refer to a test of Ho as a test of the overall null. Moving forward, we assume each

individual hypothesis Hk has an associated test statistic tk(Z,Fk) of the form discussed in

Section 4.2.2.

4.3.2. Combining Individual Sensitivity Analyses is Conservative

A simple approach for conducting a sensitivity analysis at a given Γ would be to separately

find the worst-case p-value for each hypothesis test, call it P ∗k with corresponding allocation

of worst-case confounder u∗k, and suggest through the use of a Bonferroni correction that

at least one hypothesis is false if mink P
∗
k ≤ α/K. This trivially controls familywise error

rate at α as desired; however, as is noted in Rosenbaum and Silber (2009, Section 4.5), this

approach is conservative as the worst-case p-value for hypothesis test k may be found at a

different allocation of the unmeasured confounder as that of hypothesis test k′ 6= k for k, k′ ∈

{1, ...,K} (i.e., u∗k 6= u∗k′). In other words, the biased treatment assignment probabilities

caused by unmeasured confounding that yield the worst-case inference for outcome k and

outcome k′ need not be the same. This can be better understood in light of the following
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well known minimax inequality (for instance, Karlin, 1992, Lemma 1.3.1)

min
k∈{1,..,K}

max
u∈U

Pk,u ≥ max
u∈U

min
k∈{1,..,K}

Pk,u. (4.2)

Combining the results of K separate hypothesis tests and Bonferroni correcting corresponds

to the left-hand side of (4.2). Strict inequality is possible in (4.2): it could be the case that

mink maxu∈U Pk > α/K, meaning that we would fail to reject the overall null hypothesis if

we conducted sensitivity analyses separately for each k and then Bonferroni corrected, while

in reality maxu∈U mink Pk ≤ α/K, such that we should have rejected the overall null. This

would occur if for each k there exists a u∗k ∈ U such that Hk is not rejected, yet there does

not exist a single u∗ ∈ U for which all Hk are simultaneously not rejected.

A uniform improvement over combining individual sensitivity analyses could be achieved

by a procedure which directly solved for the right-hand side of (4.2). Such a procedure

cannot be derived by extending existing methods for conducting individual level sensitivity

analyses, as these methods rely upon the fact that the search for a worst-case confounder

can be restricted to vectors in U+ or U− for any particular hypothesis k. Unfortunately, it

is not the case that vector u∗ which achieves

maxu∈U mink∈{1,..,K} Pk,u lies within an easily enumerated set of vertices of U ; in fact,

the solution need not even lie at a vertex. To exploit this potential improvement, a new

formulation of the required optimization problem that allows for solutions in all of U is thus

required.

4.4. Improving Power through Quadratically Constrained Linear Programming

In this section, we assume the individual level hypotheses Hk have two-sided alternatives;

simple extensions to the one-sided case are discussed in Appendix C.2. Using a normal

approximation, we can equivalently express our problem as minimizing over U the maximal
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squared deviate over the K hypotheses in question:

min
u∈U

max
k∈{1,..,K}

(tk − µk,u)2

σ2
k,u

, (4.3)

where tk is the observed value of the statistic tk(Z,Fk), and µk,u = EΓ,u[ZTqk|F ,Z ∈ Ω] and

σ2
k,u = VarΓ,u(ZTqk|F ,Z ∈ Ω) are the means and variances of the test statistic tk(Z,Fk)

with a given value of Γ and vector u under the permutation distribution given by (4.1).

Under a normal approximation for tk(Z,Fk), the squared deviate follows a χ2
1 distribution.

Hence, a determination of whether or not we can reject at least one null hypothesis can be

made by checking whether or not the solution to (4.3) is greater than or equal to χ2
1,1−α/K ,

where χ2
1,1−α/K is the 1− α/K quantile of a χ2

1 distribution.

Moving forward, all expectations and variances are taken with respect to the distribution

in (4.1), i.e. under the truth of the null hypothesis Hk for each k, and are conditional on

F and Z ∈ Ω; this is omitted for notational ease. Let %ij = exp(γuij)/
∑ni

j′=1 exp(γuij′) =

P(Zij = 1|F ,Z ∈ Ω). Let %i = [%i1, .., %ini ], and let % = [%11, .., %InI
]. Note that we can

express our test statistics as the sums of stratum-wise contributions, tk(Z,Fk) =
∑I

i=1Bik

where Bik :=
∑ni

j=1 Zijqijk. The expectation and variance of the contribution from stratum

i, Bik, can be written as

E[Bik;%] = %Ti qik

Var(Bik;%) = %Ti q
2
ik − (%Ti qik)

2,

where the simplified form of Var(Bik;%) comes from the constraint that
∑ni

j=1 Zij = 1 ∀i.

For a given %, we can reject the null hypothesis for a two sided alternative at level α/K if (tk−

E[tk(Z,Fk);%])2/Var(tk(Z,Fk);%) ≥ χ2
1,1−α/K , where E[tk(Z,Fk);%] =

∑I
i=1 E[Bik;%], and

Var(tk(Z,Fk);%) =
∑I

i=1 Var(Bik;%) due to independence between strata. This is equiva-

lent to rejecting if ζk(%) := (tk − E[tk(Z,Fk);%])2 − χ2
1,1−α/KVar(tk(Z,Fk);%) ≥ 0. If we

can determine that ζk(%) ≥ 0 for all feasible values of % at a given value of Γ, we can then
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say that we have rejected the null at level of unmeasured confounding Γ; otherwise, we fail

to reject.

Consider the following optimization problem:

minimize
%ij ,si

ζk(%) (Hk)

subject to
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j

%ij ≥ 0 ∀i, j

The variables si stem from an application of a Charnes-Cooper transformation,

si = 1/
∑ni

j′=1 exp(γuij′) (Charnes and Cooper, 1962), and allow us to incorporate the

restrictions on the allowable departure from pure randomization, 1 ≤ exp(γuij) ≤ Γ ∀i, j,

in terms of the probabilities themselves.

Problem (P2) is a quadratic program, which can be readily solved using a host of free and

commercially available solvers; however, solving this problem merely results in a sensitivity

analysis for a particular hypothesisHk, rather than one of the overall null ∧Hk. Towards this

end, define ζ(%) = max{ζ1(%), ..., ζK(%)}. We can now pose our problem as finding min% ζ(%)

subject to constraints on % imposed by Γ. This optimization can be performed through

incorporating an auxiliary variable y and solving the following quadratically constrained
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linear program:

minimize
y,%ij ,si

y (∧Hk)

subject to y ≥ ζk(%) ∀k
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j

%ij ≥ 0 ∀i, j

The auxiliary variable y is forced to be larger than ζk(%) for all k, and by minimizing

over y the optimization problem searches for the feasible value of % that allows for y to

become as small as possible, hence minimizing the maximum value as desired. This is a

commonly employed device for solving minimax problems; see, for example, Charalambous

and Conn (1978). To determine whether or not we can reject at least one null hypothesis,

we simply check whether the optimal value y∗ ≥ 0. If it is, we can reject at least one null

hypothesis; otherwise, we cannot. Quadratically constrained linear programs can be solved

using many available solvers; we provide an implementation using the R interface to Gurobi,

a commercial solver which is freely available for academic use. Henceforth, we will refer to

this procedure for conducting a sensitivity analysis the overall null with K outcomes as the

“minimax” procedure (for minimizing the maximum squared deviate).

4.5. Familywise Error Control for Individual Null Hypotheses

By addressing the right-hand side of (4.2), the minimax procedure provides a sensitivity

analysis for the overall null hypothesis that uniformly dominates combining individual sen-

sitivity analyses. In this section, we discuss how the minimax procedure can be used with

sequential rejection procedures (Goeman and Solari, 2010) which progress through testing

the overall null for a sequence of subsets of outcomes (henceforth referred to as intersec-

tion nulls) to provide uniform improvements in power for testing hypotheses on particular
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outcome variables. Sequential rejection procedures of this sort include closed testing (Mar-

cus et al., 1976), hierarchical testing (Meinshausen, 2008), and the inheritance procedure

(Goeman and Finos, 2012). These procedures have appealing properties for conducting a

sensitivity analysis, often allowing researchers to claim improved robustness of a study’s

findings against unmeasured confounding; see Rosenbaum and Silber (2009) for a discussion

of this fact as it relates to closed testing procedures.

We now introduce notation for the class of sequential rejection procedures which can be

used in conjunction with our method, i.e. those for which each step involves testing the

truth of an intersection null hypothesis for a subset of the K outcome variables. There

are L intersection null hypotheses ordered from 1,...,L, the `th of which, Ho`, pertains to

the null hypothesis being true for all outcomes in the subset K` ⊆ {1, ...,K}. That is,

Ho` =
∧
k∈K`

Hk`. |K`| ≤ K is the number of outcomes being tested in the `th subset;

|K`| = 1 then corresponds to a test of a particular outcome. Let H be the set of these L

intersection null hypotheses, H = {Ho1, ...,HoL}.

Following Goeman and Solari (2010), let Ra ⊆ H be the collection of intersection nulls

rejected after step a of the sequential rejection procedure, and let N (Ra) be the set of

intersection nulls that can now be rejected in step a + 1 if all elements of Ra have been

rejected by step a. The sequential rejection procedure can then be defined by

R0 = ∅

Ra+1 = Ra ∪N (Ra),

and is repeated until convergence (i.e., until Ra+1 = Ra). Goeman and Solari (2010) show

that sequential rejection procedures strongly control the familywise error rate at α under

the conditions (1) the procedure controls the familywise error at α for the so-called critical

case in which procedure has rejected all of the false overall null hypotheses and none of the

true overall nulls and (2) no false rejections in the critical case implies no false rejections in

situations with fewer rejections than the critical case.

77



Closed testing, hierarchical testing, and the inheritance procedure can all be recovered

through specific choices of N (·) that provably adhere to these conditions. Testing the in-

tersection nulls Ho` for any ` at level of unmeasured confounding Γ as required by these

procedures can be performed using the minimax procedure of Section 4.4, which through

inequality (4.2) provides improved power for each subset tested.

To illustrate, suppose one is interested in using a closed testing procedure to conduct a

sensitivity analysis with K = 2 outcomes; this is the procedure used for multiple testing

in our motivating example. In this case, L = 3, K1 = {1, 2}, K2 = {1}, K3 = {2}. The

function N (·) then takes on the following form:

N (∅) =


Ho1 if reject H1 ∧H2 at level α

∅ otherwise

N (Ho1) =



{Ho1,Ho2,Ho3} if H1 and H2 each reject individually at level α

{Ho1,Ho2} if only H1 rejects at level α

{Ho1,Ho3} if only H2 rejects at level α

{Ho1} otherwise,

and N (A) = A if A 6= ∅ and A 6= Ho1. In this example, the test of Ho1 can be performed

using the minimax procedure with a test that is locally level α; the tests ofHo2 andHo3 only

involve one outcome and thus can be conducted through the usual methods for a sensitivity

analysis which, by the closure principle, can be performed locally at level α while strongly

controlling the familywise error rate.

4.6. Simulation Study: Gains in Power of a Sensitivity Analysis

4.6.1. Overall Null Hypothesis

Through the minimax procedure, we arrive at a uniform improvement for testing the overall

null relative to combining the results of individual sensitivity analyses. In this section, we
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present a simulation study to demonstrate the potential gains in power for testing the overall

null. In each of 24 simulation settings, we simulate 10,000 data sets with I = 250 pairs and

K = 5 outcome variables of interest. The vector of treated-minus-control paired differences

Di are simulated iid from a multivariate normal with mean vector τ and covariance matrix

Σ. For each outcome, we use an M-statistic of the type favored by Huber (1981), tk(Z,Fk) =∑I
i=1 ψ(Dik/sk), to conduct inference, where sk is the median of |Dik| across individuals

i and ψ(y) = sign(y) min(|y|, 2.5). See Maritz (1979) for a discussion of randomization

inference for M -statistics, and see Rosenbaum (2007, 2013, 2014) for various aspects of

sensitivity analyses for M -statistics.

In evaluating these two procedures, we assume as is advocated in Rosenbaum (2004, 2007)

that unbeknownst to the practitioner the paired data at hand truly arose from a stratified

randomized experiment (i.e., Γ = 1). Hence, using a standard randomization test without

assuming unmeasured confounding would provide honest type I error control. The practi-

tioner, blind to this, would like to not only perform inference under the assumption of no

unmeasured confounding, but also assess the robustness of the study’s findings to unobserved

biases of varying severity.

Our 24 simulation settings are the 8 possible combinations of the following mean and co-

variance vectors, each tested at Γ = 1.25, 1.5 and 1.75:

1. τ (1) = [0.25, 0.25, 0.25, 0.25, 0.25]; τ (2) = [0.25, 0.25, 0.25, 0.25, 0];

τ (3) = [0.3, 0.3, 0, 0, 0]; τ (4) = [0.3, 0, 0, 0, 0]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.

All hypothesis tests are of Fisher’s sharp null, and are conducted with two-sided alternatives

at α = 0.05. Table 6 displays the probabilities of (correctly) rejecting the overall null of

no effect for any of the outcomes. The first column contains the probabilities of rejection

when combining the results of individual sensitivity analyses, while the second contains these

probabilities for the minimax procedure. The relative improvement through the minimax
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Table 6: Power of a sensitivity analysis for the overall null.
Gamma Moments Separate Minimax

Γ = 1.25

τ (1),Σ(1) 0.94 0.99
τ (1),Σ(2) 0.77 0.80
τ (2),Σ(1) 0.89 0.96
τ (2),Σ(2) 0.73 0.77
τ (3),Σ(1) 0.92 0.96
τ (3),Σ(2) 0.85 0.87
τ (4),Σ(1) 0.72 0.72
τ (4),Σ(2) 0.71 0.72

Γ = 1.5

τ (1),Σ(1) 0.34 0.78
τ (1),Σ(2) 0.25 0.33
τ (2),Σ(1) 0.28 0.66
τ (2),Σ(2) 0.21 0.28
τ (3),Σ(1) 0.45 0.65
τ (3),Σ(2) 0.39 0.45
τ (4),Σ(1) 0.26 0.26
τ (4),Σ(2) 0.25 0.25

Γ = 1.75

τ (1),Σ(1) 0.04 0.36
τ (1),Σ(2) 0.03 0.06
τ (2),Σ(1) 0.03 0.23
τ (2),Σ(2) 0.03 0.05
τ (3),Σ(1) 0.09 0.24
τ (3),Σ(2) 0.09 0.12
τ (4),Σ(1) 0.05 0.05
τ (4),Σ(2) 0.04 0.04

procedure can be quite substantial when the paired differences are independent across out-

comes (Σ(1)), while more modest improvements are attained when the paired differences

are positively correlated (Σ(2)). With positively correlated differences across outcomes, the

worst-case unmeasured confounder for a particular outcome begins to align more closely

with the worst-case unmeasured confounder for the other outcomes, while for independent

paired differences this often is not the case. For both independent and correlated paired

differences, gains are also more substantial when there are 5 or 4 nonzero treatment effects

(τ (1) and τ (2)) versus 2 larger nonzero effects (τ (3)), and with only one large nonzero effects

(τ (4)) the two methods tend to coincide. With fewer nonzero effects, the significance of the

overall null at a given level of unmeasured confounding depends on the pattern of paired
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differences in a small number of outcomes, such that even if the worst-case unmeasured

confounder for an outcome with a nonzero effect actually improves the squared deviate for

an outcome with zero effect it is unlikely to elevate said deviate to a level of significance.

Naturally, the probabilities of rejection decrease as Γ increases for each combination of mean

vector and covariance matrix. We also note that as Γ increases, the gains from using the

minimax procedure also increase . For example, with combination τ (2),Σ(1) the powers of

the combined approach versus the minimax approach are 0.89 and 0.96 at Γ = 1.25, and are

0.28 versus 0.66 at Γ = 1.5. These simulations indicate that conducting a sensitivity analysis

for the overall null by minimizing the maximum squared deviate allows for substantial and

clinically relevant gains in the power of a sensitivity analysis. Additionally, the computa-

tional burden of the required optimization problem was minimal in these simulations: across

all 24 simulation settings, the average computation time on a desktop computer with a 3.40

GHz processor and 16.0 GB RAM was 0.12 seconds.

4.6.2. Individual Hypotheses

As discussed in Section 4.5, the benefits of our procedure extend beyond testing the over-

all null, and can in fact yield improved power for a sensitivity analysis on hypotheses for

individual outcomes. To illustrate this fact, we present a simulation study assessing the

individual-level power of a sensitivity analysis for each of K = 3 outcomes. We use a closed

testing procedure in order to test hypotheses on individual outcomes. Briefly, the closed

testing principle states that if there are K hypotheses H1, ...,HK that are of interest, we

can reject any particular hypothesis Hk with familywise error control at α if all intersections

of hypotheses including Hk can be rejected with tests that are individually level α. For

example, with three outcomes we can reject H1 if we can reject H1 ∧ H2 ∧ H3, H1 ∧ H2,

H1 ∧ H3, and H1 with tests that are locally level α. When combining the results of indi-

vidual sensitivity analyses, this equates to the Holm-Bonferroni procedure. When using the

minimax procedure for closed testing, one instead solves problem (∧Hk) for each intersection

hypothesis.

81



Table 7: Power of closed testing for individual nulls.
Separate Minimax

Gamma Moments H1 H2 H3 ∧Hk H1 H2 H3 ∧Hk

Γ = 1.25

τ (1),Σ(1) 0.27 0.40 0.54 0.74 0.33 0.46 0.60 0.84
τ (1),Σ(2) 0.29 0.40 0.53 0.62 0.31 0.43 0.56 0.65
τ (2),Σ(1) 0.65 0.86 0.96 0.99 0.68 0.88 0.97 1.00
τ (2),Σ(2) 0.65 0.85 0.95 0.97 0.66 0.86 0.96 0.97
τ (3),Σ(1) 0.32 0.59 0.95 0.97 0.35 0.63 0.97 0.99
τ (3),Σ(2) 0.34 0.58 0.94 0.95 0.35 0.60 0.95 0.95
τ (4),Σ(1) 0.09 0.27 0.94 0.95 0.11 0.29 0.95 0.97
τ (4),Σ(2) 0.11 0.27 0.93 0.94 0.11 0.28 0.94 0.94

Γ = 1.375

τ (1),Σ(1) 0.09 0.16 0.27 0.41 0.14 0.22 0.34 0.61
τ (1),Σ(2) 0.11 0.18 0.27 0.35 0.13 0.20 0.30 0.39
τ (2),Σ(1) 0.37 0.63 0.85 0.94 0.42 0.70 0.90 0.99
τ (2),Σ(2) 0.39 0.62 0.84 0.87 0.41 0.65 0.85 0.89
τ (3),Σ(1) 0.12 0.31 0.83 0.87 0.16 0.37 0.88 0.95
τ (3),Σ(2) 0.14 0.32 0.82 0.83 0.16 0.35 0.83 0.84
τ (4),Σ(1) 0.02 0.10 0.81 0.83 0.03 0.12 0.85 0.89
τ (4),Σ(2) 0.03 0.11 0.82 0.82 0.03 0.12 0.82 0.82

Γ = 1.5

τ (1),Σ(1) 0.03 0.06 0.11 0.18 0.05 0.09 0.16 0.36
τ (1),Σ(2) 0.03 0.06 0.12 0.16 0.05 0.08 0.14 0.19
τ (2),Σ(1) 0.16 0.38 0.64 0.77 0.22 0.48 0.76 0.95
τ (2),Σ(2) 0.18 0.38 0.64 0.69 0.20 0.42 0.68 0.74
τ (3),Σ(1) 0.04 0.13 0.62 0.66 0.06 0.18 0.71 0.84
τ (3),Σ(2) 0.04 0.14 0.62 0.63 0.05 0.16 0.64 0.66
τ (4),Σ(1) 0.00 0.03 0.62 0.63 0.01 0.04 0.67 0.73
τ (4),Σ(2) 0.01 0.04 0.62 0.62 0.01 0.04 0.63 0.63

In each of 24 simulation settings, we simulate 10,000 data sets under no unmeasured con-

founding with I = 250 pairs for the three outcome variables of interest and again use Huber’s

M-statistic. For each of the 8 combinations of treatment effects and covariances, closed test-

ing is used to test individual hypotheses, and tests are run at Γ = 1.25, 1.375, and 1.5. We

also include the power for rejecting the overall null for each combination and at each level

of Γ. The values for the treatment effect vector and the covariances were as follows:

1. τ (1) = [0.2, 0.225, 0.25]; τ (2) = [0.25, 0.3, 0.35]; τ (3) = [0.2, 0.25, 0.35];

τ (4) = [0.15, 0.25, 0.35]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.
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Table 13 shows the power for rejecting Fisher’s sharp null for each outcome under four differ-

ent vectors of true treatment effect values and two different forms of the covariance matrix.

The magnitude of the improvement attained through the minimax procedure can be seen

to depend on many factors. All else equal, as Γ increases the gains in power also increase.

The gains in power tend to be more substantial in the iid cases (Σ(1)) versus the positively

correlated case (Σ(2)), as for each intersection hypothesis the minimax procedure tends to

resemble more closely the individual testing approach when there is positive correlation since

the worst-case confounders across outcomes tend to align more closely. For example, with

τ (2) = [0.25, 0.3, 0.35] at Γ = 1.5, the power after combining individual sensitivity analyses

and after using the minimax procedure are [0.16, 0.38, 0.64] versus [0.22, 0.48, 0.76] when

the paired differences are independent across outcomes, yet were [0.18, 0.38, 0.64] versus

[0.20, 0.42, 0.68] when positively correlated. Gains are also most apparent when the treat-

ment effects are of roughly the same magnitude (τ (1) and τ (2)), while the gains tail off as one

outcome increasingly determines the rejection of the overall null (compare τ (2), τ (3), τ (4)).

Thus, while the gains for testing the overall null hypothesis may be most apparent, the

minimax procedure can provide meaningful improvements for testing nulls on individual

outcomes.

In Appendix C.3, we show that our procedure does provide strong familywise error control

in the presence of true intersection nulls as desired.

4.7. Improved Robustness to Unmeasured Confounding for Elevated Napthalene in
Smokers

4.7.1. Conflicting Desires for the Worst-Case Confounder

To make concrete the factors allowing for the gains discussed in this work, Table 8 show

the values and aligned ranks for loge urinary concentrations of 1-naphthol and 2-naphthol

for two individuals, one smoker and one nonsmoker, who were matched as a pair by the full

match described in Appendix C.1. Both individuals are Hispanic males aged over 50, are

similar in terms of height and weight, and are both exposed to PAHs occupationally, yet the
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Table 8: Worst-Case Confounders in a Particular Pair at Γ = 10

1-Naphthol 2-Naphthol
Rij1 qij1 u∗ij1 E[Ti1] Rij2 qij2 u∗ij2 E[Ti2]

NS 6.39 353 0 1274 8.63 1350 1 1260
S 8.54 1366 1 7.07 363 0

Minimax
u∗ E[Ti1] E[Ti2]

[0.562, 0] 571 1137

smoker (labeled S) has higher levels of 1-naphthol and lower levels of 2-naphthol.

The tests of both 1-naphthol and 2-naphthol had observed test statistics that were larger

than their expectations under Fisher’s sharp null with Γ = 1. Hence, the individual sensi-

tivity analyses will choose the binary vector of u∗k such that the individual with the larger

observed response is given the value 1, thus having the higher probability of smoking. For

1-naphthol this is the smoker, but for 2-naphthol this is the nonsmoker, as is shown in Table

8. Although we do not know the value of this unmeasured confounder, we do know that logi-

cally, the unmeasured confounder cannot simultaneously increase the odds that individual 1

smokes relative to individual 2 and the odds that individual 2 smokes relative to individual

1. Simply combining these two sensitivity analyses would ignore the contradictory values

of u∗k. Table 8 also gives the expectation of the test statistic for the individual outcomes

assessed separately at Γ = 10, a value of Γ for which the minimax procedure rejects the

overall null, but using Holm-Bonferroni to combine sensitivity analyses fails to reject. Con-

ducting sensitivity analyses separately and allowing for an illogical effect of the unmeasured

confounder, the worst-case expectations for the contribution from this matched set to the

test statistics’ expectations are 1274 and 1260 for 1- and 2-naphthol.

Recognizing that the unmeasured confounders must have the same impact on odds of treat-

ment for individuals in a matched set yields markedly different results for the overall sen-

sitivity analysis in this pair, as is demonstrated in the section labeled “Minimax” in Table

8. First, we note that the values of the unmeasured confounder for both individuals are

fractional, an occurrence which is provably impossible when conducting sensitivity analyses
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for any given outcome (Rosenbaum and Krieger, 1990). This makes the probabilities of

assignment to treatment and control much less extreme than they possibly could have been:

conditional on one of the two individuals receiving the treatment, the smoker is given a

probability of exp{log(10)0.391}/(exp{log(10)0.391} + exp{log(10).953}}) = 0.22 of being

a smoker, while at Γ = 10 this probability could have been as low as 1/(1 + 10) and as high

as 10/(1 + 10). In minimizing the maximal deviate, the optimization problem determined

that a compromise should be made between the two conflicting desires of the individual level

sensitivity analysis, but that it should favor making 2-naphthol more significant. Hence, we

see that the contribution to the overall expectation of the two test statistics is larger than

what it would have been at no unmeasured confounding for 2-naphthol (1137 vs 856.5), but

is actually smaller for 1-naphthol (571 vs 859.5).

4.7.2. Sensitivity of Overall and Outcome Specific Effects

As was stated in Section 4.1.2, the conclusions of either of the individual level tests on 1-

and 2-naphthol were both overturned at Γ = 7.78 when using Holm-Bonferroni. This is also

the maximal level of Γ at which we can claim overall significance of at least one of these

metabolites. The minimax procedure for testing the overall null hypothesis was able to claim

robustness of this same finding up until Γ = 10.22, representing a substantial increase in

robustness. In this application the overall null is of interest, as both naphthalene metabolites

are indicators of naphthalene exposure. Hence, rejecting the overall null implies that we can

suggest that at least one of our indicators of naphthalene exposure is significantly elevated

for smokers relative to nonsmokers, even if we are not able to identify a particular metabolite

that is significant at that level of unmeasured confounding.

To exploit the potential gains in power for individual tests of 1-naphthol and 2-naphthol, we

use a closed testing procedure. In our example, doing so means that if we reject the null H1∧

H2 at level 0.05 through our minimax procedure we can then test the individual hypotheses

H1 and H2 at level 0.05 (rather than 0.025) and still maintain the proper familywise error

rate. Since our test of the overall null rejects until Γ = 10.22, the closed testing procedure
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allows us to perform individual tests up to that level of unmeasured confounding. The

individual tests of 1- and 2-naphthol without a Bonferroni correction (i.e., tested at α = 0.05)

were not overturned until a Γ of 7.83 and 8.20 respectively. As our minimax procedure rejects

the overall null H1∧H2 for all Γ between 7.78 and 8.20, we can declare improved robustness

of the individual level tests. That is, we can reject the null of no effect for 1- and 2-naphthol

at all levels of Γ up to Γ = 7.83 and 8.20, rather than Γ = 7.78.

4.8. Discussion

In a randomized clinical trial, counfounders not accounted for in the trial’s design are, on

average, balanced through randomized assignment of the intervention. As such, there is less

of a concern that the observed results are driven by a causal mechanism other than the one

under investigation. In observational studies, there is no such guarantee of balance on the

unmeasured confounders between the two groups under comparison. When testing for a

causal effect on multiple outcome variables, concerns about a loss of power by controlling

the familywise error rate both under the assumption of no unmeasured confounding and

within the sensitivity analysis may arise. We have demonstrated through this work that

when dealing with multiple comparisons in a sensitivity analysis, the loss in power from

controlling the familywise error rate can be attenuated.

As mentioned in Section 4.5, our method can be used in conjunction with sequential rejection

procedures which proceed by rejecting intersection null hypotheses on a sequence of subsets

of outcomes, {K`}. For certain types of null hypotheses, such as those for the value of an

additive treatment effect with one sided alternatives, our method could also be used while

employing the partitioning principle of familywise error control (Finner and Strassburger,

2002). One deficiency of our method is that it does not account for correlation between

test statistics, which can greatly improve power in the presence of dependence (Westfall and

Young, 1993; Romano and Wolf, 2005). While the simulation studies of Section 4.6 reveal

marked improvements when test statistics are independent, these gains are far more modest

when the test statistics are correlated and further improvements are desired. Deriving
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methods for sensitivity analyses which exploit correlation between test statistics remains

a topic of ongoing research. Another limitation is that our method can only be used for

sensitivity analyses after matching, as the structure of matched sets returned by matching

algorithms allows for a straightforward relationship between the assignment probabilities

and the variances of our test statistics. In unmatched or stratified analyses, while the

logical inconsistencies noted herein are still present, optimizing over the unknown assignment

probabilities can no longer be expressed as a quadratically constrained linear program.

In our motivating example, we argue that if smoking causes increased naphthalene expo-

sure, it would elevate levels of both 1- and 2-naphthol in the body. Though related, these

metabolites are not affected equally by measured and unmeasured confounding variables: for

example, there are certain genetic variants that are only believed to affect the prevalence of

particular naphthalene metabolites (Yang et al., 1999). When focusing on a single outcome

variable, the worst-case confounder is allowed to optimally align itself with the responses

in each matched set through selecting the worst-case allocation of treatment assignment

probabilities. If we are instead trying to disprove the overall truth of null hypotheses on

multiple outcomes, the worst-case confounder likely cannot affect the treatment assignment

probabilities in a way that simultaneously yields the worst-case inference for all outcomes.

Exploiting this fact not only lends higher power to a sensitivity analysis for the overall null

across all outcomes, but also increases power for testing hypotheses on individual outcomes

through the use of certain sequential rejection procedures.
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CHAPTER 5 : Sensitivity Analysis for the Average Treatment Effect in Matched

Observational Studies

Inspired by work of Paul Rosenbaum

5.1. Introduction

In the analysis of observational studies, unease is sometimes expressed with the assumption

of a constant treatment effect for each individual in the study; see, for example, Heckman

et al. (2006) and Rosenbaum (2002c, Discussion and Rejoinder). To address this unease, we

present a new method for conducting a sensitivity analysis for the average treatment effect

in a paired observational study while allowing for heterogeneous individual effects. Through

this work we hope to further facilitate the conducting of sensitivity analyses in the analysis

of observational data, as in many fields the average treatment effect represents the most

common quantification of intervention’s impact (Imbens, 2004).

5.2. A Paired Observational Study

5.2.1. Notation for Paired Experiments and Observational Studies

There are I independent matched pairs. In each of i matched pairs, there is one individual

who receives the treatment, denoted as Zij = 1, and one who receives the control, denoted

as Zij = 0, such that Zi1+Zi2 = 1 for each i. These matched pairs are formed on the basis of

observed pre-treatment covariates xij , so that xi1 = xi2 for each pair i; however, individuals

may differ on the basis of an unobserved covariate uij , such that ui1 6= ui2. Each individual

has a potential outcome under treatment, rT ij , and under control, rCij . The fundamental

problem of causal inference is that (rT ij , rCij) are not jointly observable; rather, we observe

the response Rij = rT ijZij + rCij(1 − Zij) for each individual. See Neyman (1923) and

Rubin (1974) for more on the potential outcomes framework.

Let ΩI be the set of 2I possible values of Z under the matched pairs design. In a paired
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randomized experiment, randomness is modeled through the assignment vector; each z ∈ ΩI

has probability 2−I of being selected. Hence, quantities dependent on the assignment vector

such as Z, R are random, whereas FI = {(rT ij , rCij , xij , uij} contains fixed quantities.

For a randomized experiment, πi := P(Zi1 = 1|FI ,Z ∈ ΩI) = 1/2. In an observational

study, it may be the case that πi 6= 1/2 due to differences in ui1 and ui2 for the individuals

in matched pair i of I. As such, the probability of an observed allocation z must instead be

written as:

P(Z = z|FI , Z ∈ ΩI) =
I∏
i=1

πzi1i (1− πi)1−zi1

Without control over the assignment mechanism, the probabilities πi are unknown to the

researcher. Through a sensitivity analysis, one seeks to assess the robustness of a study’s

finding to departures from an idealized paired experiment. A sensitivity analysis places

bounds on the allowable departure from a pure randomized experiment for two individuals

in the same matched pair. We use the model of Rosenbaum (1987), which controls the

allowable departure from a paired randomized experiment through a parameter Γ ≥ 1. In

each matched pair, we bound πi above and below by

1

1 + Γ
≤ πi ≤

Γ

1 + Γ
.

This model can be derived as a simplification of the model in Rosenbaum (2002a, Section

4) in the case of matched pairs. The sensitivity analysis proceeds by, for a given value of

Γ, finding the worst-case null distribution for the inferential problem at hand. One then

iteratively increases the value of Γ until the null hypothesis can no loner be rejected. This

changepoint Γ then serves as a measure of robustness of the study’s findings to unmeasured

confounding.
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5.3. The Average Treatment Effect

Define ϕi1 = rT i1 − rCi2 and ϕi2 = rT i2 − rCi1 to be the observed paired difference if the

Zi1 = 1 and Zi1 = 0 respectively. The treated minus control difference in pair i that is

actually observed can then be written as:

Yi = Zi1(ϕi1) + (1− Zi1)ϕi2

The average treatment effect in a paired experiment or observational study is defined as

∆̄ :=
1

2I

I∑
i=1

2∑
j=1

(rT ij − rCij)

=
1

2I

I∑
i=1

(ϕi1 + ϕi2)

We consider the estimator Ȳ = I−1
∑I

i=1 Yi, and use it henceforth as a test statistic for

inference on ∆̄. In a purely randomized matched pairs design with πi = 1/2, Ȳ is an

unbiased estimator of ∆̄ (Rosenbaum, 2002a). In an observational study, πi = 1/2 would

represent a specious assumption and Ȳ may well be biased for ∆̄.

If we were to further assume an additive treatment effect model, rT ij = rCij + τ , then a null

hypothesis on ∆̄ would be sharp, in that it would entirely specify the pairs (rT ij , rCij) for each

individual, hence facilitating the use of randomization tests to assess statistical significance

and allowing one to use the methods of Rosenbaum (2007) to conduct a sensitivity analysis

for Ȳ . In the absence of an assumption of additivity, a null hypothesis H0 : ∆̄ = ∆0 is

composite, in that there are in fact infinitely many allocations for the 2I missing potential

outcomes that satisfy the null in question. We call a set of potential outcomes consistent

with the null in question if the following three conditions hold.

(A1) Consistency with observed data: Zi1ϕi1 + (1− Zi1)ϕi2 = Yi
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(A2) Consistency with additional assumptions made on potential outcomes (for example,

additive treatment effect; nonnegative treatment effect)

(A3) Agreement with the null hypothesis:
∑I

i=1(ϕi1 + ϕi2) = 2I∆̄0

The first condition recognizes that we know the true values for half of the potential outcomes

based on the observed data. The second condition means that if the practitioner has made

additional assumptions on the potential outcomes, those assumptions must be satisfied in

the allocations of potential outcomes under consideration. The third condition signifies that

when testing a null hypothesis, we must only consider allocations of potential outcomes

where the corresponding causal parameter takes on the desired value.

Let H(∆̄0) represent the set of potential outcomes satisfying conditions A1 - A3. As the

size of a composite null hypothesis test is the supremum of the sizes of the elements of

the composite null, to reject the null H0 : ∆̄0 at level α, we must reject the null for all

{ϕi1, ϕi2} ∈ H(∆̄0) at level α. As will now be made clear, such a pursuit would be a fool’s

errand without a further restriction on the set of consistent allocations of potential outcomes

over which we aspire towards type I error control.

Example 1 (Motivating a Further Restriction). Suppose without loss of generality ȳ > ∆̄0.

Let mi be the missing paired difference in matched set i, and set mi as

mi =


(2∆̄0 − ȳ) + I max{|yi|} i ∈ {1, ..., I/2}

(2∆̄0 − ȳ)− I max{|yi|} i ∈ {I/2 + 1, ..., I}

Clearly, {ϕi1, ϕi2} ∈ H(∆̄0). However, for this allocation, under no unmeasured confounding

we see that P(Ȳ ≥ ȳ|FI ,Z ∈ ΩI) > P
(∑I/2

i=1 Zi1 >
∑I

i=I/2+1 Zi1|FI ,Z ∈ ΩI

)
→ 0.5 as

I → ∞. Furthermore, this probability could be made strictly larger in the corresponding

sensitivity analysis.

This problem plagues not only the analysis of observational studies, but even the analysis
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of randomized experiments through the potential outcomes framework. In contemplating

how to proceed, we now discuss, and subsequently borrow from, the standard procedure for

inference on the average treatment effect in randomized experiments.

5.3.1. Asymptotic Normality and Estimating an Upper Bound on the Variance

In this section, we describe the subset of the composite null H0(∆̄0) over which we will

perform both inference under no unmeasured confounding and a sensitivity analysis. Our

first condition will be fairly benign, while the second will deserve closer consideration. We

initially restrict attention to elements of the composite null for which the estimator Ȳ is

asymptotically normal. One set of conditions given by Hájek and S̆idák (1967) is as follows.

Proposition 1 (Hájek and S̆idák (1967)). If
∑I

i=1(ϕi1−ϕi2)2/max
1≤i≤I

(ϕi1−ϕi2)2 →∞ and

I−1
∑I

i=1(ϕi1 − ϕi2)2 → η > 0 then

IȲ
d→ N

(∑I
i=1(πiϕi1 + (1− πi)ϕi2),

∑I
i=1 πi(1− πi)(ϕi1 − ϕi2)2

)
Assuming these necessary conditions for asymptotic normality does not alleviate the prob-

lems raised in the previous section, as the allocation of missing potential outcomes given in

Example 1 satisfies these conditions. Nonetheless, employing asymptotic normality when

conducting inference does lead to a natural additional condition to impose to make the

problem tractable. Under a normal approximation and assuming no unmeasured confound-

ing, the distribution of Ȳ generated by different elements H(∆̄0) only differs due to their

effect on the variance of Ȳ . When using the potential outcomes framework in randomized

experiments, randomization inference for the average treatment effect typically proceeds by

finding a consistent estimator of an upper bound on the variance of the estimated ATE, and

using that variance to conduct inference under a normal approximation; see Neyman (1923)

and Ding (2014) among many. Might a similar approach be employed in the analysis of the

average treatment effect in observational studies?
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Under a matched pairs design, the variance of the average treatment effect is given by:

var(Ȳ |FI ,Z ∈ ΩI) = I−2
I∑
i=1

πi(1− πi)(ϕi1 − ϕi2)2

This variance is unknown not only due to the unobserved potential outcomes, but also

due to the fact that the in an observational study, the values of {πi} are unknown to the

researcher. Nonetheless, we now demonstrate that for a given maximal allowable departure

from a matched pairs design Γ, one can similarly upper bound the variance in a sensitivity

analysis.

Suppose we are testing the null that ∆̄ = ∆̄0, and consider the estimator ¯̄VΓ := 2Γ/(1 +

Γ)
∑I

i=1(Zi1(ϕi1 − ∆̄0)2 + (1− Zi1)(ϕi2 − ∆̄0)2).

Proposition 2.

E[ ¯̄VΓ|FI ,Z ∈ ΩI ] ≥ I2var(Ȳ |FI ,Z ∈ ΩI)

Proof.

E[ ¯̄VΓ|FI ,Z ∈ ΩI ] = 2Γ/(1 + Γ)
I∑
i=1

(πi(ϕi1 − ∆̄0)2 + (1− πi)(ϕi2 − ∆̄0)2)

≥ 2
I∑
i=1

πi(1− πi)((ϕi1 − ∆̄0)2 + (ϕi2 − ∆̄0)2)

≥
I∑
i=1

πi(1− πi)((ϕi1 − ∆̄0)2 + (ϕi2 − ∆̄0)2 − 2(ϕi1 − ∆̄0)(ϕi2 − ∆̄0)

=

I∑
i=1

πi(1− πi)(ϕi1 − ϕi2)2 = I2var(Ȳ |FI ,Z ∈ ΩI)

Let ¯̄vΓ denote the observed value of the random variable ¯̄VΓ. Moving forward, we proceed

with inference for the composite null containing potential outcomes such that the following

three conditions hold:
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1. {ϕi1, ϕi2} ∈ H0(∆̄0)

2.
∑I

i=1 πi(1− πi)(ϕi1 − ϕi2)2 ≤ ¯̄vΓ

3. Ȳ is asymptotically normal.

5.4. Sensitivity Analysis for the Average Treatment Effect

Without loss of generality, suppose the our estimate of the average treatment effect exceeds

its null expectation at Γ = 1, i.e. ȳ > ∆̄0. Further, assume for notational convenience that

in each pair the first individual received the treatment so Zi1 = 1 ∀i. Hence, ϕi1 is known

and ϕi2 is unknown.

Employing a normal approximation for the average treatment effect, consider the following

optimization problem

minimize
{πi,ϕi2}

∑I
i=1 ϕi1 −

∑I
i=1 (πiϕi1 + (1− πi)ϕi2)√∑I

i=1 πi(1− πi)(ϕi1 − ϕi2)2

(P1)

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

I∑
i=1

πi(1− πi)(ϕi1 − ϕi2)2 ≤ ¯̄vΓ

1

1 + Γ
≤ πi ≤

Γ

1 + Γ

Problem (P1) encodes the desired sensitivity analysis at level of unmeasured confounding

Γ, as under the normal approximation minimizing the standardized deviate is equivalent to

maximizing the p-value for the performed hypothesis test. Unfortunately, the above problem

is not convex. We will now take steps to facilitate its computation.
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We begin by, through the following lemma, simplifying the optimization problem with re-

spect to the unknown {πi}

Lemma 1. Suppose 1/(1 + Γ) ≤ πi ≤ Γ/(1 + Γ) ∀i. Then, P(Ȳ ≥ ȳ) ≤ P(I−1
∑I

i=1 Ỹi ≥ ȳ),

where Ỹ = Z̃i max{ϕi2, ϕi1}+ (1− Z̃i) min{ϕi2, ϕi1}, and Z̃i
iid∼ Bern(Γ/(1 + Γ)).

Proof. For any πi ∈ [1/(1 + Γ),Γ/(1 + Γ)], P(Yi = max{ϕi2, ϕi1}) ≤ P(Ỹi = max{ϕi2, ϕi1}).

As Yi and Ỹi only take on the values min{ϕi2, ϕi1} and max{ϕi2, ϕi1}, Ỹi is stochastically

larger than Yi. The result then follows from preservation of stochastic ordering under inde-

pendent convolutions.

For any fixed values of {ϕi1, ϕi2}, the worst-case unmeasured confounder would thus at-

tribute πi = Γ
1+Γ if ϕi1 ≥ ϕi2, and πi = 1

1+Γ otherwise. This suggests that instead of

optimizing over πi ∈ [1/(1 + Γ),Γ/(1 + Γ)] we can express πi as a function of ϕi1 and ϕi2,

πi(ϕi1, ϕi2) = wi/(1 + Γ) + (1−wi)Γ/(1 + Γ), where wi = 1{ϕi2 ≥ ϕi1}. Before proceeding

as such, we need to ensure that for any allocation of potential outcomes and true treat-

ment assignment probabilities satisfying the constraints of Problem (P1), the corresponding

worst-case allocation also satisfies the above constraints. This is indeed true, as the following

trivial lemma indicates:

Lemma 2. For any {πi} ∈ [1/(1 + Γ),Γ/(1 + Γ)]I :

I∑
i=1

πi(1− πi)(ϕi1 − ϕi2)2 ≥ Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2

Hence, for any allocation of {πi, ϕi1, ϕi2} with a variance for the estimated average treatment

effect that is less than or equal to the variance upper bound, the worst-case distribution based

upon {ϕi1, ϕi2} has a variance that is also less than or equal to the variance upper bound.

Lemmas 1 and 2 allows us to consider the following simplified optimization problem:
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minimize
{πi,ϕi2}

∑I
i=1 ϕi1 −

∑I
i=1 (πiϕi1 + (1− πi)ϕi2)√

Γ
(1+Γ)2

∑I
i=1(ϕi1 − ϕi2)2

(P2)

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2 ≤ ¯̄vΓ

πi = wi/(1 + Γ) + (1− wi)Γ/(1 + Γ)

wi = 1{ϕi2 ≥ ϕi1}

The above problem could be formulated as an integer program through the use of a “Big-

M" formulation, as is discussed in Section 5.5; however, such formulations have notoriously

weak continuous relaxations and can thus be very slow in practice for even moderately sized

problems (Bertsimas and Tsitsiklis, 1997). Fortunately, such an approach is not necessary. In

fact, as we now demonstrate, a solution to problem (P1) can be attained in O(I) operations.

5.4.1. A Linear Time Algorithm

To proceed, define C+
s and C−s , s ∈ {1, ..., I − 1}, as

C+
s =

2I∆̄0 − 2
∑I

i=1 ϕi1 − C−s (I − s)
s

C−s =

4
∑I

i=1(∆̄0 − ϕi1) I−ss − 2

√(
I−s
s

)(
I (1+Γ)2

Γ
¯̄vΓ − 4

(∑I
i=1(∆̄0 − ϕi1)

)2
)

2I
(
I−s
s

)
Furthermore, define µ0, µ1, ..., µI−1 and ν2

0 , ν
2
1 , ..., ν

2
I−1 as:
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µ0 =


2

1+Γ

∑I
i=1(ϕi1 − ∆̄0) Γ

(1+Γ)2
4I−1(

∑I
i=1(∆̄0 − ϕi1))2 ≤ ¯̄v

−∞ otherwise
,

ν2
0 =

Γ

(1 + Γ)2
4I−1(

I∑
i=1

(∆̄0 − ϕi1))2

and, for s ∈ {1, ..., I − 1},

µs =
I∑
i=1

ϕi1 +
ΓC+

s

1 + Γ
s+

C−s
1 + Γ

(I − s)

ν2
s = ¯̄v

Finally, define the deviate a as:

a := min
s∈{0,...,I−1}

Iȳ − µs
νs

Theorem 2. Suppose that
∑I

i=1(ϕi1 − ϕi2)2/max
1≤i≤I

(ϕi1 − ϕi2)2 → ∞ and I−1
∑I

i=1(ϕi1 −

ϕi2)2 → η > 0. Consider conditional probabilities of receiving the treatment 1/(1 + Γ) ≤

πi ≤ Γ/(1 + Γ) for each matched pair. Then, for any allocation of potential outcomes such

that (a) {ϕi1, ϕi2} ∈ H0(∆̄0) and (b)
∑I

i=1 πi(1− πi)(ϕi1 − ϕi2)2 ≤ ¯̄v:

lim
I→∞

P(Ȳ ≥ ȳ|FI ,Z ∈ ΩI) ≤ 1− Φ(a),

where Φ(·) is the standard normal CDF. That is, the deviate a is the solution to Problem

(P1).
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The proof is deferred to Appendix D.1. This algorithm is similar in spirit to the one presented

in Rosenbaum (2002b) for conducting a sensitivity analysis for the attributable effect, in

that a seemingly complicated optimization problem over a composite null hypothesis can be

reduced to a small number of simple evaluations.

5.5. Known Direction of Effect

Oftentimes it is reasonable to assume that while a treatment may have heterogeneous effects

from one individual to the next, the direction of the effect lies in the same direction for all

individuals. Without loss of generality, we will proceed assuming the treatment effect is

nonnegative for each individual, i.e. that rT ij ≥ rCij ∀i, j. This restriction can be added to

Problem (P2) as follows:

minimize
{πi,ϕi2}

∑I
i=1 ϕi1 −

∑I
i=1 (πiϕi1 + (1− πi)ϕi2)√

Γ
(1+Γ)2

∑I
i=1(ϕi1 − ϕi2)2

(P3)

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2 = ¯̄vΓ

πi = wi/(1 + Γ) + (1− wi)Γ/(1 + Γ)

wi = 1{ϕi2 ≥ ϕi1}

ϕi2 ≥ −ϕi1

An area of ongoing research is to seek a computationally scalable manner for solving Problem

(P3). We can find the worst-case expectation for the estimated average treatment effect by

solving the following integer program.
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maximize
{wi,x

+
i ,x
−
i }

Γ

1 + Γ

I∑
i=1

ϕi1 +

I∑
i=1

(
1

1 + Γ
x−i +

Γ

1 + Γ
x+
i −

Γ− 1

1 + Γ
ϕi1wi

)
(P4)

subject to
I∑
i=1

ϕi1 + x−i + x+
i = 2I∆̄0

− (1− wi)ϕi1 ≤ x−i ≤ (1− wi)ϕi1

wiϕi1 ≤ x+
i ≤ wi(2I∆̄0 − ϕi1)

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − x−i − x
+
i )2 ≤ ¯̄vΓ

wi ∈ {0, 1} ∀i

x+
i + x−i ≥ −ϕi1 ∀i

A conservative approach to finding the worst-case deviate would then be to simply use the

variance upper bound to create, denoting the solution of Problem (P4) by ¯̄µ

a =
Iȳ − ¯̄µ√

¯̄vΓ
.

One instance in which this is provably conservative is under the null ∆̄ = 0. In the case of

a nonnegative treatment effect, the only allocation of potential outcomes satisfying this null

is that under Fisher’s sharp null of no effect. Hence, the standard sensitivity analysis for

Fisher’s sharp null then yields a valid sensitivity analysis for the null of ∆̄ = 0.

5.6. Bigger Effect for Individuals More Likely to Receive Treatment

One particular case of heterogeneity often considered in economics as an argument against

assuming an additive treatment effect is known as “essential heterogeneity," wherein indi-

viduals who will benefit more from a given treatment are more likely to decide to take said

treatment (Heckman et al., 2006). In the context of a paired observational study, this re-

striction could be written in the form πi− (1−πi) ≥ 0⇔ (rT i1− rCi1) ≥ (rT i2− rCi2). One
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might think that such a consideration would impose a further constraint on a sensitivity

analysis; however, the following proposition demonstrates, this turns out not to be the case.

Proposition 3. The solutions to Problem (P1) under no assumption on the direction of

effect and to Problem (P3) under a known direction of effects are also solutions under the

constraint that the individual in a matched pair with the higher treatment effect has the higher

probability of receiving the treatment

Proof. We begin without assuming a known direction of effect. The solution returns worst-

case ϕi2 = rT i2 − rCi1. The values of rT i1 and rCi2 are fixed. Suppose πi = Γ/(1 + Γ) (the

proof for πi = 1/(1+Γ) is analogous). To make it the case that rT i1−rCi1 ≥ rT i2−rCi2, set

rT i2 = c + ϕi2, set rCi1 = c, and simply solve for the c such that the two treatment effects

are equal. Doing so, we have rT i1 − c = c+ ϕi2 − rCi2 ⇒ c = (rT i1 + rCi2 − ϕi2)/2. For any

c′ < c, rT i1 − rCi1 ≥ rT i2 − rCi2 as desired.

Under the assumption of non-negativity, we know that for any solution to Problem (P3)

ϕi1 + ϕi2 ≥ 0. Equivalently, this implies that rT i1 − rCi1 + rT i2 − rCi2 ≥ 0. Suppose that

πi = Γ/(1 + Γ) (the proof for πi = 1/(1 + Γ) is analogous). Then, setting rT i2 = rCi2 and

rT i1 − rCi1 = ϕi1 + ϕi2 satisfies the constraint imposed by essential heterogeneity.

Hence, we can interpret the methods for a sensitivity analysis developed in the previous

section as encompassing this particular form of heterogeneity.

5.7. Simulation: The Impact of Assumptions on Sensitivity to Unmeasured Con-

founding

In this section, we assess the power of a sensitivity analysis for the average treatment effect

under the assumptions of additivity, nonnegative treatment effects, and no known direction

of effect. We borrow the simulation setting of Rosenbaum (2005), which sought to assess

the role of heterogeneity reduction in reducing sensitivity to unmeasured confounding under
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an additive treatment effect model. In this simulation study, we hope to not only compare

sensitivity analyses for the average treatment effects under assumptions of varying strength

on the potential outcomes, but also to assess the role of heterogeneity reduction in reduc-

ing sensitivity to unmeasured confounding when an additive treatment effect model is not

assumed.

In evaluating these assumptions, our simulation study assumes as is advocated in Rosenbaum

(2004, 2007) that unbeknownst to the practitioner the paired data at hand truly arose from

a paired randomized experiment (i.e., Γ = 1). The practitioner, blind to this, would like to

not only perform inference under the assumption of no unmeasured confounding, but also

assess the robustness of the study’s findings to unmeasured confounding.

In the first simulation setting, called larger, more heterogeneous (LM), we draw, in each iter-

ation, I = 400 paired differences Yi with Yi
iid∼ N (1/2, 1). In the second, called smaller, less

heterogeneous (SL), we draw I = 100 paired differences with Yi
iid∼ N (1/2, (1/2)2). In both

LM and SL, the estimated average treatment effect Ȳ , is distributed as Ȳ ∼ N (1/2, 1/400);

the settings differ only in the heterogeneity of the observed paired differences.

In each setting, we simulate 1000 data sets. We then perform a sensitivity analysis for a

range of Γ, and assess the probability of correctly rejecting the null hypothesis of (a) ∆̄0 = 0

and (b) ∆̄0 = 0.1.

The results are shown in Figure 4. We first compare within the LM and SL settings. We note

that for both null hypotheses in question, the sensitivity analysis for the average treatment

effect without assumptions on the potential outcomes is less powerful than that performed

under both an additive treatment effect model and a nonnegative treatment effect model.

For the null ∆̄0 = 0, we see that the additive treatment effect model and the nonnegative

treatment effect model coincide, as here the null of zero average treatment effect under a

nonnegative treatment effect model implies that Fisher’s sharp null holds. When the null

in question is ∆̄0 = 0.1, we see that the sensitivity analysis assuming an additive treatment
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effect model is more powerful than that assuming a nonnegative treatment effect, which is

in turn more powerful than that without an assumption of a known direction of effect.
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Figure 4: Power of a Sensitivity Analysis for the Average Treatment Effect. This figure shows
the power for a sensitivity analysis as a function of Γ for testing null hypotheses on average treat-
ment effect under additivity, a nonnegative treatment effect, and without further assumptions under
scenarios LM and SL.

Now looking between the LM and SL settings, we note that setting SL yields a more powerful

sensitivity analysis than LM for all three sets of assumptions on the potential outcomes;

however, it appears as though the differences are most drastic under the assumption of

additivity, and less so under the other two assumptions. Nonetheless, this settings lends

further support to the importance of matching in observational studies as a means of reducing

heterogeneity.

5.8. Discussion

In this work, we develop methods for conducting a sensitivity analysis for the average treat-

ment effect with and without assuming a known direction of effect. This work indicates

that not assuming additivity weakens the power of a sensitivity analysis to unmeasured con-

founding, which is consistent with the findings in Chapter 3 of this dissertation with respect

to sensitivity analyses for the risk difference. These results should, by no means, be viewed

as an indictment of additivity as a useful model for treatment effects. For example, even if
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the overall assumption of additivity were to fail due to the presence of effect modification, it

may be plausible for individuals within a given subgroup defined by the effect modifiers. In

this case, Hsu et al. (2013, 2015) present methods for both discovering effect modification

and subsequently testing for additivity within subgroups defined by the effect modifiers.

Furthermore, Rosenbaum (2002c, Rejoinder, Section 3) notes that randomization inference

assuming an additive treatment effect model is also the only non-parametric inference under

the assumption that the marginal distributions of treatment and control potential outcomes

adhere to an additive shift model for fixed values of the covariates. It is our belief that rather

than supplanting the model of additivity, analyses with and without said assumption should

be presented jointly as a means of further elucidating evidence for the strength of a given

causal effect. As noted inRosenbaum (2002c, Rejoinder, Section 6), even if one is not certain

that an additive treatment effect holds, confidence intervals for an additive treatment effect

can nonetheless illustrate which additive effects are not plausible.
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CHAPTER 6 : Discussion

One immediate area for future research is an extension of the work in Chapter 4 of the

dissertation to methods for multiple comparisons which utilize sums of test statistics rather

than the maxima of test statistics, and is joint work with Matt Olson and Dylan Small.

Borrowing notation from Chapter 4 of this dissertation, and letting µ(%) and Σ(%) be the

mean vector and covariance matrix for the test statistics, we seek to solve the following

problem:

min
%ij ,si

max
λk

(
λT (t− µ(%))

)2
λTΣ(%)λ

subject to
ni∑
j=1

%ij = 1 ∀i

%ij ≥ 0 ∀i, j

si ≤ %ij ≤ Γsi ∀i, j

||λ|| ≤ 1

Additional constraints on λ (say, λk ≥ 0) can yield a one-sided test. We have demonstrated

that, utilizing a projected subgradient descent algorithm, the above problem can be solved

expeditiously. This procedure yields improved power in finite samples in the presence of

strongly correlated outcome variables, and can be shown to, asymptotically, have higher

design sensitivity for the test of the overall null than the procedure presented in Chapter 4.

More generally, in the next few years I hope to assess the extent to which clever applica-

tions of optimization routines can help quantify the relative merits of various approaches

for the design and analysis of observational studies. Much advice on research designs and

strategies for judging causality exists outside of statistics; however, as noted in Rosenbaum

(2004), such advice is not always explicitly tied to tangible benefits for the resulting analysis.

Rosenbaum (2004) discusses how exhibiting multiple operationalism and dose-response rela-
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tionships yields enhanced robustness against unmeasured confounding as measured by both

design sensitivities and the power of the resulting sensitivity analysis. Yet another example

of a strategy yielding a quantifiable benefit is the use of “control” outcomes, i.e. outcomes

known to be unaffected by the treatment (in the sense described in Rosenbaum (2002a,

Section 6) that a purported significant treatment effect on the control outcome would make

us question the study’s design more strongly than our belief in the absence of an effect). In

Rosenbaum (1992), it is demonstrated that through convex optimization control outcomes

can be used to confidently eliminate certain types of unmeasured confounding. This has

potential to strengthen the evidence in favor of a proposed causal mechanism, as the search

for the worst-case unmeasured confounder is now limited to those which do not yield a sig-

nificant result for the control outcome. This strategy can be made actionable through the

formulation presented in Chapter 4, as it merely requires an additional quadratic constraint

in the optimization problem. I hope to explore the extent to which known directions of ef-

fect and known directions of bias can also be exploited in this manner, hence furthering the

connection between qualitative advice and quantitative improvement for causal inference in

matched observational studies.

This thesis has investigated the role of modern optimization in the design and analysis

of observational studies. Several of the methods presented herein require the solution of

integer programs, which are NP-hard in general. Owing to this, many of these proposed

methods (and with them, certain chapters of this dissertation) may have been eschewed

by statisticians on the grounds of practicability in the past. Through my work, I have

come to the conclusion that these perceptions of old must be revisited and revised. In

fact, over the past 25 years, a combination of algorithmic advances and improvements in

computing power have yielded an astounding 200 billion factor speedup in solving Mixed

Integer Optimization problems (Bertsimas et al., 2016). This is not to say that one should

be contented with any integer programming formulation, as not all formulations are created

equal. As is demonstrated in this dissertation, thinking critically about the strength of the

derived formulation remains essential to expeditiously attaining a globally optimal solution.
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Rather, paraphrasing a conversation I once had with Andreas Buja, we cannot allow the

perceived computational constraints of the present day to overly restrict the imagination.

What seems infeasible today may be feasible tomorrow, or even today if we are clever enough

about it.
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APPENDIX A

A.1. Summary Statistics and Percentages Missing for Covariates Used in Matching

In Table 9, we list the means and standard deviations for our non-binary covariates. Table

10 gives the percentages of ones for the binary covariates. Table 11 lists the percentages of

missing values for the 13 covariates with missing data. All tables provide summaries within

the ICU and hospital ward group before matching, both in our original population and in

our study population defined through the solution to the maximal box problem described

in Section 2.4.3.

Table 9: Means and Standard Deviations for Non-Binary Covariates Before Matching, Orig-
inal Population and Study Population. The column “Tier” corresponds to the tier of impor-
tance of a given covariate as it relates to (1) the decision to admit to the hospital ward or
the ICU and (2) an individual’s 60 day mortality rate, as assessed by expert consultation.
The next two columns are the covariate means (standard deviations) in the initial study
population, and the last two columns are the covariate means (standard deviations) in the
study population defined in Section 2.4.3.

Original Population Study Population
Covariate Tier ICU Ward ICU Ward

Age 1 60.1 55.1 60.56 55.88
(17.4) (18.4) (17.1) (18.3)

Charlson comorbity index 1 2.52 2.41 2.43 2.48
(2.81) (2.64) (2.70) (2.65)

Initial serum lactate 1 4.26 2.56 3.22 2.61
(2.98) (1.23) (1.24) (0.956)

APACHE II score 1 17.7 13.6 16.9 13.8
(6.37) (5.27) (5.46) (4.73)

Maximal heart rate/min 2 120 114 120 115
(23.6) (17.8) (23.0) (17.8)

Maximal temperature (◦ F) 2 99.8 100.8 100.0 100.8
(2.97) (2.01) (2.90) (2.00)

Maximal resp. rate/min 2 28.2 23.0 27.9 23.2
(9.03) (5.77) (8.98) (5.90)

White blood cell count 2 14.9 13.0 14.9 13.0
(10.7) (9.36) (10.5) (8.34)

Lowest systolic bp, mm Hg 2 103.2 107.3 103.4 108.0
(23.0) (21.3) (23.1) (21.3)

Year of study (5-9) 2 6.73 6.98 6.65 7.00
(1.38) (1.37) (1.38) (1.36)
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Table 10: Percentages for Binary Covariates Before Matching, Original Population and
Study Population. The column “Tier” corresponds to the tier of importance of a given
covariate as it relates to (1) the decision to admit to the hospital ward or the ICU and (2)
an individual’s 60 day mortality rate, as assessed by expert consultation. “Exact” means that
we matched exactly on that covariate. The next two columns are the percentages of ones
for the covariates in the initial study population, and the last two columns are percentages
of ones for the covariates in the study population defined in Section 2.4.3. Abbreviations:
DNR = Do Not Resuscitate; CAD = Coronary artery disease; CHF = Congestive heart
failure; COPD = Chronic obstructive pulmonary disease; ESRD = End stage renal disease.

Original Population Study Population
Covariate Tier ICU Ward ICU Ward
Female 2 56% 53% 55% 54%
Oncology 2 28% 35% 28% 36%
Transplant 2 10% 10% 12% 10%
Acute kidney infection 2 27% 15% 25% 15%
DNR order 2 4.3% 3.3% 4.0% 3.0%
Hypotension 2 32% 23% 32% 22%
Gastrointestinal infection 2 12% 12% 11% 12%
Urinary infection 2 20% 26% 21% 26%
Cellulitis 2 8.3% 13% 9.0% 13%
Bacteremia 2 22% 35% 25% 31%
Respiratory infection 2 61% 68% 63% 68%
CAD 3 11% 10% 11% 10%
CHF 3 12% 8.6% 13% 8.2%
COPD 3 8.3% 5.9% 8.4% 5.8%
Chronic liver disease 3 5.2% 3.2% 3.9% 3.1%
Chronic renal disease 3 15% 13% 15% 13%
Diabetes 3 21% 20% 22% 20%
ESRD 3 7.9% 7.9% 8.5% 8.0%
HIV 3 4.7% 3.2% 3.9% 3.6%
Hypertension 3 48% 42% 50% 42%
Cryptic septic shock Exact 44% 10% 31% 9.0%
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Table 11: Percentages of Missing Values, Original Population and Study Population. The
column “Tier” corresponds to the tier of importance of a given covariate as it relates to
(1) the decision to admit to the hospital ward or the ICU and (2) an individual’s 60 day
mortality rate, as assessed by expert consultation. The next two columns are the percentage
missing in the initial study population, and the last two columns are the percentage missing
in the study population defined in Section 2.4.3. Any covariate not listed here did not have
missing values. Abbreviations: CAD = Coronary artery disease; CHF = Congestive heart
failure; ESRD = End stage renal disease.

Original Population Study Population
Covariate Tier ICU Ward ICU Ward
Maximal heart rate/min 2 0.3% 0% 0.2% 0
Maximal temperature (◦ F) 2 1.0% 0.7% 0.6% 0.9%
Maximal resp. rate/min 2 0.4% 0.2% 0.2% 0.3%
White blood cell count 2 0% 0.1% 0% 0.1%
Lowest systolic bp, mm Hg 2 0.4% 0% 0.2% 0%
Bacteremia 2 51% 58% 49% 59%
Respiratory infection 2 37% 47% 34% 47%
CAD 3 1.3% 0.8% 1.4% 0.7%
CHF 3 1.2% 0.7% 0.8% 0.7%
ESRD 3 0.1% 0% 0.2% 0%
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A.2. Interpolation Overlap in High Dimensions
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Figure 5: Proportion of individuals identified by the method of King and Zeng (2006) as lying
within the area of common support as a function of covariate dimension.

To assess how attainable the interpolation overlap criterion of King and Zeng (2006) is

in moderate and high dimensions we conducted a simulation study wherein treated and

control individuals were truly drawn from the same multivariate distribution of increasing

dimension. There were 15 simulation settings, corresponding to a covariate dimension of 1 up

to 15. In the pth simulation setting and for each of 1000 iterations within the pth setting, we

drew 1500 individuals from a p dimensional multivariate normal with a common mean and

covariance matrix. After randomly assigning 750 individuals each to the treatment group

and the control group, we recorded the proportion of individuals that the method of King

and Zeng (2006) designated as lying within the area of interpolation overlap. For each p, we

calculated the average of these proportions across iterations. The results are shown in Figure

5. As the figure displays, large percentages are identified as having counterfactuals which are

estimable through interpolation in low dimensions, an occurrence one would expect since the

covariates of the treated and control groups have the same joint distribution. Unfortunately,
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one sees a marked decrease in the percentage of individuals lying in the area of interpolation

overlap for even a moderate number of covariates despite the fact that the treated and control

units are drawn from the same joint distribution. By p = 15, under 2% of individuals are

identified as lying in the area of common support.

A.3. An Extension of the Maximal Box Problem

We now present a generalization of the maximal box problem proposed in Eckstein et al.

(2002) and discussed in Section 2.4. Suppose one has a finite collection of vectors {xj}, j =

1, ..., N, that can be partitioned into two disjoint sets of “positive” points, X+ and “nega-

tive” points, X−. The generalized maximal box problem aims to find the lower and upper

boundaries of a box, [˜̀, ũ], such that the corresponding box contains the maximal number

of points in X+ while containing a fixed number C of the points in X−. Explicitly, [˜̀, ũ] is

the arg max of the following optimization problem (GMB, for generalized maximal box):

maximize |[`,u] ∩ X+| (GMB)

subject to |[`,u] ∩ X−| = C,

where the notation |A| denotes how many points are in set A, and C ∈ {0, 1, ..., |X−|}

Additional discussion of the value C is warranted. C controls how many times the maximal

box is allowed to include a point which was designated to lie outside of the area of covariate

overlap based on the exclusion function D(xj ,X,Z). Larger values of C will allow for

maximal boxes that include a larger number of individuals deemed as being viable, but at

the risk of including individuals for whom inference corresponds to an extrapolation of the

form described in King and Zeng (2006). If one believes with absolute certainty that the

elements of X+ are the only individuals within the area of viable covariate overlap, then

allowing for C > 0 would result in extrapolation and C should be set to 0. Perhaps more

pragmatically, if the rule used for designating a positive point is merely a means towards

an end (namely, a means towards arriving at a study population wherein balance can be
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attained on all covariates while overlap is present for important covariates), it is possible

that allowing a small but nonzero value for C may be sensible, particularly if the maximal

box returned with C = 0 only contains a small number of individuals. The binary nature

of D(xj ,X,Z) is such that individuals who are designated as falling outside the area of

common support may, in fact, be close to many viable individuals based on those most

important covariates used to construct the maximal box. By allowing C > 0, one might still

be able to arrive at a matching with good balance while increasing the sample size in the

study population used for further analysis. Using a non-zero value of C could be thought

of as recognizing that the designation of whether or not a point is inside the area of viable

support will be based on guidelines which are sensible and theoretically motivated yet are

not incontrovertible; see Hill et al. (2011) for further discussion of this.

A.4. Defining a Study Population through the Maximal Box Problem

In Section 2.4.3, the process of arriving at the study population used for further analysis

is described in detail. Therein, we note that we designate points for exclusion from the

resulting study population based on a propensity score fit on our four tier 1 covariates. As

we demonstrate in Figure 1, this study population resulted in covariate overlap with respect

to our most important covariates. Furthermore, this strategy resulted in a study population

wherein balance could be attained on all of the covariates upon which we matched.

An alternative strategy would be to use the propensity score model fit on all covariates to

designate whether or not a point should be excluded from the analysis while still defining

the maximal box in terms of the most important covariates. When this was done with our

data set, only 149 individuals (80 treated individuals, 69 control individuals) were included

in the maximal box defined by our four tier 1 covariates when using the Crump et al. (2009)

exclusion criterion. When using the less restrictive criterion employed within Dehejia and

Wahba (1999), this number increased to 669 (347 treated, 322 control), yet over half of the

individuals in our original population were nonetheless discarded. As our study population

defined through the propensity score model fit on the tier 1 covariates ultimately allowed
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for suitable balance to be attained, excluding such large numbers of treated and control

individuals appears overly wasteful.

To see whether the exclusion of such large numbers of individuals when using the full propen-

sity score model was a limitation of our method versus a more general issue with attaining

common support in high dimensions, we also used the procedure of King and Zeng (2006)

with all of our covariates. As a reminder, the method of King and Zeng (2006) does not

utilize propensity scores and instead defines the area of common support as the intersection

of the convex hulls of covariates for treated and control individuals. Using this definition

with all of our covariates, we found that no individuals were identified as lying within the

area of viable common support: no treated individuals were within the convex hull of the

control units, and no control individuals were within the convex hull of the treated units.

Given these developments, we see our procedure as pursuing a goal which may be more

attainable in practice: attaining overlap and balance with respect to the important covariates

while seeking balance on all covariates. As such, we fit our propensity score model with

respect to only the tier 1 covariates. An extreme estimated propensity score based on these

important covariates then indicates that an observation is “extreme” with respect to the

distributions of the most important covariates for either the treated or control groups. As

mentioned in the manuscript, using this limited model to create the maximal box resulted

in 1208 individuals in our subpopulation (507 ICU, 701 hospital ward). We also used the

method of King and Zeng (2006) with respect to these most important covariates, and found

that 1227 individuals were designated as lying within the area of common support (505 ICU,

722 hospital ward). The advantage of our method over that of King and Zeng (2006) is that

the study population used for further analysis based on the maximal box is easily described

and interpreted in terms of ranges of covariate values.

While we were able to attain balance in our study population, this need not be the case with

other data sets. Although overlap should be attained with respect to the most important

covariates imbalances may persist even after matching, particularly for covariates not used to
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define the study population. One approach for dealing with this would be an iterative process

wherein covariates which cannot be suitably balanced even after matching are used to define

a new maximal box. One would then create a new match in this new study population,

and reassess the resulting balance after matching. Iteratively refining the study population

would not bias the resulting analysis; rather, the individuals to whom the inference applies

would change with each iteration.

A.5. Strength of the Normal Approximation Under the Worst-Case Allocation of

Potential Outcomes

Our procedure for testing the composite null hypothesis δ = δ0 hinges upon the appro-

priateness of the normal distribution in approximating the randomization distribution of

the estimated average treatment effect, δ̂. In Section 2.5.1 we prove asymptotic normality

of δ̂ under mild conditions, but we would like to see how well the normal approximation

holds for the example at hand. Our optimization problem returns vectors of potential out-

comes under treatment and control corresponding to the worst-case variance of δ̂. To assess

whether the normal approximation is reasonable for this allocation, we perform a Monte

Carlo simulation to generate samples from the true randomization distribution of δ̂ using

the worst-case potential outcomes for inference within the full match described in Section

2.4.3. Randomization occurs independently across strata. In stratum i, we randomly gener-

ate a vector Zi with mi ones and ni −mi zeroes, corresponding to the assignment to treat-

ment and control respectively. The observed outcome for individual j in stratum i is then

Rij = rT ijZij + rCij(1−Zij). This yields the estimated average treatment effect in stratum

i: δ̂i =
∑ni

j=1 (ZijRij/mi − (1− Zij)Rij/(ni −mi)). Finally, we form δ̂ =
∑I

i=1(ni/N)δ̂i.

Figure 6 shows the resulting randomization distribution under this worst-case allocation of

potential outcomes. We first note that the distribution is centered at E[δ̂] = 0, as we are

testing the composite null that δ = 0. Furthermore, we note that both the histogram and the

normal quantile plot indicate that the randomization distribution can be well approximated

by a normal distribution.
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Histogram of δ̂
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Figure 6: Randomization distribution of δ̂i under the worst-case allocation of potential outcomes
returned by the optimization procedure described in Section 2.5.2. The dotted vertical line in the
histogram corresponds to average treatment effect under the null, 0.

A.6. A Comparison of Standard Errors

We compare the value of the standard error used in conducting our hypothesis test, 3.67%,

to standard errors associated with three other hypothesis tests:

1. A simple two-sample test for differences in proportion assuming iid draws from the two

populations of interest. That is, we do not take the stratification into account, and find

the standard errors under a biased analysis assuming two iid samples. SE(δ̂) = 2.26%

2. A test of δ = 0 using the Mantel-Haenszel risk difference estimator (Greenland and

Robins, 1985). We assume independent sampling across strata, that we have indepen-

dent draws within each stratum from each of the two groups being compared, and that

there is a common treatment effect across all strata (δi = δ0 ∀i). Given the nature of

our stratification (a large number of strata with a limited number of observations in

each stratum), we use the variance estimator of Sato et al. (1989) which is consistent
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under sparse stratification. SE(δ̂) = 2.59%

3. A test of Fisher’s sharp null under our stratification (rT ij = rCij ∀i, j).

SE(δ̂) = 2.67%

Note that the first procedure has a larger effective sample size than that of our idealized

stratified experiment since it assumes iid draws from two populations, while the other two

estimators account for the stratification at hand. Given our estimated ATE of 4.3%, we

would still fail to reject the null with any of these alternate standard errors. None of these

three alternate procedures have size α for all alignments of potential outcomes within the

composite null hypothesis, as our procedure finds the actual worst-case standard error over

all elements of the composite null.

Perhaps most interesting is the comparison of our maximal standard error to that attained

under Fisher’s sharp null. Clearly, the sharp null of no treatment effect is an element of

the composite null δ = 0. To see why the variances are so different, note that under the

sharp null, any stratum with Rij = Rik for all j, k ∈ {1, ..., ni} yields var(δ̂i) = 0, since

the missing potential outcome for each individual must equal the observed value for that

individual. Under the general composite null δ = 0, we can arrange the potential outcomes

across strata in such a way that the variances of stratum-specific ATEs are positive even

if Rij = Rik for all j, k ∈ {1, ..., ni}. As a simple illustration of this, consider testing the

null of δ = 0 under both the sharp null and under the composite null with two strata. In

stratum 1, suppose R11 = R12 = 1, while in stratum 2 suppose R21 = R22 = 0, where

without loss of generality the first individual in each matched set received the treatment. If

we assume the sharp null holds, rC11 = 1, rT12 = 1, rC21 = 0 and rT22 = 0. Within each of

these strata, the variance of the stratum-specific average treatment effect is 0. On the other

hand, we can also satisfy the composite null δ = 0 by setting rC11 = 1, rT12 = 0, rC21 = 0,

rT22 = 1, which would yield var(δ̂i) > 0 for i = 1, 2. Neyman’s null offers more flexibility

for the optimization problem, which is why we see the discrepancy between the standard

errors from our procedure with those under the sharp null. Strata where Rij = Rik for all
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j, k ∈ {1, ..., ni} occur regularly in our example (182 out of 312 strata), which explains the

magnitude of the difference between the two standard errors.

A.7. Formulating the Maximal Variance Problem

We now introduce notation for maximizing the variance within a composite null through

integer programming. While many different formulations are possible, the one we choose

explicitly avoids symmetry by having each decision variable correspond to a unique distri-

bution on the contribution to the overall estimated average treatment effect from a given

stratum. As discussed in Margot (2010), the avoidance of symmetry is crucial in formulating

an integer program that can be solved in a reasonable amount of computation time.

Let T zri = {j : Zij = z,Rij = r}, (z, r) ∈ {0, 1}2, i ∈ {1, ..., I}, denote the four possible

partitions of indices of individuals in stratum i into sets based on the values of their treatment

assignment and observed response. Within each set, all members share the same value for

either rT ij or rCij . For example, if j, k ∈ T 01
i , then rCij = rCik = 1, yet the values of rT ij

and rT ik are unknown. |T zri | can be thought of as the value in cell (z, r) of a 2 × 2 table

that counts the number of individuals for each combination of (z, r) in stratum i. To tie

notation together, we have that |T 11
i |+ |T 10

i | = mi, and |T 01
i |+ |T 00

i | = ni −mi

There are 2ni possible sets of potential outcomes in stratum i that are consistent with

the observed data. As we now show, we need not consider all 2ni possible combina-

tions of potential outcomes, but rather only those which correspond to unique distribu-

tions of δ̂i. This is beneficial as the 2ni possible sets of potential outcomes in stratum

i only yield
∏

(z,r)∈{0,1}2(|T zri | + 1) unique distributions for δ̂i. This is demonstrated in

Rigdon and Hudgens (2014, Section 3), and the argument is reproduced here. Consider

T 00
i . The potential outcomes under treatment are unknown in this set; however, since

the potential outcomes under control are the same for all individuals, the possible al-

locations of {rT ij : j ∈ T 00
i } only result in |T 00

i | + 1 non-exchangeable distributions.

These are attained by setting {rT ij : j ∈ T 00
i } equal to any one of the ordered vectors
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(0, 0, ..., 0), (1, 0, ..., 0),..., and (1, 1, ..., 1). The same argument holds for the other three sets

of indices in stratum i, thus completing the proof. Note further that since ni andmi are fixed

across randomizations and min{mi, ni −mi} = 1, we have that
∏

(z,r)∈{0,1}2(|T zri | + 1) =

2×max
{∏

(r)∈{0,1}(|T 0r
i |+ 1),

∏
(r)∈{0,1}(|T 1r

i |+ 1)
}
.

It would seem as though we must consider
∏I
i=1

∏
(z,r)∈{0,1}2(|T zri |+1) different distributions

for the estimated average treatment effect in our optimization problem. Fortunately, two

facts allow us to consider a much smaller number of variables. First, there is independence

between strata which allows us to sum stratum-wise variance contributions together to

arrive at the overall variance of the estimated average treatment effect. Second, many of

the stratum-specific 2× 2 tables are observed multiple times across strata. As an example,

our full match returned 312 strata, of which there were only 48 unique tables.

In light of these facts, we introduce notation to facilitate the solution of our optimization

problem. Let Ci = (|T 00
i |, |T 01

i |, |T 10
i |, |T 11

i |) be the observed counts of the 2 × 2 table for

stratum i. C = {C1, ..., CI} is a (multi)set, where the number of unique elements equals the

number of unique 2 × 2 tables observed in the data and is typically much smaller than I.

Let S be the number of unique tables and let s ∈ {1, ..., S} index the unique tables. Define

I(i) to be a function returning the index of the unique table corresponding to the table

observed in stratum i. Hence, I(i) = I(`) if and only if Ci = C`. Let Ms = |I−1(s)| be the

number of strata where unique table s was observed, and let ñs = nb and m̃s = mb be the

number of total units and treated units respectively in unique table s for any b ∈ I−1(s).

Let Ps be the number of allowed non-exchangeable potential outcomes for unique table s,

and let {[rT [sp], rC[sp]]}, p ∈ {1, ..., Ps} be the set of allowed potential outcome allocations

for unique table s. Finally, let δ[sp]j = rT [sp]j − rC[sp]j , and let ∆[sp] =
∑ñs

j=1 δ[sp]j .

Define ν[sp] as:

ν[sp] =
ñ2
s

N2

(
S2
T [sp]

m̃s
+

S2
C[sp]

ñs − m̃s
−
S2
δ[sp]

ñs

)
,
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where S2
T [sp] =

∑ñs
j=1(rT [sp]j− r̄T [sp])

2/(ñs−1), S2
C[sp] =

∑ñs
j=1(rC[sp]j− r̄C[sp])

2/(ñs−1), and

S2
δ[sp] =

∑ñs
j=1(δ[sp]j − δ̄[sp])

2/(ñs − 1). ν[sp] then represents the variance of the contribution

to the overall estimated average treatment effect from table s under potential outcome

allocation p. Let ν = [ν[11], ..., ν[sp]].

Let x[sp] be an integer decision variable denoting how many times the set of potential out-

comes p that is consistent with unique table s is observed in the data, s ∈ {1, ..., S},

p ∈ {1, ..., Ps}, and let x = [x[11], .., x[SPs]]. ν[sp]x[sp] represents the contribution to the

overall variance of the test statistic if the pth set of potential outcomes in unique table s is

observed x[sp] times, and νTx represents the overall variance across all unique tables and

potential outcomes that are observed in the data.
∑Ps

p=1 x[sp] is how many times the sth

unique table was observed in the data, which through our definition of Ms results in the

constraint that
∑Ps

p=1 x[sp] = Ms ∀s. Finally, we force the resulting optimal solution to have

an allocation of potential outcomes such that the null hypothesis in question is satisfied

(that is, δ ∈ Dδ0) through an additional constraint. Given our definition of ∆[sp], the con-

straint that the null must be true can be written as
∑S

s=1

∑Ps
p=1 ∆[sp]x[sp] = Nδ0. Finding

the maximal variance over all δ ∈ Dδ0 can then be written as the following linear integer

program (MV, for maximal variance):

maximize
x

νTx (MV)

subject to
Ps∑
p=1

x[sp] = Ms ∀s

S∑
s=1

Ps∑
p=1

∆[sp]x[sp] = Nδ0

x[sp] ∈ Z ∀s, p

x[sp] ≥ 0 ∀s, p,

where Z denotes the set of integers.
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For a given δ0, we can then use the objective value of (MV) at the optimal value x = x∗δ0

to perform a hypothesis test of δ = δ0. This procedure is not conservative for testing the

composite null, as the maximal variance is attained by a member of the composite null:

there is an allocation of potential outcomes that satisfies the null, aligns with the observed

data, and has this variance. Confidence intervals can then be attained by inverting tests

on a sequence of values of {δ0}. To aid in finding the endpoints of this interval, we can

start with a Wald-type confidence interval found by finding the maximal variance at δ0 = δ̂,

forming an interval of the form δ̂ ± z1−α/2
√
νTx∗

δ̂
, and then refining the endpoints through

a series of tests for values of δ0 near the endpoints of the Wald interval.

120



APPENDIX B

B.1. Balance on Observed Covariates in Our Motivating Example

Standardized Differences Before and After Matching

Standardized Differences

Penn Presby. Med. Center

Pennsylvania Hospital

Hosp. of Univ. of Penn.

Disease Severity Index

Marital Status

Insurance Category

Pneumonia

Myocardial Infarction

Septic Shock

Severe Sepsis

Sepsis

Tracheostomy Tube

Endotracheal Tube

Acute Respiratory Failure

Acute Dialysis

Hypoglycemia

Congestive Heart Failure

Acute Brain Dysfunction

Charlson Comorbidity Index

ICU Admission

Length of Stay

Admission Type: Urgent

Any Procedures?

Low Sodium

Low Hemoglobin

Oncology

Number of Procedures

Num. of Prev. Hospitalizations

Age
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Figure 7: Covariate Imbalances Before and After Matching. The dotplot (a Love plot) shows the
absolute standardized differences without matching, and after conducting a matching with a variable
number of controls. The vertical dotted line corresponds to a standardized difference threshold of
0.2, which is often regarded as the maximal allowable absolute standardized difference (Rosenbaum,
2010). As one can see, marked imbalances existed between the two populations before matching.
All standardized differences were below 0.2 after matching, and most covariates saw substantial
improvements in balance through matching.

B.2. Usage of Risk Differences and Risk Ratios

The risk difference and risk ratio are two measures of the causal effect of an intervention

on a binary outcome. A common viewpoint taken in the statistics literature is that the

appropriateness of using the risk ratio (also called the relative risk) versus the risk difference

depends on the scale of the problem, with certain measures being appropriate for certain

inferences. This is discussed in Hernán and Robins (2016) in the following paragraph:
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Each effect measure may be used for different purposes. For example, imagine a

large population in which 3 in a million individuals would develop the outcome

if treated, and 1 in a million individuals would develop the outcome if untreated.

The causal risk ratio is 3, and the causal risk difference is 0.000002. The causal

risk ratio (multiplicative scale) is used to compute how many times treatment,

relative to no treatment, increases the disease risk. The causal risk difference

(additive scale) is used to compute the absolute number of cases of the disease

attributable to the treatment. The use of either the multiplicative or additive

scale will depend on the goal of the inference. (Hernán and Robins, 2016, pages

7-8)

Of course, the converse can be true: if 85% develop the outcome if treated and 80% develop

the outcome if not treated, the risk ratio is then 1.0625 while the risk difference is 0.05.

Grieve (2003) provides additional discussion of these two estimands, noting that in deciding

which estimand to use one must consider “whether interest is centered on absolute or relative

effects, and the extent to which those who are to use them understand them” (Grieve, 2003,

page 88).

The summary measure chosen can also affect the extent to which a study’s findings influence

future action. Misselbrook and Armstrong (2001) note that when deciding whether or not

to take a proposed treatment the percentage of individuals who end up agreeing to take

the treatment can vary substantially depending on whether the benefits of a treatment are

presented in the form of a risk ratio or a risk difference. Forrow et al. (1992) note that the

manner in which information on a causal effect is presented can affect not only how likely

patients are to take a recommended treatment, but also how likely a doctor is to prescribe

a treatment in the first place.

Poole (2010) states that in epidemiology, it has been treated as a seemingly self-evident

truth that “relative effect measures should be used to assess causality and that absolute

measures should be used to assess impact.” (Poole, 2010, page 3). An early defense of this
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stance can be found in the work of Cornfield et al. (1959) on smoking and lung cancer:

Both the absolute and the relative measures serve a purpose. The relative mea-

sure is helpful in (1) appraising the possible noncausal nature of an agent having

an apparent effect; (2) appraising the importance of an agent with respect to

other possible agents inducing the same effect; and (3) properly reflecting the

effects of disease misclassification or further refinement of classification. The ab-

solute measure would be important in appraising the public health significance

of an effect known to be causal. (Cornfield et al., 1959)

Both Poole (2010) and Ding and Vanderweele (2014) refute the superiority of the risk ra-

tio to the risk difference in making causal claims, presenting examples where the use of

evidence presented by the risk difference exhibits much stronger robustness to unmeasured

confounding than evidence presented by the risk ratio, thus aiding in discovering causal

effects.

In the clinical trials literature, both effect measures are viewed as having their own relative

merits and downsides. Schechtman (2002) takes a pragmatic approach and suggests that in

order to paint a clearer picture of the treatment effect, one should report both the estimated

risk difference and risk ratio. See Cook and Sackett (1995), Jaeschke et al. (1995), and

Sinclair and Bracken (1994) for further discussion of this matter.

B.3. Simulation Studies for Computation Time

Our methodology can, for the purposes of computation time, be thought of as containing

three components with worst case complexities as follows:

1. Defining groups of symmetric tables: O(I2)

2. Defining constants and constraints for unique tables:

O
(
S +

∑S
s=1(ñs − 1)

∏
(z,r,d)∈{0,1}3(|T zrds |+ 1)2

)
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3. Solution of integer program: NP-hard

For the first component, the total number of matched sets plays a role in determining com-

putation time as in formulating the problem, we must sort the individual matched sets

into symmetry groups corresponding to uniquely observed tables. The second component

is affected not only by the number of uniquely observed tables, but also the number of ob-

servations in a table and the cells of said table. As discussed in Section 3.4, each table s

yields at most
∏

(z,r,d)∈{0,1}3(|T zrds |+1)2 unique distributions, while for a sensitivity analysis

there are ñs − 1 alignments of the unmeasured confounders to be considered for each dis-

tribution. These unique contributions correspond to variables in our optimization problem.

The number of variables is also influenced by assumptions made on the potential outcomes,

as assumptions eliminate the need to consider certain possible values for the unobserved

potential outcomes.

The simulation studies presented herein provide further insight into various aspects of prob-

lem (P1) which can affect the solution of the integer program itself (component 3), as this

is the only NP-hard endeavor and hence may, in theory, lead to unpredictable computation

time. Unless otherwise stated, all of the simulations presented are modifications of the same

basic set up. In each of 1000 iterations we sample I matched sets from the strata in our

motivating example from Section 3.1.2. Each iteration has strata ranging in size from 2 to

21, and each data set has an average of roughly 8 × I individuals within it. Large strata

affect computation time, as they result in larger numbers of non-exchangeable potential

outcome allocations within a stratum and fewer duplicated 2× 2 tables in the data. In our

data set, 25% of the strata had one acute rehabilitation individual and 20 home with home

health services patients. Treated and control individuals are assigned an outcome of “1”

with probability pT and pC respectively.

In each iteration, we test a null on the causal risk difference, δ = δ0. We test the stated null

with a two-sided alternative at level of unmeasured confounding Γ. We record the required

time for the optimization problem itself for each simulation. Simulations were conducted
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on a desktop computer with a 3.40 GHz processor and 16.0 GB RAM. The R programming

language was used to formulate the optimization problem, and the R interface to the Gurobi

optimization suite was used to solve the optimization problem.

B.3.1. Increasing the Number of Matched Sets

In this simulation, we fix pT = 0.75, pC = 0.25,Γ = 2, δ0 = 0.2, and conduct 1000 iterations

at I = 7, 13, 65, 125, 625. As Figure 8 demonstrates, the time for the optimization routine

itself appears to increase with I, the number of matched sets. Figure 8 also demonstrates that

time is increasing with the average number of variables in the corresponding optimization

problem.

To demonstrate that the role that I plays is only indirect (through its effect on the number

of variables in the optimization problem), we also present a simulation study with matched

sets of size three. We will focus on the effect ratio in this simulation study. Each set consists

of three individuals, one encouraged to take the treatment and the other two encouraged

to take the control. For each individual, the probability of compliance with the assigned

treatment is set to 0.9. We set pT = 0.75 and pC = 0.25 based on which treatment the

individual actually received. We set Γ = 2 and λ0 = 0.2, and conduct 1000 iterations with

I = 25, 50, 250, 500, 2500, 5000, 25000, 50000, 250000. In the corresponding inference, we do

not assume that the exclusion restriction holds. We also do not assume monotonicity holds,

nor do we assume a known direction of effect.

Figure 9 shows that as I increases the time required for only solving the optimization problem

initially increases, but then begins to level off. The reason for this is also demonstrated

in the figure: as I increases, the average number of variables in the optimization problem

appears to be approaching an asymptote, rather than continually increasing. This is because

under the assumptions used for the performed inference, the maximal number of unique

allocations of unobserved potential outcomes and unmeasured confounders that must be

considered is 4384, calculated using the formula
∑S

s=1(ñs − 1)
∏

(z,r,d)∈{0,1}3(|T zrds |+ 1)2 =
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Figure 8: (Top-left) Optimization time and the number of matched sets; (top-right) optimization
time and the number of optimization variables; and (bottom) log number of matched sets and log
number of optimization variables.
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Figure 10: Optimization time and value of Γ.

2 × (4 × 32 × 22 + 32 × 26). This illustrates one of the key advantages of our formulation:

by expressing the problem in terms of unique contributions to the test statistic we greatly

enhance the scalability of our method, particularly when the matched sets are of limited

size. In fact, the average computation time for the optimization problem was under a tenth

of a second for all values of I in this simulation setting.

B.3.2. Increasing the Value of Γ

In this simulation we fix pT = 0.75, pC = 0.25, I = 125, δ0 = 0.2, and conduct 1000 iterations

at each of Γ = 1, 1.5, , ..., 3.5, 4. We see in Figure 10 that while there is a substantial increase

in solution time when going from Γ = 1 to Γ > 1, the solution time is roughly constant at

all values of Γ > 1 tested. Γ = 1 corresponds to an integer linear program while any Γ > 1

is an integer quadratic program, which accounts for the initial jump. Increasing Γ further

does not change the fact that it is an integer quadratic program, nor does it increase the

average number of variables in the optimization problem; rather, it changes the values of

the constants associated with each of the variables in the objective function.
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Figure 11: Optimization time and null hypothesis being tested. The true risk difference was set to
zero throughout

B.3.3. Altering the Hypothesized Risk Difference

In this simulation we fix pT = 0.5, pC = 0.5, I = 125,Γ = 2, and conduct 1000 iterations at

each of δ0 = −0.4,−0.3, ..., 0.3, 0.4. As we see in Figure 11, average solution time is shortest

when the true risk difference is closest to the hypothesized risk difference, and increases as

the hypothesized risk difference moves away from the truth in either direction. Note that

both the number of variables and the number of constraints in the optimization problem

remain constant on average as the hypothesized risk difference varies, meaning that neither

can explain the difference in solution times. As δ0 moves further away from the true risk

difference the average number of feasible solutions decreases, as the discrepancy between the

observed potential outcomes and the null hypothesis affords less and less flexibility to the

allocation of the unobserved potential outcomes. This can, in turn, make the corresponding

integer program more difficult to solve.

B.3.4. Jointly Altering the Outcome Prevalence Under Treatment and Control

In this simulation we fix I = 125,Γ = 2, δ0 = 0, and conduct 1000 iterations at each

of [pC , pT ] = [0.05, 0.15], [0.15, 0.25], ..., [0.85, 0.95]. Hence, the distance between the null

hypothesis and the true risk difference remains constant at 0.1. In Figure 12, we see that
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Figure 12: (Left) Optimization time and overall outcome prevalence; and (right) number of variables
and outcome prevalence.

simulation time is greatest when the outcomes have the highest variance (i.e., when the

treated and control prevalences are closest to 0.5), but drop off when the outcome becomes

either rarer or highly prevalent. Figure 12 also shows the relationship between the number

of variables and the outcome prevalence. The number of unique contributions to the overall

test statistic from a given unique table (i.e. the number of variables) is maximized when the

outcome prevalences are closest to 0.5, which accounts for the observed computation time

pattern.

B.3.5. Separately Altering the Outcome Prevalence Under Treatment and Control

In our first simulation, we fix pC = 0.1, I = 125,Γ = 2, δ0 = 0, and conduct 1000 iterations at

each of pT = 0.1, ..., 0.9. In Figure 13, we see that the outcome prevalence under treatment

affects computation time by increasing the number of variables in the optimization problem.

Next, we fix pT = 0.9, I = 125,Γ = 2, δ0 = 0, and conduct 1000 iterations at each of

pC = 0.1, ..., 0.9. In Figure 14, we see that the outcome prevalence under control affects

computation time by increasing the average number of variables in the optimization problem.

Note that altering the prevalence under control has a more drastic effect on the number of

variables (and thus, on the overall computation time) than altering the prevalence under
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Figure 13: (Left) Optimization time and outcome prevalence under treatment; and (right) number
of variables and outcome prevalence under treatment.

treatment, as the matched sets used in our simulation study each have one treated unit and

one or more (up to 20) control units. In turn, heterogeneity among control units within a

given matched set allows for many more possible contributions to the overall test statistic

(variables), particularly in matched sets with large numbers of control units. When altering

the prevalence for the treated units, since there is only one treated unit per matched set an

event prevalence for treated units closer to 0.5 only increases the number of variables in the

optimization problem by making it less likely that two matched sets with the same observed

table for the control units also have the same observed response for their respective treated

unit.

B.3.6. Assessing Avoidance of Symmetry

At Γ = 1, we compare computation time of our formulation, formulation (P1), for the causal

risk difference with that of an equivalent binary programming formulation. We first present

this alternate formulation. Let vij be the unobserved potential outcome for each individual.

That is, vij = rCij if Zi = 1, and vij = rT ij if Zi = 0. When conducting inference assuming

no unmeasured confounders (Γ = 1), we aim to find the worst-case variance among the

set of unobserved potential outcomes such that the null is satisfied, a problem which can

be expressed as a quadratic form involving the unobserved potential outcomes and other
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Figure 14: (Left) Optimization time and outcome prevalence under control; and (right) number of
variables and outcome prevalence under control.

constants known at the time of the optimization. Using the methods of Glover and Woolsey

(1974) for converting a quadratic binary program into a linear binary program, we can

express the problem as:

maximize
I∑
i=1

ni∑
j=1

pijvij + 2

I∑
i=1

∑
j<k≤ni

pijkwijk + c (AP1)

subject to
I∑
i=1

ni∑
j=1

(2Zij − 1)vij = −Nδ0 +
I∑
i=1

ni∑
j=1

(2Zij − 1)Rij

vij ∈ {0, 1} ∀i, j

wijk ≤ vij , vik ∀i, j, k

vij + vik − wijk ≤ 1 ∀i, j, k

We now define pij , pijk and c. LetH(i) be an ni×ni symmetric matrix with diagonal elements

(n2
i − ni)/N2 and off diagonal elements are −ni/N2, and define the following vectors. Let

A(i) be an ni × ni diagonal matrix with diagonal entries 1/(Zi,ni(2− ni) + ni − 1), and let

B(i) be an ni×ni diagonal matrix with diagonal entries 1/((1−Zi,ni)(2−ni) +ni− 1). We
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can then write var(T (δ0)) as a sum of stratum-specific quadratic forms:

var(T (δ0)) =
I∑
i=1

(
[A(i)Ri + B(i)vi]

TH(i)[A(i)Ri + B(i)vi]
)

=
I∑
i=1

(
vTi B

(i)H(i)B(i)vi + 2vTi B
(i)H(i)A(i)Ri + RT

i A
(i)H(i)A(i)Ri

)

Let pij = (B(i)H(i)A(i)Ri)j + (B(i)H(i)B(i))jj , pijk = (B(i)H(i)B(i))jk, and

c =
∑I

i=1 R
T
i A

(i)H(i)A(i)Ri, we recover the required constants for finding the maximal

variance of the causal risk difference.

Rather than having decision variables for each possible variance contribution, this for-

mulation has binary decision variables for the missing potential outcome for each indi-

vidual. A formulation of this sort yields a highly symmetric problem, as any pair of

individuals in a given stratum with [Zij , Rij ] = [Zik, Rik] are exchangeable. For exam-

ple, if individual j and k in stratum i both received the control and had an outcome

of 0, then rT ij = 1, rT ik = 0, uij = 1, uik = 0 results in the same objective value as

rT ik = 1, rT ij = 0, uik = 1, uij = 0. We randomly sample 125 strata from the full match

described in Chapter 2. This full match yielded strata of maximal size 8, representing a sub-

stantially easier optimization problem than the one presented in Section 3.5.3. The resulting

data sets had roughly 500 patients on average. Rather than randomly sampling outcomes,

we use the observed outcomes in the randomly sampled matched sets, hence basing this

simulation study entirely on real data. In each iteration, we terminated the simulation if

either program took longer than 5 minutes to solve in a given iteration. Here, we report

total computation time including grouping into unique tables, formulating constants and

constraints, and solving the optimization problem.

For formulation (AP1), we found that 29.6% of simulations exceeded the five minute compu-

tation limit. Of those that did not, the average computation time was 34.9 seconds for the
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pure binary program, but was 0.68 seconds for the linear relaxation. The average relative

gap between the optimal binary solution and optimal linear relaxation in the simulations

taking under five minutes was 23.5%, representing a marked discrepancy between the linear

relaxation and the integer hull of formulation (AP1). Under formulation (P1), all simula-

tions terminated in under five minutes. In fact, the average computation time for our integer

program was 0.129 seconds, and the maximal computation time was 0.223 seconds. Among

the simulations where alternate formulation (AP1) exceeded our computation time limit,

the average computation for our formulation was 0.130 seconds, indicating that our formu-

lation avoids the computational issues due to symmetry that cripple formulation (AP1).

The average computation time for the linear relaxation of (P1) was 0.122 seconds. 84.7% of

simulated data sets resulted in the optimal integer objective value being equal to that of the

linear relaxation. In those iterations where there was a difference, the average relative gap

between objective values was a mere 0.003%. Hence, our formulation is markedly stronger

than this alternate formulation, as evidenced by reduced computation time even when using

the same optimization software: our formulation is over 250 times faster than formulation

(AP1) among iterations that solved before computation time ran out, and is thus even faster

overall.

B.3.7. Simulation Using Actual Data

In each of 1000 iterations we sample 1250 matched sets from the strata in our motivating

example from Section 3.1.2. Each iteration thus has strata ranging in size from 2 to 21,

and each data set has an average of roughly 10,000 individuals within it. Large strata affect

computation time, as they result in larger numbers of non-exchangeable potential outcome

allocations within a stratum and fewer duplicated 2× 2 tables in the data. In our data set,

25% of the matched strata had one acute rehabilitation individual and 20 home with home

health services patients. Rather than randomly sampling outcomes, we use the observed

outcomes in the randomly sampled matched sets, hence basing this simulation study entirely

on real data. This simulation setting thus produces particularly challenging optimization
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problems: each iteration resulted in over 200,000 variables over which to optimize on average.

We conduct two hypothesis tests in each iteration: a null on the causal risk difference,

δ = 0.05, and on the causal risk ratio, ϕ = 1.10. For both of the causal estimands being

assessed, we test the stated nulls with two-sided alternatives at Γ = 1 (no unmeasured

confounders, integer linear program) and Γ = 1.05 (unmeasured confounding exists, integer

quadratic program). We record the required computation time for each data set, which

includes the time for grouping into unique tables, the time taken to define the necessary

constants for the problem and also the time required to solve the optimization problem.

To measure the strength of our formulation, we also recorded whether or not the initial

continuous relaxation had an optimal solution which was itself integral, and if not the

relative difference in optimal objective function values between the integer and continuous

formulations (defined to be the absolute difference of the two, divided by the absolute value

of the relaxed value).

Table 12 shows the results of this simulation study. As one can see, our formulation yields

optimal solutions in well under a minute for both the integer linear and integer quadratic

formulations despite the magnitude of the problem at hand. The strength of our formulation

is further evidenced by the typical discrepancy between the integer optimal solution and that

of the continuous relaxation. For testing the causal risk difference, we found that in nearly

all of the simulations performed the integer program and its linear relaxation had the same

optimal objective value. For testing the causal risk ratio, the objective values tended not

to be identically equal, which has to do with the existence of fractional values in the row

of the constraint matrix enforcing the null hypothesis; nonetheless, the average gap among

those iterations where there was a difference was 0.005% percent for the linear program, and

0.01% for the quadratic program. This suggests not only that we have arrived upon a strong

formulation, but that one could in practice accurately approximate (P1) by its continuous

relaxation.
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Table 12: Computation times for tests of δ = 0.05 and ϕ = 1.10 at Γ = 1 (integer linear
program) and Γ = 1.05 (integer quadratic program), along with percentages of coincidence
of the integer and relaxed objective values, and average gaps between integer solution and
the continuous relaxation if a difference existed between the two.

Null Avg. Time (s), Avg. Time (s),
%(objint = objrel)

Avg. Gap
Hypothesis Integer Relaxation If Diff.

δ = 0.05; Γ = 1.00 9.26 8.81 99.8% 0.001%
δ = 0.05; Γ = 1.05 12.69 8.20 89.5% 0.002%
ϕ = 1.10; Γ = 1.00 9.74 8.45 9.0% 0.005%
ϕ = 1.10; Γ = 1.05 13.40 8.38 8.1% 0.011%

B.3.8. Proceeding under Time Constraints

While these simulations suggest that a global integer optimum can be attained in a rea-

sonable amount of time using our formulation, it remains a possibility that for a particular

data set the solver may fail to terminate in suitable amount of time for the user. If the user

has a maximum allowable period of time for the solver, Tmax, we would recommend solving

the required integer program while terminating the optimization after Tmax seconds. If the

solver terminates before Tmax then a global integer optimum has been found. Otherwise,

integer programming solvers provide bounds on the objective value at any time point t,

which can be used to conduct conservative inference and are tighter than those attained

by simply solving the continuous relaxation at the outset. Furthermore, one can compare

the lower bound to the best integer solution that the solver has found to that point as an

indication of how conservative the performed inference truly is.

B.4. Point Estimates for θ Through M -Estimation

While our focus in this work is on inference both assuming and not assuming unmeasured

confounding, we briefly describe point estimation for θ. Under the null at Γ = 1, T (θ0) has

expectation 0. We propose an m-estimator (also referred to as a z-estimator) for θ by using

T (θ0) as an estimating function; see Van der Vaart (2000) for more on m- and z- estimators

and their corresponding properties. Explicitly, θ̂ := SOLVE{θ : T (θ) = 0}. This is in

keeping with the estimator suggested by Baiocchi et al. (2010) for the effect ratio. For our
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three causal estimands of interest, these estimators are:

δ̂ =
1

N

I∑
i=1

ni∑
j=1

ni (ZijRij/mi − (1− Zij)Rij/(ni −mi))

ϕ̂ =

∑I
i=1

∑ni
j=1 niZij

Rij

mi∑I
i=1

∑ni
j=1 ni(1− Zij)

Rij

ni−mi

λ̂ =

∑I
i=1

∑ni
j=1 ni

(
Zij

Rij

mi
− (1− Zi) Rij

ni−mi

)
∑I

i=1

∑ni
j=1 ni

(
Zij

Dij

mi
− (1− Zi) Dij

ni−mi

) .

While useful as indications of effect magnitude size, these estimators do not play a direct role

in conducting inference or performing sensitivity analyses; rather, our focus lies in under-

standing the randomization distribution of T (θ0) at any particular value of θ0. Confidence

intervals under no unmeasured confounding are then constructed by inverting tests for a

sequence of null hypotheses. Constructing intervals in this manner avoids certain issues

associated with intervals directly based on m-estimators, such as small sample bias and

heavy dependence of the estimator’s variance on the estimand of interest; see Chapter 2 for

a discussion of the latter point as it pertains to constructing confidence intervals for the risk

difference within a matched observational study.

B.5. Assuming a Known Direction of Effect Impacts Reported Sensitivity

In both examples in Section 3.6, we perform inference under a host of assumptions on the

potential outcomes. As is demonstrated therein, the assumption of a known direction of

effect has a particularly strong impact on the corresponding sensitivity analysis. Note that

when testing the null of δ = 0⇔ ϕ = 1⇔ λ = 0 under the assumption of a direction of effect,

the only allocation of rT , rC that satisfies the null hypothesis is the allocation of Fisher’s

sharp null: rT ij = rCij ∀i, j. This results in testing a simple, rather than composite, null

hypothesis. At Γ = 1, the necessary hypothesis test can be performed using the permutation

distribution (or a normal approximation thereof) of the test statistic under Fisher’s sharp

null. For Γ > 1 the potential outcomes are still fixed at those of Fisher’s sharp null, but
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we must consider the possible vectors of unmeasured confounders. Without the assumption

of a direction of effect, there are many possible allocations of potential outcomes satisfying

this null. This additional flexibility in the optimization problem results in more extreme

worst-case allocations for the inference being conducted.

As a simple illustration of why this is the case, consider testing this null with two pairs of

individuals. In stratum 1, suppose R11 = R12 = 1, while in stratum 2 suppose R21 = R22 =

0, where without loss of generality the first individual in each matched set received the

treatment. If we assume a nonnegative treatment effect, rT12 = 1, since rC12 = 1. Similarly,

rC21 = 0 since rT21 = 0. Finally, the constraint that the null is true forces rC11 = 1

and rT22 = 0. For any Γ, these strata contribute expectation and variance 0. Without

the assumption of a direction of effect, we can also satisfy the null hypothesis by setting

rC11 = 1, rT12 = 0, rC21 = 0, rT22 = 1. Not only would we then have positive variance

contribution from each of these strata at any Γ, but also setting u1 = [1, 0] and u2 = [0, 1]

results in an aggregate expected value of (Γ − 1)/(1 + Γ) ≥ 0. These choices allow one to

find a less significant deviate under no constraints on the direction of effect than is possible

under a model with a known direction of effect.

B.6. Sensitivity Analysis for a Simple Null

While the methodology presented herein was motivated by conducting sensitivity analyses

for composite null hypotheses with binary outcomes, we note that a simplified version can

be used to conduct a sensitivity analysis for a simple null hypothesis for general types of

outcome variables without invoking asymptotic separability (Gastwirth et al., 2000). With

a simple null hypothesis, qij are fixed for each individual i and each stratum j. In the

notation of Section 3.4, S represents the number of strata with unique sets of values for the

vector qi. With continuous outcomes S will often equal I, but for other types of outcomes

there may be repeated strata. For each s, Ps (the number of possible allocations of potential

outcomes within unique set s) equals 1 as both sets of potential outcomes are fixed under a

simple null. Hence, the subscript [sp] in our original formulation can be replaced by a single
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subscript s, Define µsa and νsa by replacing [sp] with s in the notation of Section 3.4.1, and

make the analogous substitution of xsa for x[sp]a. Let Ms again represent the number of

times unique stratum s occurred, and let ñs be the number of observations within unique

stratum s. Define µ = [µ11, .., µS,ñS−1] and let the analogous definitions hold for ν and

x. Finally, note that the constraint that the null must be true in formulation (P1) can be

removed entirely as qij are defined under this assumption. A sensitivity analysis at a given

Γ > 1 can be conducted by solving the following optimization problem:

minimize
x

(t− (µTx))2 − κ(νTx) (P2)

subject to
ñs−1∑
a=1

xsa = Ms ∀s

xsa ∈ Z ∀s, a

xsa ≥ 0 ∀s, a

As described in Section 3.5.2, we can conduct a sensitivity analysis for a given Γ > 1 by

minimizing (P2) with κ = χ2
1,1−α. To find the actual minimal deviate, we can follow the

iterative procedure outlined in Section 3.5.2 until converging to a stationary κ∗.

The constraint matrix corresponding to the above optimization program is totally unimod-

ular. As a consequence, the polyhedron of the continuous relaxation equals the integer hull

(Bertsimas and Tsitsiklis, 1997). Hence, if one were solving an integer linear program, the

solution of the continuous relaxation would be guaranteed to be integral. When finding the

worst-case deviate we are minimizing a constrained convex quadratic function; as such, the

solution need not be at the vertex. Nonetheless, strong formulations of integer quadratic

programs are essential for efficiently finding optimal solutions.

B.6.1. Example: Dropping Out of High School and Cognitive Achievement

As an exposition of their methodology, Gastwirth et al. (2000) consider conducting a sensi-

tivity analysis for comparing cognitive achievement of US high-school drop-outs with that
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of non-dropouts; see Rosenbaum (1986) for more details on the study. They conducted

inference on 12 drop-outs in the study, where each drop-out was matched to two students

who did not drop out, yet were similar on the basis of all other observed covariates. Using

an aligned rank test, the test statistic for these 12 matched sets was t = 296, with expec-

tation and variance at Γ = 1 of 222 and 1271, yielding a standardized deviate of 2.07 and

approximate one sided p-value of 0.019.

Table 3 of Gastwirth et al. (2000) shows the results of the asymptotically separable algo-

rithm on this data set for Γ = 2. At this strength of unmeasured confounding, the separable

algorithm yields a bounding normal deviate with a mean of 257.40 and a variance of 1177.23,

resulting in an approximation to the worst-case deviate of 1.125 and a one sided p-value of

0.129. We also explicitly minimized the deviate by solving (P2). This yields a bounding ran-

dom variable with a mean of 256.60 and a variance of 1228.145, yielding a worst-case deviate

of 1.124 and a worst-case p-value of 0.130. Investigating further, the worst-case allocations

of u for each stratum were in agreement for all of the matched sets except for matched set

11. There, the asymptotically separable algorithm chooses u11 = [0, 1, 1], contributing a

mean of 24.80 and a variance of 139.76. The correct value for u11 for minimizing the deviate

is u11 = [0, 0, 1], which has slightly lower expectation (24.24) but larger variance (173.19).

This demonstrates that for I even moderately large, the asymptotically separable algorithm

can produce a bounding random variable that very closely approximates the true upper

bound on the p-value. That being said, given our formulation the worst-case deviate can be

explicitly found. Furthermore, one need not worry about computation time: for conducting

the sensitivity analysis on this problem, an optimal solution was found in 0.15 seconds.
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APPENDIX C

C.1. Additional Details for the Smoking and Naphthalene Example

Following Weitzman et al. (2005) and Suwan-ampai et al. (2009), individuals were classified

as active smokers if they stated that they smoke “every day” or “some days” in response to

the question “Do you now smoke cigarettes?,” or if their serum cotinine (a metabolite of

nicotine) levels were above 0.05 ng/mL. Using this definition, there were 453 smokers and

1253 nonsmokers. The nonsmokers include former smokers and never smokers, as urinary

naphthol is an indicator of recent naphthalene exposure.

We used full matching to control for observed covariates in this study (Rosenbaum, 1991;

Hansen, 2004). In this match, we allowed for strata of maximal size 10, meaning that a

matched set could have, at most, either 1 current smoker and 9 nonsmokers; or 1 non-

smoker and 9 current smokers. We identified 22 pre-treatment covariates deemed predictive

of smoking and naphthalene levels based on those used in Suwan-ampai et al. (2009); these

covariates are listed in Figure 15. Ten covariates contained missing values, with a maximal

percentage of values missing of 10%. To account for this, we included 10 missingness indica-

tors as additional covariates upon which to match. As discussed in Rosenbaum and Rubin

(1984) and Rosenbaum (2010, Section 9.4), this facilitates balancing the observed covari-

ates and the pattern of missingness. Rank-based Mahalanobis distance with a propensity

score caliper of 0.08 was used, and propensity scores were estimated using logistic regression

(Rosenbaum, 2010, Section 8.3). Figure 15 shows the standardized differences before and

after matching for observed confounders and demonstrates that before matching there were

substantial imbalances between smokers and nonsmokers with respect to many important

variables. It also shows that matching was able to effectively create a well-balanced compar-

ison between smokers and nonsmokers on the basis of these variables. Details for calculating

standardized differences before and after full matching can be found in Stuart and Green

(2008) and Rosenbaum (2010, Section 9.1).
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Standardized Differences Before and After Matching

Standardized Differences

Charred Meats MISS

Other Fumes MISS

Exhaust Fumes MISS

Organic Dust MISS

Mineral Dust MISS

Any Drinks this Year? MISS

Drinks per Day MISS

Height MISS

Weight MISS

PIR MISS

Other Race

Black

White

Other Hispanic
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Charred Meat Consumption
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Exhaust Fume Exposure

Organic Dust Exposure

Mineral Dust Exposure

Urinary Creatine
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Drinks per Day
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Figure 15: Covariate Imbalances Before and After Matching. The dotplot (a Love plot) shows the
absolute standardized differences without matching, and after conducting a matching with a variable
number of controls. The vertical dotted line corresponds to a standardized difference threshold of
0.2, which is often regarded as the maximal allowable absolute standardized difference (for example,
Silber et al., 2001). The largest absolute standardized difference after matching was 0.094.

C.2. A Simple Extension To One-Sided Testing

By taking the square of the deviate in our original formulation, we lose the deviate’s sign.

While this does not make a difference for two-sided testing, it does make a difference when

the test is one-sided. For example, if we stipulated a one-sided, greater than alternative but

observed a test statistic markedly smaller than its expectation under the null we should

fail to reject that null, a fact which is lost when taking the square. To account for this, we

introduce a penalty into the constraints corresponding to one-sided hypotheses that only

allow for a rejection to be registered if the expectation of the test statistic yielded through

the sensitivity analysis maintains the proper relationship with the observed test statistic
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given the nature of the alternative. Let bk be a binary variable for the kth outcome, and let

M be a sufficiently large constant.

Redefine ζk(%) so that

ζk(%) =


(tk − E[tk(Z,Fk);%])2 − χ2

1,1−α/KVar(tk(Z,Fk);%) if two-sided alternative

(tk − E[tk(Z,Fk);%])2 − χ2
1,1−2α/KVar(tk(Z,Fk);%) if one-sided alternative

We then modify our optimization problem as follows:

minimize
y,%ij ,si,bk

y

subject to y ≥ ζk(%)−Mbk ∀k
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j

%ij ≥ 0 ∀i, j

bk ∈ {0, 1} ∀k

bk = 0 if Hk two-sided

−M(1− bk) ≤ tk − %Tqk ≤Mbk if Hk one-sided , <

−Mbk ≤ tk − %Tqk ≤M(1− bk) if Hk one-sided , >

The valueMbk added to the k constraints on the auxiliary variable y, in conjunction with the

constraints on the value of the test statistic’s numerator, impose a heavy negative penalty if

the relationship between the test statistic and its mean under a given allocation of unmea-
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Table 13: Rejection probability for testing true and false nulls through closed testing.
Desired strong familywise error control at 0.05.

True Nulls False Nulls
Gamma Moments H1 H2 H1 ∧H2 H3 H1 ∧H2 ∧H3

Γ = 1
τ ,Σ(1) 0.0260 0.0266 0.0506 0.9884 0.9886
τ ,Σ(2) 0.0267 0.0268 0.0462 0.9881 0.9893

Γ = 1.05
τ ,Σ(1) 0.0102 0.0089 0.0189 0.9748 0.9749
τ ,Σ(2) 0.0096 0.0122 0.0197 0.9732 0.9750

Γ = 1.10
τ ,Σ(1) 0.0035 0.0043 0.0078 0.9462 0.9463
τ ,Σ(2) 0.0053 0.0032 0.0081 0.9441 0.9462

sured confounders do not adhere to the required direction imposed by the alternative. This

makes it such that we will never reject a null at a given Γ because a given one-sided test

was highly insignificant, which without such a penalty would be construed as being highly

significant.

C.3. Simulation of Type I Error Control

In this simulation study, we demonstrate that, in the presence of true intersection null

hypotheses, our procedure strongly controls the familywise error rate at level α = 0.05. In

each of 6 simulation settings, we simulate 10,000 data sets under no unmeasured confounding

with I = 250 pairs for three outcome variables of interest and using Huber’s M-statistic, as

described in Section 4.6. For each of the 2 combinations of treatment effects and covariances,

closed testing is used, with our minimax procedure being used for each intersection null.

Tests are run at Γ = 1, 1.05, and 1.1. The values for the treatment effect vector and the

covariances were as follows:

1. τ = [0, 0, 0.3]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.

We test Fisher’s sharp null on each outcome. In each iteration, we record whether or not the

true null hypotheses H1, H2, and H1 ∧H2 are rejected. We also record whether or not the

false nulls H3 and H1 ∧H2 ∧H3 are rejected. Table 13 shows the results of this simulation
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study. As can be seen, our procedure strongly controls the type I error rate for all values

of Γ tested. The rate of rejection for H1 ∧ H2 reveals that our procedure is conservative

when the test statistics are dependent, while coming very close to attaining the actually

desired level under independence. As Γ increases the Type I error rate decreases for all true

nulls, as many spurious rejections assuming no unmeasured confounding can be explained

by moderate departures from pure randomization.
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APPENDIX D

D.1. Proof of Theorem 2

We begin by restating the optimization problem

minimize
{πi,ϕi2}

∑I
i=1 ϕi1 −

∑I
i=1 (πiϕi1 + (1− πi)ϕi2)√

Γ
(1+Γ)2

∑I
i=1(ϕi1 − ϕi2)2

(P2)

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2 = ¯̄vΓ

πi = wi/(1 + Γ) + (1− wi)Γ/(1 + Γ)

wi = 1{ϕi2 ≥ ϕi1}

Before proceeding, we prove two useful lemmas:

Lemma 3. For
∑I

i=1wi ∈ {1, ..., I − 2}, any feasible solution to Problem (P2) involving

ϕi2 = ϕi1 for some i has an objective value that is greater than or equal to a feasible solution

with ϕi2 6= ϕi1∀i.

Proof. Suppose ϕi1 = ϕi2 and
∑I

i=1wi ∈ {1, ..., I − 2}. Then, there exist two pairs, j and

k, such that ϕj2 − ϕj1 < 0 and ϕk2 − ϕk1 < 0. Define ϕ̃i2 = ϕi2 − c, ϕ̃j2 = ϕj2 + c/2, and

ϕ̃k2 = ϕk2 + c/2.

First, note that the change to the numerator of the objective function is less than or equal

to as changing to ϕ̃i2 decreases by c/(1 + Γ), while changing to ϕ̃j2 and ϕ̃k2 increases it by

(c/2 + c/2)/(1 + Γ) if ϕ̃j2 < ϕ̃j1 and ϕ̃k2 < ϕ̃k1. If one of these inequalities reverses based

on the value of c, the change in numerator will be negative.
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We now evaluate the impact on the variance. Computing: (ϕ̃i2 − ϕi1)2 + (ϕ̃j2 − ϕj1)2 +

(ϕ̃k2−ϕk1)2 = (ϕi2−ϕi1)2 + (ϕj2−ϕj1)2 + (ϕk2−ϕk1)2 + 3c2/2 + c(ϕj2−ϕj1 +ϕk2−ϕk1).

Setting c = (2/3)(ϕj1 − ϕj2 + ϕk1 − ϕk2) > 0 yields the identical

Hence we can assume that
∑I

i=1wi ∈ {1, .., I − 2} ⇒ (wi = 1 ⇒ {ϕi2 < ϕi1}). That is,∑I
i=1wi ∈ {1, .., I − 2} ⇒ ϕi1 6= ϕi2 ∀i.

Lemma 4. Suppose
∑I

i=1wiin{1, ..., I − 2}. Then, at the solution to the problem above,

Γ
(1+Γ)2

∑I
i=1(ϕi1 − ϕi2)2 = ¯̄vΓ

Proof. For any feasible set of {ϕi2}, by Lemma 3 we can find ϕi2 and ϕi′2 such that ϕi2 > ϕi1

and ϕi′2 < ϕi′1. Define ϕ̃i2 = ϕi2 + c and ϕ̃i′2 = ϕi′2 − c with c > 0. Replacing ϕi2 and

ϕi′2 with ϕ̃i2 and ϕ̃i′2, the constraint imposed by the null is still satisfied. Furthermore, the

numerator of the objective function changes by −(Γ − 1)/(1 + Γ)c, while the denominator

increases by Γ/(1 + Γ)2(2c2 + 2c(ϕi2−ϕi1 +ϕi′1−ϕi′2)) > 0. The objective function is thus

further minimized, and c can be chosen such that the variance constraint is still satisfied.

Proof of Theorem 2. Using Lemmas 3-4, we can, for
∑I

i=1wi ∈ {1, ..., I−2}, reformulate

the optimization problem as one which seeks to maximize the expectation of the average

treatment effect

maximize
{ϕi2}

I∑
i=1

(πiϕi1 + (1− πi)ϕi2)

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2 = ¯̄vΓ

πi = wi/(1 + Γ) + (1− wi)Γ/(1 + Γ)

wi = 1{ϕi2 ≥ ϕi1}
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The Lagrangian of the above problem is :

L =

I∑
i=1

(πiϕi1 + (1− πi)ϕi2) + λ1

(
I∑
i=1

ϕi1 + ϕi2 − 2I∆̄0

)

+ λ2

(
I∑
i=1

(ϕi1 − ϕi2)2 − (1 + Γ)2

Γ
¯̄vΓ

)

Differentiating with respect to ϕi2 and setting to zero yields:

0 = wiΓ/(1 + Γ) + (1− wi)/(1 + Γ) + λ1 + 2λ2(ϕi2 − ϕi1)

This form then implies

ϕi2 − ϕi1 =


−Γ/(1+Γ)−λ1

2λ2
ϕi2 ≥ ϕi1

−1/(1+Γ)−λ1
2λ2

ϕi2 < ϕi1

By Lemma 3, it must be the case that C+ := −Γ/(1+Γ)−λ1
2λ2

> 0 and

C− := −1/(1+Γ)−λ1
2λ2

< 0.

Hence, we can now further simplify the form of the optimization problem:
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maximize
{C+,C−,wi}

I∑
i=1

ϕi1 +
ΓC+

1 + Γ

I∑
i=1

wi +
C−

1 + Γ

I∑
i=1

(1− wi)

subject to
I∑
i=1

2ϕi1 + C−
I∑
i=1

(1− wi) + C+
I∑
i=1

wi = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(
(C−)2(1− wi) + (C+)2wi

)
= ¯̄vΓ

C+ ≥ 0

C− ≤ 0

I∑
i=1

wi ∈ {1, ..., I − 2}

For
∑I

i=1wi ∈ {1, ..., I − 2}, we can express the optimal C+ and C− as functions of s =∑I
i=1wi as:

C+
s =

2I∆̄0 − 2
∑I

i=1 ϕi1 − C−s (I − s)
s

C−s =

4
∑I

i=1(∆̄0 − ϕi1) I−ss − 2

√(
I−s
s

)(
I (1+Γ)2

Γ
¯̄vΓ − 4

(∑I
i=1(∆̄0 − ϕi1)

)2
)

2I
(
I−s
s

)

The identity for C+
s follows trivially from the constraint imposed by the null,

∑I
i=1 ϕi1 +
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ϕi2 = 2I∆̄0:

I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

I∑
i=1

2ϕi1 + wiC
+
s + (1− wi)C−s = 2I∆̄0

C+
s

I∑
i=1

wi + C−s

I∑
i=1

(1− wi) = 2I∆̄0 − 2

I∑
i=1

ϕi1

2I∆̄0 − 2
∑I

i=1 ϕi1 − C−s
∑I

i=1(1− wi)∑I
i=1wi

= C+
s

2I∆̄0 − 2
∑I

i=1 ϕi1 − C−s (I − s)
s

= C+
s

To derive the expression for C+
s , note that the variance equality implies:

(C+
s )2s+ (C−s )2(I − s) = ¯̄v

(1 + Γ)2

Γ

Expressing C+
s in terms of C−s and using the quadratic formula then yields the expression.

These values of C+ then yield the values for µs for s ∈ {1, ..., I − 2} given in the Section

5.4.1., and ν2
s = ¯̄vΓ for s ∈ {1, ..., I − 2} by Lemma 4.

We now consider the set of solutions for which
∑I

i=1wi ∈ {0, I − 1, I}.

(1)
∑I

i=1wi = I. Given ȳ ≥ ∆̄0 as we have assumed,
∑I

i=1wi = I cannot be a solution, as

in this case the constraint imposed by the null cannot be satisfied.

(2)
∑I

i=1wi = 0 At
∑I

i=1wi = 0, the numerator of the objective value will then be fixed,

due to the constraint imposed by the null, at 2/(1 + Γ)
∑I

i=1(ϕi1 − ∆̄0). Thus, minimizing

the objective function is achieved by maximizing its denominator:
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maximize
{ϕi2}

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2

subject to
I∑
i=1

ϕi1 + ϕi2 = 2I∆̄0

Γ

(1 + Γ)2

I∑
i=1

(ϕi1 − ϕi2)2 ≤ ¯̄vΓ

The KKT conditions, along with
∑I

i=1wi = 0, require the following to hold:

2(ϕi2 − ϕi1) = λ1 + 2λ2(ϕi2 − ϕi1)

For all i, given
∑I

i=1wi = 0 we know ϕi2 < ϕi1. Based on the KKT condition, it is

clear that ϕi2 = ϕi1 + C− for some constant C− < 0, as rearranging the above yields

(ϕi2 − ϕi1) = λ1/(2− 2λ2) ∀i.

With this in mind, from the constraint imposed by the null we have that

C− = 2I−1
∑I

i=1(∆̄0−ϕi1), yielding an objective value of Γ
(1+Γ)2

4I−1(
∑I

i=1(∆̄0−ϕi1))2. If

this satisfies the variance inequality, it is a valid solution; otherwise, there is no potentially

optimal solution with
∑I

i=1wi = 0. This leads to the values for µ0 and ν0 given in the

Section 5.4.1.

(3)
∑I

i=1wi = I − 1,

In this scenario, it could be the case that ϕi1 = ϕi2 for I − 1 of I pairs, while ϕi′2 − ϕi′1 =∑I
i=1(2∆̄0 − ϕi1). If it so happens that Γ

(1+Γ)2

(∑I
i=1(2∆̄0 − ϕi1)

)2
= ¯̄vΓ, this is a feasible

solution; however, it cannot be optimal, as is now shown.

Take j, k 6= i′. such that ϕj2 − ϕj1 = 0 and ϕk2 − ϕk1 = 0. Define ϕ̃i′2 = ϕi′2 + c,
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ϕ̃j2 = ϕj2 − c/2, and ϕ̃k2 = ϕk2 − c/2.

Evaluating further, (ϕ̃i2 − ϕi1)2 + (ϕ̃j2 − ϕj1)2 + (ϕ̃k2 − ϕk1)2 = (ϕi2 − ϕi1)2 + 3c2/2 +

2c((ϕi′2−ϕi′1). Setting c = (4/3)(ϕi′1−ϕj2) > 0 yields an objective value that is improved

by (1/3)Γ/(1 + Γ)(ϕi′1 − ϕj2) and now has
∑I

i=1wi = I − 2, thus putting us in the regime

previously considered.

If the variance constraint is not binding, the objective value can be improved by changing

the values of ϕi2 such that none of them exactly ϕi1. If this is the case, the solution when∑I
i=1wi = I − 1 can be attained as it was when

∑I
i=1wi ∈ {1, ..., I − 2}, thus recovering

the values for µI−1 and ν2
I−1 given in Section 5.4.1.
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